1
|
Boscq S, Theodorou I, Milstein R, Le Bail A, Chenivesse S, Billoud B, Charrier B. Longitudinal growth of the Saccharina kelp embryo depends on actin filaments that control the formation of a corset-like structure composed of alginate. Sci Rep 2025; 15:1178. [PMID: 39774153 PMCID: PMC11706932 DOI: 10.1038/s41598-024-83814-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
The initiation of embryogenesis in the kelp Saccharina latissima is accompanied by significant anisotropy in cell shape. Using monoclonal antibodies, we show that this anisotropy coincides with a spatio-temporal pattern of accumulation of alginates in the cell wall of the zygote and embryo. Alginates rich in guluronates as well as sulphated fucans show a homogeneous distribution in the embryo throughout Phase I of embryogenesis, but mannuronate alginates accumulate mainly on the sides of the zygote and embryo, disappearing as the embryo enlarges at the start of Phase II. This pattern depends on the presence of cortical actin filaments. In contrast, within the embryo lamina, the alginate composition of the walls newly formed by cytokinesis is not affected by the depolymerisation of actin filaments. Thus, in addition to revealing the existence of a mannuronate-rich alginate corset-like structure that may restrict the enlargement of the zygote and the embryo, thereby promoting the formation of the apico-basal growth axis, we demonstrate stage- and cytoskeleton-dependent differences in cell wall deposition in Saccharina embryos.
Collapse
Affiliation(s)
- Samuel Boscq
- Morphogenesis of Macro Algae, UMR8227, CNRS - Sorbonne University, Station Biologique de Roscoff, Place Georges Teissier, Roscoff, 29680, France
| | - Ioannis Theodorou
- Morphogenesis of Macro Algae, UMR8227, CNRS - Sorbonne University, Station Biologique de Roscoff, Place Georges Teissier, Roscoff, 29680, France
- Plant Sciences Department, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Roman Milstein
- Morphogenesis of Macro Algae, UMR8227, CNRS - Sorbonne University, Station Biologique de Roscoff, Place Georges Teissier, Roscoff, 29680, France
| | - Aude Le Bail
- Morphogenesis of Macro Algae, UMR8227, CNRS - Sorbonne University, Station Biologique de Roscoff, Place Georges Teissier, Roscoff, 29680, France
| | - Sabine Chenivesse
- Morphogenesis of Macro Algae, UMR8227, CNRS - Sorbonne University, Station Biologique de Roscoff, Place Georges Teissier, Roscoff, 29680, France
| | - Bernard Billoud
- Morphogenesis of Macro Algae, UMR8227, CNRS - Sorbonne University, Station Biologique de Roscoff, Place Georges Teissier, Roscoff, 29680, France
- Morphogenesis of Brown Algae, Institut de Génomique fonctionnelle de Lyon (IGFL), UMR5242, ENS-Lyon, CNRS, INRAE, UCBL, 32-34 avenue Tony Garnier, Lyon, 69007, France
| | - Bénédicte Charrier
- Morphogenesis of Macro Algae, UMR8227, CNRS - Sorbonne University, Station Biologique de Roscoff, Place Georges Teissier, Roscoff, 29680, France.
- Morphogenesis of Brown Algae, Institut de Génomique fonctionnelle de Lyon (IGFL), UMR5242, ENS-Lyon, CNRS, INRAE, UCBL, 32-34 avenue Tony Garnier, Lyon, 69007, France.
| |
Collapse
|
2
|
Panteris E, Pappas D. F-Actin Organization and Epidermal Cell Morphogenesis in the Brown Alga Sargassum vulgare. Int J Mol Sci 2023; 24:13234. [PMID: 37686039 PMCID: PMC10488008 DOI: 10.3390/ijms241713234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/13/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The ordinary epidermal cells of various vascular plants are characterized by wavy anticlinal wall contours. This feature has not yet been reported in multicellular algal species. Here, we found that, in the leaf-like blades of the brown alga Sargassum vulgare, epidermal cells exhibit prominent waviness. Initially, the small meristodermal cells exhibit straight anticlinal contour, which during their growth becomes wavy, in a pattern highly reminiscent of that found in land plants. Waviness is restricted close to the external periclinal wall, while at inner levels the anticlinal walls become thick and even. The mechanism behind this shape relies on cortical F-actin organization. Bundles of actin filaments are organized, extending under the external periclinal wall and connecting its junctions with the anticlinal walls, constituting an interconnected network. These bundles define the sites of local thickening deposition at the anticlinal/periclinal wall junctions. These thickenings are interconnected by cellulose microfibril extensions under the external periclinal wall. Apart from the wavy anticlinal contour, outward protrusions also arise on the external periclinal wall, thus the whole epidermis exhibits a quilted appearance. Apart from highlighting a new role for F-actin in cell shaping, the comparison of this morphogenetic mechanism to that of vascular plants reveals a case of evolutionary convergence among photosynthetic organisms.
Collapse
Affiliation(s)
- Emmanuel Panteris
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | | |
Collapse
|
3
|
Takatsuka H, Higaki T, Ito M. At the Nexus between Cytoskeleton and Vacuole: How Plant Cytoskeletons Govern the Dynamics of Large Vacuoles. Int J Mol Sci 2023; 24:4143. [PMID: 36835552 PMCID: PMC9967756 DOI: 10.3390/ijms24044143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Large vacuoles are a predominant cell organelle throughout the plant body. They maximally account for over 90% of cell volume and generate turgor pressure that acts as a driving force of cell growth, which is essential for plant development. The plant vacuole also acts as a reservoir for sequestering waste products and apoptotic enzymes, thereby enabling plants to rapidly respond to fluctuating environments. Vacuoles undergo dynamic transformation through repeated enlargement, fusion, fragmentation, invagination, and constriction, eventually resulting in the typical 3-dimensional complex structure in each cell type. Previous studies have indicated that such dynamic transformations of plant vacuoles are governed by the plant cytoskeletons, which consist of F-actin and microtubules. However, the molecular mechanism of cytoskeleton-mediated vacuolar modifications remains largely unclear. Here we first review the behavior of cytoskeletons and vacuoles during plant development and in response to environmental stresses, and then introduce candidates that potentially play pivotal roles in the vacuole-cytoskeleton nexus. Finally, we discuss factors hampering the advances in this research field and their possible solutions using the currently available cutting-edge technologies.
Collapse
Affiliation(s)
- Hirotomo Takatsuka
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Takumi Higaki
- Faculty of Advanced Science and Technology, Kumamoto University, Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Masaki Ito
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
4
|
Bogaert KA, Zakka EE, Coelho SM, De Clerck O. Polarization of brown algal zygotes. Semin Cell Dev Biol 2023; 134:90-102. [PMID: 35317961 DOI: 10.1016/j.semcdb.2022.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 11/29/2022]
Abstract
Brown algae are a group of multicellular, heterokont algae that have convergently evolved developmental complexity that rivals that of embryophytes, animals or fungi. Early in development, brown algal zygotes establish a basal and an apical pole, which will become respectively the basal system (holdfast) and the apical system (thallus) of the adult alga. Brown algae are interesting models for understanding the establishment of cell polarity in a broad evolutionary context, because they exhibit a large diversity of life cycles, reproductive strategies and, importantly, their zygotes are produced in large quantities free of parental tissue, with symmetry breaking and asymmetric division taking place in a highly synchronous manner. This review describes the current knowledge about the establishment of the apical-basal axis in the model brown seaweeds Ectocarpus, Dictyota, Fucus and Saccharina, highlighting the advantages and specific interests of each system. Ectocarpus is a genetic model system that allows access to the molecular basis of early development and life-cycle control over apical-basal polarity. The oogamous brown alga Fucus, together with emerging comparative models Dictyota and Saccharina, emphasize the diversity of strategies of symmetry breaking in determining a cell polarity vector in brown algae. A comparison with symmetry-breaking mechanisms in land plants, animals and fungi, reveals that the one-step zygote polarisation of Fucus compares well to Saccharomyces budding and Arabidopsis stomata development, while the two-phased symmetry breaking in the Dictyota zygote compares to Schizosaccharomyces fission, the Caenorhabditis anterior-posterior zygote polarisation and Arabidopsis prolate pollen polarisation. The apical-basal patterning in Saccharina zygotes on the other hand, may be seen as analogous to that of land plants. Overall, brown algae have the potential to bring exciting new information on how a single cell gives rise to an entire complex body plan.
Collapse
Affiliation(s)
- Kenny A Bogaert
- Phycology Research Group, Department of Biology, Ghent University, Krijgslaan 281 S8, B-9000 Ghent, Belgium.
| | - Eliane E Zakka
- Phycology Research Group, Department of Biology, Ghent University, Krijgslaan 281 S8, B-9000 Ghent, Belgium
| | - Susana M Coelho
- Department of Algal Development and Evolution, Max Planck Institute for Biology, Tübingen, Germany
| | - Olivier De Clerck
- Phycology Research Group, Department of Biology, Ghent University, Krijgslaan 281 S8, B-9000 Ghent, Belgium
| |
Collapse
|
5
|
Coudert Y, Harris S, Charrier B. Design Principles of Branching Morphogenesis in Filamentous Organisms. Curr Biol 2019; 29:R1149-R1162. [PMID: 31689405 DOI: 10.1016/j.cub.2019.09.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The radiation of life on Earth was accompanied by the diversification of multicellular body plans in the eukaryotic kingdoms Animalia, Plantae, Fungi and Chromista. Branching forms are ubiquitous in nature and evolved repeatedly in the above lineages. The developmental and genetic basis of branch formation is well studied in the three-dimensional shoot and root systems of land plants, and in animal organs such as the lung, kidney, mammary gland, vasculature, etc. Notably, recent thought-provoking studies combining experimental analysis and computational modeling of branching patterns in whole animal organs have identified global patterning rules and proposed unifying principles of branching morphogenesis. Filamentous branching forms represent one of the simplest expressions of the multicellular body plan and constitute a key step in the evolution of morphological complexity. Similarities between simple and complex branching forms distantly related in evolution are compelling, raising the question whether shared mechanisms underlie their development. Here, we focus on filamentous branching organisms that represent major study models from three distinct eukaryotic kingdoms, including the moss Physcomitrella patens (Plantae), the brown alga Ectocarpus sp. (Chromista), and the ascomycetes Neurospora crassa and Aspergillus nidulans (Fungi), and bring to light developmental regulatory mechanisms and design principles common to these lineages. Throughout the review we explore how the regulatory mechanisms of branching morphogenesis identified in other models, and in particular animal organs, may inform our thinking on filamentous systems and thereby advance our understanding of the diverse strategies deployed across the eukaryotic tree of life to evolve similar forms.
Collapse
Affiliation(s)
- Yoan Coudert
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, INRIA, Lyon 69007, France.
| | - Steven Harris
- University of Manitoba, Department of Biological Sciences, Winnipeg, MB, Canada; Center for Plant Science Innovation and Department of Plant Pathology, University of Nebraska, Lincoln, NE, USA
| | - Bénédicte Charrier
- CNRS, Sorbonne Université, Laboratoire de Biologie Intégrative des Modèles Marins LBI2M, Station Biologique de Roscoff, Roscoff 29680, France
| |
Collapse
|
6
|
Joukov V, De Nicolo A. The Centrosome and the Primary Cilium: The Yin and Yang of a Hybrid Organelle. Cells 2019; 8:E701. [PMID: 31295970 PMCID: PMC6678760 DOI: 10.3390/cells8070701] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/04/2019] [Accepted: 07/06/2019] [Indexed: 12/27/2022] Open
Abstract
Centrosomes and primary cilia are usually considered as distinct organelles, although both are assembled with the same evolutionary conserved, microtubule-based templates, the centrioles. Centrosomes serve as major microtubule- and actin cytoskeleton-organizing centers and are involved in a variety of intracellular processes, whereas primary cilia receive and transduce environmental signals to elicit cellular and organismal responses. Understanding the functional relationship between centrosomes and primary cilia is important because defects in both structures have been implicated in various diseases, including cancer. Here, we discuss evidence that the animal centrosome evolved, with the transition to complex multicellularity, as a hybrid organelle comprised of the two distinct, but intertwined, structural-functional modules: the centriole/primary cilium module and the pericentriolar material/centrosome module. The evolution of the former module may have been caused by the expanding cellular diversification and intercommunication, whereas that of the latter module may have been driven by the increasing complexity of mitosis and the requirement for maintaining cell polarity, individuation, and adhesion. Through its unique ability to serve both as a plasma membrane-associated primary cilium organizer and a juxtanuclear microtubule-organizing center, the animal centrosome has become an ideal integrator of extracellular and intracellular signals with the cytoskeleton and a switch between the non-cell autonomous and the cell-autonomous signaling modes. In light of this hypothesis, we discuss centrosome dynamics during cell proliferation, migration, and differentiation and propose a model of centrosome-driven microtubule assembly in mitotic and interphase cells. In addition, we outline the evolutionary benefits of the animal centrosome and highlight the hierarchy and modularity of the centrosome biogenesis networks.
Collapse
Affiliation(s)
- Vladimir Joukov
- N.N. Petrov National Medical Research Center of Oncology, 197758 Saint-Petersburg, Russia.
| | | |
Collapse
|
7
|
Filipin EP, Pereira DT, Ouriques LC, Bouzon ZL, Simioni C. Participation of actin filaments, myosin and phosphatidylinositol 3-kinase in the formation and polarisation of tetraspore germ tube of Gelidium floridanum (Rhodophyta, Florideophyceae). PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:352-360. [PMID: 30472775 DOI: 10.1111/plb.12946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/21/2018] [Indexed: 06/09/2023]
Abstract
This study aimed to examine the evidence of direct interaction among actin, myosin and phosphatidylinositol 3-kinase (PI3K) in the polarisation and formation of the tetraspore germ tube of Gelidium floridanum. After release, tetraspores were exposed to cytochalasin B, latrunculin B, LY294002 and BDM for a period of 6 h. In control samples, formation of the germ tube occurred after the experimental period, with cellulose formation and elongated chloroplasts moving through the tube region in the presence of F-actin. In the presence of cytochalasin B, an inhibitor of F-actin, latrunculin B, an inhibitor of G-actin, and BDM, a myosin inhibitor, tetraspores showed no formation of the germ tube or cellulose. Spherical-shaped chloroplasts were observed in the central region with a few F-actin filaments in the periphery of the cytoplasm. Tetraspores treated with LY294002, a PI3K inhibitor, showed no formation of the tube at the highest concentrations. Polarisation of cytoplasmic contents did not occur, only cellulose formation. It was concluded that F-actin directs the cell wall components and contributes to the maintenance of chloroplast shape and elongation during germ tube formation. PI3K plays a fundamental role in signalling for the asymmetric polarisation of F-actin. Thus, F-actin regulates the polarisation and germination processes of tetraspores of G. floridanum.
Collapse
Affiliation(s)
- E P Filipin
- Plant Cell Biology Laboratory, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - D T Pereira
- Plant Cell Biology Laboratory, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - L C Ouriques
- Central Laboratory of Electron Microscopy, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Z L Bouzon
- Central Laboratory of Electron Microscopy, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - C Simioni
- Postdoctoral Research of Postgraduate Program in Cell Biology and Development, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
8
|
Rabillé H, Billoud B, Tesson B, Le Panse S, Rolland É, Charrier B. The brown algal mode of tip growth: Keeping stress under control. PLoS Biol 2019; 17:e2005258. [PMID: 30640903 PMCID: PMC6347293 DOI: 10.1371/journal.pbio.2005258] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 01/25/2019] [Accepted: 12/20/2018] [Indexed: 01/09/2023] Open
Abstract
Tip growth has been studied in pollen tubes, root hairs, and fungal and oomycete hyphae and is the most widely distributed unidirectional growth process on the planet. It ensures spatial colonization, nutrient predation, fertilization, and symbiosis with growth speeds of up to 800 μm h-1. Although turgor-driven growth is intuitively conceivable, a closer examination of the physical processes at work in tip growth raises a paradox: growth occurs where biophysical forces are low, because of the increase in curvature in the tip. All tip-growing cells studied so far rely on the modulation of cell wall extensibility via the polarized excretion of cell wall-loosening compounds at the tip. Here, we used a series of quantitative measurements at the cellular level and a biophysical simulation approach to show that the brown alga Ectocarpus has an original tip-growth mechanism. In this alga, the establishment of a steep gradient in cell wall thickness can compensate for the variation in tip curvature, thereby modulating wall stress within the tip cell. Bootstrap analyses support the robustness of the process, and experiments with fluorescence recovery after photobleaching (FRAP) confirmed the active vesicle trafficking in the shanks of the apical cell, as inferred from the model. In response to auxin, biophysical measurements change in agreement with the model. Although we cannot strictly exclude the involvement of a gradient in mechanical properties in Ectocarpus morphogenesis, the viscoplastic model of cell wall mechanics strongly suggests that brown algae have evolved an alternative strategy of tip growth. This strategy is largely based on the control of cell wall thickness rather than fluctuations in cell wall mechanical properties.
Collapse
Affiliation(s)
- Hervé Rabillé
- CNRS, Sorbonne Université, Morphogenesis of Macro Algae, UMR8227, Station Biologique, Roscoff, France
| | - Bernard Billoud
- CNRS, Sorbonne Université, Morphogenesis of Macro Algae, UMR8227, Station Biologique, Roscoff, France
| | - Benoit Tesson
- SCRIPPS Institution of Oceanography, University of California, San Diego, San Diego, California, United States of America
| | - Sophie Le Panse
- MerImage platform, FR2424, CNRS, Sorbonne Université, Station Biologique, Roscoff, France
| | - Élodie Rolland
- CNRS, Sorbonne Université, Morphogenesis of Macro Algae, UMR8227, Station Biologique, Roscoff, France
| | - Bénédicte Charrier
- CNRS, Sorbonne Université, Morphogenesis of Macro Algae, UMR8227, Station Biologique, Roscoff, France
| |
Collapse
|
9
|
Panteris E, Achlati T, Daras G, Rigas S. Stomatal Complex Development and F-Actin Organization in Maize Leaf Epidermis Depend on Cellulose Synthesis. Molecules 2018; 23:molecules23061365. [PMID: 29882773 PMCID: PMC6099634 DOI: 10.3390/molecules23061365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/03/2018] [Accepted: 06/04/2018] [Indexed: 11/17/2022] Open
Abstract
Cellulose microfibrils reinforce the cell wall for morphogenesis in plants. Herein, we provide evidence on a series of defects regarding stomatal complex development and F-actin organization in Zea mays leaf epidermis, due to inhibition of cellulose synthesis. Formative cell divisions of stomatal complex ontogenesis were delayed or inhibited, resulting in lack of subsidiary cells and frequently in unicellular stomata, with an atypical stomatal pore. Guard cells failed to acquire a dumbbell shape, becoming rounded, while subsidiary cells, whenever present, exhibited aberrant morphogenesis. F-actin organization was also affected, since the stomatal complex-specific arrays were scarcely observed. At late developmental stages, the overall F-actin network was diminished in all epidermal cells, although thick actin bundles persisted. Taken together, stomatal complex development strongly depends on cell wall mechanical properties. Moreover, F-actin organization exhibits a tight relationship with the cell wall.
Collapse
Affiliation(s)
- Emmanuel Panteris
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Theonymphi Achlati
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Gerasimos Daras
- Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece.
| | - Stamatis Rigas
- Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece.
| |
Collapse
|
10
|
The role of the cytoskeleton in biomineralisation in haptophyte algae. Sci Rep 2017; 7:15409. [PMID: 29133928 PMCID: PMC5684398 DOI: 10.1038/s41598-017-15562-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 10/19/2017] [Indexed: 12/30/2022] Open
Abstract
The production of calcium carbonate by coccolithophores (haptophytes) contributes significantly to global biogeochemical cycling. The recent identification of a silicifying haptophyte, Prymnesium neolepis, has provided new insight into the evolution of biomineralisation in this lineage. However, the cellular mechanisms of biomineralisation in both calcifying and silicifying haptophytes remain poorly understood. To look for commonalities between these two biomineralisation systems in haptophytes, we have determined the role of actin and tubulin in the formation of intracellular biomineralised scales in the coccolithophore, Coccolithus braarudii and in P. neolepis. We find that disruption of the actin network interferes with secretion of the biomineralised elements in both C. braarudii and P. neolepis. In contrast, disruption of the microtubule network does not prevent secretion of the silica scales in P. neolepis but results in production of abnormally small silica scales and also results in the increased formation of malformed coccoliths in C. braarudii. We conclude that the cytoskeleton plays a crucial role in biomineralisation in both silicifying and calcifying haptophytes. There are some important similarities in the contribution of the cytoskeleton to these different forms of biomineralisation, suggesting that common cellular mechanisms may have been recruited to perform similar roles in both lineages.
Collapse
|
11
|
Jia F, Ben Amar M, Billoud B, Charrier B. Morphoelasticity in the development of brown alga Ectocarpus siliculosus: from cell rounding to branching. J R Soc Interface 2017; 14:20160596. [PMID: 28228537 PMCID: PMC5332559 DOI: 10.1098/rsif.2016.0596] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 01/27/2017] [Indexed: 11/29/2022] Open
Abstract
A biomechanical model is proposed for the growth of the brown alga Ectocarpus siliculosus Featuring ramified uniseriate filaments, this alga has two modes of growth: apical growth and intercalary growth with branching. Apical growth occurs upon the mitosis of a young cell at one extremity and leads to a new tip cell followed by a cylindrical cell, whereas branching mainly occurs when a cylindrical cell becomes rounded and swells, forming a spherical cell. Given the continuous interplay between cell growth and swelling, a poroelastic model combining osmotic pressure and volumetric growth is considered for the whole cell, cytoplasm and cell wall. The model recovers the morphogenetic transformations of mature cells: transformation of a cylindrical shape into spherical shape with a volumetric increase, and then lateral branching. Our simulations show that the poro-elastic model, including the Mooney-Rivlin approach for hyper-elastic materials, can correctly reproduce the observations. In particular, branching appears to be a plasticity effect due to the high level of tension created after the increase in volume of mature cells.
Collapse
Affiliation(s)
- Fei Jia
- School of Manufacturing Science and Engineering, Southwest University of Science and Technology, Sichuan 621010, People's Republic of China
| | - Martine Ben Amar
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, PSL Research University, Sorbonne Universités UPMC Univ Paris 06, CNRS, 24 rue Lhomond, 75005 Paris, France
- Institut Universitaire de Cancérologie, Faculté de médecine, Université Pierre et Marie Curie-Paris 6, 91 Bd de l'Hôpital, 75013 Paris, France
| | - Bernard Billoud
- UMR8227 CNRS-UPMC, Station Biologique, Place George Teissier, 29680 Roscoff, France
| | - Bénédicte Charrier
- UMR8227 CNRS-UPMC, Station Biologique, Place George Teissier, 29680 Roscoff, France
| |
Collapse
|
12
|
Azimzadeh J. Exploring the evolutionary history of centrosomes. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0453. [PMID: 25047607 DOI: 10.1098/rstb.2013.0453] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The centrosome is the main organizer of the microtubule cytoskeleton in animals, higher fungi and several other eukaryotic lineages. Centrosomes are usually located at the centre of cell in tight association with the nuclear envelope and duplicate at each cell cycle. Despite a great structural diversity between the different types of centrosomes, they are functionally equivalent and share at least some of their molecular components. In this paper, we explore the evolutionary origin of the different centrosomes, in an attempt to understand whether they are derived from an ancestral centrosome or evolved independently from the motile apparatus of distinct flagellated ancestors. We then discuss the evolution of centrosome structure and function within the animal lineage.
Collapse
Affiliation(s)
- Juliette Azimzadeh
- CNRS/Université Paris-Diderot, Institut Jacques Monod, 15 rue Hélène Brion, 75209 Paris cedex 13, France
| |
Collapse
|
13
|
Rover T, Simioni C, Hable W, Bouzon ZL. Ultrastructural and structural characterization of zygotes and embryos during development in Sargassum cymosum (Phaeophyceae, Fucales). PROTOPLASMA 2015; 252:505-18. [PMID: 25252885 DOI: 10.1007/s00709-014-0696-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 08/26/2014] [Indexed: 06/03/2023]
Abstract
This study investigates the pattern and performance of cellular structures during the early development of zygotes and embryos of Sargassum cymosum. The early development S. cymosum germlings has already been characterized and compared with the pattern of development established for all fucoid algae, in which the zygote remains attached to the receptacle by mucilage during the establishment of polarity and early cell division. As in the algae Fucus and Silvetia, the first division is transverse across the longer axis of the zygote of S. cymosum. However, the cell that will give rise to the rhizoids is not determined in the first division; rather, the formation of this cell occurs with the second division, forming a small cell in the embryo shaded site. Stabilizing polarity during the process of forming a multicellular embryo occurs rapidly. During development, significant cytoplasmic alterations take place. Initially, the cytoplasm shows large clusters of phenolic compounds located in specific parts, but later, in the course of development, these compounds are dispersed in the cytoplasm, although a significant amount remains confined to the nucleus. Moreover, to produce more zygotes and higher growth rates for the germlings, the best conditions found for the species S. cymosum were 22 and 26 °C, respectively.
Collapse
Affiliation(s)
- Ticiane Rover
- Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina (UFSC), Trindade, 88040-900, Florianópolis, Santa Catarina, Brazil,
| | | | | | | |
Collapse
|
14
|
Doty KF, Betzelberger AM, Kocot KM, Cook ME. Immunofluorescence localization of the tubulin cytoskeleton during cell division and cell growth in members of the Coleochaetales (Streptophyta). JOURNAL OF PHYCOLOGY 2014; 50:624-39. [PMID: 26988447 DOI: 10.1111/jpy.12194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 04/09/2014] [Indexed: 05/24/2023]
Abstract
Study of charophycean green algae, including the Coleochaetales, may shed light on the evolutionary history of characters they share with their land plant relatives. We examined the tubulin cytoskeleton during mitosis, cytokinesis, and growth in members of the Coleochaetales with diverse morphologies to determine if phragmoplasts occurred throughout this order and to identify microtubular patterns associated with cell growth. Species representing three subgroups of Coleochaete and its sister genus Chaetosphaeridium were studied. Cytokinesis involving a phragmoplast was found in the four taxa examined. Differential interference contrast microscopy of living cells confirmed that polar cytokinesis like that described in the model flowering plant Arabidopsis occurred in all species when the forming cell plate traversed a vacuole. Calcofluor labeling of cell walls demonstrated directed growth from particular cell regions of all taxa. Electron microscopy confirmed directed growth in the unusual growth pattern of Chaetosphaeridium. All four species exhibited unordered microtubule patterns associated with diffuse growth in early cell expansion. In subsequent elongating cells, Coleochaete irregularis Pringsheim and Chaetosphaeridium globosum (Nordstedt) Klebahn exhibited tubulin cytoskeleton arrays corresponding to growth patterns associated with tip growth in plants, fungi, and other charophycean algae. Hoop-shaped microtubules frequently associated with diffuse growth of elongating cells in plants were not observed in any of these species. Presence of phragmoplasts in the diverse species studied supports the hypothesis that cytokinesis involving a phragmoplast originated in a common ancestor of the Coleochaetales, and possibly in a common ancestor of Charales, Coleochaetales, Zygnematales, and plants.
Collapse
Affiliation(s)
- Karen F Doty
- School of Biological Sciences, Illinois State University, Campus Box 4120, Normal, Illinois, 61790-4120, USA
| | - Amy M Betzelberger
- School of Biological Sciences, Illinois State University, Campus Box 4120, Normal, Illinois, 61790-4120, USA
| | - Kevin M Kocot
- School of Biological Sciences, Illinois State University, Campus Box 4120, Normal, Illinois, 61790-4120, USA
| | - Martha E Cook
- School of Biological Sciences, Illinois State University, Campus Box 4120, Normal, Illinois, 61790-4120, USA
| |
Collapse
|
15
|
Tsirigoti A, Küpper FC, Gachon CMM, Katsaros C. Cytoskeleton organisation during the infection of three brown algal species, Ectocarpus siliculosus, Ectocarpus crouaniorum and Pylaiella littoralis, by the intracellular marine oomycete Eurychasma dicksonii. PLANT BIOLOGY (STUTTGART, GERMANY) 2014; 16:272-81. [PMID: 23692049 DOI: 10.1111/plb.12041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 03/20/2013] [Indexed: 05/25/2023]
Abstract
Oomycete diseases in seaweeds are probably widespread and of significant ecological and economic impact, but overall still poorly understood. This study investigates the organisation of the cytoskeleton during infection of three brown algal species, Pylaiella littoralis, Ectocarpus siliculosus, and Ectocarpus crouaniorum, by the basal marine oomycete Eurychasma dicksonii. Immunofluorescence staining of tubulin revealed how the development of this intracellular biotrophic pathogen impacts on microtubule (MT) organisation of its algal host. The host MT cytoskeleton remains normal and organised by the centrosome until very late stages of the infection. Additionally, the organisation of the parasite's cytoskeleton was examined. During mitosis of the E. dicksonii nucleus the MT focal point (microtubule organisation centre, MTOC, putative centrosome) duplicates and each daughter MTOC migrates to opposite poles of the nucleus. This similarity in MT organisation between the host and pathogen reflects the relatively close phylogenetic relationship between oomycetes and brown algae. Moreover, actin labelling with rhodamine-phalloidin in E. dicksonii revealed typical images of actin dots connected by fine actin filament bundles in the cortical cytoplasm. The functional and phylogenetic implications of our observations are discussed.
Collapse
Affiliation(s)
- A Tsirigoti
- Department of Botany, Faculty of Biology, University of Athens, Athens, Greece
| | - F C Küpper
- Oceanlab, University of Aberdeen, Newburgh, UK
| | - C M M Gachon
- Culture Collection of Algae and Protozoa (CCAP), Scottish Association for Marine Science (SAMS), Oban, UK
| | - C Katsaros
- Department of Botany, Faculty of Biology, University of Athens, Athens, Greece
| |
Collapse
|
16
|
Tesson B, Charrier B. Brown algal morphogenesis: atomic force microscopy as a tool to study the role of mechanical forces. FRONTIERS IN PLANT SCIENCE 2014; 5:471. [PMID: 25278949 PMCID: PMC4166355 DOI: 10.3389/fpls.2014.00471] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 08/28/2014] [Indexed: 05/17/2023]
Abstract
Over the last few years, a growing interest has been directed toward the use of macroalgae as a source of energy, food and molecules for the cosmetic and pharmaceutical industries. Besides this, macroalgal development remains poorly understood compared to other multicellular organisms. Brown algae (Phaeophyceae) form a monophyletic lineage of usually large multicellular algae which evolved independently from land plants. In their environment, they are subjected to strong mechanical forces (current, waves, and tide), in response to which they modify rapidly and reversibly their morphology. Because of their specific cellular features (cell wall composition, cytoskeleton organization), deciphering how they cope with these forces might help discover new control mechanisms of cell wall softening and cellulose synthesis. Despite the current scarcity in knowledge on brown algal cell wall dynamics and protein composition, we will illustrate, in the light of methods adapted to Ectocarpus siliculosus, to what extent atomic force microscopy can contribute to advance this field of investigation.
Collapse
Affiliation(s)
- Benoit Tesson
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San DiegoLa Jolla, CA, USA
- *Correspondence: Benoit Tesson, Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0202, USA e-mail:
| | - Bénédicte Charrier
- Centre National de la Recherche Scientifique-Unités Mixtes de Recherche 8227 Integrative Biology of Marine Models, Station Biologique de RoscoffRoscoff, France
- Sorbonne Universités, Université Pierre-et-Marie-Curie, Unités Mixtes de Recherche 8227 Integrative Biology of Marine ModelsRoscoff, France
- Bénédicte Charrier, CNRS, UMR 8227 Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff cedex, France e-mail:
| |
Collapse
|
17
|
Farnham G, Strittmatter M, Coelho S, Cock JM, Brownlee C. Gene silencing in Fucus embryos: developmental consequences of RNAi-mediated cytoskeletal disruption. JOURNAL OF PHYCOLOGY 2013; 49:819-29. [PMID: 27007308 DOI: 10.1111/jpy.12096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 06/02/2013] [Indexed: 05/10/2023]
Abstract
Brown algae (Phaeophyceae) are an important algal class that play a range of key ecological roles. They are often important components of rocky shore communities. A number of members of the Fucales and Ectocarpales have provided models for the study of multicellular evolution, reproductive biology and polarized development. Indeed the fucoid algae exhibit the unusual feature of inducible embryo polarization, allowing many classical studies of polarity induction. The potential of further studies of brown algae in these important areas has been increasingly hindered by the absence of tools for manipulation of gene expression that would facilitate further mechanistic analysis and gene function studies at a molecular level. The aim of this study was to establish a method that would allow the analysis of gene function through RNAi-mediated gene knockdown. We show that injection of double-stranded RNA (dsRNA) corresponding to an α-tubulin gene into Fucus serratus Linnaeus zygotes induces the loss of a large proportion of the microtubule cytoskeleton, leading to growth arrest and disruption of cell division. Injection of dsRNA targeting β-actin led to reduced rhizoid growth, enlarged cells and the failure to develop apical hair cells. The silencing effect on actin expression was maintained for 3 months. These results indicate that the Fucus embryo possesses a functional RNA interference system that can be exploited to investigate gene function during embryogenesis.
Collapse
Affiliation(s)
- Garry Farnham
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
| | - Martina Strittmatter
- The Marine Plants and Biomolecules Laboratory, CNRS, UMR 7139, UPMC University Paris 06, UMR 7139, Station Biologique de Roscoff, Place Georges Teissier, BP74, Roscoff Cedex, 29682, France
| | - Susana Coelho
- The Marine Plants and Biomolecules Laboratory, CNRS, UMR 7139, UPMC University Paris 06, UMR 7139, Station Biologique de Roscoff, Place Georges Teissier, BP74, Roscoff Cedex, 29682, France
| | - Jeremy Mark Cock
- The Marine Plants and Biomolecules Laboratory, CNRS, UMR 7139, UPMC University Paris 06, UMR 7139, Station Biologique de Roscoff, Place Georges Teissier, BP74, Roscoff Cedex, 29682, France
| | - Colin Brownlee
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
- School of Ocean and Earth Sciences, University of Southampton, National Oceanography Centre, Southampton, SO14 3ZH, UK
| |
Collapse
|
18
|
Green JJ, Cordero Cervantes D, Peters NT, Logan KO, Kropf DL. Dynamic microtubules and endomembrane cycling contribute to polarity establishment and early development of Ectocarpus mitospores. PROTOPLASMA 2013; 250:1035-43. [PMID: 23322087 DOI: 10.1007/s00709-012-0476-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 12/21/2012] [Indexed: 06/01/2023]
Abstract
Many zygotes and spores of brown algae are photosensitive and establish a developmental axis in accordance with directional light cues. Ectocarpus siliculosus is being advanced as a genetic and genomic model organism for investigating brown alga development, and this report investigates photopolarization of the growth axis of mitospores. When exposed to unidirectional light, mitospores photopolarized and established a growth axis such that germination was preferentially localized to the shaded hemisphere of the spore body. The roles of the microtubule cytoskeleton and endomembrane cycling in the photopolarization process were investigated using pharmacological agents. Disruption of microtubule dynamics progressively reduced the percentage of mitospores that photopolarized, while inhibition of vesicle secretion blocked photopolarization nearly completely. Chronic treatment with these pharmacological agents severely affected algal morphogenesis. Microtubules in mitospores and algal filaments were imaged by confocal microscopy. Mitospores contained a radial microtubule array, emanating from a centrosome associated with the nuclear envelope. At germination, the radial array gradually transitioned into a longitudinal array with microtubules extending into the emerging apex. At mitosis, spindles were aligned with the growth axis of cylindrical cells in the filament, and the division plane bisected the spindle axis. These studies demonstrate that dynamic membrane cycling and microtubule assembly play fundamental roles in photopolarization and provide a foundation for future genetic and genomic investigations of this important developmental process.
Collapse
Affiliation(s)
- Jeffrey J Green
- Department of Biology, University of Utah, Salt Lake City, UT, 84112, USA
| | | | | | | | | |
Collapse
|
19
|
Strittmatter M, Gachon CMM, Müller DG, Kleinteich J, Heesch S, Tsirigoti A, Katsaros C, Kostopoulou M, Küpper FC. Intracellular eukaryotic pathogens in brown macroalgae in the Eastern Mediterranean, including LSU rRNA data for the oomycete Eurychasma dicksonii . DISEASES OF AQUATIC ORGANISMS 2013; 104:1-11. [PMID: 23670075 DOI: 10.3354/dao02583] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
For the Mediterranean Sea, and indeed most of the world's oceans, the biodiversity and biogeography of eukaryotic pathogens infecting marine macroalgae remains poorly known, yet their ecological impact is probably significant. Based on 2 sampling campaigns on the Greek island of Lesvos in 2009 and 1 in northern Greece in 2012, this study provides first records of 3 intracellular eukaryotic pathogens infecting filamentous brown algae at these locations: Eurychasma dicksonii, Anisolpidium sphacellarum, and A. ectocarpii. Field and microscopic observations of the 3 pathogens are complemented by the first E. dicksonii large subunit ribosomal RNA (LSU rRNA) gene sequence analyses of isolates from Lesvos and other parts of the world. The latter highlights the monophyly of E. dicksonii worldwide and confirms the basal position of this pathogen within the oomycete lineage (Peronosporomycotina). The results of this study strongly support the notion that the geographic distribution of the relatively few eukaryotic seaweed pathogens is probably much larger than previously thought and that many of the world's marine bioregions remain seriously undersampled and understudied in this respect.
Collapse
Affiliation(s)
- Martina Strittmatter
- Scottish Association for Marine Science, Scottish Marine Institute, Oban, Argyll PA37 1QA, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Brown algae are an extremely interesting, but surprisingly poorly explored, group of organisms. They are one of only five eukaryotic lineages to have independently evolved complex multicellularity, which they express through a wide variety of morphologies ranging from uniseriate branched filaments to complex parenchymatous thalli with multiple cell types. Despite their very distinct evolutionary history, brown algae and land plants share a striking amount of developmental features. This has led to an interest in several aspects of brown algal development, including embryogenesis, polarity, cell cycle, asymmetric cell division and a putative role for plant hormone signalling. This review describes how investigations using brown algal models have helped to increase our understanding of the processes controlling early embryo development, in particular polarization, axis formation and asymmetric cell division. Additionally, the diversity of life cycles in the brown lineage and the emergence of Ectocarpus as a powerful model organism, are affording interesting insights on the molecular mechanisms underlying haploid-diploid life cycles. The use of these and other emerging brown algal models will undoubtedly add to our knowledge on the mechanisms that regulate development in multicellular photosynthetic organisms.
Collapse
Affiliation(s)
- Kenny A Bogaert
- Phycology Research Group, Department of Biology, Center for Molecular Phylogenetics and Evolution, Ghent University, Ghent, Belgium
| | | | | | | |
Collapse
|
21
|
Charrier B, Le Bail A, de Reviers B. Plant Proteus: brown algal morphological plasticity and underlying developmental mechanisms. TRENDS IN PLANT SCIENCE 2012; 17:468-77. [PMID: 22513108 DOI: 10.1016/j.tplants.2012.03.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 03/05/2012] [Accepted: 03/05/2012] [Indexed: 05/13/2023]
Abstract
Brown algae are multicellular photosynthetic marine organisms, ubiquitous on rocky intertidal shores at cold and temperate latitudes. Nevertheless, little is known about many aspects of their biology, particularly their development. Given their phylogenetic distance (1.6 billion years) from other plant organisms (land plants, and green and red algae), brown algae harbor a high, as-yet undiscovered diversity of biological mechanisms governing their development. They also show great morphological plasticity, responding to specific environmental constraints, such as sea currents, reduced light availability, grazer attacks, desiccation and UV exposure. Here, we show that brown algal morphogenesis is rather simple and flexible, and review recent genomic data on the cellular and molecular mechanisms known to date that can possibly account for this developmental strategy.
Collapse
Affiliation(s)
- Bénédicte Charrier
- Marine Biological Station, UMR7139 CNRS-UPMC 'Marine Plants and Biomolecules', Place Georges Teissier, 29682 Roscoff Cedex, France.
| | | | | |
Collapse
|
22
|
Yamagishi T, Kawai H. Cytoskeleton organization during the cell cycle in two stramenopile microalgae, Ochromonas danica (Chrysophyceae) and Heterosigma akashiwo (Raphidophyceae), with special reference to F-actin organization and its role in cytokinesis. Protist 2011; 163:686-700. [PMID: 22104586 DOI: 10.1016/j.protis.2011.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 09/11/2011] [Accepted: 09/20/2011] [Indexed: 11/25/2022]
Abstract
F-actin organization during the cell cycle was investigated in two stramenopile microalgae, Ochromonas danica (Chrysophyceae; UTEX LB1298) and Heterosigma akashiwo (Raphidophyceae; NIES-6) using FITC-phalloidin. In the interphase cell of O. danica, F-actin bundles were localized forming a network structure in the cortical region, which converged from the anterior region to the posterior, whereas in the interphase cell of H. akashiwo, F-actin bundles were observed forming a network structure in the cortical region without any polarity. In both O. danica and H. akashiwo, at the initial stage of mitosis the cortical F-actin disappeared, and then during cytokinesis assembly of an actin-based ring-like structure occurred in the cell cortex in the plane of cytokinesis. The ring-like structure initiated from aster-like structures was composed of F-actin in both O. danica and H. akashiwo. Different from animal cells, later stages of cytokinesis of O. danica seemed to be promoted by microtubules, although the early stages of cytokinesis progressed with a constriction of the ring-like structure, whereas cytokinesis of H. akashiwo was apparently completed by constriction of the cell mediated by the F-actin ring, as in animal cells.
Collapse
|
23
|
Yamagishi T, Kawai H. CORTICAL F-ACTIN REORGANIZATION AND A CONTRACTILE RING-LIKE STRUCTURE FOUND DURING THE CELL CYCLE IN THE RED CRYPTOMONAD, PYRENOMONAS HELGOLANDII(1). JOURNAL OF PHYCOLOGY 2011; 47:1121-1130. [PMID: 27020194 DOI: 10.1111/j.1529-8817.2011.01039.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cortical F-actin reorganization during the cell cycle was observed in Pyrenomonas helgolandii U. J. Santore (SAG 28.87) for the first time in Cryptophyta using fluorescein-isothiocyanate (FITC)-phalloidin staining. In interphase, a number of F-actin bundles were observed as straight lines running parallel to the long axis of the cell on the cell cortical region. They extended from an F-actin bundle that runs along the margin of the vestibulum. Although the F-actin bundles running parallel to the long axis of the cell disappeared during anaphase, they gradually reappeared in telophase. By contrast, the F-actin bundle along the vestibulum margin remained visible during cytokinesis and dynamically changed following the enlargement of the vestibulum, suggesting that F-actin was involved in the mechanism of vestibulum enlargement. F-actins were not found in the cytoplasmic and nucleoplasmic regions throughout the cell cycle. In addition, a contractile ring-like structure appeared at the cleavage furrow during cytokinesis. Treatment with cytochalasin B and latrunculin B significantly inhibited the formation of cleavage furrow, resulting in forming an abnormal cell with two nuclei, suggesting that cytokinesis in P. helgolandii is controlled by the contractile ring-like structure constituted of F-actin.
Collapse
Affiliation(s)
| | - Hiroshi Kawai
- Kobe University Research Center for Inland Seas, Kobe 657-8501, Japan
| |
Collapse
|
24
|
Le Bail A, Billoud B, Kowalczyk N, Kowalczyk M, Gicquel M, Le Panse S, Stewart S, Scornet D, Cock JM, Ljung K, Charrier B. Auxin metabolism and function in the multicellular brown alga Ectocarpus siliculosus. PLANT PHYSIOLOGY 2010; 153:128-44. [PMID: 20200071 PMCID: PMC2862433 DOI: 10.1104/pp.109.149708] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 02/17/2010] [Indexed: 05/20/2023]
Abstract
Ectocarpus siliculosus is a small brown alga that has recently been developed as a genetic model. Its thallus is filamentous, initially organized as a main primary filament composed of elongated cells and round cells, from which branches differentiate. Modeling of its early development suggests the involvement of very local positional information mediated by cell-cell recognition. However, this model also indicates that an additional mechanism is required to ensure proper organization of the branching pattern. In this paper, we show that auxin indole-3-acetic acid (IAA) is detectable in mature E. siliculosus organisms and that it is present mainly at the apices of the filaments in the early stages of development. An in silico survey of auxin biosynthesis, conjugation, response, and transport genes showed that mainly IAA biosynthesis genes from land plants have homologs in the E. siliculosus genome. In addition, application of exogenous auxins and 2,3,5-triiodobenzoic acid had different effects depending on the developmental stage of the organism, and we propose a model in which auxin is involved in the negative control of progression in the developmental program. Furthermore, we identified an auxin-inducible gene called EsGRP1 from a small-scale microarray experiment and showed that its expression in a series of morphogenetic mutants was positively correlated with both their elongated-to-round cell ratio and their progression in the developmental program. Altogether, these data suggest that IAA is used by the brown alga Ectocarpus to relay cell-cell positional information and induces a signaling pathway different from that known in land plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Bénédicte Charrier
- CNRS-Université Pierre et Marie Curie, UMR 7139 Marine Plants and Biomolecules (A.L.B., B.B., N.K., M.G., S.S., D.S., J.M.C., B.C.), and Platform of Cytology, CNRS FR2424 (S.L.P.), Station Biologique de Roscoff, 29682 Roscoff cedex, France; Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University for Agricultural Sciences, S–901 83 Umea, Sweden (M.K., K.L.)
| |
Collapse
|
25
|
Motomura T, Nagasato C, Kimura K. Cytoplasmic inheritance of organelles in brown algae. JOURNAL OF PLANT RESEARCH 2010; 123:185-92. [PMID: 20145971 DOI: 10.1007/s10265-010-0313-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2009] [Accepted: 01/11/2010] [Indexed: 05/28/2023]
Abstract
Brown algae, together with diatoms and chrysophytes, are a member of the heterokonts. They have either a characteristic life cycle of diplohaplontic alternation of gametophytic and sporophytic generations that are isomorphic or heteromorphic, or a diplontic life cycle. Isogamy, anisogamy and oogamy have been recognized as the mode of sexual reproduction. Brown algae are the characteristic group having elaborated multicellular organization within the heterokonts. In this study, cytoplasmic inheritance of chloroplasts, mitochondria and centrioles was examined, with special focus on sexual reproduction and subsequent zygote development. In oogamy, chloroplasts and mitochondria are inherited maternally. In isogamy, chloroplasts in sporophyte cells are inherited biparentally (maternal or paternal); however, mitochondria (or mitochondrial DNA) derived from the female gamete only remained during zygote development after fertilization. Centrioles in zygotes are definitely derived from the male gamete, irrespective of the sexual reproduction pattern. Female centrioles in zygotes are selectively broken down within 1-2 h after fertilization. The remaining male centrioles play a crucial role as a part of the centrosome for microtubule organization, mitosis, determination of the cytokinetic plane and cytokinesis, as well as for maintaining multicellularity and regular morphogenesis in brown algae.
Collapse
Affiliation(s)
- Taizo Motomura
- Muroran Marine Station, Field Science Centre for Northern Biosphere, Hokkaido University, Muroran 051-0003, Japan.
| | | | | |
Collapse
|
26
|
Peters NT, Kropf DL. Asymmetric microtubule arrays organize the endoplasmic reticulum during polarity establishment in the brown alga Silvetia compressa. Cytoskeleton (Hoboken) 2010; 67:102-11. [PMID: 20169534 DOI: 10.1002/cm.20427] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 12/16/2009] [Indexed: 11/09/2022]
Abstract
Polarity is a fundamental characteristic of most cell types, and is crucial to early development of the brown alga Silvetia compressa. In eukaryotes the cytoskeleton plays an important role in generating cellular asymmetries. While it is known that F-actin is required for polarization and growth in most tip-growing cells, the roles of microtubules are less clear. We examined the distribution and function of microtubules in S. compressa zygotes as they polarized and initiated tip growth. Microtubules formed asymmetric arrays oriented toward the rhizoid hemisphere early in the polarization process. These arrays were spatially coupled with polar adhesive deposition, a marker of the rhizoid pole. Reorientation of the light vector during polarization led to sequential redistribution of polar axis components, with the microtubules and the polar axis reorienting nearly simultaneously, followed by cell wall loosening and then deposition of new polar adhesive. These findings suggested that microtubules may organize and target endomembrane arrays. We therefore examined the distribution of the endoplasmic reticulum during polarization and found it colocalized with microtubules and became targeted toward the rhizoid pole as microtubule asymmetry was generated. Endoplasmic reticulum association with microtubules remained fully intact following pharmacological disruption of F-actin, whereas microtubule disruption led to aggregation of the endoplasmic reticulum around the nucleus. We propose that brown algae utilize microtubules for organization of the endoplasmic reticulum and migration of exocytotic components to the rhizoid cortex, and present a model for polarity establishment to account for these new findings.
Collapse
Affiliation(s)
- Nick T Peters
- Department of Biology, University of Utah, Salt Lake City, USA.
| | | |
Collapse
|
27
|
Shevchenko GV. Interaction of microtubules and microfilaments in the zone of distal elongation of Arabidopsis thaliana roots. CYTOL GENET+ 2009. [DOI: 10.3103/s009545270904001x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
De Martino A, Amato A, Bowler C. Mitosis in diatoms: rediscovering an old model for cell division. Bioessays 2009; 31:874-84. [DOI: 10.1002/bies.200900007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
29
|
Sekimoto S, Beakes GW, Gachon CMM, Müller DG, Küpper FC, Honda D. The development, ultrastructural cytology, and molecular phylogeny of the basal oomycete Eurychasma dicksonii, infecting the filamentous phaeophyte algae Ectocarpus siliculosus and Pylaiella littoralis. Protist 2008; 159:299-318. [PMID: 18243049 DOI: 10.1016/j.protis.2007.11.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Accepted: 11/17/2007] [Indexed: 11/25/2022]
Abstract
The morphological development, ultrastructural cytology, and molecular phylogeny of Eurychasma dicksonii, a holocarpic oomycete endoparasite of phaeophyte algae, were investigated in laboratory cultures. Infection of the host algae by E. dicksonii is initiated by an adhesorium-like infection apparatus. First non-walled, the parasite cell developed a cell wall and numerous large vacuoles once it had almost completely filled the infected host cell (foamy stage). Large-scale cytoplasmic changes led to the differentiation of a sporangium with peripheral primary cysts. Secondary zoospores appeared to be liberated from the primary cysts in the internal space left after the peripheral spores differentiated. These zoospores contained two phases of peripheral vesicles, most likely homologous to the dorsal encystment vesicles and K-bodies observed in other oomycetes. Following zoospore liberation the walls of the empty cyst were left behind, forming the so-called net sporangium, a distinctive morphological feature of this genus. The morphological and ultrastructural features of Eurychasma were discussed in relation to similarities with other oomycetes. Both SSU rRNA and COII trees pointed to a basal position of Eurychasma among the Oomycetes. The cox2 sequences also revealed that the UGA codon encoded tryptophan, constituting the first report of stop codon reassignment in an oomycete mitochondrion.
Collapse
Affiliation(s)
- Satoshi Sekimoto
- Graduate School of Natural Science, Konan University, Okamoto, Higashinada, Kobe, Hyogo 658-8501, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Kitade Y, Asamizu E, Fukuda S, Nakajima M, Ootsuka S, Endo H, Tabata S, Saga N. IDENTIFICATION OF GENES PREFERENTIALLY EXPRESSED DURING ASEXUAL SPORULATION IN PORPHYRA YEZOENSIS GAMETOPHYTES (BANGIALES, RHODOPHYTA)(1). JOURNAL OF PHYCOLOGY 2008; 44:113-123. [PMID: 27041048 DOI: 10.1111/j.1529-8817.2007.00456.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Asexual reproduction via archeospores in Porphyra yezoensis Ueda gametophytes is a very valuable character to nori farming; however, there is little information available on the molecular basis of the developmental process. To identify genes involved in the Porphyra asexual sporulation, we compared the gene expression profiles derived from four developmental stages of the life cycle (three from gametophytes; one from sporophytes) using cDNA macroarray, which includes 4,896 nonredundant expressed sequence tag (EST) groups. Candidate genes were screened by two different macroarray data analyses combined with reverse transcription-PCR (RT-PCR) analysis or Northern analysis. RT-PCR analysis revealed that nine genes (one: similarity to 5'-3' exoribonuclease; the other eight: no sequence similarity to known proteins) were expressed with a gametophyte (G)-specific manner, and two genes (named ASPO2608, ASPO1527) were expressed only in gametophytes that formed archeospores. The deduced amino acid sequences for the latter two genes are predicted to contain signal peptides for secretion at their N-termini. Northern analysis revealed that expression levels of Calvin cycle genes in the gametophytic stage that formed archeospores (G-A stage) were higher than those of the gametophyte blade with no archeospores (G-NA stage). In the macroarray analysis based on the rank data of G-preferentially expressed genes, which were detected in the previous P. yezoensis EST analysis, one gene encoding the cyclase associated protein (CAP) exhibited a change upwardly in the G-A stage >1,000 ranks to the G-NA stage. We propose that ASPO2608 and CAP may function in a signaling pathway of asexual sporulation.
Collapse
Affiliation(s)
- Yukihiro Kitade
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, JapanKazusa DNA Research Institute, Kisarazu, Chiba 292-0812, JapanGraduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, JapanKazusa DNA Research Institute, Kisarazu, Chiba 292-0812, JapanGraduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, JapanFaculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, JapanKazusa DNA Research Institute, Kisarazu, Chiba 292-0812, JapanFaculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan
| | - Erika Asamizu
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, JapanKazusa DNA Research Institute, Kisarazu, Chiba 292-0812, JapanGraduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, JapanKazusa DNA Research Institute, Kisarazu, Chiba 292-0812, JapanGraduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, JapanFaculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, JapanKazusa DNA Research Institute, Kisarazu, Chiba 292-0812, JapanFaculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan
| | - Satoru Fukuda
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, JapanKazusa DNA Research Institute, Kisarazu, Chiba 292-0812, JapanGraduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, JapanKazusa DNA Research Institute, Kisarazu, Chiba 292-0812, JapanGraduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, JapanFaculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, JapanKazusa DNA Research Institute, Kisarazu, Chiba 292-0812, JapanFaculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan
| | - Maiko Nakajima
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, JapanKazusa DNA Research Institute, Kisarazu, Chiba 292-0812, JapanGraduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, JapanKazusa DNA Research Institute, Kisarazu, Chiba 292-0812, JapanGraduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, JapanFaculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, JapanKazusa DNA Research Institute, Kisarazu, Chiba 292-0812, JapanFaculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan
| | - Shuuji Ootsuka
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, JapanKazusa DNA Research Institute, Kisarazu, Chiba 292-0812, JapanGraduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, JapanKazusa DNA Research Institute, Kisarazu, Chiba 292-0812, JapanGraduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, JapanFaculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, JapanKazusa DNA Research Institute, Kisarazu, Chiba 292-0812, JapanFaculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan
| | - Hirotoshi Endo
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, JapanKazusa DNA Research Institute, Kisarazu, Chiba 292-0812, JapanGraduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, JapanKazusa DNA Research Institute, Kisarazu, Chiba 292-0812, JapanGraduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, JapanFaculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, JapanKazusa DNA Research Institute, Kisarazu, Chiba 292-0812, JapanFaculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan
| | - Satoshi Tabata
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, JapanKazusa DNA Research Institute, Kisarazu, Chiba 292-0812, JapanGraduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, JapanKazusa DNA Research Institute, Kisarazu, Chiba 292-0812, JapanGraduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, JapanFaculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, JapanKazusa DNA Research Institute, Kisarazu, Chiba 292-0812, JapanFaculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan
| | - Naotsune Saga
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, JapanKazusa DNA Research Institute, Kisarazu, Chiba 292-0812, JapanGraduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, JapanKazusa DNA Research Institute, Kisarazu, Chiba 292-0812, JapanGraduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, JapanFaculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, JapanKazusa DNA Research Institute, Kisarazu, Chiba 292-0812, JapanFaculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan
| |
Collapse
|
31
|
Bannigan A, Scheible WR, Lukowitz W, Fagerstrom C, Wadsworth P, Somerville C, Baskin TI. A conserved role for kinesin-5 in plant mitosis. J Cell Sci 2007; 120:2819-27. [PMID: 17652157 DOI: 10.1242/jcs.009506] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mitotic spindle of vascular plants is assembled and maintained by processes that remain poorly explored at a molecular level. Here, we report that AtKRP125c, one of four kinesin-5 motor proteins in arabidopsis, decorates microtubules throughout the cell cycle and appears to function in both interphase and mitosis. In a temperature-sensitive mutant, interphase cortical microtubules are disorganized at the restrictive temperature and mitotic spindles are massively disrupted, consistent with a defect in the stabilization of anti-parallel microtubules in the spindle midzone, as previously described in kinesin-5 mutants from animals and yeast. AtKRP125c introduced into mammalian epithelial cells by transfection decorates microtubules throughout the cell cycle but is unable to complement the loss of the endogenous kinesin-5 motor (Eg5). These results are among the first reports of any motor with a major role in anastral spindle structure in plants and demonstrate that the conservation of kinesin-5 motor function throughout eukaryotes extends to vascular plants.
Collapse
Affiliation(s)
- Alex Bannigan
- Biology Department, University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Menand B, Calder G, Dolan L. Both chloronemal and caulonemal cells expand by tip growth in the moss Physcomitrella patens. JOURNAL OF EXPERIMENTAL BOTANY 2007; 58:1843-9. [PMID: 17404383 DOI: 10.1093/jxb/erm047] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Tip growth is a mode of cell expansion in which all growth is restricted to a small area that forms a tip in an elongating cell. In green plants, tip growth has been shown to occur in root hairs, pollen tubes, rhizoids, and caulonema. Each of these cell types has a longitudinally elongated shape, longitudinally oriented microtubules and actin microfilaments, and a characteristic cytoplasmic organization at the growing tip which is required for growth. Chloronema are elongated cylindrical shaped cells that form during the development of the moss protonema. Since there are no published reports on the precise mode of chloronema elongation and conflicting interpretations of its cytology, the mechanism of cell growth has remained unclear. To determine if chloronema elongate by tip or diffuse growth, time-lapse light microscopy was employed to follow the movement of fluorescent microspheres attached to the surface of growing cells. It is shown here that chloronemal cells elongate by a form of tip growth. However, the slower growth of chloronema compared with caulonema is probably the result of differences in cytological organization of the growing tip.
Collapse
Affiliation(s)
- Benoît Menand
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | | | | |
Collapse
|
33
|
Bisgrove SR, Kropf DL. Asymmetric Cell Divisions: Zygotes of Fucoid Algae as a Model System. PLANT CELL MONOGRAPHS 2007. [DOI: 10.1007/7089_2007_134] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|