1
|
Aneja P, Sanyal R, Ranjan A. Leaf growth in third dimension: a perspective of leaf thickness from genetic regulation to ecophysiology. THE NEW PHYTOLOGIST 2024. [PMID: 39511951 DOI: 10.1111/nph.20246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/20/2024] [Indexed: 11/15/2024]
Abstract
Leaf thickness, the leaf growth in the third dimension as quantified by the distance between the adaxial and abaxial surface, is an indispensable aspect of leaf development. The fitness of a plant is strongly influenced by leaf thickness via modulation of major physiological processes, including photosynthesis and water use efficiency. The cellular basis of leaf thickness by alterations in either cell size or the number of cell layers is envisaged using Arabidopsis leaf thickness mutants, such as angustifolia (an) and rotundifolia (rot). Environmental factors coordinate with endogenous signaling mechanisms to exhibit leaf thickness plasticity. Plants growing in different ecological and environmental regimes show different leaf thickness attributes. However, genetic and molecular understandings of leaf thickness regulation remain largely limited. In this review, we highlight how cellular growth is transposed to fine-tune the leaf thickness via the integration of potential cues and molecular players. We further discuss the physiological significance of leaf thickness plasticity to the environmental cues that might serve as ecological adaptation enabling the plants to withstand future climatic conditions. Taken together, we seek to bridge the genetics and molecular biology of leaf thickness to its physiological significance so that leaf thickness can be systemically targeted in crop improvement programs.
Collapse
Affiliation(s)
- Prakshi Aneja
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Rajarshi Sanyal
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Aashish Ranjan
- National Institute of Plant Genome Research, New Delhi, 110067, India
| |
Collapse
|
2
|
Zhao YJ, Wang S, Liao ZY, Parepa M, Zhang L, Cao P, Bi J, Guo Y, Bossdorf O, Richards CL, Wu J, Li B, Ju RT. Geographic variation in leaf traits and palatability of a native plant invader during domestic expansion. Ecology 2024; 105:e4425. [PMID: 39311032 DOI: 10.1002/ecy.4425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/18/2024] [Indexed: 11/05/2024]
Abstract
Like alien plant invasion, range expansion of native plants may threaten biodiversity and economies, rendering them native invaders. Variation in abiotic and biotic conditions across a large geographic scale greatly affects variation in traits and interactions with herbivores of native plant invaders, which is an interesting yet mostly unexplored issue. We used a common garden experiment to compare defensive/nutritional traits and palatability to generalist herbivores of 20 native (23.64° N-30.18° N) and introduced range (31.58° N-36.87° N) populations of Reynoutria japonica, which is a native invader following range expansion in China. We analyzed the relationships among herbivore pressure, climate, plant chloroplast haplotypes, leaf traits, and herbivore performance. Of the 16 variables tested, we observed range differences in 11 variables and latitudinal clines in nine variables. In general, herbivores performed better on the introduced plants than on the native plants, and better on the high-latitude plants than on the low-latitude plants within the introduced populations. Three key traits (leaf thickness, specific leaf area, and carbon-to-nitrogen [C:N] ratio) determined palatability to herbivores and were significantly associated with temperature and/or precipitation of plant provenance as well as with plant haplotypes but not with herbivore pressure. Our results revealed a causal sequence from plant-range-based environmental forces and genetic context to plant quality and palatability to herbivores in R. japonica. These findings suggest a post-introduction evolution of R. japonica, which may partly explain the colonization success of this important native, but invasive plant.
Collapse
Affiliation(s)
- Yu-Jie Zhao
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Shengyu Wang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhi-Yong Liao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Madalin Parepa
- Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Tübingen, Germany
| | - Lei Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Peipei Cao
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Jingwen Bi
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Yaolin Guo
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Oliver Bossdorf
- Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Tübingen, Germany
| | - Christina L Richards
- Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Tübingen, Germany
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Jihua Wu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Bo Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Rui-Ting Ju
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Liu M, Li Z, Kang Y, Lv J, Jin Z, Mu S, Yue H, Li L, Chen P, Li Y. A mutation in CsGME encoding GDP-mannose 3,5-epimerase results in little and wrinkled leaf in cucumber. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:114. [PMID: 38678513 DOI: 10.1007/s00122-024-04600-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/13/2024] [Indexed: 05/01/2024]
Abstract
KEY MESSAGE Map-based cloning revealed that a mutation in a highly conserved amino acid of the CsGME gene encoding GDP-mannose 3,5-epimerase, causes the phenotype of little and wrinkled leaves in cucumbers. Leaf size is a critical determinant of plant architecture in cucumbers, yet only a few genes associated with this trait have been mapped or cloned. Here, we identified and characterized a mutant with little and wrinkled leaves, named lwl-1. Genetic analysis revealed that the phenotype of the lwl-1 was controlled by a single recessive gene. Through map-based cloning, the lwl-1 locus was narrowed down to a 12.22-kb region exclusively containing one fully annotated gene CsGME (CsaV3_2G004170). CsGME encodes GDP-mannose 3,5-epimerase, which is involved in the synthesis of ascorbic acid (ASA) and one of the components of pectin, RG-II. Whole-length sequencing of the 12.22 kb DNA fragment revealed the presence of only a non-synonymous mutation located in the sixth exon of CsGME in lwl-1, resulting in an amino acid alteration from Pro363 to Leu363. This mutation was unique among 118 inbred lines from cucumber natural populations. CsGME expression significantly reduced in various organs of lwl-1, accompanied by a significant decrease in ASA and pectin content in leaves. Both CsGME and Csgme proteins were localized to the cytoplasm. The mutant phenotype exhibited partial recovery after the application of exogenous boric acid. Silencing CsGME in cucumber through VIGS confirmed its role as the causal gene for lwl-1. Transcriptome profiling revealed that CsGME greatly affected the expression of genes related to the cell division process and cell plate formation. This study represents the first report to characterize and clone the CsGME in cucumber, indicating its crucial role in regulating leaf size and development.
Collapse
Affiliation(s)
- Mengying Liu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhaowei Li
- College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yunfeng Kang
- College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jinzhao Lv
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhuoshuai Jin
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Siyu Mu
- College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hongzhong Yue
- Vegetable Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, Gansu, China
| | - Lixia Li
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China
| | - Peng Chen
- College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Yuhong Li
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
4
|
Mutombo Arcel M, Yousef AF, Shen ZH, Nyimbo WJ, Zheng SH. Optimizing lettuce yields and quality by incorporating movable downward lighting with a supplemental adjustable sideward lighting system in a plant factory. PeerJ 2023; 11:e15401. [PMID: 37334128 PMCID: PMC10276559 DOI: 10.7717/peerj.15401] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/20/2023] [Indexed: 06/20/2023] Open
Abstract
Background Lettuce is a vegetable that is increasingly consumed globally, given its nutritional quality. Plant factories with artificial lighting can produce high-yield and high-quality plants. High plant density in these systems speeds up leaf senescence. Wasted energy and lower yield raised labor expenses are some of the bottlenecks associated with this farming system. In order to increase lettuce yields and quality in the plant factory, it is essential to develop cultivating techniques using artificial lighting. Methods Romaine lettuce was grown under a developed "movable downward lighting combined with supplemental adjustable sideward lighting system" (C-S) and under a system without supplemental sideward lighting (N-S) in a plant factory. The effects of C-S on lettuce's photosynthetic characteristics, plant yield, and energy consumption relative to plants grown under a system without N-S were studied. Results Romaine lettuce growth and light energy consumption in the plant factory were both influenced favorably by supplementary adjustable sideward lighting. The number of leaves, stem diameter, fresh and dry weights, chlorophyll a and b concentration, and biochemical content (soluble sugar and protein) all increased sharply. The energy consumption was substantially higher in the N-S treatment than the C-S.
Collapse
Affiliation(s)
- Mulowayi Mutombo Arcel
- College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Fujian University Engineering Research Center for Modern Agricultural Equipement, Fuzhou, Fujian, China
| | - Ahmed Fathy Yousef
- Department of Horticulture, College of Agriculture, University of Al-Azhar (Branch Assiut), Assiut, Egypt
| | - Zhen Hui Shen
- College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Fujian University Engineering Research Center for Modern Agricultural Equipement, Fuzhou, Fujian, China
- Engineering College, Fujian Jiangxia University, Fuzhou, Fujian, China
| | - Witness Joseph Nyimbo
- Fujian Provincial Key Laboratory of Agro-Ecological Processing and Safety Monitoring, College of Life Sciences, Fujian, Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Shu He Zheng
- College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Fujian University Engineering Research Center for Modern Agricultural Equipement, Fuzhou, Fujian, China
| |
Collapse
|
5
|
Kim KR, Park SY, Kim H, Hong JM, Kim SY, Yu JN. Complete Chloroplast Genome Determination of Ranunculus sceleratus from Republic of Korea (Ranunculaceae) and Comparative Chloroplast Genomes of the Members of the Ranunculus Genus. Genes (Basel) 2023; 14:1149. [PMID: 37372329 DOI: 10.3390/genes14061149] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Ranunculus sceleratus (family: Ranunculaceae) is a medicinally and economically important plant; however, gaps in taxonomic and species identification limit its practical applicability. This study aimed to sequence the chloroplast genome of R. sceleratus from Republic of Korea. Chloroplast sequences were compared and analyzed among Ranunculus species. The chloroplast genome was assembled from Illumina HiSeq 2500 sequencing raw data. The genome was 156,329 bp and had a typical quadripartite structure comprising a small single-copy region, a large single-copy region, and two inverted repeats. Fifty-three simple sequence repeats were identified in the four quadrant structural regions. The region between the ndhC and trnV-UAC genes could be useful as a genetic marker to distinguish between R. sceleratus populations from Republic of Korea and China. The Ranunculus species formed a single lineage. To differentiate between Ranunculus species, we identified 16 hotspot regions and confirmed their potential using specific barcodes based on phylogenetic tree and BLAST-based analyses. The ndhE, ndhF, rpl23, atpF, rps4, and rpoA genes had a high posterior probability of codon sites in positive selection, while the amino acid site varied between Ranunculus species and other genera. Comparison of the Ranunculus genomes provides useful information regarding species identification and evolution that could guide future phylogenetic analyses.
Collapse
Affiliation(s)
- Kang-Rae Kim
- Animal & Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| | - So Young Park
- Animal & Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| | - Heesoo Kim
- Animal & Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| | - Jeong Min Hong
- Animal & Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| | - Sun-Yu Kim
- Animal & Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| | - Jeong-Nam Yu
- Animal & Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| |
Collapse
|
6
|
de Haldat du Lys A, Millan M, Barczi J, Caraglio Y, Midgley GF, Charles‐Dominique T. If self-shading is so bad, why is there so much? Short shoots reconcile costs and benefits. THE NEW PHYTOLOGIST 2023; 237:1684-1695. [PMID: 36427292 PMCID: PMC10107860 DOI: 10.1111/nph.18636] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/19/2022] [Indexed: 05/29/2023]
Abstract
If trees minimize self-shading, new foliage in shaded parts of the crown should remain minimal. However, many species have abundant foliage on short shoots inside their crown. In this paper, we test the hypothesis that short shoots allow trees to densify their foliage in self-shaded parts of the crown thanks to reduced costs. Using 30 woody species in Mediterranean and tropical biomes, we estimated the contribution of short shoots to total plant foliage, calculated their costs relative to long shoots including wood cost and used 3D plant simulations calibrated with field measurements to quantify their light interception, self-shading and yield. In species with short shoots, leaves on short shoots account for the majority of leaf area. The reduced cost of short stems enables the production of leaf area with 36% less biomass. Simulations show that although short shoots are more self-shaded, they benefit the plant because they cost less. Lastly, the morphological properties of short shoots have major implications for whole plant architecture. Taken together, our results question the validity of only assessing leaf costs to understand leaf economics and call for more integrated observations at the crown scale to understand light capture strategies in woody plants.
Collapse
Affiliation(s)
| | - Mathieu Millan
- Centre for African Ecology, School of Animal, Plant and Environmental SciencesUniversity of the WitwatersrandPrivate Bag X3 WITSJohannesburg2050South Africa
- Global Change Biology Group, Department of Botany and ZoologyStellenbosch UniversityPrivate Bag X1Matieland7602South Africa
- Institute of Botany of the Czech Academy of Sciencesv.v.i, Dukelská 135Třeboň379 01Czech Republic
| | | | - Yves Caraglio
- AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRDF‐34398MontpellierFrance
| | - Guy F. Midgley
- Global Change Biology Group, Department of Botany and ZoologyStellenbosch UniversityPrivate Bag X1Matieland7602South Africa
| | - Tristan Charles‐Dominique
- AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRDF‐34398MontpellierFrance
- CNRS UMR7618Institute of Ecology and Environmental Sciences Paris, Sorbonne University4 Place Jussieu75005ParisFrance
| |
Collapse
|
7
|
Alonso-Forn D, Peguero-Pina JJ, Ferrio JP, García-Plazaola JI, Martín-Sánchez R, Niinemets Ü, Sancho-Knapik D, Gil-Pelegrín E. Cell-level anatomy explains leaf age-dependent declines in mesophyll conductance and photosynthetic capacity in the evergreen Mediterranean oak Quercus ilex subsp. rotundifolia. TREE PHYSIOLOGY 2022; 42:1988-2002. [PMID: 35451029 DOI: 10.1093/treephys/tpac049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Leaves of Mediterranean evergreen tree species experience a reduction in net CO2 assimilation (AN) and mesophyll conductance to CO2 (gm) during aging and senescence, which would be influenced by changes in leaf anatomical traits at cell level. Anatomical modifications can be accompanied by the dismantling of photosynthetic apparatus associated to leaf senescence, manifested through changes at the biochemical level (i.e., lower nitrogen investment in photosynthetic machinery). However, the role of changes in leaf anatomy at cell level and nitrogen content in gm and AN decline experienced by old non-senescent leaves of evergreen trees with long leaf lifespan is far from being elucidated. We evaluated age-dependent changes in morphological, anatomical, chemical and photosynthetic traits in Quercus ilex subsp. rotundifolia Lam., an evergreen oak with high leaf longevity. All photosynthetic traits decreased with increasing leaf age. The relative change in cell wall thickness (Tcw) was less than in chloroplast surface area exposed to intercellular air space (Sc/S), and Sc/S was a key anatomical trait explaining variations in gm and AN among different age classes. The reduction of Sc/S was related to ultrastructural changes in chloroplasts associated to leaf aging, with a concomitant reduction in cytoplasmic nitrogen. Changes in leaf anatomy and biochemistry were responsible for the age-dependent modifications in gm and AN. These findings revealed a gradual physiological deterioration related to the dismantling of the photosynthetic apparatus in older leaves of Q. ilex subsp. rotundifolia.
Collapse
Affiliation(s)
- David Alonso-Forn
- Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda Montañana 930, Zaragoza 50059, Spain
| | - José Javier Peguero-Pina
- Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda Montañana 930, Zaragoza 50059, Spain
- Instituto Agroalimentario de Aragón -IA2- (CITA-Universidad de Zaragoza), Zaragoza, Spain
| | - Juan Pedro Ferrio
- Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda Montañana 930, Zaragoza 50059, Spain
- Aragon Agency for Research and Development (ARAID), Zaragoza E-50018, Spain
| | - José Ignacio García-Plazaola
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo 644, Bilbao 48080, Spain
| | - Rubén Martín-Sánchez
- Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda Montañana 930, Zaragoza 50059, Spain
| | - Ülo Niinemets
- Crop Science and Plant Biology, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia
| | - Domingo Sancho-Knapik
- Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda Montañana 930, Zaragoza 50059, Spain
- Instituto Agroalimentario de Aragón -IA2- (CITA-Universidad de Zaragoza), Zaragoza, Spain
| | - Eustaquio Gil-Pelegrín
- Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda Montañana 930, Zaragoza 50059, Spain
| |
Collapse
|
8
|
Wyka TP, Robakowski P, Żytkowiak R, Oleksyn J. Anatomical acclimation of mature leaves to increased irradiance in sycamore maple (Acer pseudoplatanus L.). PHOTOSYNTHESIS RESEARCH 2022; 154:41-55. [PMID: 36057003 PMCID: PMC9568483 DOI: 10.1007/s11120-022-00953-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Trees regenerating in the understory respond to increased availability of light caused by gap formation by undergoing a range of morphological and physiological adjustments. These adjustments include the production of thick, sun-type leaves containing thicker mesophyll and longer palisade cells than in shade-type leaves. We asked whether in the shade-regenerating tree Acer pseudoplatanus, the increase in leaf thickness and expansion of leaf tissues are possible also in leaves that are already fully formed, a response reported so far only for a handful of species. We acclimated potted seedlings to eight levels (from 1 to 100%) of solar irradiance and, in late summer, transferred a subset of them to full sunlight. Within 30 days, the pre-shaded leaves increased leaf mass per area and became thicker mostly due to the elongation of palisade cells, except for the most shaded individuals which suffered irreversible photo-oxidative damage. This anatomical acclimation was accompanied by a transient decline in photosynthetic efficiency of PSII (Fv/FM), the magnitude of which was related to the degree of pre-shading. The Fv/FM recovered substantially within the re-acclimation period. However, leaves of transferred plants were shed earlier in the fall, indicating that the acclimation was not fully effective. These results show that A. pseudoplatanus is one of the few known species in which mature leaves may re-acclimate anatomically to increased irradiance. This may be an important mechanism enhancing utilization of gaps created during the growing season.
Collapse
Affiliation(s)
- Tomasz P Wyka
- General Botany Laboratory, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| | - Piotr Robakowski
- Poznań University of Life Sciences, ul. Wojska Polskiego 71a, 60-625, Poznań, Poland
| | - Roma Żytkowiak
- Institute of Dendrology, Polish Academy of Sciences, ul. Parkowa 5, 62-035, Kórnik, Poland
| | - Jacek Oleksyn
- Institute of Dendrology, Polish Academy of Sciences, ul. Parkowa 5, 62-035, Kórnik, Poland
| |
Collapse
|
9
|
Wyka TP, Robakowski P, Żytkowiak R, Oleksyn J. Anatomical adjustment of mature leaves of sycamore maple (Acer pseudoplatanus L.) to increased irradiance. PHOTOSYNTHESIS RESEARCH 2022; 152:55-71. [PMID: 35034267 PMCID: PMC9090708 DOI: 10.1007/s11120-022-00898-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Trees regenerating in the understory respond to increased availability of light caused by gap formation by undergoing a range of morphological and physiological adjustments. These adjustments include the production of thick, sun-type leaves containing thicker mesophyll and longer palisade cells than in shade-type leaves. We asked whether in the shade-regenerating tree Acer pseudoplatanus, the increase in leaf thickness and expansion of leaf tissues are possible also in leaves that had been fully formed prior to the increase in irradiance, a response reported so far only for a handful of species. We acclimated potted seedlings to eight levels (from 1 to 100%) of solar irradiance and, in late summer, transferred a subset of them to full sunlight. Within 30 days, the shaded leaves increased leaf mass per area and became thicker mostly due to elongation of palisade cells, except for the most shaded individuals which suffered irreversible photo-oxidative damage. This anatomical acclimation was accompanied by partial degradation of chlorophyll and a transient decline in photosynthetic efficiency of PSII (Fv/FM). These effects were related to the degree of pre-shading. The Fv/FM recovered substantially within the re-acclimation period. However, leaves of transferred plants were shed significantly earlier in the fall, indicating that the acclimation was not fully effective. These results show that A. pseudoplatanus is one of the few known species in which mature leaves may re-acclimate anatomically to increased irradiance. This may be a potentially important mechanism enhancing utilization of gaps created during the growing season.
Collapse
Affiliation(s)
- Tomasz P Wyka
- Adam Mickiewicz University, Faculty of Biology, General Botany Laboratory, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| | - Piotr Robakowski
- Poznań University of Life Sciences, Faculty of Forestry, ul. Wojska Polskiego 71a, 60-625, Poznań, Poland
| | - Roma Żytkowiak
- Polish Academy of Sciences, Institute of Dendrology, ul. Parkowa 5, 62-035, Kórnik, Poland
| | - Jacek Oleksyn
- Polish Academy of Sciences, Institute of Dendrology, ul. Parkowa 5, 62-035, Kórnik, Poland
| |
Collapse
|
10
|
Slattery RA, Ort DR. Perspectives on improving light distribution and light use efficiency in crop canopies. PLANT PHYSIOLOGY 2021; 185:34-48. [PMID: 33631812 PMCID: PMC8133579 DOI: 10.1093/plphys/kiaa006] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/03/2020] [Indexed: 05/22/2023]
Abstract
Plant stands in nature differ markedly from most seen in modern agriculture. In a dense mixed stand, plants must vie for resources, including light, for greater survival and fitness. Competitive advantages over surrounding plants improve fitness of the individual, thus maintaining the competitive traits in the gene pool. In contrast, monoculture crop production strives to increase output at the stand level and thus benefits from cooperation to increase yield of the community. In choosing plants with higher yields to propagate and grow for food, humans may have inadvertently selected the best competitors rather than the best cooperators. Here, we discuss how this selection for competitiveness has led to overinvestment in characteristics that increase light interception and, consequently, sub-optimal light use efficiency in crop fields that constrains yield improvement. Decades of crop canopy modeling research have provided potential strategies for improving light distribution in crop canopies, and we review the current progress of these strategies, including balancing light distribution through reducing pigment concentration. Based on recent research revealing red-shifted photosynthetic pigments in algae and photosynthetic bacteria, we also discuss potential strategies for optimizing light interception and use through introducing alternative pigment types in crops. These strategies for improving light distribution and expanding the wavelengths of light beyond those traditionally defined for photosynthesis in plant canopies may have large implications for improving crop yield and closing the yield gap.
Collapse
Affiliation(s)
- Rebecca A Slattery
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Donald R Ort
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Departments of Plant Biology & Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Author for communication:
| |
Collapse
|
11
|
Hussain S, Shuxian L, Mumtaz M, Shafiq I, Iqbal N, Brestic M, Shoaib M, Sisi Q, Li W, Mei X, Bing C, Zivcak M, Rastogi A, Skalicky M, Hejnak V, Weiguo L, Wenyu Y. Foliar application of silicon improves stem strength under low light stress by regulating lignin biosynthesis genes in soybean (Glycine max (L.) Merr.). JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123256. [PMID: 32629356 DOI: 10.1016/j.jhazmat.2020.123256] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 06/04/2020] [Accepted: 06/18/2020] [Indexed: 05/03/2023]
Abstract
In order to improve soybean's resistance to lodging, silicon (Si) solutions at concentrations of 0,100, 200,300 mg kg-1 were applied during the seedling stage. The Si accumulation in different parts of the plants, the photosynthetic parameters of leaves and chlorophyll content, the stem bending resistance, the expression of genes of lignin biosynthesis and associated enzyme activity and sap flow rates were measured at early and late growth stages. The potential mechanisms for how Si improve growth and shade tolerance, enhances lodging resistance and improves photosynthesis were analyzed to provide a theoretical basis for the use of Si amendments in agriculture. After application of Si at 200 mg kg-1, the net photosynthetic rate of soybeans increased by 46.4 % in the light and 33.3 % under shade. The application of Si increased chlorophyll content, and fresh weight of leaves, reduced leaf area and enhanced photosynthesis by increasing stomatal conductance. The activity of peroxidase (POD), 4-coumarate:CoA ligase (4CL), cinnamyl alcohol dehydrogenase (CAD) and phenylalanine ammonia-lyase (PAL) increased during pre-and post-growth periods, whereas Si also increased lignin accumulation and inhibited lodging. We concluded that Si affects the composition of plant cell walls components, mostly by altering linkages of non-cellulosic polymers and lignin. The modifications of the cell wall network through Si application could be a useful strategy to reduce shading stress in intercropping.
Collapse
Affiliation(s)
- Sajad Hussain
- College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang District, Chengdu 611130, PR China; Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu, PR China.
| | - Li Shuxian
- College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang District, Chengdu 611130, PR China; Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu, PR China
| | - Maryam Mumtaz
- College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang District, Chengdu 611130, PR China
| | - Iram Shafiq
- College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang District, Chengdu 611130, PR China; Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu, PR China
| | - Nasir Iqbal
- School of Agriculture, Food & Wine, The University of Adelaide, PMB1, Glen Osmond, Adelaide 5064, Australia
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, 94976 Nitra, Slovakia; Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic
| | - Muhammad Shoaib
- College of Resources, Sichuan Agricultural University, PR China
| | - Qin Sisi
- College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang District, Chengdu 611130, PR China; Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu, PR China
| | - Wang Li
- College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang District, Chengdu 611130, PR China; Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu, PR China
| | - Xu Mei
- College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang District, Chengdu 611130, PR China; Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu, PR China
| | - Chen Bing
- College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang District, Chengdu 611130, PR China; Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu, PR China
| | - Marek Zivcak
- Department of Plant Physiology, Slovak University of Agriculture, 94976 Nitra, Slovakia
| | - Anshu Rastogi
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Piątkowska 94, 60-649 Poznan, Poland
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic
| | - Vaclav Hejnak
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic
| | - Liu Weiguo
- College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang District, Chengdu 611130, PR China; Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu, PR China.
| | - Yang Wenyu
- College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang District, Chengdu 611130, PR China; Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu, PR China.
| |
Collapse
|
12
|
Sugiura D, Terashima I, Evans JR. A Decrease in Mesophyll Conductance by Cell-Wall Thickening Contributes to Photosynthetic Downregulation. PLANT PHYSIOLOGY 2020; 183:1600-1611. [PMID: 32518201 PMCID: PMC7401118 DOI: 10.1104/pp.20.00328] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/26/2020] [Indexed: 05/30/2023]
Abstract
It has been argued that accumulation of nonstructural carbohydrates triggers a decrease in Rubisco content, which downregulates photosynthesis. However, a decrease in the sink-source ratio in several plant species leads to a decrease in photosynthesis and increases in both structural and nonstructural carbohydrate content. Here, we tested whether increases in cell-wall materials, rather than starch content, impact directly on photosynthesis by decreasing mesophyll conductance. We measured various morphological, anatomical, and physiological traits in primary leaves of soybean (Glycine max) and French bean (Phaseolus vulgaris) grown under high- or low-nitrogen conditions. We removed other leaves 2 weeks after sowing to decrease the sink-source ratio and conducted measurements 0, 1, and 2 weeks after defoliation.
Collapse
Affiliation(s)
- Daisuke Sugiura
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Ichiro Terashima
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - John R Evans
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
13
|
Mehmood F, Abdullah, Ubaid Z, Shahzadi I, Ahmed I, Waheed MT, Poczai P, Mirza B. Plastid genomics of Nicotiana (Solanaceae): insights into molecular evolution, positive selection and the origin of the maternal genome of Aztec tobacco ( Nicotiana rustica). PeerJ 2020; 8:e9552. [PMID: 32775052 PMCID: PMC7382938 DOI: 10.7717/peerj.9552] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 06/24/2020] [Indexed: 12/17/2022] Open
Abstract
Species of the genus Nicotiana (Solanaceae), commonly referred to as tobacco plants, are often cultivated as non-food crops and garden ornamentals. In addition to the worldwide production of tobacco leaves, they are also used as evolutionary model systems due to their complex development history tangled by polyploidy and hybridization. Here, we assembled the plastid genomes of five tobacco species: N. knightiana, N. rustica, N. paniculata, N. obtusifolia and N. glauca. De novo assembled tobacco plastid genomes had the typical quadripartite structure, consisting of a pair of inverted repeat (IR) regions (25,323-25,369 bp each) separated by a large single-copy (LSC) region (86,510-86,716 bp) and a small single-copy (SSC) region (18,441-18,555 bp). Comparative analyses of Nicotiana plastid genomes with currently available Solanaceae genome sequences showed similar GC and gene content, codon usage, simple sequence and oligonucleotide repeats, RNA editing sites, and substitutions. We identified 20 highly polymorphic regions, mostly belonging to intergenic spacer regions (IGS), which could be suitable for the development of robust and cost-effective markers for inferring the phylogeny of the genus Nicotiana and family Solanaceae. Our comparative plastid genome analysis revealed that the maternal parent of the tetraploid N. rustica was the common ancestor of N. paniculata and N. knightiana, and the later species is more closely related to N. rustica. Relaxed molecular clock analyses estimated the speciation event between N. rustica and N. knightiana appeared 0.56 Ma (HPD 0.65-0.46). Biogeographical analysis supported a south-to-north range expansion and diversification for N. rustica and related species, where N. undulata and N. paniculata evolved in North/Central Peru, while N. rustica developed in Southern Peru and separated from N. knightiana, which adapted to the Southern coastal climatic regimes. We further inspected selective pressure on protein-coding genes among tobacco species to determine if this adaptation process affected the evolution of plastid genes. These analyses indicate that four genes involved in different plastid functions, including DNA replication (rpoA) and photosynthesis (atpB, ndhD and ndhF), came under positive selective pressure as a result of specific environmental conditions. Genetic mutations in these genes might have contributed to better survival and superior adaptations during the evolutionary history of tobacco species.
Collapse
Affiliation(s)
- Furrukh Mehmood
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Botany Unit, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Abdullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Zartasha Ubaid
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Iram Shahzadi
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ibrar Ahmed
- Alpha Genomics Private Limited, Islamabad, Pakistan
| | - Mohammad Tahir Waheed
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Peter Poczai
- Botany Unit, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Bushra Mirza
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
14
|
Surface Canopy Position Determines the Photosystem II Photochemistry in Invasive and Native Prosopis Congeners at Sharjah Desert, UAE. FORESTS 2020. [DOI: 10.3390/f11070740] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Plants have evolved photoprotective mechanisms in order to counteract the damaging effects of excess light in hyper-arid desert environments. We evaluated the impact of surface canopy positions on the photosynthetic adjustments and chlorophyll fluorescence attributes (photosystem II photochemistry, quantum yield, fluorescence quenching, and photon energy dissipation), leaf biomass and nutrient content of sun-exposed leaves at the south east (SE canopy position) and shaded-leaves at the north west (NW canopy position) in the invasive Prosopis juliflora and native Prosopis cineraria in the extreme environment (hyper-arid desert area, United Arab Emirates (UAE)). The main aim of this research was to study the photoprotection mechanism in invasive and native Prosopis congeners via the safe removal—as thermal energy—of excess solar energy absorbed by the light collecting system, which counteracts the formation of reactive oxygen species. Maximum photosynthetic efficiency (Fv/Fm) from dark-adapted leaves in P. juliflora and P. cineraria was higher on NW than SE canopy position while insignificant difference was observed within the two Prosopis congeners. Greater quantum yield was observed in P. juliflora than P. cineraria on the NW canopy position than SE. With the change of canopy positions from NW to SE, the reduction of the PSII reaction center activity in the leaves of both Prosopis congeners was accelerated. On the SE canopy position, a significant decline in the electron transport rate (ETR) of in the leaves of both Prosopis congeners occurred, which might be due to the blockage of electron transfer from QA to QB on the PSII acceptor side. On the SE canopy position; Prosopis leaves dissipated excess light energy by increasing non-photochemical quenching (NPQ). However, in P. cineraria, the protective ability of NPQ decreased, which led to the accumulation of excess excitation energy (1 − qP)/NPQ and the aggravation of photoinhibition. The results also explain the role of different physiological attributes contributing to invasiveness of P. juliflora and to evaluate its liaison between plasticity of these characters and invasiveness.
Collapse
|
15
|
Paponov M, Kechasov D, Lacek J, Verheul MJ, Paponov IA. Supplemental Light-Emitting Diode Inter-Lighting Increases Tomato Fruit Growth Through Enhanced Photosynthetic Light Use Efficiency and Modulated Root Activity. FRONTIERS IN PLANT SCIENCE 2020; 10:1656. [PMID: 31998343 PMCID: PMC6965351 DOI: 10.3389/fpls.2019.01656] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 11/25/2019] [Indexed: 05/25/2023]
Abstract
We investigated the effect of supplemental LED inter-lighting (80% red, 20% blue; 70 W m-2; light period 04:00-22:00) on the productivity and physiological traits of tomato plants (Flavance F1) grown in an industrial greenhouse with high pressure sodium (HPS) lamps (235 W m-2, 420 µmol m-2 s-1 at canopy). Physiological trait measurements included diurnal photosynthesis and fruit relative growth rates, fruit weight at specific positions in the truss, root pressure, xylem sap hormone and ion compositions, and fruit quality. In the control treatment with HPS lamps alone, the ratio of far-red to red light (FR:R) was 1.2 at the top of the canopy and increased to 5.4 at the bottom. The supplemental LED inter-lighting decreased the FR:R ratio at the middle and low positions in the canopy and was associated with greener leaves and higher photosynthetic light use efficiency (PLUE) in the leaves in the lower canopy. The use of LED inter-lighting increased the biomass and yield by increasing the fruit weight and enhancing plant growth. The PLUE of plants receiving supplemental LED light decreased at the end of the light period, indicating that photosynthesis of the supplemented plants at the end of the day might be limited by sink capacity. The supplemental LED lighting increased the size of fruits in the middle and distal positions of the truss, resulting in a more even size for each fruit in the truss. Diurnal analysis of fruit growth showed that fruits grew more quickly during the night on the plants receiving LED light than on unsupplemented control plants. This faster fruit growth during the night was related to an increased root pressure. The LED treatment also increased the xylem levels of the phytohormone jasmonate. Supplemental LED inter-lighting increased tomato fruit weight without affecting the total soluble solid contents in fruits by increasing the total assimilates available for fruit growth and by enhancing root activity through an increase in root pressure and water supply to support fruit growth during the night.
Collapse
Affiliation(s)
- Martina Paponov
- Division of Food Production and Society, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - Dmitry Kechasov
- Division of Food Production and Society, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - Jozef Lacek
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
| | - Michel J. Verheul
- Division of Food Production and Society, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - Ivan A. Paponov
- Division of Food Production and Society, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| |
Collapse
|
16
|
Guo J, Li H, Zhou C, Yang Y. Effects of Flag Leaf and Number of Vegetative Ramets on Sexual Reproductive Performance in the Clonal Grass Leymus chinensis. FRONTIERS IN PLANT SCIENCE 2020; 11:534278. [PMID: 33193474 PMCID: PMC7661390 DOI: 10.3389/fpls.2020.534278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 10/12/2020] [Indexed: 05/16/2023]
Abstract
Sexual reproduction is vital for population adaptation in clonal plants. The flag leaf is considered to be the primary contributor to sexual reproduction in cereal crops, and there is no unified conclusion on the effect of the number of vegetative ramets on grain yield. However, what effects of the flag leaf and the number of vegetative ramets on sexual reproductive performance of clonal grasses are largely unknown. To test this, under field natural conditions, we grew the rhizomatous grass Leymus chinensis in a homogeneous environment and conducted studies concerning the growth, reproduction and physiology of reproductive ramets in clonal populations. We measured the growth characteristics of different aged leaves, dynamically measured the net photosynthetic rate of different aged leaves and organ biomass, measured the sexual reproductive characteristics of reproductive ramets that had different numbers of connecting vegetative ramets, and performed isotope (15N) labeling of ramet pairs at the seed-filling stage. In L. chinensis clonal populations, from the heading stage, the photosynthetic contribution of the functional leaves to seed production was much greater than that of the flag leaf; the photosynthetic capacity of both the functional leaves and the flag leaf all gradually declined. Vegetative ramets translocated their own resources to the connected reproductive ramets, and a large proportion of translocated resources were allocated to the leaf and stem to sustain life activities; increase in the number of connecting vegetative ramets increased floret number, seed number, seed-setting rate, inflorescence biomass, seed biomass, and reproductive allocation of reproductive ramets, and these parameters significantly and positively correlated with the biomass of connecting vegetative ramets. We conclude that the functional leaf rather than the flag leaf of L. chinensis is the primary contributor to seed production. Reproductive ramets adopt a strategy of growth first and reproduction later to allocate the translocated resources between the organs, but vegetative ramets are very advantageous for sexual reproduction under the tillering node connection form in L. chinensis. Overall, our study implies that vegetative ramets not only play an important role in the spatial expansion but also in the sexual reproduction of clonal plant populations.
Collapse
Affiliation(s)
- Jian Guo
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Haiyan Li
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
- *Correspondence: Haiyan Li,
| | - Chan Zhou
- School of Life Sciences, Liaoning University, Shenyang, China
| | - Yunfei Yang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
- Yunfei Yang,
| |
Collapse
|
17
|
Hoshino R, Yoshida Y, Tsukaya H. Multiple steps of leaf thickening during sun-leaf formation in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:738-753. [PMID: 31350790 PMCID: PMC6900135 DOI: 10.1111/tpj.14467] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/09/2019] [Accepted: 07/12/2019] [Indexed: 05/20/2023]
Abstract
Plant morphological and physiological traits exhibit plasticity in response to light intensity. Leaf thickness is enhanced under high light (HL) conditions compared with low light (LL) conditions through increases in both cell number and size in the dorsoventral direction; however, the regulation of such phenotypic plasticity in leaf thickness (namely, sun- or shade-leaf formation) during the developmental process remains largely unclear. By modifying observation techniques for tiny leaf primordia in Arabidopsis thaliana, we analysed sun- and shade-leaf development in a time-course manner and found that the process of leaf thickening can be divided into early and late phases. In the early phase, anisotropic cell elongation and periclinal cell division on the adaxial side of mesophyll tissue occurred under the HL conditions used, which resulted in the dorsoventral growth of sun leaves. Anisotropic cell elongation in the palisade tissue is triggered by blue-light irradiation. We discovered that anisotropic cell elongation processes before or after periclinal cell division were differentially regulated independent of or dependent upon signalling through blue-light receptors. In contrast, during the late phase, isotropic cell expansion associated with the endocycle, which determined the final leaf thickness, occurred irrespective of the light conditions. Sucrose production was high under HL conditions, and we found that sucrose promoted isotropic cell expansion and the endocycle even under LL conditions. Our analyses based on this method of time-course observation addressed the developmental framework of sun- and shade-leaf formation.
Collapse
Affiliation(s)
- Rina Hoshino
- Department of Biological SciencesGraduate School of ScienceThe University of TokyoBunkyo‐kuTokyo113‐0033Japan
| | - Yuki Yoshida
- Department of Biological SciencesGraduate School of ScienceThe University of TokyoBunkyo‐kuTokyo113‐0033Japan
| | - Hirokazu Tsukaya
- Department of Biological SciencesGraduate School of ScienceThe University of TokyoBunkyo‐kuTokyo113‐0033Japan
- Exploratory Research Center on Life and Living SystemsNational Institutes of Natural SciencesOkazakiAichi444‐8787Japan
| |
Collapse
|
18
|
Moriwaki T, Falcioni R, Tanaka FAO, Cardoso KAK, Souza LA, Benedito E, Nanni MR, Bonato CM, Antunes WC. Nitrogen-improved photosynthesis quantum yield is driven by increased thylakoid density, enhancing green light absorption. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 278:1-11. [PMID: 30471722 DOI: 10.1016/j.plantsci.2018.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/11/2018] [Accepted: 10/15/2018] [Indexed: 05/22/2023]
Abstract
A nitrogen supply is necessary for all plants. The multifaceted reasons why this nutrient stimulates plant dry weight accumulation are assessed herein. We compared tomato plants grown in full sunlight and in low light environments under four N doses and evaluated plant growth, photosynthetic and calorimetric parameters, leaf anatomy, chloroplast transmission electron microscopy (TEM) and a high resolution profile of optical leaf properties. Increases in N supplies allow tomato plants to grow faster in low light environments (91.5% shading), displaying a robust light harvesting machinery and, consequently, improved light harvesting efficiency. Ultrastructurally, high N doses were associated to a high number of grana per chloroplast and greater thylakoid stacking, as well as high electrodensity by TEM. Robust photosynthetic machinery improves green light absorption, but not blue or red. In addition, low construction and dark respiration costs were related to improved total dry weight accumulation in shade conditions. By applying multivariate analyses, we conclude that improved green light absorbance, improved quantum yield and greater palisade parenchyma cell area are the primary components that drive increased plant growth under natural light-limited photosynthesis.
Collapse
Affiliation(s)
- Thaise Moriwaki
- Laboratório de Ecofisiologia Vegetal, Brazil; Universidade Estadual de Maringá (UEM), Brazil
| | - Renan Falcioni
- Laboratório de Ecofisiologia Vegetal, Brazil; Universidade Estadual de Maringá (UEM), Brazil
| | - Francisco André Ossamu Tanaka
- Departamento de Fitopatologia e Nematologia (LFN), Escola Superior de Agricultura, Luiz de Queiroz, Universidade de São Paulo (ESALQ - USP), Brazil
| | | | - L A Souza
- Universidade Estadual de Maringá (UEM), Brazil; Laboratório de Histotécnica Vegetal, Brazil
| | - Evanilde Benedito
- Universidade Estadual de Maringá (UEM), Brazil; Laboratório de Ecologia Energética, Brazil
| | - Marcos Rafael Nanni
- Universidade Estadual de Maringá (UEM), Brazil; Grupo Aplicado ao Levantamento e Espacialização dos Solos, Brazil
| | - Carlos Moacir Bonato
- Laboratório de Ecofisiologia Vegetal, Brazil; Universidade Estadual de Maringá (UEM), Brazil
| | - Werner Camargos Antunes
- Laboratório de Ecofisiologia Vegetal, Brazil; Universidade Estadual de Maringá (UEM), Brazil.
| |
Collapse
|
19
|
Svanfeldt K, Monro K, Marshall DJ. Resources mediate selection on module longevity in the field. J Evol Biol 2018; 31:1666-1674. [PMID: 30074666 DOI: 10.1111/jeb.13362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 07/09/2018] [Accepted: 07/28/2018] [Indexed: 10/28/2022]
Abstract
The life histories of modular organisms are complicated, where selection and optimization can occur at both organismal and modular levels. At a modular level, growth, reproduction and death can occur in one module, independently of others. Across modular groups, there are no formal investigations of selection on module longevity. We used two field experiments to test whether selection acts on module longevity in a sessile marine invertebrate and whether selection varies across successional gradients and resource regimes. We found that selection does act on module longevity and that the strength of selection varies with environmental conditions. In environments where interspecific competition is high, selection favours colonies with longer zooid (module) longevity for colonies that initially received high levels of maternal investment. In environments where food availability is high and flow rate is low, selection also favours colonies with longer zooid longevity. These patterns of selection provide partial support for module longevity theory developed for plants. Nevertheless, that selection on module longevity is so context-dependent suggests that variation in module longevity is likely to be maintained in this system.
Collapse
Affiliation(s)
- Karin Svanfeldt
- Centre for Geometric Biology/School of Biological Sciences, Monash University, Melbourne, Vic., Australia
| | - Keyne Monro
- Centre for Geometric Biology/School of Biological Sciences, Monash University, Melbourne, Vic., Australia
| | - Dustin J Marshall
- Centre for Geometric Biology/School of Biological Sciences, Monash University, Melbourne, Vic., Australia
| |
Collapse
|
20
|
Sáez PL, Cavieres LA, Galmés J, Gil-Pelegrín E, Peguero-Pina JJ, Sancho-Knapik D, Vivas M, Sanhueza C, Ramírez CF, Rivera BK, Corcuera LJ, Bravo LA. In situ warming in the Antarctic: effects on growth and photosynthesis in Antarctic vascular plants. THE NEW PHYTOLOGIST 2018; 218:1406-1418. [PMID: 29682746 DOI: 10.1111/nph.15124] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/15/2018] [Indexed: 05/27/2023]
Abstract
The Antarctic Peninsula has experienced a rapid warming in the last decades. Although recent climatic evidence supports a new tendency towards stabilization of temperatures, the impacts on the biosphere, and specifically on Antarctic plant species, remain unclear. We evaluated the in situ warming effects on photosynthesis, including the underlying diffusive, biochemical and anatomical determinants, and the relative growth of two Antarctic vascular species, Colobanthus quitensis and Deschampsia antarctica, using open top chambers (OTCs) and gas exchange measurements in the field. In C. quitensis, the photosynthetic response to warming relied on specific adjustments in the anatomical determinants of the leaf CO2 transfer, which enhanced mesophyll conductance and photosynthetic assimilation, thereby promoting higher leaf carbon gain and plant growth. These changes were accompanied by alterations in the leaf chemical composition. By contrast, D. antarctica showed no response to warming, with a lack of significant differences between plants grown inside OTCs and plants grown in the open field. Overall, the present results are the first reporting a contrasting effect of in situ warming on photosynthesis and its underlying determinants, of the two unique Antarctic vascular plant species, which could have direct consequences on their ecological success under future climate conditions.
Collapse
Affiliation(s)
- Patricia L Sáez
- Laboratorio Cultivo de Tejidos Vegetales, Centro de Biotecnología, Departamento de Silvicultura, Facultad de Ciencias Forestales, Universidad de Concepción, Concepción, 4030000, Chile
| | - Lohengrin A Cavieres
- ECOBIOSIS, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Barrio Universitario s/n, Concepción, 4030000, Chile
| | - Jeroni Galmés
- Research Group on Plant Biology under Mediterranean Conditions, INAGEA-Universitat de les Illes Balears, Balearic Islands, 07122, Spain
| | - Eustaquio Gil-Pelegrín
- Unidad de Recursos Forestales, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Zaragoza, 50059, Spain
| | - José Javier Peguero-Pina
- Unidad de Recursos Forestales, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Zaragoza, 50059, Spain
| | - Domingo Sancho-Knapik
- Unidad de Recursos Forestales, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Zaragoza, 50059, Spain
| | - Mercedes Vivas
- ECOBIOSIS, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Barrio Universitario s/n, Concepción, 4030000, Chile
| | - Carolina Sanhueza
- ECOBIOSIS, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Barrio Universitario s/n, Concepción, 4030000, Chile
| | - Constanza F Ramírez
- Laboratorio Cultivo de Tejidos Vegetales, Centro de Biotecnología, Departamento de Silvicultura, Facultad de Ciencias Forestales, Universidad de Concepción, Concepción, 4030000, Chile
| | - Betsy K Rivera
- Laboratorio Cultivo de Tejidos Vegetales, Centro de Biotecnología, Departamento de Silvicultura, Facultad de Ciencias Forestales, Universidad de Concepción, Concepción, 4030000, Chile
| | - Luis J Corcuera
- Laboratorio de Fisiología Vegetal, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Barrio Universitario s/n, Concepción, 4030000, Chile
| | - León A Bravo
- Laboratorio de Fisiología y Biología Molecular Vegetal, Instituto de Agroindustria, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Forestales, Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, 4811230, Chile
| |
Collapse
|
21
|
Townsend AJ, Retkute R, Chinnathambi K, Randall JWP, Foulkes J, Carmo-Silva E, Murchie EH. Suboptimal Acclimation of Photosynthesis to Light in Wheat Canopies. PLANT PHYSIOLOGY 2018; 176:1233-1246. [PMID: 29217593 PMCID: PMC5813572 DOI: 10.1104/pp.17.01213] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/04/2017] [Indexed: 05/18/2023]
Abstract
Photosynthetic acclimation (photoacclimation) is the process whereby leaves alter their morphology and/or biochemistry to optimize photosynthetic efficiency and productivity according to long-term changes in the light environment. The three-dimensional architecture of plant canopies imposes complex light dynamics, but the drivers for photoacclimation in such fluctuating environments are poorly understood. A technique for high-resolution three-dimensional reconstruction was combined with ray tracing to simulate a daily time course of radiation profiles for architecturally contrasting field-grown wheat (Triticum aestivum) canopies. An empirical model of photoacclimation was adapted to predict the optimal distribution of photosynthesis according to the fluctuating light patterns throughout the canopies. While the photoacclimation model output showed good correlation with field-measured gas-exchange data at the top of the canopy, it predicted a lower optimal light-saturated rate of photosynthesis at the base. Leaf Rubisco and protein contents were consistent with the measured optimal light-saturated rate of photosynthesis. We conclude that, although the photosynthetic capacity of leaves is high enough to exploit brief periods of high light within the canopy (particularly toward the base), the frequency and duration of such sunflecks are too small to make acclimation a viable strategy in terms of carbon gain. This suboptimal acclimation renders a large portion of residual photosynthetic capacity unused and reduces photosynthetic nitrogen use efficiency at the canopy level, with further implications for photosynthetic productivity. It is argued that (1) this represents an untapped source of photosynthetic potential and (2) canopy nitrogen could be lowered with no detriment to carbon gain or grain protein content.
Collapse
Affiliation(s)
- Alexandra J Townsend
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom
- Crops for the Future, Jalan Broga, 43500 Semenyih Selangor Darul Ehsan, Malaysia
| | - Renata Retkute
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Kannan Chinnathambi
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom
| | - Jamie W P Randall
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom
| | - John Foulkes
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom
| | - Elizabete Carmo-Silva
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Erik H Murchie
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom
| |
Collapse
|
22
|
Tang J, Cheng R, Shi Z, Xu G, Liu S, Centritto M. Fagaceae tree species allocate higher fraction of nitrogen to photosynthetic apparatus than Leguminosae in Jianfengling tropical montane rain forest, China. PLoS One 2018; 13:e0192040. [PMID: 29390007 PMCID: PMC5794133 DOI: 10.1371/journal.pone.0192040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 01/16/2018] [Indexed: 01/23/2023] Open
Abstract
Variation in photosynthetic-nitrogen use efficiency (PNUE) is generally affected by several factors such as leaf nitrogen allocation and leaf diffusional conductances to CO2, although it is still unclear which factors significantly affect PNUE in tropical montane rain forest trees. In this study, comparison of PNUE, photosynthetic capacity, leaf nitrogen allocation, and diffusional conductances to CO2 between five Fagaceae tree species and five Leguminosae tree species were analyzed in Jianfengling tropical montane rain forest, Hainan Island, China. The result showed that PNUE of Fagaceae was significantly higher than that of Leguminosae (+35.5%), attributed to lower leaf nitrogen content per area (Narea, -29.4%). The difference in nitrogen allocation was the main biochemical factor that influenced interspecific variation in PNUE of these tree species. Fagaceae species allocated a higher fraction of leaf nitrogen to the photosynthetic apparatus (PP, +43.8%), especially to Rubisco (PR, +50.0%) and bioenergetics (PB +33.3%) in comparison with Leguminosae species. Leaf mass per area (LMA) of Leguminosae species was lower than that of Fagaceae species (-15.4%). While there was no significant difference shown for mesophyll conductance (gm), Fagaceae tree species may have greater chloroplast to total leaf surface area ratios and that offset the action of thicker cell walls on gm. Furthermore, weak negative relationship between nitrogen allocation in cell walls and in Rubisco was found for Castanopsis hystrix, Cyclobalanopsis phanera and Cy. patelliformis, which might imply that nitrogen in the leaves was insufficient for both Rubisco and cell walls. In summary, our study concluded that higher PNUE might contribute to the dominance of most Fagaceae tree species in Jianfengling tropical montane rain forest.
Collapse
Affiliation(s)
- Jingchao Tang
- Key Laboratory on Forest Ecology and Environmental Sciences of State Forestry Administration, Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Ruimei Cheng
- Key Laboratory on Forest Ecology and Environmental Sciences of State Forestry Administration, Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Zuomin Shi
- Key Laboratory on Forest Ecology and Environmental Sciences of State Forestry Administration, Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Tree and Timber Institute, National Research Council of Italy Sesto, Fiorentino, Italy
| | - Gexi Xu
- Key Laboratory on Forest Ecology and Environmental Sciences of State Forestry Administration, Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Shirong Liu
- Key Laboratory on Forest Ecology and Environmental Sciences of State Forestry Administration, Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Mauro Centritto
- Tree and Timber Institute, National Research Council of Italy Sesto, Fiorentino, Italy
| |
Collapse
|
23
|
Peguero-Pina JJ, Sisó S, Flexas J, Galmés J, Niinemets Ü, Sancho-Knapik D, Gil-Pelegrín E. Coordinated modifications in mesophyll conductance, photosynthetic potentials and leaf nitrogen contribute to explain the large variation in foliage net assimilation rates across Quercus ilex provenances. TREE PHYSIOLOGY 2017; 37:1084-1094. [PMID: 28541538 DOI: 10.1093/treephys/tpx057] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 05/10/2017] [Indexed: 05/25/2023]
Abstract
Leaf dry mass per unit area (LMA) has been suggested to negatively affect the mesophyll conductance to CO2 (gm), the most limiting factor for photosynthesis per unit leaf area (AN) in many evergreens. Several anatomical traits (i.e., greater leaf thickness and thicker cell walls) constraining gm could explain the negative scaling of gm and AN with LMA across species. However, the Mediterranean sclerophyll Quercus ilex L. shows a major within-species variation in functional traits (greater LMA associated with higher nitrogen content and AN) that might contrast the worldwide trends. The objective of this study was to elucidate the existence of variations in other leaf anatomical parameters determining gm and/or biochemical traits improving the capacity of carboxylation (Vc,max) that could modulate the relationship of AN with LMA across this species. The results revealed that gm was the most limiting factor for AN in all the studied Q. ilex provenances from Spain and Italy. The within-species differences in gm can be partly attributed to the variation in several leaf anatomical traits, mainly cell-wall thickness (Tcw), chloroplast thickness (Tchl) and chloroplast exposed surface area facing intercellular air spaces (Sc/S). A positive scaling of gm and AN with Vc,max was also found, associated with an increased nitrogen content per area. A strong correlation of maximum photosynthetic electron transport (Jmax) with AN further indicated a coordination between the carboxylase activity and the electron transport chain. In conclusion, we have confirmed the strong ecotypic variation in the photosynthetic performance of individual provenances of Q. ilex. Thus, the within-species increases found in AN for Q. ilex with increasing foliage robustness can be explained by a synergistic effect among anatomical (at the subcellular and cellular level) and biochemical traits, which markedly improved gm and Vc,max.
Collapse
Affiliation(s)
- José Javier Peguero-Pina
- Unidad de Recursos Forestales, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Gobierno de Aragón, Avda Montañana 930, 50059 Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), 50013 Zaragoza, Spain
| | - Sergio Sisó
- Unidad de Recursos Forestales, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Gobierno de Aragón, Avda Montañana 930, 50059 Zaragoza, Spain
| | - Jaume Flexas
- Research Group on Plant Biology under Mediterranean conditions, Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA), Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa, 07122 Palma de Mallorca, Spain
| | - Jeroni Galmés
- Research Group on Plant Biology under Mediterranean conditions, Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA), Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa, 07122 Palma de Mallorca, Spain
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - Domingo Sancho-Knapik
- Unidad de Recursos Forestales, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Gobierno de Aragón, Avda Montañana 930, 50059 Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), 50013 Zaragoza, Spain
| | - Eustaquio Gil-Pelegrín
- Unidad de Recursos Forestales, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Gobierno de Aragón, Avda Montañana 930, 50059 Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), 50013 Zaragoza, Spain
| |
Collapse
|
24
|
Tian Y, Sacharz J, Ware MA, Zhang H, Ruban AV. Effects of periodic photoinhibitory light exposure on physiology and productivity of Arabidopsis plants grown under low light. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4249-4262. [PMID: 28922753 PMCID: PMC5853873 DOI: 10.1093/jxb/erx213] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 05/31/2017] [Indexed: 05/18/2023]
Abstract
This work examined the long-term effects of periodic high light stress on photosynthesis, morphology, and productivity of low-light-acclimated Arabidopsis plants. Significant photoinhibition of Arabidopsis seedlings grown under low light (100 μmol photons m-2 s-1) was observed at the beginning of the high light treatment (three times a day for 30 min at 1800 μmol photons m-2 s-1). However, after 2 weeks of treatment, similar photosynthesis yields (Fv/Fm) to those of control plants were attained. The daily levels of photochemical quenching measured in the dark (qPd) indicated that the plants recovered from photoinhibition within several hours once transferred back to low light conditions, with complete recovery being achieved overnight. Acclimation to high light stress resulted in the modification of the number, structure, and position of chloroplasts, and an increase in the average chlorophyll a/b ratio. During ontogenesis, high-light-exposed plants had lower total leaf areas but higher above-ground biomass. This was attributed to the consumption of starch for stem and seed production. Moreover, periodic high light exposure brought forward the reproductive phase and resulted in higher seed yields compared with control plants grown under low light. The responses to periodic high light exposure of mature Arabidopsis plants were similar to those of seedlings but had higher light tolerance.
Collapse
Affiliation(s)
- Yonglan Tian
- School of Biological and Chemical Sciences, Queen Mary University of London, UK
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing, China
| | - Joanna Sacharz
- School of Biological and Chemical Sciences, Queen Mary University of London, UK
| | - Maxwell A Ware
- School of Biological and Chemical Sciences, Queen Mary University of London, UK
| | - Huayong Zhang
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing, China
| | - Alexander V Ruban
- School of Biological and Chemical Sciences, Queen Mary University of London, UK
- Correspondence:
| |
Collapse
|
25
|
Sáez PL, Bravo LA, Cavieres LA, Vallejos V, Sanhueza C, Font-Carrascosa M, Gil-Pelegrín E, Javier Peguero-Pina J, Galmés J. Photosynthetic limitations in two Antarctic vascular plants: importance of leaf anatomical traits and Rubisco kinetic parameters. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2871-2883. [PMID: 28830100 PMCID: PMC5854023 DOI: 10.1093/jxb/erx148] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/07/2017] [Indexed: 05/05/2023]
Abstract
Particular physiological traits allow the vascular plants Deschampsia antarctica Desv. and Colobanthus quitensis (Kunth) Bartl. to inhabit Antarctica. The photosynthetic performance of these species was evaluated in situ, focusing on diffusive and biochemical constraints to CO2 assimilation. Leaf gas exchange, Chl a fluorescence, leaf ultrastructure, and Rubisco catalytic properties were examined in plants growing on King George and Lagotellerie islands. In spite of the species- and population-specific effects of the measurement temperature on the main photosynthetic parameters, CO2 assimilation was highly limited by CO2 diffusion. In particular, the mesophyll conductance (gm)-estimated from both gas exchange and leaf chlorophyll fluorescence and modeled from leaf anatomy-was remarkably low, restricting CO2 diffusion and imposing the strongest constraint to CO2 acquisition. Rubisco presented a high specificity for CO2 as determined in vitro, suggesting a tight co-ordination between CO2 diffusion and leaf biochemistry that may be critical ultimately to optimize carbon balance in these species. Interestingly, both anatomical and biochemical traits resembled those described in plants from arid environments, providing a new insight into plant functional acclimation to extreme conditions. Understanding what actually limits photosynthesis in these species is important to anticipate their responses to the ongoing and predicted rapid warming in the Antarctic Peninsula.
Collapse
Affiliation(s)
- Patricia L Sáez
- Laboratorio Cultivo de Tejidos Vegetales, Centro de Biotecnología, Departamento de Silvicultura, Facultad de Ciencias Forestales, Universidad de Concepción, Concepción, Chile
| | - León A Bravo
- Laboratorio de Fisiología y Biología Molecular Vegetal, Instituto de Agroindustria, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Forestales, Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Lohengrin A Cavieres
- Laboratorio de ECOBIOSIS, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Barrio Universitario s/n, Concepción, Chile
| | - Valentina Vallejos
- Laboratorio Cultivo de Tejidos Vegetales, Centro de Biotecnología, Departamento de Silvicultura, Facultad de Ciencias Forestales, Universidad de Concepción, Concepción, Chile
| | - Carolina Sanhueza
- Laboratorio de ECOBIOSIS, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Barrio Universitario s/n, Concepción, Chile
| | - Marcel Font-Carrascosa
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, Balearic Islands, Spain
| | - Eustaquio Gil-Pelegrín
- Unidad de Recursos Forestales, Centro de Investigación y Tecnología Agroalimentaria, Gobierno de Aragón, Zaragoza, Spain
| | - José Javier Peguero-Pina
- Unidad de Recursos Forestales, Centro de Investigación y Tecnología Agroalimentaria, Gobierno de Aragón, Zaragoza, Spain
| | - Jeroni Galmés
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, Balearic Islands, Spain
| |
Collapse
|
26
|
Rodriguez GE, Reed DC, Holbrook SJ. Blade life span, structural investment, and nutrient allocation in giant kelp. Oecologia 2016; 182:397-404. [PMID: 27342660 DOI: 10.1007/s00442-016-3674-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 06/11/2016] [Indexed: 10/21/2022]
Abstract
The turnover of plant biomass largely determines the amount of energy flowing through an ecosystem and understanding the processes that regulate turnover has been of interest to ecologists for decades. Leaf life span theory has proven useful in explaining patterns of leaf turnover in relation to resource availability, but the predictions of this theory have not been tested for macroalgae. We measured blade life span, size, thickness, nitrogen content, pigment content, and maximum photosynthetic rate (P max) in the giant kelp (Macrocystis pyrifera) along a strong resource (light) gradient to test whether the predictions of leaf life span theory applied to this alga. We found that shorter blade life spans and larger blade areas were associated with increased light availability. In addition, nitrogen and P max decreased with blade age, and their decrease was greater in shorter lived blades. These observations are generally consistent with patterns observed for higher plants and the prevailing theory of leaf life span. By contrast, variation observed in pigments of giant kelp was inconsistent with that predicted by leaf life span theory, as blades growing in the most heavily shaded portion of the forest had the lowest chlorophyll content. This result may reflect the dual role of macroalgal blades in carbon fixation and nutrient absorption and the ability of giant kelp to modify blade physiology to optimize the acquisition of light and nutrients. Thus, the marine environment may place demands on resource acquisition and allocation that have not been previously considered with respect to leaf life span optimization.
Collapse
Affiliation(s)
- Gabriel E Rodriguez
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Daniel C Reed
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.
| | - Sally J Holbrook
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| |
Collapse
|
27
|
Slattery RA, Grennan AK, Sivaguru M, Sozzani R, Ort DR. Light sheet microscopy reveals more gradual light attenuation in light-green versus dark-green soybean leaves. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4697-709. [PMID: 27329746 PMCID: PMC4973739 DOI: 10.1093/jxb/erw246] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Light wavelengths preferentially absorbed by chlorophyll (chl) often display steep absorption gradients. This over-saturates photosynthesis in upper chloroplasts and deprives lower chloroplasts of blue and red light. Reducing chl content could create a more even leaf light distribution and thereby increase leaf light-use efficiency and overall canopy photosynthesis. This was tested on soybean cultivar 'Clark' (WT) and a near-isogenic chl b deficient mutant, Y11y11, grown in controlled environment chambers and in the field. Light attenuation was quantified using a novel approach involving light sheet microscopy. Leaf adaxial and abaxial surfaces were illuminated separately with blue, red, and green wavelengths, and chl fluorescence was detected orthogonally to the illumination plane. Relative fluorescence was significantly greater in deeper layers of the Y11y11 mesophyll than in WT, with the greatest differences in blue, then red, and finally green light when illuminated from the adaxial surface. Modeled relative photosynthesis based on chlorophyll profiles and Beer's Law predicted less steep gradients in mutant relative photosynthesis rates compared to WT. Although photosynthetic light-use efficiency was greater in the field-grown mutant with ~50% lower chl, light-use efficiency was lower in the mutant when grown in chambers where chl was ~80% reduced. This difference is probably due to pleiotropic effects of the mutation that accompany very severe reductions in chlorophyll and may warrant further testing in other low-chl lines.
Collapse
Affiliation(s)
- Rebecca A Slattery
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA
| | - Aleel K Grennan
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA
| | - Mayandi Sivaguru
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA
| | - Rosangela Sozzani
- Department of Plant and Microbial Biology, North Carolina State University, 2115 Gardner Hall, Box 7612, Raleigh, NC 27695, USA
| | - Donald R Ort
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA Global Change and Photosynthesis Research Unit, United States Department of Agriculture, 1206 West Gregory Drive, Urbana, IL 61801, USA
| |
Collapse
|
28
|
Hikosaka K. Optimality of nitrogen distribution among leaves in plant canopies. JOURNAL OF PLANT RESEARCH 2016; 129:299-311. [PMID: 27059755 DOI: 10.1007/s10265-016-0824-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 03/30/2016] [Indexed: 05/04/2023]
Abstract
The vertical gradient of the leaf nitrogen content in a plant canopy is one of the determinants of vegetation productivity. The ecological significance of the nitrogen distribution in plant canopies has been discussed in relation to its optimality; nitrogen distribution in actual plant canopies is close to but always less steep than the optimal distribution that maximizes canopy photosynthesis. In this paper, I review the optimality of nitrogen distribution within canopies focusing on recent advancements. Although the optimal nitrogen distribution has been believed to be proportional to the light gradient in the canopy, this rule holds only when diffuse light is considered; the optimal distribution is steeper when the direct light is considered. A recent meta-analysis has shown that the nitrogen gradient is similar between herbaceous and tree canopies when it is expressed as the function of the light gradient. Various hypotheses have been proposed to explain why nitrogen distribution is suboptimal. However, hypotheses explain patterns observed in some specific stands but not in others; there seems to be no general hypothesis that can explain the nitrogen distributions under different conditions. Therefore, how the nitrogen distribution in canopies is determined remains open for future studies; its understanding should contribute to the correct prediction and improvement of plant productivity under changing environments.
Collapse
Affiliation(s)
- Kouki Hikosaka
- Graduate School of Life Sciences, Tohoku University, Aoba, Sendai, 980-8578, Japan.
- CREST, JST, Tokyo, Japan.
| |
Collapse
|
29
|
Yamori W. Photosynthetic response to fluctuating environments and photoprotective strategies under abiotic stress. JOURNAL OF PLANT RESEARCH 2016; 129:379-95. [PMID: 27023791 DOI: 10.1007/s10265-016-0816-1] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/06/2016] [Indexed: 05/18/2023]
Abstract
Plants in natural environments must cope with diverse, highly dynamic, and unpredictable conditions. They have mechanisms to enhance the capture of light energy when light intensity is low, but they can also slow down photosynthetic electron transport to prevent the production of reactive oxygen species and consequent damage to the photosynthetic machinery under excess light. Plants need a highly responsive regulatory system to balance the photosynthetic light reactions with downstream metabolism. Various mechanisms of regulation of photosynthetic electron transport under stress have been proposed, however the data have been obtained mainly under environmentally stable and controlled conditions. Thus, our understanding of dynamic modulation of photosynthesis under dramatically fluctuating natural environments remains limited. In this review, first I describe the magnitude of environmental fluctuations under natural conditions. Next, I examine the effects of fluctuations in light intensity, CO2 concentration, leaf temperature, and relative humidity on dynamic photosynthesis. Finally, I summarize photoprotective strategies that allow plants to maintain the photosynthesis under stressful fluctuating environments. The present work clearly showed that fluctuation in various environmental factors resulted in reductions in photosynthetic rate in a stepwise manner at every environmental fluctuation, leading to the conclusion that fluctuating environments would have a large impact on photosynthesis.
Collapse
Affiliation(s)
- Wataru Yamori
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7‑3‑1 Hongo, Bunkyo‑ku, Tokyo, 113-0033, Japan.
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| |
Collapse
|
30
|
Han JM, Meng HF, Wang SY, Jiang CD, Liu F, Zhang WF, Zhang YL. Variability of mesophyll conductance and its relationship with water use efficiency in cotton leaves under drought pretreatment. JOURNAL OF PLANT PHYSIOLOGY 2016; 194:61-71. [PMID: 0 DOI: 10.1016/j.jplph.2016.03.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 03/24/2016] [Accepted: 03/25/2016] [Indexed: 05/22/2023]
|
31
|
Fini A, Loreto F, Tattini M, Giordano C, Ferrini F, Brunetti C, Centritto M. Mesophyll conductance plays a central role in leaf functioning of Oleaceae species exposed to contrasting sunlight irradiance. PHYSIOLOGIA PLANTARUM 2016; 157:54-68. [PMID: 26537749 DOI: 10.1111/ppl.12401] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/21/2015] [Accepted: 09/24/2015] [Indexed: 06/05/2023]
Abstract
The ability to modify mesophyll conductance (gm ) in response to changes in irradiance may be a component of the acclimation of plants to shade-sun transitions, thus influencing species-specific distributions along light-gradients, and the ecological niches for the different species. To test this hypothesis we grew three woody species of the Oleaceae family, the evergreen Phillyrea latifolia (sun-requiring), the deciduous Fraxinus ornus (facultative sun-requiring) and the hemi-deciduous Ligustrum vulgare (shade tolerant) at 30 or 100% sunlight irradiance. We show that neither mesophyll conductance calculated with combined gas exchange and chlorophyll fluorescence techniques (gm) nor CO2 assimilation significantly varied in F. ornus because of sunlight irradiance. This corroborates previous suggestions that species with high plasticity for light requirements, do not need to undertake extensive reorganization of leaf conductances to CO2 diffusion to adapt to different light environments. On the other hand, gm steeply declined in L. vulgare and increased in P. latifolia exposed to full-sun conditions. In these two species, leaf anatomical traits are in part responsible for light-driven changes in gm , as revealed by the correlation between gm and mesophyll conductance estimated by anatomical parameters (gmA). Nonetheless, gm was greatly overestimated by gmA when leaf metabolism was impaired because of severe light stress. We show that gm is maximum at the light intensity at which plant species have evolved and we conclude that gm actually plays a key role in the sun and shade adaptation of Mediterranean species. The limits of gmA in predicting mesophyll conductance are also highlighted.
Collapse
Affiliation(s)
- Alessio Fini
- Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente, Università di Firenze, Viale delle Idee 30, I-50019, Sesto Fiorentino (FI), Italy
| | - Francesco Loreto
- Dipartimento di Scienze Bio-Agroalimentari, Consiglio Nazionale delle Ricerche, P.le Aldo Moro 7, I-00185, Roma, Italy
| | - Massimiliano Tattini
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Firenze, Italy
| | - Cristiana Giordano
- Centro di Microscopie Elettroniche "Laura Bonzi", Istituto dei Composti Organometallici, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Firenze, Italy
| | - Francesco Ferrini
- Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente, Università di Firenze, Viale delle Idee 30, I-50019, Sesto Fiorentino (FI), Italy
| | - Cecilia Brunetti
- Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente, Università di Firenze, Viale delle Idee 30, I-50019, Sesto Fiorentino (FI), Italy
- Istituto per la Valorizzazione del Legno e delle Specie Arboree, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Firenze, Italy
| | - Mauro Centritto
- Istituto per la Valorizzazione del Legno e delle Specie Arboree, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
32
|
A physiological role of cyclic electron transport around photosystem I in sustaining photosynthesis under fluctuating light in rice. Sci Rep 2016; 6:20147. [PMID: 26832990 PMCID: PMC4735858 DOI: 10.1038/srep20147] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 12/30/2015] [Indexed: 11/09/2022] Open
Abstract
Plants experience a highly variable light environment over the course of the day. To reveal the molecular mechanisms of their photosynthetic response to fluctuating light, we examined the role of two cyclic electron flows around photosystem I (CEF-PSI)--one depending on PROTON GRADIENT REGULATION 5 (PGR5) and one on NADH dehydrogenase-like complex (NDH)--in photosynthetic regulation under fluctuating light in rice (Oryza sativa L.). The impairment of PGR5-dependent CEF-PSI suppressed the photosynthetic response immediately after sudden irradiation, whereas the impairment of NDH-dependent CEF-PSI did not. However, the impairment of either PGR5-dependent or NDH-dependent CEF-PSl reduced the photosynthetic rate under fluctuating light, leading to photoinhibition at PSI and consequently a reduction in plant biomass. The results highlight that (1) PGR5-dependent CEF-PSI is a key regulator of rapid photosynthetic responses to high light intensity under fluctuating light conditions after constant high light; and (2) both PGR5-dependent and NDH-dependent CEF-PSI have physiological roles in sustaining photosynthesis and plant growth in rice under repeated light fluctuations. The highly responsive regulatory system managed by CEF-PSI appears able to optimize photosynthesis and plant growth under naturally fluctuating light conditions.
Collapse
|
33
|
|
34
|
Regulation of Leaf Traits in Canopy Gradients. CANOPY PHOTOSYNTHESIS: FROM BASICS TO APPLICATIONS 2016. [DOI: 10.1007/978-94-017-7291-4_5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
Zhang G, Shen S, Takagaki M, Kozai T, Yamori W. Supplemental Upward Lighting from Underneath to Obtain Higher Marketable Lettuce (Lactuca sativa) Leaf Fresh Weight by Retarding Senescence of Outer Leaves. FRONTIERS IN PLANT SCIENCE 2015; 6:1110. [PMID: 26697055 PMCID: PMC4677251 DOI: 10.3389/fpls.2015.01110] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 11/23/2015] [Indexed: 05/09/2023]
Abstract
Recently, the so-called "plant factory with artificial lighting" (PFAL) approach has been developed to provide safe and steady food production. Although PFALs can produce high-yielding and high-quality plants, the high plant density in these systems accelerates leaf senescence in the bottom (or outer) leaves owing to shading by the upper (or inner) leaves and by neighboring plants. This decreases yield and increases labor costs for trimming. Thus, the establishment of cultivation methods to retard senescence of outer leaves is an important research goal to improve PFAL yield and profitability. In the present study, we developed an LED lighting apparatus that would optimize light conditions for PFAL cultivation of a leafy vegetable. Lettuce (Lactuca sativa L.) was hydroponically grown under white, red, or blue LEDs, with light provided from above (downward), with or without supplemental upward lighting from underneath the plant. White LEDs proved more appropriate for lettuce growth than red or blue LEDs, and the supplemental lighting retarded the senescence of outer leaves and decreased waste (i.e., dead or low-quality senescent leaves), leading to an improvement of the marketable leaf fresh weight.
Collapse
Affiliation(s)
- Geng Zhang
- Graduate School of Horticulture, Chiba UniversityMatsudo, Japan
- Center for Environment, Health and Field Sciences, Chiba UniversityKashiwa, Japan
| | - Shanqi Shen
- Center for Environment, Health and Field Sciences, Chiba UniversityKashiwa, Japan
| | - Michiko Takagaki
- Graduate School of Horticulture, Chiba UniversityMatsudo, Japan
- Center for Environment, Health and Field Sciences, Chiba UniversityKashiwa, Japan
| | | | - Wataru Yamori
- Center for Environment, Health and Field Sciences, Chiba UniversityKashiwa, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology AgencyKawaguchi, Japan
| |
Collapse
|
36
|
Silva TM, Vilhalva DA, Moraes MG, Figueiredo-Ribeiro RDCL. Anatomy and fructan distribution in vegetative organs of Dimerostemma vestitum (Asteraceae) from the campos rupestres. ACTA ACUST UNITED AC 2015. [DOI: 10.1590/0001-3765201520140214] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Among the compounds stored by plants, several functions are assigned to fructans, such as source of energy and protection against drought and extreme temperatures. In the present study we analyzed the anatomy and distribution of fructans in vegetative organs of Dimerostemma vestitum (Asteraceae), an endemic species from the Brazilian campos rupestres. D. vestitum has amphistomatic and pubescent leaves, with both glandular and non-glandular trichomes. In the basal aerial stem the medulla has two types of parenchyma, which differ from the apical portion. The xylopodium has mixed anatomical origin. Interestingly, although inulin-type fructans with high degree of polymerization were found in all analyzed organs except the leaves, the highest amount and maximum degree of polymerization were detected in the xylopodium. Inulin sphero-crystals were visualized under polarized light in the medulla and in the vascular tissues mainly in the central region of the xylopodium, which has abundant xylem parenchyma. Secretory structures accumulating several compounds but not inulin were identified within all the vegetative organs. The presence of these compounds, in addition to inulin, might be related to the strategies of plants to survive adverse conditions in a semi-arid region, affected seasonally by water restriction and frequently by fire.
Collapse
|
37
|
Retkute R, Smith-Unna SE, Smith RW, Burgess AJ, Jensen OE, Johnson GN, Preston SP, Murchie EH. Exploiting heterogeneous environments: does photosynthetic acclimation optimize carbon gain in fluctuating light? JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2437-47. [PMID: 25788730 PMCID: PMC4629418 DOI: 10.1093/jxb/erv055] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plants have evolved complex mechanisms to balance the efficient use of absorbed light energy in photosynthesis with the capacity to use that energy in assimilation, so avoiding potential damage from excess light. This is particularly important under natural light, which can vary according to weather, solar movement and canopy movement. Photosynthetic acclimation is the means by which plants alter their leaf composition and structure over time to enhance photosynthetic efficiency and productivity. However there is no empirical or theoretical basis for understanding how leaves track historic light levels to determine acclimation status, or whether they do this accurately. We hypothesized that in fluctuating light (varying in both intensity and frequency), the light-response characteristics of a leaf should adjust (dynamically acclimate) to maximize daily carbon gain. Using a framework of mathematical modelling based on light-response curves, we have analysed carbon-gain dynamics under various light patterns. The objective was to develop new tools to quantify the precision with which photosynthesis acclimates according to the environment in which plants exist and to test this tool on existing data. We found an inverse relationship between the optimal maximum photosynthetic capacity and the frequency of low to high light transitions. Using experimental data from the literature we were able to show that the observed patterns for acclimation were consistent with a strategy towards maximizing daily carbon gain. Refinement of the model will further determine the precision of acclimation.
Collapse
Affiliation(s)
- Renata Retkute
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, LE12 5RD, UK School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Stephanie E Smith-Unna
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Robert W Smith
- Systems and Synthetic Biology, Wageningen UR, Building 316, Dreijenplein 10, 6703HB Wageningen, Netherlands
| | - Alexandra J Burgess
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, LE12 5RD, UK
| | - Oliver E Jensen
- School of Mathematics, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Giles N Johnson
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Simon P Preston
- School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Erik H Murchie
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, LE12 5RD, UK
| |
Collapse
|
38
|
Huang W, Zhang SB, Hu H. Sun leaves up-regulate the photorespiratory pathway to maintain a high rate of CO2 assimilation in tobacco. FRONTIERS IN PLANT SCIENCE 2014; 5:688. [PMID: 25520735 PMCID: PMC4253947 DOI: 10.3389/fpls.2014.00688] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 11/18/2014] [Indexed: 05/07/2023]
Abstract
The greater rate of CO2 assimilation (A n) in sun-grown tobacco leaves leads to lower intercellular and chloroplast CO2 concentrations and, thus, a higher rate of oxygenation of ribulose-1,5-bisphosphate (RuBP) than in shade-grown leaves. Impairment of the photorespiratory pathway suppresses photosynthetic CO2 assimilation. Here, we hypothesized that sun leaves can up-regulate photorespiratory pathway to enhance the A n in tobacco. To test this hypothesis, we examined the responses of photosynthetic electron flow (J T) and CO2 assimilation to incident light intensity and intercellular CO2 concentration (C i) in leaves of 'k326' tobacco plants grown at 95% sunlight (sun plants) or 28% sunlight (shade plants). The sun leaves had higher photosynthetic capacity and electron flow devoted to RuBP carboxylation (J C) than the shade leaves. When exposed to high light, the higher Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) content and lower C i in the sun leaves led to greater electron flow devoted to RuBP oxygenation (J O). The J O/J C ratio was significantly higher in the sun leaves than in the shade leaves under strong illumination. As estimated from CO2-response curves, the maximum J O was linearly correlated with the estimated Rubisco content. Based on light-response curves, the light-saturated J O was linearly correlated with light-saturated J T and light-saturated photosynthesis. These findings indicate that enhancement of the photorespiratory pathway is an important strategy by which sun plants maintain a high A n.
Collapse
Affiliation(s)
- Wei Huang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
| | | | | |
Collapse
|
39
|
Cai YF, Li SF, Li SF, Xie WJ, Song J. How do leaf anatomies and photosynthesis of three Rhododendron species relate to their natural environments? BOTANICAL STUDIES 2014; 55:36. [PMID: 28510962 PMCID: PMC5432949 DOI: 10.1186/1999-3110-55-36] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 11/07/2013] [Indexed: 05/12/2023]
Abstract
BACKGROUND Rhododendron is one of the most well-known alpine flowers. In order to identify performances relating to Rhododendron's natural habitats we investigated the leaf anatomical structures and photosynthetic characteristics of R. yunnanense, R. irroratum and R. delavayi, which showed different responses after being transplanted into a common environment. RESULTS When compared with R. irroratum and R. delavayi, R. yunnanense had lower leaf dry mass per unit area (LMA) and larger stomata, but smaller stomatal density (SD) and total stomata apparatus area percent (At), lower stomatal conductance (Gs), transpiration rate (Tr), light compensation point (LCP), light saturation point (LSP), light-saturated photosynthetic rate (Amax) and leaf nitrogen content per unit area (Na). LMA was positively correlated with Amax and maximum rates of carboxylation (Vcmax). However, leaf N content was not significantly correlated with Amax. Thus, the variation in leaf photosynthesis among species was regulated largely by changes in LMA, rather than the concent of nitrogen in leaf tissue. CONCLUSIONS R. yunnanense plants are vulnerable to moisture and light stress, while R. irroratum and R. delavayi are better suited to dry and high radiation environments. The present results contribute to our understanding physiological trait divergence in Rhododendron, as well benefit introduction and domestication efforts for the three species of Rhododendron studied in this work.
Collapse
Affiliation(s)
- Yan-Fei Cai
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
- Yunnan Flower Breeding Key Lab, Kunming, 650204 China
- Yunnan Flower Research and Development Center, Kunming, 650205 China
| | - Shi-Feng Li
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
- Yunnan Flower Breeding Key Lab, Kunming, 650204 China
- Yunnan Flower Research and Development Center, Kunming, 650205 China
| | - Shu-Fa Li
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
- Yunnan Flower Breeding Key Lab, Kunming, 650204 China
- Yunnan Flower Research and Development Center, Kunming, 650205 China
| | - Wei-Jia Xie
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
- Yunnan Flower Breeding Key Lab, Kunming, 650204 China
- Yunnan Flower Research and Development Center, Kunming, 650205 China
| | - Jie Song
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
- Yunnan Flower Breeding Key Lab, Kunming, 650204 China
- Yunnan Flower Research and Development Center, Kunming, 650205 China
| |
Collapse
|
40
|
Tattini M, Landi M, Brunetti C, Giordano C, Remorini D, Gould KS, Guidi L. Epidermal coumaroyl anthocyanins protect sweet basil against excess light stress: multiple consequences of light attenuation. PHYSIOLOGIA PLANTARUM 2014; 152:585-98. [PMID: 24684471 DOI: 10.1111/ppl.12201] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/24/2014] [Accepted: 02/28/2014] [Indexed: 05/07/2023]
Abstract
The putative photoprotective role of foliar anthocyanins continues to attract heated debate. Strikingly different experimental set-ups coupled with a poor knowledge of anthocyanin identity have likely contributed to such disparate opinions. Here, the photosynthetic responses to 30 or 100% solar irradiance were compared in two cultivars of basil, the green-leafed Tigullio (TG) and the purple-leafed Red Rubin (RR). Coumaroyl anthocyanins in RR leaf epidermis significantly mitigated the effects of high light stress. In full sunlight, RR leaves displayed several shade-plant traits; they transferred less energy than did TG to photosystem II (PSII), and non-photochemical quenching was lower. The higher xanthophyll cycle activity in TG was insufficient to prevent inactivation of PSII in full sunlight. However, TG was the more efficient in the shade; RR was far less able to accommodate a large change in irradiance. Investment of carbon to phenylpropanoid biosynthesis was more in RR than in TG in the shade, and was either greatly enhanced in TG or varied little in RR because of high sunlight. The metabolic cost of photoprotection was lower whereas light-induced increase in biomass production was higher in RR than in TG, thus making purple basil the more light tolerant. Purple basil appears indeed to display the conservative resource-use strategy usually observed in highly stress tolerant species. We conclude that the presence of epidermal coumaroyl anthocyanins confers protective benefits under high light, but it is associated with a reduced plasticity to accommodate changing light fluxes as compared with green leaves.
Collapse
Affiliation(s)
- Massimiliano Tattini
- The National Research Council of Italy, Department of Biology, Agriculture and Food Sciences, Institute for Plant Protection, Florence, I-50019, Italy
| | | | | | | | | | | | | |
Collapse
|
41
|
Zivcak M, Brestic M, Kalaji HM. Photosynthetic responses of sun- and shade-grown barley leaves to high light: is the lower PSII connectivity in shade leaves associated with protection against excess of light? PHOTOSYNTHESIS RESEARCH 2014; 119:339-54. [PMID: 24445618 PMCID: PMC3923118 DOI: 10.1007/s11120-014-9969-8] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Accepted: 12/30/2013] [Indexed: 05/03/2023]
Abstract
In this study, we have compared photosynthetic performance of barley leaves (Hordeum vulgare L.) grown under sun and shade light regimes during their entire growth period, under field conditions. Analyses were based on measurements of both slow and fast chlorophyll (Chl) a fluorescence kinetics, gas exchange, pigment composition; and of light incident on leaves during their growth. Both the shade and the sun barley leaves had similar Chl a/b and Chl/carotenoid ratios. The fluorescence induction analyses uncovered major functional differences between the sun and the shade leaves: lower connectivity among Photosystem II (PSII), decreased number of electron carriers, and limitations in electron transport between PSII and PSI in the shade leaves; but only low differences in the size of PSII antenna. We discuss the possible protective role of low connectivity between PSII units in shade leaves in keeping the excitation pressure at a lower, physiologically more acceptable level under high light conditions.
Collapse
Affiliation(s)
- Marek Zivcak
- Department of Plant Physiology, Slovak Agricultural University, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Marian Brestic
- Department of Plant Physiology, Slovak Agricultural University, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Hazem M. Kalaji
- Department of Plant Physiology, Faculty of Agriculture and Biology, Warsaw Agricultural University SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| |
Collapse
|
42
|
Christodoulakis NS, Georgoudi M, Fasseas C. Leaf Structure ofCistus creticusL. (Rock Rose), a Medicinal Plant Widely Used in Folk Remedies Since Ancient Times. ACTA ACUST UNITED AC 2014. [DOI: 10.1080/10496475.2013.839018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
43
|
Barrios-Masias FH, Chetelat RT, Grulke NE, Jackson LE. Use of introgression lines to determine the ecophysiological basis for changes in water use efficiency and yield in California processing tomatoes. FUNCTIONAL PLANT BIOLOGY : FPB 2014; 41:119-132. [PMID: 32480972 DOI: 10.1071/fp13097] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/27/2013] [Indexed: 06/11/2023]
Abstract
Field and greenhouse studies examined the effects of growth habit and chloroplast presence in leaf veins for their role in increasing agronomic water use efficiency and yields of California modern processing tomato (Solanum lycopersicum L.) cultivars. Five introgression lines (ILs), made with Solanum pennellii Cor. in the genetic background of cultivar M82, differ in genes that map to a region on Chromosome 5, including the SP5G gene (determinate vs. semideterminate (Det vs. SemiDet)) and the obv gene (presence (obscure) vs. absence (clear) of leaf vein chloroplasts (Obs vs. Clr)). The five ILs and M82 represented three of the four gene combinations (Det-Clr was unavailable). Det-Obs ILs had less leaf, stem and total aboveground biomass with earlier fruit set and ripening than SemiDet-Clr ILs. By harvest, total fruit biomass was not different among ILs. Photosynthetic rates and stomatal conductance were 4-7% and 13-26% higher, respectively, in Det-Obs ILs than SemiDet-Clr ILs. SemiDet-Obs ILs were intermediate for growth and gas exchange variables. The Det-Obs ILs had lower leaf N concentration and similar chlorophyll content per leaf area (but slightly higher per leaf mass) than SemiDet-Clr ILs. The Obs trait was associated with gains in leaf gas exchange-related traits. This study suggests that a more compact growth habit, less leaf biomass and higher C assimilation capacity per leaf area were relevant traits for the increased yields in cultivars with determinate growth. Developing new introgression libraries would contribute to understanding the multiple trait effects of desirable phenotypes.
Collapse
Affiliation(s)
- Felipe H Barrios-Masias
- Department of Land, Air and Water Resources, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Roger T Chetelat
- Department of Plant Sciences, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Nancy E Grulke
- Pacific Northwest Research Station, United States Department of Agriculture Forest Service, 3160 NE Third Street, Prineville, OR 97754, USA
| | - Louise E Jackson
- Department of Land, Air and Water Resources, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
44
|
Tarvainen L, Wallin G, Räntfors M, Uddling J. Weak vertical canopy gradients of photosynthetic capacities and stomatal responses in a fertile Norway spruce stand. Oecologia 2013; 173:1179-89. [DOI: 10.1007/s00442-013-2703-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 06/02/2013] [Indexed: 11/28/2022]
|
45
|
Suzuki Y, Makino A. Translational downregulation of RBCL is operative in the coordinated expression of Rubisco genes in senescent leaves in rice. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1145-52. [PMID: 23349140 PMCID: PMC3580822 DOI: 10.1093/jxb/ers398] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Rubisco gene expression was examined in detail in rice (Oryza sativa L.) leaves at different positions, i.e. expanding, mature, and senescent leaves. Rubisco small subunit (RBCS) synthesis and RBCS mRNA levels were maximal in expanding leaves and gradually became lower in mature and senescent leaves, with declines in those of the large subunit (RBCL) being relatively slower. The amount of synthesized RBCL per unit level of RBCL mRNA and polysome loading of RBCL mRNA declined in senescent leaves, whereas such phenomena were not observed for RBCS. These results suggested that gene expression of RBCL is downregulated at the level of its translation when a balance between RBCL and RBCS expression is disturbed by leaf senescence. It has been suggested that RBCS protein is a positive regulator for RBCL mRNA level in expanding rice leaves, as judged from their stoichiometric relationship in RBCS transgenic rice plants. However, the ratio of the RBCL mRNA level to the amount of synthesized RBCS in senescent leaves was significantly higher than that in expanding leaves. Therefore, it is suggested that the decline in RBCL mRNA level in senescent leaves is not fully accounted for by that in the amount of synthesized RBCS. Effects of other factors such as the stability of RBCL mRNA may come into play.
Collapse
MESH Headings
- Cell Death
- Down-Regulation
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Plant
- Genes, Plant
- Oryza/enzymology
- Oryza/genetics
- Oryza/growth & development
- Plant Leaves/enzymology
- Plant Leaves/genetics
- Plant Leaves/growth & development
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/growth & development
- Plants, Genetically Modified/metabolism
- Polyribosomes/enzymology
- Polyribosomes/genetics
- Polyribosomes/metabolism
- Protein Biosynthesis
- RNA Stability
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Ribulose-Bisphosphate Carboxylase/genetics
- Ribulose-Bisphosphate Carboxylase/metabolism
Collapse
Affiliation(s)
- Yuji Suzuki
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Sendai, Japan.
| | | |
Collapse
|
46
|
Hirth M, Dietzel L, Steiner S, Ludwig R, Weidenbach H, and JP, Pfannschmidt T. Photosynthetic acclimation responses of maize seedlings grown under artificial laboratory light gradients mimicking natural canopy conditions. FRONTIERS IN PLANT SCIENCE 2013; 4:334. [PMID: 24062753 PMCID: PMC3770919 DOI: 10.3389/fpls.2013.00334] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 08/08/2013] [Indexed: 05/20/2023]
Abstract
In this study we assessed the ability of the C4 plant maize to perform long-term photosynthetic acclimation in an artificial light quality system previously used for analyzing short-term and long-term acclimation responses (LTR) in C3 plants. We aimed to test if this light system could be used as a tool for analyzing redox-regulated acclimation processes in maize seedlings. Photosynthetic parameters obtained from maize samples harvested in the field were used as control. The results indicated that field grown maize performed a pronounced LTR with significant differences between the top and the bottom levels of the plant stand corresponding to the strong light gradients occurring in it. We compared these data to results obtained from maize seedlings grown under artificial light sources preferentially exciting either photosystem II or photosystem I. In C3 plants, this light system induces redox signals within the photosynthetic electron transport chain which trigger state transitions and differential phosphorylation of LHCII (light harvesting complexes of photosystem II). The LTR to these redox signals induces changes in the accumulation of plastid psaA transcripts, in chlorophyll (Chl) fluorescence values F \rm s/F \rm m, in Chl a/b ratios and in transient starch accumulation in C3 plants. Maize seedlings grown in this light system exhibited a pronounced ability to perform both short-term and long-term acclimation at the level of psaA transcripts, Chl fluorescence values F \rm s/F \rm m and Chl a/b ratios. Interestingly, maize seedlings did not exhibit redox-controlled variations of starch accumulation probably because of its specific differences in energy metabolism. In summary, the artificial laboratory light system was found to be well-suited to mimic field light conditions and provides a physiological tool for studying the molecular regulation of the LTR of maize in more detail.
Collapse
Affiliation(s)
- Matthias Hirth
- Present address: Matthias Hirth, Institut für Allgemeine Botanik und Pflanzenphysiologie, Professur für Molekulare Botanik, Friedrich-Schiller-Universität Jena, Dornburger Straße 159, Jena 07743, Germany; Lars Dietzel, Institut für Molekulare Biowissenschaften, Pflanzliche Zellphysiologie, Biozentrum Goethe-Universität Frankfurt, Max-von-Laue-Straße 9, Frankfurt am Main 60438, Germany; Sebastian Steiner, Klein Wanzlebener Saatzucht Saat AG, Grimsehlstraße 31, Einbeck 37574, Germany; Robert Ludwig, Institut für Diagnostische und Interventionelle Radiologie I — AG Experimentelle Radiologie, Universitätsklinikum Jena — Friedrich-Schiller Universität Jena, Erlanger Allee 101, Jena 07747, Germany; Thomas Pfannschmidt, Laboratoire de Physiologie Cellulaire & Végétale, Univ. Grenoble Alpes, 17 rue des Martyrs, Grenoble F-38054, France
| | - Lars Dietzel
- Present address: Matthias Hirth, Institut für Allgemeine Botanik und Pflanzenphysiologie, Professur für Molekulare Botanik, Friedrich-Schiller-Universität Jena, Dornburger Straße 159, Jena 07743, Germany; Lars Dietzel, Institut für Molekulare Biowissenschaften, Pflanzliche Zellphysiologie, Biozentrum Goethe-Universität Frankfurt, Max-von-Laue-Straße 9, Frankfurt am Main 60438, Germany; Sebastian Steiner, Klein Wanzlebener Saatzucht Saat AG, Grimsehlstraße 31, Einbeck 37574, Germany; Robert Ludwig, Institut für Diagnostische und Interventionelle Radiologie I — AG Experimentelle Radiologie, Universitätsklinikum Jena — Friedrich-Schiller Universität Jena, Erlanger Allee 101, Jena 07747, Germany; Thomas Pfannschmidt, Laboratoire de Physiologie Cellulaire & Végétale, Univ. Grenoble Alpes, 17 rue des Martyrs, Grenoble F-38054, France
| | - Sebastian Steiner
- Present address: Matthias Hirth, Institut für Allgemeine Botanik und Pflanzenphysiologie, Professur für Molekulare Botanik, Friedrich-Schiller-Universität Jena, Dornburger Straße 159, Jena 07743, Germany; Lars Dietzel, Institut für Molekulare Biowissenschaften, Pflanzliche Zellphysiologie, Biozentrum Goethe-Universität Frankfurt, Max-von-Laue-Straße 9, Frankfurt am Main 60438, Germany; Sebastian Steiner, Klein Wanzlebener Saatzucht Saat AG, Grimsehlstraße 31, Einbeck 37574, Germany; Robert Ludwig, Institut für Diagnostische und Interventionelle Radiologie I — AG Experimentelle Radiologie, Universitätsklinikum Jena — Friedrich-Schiller Universität Jena, Erlanger Allee 101, Jena 07747, Germany; Thomas Pfannschmidt, Laboratoire de Physiologie Cellulaire & Végétale, Univ. Grenoble Alpes, 17 rue des Martyrs, Grenoble F-38054, France
| | - Robert Ludwig
- Present address: Matthias Hirth, Institut für Allgemeine Botanik und Pflanzenphysiologie, Professur für Molekulare Botanik, Friedrich-Schiller-Universität Jena, Dornburger Straße 159, Jena 07743, Germany; Lars Dietzel, Institut für Molekulare Biowissenschaften, Pflanzliche Zellphysiologie, Biozentrum Goethe-Universität Frankfurt, Max-von-Laue-Straße 9, Frankfurt am Main 60438, Germany; Sebastian Steiner, Klein Wanzlebener Saatzucht Saat AG, Grimsehlstraße 31, Einbeck 37574, Germany; Robert Ludwig, Institut für Diagnostische und Interventionelle Radiologie I — AG Experimentelle Radiologie, Universitätsklinikum Jena — Friedrich-Schiller Universität Jena, Erlanger Allee 101, Jena 07747, Germany; Thomas Pfannschmidt, Laboratoire de Physiologie Cellulaire & Végétale, Univ. Grenoble Alpes, 17 rue des Martyrs, Grenoble F-38054, France
| | | | | | - Thomas Pfannschmidt
- *Correspondence: Thomas Pfannschmidt, Laboratoire de Physiologie Cellulaire & Végétale, Univ. Grenoble Alpes, 17 rue des Martyrs, F-38054 Grenoble, France e-mail:
| |
Collapse
|
47
|
Kosugi Y, Takanashi S, Yokoyama N, Philip E, Kamakura M. Vertical variation in leaf gas exchange parameters for a Southeast Asian tropical rainforest in Peninsular Malaysia. JOURNAL OF PLANT RESEARCH 2012; 125:735-748. [PMID: 22644315 DOI: 10.1007/s10265-012-0495-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 04/18/2012] [Indexed: 06/01/2023]
Abstract
Vertical variation in leaf gas exchange characteristics of trees grown in a lowland dipterocarp forest in Peninsular Malaysia was investigated. Maximum net photosynthetic rate, stomatal conductance, and electron transport rate of leaves at the upper canopy, lower canopy, and forest floor were studied in situ with saturated condition photosynthetic photon flux density. The dark respiration rate of leaves at the various heights was also studied. Relationships among gas exchange characteristics, and also with nitrogen content per unit leaf area and leaf dry matter per area were clearly detected, forming general equations representing the vertical profile of several important parameters related to gas exchange. Numerical analysis revealed that the vertical distribution of gas exchange parameters was well determined showing both larger carbon gain for the whole canopy and at the same time positive carbon gain for the leaves of the lowest layer. For correct estimation of gas exchange at both leaf and canopy scales using multi-layer models, it is essential to consider the vertical distribution of gas exchange parameters with proper scaling coefficients.
Collapse
Affiliation(s)
- Yoshiko Kosugi
- Laboratory of Forest Hydrology, Division of Environmental Science and Technology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
| | | | | | | | | |
Collapse
|
48
|
Flexas J, Barbour MM, Brendel O, Cabrera HM, Carriquí M, Díaz-Espejo A, Douthe C, Dreyer E, Ferrio JP, Gago J, Gallé A, Galmés J, Kodama N, Medrano H, Niinemets Ü, Peguero-Pina JJ, Pou A, Ribas-Carbó M, Tomás M, Tosens T, Warren CR. Mesophyll diffusion conductance to CO2: an unappreciated central player in photosynthesis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 193-194:70-84. [PMID: 22794920 DOI: 10.1016/j.plantsci.2012.05.009] [Citation(s) in RCA: 358] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 05/08/2012] [Accepted: 05/20/2012] [Indexed: 05/20/2023]
Abstract
Mesophyll diffusion conductance to CO(2) is a key photosynthetic trait that has been studied intensively in the past years. The intention of the present review is to update knowledge of g(m), and highlight the important unknown and controversial aspects that require future work. The photosynthetic limitation imposed by mesophyll conductance is large, and under certain conditions can be the most significant photosynthetic limitation. New evidence shows that anatomical traits, such as cell wall thickness and chloroplast distribution are amongst the stronger determinants of mesophyll conductance, although rapid variations in response to environmental changes might be regulated by other factors such as aquaporin conductance. Gaps in knowledge that should be research priorities for the near future include: how different is mesophyll conductance among phylogenetically distant groups and how has it evolved? Can mesophyll conductance be uncoupled from regulation of the water path? What are the main drivers of mesophyll conductance? The need for mechanistic and phenomenological models of mesophyll conductance and its incorporation in process-based photosynthesis models is also highlighted.
Collapse
Affiliation(s)
- Jaume Flexas
- Research Group in Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain.
| | - Margaret M Barbour
- Faculty of Agriculture, Food and Natural Resources, The University of Sydney, Private Bag 4011, Narellan, NSW 2567, Australia
| | - Oliver Brendel
- INRA, UMR 1137, Ecologie et Ecophysiologie Forestières, F-54280 Champenoux, France; Université de Lorraine, UMR 1137, Ecologie et Ecophysiologie Forestières, Faculté des Sciences, F-54500 Vandoeuvre, France
| | - Hernán M Cabrera
- Research Group in Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain; Centro de Ecología Aplicada Ltda., Av. Suecia 3304, Ñuñoa, Santiago, Chile
| | - Marc Carriquí
- Research Group in Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain
| | - Antonio Díaz-Espejo
- Instituto de Recursos Naturales y Agrobiología, IRNAS-CSIC, Apartado 1052, 41080 Sevilla, Spain
| | - Cyril Douthe
- INRA, UMR 1137, Ecologie et Ecophysiologie Forestières, F-54280 Champenoux, France; Université de Lorraine, UMR 1137, Ecologie et Ecophysiologie Forestières, Faculté des Sciences, F-54500 Vandoeuvre, France; School of Biological Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Erwin Dreyer
- INRA, UMR 1137, Ecologie et Ecophysiologie Forestières, F-54280 Champenoux, France; Université de Lorraine, UMR 1137, Ecologie et Ecophysiologie Forestières, Faculté des Sciences, F-54500 Vandoeuvre, France
| | - Juan P Ferrio
- Department of Crop and Forest Sciences, AGROTECNIO Center, Universitat de Lleida, Avda. Rovira Roure 191, 25198 Lleida, Spain
| | - Jorge Gago
- Research Group in Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain
| | - Alexander Gallé
- Research Group in Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain
| | - Jeroni Galmés
- Research Group in Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain
| | - Naomi Kodama
- Agro-Meteorology Division, National Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba 305-8604, Japan
| | - Hipólito Medrano
- Research Group in Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - José J Peguero-Pina
- Research Group in Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain
| | - Alicia Pou
- Research Group in Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain
| | - Miquel Ribas-Carbó
- Research Group in Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain
| | - Magdalena Tomás
- Research Group in Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain
| | - Tiina Tosens
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - Charles R Warren
- School of Biological Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
49
|
Obata T, Fernie AR. The use of metabolomics to dissect plant responses to abiotic stresses. Cell Mol Life Sci 2012; 69:3225-43. [PMID: 22885821 PMCID: PMC3437017 DOI: 10.1007/s00018-012-1091-5] [Citation(s) in RCA: 457] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 07/09/2012] [Accepted: 07/09/2012] [Indexed: 12/15/2022]
Abstract
Plant metabolism is perturbed by various abiotic stresses. As such the metabolic network of plants must be reconfigured under stress conditions in order to allow both the maintenance of metabolic homeostasis and the production of compounds that ameliorate the stress. The recent development and adoption of metabolomics and systems biology approaches enable us not only to gain a comprehensive overview, but also a detailed analysis of crucial components of the plant metabolic response to abiotic stresses. In this review we introduce the analytical methods used for plant metabolomics and describe their use in studies related to the metabolic response to water, temperature, light, nutrient limitation, ion and oxidative stresses. Both similarity and specificity of the metabolic responses against diverse abiotic stress are evaluated using data available in the literature. Classically discussed stress compounds such as proline, γ-amino butyrate and polyamines are reviewed, and the widespread importance of branched chain amino acid metabolism under stress condition is discussed. Finally, where possible, mechanistic insights into metabolic regulatory processes are discussed.
Collapse
Affiliation(s)
- Toshihiro Obata
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | | |
Collapse
|
50
|
Posada JM, Sievänen R, Messier C, Perttunen J, Nikinmaa E, Lechowicz MJ. Contributions of leaf photosynthetic capacity, leaf angle and self-shading to the maximization of net photosynthesis in Acer saccharum: a modelling assessment. ANNALS OF BOTANY 2012; 110:731-41. [PMID: 22665700 PMCID: PMC3400442 DOI: 10.1093/aob/mcs106] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 04/04/2012] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Plants are expected to maximize their net photosynthetic gains and efficiently use available resources, but the fundamental principles governing trade-offs in suites of traits related to resource-use optimization remain uncertain. This study investigated whether Acer saccharum (sugar maple) saplings could maximize their net photosynthetic gains through a combination of crown structure and foliar characteristics that let all leaves maximize their photosynthetic light-use efficiency (ε). METHODS A functional-structural model, LIGNUM, was used to simulate individuals of different leaf area index (LAI(ind)) together with a genetic algorithm to find distributions of leaf angle (L(A)) and leaf photosynthetic capacity (A(max)) that maximized net carbon gain at the whole-plant level. Saplings grown in either the open or in a forest gap were simulated with A(max) either unconstrained or constrained to an upper value consistent with reported values for A(max) in A. saccharum. KEY RESULTS It was found that total net photosynthetic gain was highest when whole-plant PPFD absorption and leaf ε were simultaneously maximized. Maximization of ε required simultaneous adjustments in L(A) and A(max) along gradients of PPFD in the plants. When A(max) was constrained to a maximum, plants growing in the open maximized their PPFD absorption but not ε because PPFD incident on leaves was higher than the PPFD at which ε(max) was attainable. Average leaf ε in constrained plants nonetheless improved with increasing LAI(ind) because of an increase in self-shading. CONCLUSIONS It is concluded that there are selective pressures for plants to simultaneously maximize both PPFD absorption at the scale of the whole individual and ε at the scale of leaves, which requires a highly integrated response between L(A), A(max) and LAI(ind). The results also suggest that to maximize ε plants have evolved mechanisms that co-ordinate the L(A) and A(max) of individual leaves with PPFD availability.
Collapse
Affiliation(s)
- Juan M Posada
- Centre d'Étude de la Forêt (CEF), Département des Sciences Biologiques, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, QC H3C3P8, Canada.
| | | | | | | | | | | |
Collapse
|