1
|
Khator K, Parihar S, Jasik J, Shekhawat GS. Nitric oxide in plants: an insight on redox activity and responses toward abiotic stress signaling. PLANT SIGNALING & BEHAVIOR 2024; 19:2298053. [PMID: 38190763 DOI: 10.1080/15592324.2023.2298053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/16/2023] [Indexed: 01/10/2024]
Abstract
Plants, as sessile organisms, are subjected to diverse abiotic stresses, including salinity, desiccation, metal toxicity, thermal fluctuations, and hypoxia at different phases of plant growth. Plants can activate messenger molecules to initiate a signaling cascade of response toward environmental stresses that results in either cell death or plant acclimation. Nitric oxide (NO) is a small gaseous redox-active molecule that exhibits a plethora of physiological functions in growth, development, flowering, senescence, stomata closure and responses to environmental stresses. It can also facilitate alteration in protein function and reprogram the gene profiling by direct or indirect interaction with different target molecules. The bioactivity of NO can be manifested through different redox-based protein modifications including S-nitrosylation, protein nitration, and metal nitrosylation in plants. Although there has been considerable progress in the role of NO in regulating stress signaling, still the physiological mechanisms regarding the abiotic stress tolerance in plants remain unclear. This review summarizes recent advances in understanding the emerging knowledge regarding NO function in plant tolerance against abiotic stresses. The manuscript also highlighted the importance of NO as an abiotic stress modulator and developed a rational design for crop cultivation under a stress environment.
Collapse
Affiliation(s)
- Khushboo Khator
- Plant Biotechnology and Molecular Biology Laboratory, Department of Botany (UGC-CAS) Jai Narain Vyas University, Jodhpur, India
| | - Suman Parihar
- Plant Biotechnology and Molecular Biology Laboratory, Department of Botany (UGC-CAS) Jai Narain Vyas University, Jodhpur, India
| | - Jan Jasik
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Gyan Singh Shekhawat
- Plant Biotechnology and Molecular Biology Laboratory, Department of Botany (UGC-CAS) Jai Narain Vyas University, Jodhpur, India
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
2
|
Daniel K, Hartman S. How plant roots respond to waterlogging. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:511-525. [PMID: 37610936 DOI: 10.1093/jxb/erad332] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
Plant submergence is a major abiotic stress that impairs plant performance. Under water, reduced gas diffusion exposes submerged plant cells to an environment that is enriched in gaseous ethylene and is limited in oxygen (O2) availability (hypoxia). The capacity for plant roots to avoid and/or sustain critical hypoxia damage is essential for plants to survive waterlogging. Plants use spatiotemporal ethylene and O2 dynamics as instrumental flooding signals to modulate potential adaptive root growth and hypoxia stress acclimation responses. However, how non-adapted plant species modulate root growth behaviour during actual waterlogged conditions to overcome flooding stress has hardly been investigated. Here we discuss how changes in the root growth rate, lateral root formation, density, and growth angle of non-flood adapted plant species (mainly Arabidopsis) could contribute to avoiding and enduring critical hypoxic conditions. In addition, we discuss current molecular understanding of how ethylene and hypoxia signalling control these adaptive root growth responses. We propose that future research would benefit from less artificial experimental designs to better understand how plant roots respond to and survive waterlogging. This acquired knowledge would be instrumental to guide targeted breeding of flood-tolerant crops with more resilient root systems.
Collapse
Affiliation(s)
- Kevin Daniel
- Plant Environmental Signalling and Development, Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany
| | - Sjon Hartman
- Plant Environmental Signalling and Development, Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany
| |
Collapse
|
3
|
Zelinová V, Demecsová L, Liptáková Ľ, Valentovičová K, Tamás L. Extracellular nitric oxide sustains root surface redox activity and growth under sudden flooding-induced hypoxic conditions in barley root tips. PLANTA 2023; 259:3. [PMID: 37989783 PMCID: PMC10663193 DOI: 10.1007/s00425-023-04279-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/01/2023] [Indexed: 11/23/2023]
Abstract
MAIN CONCLUSION Nitric oxide sustains root tip surface redox activity and restricts lipid peroxidation-triggered cell death in the root tips. In order to gain more insight into the involvement of nitric oxide (NO) in plant response to sudden flooding-induced hypoxic stress, we studied the effect of two NO donors, sodium nitroprusside and S-nitroso-L-glutathione, on short-term partial submergence-induced root growth inhibition, alteration in root surface redox activity, lipid peroxidation and cell death in two barley cultivars (cv.) at their early seedling stage. The short-term hypoxic stress induces root growth arrest in cv. Karmel, accompanied by increased lipid peroxidation and cell death. By contrast, in cv. Slaven, short-term hypoxic conditions cause only reduced root growth rate, associated with elevated extracellular NO level in the root tips. The root tip surface redox activity decreases with the increasing timespan of hypoxic conditions in both cultivars; however, this decrease in redox activity started earlier and was greater in the cv. Karmel in comparison with cv. Slaven. Application of NO donors during hypoxic stress sustains the root redox activity and eliminates the hypoxia-induced lipid peroxidation, accompanied by a partial restoration of root growth after short-term hypoxic stress. These results suggest that extracellular NO plays a key role in maintaining the root tip surface redox activity and in the restriction of lipid peroxidation and cell death under short-term hypoxic stress in the root tips of barley seedlings.
Collapse
Affiliation(s)
- Veronika Zelinová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84523, Bratislava, Slovak Republic
| | - Loriana Demecsová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84523, Bratislava, Slovak Republic
| | - Ľubica Liptáková
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84523, Bratislava, Slovak Republic
| | - Katarína Valentovičová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84523, Bratislava, Slovak Republic
| | - Ladislav Tamás
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84523, Bratislava, Slovak Republic.
| |
Collapse
|
4
|
Sanchez-Corrionero A, Sánchez-Vicente I, Arteaga N, Manrique-Gil I, Gómez-Jiménez S, Torres-Quezada I, Albertos P, Lorenzo O. Fine-tuned nitric oxide and hormone interface in plant root development and regeneration. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6104-6118. [PMID: 36548145 PMCID: PMC10575706 DOI: 10.1093/jxb/erac508] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Plant root growth and developmental capacities reside in a few stem cells of the root apical meristem (RAM). Maintenance of these stem cells requires regenerative divisions of the initial stem cell niche (SCN) cells, self-maintenance, and proliferative divisions of the daughter cells. This ensures sufficient cell diversity to guarantee the development of complex root tissues in the plant. Damage in the root during growth involves the formation of a new post-embryonic root, a process known as regeneration. Post-embryonic root development and organogenesis processes include primary root development and SCN maintenance, plant regeneration, and the development of adventitious and lateral roots. These developmental processes require a fine-tuned balance between cell proliferation and maintenance. An important regulator during root development and regeneration is the gasotransmitter nitric oxide (NO). In this review we have sought to compile how NO regulates cell rate proliferation, cell differentiation, and quiescence of SCNs, usually through interaction with phytohormones, or other molecular mechanisms involved in cellular redox homeostasis. NO exerts a role on molecular components of the auxin and cytokinin signaling pathways in primary roots that affects cell proliferation and maintenance of the RAM. During root regeneration, a peak of auxin and cytokinin triggers specific molecular programs. Moreover, NO participates in adventitious root formation through its interaction with players of the brassinosteroid and cytokinin signaling cascade. Lately, NO has been implicated in root regeneration under hypoxia conditions by regulating stem cell specification through phytoglobins.
Collapse
Affiliation(s)
- Alvaro Sanchez-Corrionero
- Departamento de Botánica y Fisiología Vegetal, Instituto de Investigación en Agrobiotecnología (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
- Universidad Politécnica de Madrid, Madrid, Spain
| | - Inmaculada Sánchez-Vicente
- Departamento de Botánica y Fisiología Vegetal, Instituto de Investigación en Agrobiotecnología (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Noelia Arteaga
- Departamento de Botánica y Fisiología Vegetal, Instituto de Investigación en Agrobiotecnología (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Isabel Manrique-Gil
- Departamento de Botánica y Fisiología Vegetal, Instituto de Investigación en Agrobiotecnología (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Sara Gómez-Jiménez
- Departamento de Botánica y Fisiología Vegetal, Instituto de Investigación en Agrobiotecnología (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Isabel Torres-Quezada
- Departamento de Botánica y Fisiología Vegetal, Instituto de Investigación en Agrobiotecnología (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Pablo Albertos
- Departamento de Botánica y Fisiología Vegetal, Instituto de Investigación en Agrobiotecnología (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Oscar Lorenzo
- Departamento de Botánica y Fisiología Vegetal, Instituto de Investigación en Agrobiotecnología (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| |
Collapse
|
5
|
Sandalio LM, Espinosa J, Shabala S, León J, Romero-Puertas MC. Reactive oxygen species- and nitric oxide-dependent regulation of ion and metal homeostasis in plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5970-5988. [PMID: 37668424 PMCID: PMC10575707 DOI: 10.1093/jxb/erad349] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/04/2023] [Indexed: 09/06/2023]
Abstract
Deterioration and impoverishment of soil, caused by environmental pollution and climate change, result in reduced crop productivity. To adapt to hostile soils, plants have developed a complex network of factors involved in stress sensing, signal transduction, and adaptive responses. The chemical properties of reactive oxygen species (ROS) and reactive nitrogen species (RNS) allow them to participate in integrating the perception of external signals by fine-tuning protein redox regulation and signal transduction, triggering specific gene expression. Here, we update and summarize progress in understanding the mechanistic basis of ROS and RNS production at the subcellular level in plants and their role in the regulation of ion channels/transporters at both transcriptional and post-translational levels. We have also carried out an in silico analysis of different redox-dependent modifications of ion channels/transporters and identified cysteine and tyrosine targets of nitric oxide in metal transporters. Further, we summarize possible ROS- and RNS-dependent sensors involved in metal stress sensing, such as kinases and phosphatases, as well as some ROS/RNS-regulated transcription factors that could be involved in metal homeostasis. Understanding ROS- and RNS-dependent signaling events is crucial to designing new strategies to fortify crops and improve plant tolerance of nutritional imbalance and metal toxicity.
Collapse
Affiliation(s)
- Luisa M Sandalio
- Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Granada, Spain
| | - Jesús Espinosa
- Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Granada, Spain
| | - Sergey Shabala
- School of Biological Science, University of Western Australia, Crawley, WA 6009, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
| | - José León
- Institute of Plant Molecular and Cellular Biology (CSIC-UPV), Valencia, Spain
| | - María C Romero-Puertas
- Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Granada, Spain
| |
Collapse
|
6
|
Hill RD, Igamberdiev AU, Stasolla C. Preserving root stem cell functionality under low oxygen stress: the role of nitric oxide and phytoglobins. PLANTA 2023; 258:89. [PMID: 37759033 DOI: 10.1007/s00425-023-04246-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
MAIN CONCLUSION The preservation of quiescent center stem cell integrity in hypoxic roots by phytoglobins is exercised through their ability to scavenge nitric oxide and attenuate its effects on auxin transport and cell degradation. Under low oxygen stress, the retention or induction of phytoglobin expression maintains cell viability while loss or lack of induction of phytoglobin leads to cell degradation. Plants have evolved unique attributes to ensure survival in the environment in which they must exist. Common among the attributes is the ability to maintain stem cells in a quiescent (or low proliferation) state in unfriendly environments. From the seed embryo to meristematic regions of the plant, quiescent stem cells exist to regenerate the organism when environmental conditions are suitable to allow plant survival. Frequently, plants dispose of mature cells or organs in the process of acclimating to the stresses to ensure survival of meristems, the stem cells of which are capable of regenerating cells and organs that have been sacrificed, a feature not generally available to mammals. Most of the research on plant stress responses has dealt with how mature cells respond because of the difficulty of specifically examining plant meristem responses to stress. This raises the question as to whether quiescent stem cells behave in a similar fashion to mature cells in their response to stress and what factors within these critical cells determine whether they survive or degrade when exposed to environmental stress. This review attempts to examine this question with respect to the quiescent center (QC) stem cells of the root apical meristem. Emphasis is put on how varying levels of nitric oxide, influenced by the expression of phytoglobins, affect QC response to hypoxic stress.
Collapse
Affiliation(s)
- Robert D Hill
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
7
|
Mira MM, Hill RD, Hilo A, Langer M, Robertson S, Igamberdiev AU, Wilkins O, Rolletschek H, Stasolla C. Plant stem cells under low oxygen: metabolic rewiring by phytoglobin underlies stem cell functionality. PLANT PHYSIOLOGY 2023; 193:1416-1432. [PMID: 37311198 DOI: 10.1093/plphys/kiad344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/15/2023]
Abstract
Root growth in maize (Zea mays L.) is regulated by the activity of the quiescent center (QC) stem cells located within the root apical meristem. Here, we show that despite being highly hypoxic under normal oxygen tension, QC stem cells are vulnerable to hypoxic stress, which causes their degradation with subsequent inhibition of root growth. Under low oxygen, QC stem cells became depleted of starch and soluble sugars and exhibited reliance on glycolytic fermentation with the impairment of the TCA cycle through the depressed activity of several enzymes, including pyruvate dehydrogenase (PDH). This finding suggests that carbohydrate delivery from the shoot might be insufficient to meet the metabolic demand of QC stem cells during stress. Some metabolic changes characteristic of the hypoxic response in mature root cells were not observed in the QC. Hypoxia-responsive genes, such as PYRUVATE DECARBOXYLASE (PDC) and ALCOHOL DEHYDROGENASE (ADH), were not activated in response to hypoxia, despite an increase in ADH activity. Increases in phosphoenolpyruvate (PEP) with little change in steady-state levels of succinate were also atypical responses to low-oxygen tensions. Overexpression of PHYTOGLOBIN 1 (ZmPgb1.1) preserved the functionality of the QC stem cells during stress. The QC stem cell preservation was underpinned by extensive metabolic rewiring centered around activation of the TCA cycle and retention of carbohydrate storage products, denoting a more efficient energy production and diminished demand for carbohydrates under conditions where nutrient transport may be limiting. Overall, this study provides an overview of metabolic responses occurring in plant stem cells during oxygen deficiency.
Collapse
Affiliation(s)
- Mohammed M Mira
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba R3T2N2, Canada
- Department of Botany and Microbiology, Tanta University, Tanta 31527, Egypt
| | - Robert D Hill
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba R3T2N2, Canada
| | - Alexander Hilo
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Matthias Langer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Sean Robertson
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba R3T2N2, Canada
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1C5S7, Canada
| | - Olivia Wilkins
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba R3T2N2, Canada
| | - Hardy Rolletschek
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba R3T2N2, Canada
| |
Collapse
|
8
|
Graska J, Fidler J, Gietler M, Prabucka B, Nykiel M, Labudda M. Nitric Oxide in Plant Functioning: Metabolism, Signaling, and Responses to Infestation with Ecdysozoa Parasites. BIOLOGY 2023; 12:927. [PMID: 37508359 PMCID: PMC10376146 DOI: 10.3390/biology12070927] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule that is involved in a wide range of physiological processes in plants, including responses to biotic and abiotic stresses. Changes in endogenous NO concentration lead to activation/deactivation of NO signaling and NO-related processes. This paper presents the current state of knowledge on NO biosynthesis and scavenging pathways in plant cells and highlights the role of NO in post-translational modifications of proteins (S-nitrosylation, nitration, and phosphorylation) in plants under optimal and stressful environmental conditions. Particular attention was paid to the interactions of NO with other signaling molecules: reactive oxygen species, abscisic acid, auxins (e.g., indole-3-acetic acid), salicylic acid, and jasmonic acid. In addition, potential common patterns of NO-dependent defense responses against attack and feeding by parasitic and molting Ecdysozoa species such as nematodes, insects, and arachnids were characterized. Our review definitely highlights the need for further research on the involvement of NO in interactions between host plants and Ecdysozoa parasites, especially arachnids.
Collapse
Affiliation(s)
- Jakub Graska
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland; (J.F.); (M.G.); (B.P.); (M.N.)
| | | | | | | | | | - Mateusz Labudda
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland; (J.F.); (M.G.); (B.P.); (M.N.)
| |
Collapse
|
9
|
Rathnayaka Pathiranage RGL, Mira MM, Hill RD, Stasolla C. The inhibition of maize (Zea mays L.) root stem cell regeneration by low oxygen is attenuated by Phytoglobin 1 (Pgb1) through changes in auxin and jasmonic acid. PLANTA 2023; 257:120. [PMID: 37178357 DOI: 10.1007/s00425-023-04144-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
MAIN CONCLUSIONS Over-expression of Phytoglobin1 increases the viability of maize root stem cells to low oxygen stress through changes in auxin and jasmonic acid responses. Hypoxia inhibits maize (Zea mays L.) root growth by deteriorating the quiescent center (QC) stem cells of the root apical meristem. Over-expression of the Phytoglobin1 ZmPgb1.1 alleviates these effects through the retention of the auxin flow along the root profile required for the specification of the QC stem cells. To identify QC-specific hypoxia responses and determine whether ZmPgb1.1 exercises a direct role on QC stem cells, we performed a QC functionality test. This was done by estimating the ability of QCs to regenerate a root in vitro in a hypoxic environment. Hypoxia decreased the functionality of the QCs by depressing the expression of several genes participating in the synthesis and response of auxin. This was accompanied by a decrease in DR5 signal, a suppression of PLETHORA and WOX5, two markers of QC cell identity, and a reduction in expression of genes participating in JA synthesis and signaling. Over-expression of ZmPgb1.1 was sufficient to mitigate all these responses. Through pharmacological alterations of auxin and JA, it is demonstrated that both hormones are required for QC functionality under hypoxia, and that JA acts downstream of auxin during QC regeneration. A model is proposed whereby the ZmPgb1.1 maintenance of auxin synthesis in hypoxic QCs is determinant for the retention of their functionality, with JA supporting the regeneration of roots from the QCs.
Collapse
Affiliation(s)
| | - Mohammed M Mira
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
- Department of Botany, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Robert D Hill
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
10
|
Martins TDS, Da-Silva CJ, Shimoia EP, Posso DA, Carvalho IR, de Oliveira ACB, do Amarante L. Nitrate supply decreases fermentation and alleviates oxidative and ionic stress in nitrogen-fixing soybean exposed to saline waterlogging. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:416-433. [PMID: 37038091 DOI: 10.1071/fp22145] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 03/18/2023] [Indexed: 05/03/2023]
Abstract
Nitrate (NO3 - ) nutrition is known to mitigate the damages caused by individual stresses of waterlogging and salinity. Here, we investigated the role of NO3 - in soybean plants exposed to these stresses in combination. Nodulated soybean cultivated under greenhouse conditions and daily fertilised with a nutrient solution without nitrogen were subjected to the following treatments: Water, NO3 - , NaCl, and NaCl+NO3 - . Then, plants were exposed to waterlogging (6days) and drainage (2days). Compared to plants exposed to isolated stress, the saline waterlogging resulted in higher concentrations of H2 O2 , O2 ˙- , and lipid peroxidation at the whole-plant level, mainly during drainage. Furthermore, saline waterlogging increased fermentation and the concentrations of Na+ and K+ in roots and leaves both during waterlogging and drainage. NO3 - supplementation led to augments in NO3 - and NO levels, and stimulated nitrate reductase activity in both organs. In addition, NO3 - nutrition alleviated oxidative stress and fermentation besides increasing the K+ /Na+ ratio in plants exposed to saline waterlogging. In conclusion, NO3 - supplementation is a useful strategy to help soybean plants overcome saline waterlogging stress. These findings are of high relevance for agriculture as soybean is an important commodity and has been cultivated in areas prone to saline waterlogging.
Collapse
Affiliation(s)
| | | | | | - Douglas Antônio Posso
- Departamento de Botânica, Universidade Federal de Pelotas, Capão do Leão 96160-000, Brazil
| | - Ivan Ricardo Carvalho
- Departamento de Estudos Agrários, Universidade Regional do Noroeste do Estado do Rio Grande do Sul, Ijuí 98700-000, Brazil
| | | | - Luciano do Amarante
- Departamento de Botânica, Universidade Federal de Pelotas, Capão do Leão 96160-000, Brazil
| |
Collapse
|
11
|
Mata-Pérez C, Sánchez-Vicente I, Arteaga N, Gómez-Jiménez S, Fuentes-Terrón A, Oulebsir CS, Calvo-Polanco M, Oliver C, Lorenzo Ó. Functions of nitric oxide-mediated post-translational modifications under abiotic stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1158184. [PMID: 37063215 PMCID: PMC10101340 DOI: 10.3389/fpls.2023.1158184] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Environmental conditions greatly impact plant growth and development. In the current context of both global climate change and land degradation, abiotic stresses usually lead to growth restriction limiting crop production. Plants have evolved to sense and respond to maximize adaptation and survival; therefore, understanding the mechanisms involved in the different converging signaling networks becomes critical for improving plant tolerance. In the last few years, several studies have shown the plant responses against drought and salinity, high and low temperatures, mechanical wounding, heavy metals, hypoxia, UV radiation, or ozone stresses. These threats lead the plant to coordinate a crosstalk among different pathways, highlighting the role of phytohormones and reactive oxygen and nitrogen species (RONS). In particular, plants sense these reactive species through post-translational modification (PTM) of macromolecules such as nucleic acids, proteins, and fatty acids, hence triggering antioxidant responses with molecular implications in the plant welfare. Here, this review compiles the state of the art about how plant systems sense and transduce this crosstalk through PTMs of biological molecules, highlighting the S-nitrosylation of protein targets. These molecular mechanisms finally impact at a physiological level facing the abiotic stressful traits that could lead to establishing molecular patterns underlying stress responses and adaptation strategies.
Collapse
|
12
|
Gupta KJ, Kaladhar VC, Fitzpatrick TB, Fernie AR, Møller IM, Loake GJ. Nitric oxide regulation of plant metabolism. MOLECULAR PLANT 2022; 15:228-242. [PMID: 34971792 DOI: 10.1016/j.molp.2021.12.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 10/31/2021] [Accepted: 12/23/2021] [Indexed: 05/17/2023]
Abstract
Nitric oxide (NO) has emerged as an important signal molecule in plants, having myriad roles in plant development. In addition, NO also orchestrates both biotic and abiotic stress responses, during which intensive cellular metabolic reprogramming occurs. Integral to these responses is the location of NO biosynthetic and scavenging pathways in diverse cellular compartments, enabling plants to effectively organize signal transduction pathways. NO regulates plant metabolism and, in turn, metabolic pathways reciprocally regulate NO accumulation and function. Thus, these diverse cellular processes are inextricably linked. This review addresses the numerous redox pathways, located in the various subcellular compartments that produce NO, in addition to the mechanisms underpinning NO scavenging. We focus on how this molecular dance is integrated into the metabolic state of the cell. Within this context, a reciprocal relationship between NO accumulation and metabolite production is often apparent. We also showcase cellular pathways, including those associated with nitrate reduction, that provide evidence for this integration of NO function and metabolism. Finally, we discuss the potential importance of the biochemical reactions governing NO levels in determining plant responses to a changing environment.
Collapse
Affiliation(s)
- Kapuganti Jagadis Gupta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, Delhi 110067 India.
| | - Vemula Chandra Kaladhar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, Delhi 110067 India
| | - Teresa B Fitzpatrick
- Vitamins and Environmental Stress Responses in Plants, Department of Botany and Plant Biology, University of Geneva, Geneva 1211 Switzerland
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476 Germany
| | - Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark
| | - Gary J Loake
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK.
| |
Collapse
|
13
|
Koltun A, Fuhrmann-Aoyagi MB, Cardoso Moraes LA, Lima Nepomuceno A, Simões Azeredo Gonçalves L, Mertz-Henning LM. Uncovering the roles of hemoglobins in soybean facing water stress. Gene 2022; 810:146055. [PMID: 34737003 DOI: 10.1016/j.gene.2021.146055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/14/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022]
Abstract
Water stress drastically hinders crop yield, including soybean - one of the world's most relevant feeding crops - threatening the food security of an ever-growing global population. Hemoglobins (GLBs) are involved in water stress tolerance; however, the role they effectively play in soybean remains underexplored. In this study, in silico and in vivo analyses were performed to identify soybean GLBs, capture their transcriptional profile under water stress, and overexpress promising members to assess how soybean cope with waterlogging. Seven GLBs were found, two GLB1 (non-symbiotic) and five GLB2 (symbiotic or leghemoglobins). Three out of the seven GLBs were differentially expressed in soybean RNA-seq libraries of water stress and were evaluated by real-time PCR. Consistently, GmGLB1-1 and GmGLB1-2 were moderately and highly expressed under waterlogging, respectively. Composite plants with roots overexpressing GmGLB1-1 or GmGLB1-2 (mostly) showed higher transcript abundance of stress-defensive genes involved in anaerobic, nitrogen, carbon, and antioxidant metabolism when subjected to waterlogging. In addition, soybean bearing p35S:GmGLB1-2 had lower H2O2 root content, a reactive oxygen species (ROS), under water excess compared with the control condition. Altogether these results suggest that GmGLB1-2 is a strong candidate for soybean genetic engineering to generate waterlogging-tolerant soybean cultivars.
Collapse
|
14
|
Jethva J, Schmidt RR, Sauter M, Selinski J. Try or Die: Dynamics of Plant Respiration and How to Survive Low Oxygen Conditions. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11020205. [PMID: 35050092 PMCID: PMC8780655 DOI: 10.3390/plants11020205] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 05/09/2023]
Abstract
Fluctuations in oxygen (O2) availability occur as a result of flooding, which is periodically encountered by terrestrial plants. Plant respiration and mitochondrial energy generation rely on O2 availability. Therefore, decreased O2 concentrations severely affect mitochondrial function. Low O2 concentrations (hypoxia) induce cellular stress due to decreased ATP production, depletion of energy reserves and accumulation of metabolic intermediates. In addition, the transition from low to high O2 in combination with light changes-as experienced during re-oxygenation-leads to the excess formation of reactive oxygen species (ROS). In this review, we will update our current knowledge about the mechanisms enabling plants to adapt to low-O2 environments, and how to survive re-oxygenation. New insights into the role of mitochondrial retrograde signaling, chromatin modification, as well as moonlighting proteins and mitochondrial alternative electron transport pathways (and their contribution to low O2 tolerance and survival of re-oxygenation), are presented.
Collapse
Affiliation(s)
- Jay Jethva
- Department of Plant Developmental Biology and Plant Physiology, Faculty of Mathematics and Natural Sciences, Botanical Institute, Christian-Albrechts University, D-24118 Kiel, Germany; (J.J.); (M.S.)
| | - Romy R. Schmidt
- Department of Plant Biotechnology, Faculty of Biology, University of Bielefeld, D-33615 Bielefeld, Germany;
| | - Margret Sauter
- Department of Plant Developmental Biology and Plant Physiology, Faculty of Mathematics and Natural Sciences, Botanical Institute, Christian-Albrechts University, D-24118 Kiel, Germany; (J.J.); (M.S.)
| | - Jennifer Selinski
- Department of Plant Cell Biology, Botanical Institute, Faculty of Mathematics and Natural Sciences, Christian-Albrechts University, D-24118 Kiel, Germany
- Correspondence: ; Tel.: +49-(0)431-880-4245
| |
Collapse
|
15
|
Pérez-Díaz J, Batista-Silva W, Almada R, Medeiros DB, Arrivault S, Correa F, Bastías A, Rojas P, Beltrán MF, Pozo MF, Araújo WL, Sagredo B. Prunus Hexokinase 3 genes alter primary C-metabolism and promote drought and salt stress tolerance in Arabidopsis transgenic plants. Sci Rep 2021; 11:7098. [PMID: 33782506 PMCID: PMC8007757 DOI: 10.1038/s41598-021-86535-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 03/15/2021] [Indexed: 11/08/2022] Open
Abstract
Hexokinases (HXKs) and fructokinases (FRKs) are the only two families of enzymes in plants that have been identified as able to phosphorylate Glucose (Glc) and Fructose (Fru). Glc can only be phosphorylated in plants by HXKs, while Fru can be phosphorylated by either HXKs or FRKs. The various subcellular localizations of HXKs in plants indicate that they are involved in diverse functions, including anther dehiscence and pollen germination, stomatal closure in response to sugar levels, stomatal aperture and reducing transpiration. Its association with modulating programmed cell death, and responses to oxidative stress and pathogen infection (abiotic and biotic stresses) also have been reported. To extend our understanding about the function of HXK-like genes in the response of Prunus rootstocks to abiotic stress, we performed a detailed bioinformatic and functional analysis of hexokinase 3-like genes (HXK3s) from two Prunus rootstock genotypes, 'M.2624' (Prunus cerasifera Ehrh × P. munsoniana W.Wight & Hedrick) and 'M.F12/1' (P. avium L.), which are tolerant and sensitive to hypoxia stress, respectively. A previous large-scale transcriptome sequencing of roots of these rootstocks, showed that this HXK3-like gene that was highly induced in the tolerant genotype under hypoxia conditions. In silico analysis of gene promoters from M.2624 and M.F12/1 genotypes revealed regulatory elements that could explain differential transcriptional profiles of HXK3 genes. Subcellular localization was determinates by both bioinformatic prediction and expression of their protein fused to the green fluorescent protein (GFP) in protoplasts and transgenic plants of Arabidopsis. Both approaches showed that they are expressed in plastids. Metabolomics analysis of Arabidopsis plants ectopically expressing Prunus HXK3 genes revealed that content of several metabolites including phosphorylated sugars (G6P), starch and some metabolites associated with the TCA cycle were affected. These transgenic Arabidopsis plants showed improved tolerance to salt and drought stress under growth chamber conditions. Our results suggest that Prunus HXK3 is a potential candidate for enhancing tolerance to salt and drought stresses in stone fruit trees and other plants.
Collapse
Affiliation(s)
- Jorge Pérez-Díaz
- Instituto de Investigaciones Agropecuarias CRI Rayentué, Av. Salamanca s/n, Sector Los Choapinos, Rengo, Chile
| | - Willian Batista-Silva
- Max Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Rubén Almada
- Centro de Estudios Avanzados en Fruticultura, CEAF, Camino Las Parcelas 882, Sector Los Choapinos, Rengo, Chile
| | - David B Medeiros
- Max Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Stéphanie Arrivault
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Francisco Correa
- Instituto de Investigaciones Agropecuarias CRI Rayentué, Av. Salamanca s/n, Sector Los Choapinos, Rengo, Chile
| | - Adriana Bastías
- Universidad Autónoma de Chile, Av. Pedro de Valdivia 425, Providencia, Santiago, Chile
| | - Pamela Rojas
- Instituto de Investigaciones Agropecuarias CRI Rayentué, Av. Salamanca s/n, Sector Los Choapinos, Rengo, Chile
| | - María Francisca Beltrán
- Instituto de Investigaciones Agropecuarias CRI Rayentué, Av. Salamanca s/n, Sector Los Choapinos, Rengo, Chile
| | - María Francisca Pozo
- Instituto de Investigaciones Agropecuarias CRI Rayentué, Av. Salamanca s/n, Sector Los Choapinos, Rengo, Chile
| | - Wagner L Araújo
- Max Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Boris Sagredo
- Instituto de Investigaciones Agropecuarias CRI Rayentué, Av. Salamanca s/n, Sector Los Choapinos, Rengo, Chile.
| |
Collapse
|
16
|
Manrique-Gil I, Sánchez-Vicente I, Torres-Quezada I, Lorenzo O. Nitric oxide function during oxygen deprivation in physiological and stress processes. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:904-916. [PMID: 32976588 PMCID: PMC7876777 DOI: 10.1093/jxb/eraa442] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/16/2020] [Indexed: 05/07/2023]
Abstract
Plants are aerobic organisms that have evolved to maintain specific requirements for oxygen (O2), leading to a correct respiratory energy supply during growth and development. There are certain plant developmental cues and biotic or abiotic stress responses where O2 is scarce. This O2 deprivation known as hypoxia may occur in hypoxic niches of plant-specific tissues and during adverse environmental cues such as pathogen attack and flooding. In general, plants respond to hypoxia through a complex reprogramming of their molecular activities with the aim of reducing the impact of stress on their physiological and cellular homeostasis. This review focuses on the fine-tuned regulation of hypoxia triggered by a network of gaseous compounds that includes O2, ethylene, and nitric oxide. In view of recent scientific advances, we summarize the molecular mechanisms mediated by phytoglobins and by the N-degron proteolytic pathway, focusing on embryogenesis, seed imbibition, and germination, and also specific structures, most notably root apical and shoot apical meristems. In addition, those biotic and abiotic stresses that comprise hypoxia are also highlighted.
Collapse
Affiliation(s)
- Isabel Manrique-Gil
- Departamento de Botánica y Fisiología Vegetal, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca. C/ Río Duero 12, Salamanca, Spain
| | - Inmaculada Sánchez-Vicente
- Departamento de Botánica y Fisiología Vegetal, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca. C/ Río Duero 12, Salamanca, Spain
| | - Isabel Torres-Quezada
- Departamento de Botánica y Fisiología Vegetal, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca. C/ Río Duero 12, Salamanca, Spain
| | - Oscar Lorenzo
- Departamento de Botánica y Fisiología Vegetal, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca. C/ Río Duero 12, Salamanca, Spain
- Correspondence:
| |
Collapse
|
17
|
Popov VN, Syromyatnikov MY, Fernie AR, Chakraborty S, Gupta KJ, Igamberdiev AU. The uncoupling of respiration in plant mitochondria: keeping reactive oxygen and nitrogen species under control. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:793-807. [PMID: 33245770 DOI: 10.1093/jxb/eraa510] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Plant mitochondrial respiration involves the operation of various alternative pathways. These pathways participate, both directly and indirectly, in the maintenance of mitochondrial functions though they do not contribute to energy production, being uncoupled from the generation of an electrochemical gradient across the mitochondrial membrane and thus from ATP production. Recent findings suggest that uncoupled respiration is involved in reactive oxygen species (ROS) and nitric oxide (NO) scavenging, regulation, and homeostasis. Here we discuss specific roles and possible functions of uncoupled mitochondrial respiration in ROS and NO metabolism. The mechanisms of expression and regulation of the NDA-, NDB- and NDC-type non-coupled NADH and NADPH dehydrogenases, the alternative oxidase (AOX), and the uncoupling protein (UCP) are examined in relation to their involvement in the establishment of the stable far-from-equilibrium state of plant metabolism. The role of uncoupled respiration in controlling the levels of ROS and NO as well as inducing signaling events is considered. Secondary functions of uncoupled respiration include its role in protection from stress factors and roles in biosynthesis and catabolism. It is concluded that uncoupled mitochondrial respiration plays an important role in providing rapid adaptation of plants to changing environmental factors via regulation of ROS and NO.
Collapse
Affiliation(s)
- Vasily N Popov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
- Voronezh State University of Engineering Technologies, Voronezh, Russia
| | - Mikhail Y Syromyatnikov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
- Voronezh State University of Engineering Technologies, Voronezh, Russia
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Subhra Chakraborty
- National Institute for Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | | | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St John's, NL, Canada
| |
Collapse
|
18
|
Zafari S, Vanlerberghe GC, Igamberdiev AU. Nitric Oxide Turnover Under Hypoxia Results in the Rapid Increased Expression of the Plastid-Localized Phosphorylated Pathway of Serine Biosynthesis. FRONTIERS IN PLANT SCIENCE 2021; 12:780842. [PMID: 35173748 PMCID: PMC8841671 DOI: 10.3389/fpls.2021.780842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/28/2021] [Indexed: 05/03/2023]
Abstract
The plant mitochondrial electron transport chain influences carbon and nitrogen metabolism under near anoxic conditions through its involvement in the phytoglobin-nitric oxide cycle, where the respiratory chain reduces nitrite to nitric oxide (NO), followed by NO conversion to nitrate by class 1 phytoglobin. Wild type (WT) and transgenic tobacco (Nicotiana tabacum L.) with differing amounts of alternative oxidase (AOX) were used to manipulate NO generation under hypoxia, and to examine whether this in turn influenced the gene expression of two stress-related amino acid biosynthetic pathways, the plastid-localized phosphorylated pathway of serine biosynthesis (PPSB), and the γ-aminobutyric acid (GABA) shunt. Under hypoxia, leaf NO emission rate was highest in AOX overexpressors and lowest in AOX knockdowns, with WT showing an intermediate rate. In turn, the rate of NO emission correlated with the degree to which amino acids accumulated. This amino acid accumulation was associated with the increased expression of the enzymes of the stress-related amino acid biosynthetic pathways. However, induction of the PPSB occurred much earlier than the GABA shunt. This work shows that high rates of NO turnover associate with rapid gene induction of the PPSB, establishing a clear link between this pathway and the maintenance of carbon, nitrogen and energy metabolism under hypoxia.
Collapse
Affiliation(s)
- Somaieh Zafari
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Greg C. Vanlerberghe
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto Scarborough, Toronto, ON, Canada
| | - Abir U. Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
- *Correspondence: Abir U. Igamberdiev,
| |
Collapse
|
19
|
Zafari S, Hebelstrup KH, Igamberdiev AU. Transcriptional and Metabolic Changes Associated with Phytoglobin Expression during Germination of Barley Seeds. Int J Mol Sci 2020; 21:ijms21082796. [PMID: 32316536 PMCID: PMC7215281 DOI: 10.3390/ijms21082796] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 12/17/2022] Open
Abstract
To understand how the class 1 phytoglobin is involved in germination process via the modulation of the nitric oxide (NO) metabolism, we performed the analysis of physiological and molecular parameters in the embryos of transgenic barley (Hordeum vulgare L. cv Golden Promise) plants differing in expression levels of the phytoglobin (Pgb1) gene during the first 48 h of germination. Overexpression of Pgb1 resulted in a higher rate of germination, higher protein content and higher ATP/ADP ratios. This was accompanied by a lower rate of NO emission after radicle protrusion, as compared to the wild type and downregulating line, and a lower rate of S-nitrosylation of proteins in the first hours postimbibition. The rate of fermentation estimated by the expression and activity of alcohol dehydrogenase was significantly higher in the Pgb1 downregulating line, the same tendency was observed for nitrate reductase expression. The genes encoding succinate dehydrogenase and pyruvate dehydrogenase complex subunits were more actively expressed in embryos of the seeds overexpressing Pgb1. It is concluded that Pgb1 expression in embryo is essential for the maintenance of redox and energy balance before radicle protrusion, when seeds experience low internal oxygen concentration and exerts the effect on metabolism during the initial development of seedlings.
Collapse
Affiliation(s)
- Somaieh Zafari
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada;
| | - Kim H. Hebelstrup
- Department of Molecular Biology and Genetics, Aarhus University, Flakkebjerg, DK-4200 Slagelse, Denmark;
| | - Abir U. Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada;
- Correspondence:
| |
Collapse
|
20
|
Igamberdiev AU. Citrate valve integrates mitochondria into photosynthetic metabolism. Mitochondrion 2020; 52:218-230. [PMID: 32278088 DOI: 10.1016/j.mito.2020.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/21/2020] [Accepted: 04/07/2020] [Indexed: 12/31/2022]
Abstract
While in heterotrophic cells and in darkness mitochondria serve as main producers of energy, during photosynthesis this function is transferred to chloroplasts and the main role of mitochondria in bioenergetics turns to be the balance of the level of phosphorylation of adenylates and of reduction of pyridine nucleotides to avoid over-energization of the cell and optimize major metabolic fluxes. This is achieved via the establishment and regulation of local equilibria of the tricarboxylic acid (TCA) cycle enzymes malate dehydrogenase and fumarase in one branch and aconitase and isocitrate dehydrogenase in another branch. In the conditions of elevation of redox level, the TCA cycle is transformed into a non-cyclic open structure (hemicycle) leading to the export of the tricarboxylic acid (citrate) to the cytosol and to the accumulation of the dicarboxylic acids (malate and fumarate). While the buildup of NADPH in chloroplasts provides operation of the malate valve leading to establishment of NADH/NAD+ ratios in different cell compartments, the production of NADH by mitochondria drives citrate export by establishing conditions for the operation of the citrate valve. The latter regulates the intercompartmental NADPH/NADP+ ratio and contributes to the biosynthesis of amino acids and other metabolic products during photosynthesis.
Collapse
Affiliation(s)
- Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| |
Collapse
|
21
|
Armstrong W, Beckett PM, Colmer TD, Setter TL, Greenway H. Tolerance of roots to low oxygen: 'Anoxic' cores, the phytoglobin-nitric oxide cycle, and energy or oxygen sensing. JOURNAL OF PLANT PHYSIOLOGY 2019; 239:92-108. [PMID: 31255944 DOI: 10.1016/j.jplph.2019.04.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/19/2019] [Accepted: 04/19/2019] [Indexed: 06/09/2023]
Abstract
Acclimation by plants to hypoxia and anoxia is of importance in various ecological systems, and especially for roots in waterlogged soil. We present evidence for acclimation by roots via 'anoxic' cores rather than being triggered by O2 sensors. The evidence for 'anoxic' cores comes from radial O2 profiles across maize roots and associated metabolic changes such as increases in the 'anaerobic enzymes' ADH and PDC in the 'anoxic' core, and inhibition of Cl- transport to the xylem. These cores are predicted to develop within 15-20 min after sudden transfer of a root to hypoxia, so that the cores are 'anoxically-shocked'. We suggest that 'anoxic' cores could emanate a signal(s), such as ACC the precursor of ethylene and/or propagation of a 'Ca2+ wave', to other tissue zones. There, the signalling would result in acclimation of the tissues to energy crisis metabolism. An O2 diffusion model for tissues with an 'anoxic' core, indicates that the phytoglobin-nitric oxide (Pgb-NO) cycle would only be engaged in a thin 'shell' (annulus) of tissue surrounding the 'anoxic' core, and so would only contribute small amounts of ATP on a whole organ basis (e.g. whole roots). A key feature within this annulus of tissue, where O2 is likely to be limiting, is that the ratio (ATP formed) / (O2 consumed) is 5-6, both when the NAD(P)H of glycolysis is converted to NAD(P)+ by the Pgb-NO cycle or by the TCA cycle linked to the electron transport chain. The main function of the Pgb-NO cycle may be the modulating of NO levels and O2 scavenging, thus preventing oxidative damage. We speculate that an 'anoxic' core in hypoxic plant organs may have a particularly high tolerance to anoxia because cells might receive a prolonged supply of carbohydrates and/or ATP from the regions still receiving sufficient O2 for oxidative phosphorylation. Severely hypoxic or 'anoxic' cores are well documented, but much research on responses of roots to hypoxia is still based on bulk tissue analyses. More research is needed on the interaction between 'anoxic' cores and tissues still receiving sufficient O2 for oxidative phosphorylation, both during a hypoxic exposure and during subsequent anoxia of the tissue/organ as a whole.
Collapse
Affiliation(s)
- William Armstrong
- School of Agriculture and Environment, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, 6009, Perth, WA, Australia; Department of Biological Sciences, The University of Hull, Hull, UK
| | | | - Timothy D Colmer
- School of Agriculture and Environment, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, 6009, Perth, WA, Australia.
| | - Timothy L Setter
- Agricultural and Environmental Consultant, P.O. Box 305, Bull Creek, 6149, WA, Australia
| | - Hank Greenway
- School of Agriculture and Environment, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, 6009, Perth, WA, Australia
| |
Collapse
|
22
|
Kolbert Z, Feigl G, Freschi L, Poór P. Gasotransmitters in Action: Nitric Oxide-Ethylene Crosstalk during Plant Growth and Abiotic Stress Responses. Antioxidants (Basel) 2019; 8:E167. [PMID: 31181724 PMCID: PMC6616412 DOI: 10.3390/antiox8060167] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 01/29/2023] Open
Abstract
Since their first description as atmospheric gases, it turned out that both nitric oxide (NO) and ethylene (ET) are multifunctional plant signals. ET and polyamines (PAs) use the same precursor for their synthesis, and NO can be produced from PA oxidation. Therefore, an indirect metabolic link between NO and ET synthesis can be considered. NO signal is perceived primarily through S-nitrosation without the involvement of a specific receptor, while ET signal is sensed by a well-characterized receptor complex. Both NO and ET are synthetized by plants at various developmental stages (e.g., seeds, fruits) and as a response to numerous environmental factors (e.g., heat, heavy metals) and they mutually regulate each other's levels. Most of the growth and developmental processes (e.g., fruit ripening, de-etiolation) are regulated by NO-ET antagonism, while in abiotic stress responses, both antagonistic (e.g., dark-induced stomatal opening, cadmium-induced cell death) and synergistic (e.g., UV-B-induced stomatal closure, iron deficiency-induced expression of iron acquisition genes) NO-ET interplays have been revealed. Despite the numerous pieces of experimental evidence revealing NO-ET relationships in plants, the picture is far from complete. Understanding the mechanisms of NO-ET interactions may contribute to the increment of yield and intensification of stress tolerance of crop plants in changing environments.
Collapse
Affiliation(s)
- Zsuzsanna Kolbert
- Department of Plant Biology, University of Szeged, 6726 Szeged, Hungary.
| | - Gábor Feigl
- Department of Plant Biology, University of Szeged, 6726 Szeged, Hungary.
| | - Luciano Freschi
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Sao Paulo, Sao Paulo 05422-970, Brazil.
| | - Péter Poór
- Department of Plant Biology, University of Szeged, 6726 Szeged, Hungary.
| |
Collapse
|
23
|
Singh N, Bhatla SC. Hemoglobin as a probe for estimation of nitric oxide emission from plant tissues. PLANT METHODS 2019; 15:39. [PMID: 31043999 PMCID: PMC6480594 DOI: 10.1186/s13007-019-0425-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/15/2019] [Indexed: 05/08/2023]
Abstract
BACKGROUND Plant roots contribute significant amount of nitric oxide (NO) in the rhizosphere as a component of NO in the ecosystem. Various pharmacological investigations on NO research in plants seek to quench endogenous NO by using externally applied NO quenchers, mainly 2-phenyl-4,4,5,5,-tetramethylimidazoline-1-oxyl 3-oxide (PTIO) and its more soluble form-carboxy-PTIO (cPTIO). Owing to serious limitations in its application cPTIO is no more a desired compound for such applications. RESULT Present work highlights the significance of using hemoglobin in the bathing solution to not only release endogenous NO from plant tissue but also to quench it in a concentration-dependent manner. CONCLUSION The protocol further demonstrates the diffusibility of NO from intracellular locations in presence of externally provided hemoglobin. The proposed method can have widespread applications as a substitute to debatable and currently used cPTIO as a NO scavenger.
Collapse
Affiliation(s)
- Neha Singh
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Delhi, Delhi, 110007 India
| | - Satish C. Bhatla
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Delhi, Delhi, 110007 India
| |
Collapse
|
24
|
Wany A, Gupta AK, Kumari A, Mishra S, Singh N, Pandey S, Vanvari R, Igamberdiev AU, Fernie AR, Gupta KJ. Nitrate nutrition influences multiple factors in order to increase energy efficiency under hypoxia in Arabidopsis. ANNALS OF BOTANY 2019; 123:691-705. [PMID: 30535180 PMCID: PMC6417481 DOI: 10.1093/aob/mcy202] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 10/10/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND AND AIMS Nitrogen (N) levels vary between ecosystems, while the form of available N has a substantial impact on growth, development and perception of stress. Plants have the capacity to assimilate N in the form of either nitrate (NO3-) or ammonium (NH4+). Recent studies revealed that NO3- nutrition increases nitric oxide (NO) levels under hypoxia. When oxygen availability changes, plants need to generate energy to protect themselves against hypoxia-induced damage. As the effects of NO3- or NH4+ nutrition on energy production remain unresolved, this study was conducted to investigate the role of N source on group VII transcription factors, fermentative genes, energy metabolism and respiration under normoxic and hypoxic conditions. METHODS We used Arabidopsis plants grown on Hoagland medium with either NO3- or NH4+ as a source of N and exposed to 0.8 % oxygen environment. In both roots and seedlings, we investigated the phytoglobin-nitric oxide cycle and the pathways of fermentation and respiration; furthermore, NO levels were tested using a combination of techniques including diaminofluorescein fluorescence, the gas phase Griess reagent assay, respiration by using an oxygen sensor and gene expression analysis by real-time quantitative reverse transcription-PCR methods. KEY RESULTS Under NO3- nutrition, hypoxic stress leads to increases in nitrate reductase activity, NO production, class 1 phytoglobin transcript abundance and metphytoglobin reductase activity. In contrast, none of these processes responded to hypoxia under NH4+ nutrition. Under NO3- nutrition, a decreased total respiratory rate and increased alternative oxidase capacity and expression were observed during hypoxia. Data correlated with decreased reactive oxygen species and lipid peroxidation levels. Moreover, increased fermentation and NAD+ recycling as well as increased ATP production concomitant with the increased expression of transcription factor genes HRE1, HRE2, RAP2.2 and RAP2.12 were observed during hypoxia under NO3- nutrition. CONCLUSIONS The results of this study collectively indicate that nitrate nutrition influences multiple factors in order to increase energy efficiency under hypoxia.
Collapse
Affiliation(s)
- Aakanksha Wany
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Alok Kumar Gupta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Aprajita Kumari
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Sonal Mishra
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Namrata Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Sonika Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Rhythm Vanvari
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John’s, Canada
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | | |
Collapse
|
25
|
Kerpen L, Niccolini L, Licausi F, van Dongen JT, Weits DA. Hypoxic Conditions in Crown Galls Induce Plant Anaerobic Responses That Support Tumor Proliferation. FRONTIERS IN PLANT SCIENCE 2019; 10:56. [PMID: 30804956 PMCID: PMC6371838 DOI: 10.3389/fpls.2019.00056] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/16/2019] [Indexed: 05/21/2023]
Abstract
Agrobacterium tumefaciens infection of wounded plant tissues causes the formation of crown gall tumors. Upon infection, genes encoded on the A. tumefaciens tumor inducing plasmid are integrated in the plant genome to induce the biosynthesis of auxin and cytokinin, leading to uncontrolled cell division. Additional sequences present on the bacterial T-DNA encode for opine biosynthesis genes, which induce the production of opines that act as a unique carbon and nitrogen source for Agrobacterium. Crown galls therefore become a very strong sink for photosynthate. Here we found that the increased metabolic demand in crown galls causes an increase in oxygen consumption rate, which leads to a steep drop in the internal oxygen concentration. Consistent with this, plant hypoxia-responsive genes were found to be significantly upregulated in crown galls compared to uninfected stem tissue. Following this observation, we aimed at understanding whether the low-oxygen response pathway, mediated by group VII ethylene response factor (ERF-VII) transcription factors, plays a role in the development of crown galls. We found that quintuple knock-out mutants of all ERF-VII members, which are incapable of inducing the hypoxic response, show reduced crown gall symptoms. Conversely, mutant genotypes characterized by constitutively high levels of hypoxia-associated transcripts, displayed more severe crown gall symptoms. Based on these results, we concluded that uncontrolled cell proliferation of crown galls established hypoxic conditions, thereby requiring adequate anaerobic responses of the plant tissue to support tumor growth.
Collapse
Affiliation(s)
- Lucy Kerpen
- Institute of Biology I, RWTH Aachen University, Aachen, Germany
| | | | - Francesco Licausi
- Department of Biology, University of Pisa, Pisa, Italy
- Scuola Superiore Sant’Anna, Institute of Life Sciences, Pisa, Italy
| | | | - Daan A. Weits
- Institute of Biology I, RWTH Aachen University, Aachen, Germany
- Scuola Superiore Sant’Anna, Institute of Life Sciences, Pisa, Italy
| |
Collapse
|
26
|
Thermodynamic buffering, stable non-equilibrium and establishment of the computable structure of plant metabolism. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 146:23-36. [PMID: 30444975 DOI: 10.1016/j.pbiomolbio.2018.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/02/2018] [Accepted: 11/12/2018] [Indexed: 01/09/2023]
Abstract
The equilibria of coenzyme nucleotides and substrates established in plant cells generate simple rules that govern the plant metabolome and provide optimal conditions for the non-equilibrium fluxes of major metabolic processes such as ATP synthesis, CO2 fixation, and mitochondrial respiration. Fast and abundant enzymes, such as adenylate kinase, carbonic anhydrase or malate dehydrogenase, provide constant substrate flux for these processes. These "buffering" enzymes follow the Michaelis-Menten (MM) kinetics and operate near equilibrium. The non-equilibrium "engine" enzymes, such as ATP synthase, Rubisco or the respiratory complexes, follow the modified version of MM kinetics due to their high concentration and low concentration of their substrates. The equilibrium reactions serve as control gates for the non-equilibrium flux through the engine enzymes establishing the balance of the fluxes of load and consumption of metabolic components. Under the coordinated operation of buffering and engine enzymes, the concentrations of free and Mg-bound adenylates and of free Mg2+ are set, serving as feedback signals from the adenylate metabolome. Those are linked to various cell energetics parameters, including membrane potentials. Also, internal levels of reduced and oxidized pyridine nucleotides are established in the coordinated operation of malate dehydrogenase and respiratory components, with proton concentration as a feedback from pyridine nucleotide pools. Non-coupled pathways of respiration serve to equilibrate the levels of pyridine nucleotides, adenylates, and as a pH stat. This stable non-equilibrium organizes the fluxes of energy spatially and temporally, controlling the rates of major metabolic fluxes that follow thermodynamically and kinetically defined computational principles.
Collapse
|
27
|
Hu LY, Li D, Sun K, Cao W, Fu WQ, Zhang W, Dai CC. Mutualistic fungus Phomopsis liquidambari increases root aerenchyma formation through auxin-mediated ethylene accumulation in rice (Oryza sativa L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:367-376. [PMID: 30055345 DOI: 10.1016/j.plaphy.2018.07.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/17/2018] [Indexed: 06/08/2023]
Abstract
The fungal endophyte Phomopsis liquidambari can improve nitrification rates and alter the abundance and composition of ammonia-oxidizers in the soil rhizosphere of rice. Aerenchyma is related to oxygen transport efficiency and contributes to the enhanced rhizospheric nitrification under flooding conditions. However, whether and how P. liquidambari affects aerenchyma formation is largely unknown. We therefore conducted pot and hydroponic experiments to investigate the changes of aerenchyma area, ethylene and indole-3-acetic acid (IAA) levels in rice with or without P. liquidambari infection. Our results showed that the larger aerenchyma area in rice roots with P. liquidambari inoculation was associated with markedly up-regulated expression of genes related to aerenchyma formation. Meanwhile, P. liquidambari inoculation substantially elevated root porosity (POR) and radial oxygen loss (ROL), leading to the enhancement of oxidation-reduction potential (ORP) under pot condition. Besides, P. liquidambari significantly increased IAA and ethylene levels in rice by stimulating the expression of genes involved in auxin and ethylene biosyntheses. Furthermore, auxin that partly acting upstream of ethylene signalling played an essential role in P. liquidambari-promoted aerenchyma formation. These results verified the direct contribution of P. liquidambari in promoting aerenchyma formation via the accumulation of IAA and ethylene in rice roots, which provides a constructive suggestion for improving hypoxia tolerance through plant-endophyte interactions.
Collapse
Affiliation(s)
- Li-Yan Hu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Dan Li
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Kai Sun
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Wei Cao
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Wan-Qiu Fu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Wei Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China.
| |
Collapse
|
28
|
Sasidharan R, Hartman S, Liu Z, Martopawiro S, Sajeev N, van Veen H, Yeung E, Voesenek LACJ. Signal Dynamics and Interactions during Flooding Stress. PLANT PHYSIOLOGY 2018; 176:1106-1117. [PMID: 29097391 PMCID: PMC5813540 DOI: 10.1104/pp.17.01232] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/27/2017] [Indexed: 05/20/2023]
Abstract
Flooding is detrimental for nearly all higher plants, including crops. The compound stress elicited by slow gas exchange and low light levels under water is responsible for both a carbon and an energy crisis ultimately leading to plant death. The endogenous concentrations of four gaseous compounds, oxygen, carbon dioxide, ethylene, and nitric oxide, change during the submergence of plant organs in water. These gases play a pivotal role in signal transduction cascades, leading to adaptive processes such as metabolic adjustments and anatomical features. Of these gases, ethylene is seen as the most consistent, pervasive, and reliable signal of early flooding stress, most likely in tight interaction with the other gases. The production of reactive oxygen species (ROS) in plant cells during flooding and directly after subsidence, during which the plant is confronted with high light and oxygen levels, is characteristic for this abiotic stress. Low, well-controlled levels of ROS are essential for adaptive signaling pathways, in interaction with the other gaseous flooding signals. On the other hand, excessive uncontrolled bursts of ROS can be highly damaging for plants. Therefore, a fine-tuned balance is important, with a major role for ROS production and scavenging. Our understanding of the temporal dynamics of the four gases and ROS is basal, whereas it is likely that they form a signature readout of prevailing flooding conditions and subsequent adaptive responses.
Collapse
Affiliation(s)
- Rashmi Sasidharan
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Sjon Hartman
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Zeguang Liu
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Shanice Martopawiro
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Nikita Sajeev
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Hans van Veen
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Elaine Yeung
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Laurentius A C J Voesenek
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
29
|
Ma Z, Bykova NV, Igamberdiev AU. Cell signaling mechanisms and metabolic regulation of germination and dormancy in barley seeds. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.cj.2017.08.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
30
|
Kuruthukulangarakoola GT, Zhang J, Albert A, Winkler B, Lang H, Buegger F, Gaupels F, Heller W, Michalke B, Sarioglu H, Schnitzler JP, Hebelstrup KH, Durner J, Lindermayr C. Nitric oxide-fixation by non-symbiotic haemoglobin proteins in Arabidopsis thaliana under N-limited conditions. PLANT, CELL & ENVIRONMENT 2017; 40:36-50. [PMID: 27245884 DOI: 10.1111/pce.12773] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 05/03/2016] [Accepted: 05/24/2016] [Indexed: 05/18/2023]
Abstract
Nitric oxide (NO) is an important signalling molecule that is involved in many different physiological processes in plants. Here, we report about a NO-fixing mechanism in Arabidopsis, which allows the fixation of atmospheric NO into nitrogen metabolism. We fumigated Arabidopsis plants cultivated in soil or as hydroponic cultures during the whole growing period with up to 3 ppmv of NO gas. Transcriptomic, proteomic and metabolomic analyses were used to identify non-symbiotic haemoglobin proteins as key components of the NO-fixing process. Overexpressing non-symbiotic haemoglobin 1 or 2 genes resulted in fourfold higher nitrate levels in these plants compared with NO-treated wild-type. Correspondingly, rosettes size and weight, vegetative shoot thickness and seed yield were 25, 40, 30, and 50% higher, respectively, than in wild-type plants. Fumigation with 250 ppbv 15 NO confirmed the importance of non-symbiotic haemoglobin 1 and 2 for the NO-fixation pathway, and we calculated a daily uptake for non-symbiotic haemoglobin 2 overexpressing plants of 250 mg N/kg dry weight. This mechanism is probably important under conditions with limited N supply via the soil. Moreover, the plant-based NO uptake lowers the concentration of insanitary atmospheric NOx, and in this context, NO-fixation can be beneficial to air quality.
Collapse
Affiliation(s)
| | - Jiangli Zhang
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Germany
| | - Andreas Albert
- Research Unit Environmental Simulation, Helmholtz Zentrum München, Germany
| | - Barbro Winkler
- Research Unit Environmental Simulation, Helmholtz Zentrum München, Germany
| | - Hans Lang
- Research Unit Environmental Simulation, Helmholtz Zentrum München, Germany
| | - Franz Buegger
- Institute of Soil Ecology, Helmholtz Zentrum München, Germany
| | - Frank Gaupels
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Germany
| | - Werner Heller
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Germany
| | - Bernhard Michalke
- Research Unit Analytical Biogeochemistry, Helmholtz Zentrum München, Germany
| | - Hakan Sarioglu
- Research Unit Protein Sciences, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg/Munich, Germany
| | | | - Kim Henrik Hebelstrup
- Department of Molecular Biology and Genetics, Aarhus University, Forsøgsvej 1, DK-4200, Slagelse, Denmark
| | - Jörg Durner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Germany
- Chair of Biochemical Plant Pathology, Technische Universität München, 85354, Freising, Germany
| | | |
Collapse
|
31
|
Mira M, Hill RD, Stasolla C. Regulation of programmed cell death by phytoglobins. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5901-5908. [PMID: 27371712 DOI: 10.1093/jxb/erw259] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Programmed cell death (PCD) is a fundamental plant process in growth and development and in response to both biotic and abiotic stresses. Nitric oxide (NO) is a central component in determining whether a cell undergoes PCD, either as a direct elicitor of the response or as a factor in signal transduction from various hormones. Both NO and hormones that use NO as a signal transducer are mobile in the plant. Why do one set of cells die while adjacent cells remain alive, if this is the case? There is evidence to suggest that phytoglobins (Pgbs; previously termed non-symbiotic hemoglobins) may act as binary switches to determine plant cellular responses to perturbations. There are anywhere from one to five Pgb genes in plants that are expressed in response to growth and development and to stress. One of their main functions is to scavenge NO. This review will discuss how Pgb modulates cellular responses to auxin, cytokinin, and jasmonic acid during growth and development and in response to stress. The moderation in the production of reactive oxygen species (ROS) by Pgbs and the effects on PCD will also be discussed. An overall mechanism for Pgb involvement will be presented.
Collapse
Affiliation(s)
- Mohammed Mira
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
- Department of Botany, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Robert D Hill
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
32
|
Shumaev KB, Kosmachevskaya OV, Chumikina LV, Topunov AF. Dinitrosyl Iron Complexes and other Physiological Metabolites of Nitric Oxide: Multifarious Role in Plants. Nat Prod Commun 2016. [DOI: 10.1177/1934578x1601100839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This review considers dinitrosyl iron complexes (DNICs) and some other metabolites of nitric oxide (NO) in plants. Nitric oxide is vital for all living organisms, although its role in plants has been studied insufficiently compared with that in animals. We presume that the spectrum of its functions in plants is even wider than in animals. The main NO metabolites could be S-nitrosothiols, DNICs and peroxynitrite. Of particular interest are pro- and antioxidant properties of these compounds. DNICs function and their potential biosynthetic role in plants are practically unknown and brought to the limelight in this review. Since the process of NO biosynthesis in plants is still under discussion, we also specially examine this problem.
Collapse
Affiliation(s)
- Konstantin B. Shumaev
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russian Federation
| | - Olga V. Kosmachevskaya
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russian Federation
| | - Ludmila V. Chumikina
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russian Federation
| | - Alexey F. Topunov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russian Federation
| |
Collapse
|
33
|
Pu X, Lv X, Tan T, Fu F, Qin G, Lin H. Roles of mitochondrial energy dissipation systems in plant development and acclimation to stress. ANNALS OF BOTANY 2015; 116:583-600. [PMID: 25987710 PMCID: PMC4577992 DOI: 10.1093/aob/mcv063] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/16/2015] [Accepted: 03/27/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND Plants are sessile organisms that have the ability to integrate external cues into metabolic and developmental signals. The cues initiate specific signal cascades that can enhance the tolerance of plants to stress, and these mechanisms are crucial to the survival and fitness of plants. The adaption of plants to stresses is a complex process that involves decoding stress inputs as energy-deficiency signals. The process functions through vast metabolic and/or transcriptional reprogramming to re-establish the cellular energy balance. Members of the mitochondrial energy dissipation pathway (MEDP), alternative oxidases (AOXs) and uncoupling proteins (UCPs), act as energy mediators and might play crucial roles in the adaption of plants to stresses. However, their roles in plant growth and development have been relatively less explored. SCOPE This review summarizes current knowledge about the role of members of the MEDP in plant development as well as recent advances in identifying molecular components that regulate the expression of AOXs and UCPs. Highlighted in particular is a comparative analysis of the expression, regulation and stress responses between AOXs and UCPs when plants are exposed to stresses, and a possible signal cross-talk that orchestrates the MEDP, reactive oxygen species (ROS), calcium signalling and hormone signalling. CONCLUSIONS The MEDP might act as a cellular energy/metabolic mediator that integrates ROS signalling, energy signalling and hormone signalling with plant development and stress accumulation. However, the regulation of MEDP members is complex and occurs at transcriptional, translational, post-translational and metabolic levels. How this regulation is linked to actual fluxes through the AOX/UCP in vivo remains elusive.
Collapse
Affiliation(s)
- Xiaojun Pu
- Ministry of Education Key Laboratory for Bio-Resource & Eco-Environment and Plant Physiology Laboratory, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Xin Lv
- Ministry of Education Key Laboratory for Bio-Resource & Eco-Environment and Plant Physiology Laboratory, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Tinghong Tan
- Ministry of Education Key Laboratory for Bio-Resource & Eco-Environment and Plant Physiology Laboratory, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Faqiong Fu
- Ministry of Education Key Laboratory for Bio-Resource & Eco-Environment and Plant Physiology Laboratory, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Gongwei Qin
- Ministry of Education Key Laboratory for Bio-Resource & Eco-Environment and Plant Physiology Laboratory, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Honghui Lin
- Ministry of Education Key Laboratory for Bio-Resource & Eco-Environment and Plant Physiology Laboratory, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
34
|
Abstract
Hemoglobins (Hbs) corresponding to non-symbiotic (nsHb) and truncated (tHb) Hbs have been identified in rice (
Oryza). This review discusses the major findings from the current studies on rice Hbs. At the molecular level, a family of the
nshb genes, consisting of
hb1,
hb2,
hb3,
hb4 and
hb5, and a single copy of the
thb gene exist in
Oryza sativa var. indica and
O.
sativa var. japonica, Hb transcripts coexist in rice organs and Hb polypeptides exist in rice embryonic and vegetative organs and in the cytoplasm of differentiating cells. At the structural level, the crystal structure of rice Hb1 has been elucidated, and the structures of the other rice Hbs have been modeled. Kinetic analysis indicated that rice Hb1 and 2, and possibly rice Hb3 and 4, exhibit a very high affinity for O
2, whereas rice Hb5 and tHb possibly exhibit a low to moderate affinity for O
2. Based on the accumulated information on the properties of rice Hbs and data from the analysis of other plant and non-plant Hbs, it is likely that Hbs play a variety of roles in rice organs, including O
2-transport, O
2-sensing, NO-scavenging and redox-signaling. From an evolutionary perspective, an outline for the evolution of rice Hbs is available. Rice
nshb and
thb genes vertically evolved through different lineages, rice nsHbs evolved into clade I and clade II lineages and rice
nshbs and
thbs evolved under the effect of neutral selection. This review also reveals lacunae in our ability to completely understand rice Hbs. Primary lacunae are the absence of experimental information about the precise functions of rice Hbs, the properties of modeled rice Hbs and the
cis-elements and
trans-acting factors that regulate the expression of rice
hb genes, and the partial understanding of the evolution of rice Hbs.
Collapse
Affiliation(s)
- Raúl Arredondo-Peter
- Laboratorio de Biofísica y Biología Molecular, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, 62210, Mexico
| | - Jose F Moran
- Instituto de Agrobiotecnología, IdAB-CSIC-Universidad Pública de Navarra-Gobierno de Navarra, Navarre, E-31192, Spain
| | - Gautam Sarath
- Grain, Forage and Bioenergy Research Unit, USDA-ARS, University of Nebraska-Lincoln, Lincoln, NE, 68583-0937, USA
| |
Collapse
|
35
|
Oh M, Komatsu S. Characterization of proteins in soybean roots under flooding and drought stresses. J Proteomics 2015; 114:161-81. [PMID: 25464361 DOI: 10.1016/j.jprot.2014.11.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 10/28/2014] [Accepted: 11/07/2014] [Indexed: 10/24/2022]
Abstract
Flooding and drought affect soybean growth because soybean is a stress-sensitive crop. In 2-day-old plants exposed to 2-day flooding or drought, the fresh weight of roots was markedly suppressed, although the root morphology clearly differed between two conditions. To understand the response mechanisms of soybean to flooding and drought stresses, a gel-free proteomic technique was used. A total of 97 and 48 proteins were significantly changed in response to flooding and drought stresses, respectively. Proteins involved in protein synthesis were decreased by flooding stress and increased by drought. Glycolysis-related proteins were increased in roots by both flooding and drought stresses. Fermentation, stress, and cell wall-related proteins were increased in response to flooding stress, whereas cell organization and redox-related proteins were increased under drought stress. Among the identified proteins, three S-adenosylmethionine synthetases were commonly decreased and increased in response to flooding and drought stresses, respectively. The mRNA expression levels of S-adenosylmethionine synthetase genes displayed a similar tendency to the changes in protein abundance. These results suggest that S-adenosylmethionine synthetase is involved in the regulation of stress response because it was changed in response to flooding and drought stresses. BIOLOGICAL SIGNIFICANCE This study reported on the response mechanisms of soybean to flooding and drought stresses using the gel-free proteomic technique. Proteins involved in protein synthesis were decreased by flooding stress and increased by drought. Glycolysis-related proteins were increased in roots by both flooding and drought stresses. Fermentation, stress, and cell wall-related proteins were increased in response to flooding stress, whereas cell organization and redox-related proteins were increased under drought stress. Among the identified proteins, three S-adenosylmethionine synthetases were commonly decreased and increased in response to flooding and drought stresses, respectively. The mRNA expression levels of S-adenosylmethionine synthetase genes displayed a similar tendency to the changes in protein abundance. These results suggest that S-adenosylmethionine synthetase is involved in the regulation of stress response because it was changed in response to flooding and drought stresses.
Collapse
Affiliation(s)
- MyeongWon Oh
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| | - Setsuko Komatsu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan.
| |
Collapse
|
36
|
Mitochondrial Signaling in Plants Under Hypoxia: Use of Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS). SIGNALING AND COMMUNICATION IN PLANTS 2015. [DOI: 10.1007/978-3-319-10079-1_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
37
|
Bykova NV, Hu J, Ma Z, Igamberdiev AU. The Role of Reactive Oxygen and Nitrogen Species in Bioenergetics, Metabolism, and Signaling During Seed Germination. SIGNALING AND COMMUNICATION IN PLANTS 2015. [DOI: 10.1007/978-3-319-10079-1_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
38
|
Kreuzwieser J, Rennenberg H. Molecular and physiological responses of trees to waterlogging stress. PLANT, CELL & ENVIRONMENT 2014; 37:2245-59. [PMID: 24611781 DOI: 10.1111/pce.12310] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 02/09/2014] [Accepted: 02/12/2014] [Indexed: 05/23/2023]
Abstract
One major effect of global climate change will be altered precipitation patterns in many regions of the world. This will cause a higher probability of long-term waterlogging in winter/spring and flash floods in summer because of extreme rainfall events. Particularly, trees not adapted at their natural site to such waterlogging stress can be impaired. Despite the enormous economic, ecological and social importance of forest ecosystems, the effect of waterlogging on trees is far less understood than the effect on many crops or the model plant Arabidopsis. There is only a handful of studies available investigating the transcriptome and metabolome of waterlogged trees. Main physiological responses of trees to waterlogging include the stimulation of fermentative pathways and an accelerated glycolytic flux. Many energy-consuming, anabolic processes are slowed down to overcome the energy crisis mediated by waterlogging. A crucial feature of waterlogging tolerance is the steady supply of glycolysis with carbohydrates, particularly in the roots; stress-sensitive trees fail to maintain sufficient carbohydrate availability resulting in the dieback of the stressed tissues. The present review summarizes physiological and molecular features of waterlogging tolerance of trees; the focus is on carbon metabolism in both, leaves and roots of trees.
Collapse
Affiliation(s)
- Jürgen Kreuzwieser
- Institute of Forest Science, Chair of Tree Physiology, Albert-Ludwigs-Universität Freiburg, Freiburg, 79110, Germany
| | | |
Collapse
|
39
|
Affiliation(s)
- Luisa B. Maia
- REQUIMTE/CQFB, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - José J. G. Moura
- REQUIMTE/CQFB, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
40
|
Hebelstrup KH, Shah JK, Simpson C, Schjoerring JK, Mandon J, Cristescu SM, Harren FJM, Christiansen MW, Mur LAJ, Igamberdiev AU. An assessment of the biotechnological use of hemoglobin modulation in cereals. PHYSIOLOGIA PLANTARUM 2014; 150:593-603. [PMID: 24118006 DOI: 10.1111/ppl.12115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 09/30/2013] [Accepted: 10/01/2013] [Indexed: 05/11/2023]
Abstract
Non-symbiotic hemoglobin (nsHb) genes are ubiquitous in plants, but their biological functions have mostly been studied in model plant species rather than in crops. nsHb influences cell signaling and metabolism by modulating the levels of nitric oxide (NO). Class 1 nsHb is upregulated under hypoxia and is involved in various biotic and abiotic stress responses. Ectopic overexpression of nsHb in Arabidopsis thaliana accelerates development, whilst targeted overexpression in seeds can increase seed yield. Such observations suggest that manipulating nsHb could be a valid biotechnological target. We studied the effects of overexpression of class 1 nsHb in the monocotyledonous crop plant barley (Hordeum vulgare cv. Golden Promise). nsHb was shown to be involved in NO metabolism in barley, as ectopic overexpression reduced the amount of NO released during hypoxia. Further, as in Arabidopsis, nsHb overexpression compromised basal resistance toward pathogens in barley. However, unlike Arabidopsis, nsHb ectopic overexpression delayed growth and development in barley, and seed specific overexpression reduced seed yield. Thus, nsHb overexpression in barley does not seem to be an efficient strategy for increasing yield in cereal crops. These findings highlight the necessity for using actual crop plants rather than laboratory model plants when assessing the effects of biotechnological approaches to crop improvement.
Collapse
Affiliation(s)
- Kim H Hebelstrup
- Department of Molecular Biology and Genetics, Aarhus University, Flakkebjerg, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
New Insights into the Metabolic and Molecular Mechanism of Plant Response to Anaerobiosis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 311:231-64. [DOI: 10.1016/b978-0-12-800179-0.00005-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
42
|
Oxidative Stress Components Explored in Anoxic and Hypoxic Global Gene Expression Data. LOW-OXYGEN STRESS IN PLANTS 2014. [DOI: 10.1007/978-3-7091-1254-0_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
43
|
Hebelstrup KH, Shah JK, Igamberdiev AU. The role of nitric oxide and hemoglobin in plant development and morphogenesis. PHYSIOLOGIA PLANTARUM 2013; 148:457-69. [PMID: 23600702 DOI: 10.1111/ppl.12062] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 04/05/2013] [Accepted: 04/09/2013] [Indexed: 05/03/2023]
Abstract
Plant morphogenesis is regulated endogenously through phytohormones and other chemical signals, which may act either locally or distant from their place of synthesis. Nitric oxide (NO) is formed by a number of controlled processes in plant cells. It is a central signaling molecule with several effects on control of plant growth and development, such as shoot and root architecture. All plants are able to express non-symbiotic hemoglobins at low concentration. Their function is generally not related to oxygen transport or storage; instead they effectively oxidize NO to NO(3)(-) and thereby control the local cellular NO concentration. In this review, we analyze available data on the role of NO and plant hemoglobins in morphogenetic processes in plants. The comparison of the data suggests that hemoglobin gene expression in plants modulates development and morphogenesis of organs, such as roots and shoots, through the localized control of NO, and that hemoglobin gene expression should always be considered a modulating factor in processes controlled directly or indirectly by NO in plants.
Collapse
Affiliation(s)
- Kim H Hebelstrup
- Department of Molecular Biology and Genetics, Aarhus University, DK-4200, Slagelse, Denmark.
| | | | | |
Collapse
|
44
|
Lamers LPM, Govers LL, Janssen ICJM, Geurts JJM, Van der Welle MEW, Van Katwijk MM, Van der Heide T, Roelofs JGM, Smolders AJP. Sulfide as a soil phytotoxin-a review. FRONTIERS IN PLANT SCIENCE 2013; 4:268. [PMID: 23885259 PMCID: PMC3717504 DOI: 10.3389/fpls.2013.00268] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 07/02/2013] [Indexed: 05/17/2023]
Abstract
In wetland soils and underwater sediments of marine, brackish and freshwater systems, the strong phytotoxin sulfide may accumulate as a result of microbial reduction of sulfate during anaerobiosis, its level depending on prevailing edaphic conditions. In this review, we compare an extensive body of literature on phytotoxic effects of this reduced sulfur compound in different ecosystem types, and review the effects of sulfide at multiple ecosystem levels: the ecophysiological functioning of individual plants, plant-microbe associations, and community effects including competition and facilitation interactions. Recent publications on multi-species interactions in the rhizosphere show even more complex mechanisms explaining sulfide resistance. It is concluded that sulfide is a potent phytotoxin, profoundly affecting plant fitness and ecosystem functioning in the full range of wetland types including coastal systems, and at several levels. Traditional toxicity testing including hydroponic approaches generally neglect rhizospheric effects, which makes it difficult to extrapolate results to real ecosystem processes. To explain the differential effects of sulfide at the different organizational levels, profound knowledge about the biogeochemical, plant physiological and ecological rhizosphere processes is vital. This information is even more important, as anthropogenic inputs of sulfur into freshwater ecosystems and organic loads into freshwater and marine systems are still much higher than natural levels, and are steeply increasing in Asia. In addition, higher temperatures as a result of global climate change may lead to higher sulfide production rates in shallow waters.
Collapse
Affiliation(s)
- Leon P. M. Lamers
- Department of Aquatic Ecology and Environmental Biology, Institute for Water and Wetland Research, Radboud University NijmegenNijmegen, Netherlands
| | - Laura L. Govers
- Department of Environmental Science, Institute for Water and Wetland Research, Radboud University NijmegenNijmegen, Netherlands
| | | | | | | | - Marieke M. Van Katwijk
- Department of Environmental Science, Institute for Water and Wetland Research, Radboud University NijmegenNijmegen, Netherlands
| | - Tjisse Van der Heide
- Department of Aquatic Ecology and Environmental Biology, Institute for Water and Wetland Research, Radboud University NijmegenNijmegen, Netherlands
- Community and Conservation Ecology Group, Centre for Ecological and Evolutionary Studies, University of GroningenGroningen, Netherlands
| | - Jan G. M. Roelofs
- Department of Aquatic Ecology and Environmental Biology, Institute for Water and Wetland Research, Radboud University NijmegenNijmegen, Netherlands
| | - Alfons J. P. Smolders
- Department of Aquatic Ecology and Environmental Biology, Institute for Water and Wetland Research, Radboud University NijmegenNijmegen, Netherlands
- B-WARE Research Centre, Radboud University NijmegenNijmegen, Netherlands
| |
Collapse
|
45
|
Oliveira HC, Freschi L, Sodek L. Nitrogen metabolism and translocation in soybean plants subjected to root oxygen deficiency. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 66:141-9. [PMID: 23500717 DOI: 10.1016/j.plaphy.2013.02.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 02/19/2013] [Indexed: 05/20/2023]
Abstract
Although nitrate (NO3(-)) but not ammonium (NH4(+)) improves plant tolerance to oxygen deficiency, the mechanisms involved in this phenomenon are just beginning to be understood. By using gas chromatography-mass spectrometry, we investigated the metabolic fate of (15)NO3(-) and (15)NH4(+) in soybean plants (Glycine max L. Merril cv. IAC-23) subjected to root hypoxia. This stress reduced the uptake of (15)NO3(-) and (15)NH4(+) from the medium and decreased the overall assimilation of these nitrogen sources into amino acids in roots and leaves. Root (15)NO3(-) assimilation was more affected by hypoxia than that of (15)NH4(+), resulting in enhanced nitrite and nitric oxide release in the solution. However, (15)NO3(-) was translocated in substantial amounts by xylem sap and considerable (15)NO3(-) assimilation into amino acids also occurred in the leaves, both under hypoxia and normoxia. By contrast, (15)NH4(+) assimilation occurred predominantly in roots, resulting in accumulation of mainly (15)N-alanine in this tissue during hypoxia. Analysis of lactate levels suggested higher fermentation in roots from NH4(+)-treated plants compared to the NO3(-) treatment. Thus, foliar NO3(-) assimilation may be relevant to plant tolerance to oxygen deficiency, since it would economize energy expenditure by hypoxic roots. Additionally, the involvement of nitric oxide synthesis from nitrite in the beneficial effect of NO3(-) is discussed.
Collapse
Affiliation(s)
- Halley C Oliveira
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil.
| | | | | |
Collapse
|
46
|
Oliveira HC, Salgado I, Sodek L. Nitrite decreases ethanol production by intact soybean roots submitted to oxygen deficiency: a role for mitochondrial nitric oxide synthesis? PLANT SIGNALING & BEHAVIOR 2013; 8:e23578. [PMID: 23333978 PMCID: PMC9583730 DOI: 10.4161/psb.23578] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Nitrate increases the tolerance of plants to hypoxia, although the mechanisms related to this beneficial effect are still unclear. Recently, we observed that cultivation of soybean plants with nitrate reduced hypoxic accumulation of fermentation end products by isolated root segments compared with the ammonium treatment. Interestingly, the same decrease in the intensity of fermentation was detected when ammonium-grown root segments were incubated with nitrite, suggesting the involvement of this anion in the nitrate-mediated modulation of fermentative metabolism. Here we extended these experiments to intact plants subjected to root hypoxia and observed similar effects of nitrate and nitrite in reducing root ethanol production, which indicates the physiological relevance of the in vitro results. In both experimental systems, nitrite stimulated nitric oxide emission by ammonium-grown roots to levels similar to that of nitrate-cultivated ones. The involvement of mitochondrial reduction of nitrite to nitric oxide in the root response to hypoxia is suggested.
Collapse
Affiliation(s)
- Halley C. Oliveira
- Department of Plant Biology; Institute of Biology; University of Campinas-UNICAMP; Campinas, Brazil
| | - Ione Salgado
- Department of Plant Biology; Institute of Biology; University of Campinas-UNICAMP; Campinas, Brazil
| | - Ladaslav Sodek
- Department of Plant Biology; Institute of Biology; University of Campinas-UNICAMP; Campinas, Brazil
| |
Collapse
|
47
|
Matilla AJ, Rodríguez-Gacio MDC. Non-symbiotic hemoglobins in the life of seeds. PHYTOCHEMISTRY 2013; 87:7-15. [PMID: 23286879 DOI: 10.1016/j.phytochem.2012.11.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 11/13/2012] [Accepted: 11/21/2012] [Indexed: 06/01/2023]
Abstract
Non-symbiotic hemoglobins (nsHbs), ancestors of symbiotic-Hbs, are hexacoordinated dimeric proteins, for which the crystal structure is well described. According to the extent of hexacoordination, nsHbs are classified as belonging to class-1 (nsHbs1) or class-2 (nsHbs2). The nsHbs1 show weak hexacoordination, moderate rates of O(2)-binding, very small rates of O(2) dissociation, and a remarkably high affinity for O(2), all suggesting a function involving O(2) scavenging. In contrast, the nsHbs2 exhibit strong hexacoordination, low rates of O(2)-binding and moderately low O(2) dissociation and affinity, suggesting a sensing role for sustained low (μM) levels of O(2). The existence of spatial and specific expression of nsHbs1 suggests that nsHbs play tissue-specific rather than housekeeping functions. The permeation of O(2) into seeds is usually prevented during the desiccation phase and early imbibition, generating an internal hypoxic environment that leads to ATP limitation. During evolution, the seed has acquired mechanisms to prevent or reduce this hypoxic stress. The nsHbs1/NO cycle appear to be involved in modulating the redox state in the seed and in maintaining an active metabolism. Under O(2) deficit, NADH and NO are synthesized in the seed and nsHbs1 scavenges O(2), which is used to transform NO into NO(3)(-) with concomitant formation of Fe(3+)-nsHbs1. Expression of nsHbs1 is not detectable in dry viable seeds. However, in the seeds cross-talk occurs between nsHbs1 and NO during germination. This review considers the current status of our knowledge of seed nsHbs and considers key issues of further work to better understand their role in seed physiology.
Collapse
Affiliation(s)
- Angel J Matilla
- Department of Plant Physiology, University of Santiago de Compostela, 15782 Santiago de Compostela, A Coruña, Spain.
| | | |
Collapse
|
48
|
|
49
|
Lamers LPM, Govers LL, Janssen ICJM, Geurts JJM, Van der Welle MEW, Van Katwijk MM, Van der Heide T, Roelofs JGM, Smolders AJP. Sulfide as a soil phytotoxin-a review. FRONTIERS IN PLANT SCIENCE 2013. [PMID: 23885259 DOI: 10.3389/fpls2013.00268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In wetland soils and underwater sediments of marine, brackish and freshwater systems, the strong phytotoxin sulfide may accumulate as a result of microbial reduction of sulfate during anaerobiosis, its level depending on prevailing edaphic conditions. In this review, we compare an extensive body of literature on phytotoxic effects of this reduced sulfur compound in different ecosystem types, and review the effects of sulfide at multiple ecosystem levels: the ecophysiological functioning of individual plants, plant-microbe associations, and community effects including competition and facilitation interactions. Recent publications on multi-species interactions in the rhizosphere show even more complex mechanisms explaining sulfide resistance. It is concluded that sulfide is a potent phytotoxin, profoundly affecting plant fitness and ecosystem functioning in the full range of wetland types including coastal systems, and at several levels. Traditional toxicity testing including hydroponic approaches generally neglect rhizospheric effects, which makes it difficult to extrapolate results to real ecosystem processes. To explain the differential effects of sulfide at the different organizational levels, profound knowledge about the biogeochemical, plant physiological and ecological rhizosphere processes is vital. This information is even more important, as anthropogenic inputs of sulfur into freshwater ecosystems and organic loads into freshwater and marine systems are still much higher than natural levels, and are steeply increasing in Asia. In addition, higher temperatures as a result of global climate change may lead to higher sulfide production rates in shallow waters.
Collapse
Affiliation(s)
- Leon P M Lamers
- Department of Aquatic Ecology and Environmental Biology, Institute for Water and Wetland Research, Radboud University Nijmegen Nijmegen, Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Oliveira HC, Salgado I, Sodek L. Involvement of nitrite in the nitrate-mediated modulation of fermentative metabolism and nitric oxide production of soybean roots during hypoxia. PLANTA 2013; 237:255-64. [PMID: 23011570 DOI: 10.1007/s00425-012-1773-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 09/14/2012] [Indexed: 05/25/2023]
Abstract
It is widely accepted that nitrate but not ammonium improves tolerance of plants to hypoxic stress, although the mechanisms related to this beneficial effect are not well understood. Recently, nitrite derived from nitrate reduction has emerged as the major substrate for the synthesis of nitric oxide (NO), an important signaling molecule in plants. Here, we analyzed the effect of different nitrogen sources (nitrate, nitrite and ammonium) on the metabolic response and NO production of soybean roots under hypoxia. Organic acid analysis showed that root segments isolated from nitrate-cultivated plants presented a lower accumulation of lactate and succinate in response to oxygen deficiency in relation to those from ammonium-cultivated plants. The more pronounced lactate accumulation by root segments of ammonium-grown plants was followed by a higher ethanol release in the medium, evidencing a more intense fermentation under oxygen deficiency than those from nitrate-grown plants. As expected, root segments from nitrate-cultivated plants produced higher amounts of nitrite and NO during hypoxia compared to ammonium cultivation. Exogenous nitrite supplied during hypoxia reduced both ethanol and lactate production and stimulated cyanide-sensitive NO emission by root segments from ammonium-cultivated plants, independent of nitrate. On the other hand, treatments with a NO donor or a NO scavenger did not affect the intensity of fermentation of soybean roots. Overall, these results indicate that nitrite participates in the nitrate-mediated modulation of the fermentative metabolism of soybean roots during oxygen deficiency. The involvement of mitochondrial reduction of nitrite to NO in this mechanism is discussed.
Collapse
Affiliation(s)
- Halley C Oliveira
- Department of Plant Biology, Institute of Biology, University of Campinas-UNICAMP, CP 6109 Campinas, SP 13083-970, Brazil.
| | | | | |
Collapse
|