1
|
Ghaleb W, Barre P, Teulat B, Ahmed LQ, Escobar-Gutiérrez AJ. Divergent Selection for Seed Ability to Germinate at Extreme Temperatures in Perennial Ryegrass ( Lolium perenne L.). FRONTIERS IN PLANT SCIENCE 2021; 12:794488. [PMID: 35173750 PMCID: PMC8841656 DOI: 10.3389/fpls.2021.794488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/14/2021] [Indexed: 05/03/2023]
Abstract
Various adaptive mechanisms can ensure that seedlings are established at the most favourable time and place. These mechanisms include seed dormancy i.e., incapacity to germinate in any environment without a specific environmental trigger and inhibition i.e., incapacity to germinate in an unfavourable environment (water availability, temperature: thermoinhibition and light). The objective of this research was to study in the temperate range for germination of forage and turf grass species perennial ryegrass, if the thermal requirements for germination are under genetic controlled and could be selectively bred. Two divergent selections of three cycles were realized on a natural population: one to select for the capacity to germinate at 10°C vs. the impossibility to germinate at 10°C, and one to select for the capacity to germinate at 32°C vs. the impossibility to germinate at 32°C. Seeds of all the lots obtained from the two divergent selections were then germinated at constant temperatures from 5 to 35°C to evaluate their germination ability. Concerning the positive selection, the first cycle of positive selection at 10°C was highly efficient with a very strong increase in the germination percentage. However, afterward no selection effect was observed during the next two cycles of positive selection. By contrast, the positive selection at 32°C was efficient during all cycles with a linear increase of the percentage of germination at 32°C. Concerning the negative selection, we observed only a large positive effect of the first cycle of selection at 10°C. These findings demonstrate that seed thermoinhibition at 10 and 32°C observed in a natural population of perennial ryegrass has a genetic basis and a single recessive gene seems to be involved at 10°C.
Collapse
Affiliation(s)
- Wagdi Ghaleb
- INRAE, URP3F, F-86600 Lusignan, France
- Biotechnology Research Center (BTRC), Tripoli, Libya
| | - Philippe Barre
- INRAE, URP3F, F-86600 Lusignan, France
- *Correspondence: Philippe Barre,
| | - Béatrice Teulat
- Univ. Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | | | | |
Collapse
|
2
|
Ben Hdech D, Aubry C, Alibert B, Beucher D, Prosperi JM, Limami AM, Teulat B. Exploring natural diversity of Medicago truncatula reveals physiotypes and loci associated with the response of seedling performance to nitrate supply. PHYSIOLOGIA PLANTARUM 2020; 170:227-247. [PMID: 32492180 DOI: 10.1111/ppl.13144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/14/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Seedling pre-emergence is a critical phase of development for successful crop establishment because of its susceptibility to environmental conditions. In a context of reduced use of inorganic fertilizers, the genetic bases of the response of seedlings to nitrate supply received little attention. This issue is important even in legumes where nitrate absorption starts early after germination, before nodule development. Natural variation of traits characterizing seedling growth in the absence or presence of nitrate was investigated in a core collection of 192 accessions of Medicago truncatula. Plasticity indexes to the absence of nitrate were calculated. The genetic determinism of the traits was dissected by genome-wide association study (GWAS). The absence of nitrate affected seed biomass mobilization and root/shoot length ratio. However, the large range of genetic variability revealed different seedling performances within natural diversity. A principal component analysis (PCA) carried out with plasticity indexes highlighted four physiotypes of accessions differing in relationships between seedling elongation and seed biomass partitioning traits in response to the absence of nitrate. Finally, GWAS revealed 45 associations with single or combined traits corresponding to coordinates of accessions on PCA, as well as two clusters of genes encoding sugar transporters and glutathione transferases surrounding loci associated with seedling elongation traits.
Collapse
Affiliation(s)
- Douae Ben Hdech
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 42, rue Georges Morel, Beaucouzé, 49071, France
| | - Catherine Aubry
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 42, rue Georges Morel, Beaucouzé, 49071, France
| | - Bénédicte Alibert
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 42, rue Georges Morel, Beaucouzé, 49071, France
| | - Daniel Beucher
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 42, rue Georges Morel, Beaucouzé, 49071, France
| | - Jean-Marie Prosperi
- AGAP, Université de Montpellier, CIRAD, INRAE, Institut Agro, 2, place P. Viala, Montpellier cedex 1, 34060, France
| | - Anis M Limami
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 42, rue Georges Morel, Beaucouzé, 49071, France
| | - Béatrice Teulat
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 42, rue Georges Morel, Beaucouzé, 49071, France
| |
Collapse
|
3
|
Lamichhane JR, Aubertot JN, Champolivier L, Debaeke P, Maury P. Combining Experimental and Modeling Approaches to Understand Genotype x Sowing Date x Environment Interaction Effects on Emergence Rates and Grain Yield of Soybean. FRONTIERS IN PLANT SCIENCE 2020; 11:558855. [PMID: 32983214 PMCID: PMC7493624 DOI: 10.3389/fpls.2020.558855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
Soybean emergence and yield may be affected by many factors. A better understanding of the cultivar x sowing date x environment interactions could shed light into the competitiveness of soybean with other crops, notably, to help manage major biotic and abiotic factors that limit soybean production. We conducted a 2-year field experiments to measure emergence dynamics and final rates of three soybean cultivars from different maturity groups, with early and conventional sowing dates and across three locations. We also measured germination parameter values of the three soybean cultivars from different maturity groups under controlled experiments to parametrize the SIMPLE crop emergence model. This allowed us to assess the prediction quality of the model for emergence rates and to perform simulations. Final emergence rates under field conditions ranged from 62% to 92% and from 51% to 94% for early and conventional sowing, respectively. The model finely predicted emergence courses and final rates (root mean square error of prediction (RMSEP), efficiency (EF), and mean deviation (MD) ranging between 2% to 18%, 0.46% to 0.99%, and -10% to 15%, respectively) across a wide range of the sowing conditions tested. Differences in the final emergence rates were found, not only among cultivars but also among locations for the same cultivar, although no clear trend or consistent ranking was found in this regard. Modeling suggests that seedling mortality rates were dependent on the soil type with up to 35% and 14% of mortality in the silty loam soil, due to a soil surface crust and soil aggregates, respectively. Non-germination was the least important cause of seedling mortality in all soil types (up to 3% of emergence losses), while no seedling mortality due to drought was observed. The average grain yield ranged from 3.1 to 4.0 t ha-1, and it was significantly affected by the irrigation regime (p < 0.001) and year (p < 0.001) but not by locations, sowing date or cultivars. We conclude that early sowing is unlikely to affect soybean emergence in South-West of France and therefore may represent an important agronomic lever to escape summer drought that markedly limit soybean yield in this region.
Collapse
Affiliation(s)
| | | | - Luc Champolivier
- Terres Inovia, Institut Technique des Oléagineux, des Protéagineux et du Chanvre, Castanet-Tolosan, France
| | - Philippe Debaeke
- INRAE, Université Fédérale de Toulouse, Castanet-Tolosan, France
| | - Pierre Maury
- Université Fédérale de Toulouse, INRAE, INP-ENSAT Toulouse, Castanet-Tolosan, France
| |
Collapse
|
4
|
Ghaleb W, Ahmed LQ, Escobar-Gutiérrez AJ, Julier B. The History of Domestication and Selection of Lucerne: A New Perspective From the Genetic Diversity for Seed Germination in Response to Temperature and Scarification. FRONTIERS IN PLANT SCIENCE 2020; 11:578121. [PMID: 33552093 PMCID: PMC7860617 DOI: 10.3389/fpls.2020.578121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/22/2020] [Indexed: 05/06/2023]
Abstract
Lucerne (Medicago sativa), a major perennial pasture legume, belongs to a species complex that includes several subspecies with wild and cultivated populations. Stand establishment may be compromised by poor germination. Seed scarification, deterioration and temperature have an impact on germination. The objective of this study was to analyse the genetic diversity of lucerne germination in response to three factors: (1) temperature, with seven constant temperatures ranging from 5 to 40°C, was tested on 38 accessions, (2) seed scarification was tested on the same accessions at 5 and 22°C, (3) seed deterioration was tested on two accessions and two seed lots at the seven temperatures. The germination dynamics of seed lots over time was modelled and three parameters were analysed: germinability (germination capacity), maximum germination rate (maximum% of seeds germinating per time unit), and lag time before the first seed germinates. Seed scarification enhanced germinability at both temperatures and its effect was much higher on falcata and wild sativa accessions. Incomplete loss of the hardseededness trait during domestication and selection is hypothesised, indicating that the introduction of wild material in breeding programmes should be followed by the selection for germinability without scarification. Seed lots with altered germinability had low germination at extreme temperatures, both cold and hot, suggesting that mild temperatures are required to promote germination of damaged seed lots. A large genetic diversity was revealed for germination (both capacity and rate) in response to temperature. All accessions had an optimal germination at 15 or 22°C and a poor germination at 40°C. The sativa varieties and landraces had a high germination from 5 to 34°C while the germination of falcata and the wild sativa accessions were weakened at 5 or 34°C, respectively. These differences are interpreted in terms of adaptation to the climate of their geographical origin regions in order to escape frost or heat/drought risks. These new findings give insights on adaptation and domestication of lucerne in its wide geographic area. They suggest further improvement of germination is needed, especially when introducing wild material in breeding pools to remove scarification requirements and to limit differences in response to temperature.
Collapse
|
5
|
Araújo S, Pagano A, Dondi D, Lazzaroni S, Pinela E, Macovei A, Balestrazzi A. Metabolic signatures of germination triggered by kinetin in Medicago truncatula. Sci Rep 2019; 9:10466. [PMID: 31320688 PMCID: PMC6639397 DOI: 10.1038/s41598-019-46866-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/01/2019] [Indexed: 11/09/2022] Open
Abstract
In the present work, non-targeted metabolomics was used to investigate the seed response to kinetin, a phytohormone with potential roles in seed germination, still poorly explored. The aim of this study was to elucidate the metabolic signatures of germination triggered by kinetin and explore changes in metabolome to identify novel vigor/stress hallmarks in Medicago truncatula. Exposure to 0.5 mM kinetin accelerated seed germination but impaired seedling growth. Metabolite composition was investigated in seeds imbibed with water or with 0.5 mM kinetin collected at 2 h and 8 h of imbibition, and at the radicle protrusion stage. According to Principal Component Analysis, inositol pentakisphosphate, agmatine, digalactosylglycerol, inositol hexakisphosphate, and oleoylcholine were the metabolites that mostly contributed to the separation between 2 h, 8 h and radicle protrusion stage, irrespective of the treatment applied. Overall, only 27 metabolites showed significant changes in mean relative contents triggered by kinetin, exclusively at the radicle protrusion stage. The observed metabolite depletion might associate with faster germination or regarded as a stress signature. Results from alkaline comet assay, highlighting the occurrence of DNA damage at this stage of germination, are consistent with the hypothesis that prolonged exposure to kinetin induces stress conditions leading to genotoxic injury.
Collapse
Affiliation(s)
- Susana Araújo
- Instituto de Tecnologia Química e Biológica António Xavier - Universidade Nova de Lisboa (ITQB-NOVA), Av. da República, 2780-157, Oeiras, Portugal
| | - Andrea Pagano
- Department of Biology and Biotechnology 'L. Spallanzani', via Ferrata 9, 27100, Pavia, Italy
| | - Daniele Dondi
- Department of Chemistry, Viale Taramelli 12, 27100, Pavia, Italy
| | - Simone Lazzaroni
- Department of Chemistry, Viale Taramelli 12, 27100, Pavia, Italy
| | - Eduardo Pinela
- Instituto de Tecnologia Química e Biológica António Xavier - Universidade Nova de Lisboa (ITQB-NOVA), Av. da República, 2780-157, Oeiras, Portugal
| | - Anca Macovei
- Department of Biology and Biotechnology 'L. Spallanzani', via Ferrata 9, 27100, Pavia, Italy
| | - Alma Balestrazzi
- Department of Biology and Biotechnology 'L. Spallanzani', via Ferrata 9, 27100, Pavia, Italy.
| |
Collapse
|
6
|
Associating transcriptional regulation for rapid germination of rapeseed (Brassica napus L.) under low temperature stress through weighted gene co-expression network analysis. Sci Rep 2019; 9:55. [PMID: 30635606 PMCID: PMC6329770 DOI: 10.1038/s41598-018-37099-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 12/03/2018] [Indexed: 12/23/2022] Open
Abstract
Slow germination speed caused by low temperature stress intensifies the risk posed by adverse environmental factors, contributing to low germination rate and reduced production of rapeseed. The purpose of this study was to understand the transcriptional regulation mechanism for rapid germination of rapeseed. The results showed that seed components and size do not determine the seed germination speed. Different temporal transcriptomic profiles were generated under normal and low temperature conditions in genotypes with fast and slow germination speeds. Using weight gene co-expression network analysis, 37 823 genes were clustered into 15 modules with different expression patterns. There were 10 233 and 9111 differentially expressed genes found to follow persistent tendency of up- and down-regulation, respectively, which provided the conditions necessary for germination. Hub genes in the continuous up-regulation module were associated with phytohormone regulation, signal transduction, the pentose phosphate pathway, and lipolytic metabolism. Hub genes in the continuous down-regulation module were involved in ubiquitin-mediated proteolysis. Through pairwise comparisons, 1551 specific upregulated DEGs were identified for the fast germination speed genotype under low temperature stress. These DEGs were mainly enriched in RNA synthesis and degradation metabolisms, signal transduction, and defense systems. Transcription factors, including WRKY, bZIP, EFR, MYB, B3, DREB, NAC, and ERF, are associated with low temperature stress in the fast germination genotype. The aquaporin NIP5 and late embryogenesis abundant (LEA) protein genes contributed to the water uptake and transport under low temperature stress during seed germination. The ethylene/H2O2-mediated signal pathway plays an important role in cell wall loosening and embryo extension during germination. The ROS-scavenging system, including catalase, aldehyde dehydrogenase, and glutathione S-transferase, was also upregulated to alleviate ROS toxicity in the fast germinating genotype under low temperature stress. These findings should be useful for molecular assisted screening and breeding of fast germination speed genotypes for rapeseed.
Collapse
|
7
|
Fernández-Pascual E, Mattana E, Pritchard HW. Seeds of future past: climate change and the thermal memory of plant reproductive traits. Biol Rev Camb Philos Soc 2018; 94:439-456. [PMID: 30188004 DOI: 10.1111/brv.12461] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/30/2018] [Accepted: 08/02/2018] [Indexed: 01/21/2023]
Abstract
Plant persistence and migration in face of climate change depends on successful reproduction by seed, a central aspect of plant life that drives population dynamics, community assembly and species distributions. Plant reproduction by seed is a chain of physiological processes, the rates of which are a function of temperature, and can be modelled using thermal time models. Importantly, while seed reproduction responds to its instantaneous thermal environment, there is also evidence of phenotypic plasticity in response to the thermal history experienced by the plant's recent ancestors, by the reproducing plant since seedling establishment, and by its seeds both before and after their release. This phenotypic plasticity enables a thermal memory of plant reproduction, which allows individuals to acclimatise to their surroundings. This review synthesises current knowledge on the thermal memory of plant reproduction by seed, and highlights its importance for modelling approaches based on physiological thermal time. We performed a comprehensive search in the Web of Science and analysed 533 relevant articles, of which 81 provided material for a meta-analysis of thermal memory in reproductive functional traits based on the effect size Zr. The articles encompassed the topics of seed development, seed yield (mass and number), seed dormancy (physiological, morphological and physical), germination, and seedling establishment. The results of the meta-analysis provide evidence for a thermal memory of seed yield, physiological dormancy and germination. Seed mass and physiological dormancy appear to be the central hubs of this memory. We argue for integrating thermal memory into a predictive framework based on physiological time modelling. This will provide a quantitative assessment of plant reproduction, a complex system that integrates past and present thermal inputs to achieve successful reproduction in changing environments. The effects of a warming environment on plant reproduction cannot be reduced to a qualitative interpretation of absolute positives and negatives. Rather, these effects need to be understood in terms of changing rates and thresholds for the physiological process that underlie reproduction by seed.
Collapse
Affiliation(s)
- Eduardo Fernández-Pascual
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew; Wellcome Trust Millennium Building, Wakehurst Place, Ardingly, West Sussex, RH17 6TN, U.K.,Departamento de Biología de Organismos y Sistemas, Universidad de Oviedo; C/ Catedrático Rodrigo Uría, 33006, Oviedo/Uviéu, Spain
| | - Efisio Mattana
- Natural Capital and Plant Health, Royal Botanic Gardens, Kew; Wellcome Trust Millennium Building, Wakehurst Place, Ardingly, West Sussex, RH17 6TN, U.K
| | - Hugh W Pritchard
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew; Wellcome Trust Millennium Building, Wakehurst Place, Ardingly, West Sussex, RH17 6TN, U.K
| |
Collapse
|
8
|
Youssef C, Aubry C, Montrichard F, Beucher D, Juchaux M, Ben C, Prosperi JM, Teulat B. Cell length instead of cell number becomes the predominant factor contributing to hypocotyl length genotypic differences under abiotic stress in Medicago truncatula. PHYSIOLOGIA PLANTARUM 2016; 156:108-124. [PMID: 26303328 DOI: 10.1111/ppl.12379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 05/19/2015] [Accepted: 06/18/2015] [Indexed: 06/04/2023]
Abstract
Hypocotyl elongation in the dark is a crucial process to ensure seedling emergence. It relies both on the cell number and cell length. The contribution of these two factors to the maximal hypocotyl length and the impact of environmental conditions on this contribution are not known. This is surprising considering the agronomic and economical importance of seedling emergence in crop establishment. Using 14 genotypes from a nested core collection representing Medicago truncatula (barrel medic) natural variation, we investigated how epidermal cell number and cell length contribute to hypocotyl length under optimal, low temperature (8°C) and water deficit (-0.50 MPa) conditions. Both cell number and length vary according to genotypes and contribute to maximal hypocotyl length differences between genotypes. This contribution, however, depends on growth conditions. Cell number is the major contributor under optimal conditions (60%) whereas cell length becomes the major determinant under stress. Maximal hypocotyl length is correlated with hypocotyl elongation rate under both stresses but not under optimal condition, revealing contrasted genotypes for cell elongation capacity under stress. To identify the genetic regulators determining cell number and cell length, quantitative trait loci (QTLs) were detected using a recombinant inbred lines population exhibiting segregation in maximal hypocotyl length. Two QTLs controlling cell number and three QTLs controlling cell length at low temperature were detected. One QTL for cell number and two for cell length were found to be associated with hypocotyl length under low temperature. This study provides new information to improve seedling emergence under abiotic stress.
Collapse
Affiliation(s)
- Chvan Youssef
- Institut de Recherche en Horticulture et Semences (UMR 1345 IRHS), Agrocampus Ouest, SFR 4207 QuaSaV, Beaucouzé Cedex, France
| | - Catherine Aubry
- Institut de Recherche en Horticulture et Semences (UMR 1345 IRHS), Université d'Angers, SFR 4207 QuaSaV, Beaucouzé Cedex, France
| | - Françoise Montrichard
- Institut de Recherche en Horticulture et Semences (UMR 1345 IRHS), Université d'Angers, SFR 4207 QuaSaV, Beaucouzé Cedex, France
| | - Daniel Beucher
- Institut de Recherche en Horticulture et Semences (UMR 1345 IRHS), Agrocampus Ouest, SFR 4207 QuaSaV, Beaucouzé Cedex, France
| | | | - Cécile Ben
- Laboratoire Ecologie Fonctionnelle et Environnement (UMR 5245, EcoLab), Université de Toulouse, INP, UPS, ENSAT, Castanet Tolosan, France
- Laboratoire Ecologie Fonctionnelle et Environnement (UMR 5245, EcoLab), CNRS, Castanet Tolosan, France
| | - Jean-Marie Prosperi
- Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales (UMR 1334 AGAP), INRA, Montpellier, France
| | - Béatrice Teulat
- Institut de Recherche en Horticulture et Semences (UMR 1345 IRHS), Agrocampus Ouest, SFR 4207 QuaSaV, Beaucouzé Cedex, France
| |
Collapse
|
9
|
Kigel J, Rosental L, Fait A. Seed Physiology and Germination of Grain Legumes. GRAIN LEGUMES 2015. [DOI: 10.1007/978-1-4939-2797-5_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
10
|
Pierre JS, Rae AL, Bonnett GD. Abiotic Limits for Germination of Sugarcane Seed in Relation to Environmental Spread. TROPICAL PLANT BIOLOGY 2014; 7:100-110. [PMID: 25485029 PMCID: PMC4245482 DOI: 10.1007/s12042-014-9141-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 09/08/2014] [Indexed: 06/04/2023]
Abstract
Sugarcane is a vegetatively propagated crop and hence the production of seed and its fate in the environment has not been studied. The recent development of genetically modified sugarcane, with the aim of commercial production, requires a research effort to understand sugarcane reproductive biology. This study contributes to this understanding by defining the abiotic limits for sugarcane seed germination. Using seed from multiple genetic crosses, germination was measured under different light regimes (light and dark), temperatures (from 18 °C to 42 °C) and water potentials (from 0 MPa to -1 MPa); cardinal temperatures and base water potential of germination were estimated based on the rates of germination. We found that sugarcane seed could germinate over a broad range of temperatures (from 11 °C to 42 °C) with optima ranging from 27 °C to 36 °C depending on source of seed. Water potentials below -0.5 MPa halved the proportion of seed that germinated. By comparing these limits to the environmental conditions in areas where sugarcane grows and has the potential to produce seed, water, but not temperature, will be the main limiting factor for germination. This new information can be taken into account when evaluating any risk of weediness during the assessment of GM sugarcane.
Collapse
Affiliation(s)
- J. S. Pierre
- CSIRO Agriculture Flagship, 306 Carmody Road, St Lucia, Qld 4067 Australia
| | - A. L. Rae
- CSIRO Agriculture Flagship, 306 Carmody Road, St Lucia, Qld 4067 Australia
| | - G. D. Bonnett
- CSIRO Agriculture Flagship, 306 Carmody Road, St Lucia, Qld 4067 Australia
| |
Collapse
|
11
|
Pierre J, Teulat B, Juchaux M, Mabilleau G, Demilly D, Dürr C. Cellular changes during Medicago truncatula hypocotyl growth depend on temperature and genotype. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 217-218:18-26. [PMID: 24467892 DOI: 10.1016/j.plantsci.2013.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/27/2013] [Accepted: 12/01/2013] [Indexed: 06/03/2023]
Abstract
Hypocotyl growth is a key characteristic for plant emergence, influenced by environmental conditions, particularly temperature, and varying among genotypes. Cellular changes in Medicago truncatula hypocotyl were characterized to study the impact of the environment on heterotrophic growth and analyze differences between genotypes. The number and length of epidermal cells, ploidy levels, and sugar contents were measured in hypocotyls grown in the dark at 20 °C and 10 °C using two genotypes with contrasting maximum hypocotyl length. Hypocotyl elongation in the dark was due to cell elongation and not to an increase in cell number. A marked increase in cell ploidy level was observed just after germination and until mid elongation of the hypocotyl under all treatments. Larger ploidy levels were also observed in the genotype with the shorter hypocotyl and in cold conditions, but they were associated with larger cells. The increase in ploidy level and in cell volume was concomitant with a marked increase in glucose and fructose contents in the hypocotyl. Finally, differences in hypocotyl length were mainly due to different number of epidermal cells in the seed embryo, shown as a key characteristic of genotypic differences, whereas temperature during hypocotyl growth affected cell volume.
Collapse
Affiliation(s)
- Johann Pierre
- Agrocampus-Ouest, UMR 1345 IRHS, SFR QUASAV, 16 Boulevard Lavoisier, 49045 Angers, France
| | - Béatrice Teulat
- Agrocampus-Ouest, UMR 1345 IRHS, SFR QUASAV, 16 Boulevard Lavoisier, 49045 Angers, France
| | - Marjorie Juchaux
- Université Angers, SFR QUASAV, 42, rue Georges Morel, BP 60057, 49071 Beaucouzé cedex, France
| | - Guillaume Mabilleau
- Université d'Angers, Service Commun d'Imageries et d'Analyses Microscopiques, 4 Rue Larrey, 49933 Angers Cedex 09, France
| | - Didier Demilly
- GEVES, SNES, Rue Georges Morel, 49071 Beaucouzé Cedex, France
| | - Carolyne Dürr
- INRA, UMR 1345 IRHS, SFR QUASAV, 42 rue Georges Morel, 49071 Beaucouzé, France.
| |
Collapse
|
12
|
|
13
|
Vandecasteele C, Teulat-Merah B, Morère-Le Paven MC, Leprince O, Ly Vu B, Viau L, Ledroit L, Pelletier S, Payet N, Satour P, Lebras C, Gallardo K, Huguet T, Limami AM, Prosperi JM, Buitink J. Quantitative trait loci analysis reveals a correlation between the ratio of sucrose/raffinose family oligosaccharides and seed vigour in Medicago truncatula. PLANT, CELL & ENVIRONMENT 2011; 34:1473-87. [PMID: 21554325 DOI: 10.1111/j.1365-3040.2011.02346.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Seed vigour is important for successful establishment and high yield, especially under suboptimal environmental conditions. In legumes, raffinose oligosaccharide family (RFO) sugars have been proposed as an easily available energy reserve for seedling establishment. In this study, we investigated whether the composition or amount of soluble sugars (sucrose and RFO) is part of the genetic determinants of seed vigour of Medicago truncatula using two recombinant inbred line (RIL) populations. Quantitative trait loci (QTL) mapping for germination rate, hypocotyl and radicle growth under water deficit and nutritional stress, seed weight and soluble sugar content was performed using RIL populations LR1 and LR4. Seven of the 12 chromosomal regions containing QTL for germination rate or post-germinative radicle growth under optimal or stress conditions co-located with Suc/RFO QTL. A significant negative correlation was also found between seed vigour traits and Suc/RFO. In addition, one QTL that explained 80% of the variation in the ratio stachyose/verbascose co-located with a stachyose synthase gene whose expression profile in the parental lines could explain the variation in oligosaccharide composition. The correlation and co-location of Suc/RFO ratio with germination and radicle growth QTL suggest that an increased Suc/RFO ratio in seeds of M. truncatula might negatively affect seed vigour.
Collapse
Affiliation(s)
- Céline Vandecasteele
- Institut National de la Recherche Agronomique, Physiologie Moléculaire des Semences, IFR 149 QUASAV, 49045 Angers, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Brunel-Muguet S, Aubertot JN, Dürr C. Simulating the impact of genetic diversity of Medicago truncatula on germination and emergence using a crop emergence model for ideotype breeding. ANNALS OF BOTANY 2011; 107:1367-1376. [PMID: 21504913 PMCID: PMC3101140 DOI: 10.1093/aob/mcr071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 02/01/2011] [Accepted: 02/14/2011] [Indexed: 05/30/2023]
Abstract
BACKGROUND AND AIMS Germination and heterotrophic growth are crucial steps for stand establishment. Numerical experiments based on the modelling of these early stages in relation to major environmental factors at sowing were used as a powerful tool to browse the effects of the genetic diversity of Medicago truncatula, one of the model legume species, under a range of agronomic scenarios, and to highlight the most important plant parameters for emergence. To this end, the emergence of several genotypes of M. truncatula was simulated under a range of sowing conditions with a germination and emergence simulation model. METHODS After testing the predictive quality of the model by comparing simulations to field observations of several genotypes of M. truncatula, numerical experiments were performed under a wide range of environmental conditions (sowing dates × years × seedbed structure). Germination and emergence was simulated for a set of five genotypes previously parameterized and for two virtual genotypes engineered to maximize the potential effects of genetic diversity. KEY RESULTS The simulation results gave an average value of 5-10 % difference in final emergence between genotypes, which was low, but the analysis underlined considerable inter-annual variation. The effects of parameters describing germination and emergence processes were quantified and ranked according to their contribution to the variation in emergence. Seedling non-emergence was mainly related to mechanical obstacles (40-50 %). More generally, plant parameters that accelerated the emergence time course significantly contributed to limiting the risk of soil surface crusting occurring before seedling emergence. CONCLUSIONS The model-assisted analysis of the effects of genetic diversity demonstrated its usefulness in helping to identify the parameters which have most influence that could be improved by breeding programmes. These results should also enable a deeper analysis of the genetic determinism of the main plant parameters influencing emergence, using the genomic tools available for this model plant.
Collapse
Affiliation(s)
- S. Brunel-Muguet
- INRA, UMR 950 Ecophysiologie, Agronomie et Nutritions NCS, Esplanade de la Paix, F-14032 Caen, France
| | - J.-N. Aubertot
- INRA, UMR1248 Agrosystèmes et développement territorial, chemin de Borde-Rouge F-31326 Castanet-Tolosan, France
| | - C. Dürr
- INRA, UMR 1191 Physiologie Moléculaire des Semences, 16 bd Lavoisier, F-49045 Angers, France
| |
Collapse
|
15
|
Dias PMB, Brunel-Muguet S, Dürr C, Huguet T, Demilly D, Wagner MH, Teulat-Merah B. QTL analysis of seed germination and pre-emergence growth at extreme temperatures in Medicago truncatula. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 122:429-44. [PMID: 20878383 PMCID: PMC3021249 DOI: 10.1007/s00122-010-1458-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 09/13/2010] [Indexed: 05/05/2023]
Abstract
Enhancing the knowledge on the genetic basis of germination and heterotrophic growth at extreme temperatures is of major importance for improving crop establishment. A quantitative trait loci (QTL) analysis was carried out at sub- and supra-optimal temperatures at these early stages in the model Legume Medicago truncatula. On the basis of an ecophysiological model framework, two populations of recombinant inbred lines were chosen for the contrasting behaviours of parental lines: LR5 at sub-optimal temperatures (5 or 10°C) and LR4 at a supra-optimal temperature (20°C). Seed masses were measured in all lines. For LR5, germination rates and hypocotyl growth were measured by hand, whereas for LR4, imbibition and germination rates as well as early embryonic axis growth were measured using an automated image capture and analysis device. QTLs were found for all traits. The phenotyping framework we defined for measuring variables, distinguished stages and enabled identification of distinct QTLs for seed mass (chromosomes 1, 5, 7 and 8), imbibition (chromosome 4), germination (chromosomes 3, 5, 7 and 8) and heterotrophic growth (chromosomes 1, 2, 3 and 8). The three QTL identified for hypocotyl length at sub-optimal temperature explained the largest part of the phenotypic variation (60% together). One digenic interaction was found for hypocotyl width at sub-optimal temperature and the loci involved were linked to additive QTLs for hypocotyl elongation at low temperature. Together with working on a model plant, this approach facilitated the identification of genes specific to each stage that could provide reliable markers for assisting selection and improving crop establishment. With this aim in view, an initial set of putative candidate genes was identified in the light of the role of abscissic acid/gibberellin balance in regulating germination at high temperatures (e.g. ABI4, ABI5), the molecular cascade in response to cold stress (e.g. CBF1, ICE1) and hypotheses on changes in cell elongation (e.g. GASA1, AtEXPA11) with changes in temperatures based on studies at the whole plant scale.
Collapse
Affiliation(s)
- Paula Menna Barreto Dias
- INRA, UMR 1191 Physiologie Moléculaire des Semences, 16 bd Lavoisier, 49045 Angers Cedex 01, France
| | - Sophie Brunel-Muguet
- INRA, UMR 1191 Physiologie Moléculaire des Semences, 16 bd Lavoisier, 49045 Angers Cedex 01, France
| | - Carolyne Dürr
- INRA, UMR 1191 Physiologie Moléculaire des Semences, 16 bd Lavoisier, 49045 Angers Cedex 01, France
| | - Thierry Huguet
- Laboratoire Symbioses et Pathologies des Plantes (SP2), INP-ENSAT, 18 chemin de Borde rouge, 31326 Castanet Tolosan, France
| | - Didier Demilly
- GEVES Station Nationale d’Essais des Semences 46 rue Georges Morel, 49071 Beaucouzé, France
| | - Marie-Helene Wagner
- GEVES Station Nationale d’Essais des Semences 46 rue Georges Morel, 49071 Beaucouzé, France
| | - Béatrice Teulat-Merah
- Agrocampus Ouest, UMR 1191 Physiologie Moléculaire des Semences, 16 bd Lavoisier, 49045 Angers Cedex 01, France
| |
Collapse
|