1
|
Jiang Y, Jiang D, Xia M, Gong M, Li H, Xing H, Zhu X, Li HL. Genome-Wide Identification and Expression Analysis of the TCP Gene Family Related to Developmental and Abiotic Stress in Ginger. PLANTS (BASEL, SWITZERLAND) 2023; 12:3389. [PMID: 37836129 PMCID: PMC10574737 DOI: 10.3390/plants12193389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023]
Abstract
Ginger (Zingiber officinale Roscoe), a widely consumed edible and medicinal plant, possesses significant nutritional and economic value. Abiotic stresses such as drought and low temperatures can impact the growth and development of ginger. The plant-specific transcription factor Teosinte branched1/cycloidea/proliferating cell factor (TCP) has progressively been identified in various plants for its role in regulating plant growth and development as well as conferring resistance to abiotic stresses. However, limited information on the TCP family is available in ginger. In this study, we identified 20 TCP members in the ginger genome, which were randomly distributed across 9 chromosomes. Based on phylogenetic analysis, these ginger TCP were classified into two subfamilies: Class I (PCF) and Class II (CIN, CYC/TB). The classification of the identified ginger TCPs was supported by a multi-species phylogenetic tree and motif structure analysis, suggesting that the amplification of the ginger TCP gene family occurred prior to the differentiation of angiosperms. The promoter region of ginger TCP genes was found to contain numerous cis-acting elements associated with plant growth, development, and abiotic stress response. Among these elements, the stress response element, anaerobic induction, and MYB binding site play a dominant role in drought responsiveness. Additionally, expression pattern analysis revealed variations in the expression of ginger TCP gene among different tissues and in response to diverse abiotic stresses (drought, low temperature, heat, and salt). Our research offers a thorough examination of TCP members within the ginger plant. This analysis greatly contributes to the understanding of how TCP genes regulate tissue development and response to stress, opening up new avenues for further exploration in this field.
Collapse
Affiliation(s)
- Yajun Jiang
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (Y.J.); (D.J.); (M.X.); (M.G.); (H.L.)
| | - Dongzhu Jiang
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (Y.J.); (D.J.); (M.X.); (M.G.); (H.L.)
| | - Maoqin Xia
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (Y.J.); (D.J.); (M.X.); (M.G.); (H.L.)
| | - Min Gong
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (Y.J.); (D.J.); (M.X.); (M.G.); (H.L.)
| | - Hui Li
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (Y.J.); (D.J.); (M.X.); (M.G.); (H.L.)
| | - Haitao Xing
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (Y.J.); (D.J.); (M.X.); (M.G.); (H.L.)
| | - Xuedong Zhu
- Yudongnan Academy of Agricultural Sciences, Chongqing 408000, China
| | - Hong-Lei Li
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (Y.J.); (D.J.); (M.X.); (M.G.); (H.L.)
| |
Collapse
|
2
|
Naithani S, Mohanty B, Elser J, D’Eustachio P, Jaiswal P. Biocuration of a Transcription Factors Network Involved in Submergence Tolerance during Seed Germination and Coleoptile Elongation in Rice ( Oryza sativa). PLANTS (BASEL, SWITZERLAND) 2023; 12:2146. [PMID: 37299125 PMCID: PMC10255735 DOI: 10.3390/plants12112146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
Modeling biological processes and genetic-regulatory networks using in silico approaches provides a valuable framework for understanding how genes and associated allelic and genotypic differences result in specific traits. Submergence tolerance is a significant agronomic trait in rice; however, the gene-gene interactions linked with this polygenic trait remain largely unknown. In this study, we constructed a network of 57 transcription factors involved in seed germination and coleoptile elongation under submergence. The gene-gene interactions were based on the co-expression profiles of genes and the presence of transcription factor binding sites in the promoter region of target genes. We also incorporated published experimental evidence, wherever available, to support gene-gene, gene-protein, and protein-protein interactions. The co-expression data were obtained by re-analyzing publicly available transcriptome data from rice. Notably, this network includes OSH1, OSH15, OSH71, Sub1B, ERFs, WRKYs, NACs, ZFP36, TCPs, etc., which play key regulatory roles in seed germination, coleoptile elongation and submergence response, and mediate gravitropic signaling by regulating OsLAZY1 and/or IL2. The network of transcription factors was manually biocurated and submitted to the Plant Reactome Knowledgebase to make it publicly accessible. We expect this work will facilitate the re-analysis/re-use of OMICs data and aid genomics research to accelerate crop improvement.
Collapse
Affiliation(s)
- Sushma Naithani
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA; (J.E.); (P.J.)
| | - Bijayalaxmi Mohanty
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore;
| | - Justin Elser
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA; (J.E.); (P.J.)
| | - Peter D’Eustachio
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Pankaj Jaiswal
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA; (J.E.); (P.J.)
| |
Collapse
|
3
|
Viola IL, Gonzalez DH. TCP Transcription Factors in Plant Reproductive Development: Juggling Multiple Roles. Biomolecules 2023; 13:biom13050750. [PMID: 37238620 DOI: 10.3390/biom13050750] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) transcription factors (TFs) are plant-specific transcriptional regulators exerting multiple functions in plant growth and development. Ever since one of the founding members of the family was described, encoded by the CYCLOIDEA (CYC) gene from Antirrhinum majus and involved in the regulation of floral symmetry, the role of these TFs in reproductive development was established. Subsequent studies indicated that members of the CYC clade of TCP TFs were important for the evolutionary diversification of flower form in a multitude of species. In addition, more detailed studies of the function of TCPs from other clades revealed roles in different processes related to plant reproductive development, such as the regulation of flowering time, the growth of the inflorescence stem, and the correct growth and development of flower organs. In this review, we summarize the different roles of members of the TCP family during plant reproductive development as well as the molecular networks involved in their action.
Collapse
Affiliation(s)
- Ivana L Viola
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe 3000, Argentina
| | - Daniel H Gonzalez
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe 3000, Argentina
| |
Collapse
|
4
|
Xiong W, Zhao Y, Gao H, Li Y, Tang W, Ma L, Yang G, Sun J. Genomic characterization and expression analysis of TCP transcription factors in Setaria italica and Setaria viridis. PLANT SIGNALING & BEHAVIOR 2022; 17:2075158. [PMID: 35616063 PMCID: PMC9154779 DOI: 10.1080/15592324.2022.2075158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
The plant-specific TCP transcription factor plays important roles in plant development and environment adaptation. Setaria italica and Setaria viridis, the C4 model plants, can grow on drought or arid soils. However, there is no systematic information about the genomic dissection and the expression of Setaria TCP genes. A total of 22 TCP genes were both identified from S. italica and S. viridis genomes. They all contained bHLH domain and were grouped into three main clades (PCF, CIN, and CYC/TB1). The TCP genes in the same clades shared similar gene structures. Cis-element in the TCP promoter regions were analyzed and associated with hormones and stress responsiveness. Ten TCP genes were predicted to be targets of miRNA319. Moreover, gene ontology analysis indicated three SiTCP and three SvTCP genes were involved in the regulation of shoot development, and SiTCP16/SvTCP16 were clustered together with tillering controlling gene TB1. The TCP genes were differentially expressed in the organs, but SiTCP/SvTCP orthologs shared similar expression patterns. Ten SiTCP members were downregulated under drought or salinity stresses, indicating they may play regulatory roles in abiotic stresses. The study provides detailed information regarding Setaria TCP genes, providing the theoretical basis for agricultural applications.
Collapse
Affiliation(s)
- Wangdan Xiong
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Yiran Zhao
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Hanchi Gao
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Yinghui Li
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Wei Tang
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Lichao Ma
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Guofeng Yang
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Juan Sun
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, China
| |
Collapse
|
5
|
Damerval C, Claudot C, Le Guilloux M, Conde e Silva N, Brunaud V, Soubigou-Taconnat L, Caius J, Delannoy E, Nadot S, Jabbour F, Deveaux Y. Evolutionary analyses and expression patterns of TCP genes in Ranunculales. FRONTIERS IN PLANT SCIENCE 2022; 13:1055196. [PMID: 36531353 PMCID: PMC9752903 DOI: 10.3389/fpls.2022.1055196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
TCP transcription factors play a role in a large number of developmental processes and are at the crossroads of numerous hormonal biosynthetic and signaling pathways. The complete repertoire of TCP genes has already been characterized in several plant species, but not in any species of early diverging eudicots. We focused on the order Ranunculales because of its phylogenetic position as sister group to all other eudicots and its important morphological diversity. Results show that all the TCP genes expressed in the floral transcriptome of Nigella damascena (Ranunculaceae) are the orthologs of the TCP genes previously identified from the fully sequenced genome of Aquilegia coerulea. Phylogenetic analyses combined with the identification of conserved amino acid motifs suggest that six paralogous genes of class I TCP transcription factors were present in the common ancestor of angiosperms. We highlight independent duplications in core eudicots and Ranunculales within the class I and class II subfamilies, resulting in different numbers of paralogs within the main subclasses of TCP genes. This has most probably major consequences on the functional diversification of these genes in different plant clades. The expression patterns of TCP genes in Nigella damascena were consistent with the general suggestion that CIN and class I TCP genes may have redundant roles or take part in same pathways, while CYC/TB1 genes have more specific actions. Our findings open the way for future studies at the tissue level, and for investigating redundancy and subfunctionalisation in TCP genes and their role in the evolution of morphological novelties.
Collapse
Affiliation(s)
- Catherine Damerval
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Génétique Quantitative et Evolution-Le Moulon, IDEEV, Gif-sur-Yvette, France
| | - Carmine Claudot
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Génétique Quantitative et Evolution-Le Moulon, IDEEV, Gif-sur-Yvette, France
| | - Martine Le Guilloux
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Génétique Quantitative et Evolution-Le Moulon, IDEEV, Gif-sur-Yvette, France
| | - Natalia Conde e Silva
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Génétique Quantitative et Evolution-Le Moulon, IDEEV, Gif-sur-Yvette, France
| | - Véronique Brunaud
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Ludivine Soubigou-Taconnat
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - José Caius
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Etienne Delannoy
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Sophie Nadot
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| | - Florian Jabbour
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Yves Deveaux
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Génétique Quantitative et Evolution-Le Moulon, IDEEV, Gif-sur-Yvette, France
| |
Collapse
|
6
|
Zhou H, Hwarari D, Ma H, Xu H, Yang L, Luo Y. Genomic survey of TCP transcription factors in plants: Phylogenomics, evolution and their biology. Front Genet 2022; 13:1060546. [PMID: 36437962 PMCID: PMC9682074 DOI: 10.3389/fgene.2022.1060546] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/27/2022] [Indexed: 09/29/2023] Open
Abstract
The TEOSINTE BRANCHED1 (TBI1), CYCLOIDEA (CYC), and PROLIFERATING CELL NUCLEAR ANTIGEN FACTORS (PCF1 and PCF2) proteins truncated as TCP transcription factors carry conserved basic-helix-loop-helix (bHLH) structure, related to DNA binding functions. Evolutionary history of the TCP genes has shown their presence in early land plants. In this paper, we performed a comparative discussion on the current knowledge of the TCP Transcription Factors in lower and higher plants: their evolutionary history based on the phylogenetics of 849 TCP proteins from 37 plant species, duplication events, and biochemical roles in some of the plants species. Phylogenetics investigations confirmed the classification of TCP TFs into Class I (the PCF1/2), and Class II (the C- clade) factors; the Class II factors were further divided into the CIN- and CYC/TB1- subclade. A trace in the evolution of the TCP Factors revealed an absence of the CYC/TB1subclade in lower plants, and an independent evolution of the CYC/TB1subclade in both eudicot and monocot species. 54% of the total duplication events analyzed were biased towards the dispersed duplication, and we concluded that dispersed duplication events contributed to the expansion of the TCP gene family. Analysis in the TCP factors functional roles confirmed their involvement in various biochemical processes which mainly included promoting cell proliferation in leaves in Class I TCPs, and cell division during plant development in Class II TCP Factors. Apart from growth and development, the TCP Factors were also shown to regulate hormonal and stress response pathways. Although this paper does not exhaust the present knowledge of the TCP Transcription Factors, it provides a base for further exploration of the gene family.
Collapse
Affiliation(s)
- Haiying Zhou
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Jiangsu Collaborative In-novation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai’an, China
| | - Delight Hwarari
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Hongyu Ma
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Haibin Xu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Liming Yang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Yuming Luo
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Jiangsu Collaborative In-novation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai’an, China
| |
Collapse
|
7
|
Chasing Consistency: An Update of the TCP Gene Family of Malus × Domestica. Genes (Basel) 2022; 13:genes13101696. [PMID: 36292581 PMCID: PMC9601442 DOI: 10.3390/genes13101696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/09/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022] Open
Abstract
The 52 members of the Teosinte-Branched 1/Cycloidea/Proliferating Cell Factors (TCP) Transcription Factor gene family in Malus × domestica (M. × domestica) were identified in 2014 on the first genome assembly, which was released in 2010. In 2017, a higher quality genome assembly for apple was released and is now considered to be the reference genome. Moreover, as in several other species, the identified TCP genes were named based on the relative position of the genes on the chromosomes. The present work consists of an update of the TCP gene family based on the latest genome assembly of M. × domestica. Compared to the previous classification, the number of TCP genes decreased from 52 to 40 as a result of the addition of three sequences and the deduction of 15. An analysis of the intragenic identity led to the identification of 15 pairs of orthologs, shedding light on the forces that shaped the evolution of this gene family. Furthermore, a revised nomenclature system is proposed that is based both on the intragenic identity and the homology with Arabidopsis thaliana (A. thaliana) TCPs in an effort to set a common standard for the TCP classification that will facilitate any future interspecific analysis.
Collapse
|
8
|
Xu Y, Wang L, Liu H, He W, Jiang N, Wu M, Xiang Y. Identification of TCP family in moso bamboo (Phyllostachys edulis) and salt tolerance analysis of PheTCP9 in transgenic Arabidopsis. PLANTA 2022; 256:5. [PMID: 35670871 DOI: 10.1007/s00425-022-03917-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Bioinformatic analysis of moso bamboo TEOSINTE BRANCHED 1, CYCLOIDEA, and PROLIFERATING CELL FACTORS (TCP) transcription factors reveals their conservation and variation as well as the probable biological functions in abiotic stress response. Overexpressing PheTCP9 in Arabidopsis thaliana illustrates it may exhibit a new vision in different aspects of response to salt stress. Plant specific TCPs play important roles in plant growth, development and stress response, but studies of TCP in moso bamboo are limited. Therefore, in this study, a total of 40 TCP genes (PheTCP1 ~ 40) were identified and characterized from moso bamboo genome and divided into three different subfamilies, namely, 7 in TEOSINTE BRANCHED 1 / CYCLOIDEA (TB1/CYC), 14 in CINCINNATA (CIN) and 19 in PROLIFERATING CELL FACTOR (PCF). Subsequently, we analyzed the gene structures and conserved domain of these genes and found that the members from the same subfamilies exhibited similar exon/intron distribution patterns. Selection pressure and gene duplication analysis results indicated that PheTCP genes underwent strong purification selection during evolution. There were many cis-elements related to phytohermone and stress responsive existing in the upstream promoter regions of PheTCP genes, such as ABRE, CGTCA-motif and ARE. Subcellular localization experiments showed that PheTCP9 was a nuclear localized protein. As shown by β-glucuronidase (GUS) activity, the promoter of PheTCP9 was significantly indicated by salt stress. PheTCP9 was significantly induced in the roots, stems and leaves of moso bamboo. It was also significantly induced by NaCl solution. Overexpressing PheTCP9 increased the salt tolerance of transgenic Arabidopsis. Meanwhile, H2O2 and malondialdehyde (MDA) contents were significantly lower in PheTCP9 over expression (OE) transgenic Arabidopsis than WT. Catalase (CAT) activity, K+/Na+ ratio as well as CAT2 expression level was also much improved in transgenic Arabidopsis than WT under salt conditions. In addition, PheTCP9 OE transgenic Arabidopsis held higher survival rates of seedlings than WT under NaCl conditions. These results showed the positive regulation functions of PheTCP9 in plants under salt conditions.
Collapse
Affiliation(s)
- Yuzeng Xu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Linna Wang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Hongxia Liu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Wei He
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Nianqin Jiang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Min Wu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Yan Xiang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
9
|
Wang JL, Wang HW, Cao YN, Kan SL, Liu YY. Comprehensive evolutionary analysis of the TCP gene family: Further insights for its origin, expansion, and diversification. FRONTIERS IN PLANT SCIENCE 2022; 13:994567. [PMID: 36119616 PMCID: PMC9480096 DOI: 10.3389/fpls.2022.994567] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/15/2022] [Indexed: 05/17/2023]
Abstract
TCP proteins are plant-specific transcription factors, which are involved in a broad range of physiological processes of plant growth and development. However, the origin and evolutionary history of this gene family is not fully resolved. Here, we present a genome-wide survey of TCP genes in 59 species (including 42 genomes and 17 transcriptomes) covering all main lineages of green plants, and reconstruct the evolutionary history of this gene family. Our results suggested that the origin of TCP genes predated the emergence of land plants, possibly in the common ancestor of Phragmoplastophyta. The TCP gene family gradually experienced a continuous expansion and grew from a few members in algae, moss and lycophytes to dozens, and sometimes over 50 members in angiosperms. Phylogenetic analysis indicated that at least four subclades (Class I and three subclades of Class II) have been occurred in the ancestor of spermatophyte (seed plant). Both dispersed duplication and segmental duplication or whole-genome duplication (WGD) contributed significantly to the expansion of the TCP gene family over the course of evolution. Our findings provide a comprehensive evolutionary analysis of the TCP gene family and highlight the importance of gene duplications in the evolution of this plant-specific transcription factors.
Collapse
Affiliation(s)
- Jun-Li Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Hong-Wei Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Ya-Nan Cao
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Sheng-Long Kan
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Sheng-Long Kan,
| | - Yan-Yan Liu
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Yan-Yan Liu,
| |
Collapse
|
10
|
Lucibelli F, Valoroso MC, Theißen G, Nolden S, Mondragon-Palomino M, Aceto S. Extending the Toolkit for Beauty: Differential Co-Expression of DROOPING LEAF-Like and Class B MADS-Box Genes during Phalaenopsis Flower Development. Int J Mol Sci 2021; 22:ijms22137025. [PMID: 34209912 PMCID: PMC8268020 DOI: 10.3390/ijms22137025] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/13/2022] Open
Abstract
The molecular basis of orchid flower development is accomplished through a specific regulatory program in which the class B MADS-box AP3/DEF genes play a central role. In particular, the differential expression of four class B AP3/DEF genes is responsible for specification of organ identities in the orchid perianth. Other MADS-box genes (AGL6 and SEP-like) enrich the molecular program underpinning the orchid perianth development, resulting in the expansion of the original “orchid code” in an even more complex gene regulatory network. To identify candidates that could interact with the AP3/DEF genes in orchids, we conducted an in silico differential expression analysis in wild-type and peloric Phalaenopsis. The results suggest that a YABBY DL-like gene could be involved in the molecular program leading to the development of the orchid perianth, particularly the labellum. Two YABBY DL/CRC homologs are present in the genome of Phalaenopsis equestris, PeDL1 and PeDL2, and both express two alternative isoforms. Quantitative real-time PCR analyses revealed that both genes are expressed in column and ovary. In addition, PeDL2 is more strongly expressed the labellum than in the other tepals of wild-type flowers. This pattern is similar to that of the AP3/DEF genes PeMADS3/4 and opposite to that of PeMADS2/5. In peloric mutant Phalaenopsis, where labellum-like structures substitute the lateral inner tepals, PeDL2 is expressed at similar levels of the PeMADS2-5 genes, suggesting the involvement of PeDL2 in the development of the labellum, together with the PeMADS2-PeMADS5 genes. Although the yeast two-hybrid analysis did not reveal the ability of PeDL2 to bind the PeMADS2-PeMADS5 proteins directly, the existence of regulatory interactions is suggested by the presence of CArG-boxes and other MADS-box transcription factor binding sites within the putative promoter of the orchid DL2 gene.
Collapse
Affiliation(s)
- Francesca Lucibelli
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy; (F.L.); (M.C.V.)
| | - Maria Carmen Valoroso
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy; (F.L.); (M.C.V.)
| | - Günter Theißen
- Matthias Schleiden Institute of Genetics, Friedrich Schiller University Jena, 07743 Jena, Germany; (G.T.); (S.N.)
| | - Susanne Nolden
- Matthias Schleiden Institute of Genetics, Friedrich Schiller University Jena, 07743 Jena, Germany; (G.T.); (S.N.)
| | - Mariana Mondragon-Palomino
- Department of Cell Biology and Plant Biochemistry, University of Regensburg, 93040 Regensburg, Germany
- Correspondence: (M.M.-P.); (S.A.)
| | - Serena Aceto
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy; (F.L.); (M.C.V.)
- Correspondence: (M.M.-P.); (S.A.)
| |
Collapse
|
11
|
Shang Y, Yuan L, Di Z, Jia Y, Zhang Z, Li S, Xing L, Qi Z, Wang X, Zhu J, Hua W, Wu X, Zhu M, Li G, Li C. A CYC/TB1-type TCP transcription factor controls spikelet meristem identity in barley. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:7118-7131. [PMID: 32915968 DOI: 10.1093/jxb/eraa416] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 09/09/2020] [Indexed: 05/08/2023]
Abstract
Barley possesses a branchless, spike-shaped inflorescence where determinate spikelets attach directly to the main axis, but the developmental mechanism of spikelet identity remains largely unknown. Here we report the functional analysis of the barley gene BRANCHED AND INDETERMINATE SPIKELET 1 (BDI1), which encodes a TCP transcription factor and plays a crucial role in determining barley inflorescence architecture and spikelet development. The bdi1 mutant exhibited indeterminate spikelet meristems that continued to grow and differentiate after producing a floret meristem; some spikelet meristems at the base of the spike formed two fully developed seeds or converted to branched spikelets, producing a branched inflorescence. Map-based cloning analysis showed that this mutant has a deletion of ~600 kb on chromosome 5H containing three putative genes. Expression analysis and virus-induced gene silencing confirmed that the causative gene, BDI1, encodes a CYC/TB1-type TCP transcription factor and is highly conserved in both wild and cultivated barley. Transcriptome and regulatory network analysis demonstrated that BDI1 may integrate regulation of gene transcription cell wall modification and known trehalose-6-phosphate homeostasis to control spikelet development. Together, our findings reveal that BDI1 represents a key regulator of inflorescence architecture and meristem determinacy in cereal crop plants.
Collapse
Affiliation(s)
- Yi Shang
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, China
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Lu Yuan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/ JCIC-MCP, Nanjing, Jiangsu, China
| | - Zhaocan Di
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/ JCIC-MCP, Nanjing, Jiangsu, China
| | - Yong Jia
- Western Barley Genetics Alliance, Murdoch University, Murdoch WA, Australia
| | - Zhenlan Zhang
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, China
| | - Sujuan Li
- Central Laboratory of Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Liping Xing
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/ JCIC-MCP, Nanjing, Jiangsu, China
| | - Zengjun Qi
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/ JCIC-MCP, Nanjing, Jiangsu, China
| | - Xiaoyun Wang
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jinghuan Zhu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Wei Hua
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Xiaojian Wu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Minqiu Zhu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/ JCIC-MCP, Nanjing, Jiangsu, China
| | - Gang Li
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
- School of Agriculture, Food, and Wine, University of Adelaide, Waite campus, Urrbrae, South Australia, Australia
| | - Chengdao Li
- Western Barley Genetics Alliance, Murdoch University, Murdoch WA, Australia
- Hubei Collaborative Innovation Centre for Grain Industry, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
12
|
COMPOSITUM 1 contributes to the architectural simplification of barley inflorescence via meristem identity signals. Nat Commun 2020; 11:5138. [PMID: 33046693 PMCID: PMC7550572 DOI: 10.1038/s41467-020-18890-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 09/15/2020] [Indexed: 11/23/2022] Open
Abstract
Grasses have varying inflorescence shapes; however, little is known about the genetic mechanisms specifying such shapes among tribes. Here, we identify the grass-specific TCP transcription factor COMPOSITUM 1 (COM1) expressing in inflorescence meristematic boundaries of different grasses. COM1 specifies branch-inhibition in barley (Triticeae) versus branch-formation in non-Triticeae grasses. Analyses of cell size, cell walls and transcripts reveal barley COM1 regulates cell growth, thereby affecting cell wall properties and signaling specifically in meristematic boundaries to establish identity of adjacent meristems. COM1 acts upstream of the boundary gene Liguleless1 and confers meristem identity partially independent of the COM2 pathway. Furthermore, COM1 is subject to purifying natural selection, thereby contributing to specification of the spike inflorescence shape. This meristem identity pathway has conceptual implications for both inflorescence evolution and molecular breeding in Triticeae. Grasses have diverse inflorescence morphologies, but the underlying genetic mechanisms are unclear. Here, the authors report a TCP transcription factor COM1 affects cell growth through regulation of cell wall properties and promotes branch formation in non-Triticeae grasses but branch inhibition in barley (Triticeae).
Collapse
|
13
|
Pabón-Mora N, Madrigal Y, Alzate JF, Ambrose BA, Ferrándiz C, Wanke S, Neinhuis C, González F. Evolution of Class II TCP genes in perianth bearing Piperales and their contribution to the bilateral calyx in Aristolochia. THE NEW PHYTOLOGIST 2020; 228:752-769. [PMID: 32491205 DOI: 10.1111/nph.16719] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/20/2020] [Indexed: 05/21/2023]
Abstract
Controlled spatiotemporal cell division and expansion are responsible for floral bilateral symmetry. Genetic studies have pointed to class II TCP genes as major regulators of cell division and floral patterning in model core eudicots. Here we study their evolution in perianth-bearing Piperales and their expression in Aristolochia, a rare occurrence of bilateral perianth outside eudicots and monocots. The evolution of class II TCP genes reveals single-copy CYCLOIDEA-like genes and three paralogs of CINCINNATA (CIN) in early diverging angiosperms. All class II TCP genes have independently duplicated in Aristolochia subgenus Siphisia. Also CIN2 genes duplicated before the diversification of Saruma and Asarum. Sequence analysis shows that CIN1 and CIN3 share motifs with Cyclin proteins and CIN2 genes have lost the miRNA319a binding site. Expression analyses of all paralogs of class II TCP genes in Aristolochia fimbriata point to a role of CYC and CIN genes in maintaining differential perianth expansion during mid- and late flower developmental stages by promoting cell division in the distal and ventral portion of the limb. It is likely that class II TCP genes also contribute to cell division in the leaf, the gynoecium and the ovules in A. fimbriata.
Collapse
Affiliation(s)
- Natalia Pabón-Mora
- Instituto de Biología, Universidad de Antioquia, Medellín, 050010, Colombia
- Technische Universität Dresden, Institut für Botanik, Dresden, 01062, Germany
| | - Yesenia Madrigal
- Instituto de Biología, Universidad de Antioquia, Medellín, 050010, Colombia
| | - Juan F Alzate
- Facultad de Medicina, Universidad de Antioquia, Medellín, 050010, Colombia
| | | | - Cristina Ferrándiz
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas - Universitat Politècnica de València, Valencia, 46022, Spain
| | - Stefan Wanke
- Technische Universität Dresden, Institut für Botanik, Dresden, 01062, Germany
| | - Christoph Neinhuis
- Technische Universität Dresden, Institut für Botanik, Dresden, 01062, Germany
| | - Favio González
- Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, 111321, Colombia
| |
Collapse
|
14
|
Chen HW, Lee PL, Wang CN, Hsu HJ, Chen JC. Silencing of PhLA, a CIN-TCP gene, causes defected petal conical epidermal cell formation and results in reflexed corolla lobes in petunia. BOTANICAL STUDIES 2020; 61:24. [PMID: 32940820 PMCID: PMC7498528 DOI: 10.1186/s40529-020-00300-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 09/07/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND TCP-domain proteins, plant specific transcription factors, play important roles in various developmental processes. CIN-TCPs control leaf curvature in simple leaf species while regulate leaf complexity in compound leaf species. However, the knowledge was largely based on findings in few model species. To extend our knowledge on this group of proteins in Solanaceae species, we identified a CIN-TCP gene from petunia, and studied its functions using virus-induced gene silencing (VIGS). RESULTS Consistently, silencing of CIN-TCPs increases complexity of tomato leaves, and enhances leaf curvature in Nicotiana benthamiana. However, in petunia (Petunia hybrida), silencing of petunia LA, a CIN-TCP, through VIGS did not obviously affect leaf shape. The silencing, however, enhanced petal curvature. The event was associated with petal expansion at the distal portion where epidermal cell size along the midribs was also increased. The enlarged epidermal cells became flattened. Although shapes of PhLA-silenced flowers largely resemble phmyb1 mutant phenotype, PhMYB1 expression was not affected when PhLA was specifically silenced. Therefore, both PhLA and PhMYB1 are required to regulate flower morphology. In corolla, PhLA and miR319 deferentially express in different regions with strong expressions in limb and tube region respectively. CONCLUSIONS In conclusion, unlike LA-like genes in tomato and N. benthamiana, PhLA plays a more defined role in flower morphogenesis, including petal curvature and epidermal cell differentiation.
Collapse
Affiliation(s)
- Hsiao-Wei Chen
- Department of Agronomy, National Taiwan University, Taipei, 106, Taiwan, ROC
| | - Po-Lun Lee
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan, ROC
| | - Chun-Neng Wang
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, 106, Taiwan, ROC
- Department of Life Science, National Taiwan University, Taipei, 106, Taiwan, ROC
| | - Hui-Ju Hsu
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan, ROC
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, 106, Taiwan, ROC
| | - Jen-Chih Chen
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan, ROC.
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan, ROC.
| |
Collapse
|
15
|
The Regulation of CIN-like TCP Transcription Factors. Int J Mol Sci 2020; 21:ijms21124498. [PMID: 32599902 PMCID: PMC7349945 DOI: 10.3390/ijms21124498] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/18/2020] [Accepted: 06/20/2020] [Indexed: 01/07/2023] Open
Abstract
TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR 1 and 2 (TCP) family proteins are the plant-specific transcription factors extensively participating in diverse developmental processes by integrating external cues with internal signals. The roles of CINCINNATA (CIN)-like TCPs are conserved in control of the morphology and size of leaves, petal development, trichome formation and plant flowering. The tight regulation of CIN-like TCP activity at transcriptional and post-transcriptional levels are central for plant developmental plasticity in response to the ever-changing environmental conditions. In this review, we summarize recent progresses with regard to the function and regulation of CIN-like TCPs. CIN-like TCPs are regulated by abiotic and biotic cues including light, temperature and pathogens. They are also finely controlled by microRNA319 (miRNA319), chromatin remodeling complexes and auxin homeostasis. The protein degradation plays critical roles in tightly controlling the activity of CIN-like TCPs as well.
Collapse
|
16
|
Liu MM, Wang MM, Yang J, Wen J, Guo PC, Wu YW, Ke YZ, Li PF, Li JN, Du H. Evolutionary and Comparative Expression Analyses of TCP Transcription Factor Gene Family in Land Plants. Int J Mol Sci 2019; 20:E3591. [PMID: 31340456 PMCID: PMC6679135 DOI: 10.3390/ijms20143591] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/15/2019] [Accepted: 07/19/2019] [Indexed: 01/01/2023] Open
Abstract
The plant-specific Teosinte-branched 1/Cycloidea/Proliferating (TCP) transcription factor genes are involved in plants' development, hormonal pathways, and stress response but their evolutionary history is uncertain. The genome-wide analysis performed here for 47 plant species revealed 535 TCP candidates in terrestrial plants and none in aquatic plants, and that TCP family genes originated early in the history of land plants. Phylogenetic analysis divided the candidate genes into Classes I and II, and Class II was further divided into CYCLOIDEA (CYC) and CINCINNATA (CIN) clades; CYC is more recent and originated from CIN in angiosperms. Protein architecture, intron pattern, and sequence characteristics were conserved in each class or clade supporting this classification. The two classes significantly expanded through whole-genome duplication during evolution. Expression analysis revealed the conserved expression of TCP genes from lower to higher plants. The expression patterns of Class I and CIN genes in different stages of the same tissue revealed their function in plant development and their opposite effects in the same biological process. Interaction network analysis showed that TCP proteins tend to form protein complexes, and their interaction networks were conserved during evolution. These results contribute to further functional studies on TCP family genes.
Collapse
Affiliation(s)
- Ming-Ming Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Mang-Mang Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Jin Yang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Jing Wen
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Peng-Cheng Guo
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Yun-Wen Wu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Yun-Zhuo Ke
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Peng-Feng Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Jia-Na Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Hai Du
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China.
| |
Collapse
|
17
|
Genome-Wide Analysis of TCP Family Genes in Zea mays L. Identified a Role for ZmTCP42 in Drought Tolerance. Int J Mol Sci 2019; 20:ijms20112762. [PMID: 31195663 PMCID: PMC6600213 DOI: 10.3390/ijms20112762] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 11/26/2022] Open
Abstract
The Teosinte-branched 1/Cycloidea/Proliferating (TCP) plant-specific transcription factors (TFs) have been demonstrated to play a fundamental role in plant development and organ patterning. However, it remains unknown whether or not the TCP gene family plays a role in conferring a tolerance to drought stress in maize, which is a major constraint to maize production. In this study, we identified 46 ZmTCP genes in the maize genome and systematically analyzed their phylogenetic relationships and synteny with rice, sorghum, and ArabidopsisTCP genes. Expression analysis of the 46 ZmTCP genes in different tissues and under drought conditions, suggests their involvement in maize response to drought stress. Importantly, genetic variations in ZmTCP32 and ZmTCP42 are significantly associated with drought tolerance at the seedling stage. RT-qPCR results suggest that ZmTCP32 and ZmTCP42 RNA levels are both induced by ABA, drought, and polyethylene glycol treatments. Based on the significant association between the genetic variation of ZmTCP42 and drought tolerance, and the inducible expression of ZmTCP42 by drought stress, we selected ZmTCP42, to investigate its function in drought response. We found that overexpression of ZmTCP42 in Arabidopsis led to a hypersensitivity to ABA in seed germination and enhanced drought tolerance, validating its function in drought tolerance. These results suggested that ZmTCP42 functions as an important TCP TF in maize, which plays a positive role in drought tolerance.
Collapse
|
18
|
Liu HL, Wu M, Li F, Gao YM, Chen F, Xiang Y. TCP Transcription Factors in Moso Bamboo ( Phyllostachys edulis): Genome-Wide Identification and Expression Analysis. FRONTIERS IN PLANT SCIENCE 2018; 9:1263. [PMID: 30344527 PMCID: PMC6182085 DOI: 10.3389/fpls.2018.01263] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 08/10/2018] [Indexed: 05/18/2023]
Abstract
TEOSINTE BRANCHED 1, CYCLOIDEA, and PROLIFERATING CELL FACTORS (T), members of a plant-specific gene family, play significant roles during plant growth and development, as well as in response to environmental stress. However, knowledge about this family in moso bamboo (Phyllostachys edulis) is limited. Therefore, in this study, the first genome-wide identification, classification, characterization, and expression pattern analysis of the TCP transcription factor family in moso bamboo was performed. Sixteen TCP members were identified from the moso bamboo genome using a BLASTP algorithm-based method and verified using the Pfam database. Based on a multiple-sequence alignment, the members were divided into two subfamilies, and members of the same family shared highly conserved motif structures. Subcellular localization and transactivation activity analyses of four selected genes revealed that they were nuclear localized and had self-activation activities. Additionally, the expression levels of several PeTCP members were significantly upregulated under abscisic acid, methyl jasmonate, and salicylic acid treatments, indicating that they play crucial plant hormone transduction roles in the processes of plant growth and development, as well as in responses to environmental stresses. Thus, the current study provides previously lacking information on the TCP family in moso bamboo and reveals the potential functions of this gene family in growth and development.
Collapse
Affiliation(s)
- Huan-Long Liu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Min Wu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Fei Li
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Ya-Meng Gao
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Feng Chen
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Yan Xiang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| |
Collapse
|
19
|
Zhao J, Zhai Z, Li Y, Geng S, Song G, Guan J, Jia M, Wang F, Sun G, Feng N, Kong X, Chen L, Mao L, Li A. Genome-Wide Identification and Expression Profiling of the TCP Family Genes in Spike and Grain Development of Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2018; 9:1282. [PMID: 30298074 PMCID: PMC6160802 DOI: 10.3389/fpls.2018.01282] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/16/2018] [Indexed: 05/24/2023]
Abstract
The TCP family genes are plant-specific transcription factors and play important roles in plant development. TCPs have been evolutionarily and functionally studied in several plants. Although common wheat (Triticum aestivum L.) is a major staple crop worldwide, no systematic analysis of TCPs in this important crop has been conducted. Here, we performed a genome-wide survey in wheat and found 66 TCP genes that belonged to 22 homoeologous groups. We then mapped these genes on wheat chromosomes and found that several TCP genes were duplicated in wheat including the ortholog of the maize TEOSINTE BRANCHED 1. Expression study using both RT-PCR and in situ hybridization assay showed that most wheat TCP genes were expressed throughout development of young spike and immature seed. Cis-acting element survey along promoter regions suggests that subfunctionalization may have occurred for homoeologous genes. Moreover, protein-protein interaction experiments of three TCP proteins showed that they can form either homodimers or heterodimers. Finally, we characterized two TaTCP9 mutants from tetraploid wheat. Each of these two mutant lines contained a premature stop codon in the A subgenome homoeolog that was dominantly expressed over the B subgenome homoeolog. We observed that mutation caused increased spike and grain lengths. Together, our analysis of the wheat TCP gene family provides a start point for further functional study of these important transcription factors in wheat.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Long Mao
- *Correspondence: Long Mao, Aili Li,
| | - Aili Li
- *Correspondence: Long Mao, Aili Li,
| |
Collapse
|
20
|
Feng ZJ, Xu SC, Liu N, Zhang GW, Hu QZ, Gong YM. Soybean TCP transcription factors: Evolution, classification, protein interaction and stress and hormone responsiveness. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 127:129-142. [PMID: 29579640 DOI: 10.1016/j.plaphy.2018.03.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/06/2018] [Accepted: 03/19/2018] [Indexed: 05/01/2023]
Abstract
TEOSINTE-BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors, a family of plant-specific proteins, play crucial roles in plant growth and development and stress response. However, systematical information is unknown regarding the TCP gene family in soybean. In the present study, a total of 54 GmTCPs were identified in soybean, which were grouped into 11 groups with the typical TCP conserved domains. Phylogenetic relationship, protein motif and gene structure analyses distinguished the GmTCPs into two homology classes: Class I and Class II. Class II was then differentiated into two subclasses: CIN and CYC/TB1. Unique cis-element number and composition existed in the promoter regions which might be involved in the gene transcriptional regulation of different GmTCPs. Tissue expression analysis demonstrated the diverse spatiotemporal expression profiles of GmTCPs. Furthermore, the interaction protein of one previously functionally unknown TCP protein-GmTCP8 was investigated. Yeast two-hybrid assay showed the interaction between GmTCP8 and an abscisic acid receptor (GmPYL10). QRT-PCR assays indicated the distinct expression profiles of GmTCPs in response to abiotic stresses (heat, drought and salt) and stress-related signals (abscisic acid, brassinolide, salicylicacid and methyl jasmonate). These results will facilitate to uncover the possible roles of GmTCPs under abiotic stress and hormone signal responses in soybean.
Collapse
Affiliation(s)
- Zhi-Juan Feng
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310000, China.
| | - Sheng-Chun Xu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310000, China.
| | - Na Liu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310000, China.
| | - Gu-Wen Zhang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310000, China.
| | - Qi-Zan Hu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310000, China.
| | - Ya-Ming Gong
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310000, China.
| |
Collapse
|
21
|
Valoroso MC, De Paolo S, Iazzetti G, Aceto S. Transcriptome-Wide Identification and Expression Analysis of DIVARICATA- and RADIALIS-Like Genes of the Mediterranean Orchid Orchis italica. Genome Biol Evol 2017; 9:3852528. [PMID: 28541415 PMCID: PMC5499889 DOI: 10.1093/gbe/evx101] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2017] [Indexed: 02/01/2023] Open
Abstract
Bilateral symmetry of flowers is a relevant novelty that has occurred many times throughout the evolution of flowering plants. In Antirrhinum majus, establishment of flower dorso-ventral asymmetry is mainly due to interaction of TCP (CYC and DICH) and MYB (DIV, RAD, and DRIF) transcription factors. In the present study, we characterized 8 DIV-, 4 RAD-, and 2 DRIF-like genes from the transcriptome of Orchis italica, an orchid species with bilaterally symmetric and resupinate flowers. We found a similar number of DIV- and RAD-like genes within the genomes of Phalaenopsis equestris and Dendrobium catenatum orchids. Orchid DIV- and RAD-like proteins share conserved motifs whose distribution reflects their phylogeny and analysis of the genomic organization revealed a single intron containing many traces of transposable elements. Evolutionary analysis has shown that purifying selection acts on the DIV- and RAD-like coding regions in orchids, with relaxation of selective constraints in a branch of the DIV-like genes. Analysis of the expression patterns of DIV- and RAD-like genes in O. italica revealed possible redundant functions for some of them. In the perianth of O. italica, the ortholog of DIV and DRIF of A. majus are expressed in all tissues, whereas RAD is mainly expressed in the outer tepals and lip. These data allow for proposal of an evolutionary conserved model in which the expression of the orthologs of the DIV, RAD, and DRIF genes might be related to establishment of flower bilateral symmetry in the nonmodel orchid species O. italica.
Collapse
Affiliation(s)
| | - Sofia De Paolo
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Giovanni Iazzetti
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Serena Aceto
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
22
|
Madrigal Y, Alzate JF, Pabón-Mora N. Evolution and Expression Patterns of TCP Genes in Asparagales. FRONTIERS IN PLANT SCIENCE 2017; 8:9. [PMID: 28144250 PMCID: PMC5239819 DOI: 10.3389/fpls.2017.00009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/03/2017] [Indexed: 05/09/2023]
Abstract
CYCLOIDEA-like genes are involved in the symmetry gene network, limiting cell proliferation in the dorsal regions of bilateral flowers in core eudicots. CYC-like and closely related TCP genes (acronym for TEOSINTE BRANCHED1, CYCLOIDEA, and PROLIFERATION CELL FACTOR) have been poorly studied in Asparagales, the largest order of monocots that includes both bilateral flowers in Orchidaceae (ca. 25.000 spp) and radially symmetrical flowers in Hypoxidaceae (ca. 200 spp). With the aim of assessing TCP gene evolution in the Asparagales, we isolated TCP-like genes from publicly available databases and our own transcriptomes of Cattleya trianae (Orchidaceae) and Hypoxis decumbens (Hypoxidaceae). Our matrix contains 452 sequences representing the three major clades of TCP genes. Besides the previously identified CYC specific core eudicot duplications, our ML phylogenetic analyses recovered an early CIN-like duplication predating all angiosperms, two CIN-like Asparagales-specific duplications and a duplication prior to the diversification of Orchidoideae and Epidendroideae. In addition, we provide evidence of at least three duplications of PCF-like genes in Asparagales. While CIN-like and PCF-like genes have multiplied in Asparagales, likely enhancing the genetic network for cell proliferation, CYC-like genes remain as single, shorter copies with low expression. Homogeneous expression of CYC-like genes in the labellum as well as the lateral petals suggests little contribution to the bilateral perianth in C. trianae. CIN-like and PCF-like gene expression suggests conserved roles in cell proliferation in leaves, sepals and petals, carpels, ovules and fruits in Asparagales by comparison with previously reported functions in core eudicots and monocots. This is the first large scale analysis of TCP-like genes in Asparagales that will serve as a platform for in-depth functional studies in emerging model monocots.
Collapse
Affiliation(s)
- Yesenia Madrigal
- Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de AntioquiaMedellín, Colombia
| | - Juan F. Alzate
- Centro Nacional de Secuenciación Genómica, Sede de Investigación Universitaria, Facultad de Medicina, Universidad de AntioquiaMedellín, Colombia
| | - Natalia Pabón-Mora
- Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de AntioquiaMedellín, Colombia
| |
Collapse
|
23
|
Moreno-Pachon NM, Leeggangers HACF, Nijveen H, Severing E, Hilhorst H, Immink RGH. Elucidating and mining the Tulipa and Lilium transcriptomes. PLANT MOLECULAR BIOLOGY 2016; 92:249-61. [PMID: 27387304 PMCID: PMC5566170 DOI: 10.1007/s11103-016-0508-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/27/2016] [Indexed: 05/03/2023]
Abstract
Genome sequencing remains a challenge for species with large and complex genomes containing extensive repetitive sequences, of which the bulbous and monocotyledonous plants tulip and lily are examples. In such a case, sequencing of only the active part of the genome, represented by the transcriptome, is a good alternative to obtain information about gene content. In this study we aimed to generate a high quality transcriptome of tulip and lily and to make this data available as an open-access resource via a user-friendly web-based interface. The Illumina HiSeq 2000 platform was applied and the transcribed RNA was sequenced from a collection of different lily and tulip tissues, respectively. In order to obtain good transcriptome coverage and to facilitate effective data mining, assembly was done using different filtering parameters for clearing out contamination and noise of the RNAseq datasets. This analysis revealed limitations of commonly applied methods and parameter settings used in de novo transcriptome assembly. The final created transcriptomes are publicly available via a user friendly Transcriptome browser ( http://www.bioinformatics.nl/bulbs/db/species/index ). The usefulness of this resource has been exemplified by a search for all potential transcription factors in lily and tulip, with special focus on the TCP transcription factor family. This analysis and other quality parameters point out the quality of the transcriptomes, which can serve as a basis for further genomics studies in lily, tulip, and bulbous plants in general.
Collapse
Affiliation(s)
- Natalia M. Moreno-Pachon
- Physiology of Flower Bulbs, Department of Plant Physiology, Wageningen University, Wageningen, Netherlands
| | | | - Harm Nijveen
- Physiology of Flower Bulbs, Department of Plant Physiology, Wageningen University, Wageningen, Netherlands
- Laboratory of Bioinformatics, Wageningen University, Wageningen, Netherlands
| | - Edouard Severing
- Laboratory of Bioinformatics, Wageningen University, Wageningen, Netherlands
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Henk Hilhorst
- Wageningen Seed Laboratory (WSL), Laboratory of Plant Physiology, Wageningen University, Wageningen, Netherlands
| | - Richard G. H. Immink
- Physiology of Flower Bulbs, Department of Plant Physiology, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
24
|
Lin YF, Chen YY, Hsiao YY, Shen CY, Hsu JL, Yeh CM, Mitsuda N, Ohme-Takagi M, Liu ZJ, Tsai WC. Genome-wide identification and characterization of TCP genes involved in ovule development of Phalaenopsis equestris. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5051-66. [PMID: 27543606 PMCID: PMC5014156 DOI: 10.1093/jxb/erw273] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
TEOSINTE-BRANCHED/CYCLOIDEA/PCF (TCP) proteins are plant-specific transcription factors known to have a role in multiple aspects of plant growth and development at the cellular, organ and tissue levels. However, there has been no related study of TCPs in orchids. Here we identified 23 TCP genes from the genome sequence of Phalaenopsis equestris Phylogenetic analysis distinguished two homology classes of PeTCP transcription factor families: classes I and II. Class II was further divided into two subclasses, CIN and CYC/TB1. Spatial and temporal expression analysis showed that PePCF10 was predominantly expressed in ovules at early developmental stages and PeCIN8 had high expression at late developmental stages in ovules, with overlapping expression at day 16 after pollination. Subcellular localization and protein-protein interaction analyses revealed that PePCF10 and PeCIN8 could form homodimers and localize in the nucleus. However, PePCF10 and PeCIN8 could not form heterodimers. In transgenic Arabidopsis thaliana plants (overexpression and SRDX, a super repression motif derived from the EAR-motif of the repression domain of tobacco ETHYLENE-RESPONSIVE ELEMENT-BINDING FACTOR 3 and SUPERMAN, dominantly repressed), the two genes helped regulate cell proliferation. Together, these results suggest that PePCF10 and PeCIN8 play important roles in orchid ovule development by modulating cell division.
Collapse
Affiliation(s)
- Yu-Fu Lin
- Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan, Taiwan
| | - You-Yi Chen
- Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan, Taiwan Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Yun Hsiao
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan Orchid Research and Development Center, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Yu Shen
- Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Jui-Ling Hsu
- Orchid Research and Development Center, National Cheng Kung University, Tainan, Taiwan Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and The Orchid Conservation and Research Center of Shenzhen, Shenzhen, China
| | - Chuan-Ming Yeh
- Division of Strategic Research and Development, Graduate School of Science and Engineering, Satitama University, Saitama, Japan
| | - Nobutaka Mitsuda
- Research Institute of Bioproduction, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Masaru Ohme-Takagi
- Division of Strategic Research and Development, Graduate School of Science and Engineering, Satitama University, Saitama, Japan Research Institute of Bioproduction, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Zhong-Jian Liu
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and The Orchid Conservation and Research Center of Shenzhen, Shenzhen, China The Center for Biotechnology and BioMedicine, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China College of Forestry, South China Agricultural University, Guangzhou, China
| | - Wen-Chieh Tsai
- Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan, Taiwan Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan Orchid Research and Development Center, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
25
|
De Paolo S, Gaudio L, Aceto S. Analysis of the TCP genes expressed in the inflorescence of the orchid Orchis italica. Sci Rep 2015; 5:16265. [PMID: 26531864 PMCID: PMC4632031 DOI: 10.1038/srep16265] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 10/13/2015] [Indexed: 11/09/2022] Open
Abstract
TCP proteins are plant-specific transcription factors involved in many different processes. Because of their involvement in a large number of developmental pathways, their roles have been investigated in various plant species. However, there are almost no studies of this transcription factor family in orchids. Based on the available transcriptome of the inflorescence of the orchid Orchis italica, in the present study we identified 12 transcripts encoding TCP proteins. The phylogenetic analysis showed that they belong to different TCP classes (I and II) and groups (PCF, CIN and CYC/TB1), and that they display a number of conserved motifs when compared with the TCPs of Arabidopsis and Oryza. The presence of a specific cleavage site for the microRNA miRNA319, an important post-transcriptional regulator of several TCP genes in other species, was demonstrated for one transcript of O. italica, and the analysis of the expression pattern of the TCP transcripts in different inflorescence organs and in leaf tissue suggests that some TCP transcripts of O. italica exert their role only in specific tissues, while others may play multiple roles in different tissues. In addition, the evolutionary analysis showed a general purifying selection acting on the coding region of these transcripts.
Collapse
Affiliation(s)
- Sofia De Paolo
- Department of Biology, University of Naples Federico II, Napoli, Italy
| | - Luciano Gaudio
- Department of Biology, University of Naples Federico II, Napoli, Italy
| | - Serena Aceto
- Department of Biology, University of Naples Federico II, Napoli, Italy
| |
Collapse
|
26
|
Horn S, Pabón-Mora N, Theuß VS, Busch A, Zachgo S. Analysis of the CYC/TB1 class of TCP transcription factors in basal angiosperms and magnoliids. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:559-71. [PMID: 25557238 DOI: 10.1111/tpj.12750] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/28/2014] [Accepted: 12/02/2014] [Indexed: 05/08/2023]
Abstract
Flower monosymmetry contributes to specialized interactions between plants and their insect pollinators. In the magnoliids, flower monosymmetry is exhibited only in the Aristolochiaceae (Piperales). Aristolochia flowers develop a calyx-derived monosymmetric perianth that enhances pollination success by a flytrap mechanism. Aristolochia arborea forms additionally a special perianth outgrowth that mimics a mushroom to attract flies, the mushroom mimicry structure (MMS). In core eudicots, members of the CYC2 clade of TCP transcription factors are key regulators of corolla monosymmetry establishment. The CYC2 clade arose via core eudicot-specific duplications from ancestral CYC/TB1 genes. CYC/TB1 genes are also thought to affect monosymmetry formation in early diverging eudicot and monocot species. Here, we demonstrate that CYC/TB1 genes, named CYC-like genes (CYCL) are present in basal angiosperms and magnoliids. Expression analyses in A. arborea indicate that CYCL genes participate in perianth and MMS differentiation processes and do not support a CYCL gene function in initial flower monosymmetry formation. Heterologous CYCL and CYC2 gene overexpression studies in Arabidopsis show that Aristolochia CYCL proteins only perform a CYC2-like function when the CYCL TCP domain is replaced by a CYC2 domain. Comparative TCP domain analyses revealed that an LxxLL motif, known to mediate protein-protein interactions, evolved in the second helix of the TCP domain in the CYC2 lineage and contributes to CYC2-related functions. Our data imply that divergent evolution of the CYC/TB1 lineages caused significant changes in their coding regions, which together with cis-regulatory changes established the key CYC2 function in regulating eudicot flower monosymmetry.
Collapse
Affiliation(s)
- Stefanie Horn
- Botany Department, Osnabrück University, 49076, Osnabrück, Germany
| | | | | | | | | |
Collapse
|
27
|
Zhao J, Favero DS, Qiu J, Roalson EH, Neff MM. Insights into the evolution and diversification of the AT-hook Motif Nuclear Localized gene family in land plants. BMC PLANT BIOLOGY 2014; 14:266. [PMID: 25311531 PMCID: PMC4209074 DOI: 10.1186/s12870-014-0266-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 09/25/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND Members of the ancient land-plant-specific transcription factor AT-Hook Motif Nuclear Localized (AHL) gene family regulate various biological processes. However, the relationships among the AHL genes, as well as their evolutionary history, still remain unexplored. RESULTS We analyzed over 500 AHL genes from 19 land plant species, ranging from the early diverging Physcomitrella patens and Selaginella to a variety of monocot and dicot flowering plants. We classified the AHL proteins into three types (Type-I/-II/-III) based on the number and composition of their functional domains, the AT-hook motif(s) and PPC domain. We further inferred their phylogenies via Bayesian inference analysis and predicted gene gain/loss events throughout their diversification. Our analyses suggested that the AHL gene family emerged in embryophytes and further evolved into two distinct clades, with Type-I AHLs forming one clade (Clade-A), and the other two types together diversifying in another (Clade-B). The two AHL clades likely diverged before the separation of Physcomitrella patens from the vascular plant lineage. In angiosperms, Clade-A AHLs expanded into 5 subfamilies; while, the ones in Clade-B expanded into 4 subfamilies. Examination of their expression patterns suggests that the AHLs within each clade share similar expression patterns with each other; however, AHLs in one monophyletic clade exhibit distinct expression patterns from the ones in the other clade. Over-expression of a Glycine max AHL PPC domain in Arabidopsis thaliana recapitulates the phenotype observed when over-expressing its Arabidopsis thaliana counterpart. This result suggests that the AHL genes from different land plant species may share conserved functions in regulating plant growth and development. Our study further suggests that such functional conservation may be due to conserved physical interactions among the PPC domains of AHL proteins. CONCLUSIONS Our analyses reveal a possible evolutionary scenario for the AHL gene family in land plants, which will facilitate the design of new studies probing their biological functions. Manipulating the AHL genes has been suggested to have tremendous effects in agriculture through increased seedling establishment, enhanced plant biomass and improved plant immunity. The information gleaned from this study, in turn, has the potential to be utilized to further improve crop production.
Collapse
Affiliation(s)
- Jianfei Zhao
- />Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164 USA
- />Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164 USA
- />Present Address: Department of Biology, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - David S Favero
- />Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164 USA
- />Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164 USA
| | - Jiwen Qiu
- />Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164 USA
| | - Eric H Roalson
- />Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164 USA
- />School of Biological Sciences, Washington State University, Pullman, WA 99164 USA
| | - Michael M Neff
- />Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164 USA
- />Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164 USA
| |
Collapse
|
28
|
Jabbour F, Cossard G, Le Guilloux M, Sannier J, Nadot S, Damerval C. Specific duplication and dorsoventrally asymmetric expression patterns of Cycloidea-like genes in zygomorphic species of Ranunculaceae. PLoS One 2014; 9:e95727. [PMID: 24752428 PMCID: PMC3994137 DOI: 10.1371/journal.pone.0095727] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 03/28/2014] [Indexed: 11/23/2022] Open
Abstract
Floral bilateral symmetry (zygomorphy) has evolved several times independently in angiosperms from radially symmetrical (actinomorphic) ancestral states. Homologs of the Antirrhinum majus Cycloidea gene (Cyc) have been shown to control floral symmetry in diverse groups in core eudicots. In the basal eudicot family Ranunculaceae, there is a single evolutionary transition from actinomorphy to zygomorphy in the stem lineage of the tribe Delphinieae. We characterized Cyc homologs in 18 genera of Ranunculaceae, including the four genera of Delphinieae, in a sampling that represents the floral morphological diversity of this tribe, and reconstructed the evolutionary history of this gene family in Ranunculaceae. Within each of the two RanaCyL (Ranunculaceae Cycloidea-like) lineages previously identified, an additional duplication possibly predating the emergence of the Delphinieae was found, resulting in up to four gene copies in zygomorphic species. Expression analyses indicate that the RanaCyL paralogs are expressed early in floral buds and that the duration of their expression varies between species and paralog class. At most one RanaCyL paralog was expressed during the late stages of floral development in the actinomorphic species studied whereas all paralogs from the zygomorphic species were expressed, composing a species-specific identity code for perianth organs. The contrasted asymmetric patterns of expression observed in the two zygomorphic species is discussed in relation to their distinct perianth architecture.
Collapse
Affiliation(s)
- Florian Jabbour
- Université Paris-Sud, UMR 0320/UMR 8120, Génétique Végétale, Gif-sur-Yvette, France
- Université Paris-Sud, Laboratoire Ecologie, Systématique, Evolution, CNRS UMR 8079, AgroParisTech, Orsay, France
- Systematic Botany and Mycology, University of Munich (LMU), Munich, Germany
- Muséum National d'Histoire Naturelle, Institut de Systématique, Evolution, Biodiversité, UMR 7205 ISYEB MNHN-CNRS-UPMC-EPHE, Paris, France
| | - Guillaume Cossard
- Université Paris-Sud, Laboratoire Ecologie, Systématique, Evolution, CNRS UMR 8079, AgroParisTech, Orsay, France
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| | | | - Julie Sannier
- Université Paris-Sud, Laboratoire Ecologie, Systématique, Evolution, CNRS UMR 8079, AgroParisTech, Orsay, France
| | - Sophie Nadot
- Université Paris-Sud, Laboratoire Ecologie, Systématique, Evolution, CNRS UMR 8079, AgroParisTech, Orsay, France
| | - Catherine Damerval
- CNRS, UMR 0320/UMR 8120, Génétique Végétale, Gif-sur-Yvette, France
- * E-mail:
| |
Collapse
|
29
|
Combining phylogenetic and syntenic analyses for understanding the evolution of TCP ECE genes in eudicots. PLoS One 2013; 8:e74803. [PMID: 24019982 PMCID: PMC3760840 DOI: 10.1371/journal.pone.0074803] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 08/05/2013] [Indexed: 11/24/2022] Open
Abstract
TCP ECE genes encode transcription factors which have received much attention for their repeated recruitment in the control of floral symmetry in core eudicots, and more recently in monocots. Major duplications of TCP ECE genes have been described in core eudicots, but the evolutionary history of this gene family is unknown in basal eudicots. Reconstructing the phylogeny of ECE genes in basal eudicots will help set a framework for understanding the functional evolution of these genes. TCP ECE genes were sequenced in all major lineages of basal eudicots and Gunnera which belongs to the sister clade to all other core eudicots. We show that in these lineages they have a complex evolutionary history with repeated duplications. We estimate the timing of the two major duplications already identified in the core eudicots within a timeframe before the divergence of Gunnera and after the divergence of Proteales. We also use a synteny-based approach to examine the extent to which the expansion of TCP ECE genes in diverse eudicot lineages may be due to genome-wide duplications. The three major core-eudicot specific clades share a number of collinear genes, and their common evolutionary history may have originated at the γ event. Genomic comparisons in Arabidopsis thaliana and Solanumlycopersicum highlight their separate polyploid origin, with syntenic fragments with and without TCP ECE genes showing differential gene loss and genomic rearrangements. Comparison between recently available genomes from two basal eudicots Aquilegiacoerulea and Nelumbonucifera suggests that the two TCP ECE paralogs in these species are also derived from large-scale duplications. TCP ECE loci from basal eudicots share many features with the three main core eudicot loci, and allow us to infer the makeup of the ancestral eudicot locus.
Collapse
|
30
|
Damerval C, Citerne H, Le Guilloux M, Domenichini S, Dutheil J, Ronse de Craene L, Nadot S. Asymmetric morphogenetic cues along the transverse plane: shift from disymmetry to zygomorphy in the flower of Fumarioideae. AMERICAN JOURNAL OF BOTANY 2013; 100:391-402. [PMID: 23378492 DOI: 10.3732/ajb.1200376] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
PREMISE OF THE STUDY Zygomorphy has evolved multiple times in angiosperms. Near-actinomorphy is the ancestral state in the early diverging eudicot family Papaveraceae. Zygomorphy evolved once in the subfamily Fumarioideae from a disymmetric state. Unusual within angiosperms, zygomorphy takes place along the transverse plane of the flower. METHODS We investigated floral development to understand the developmental bases of the evolution of floral symmetry in Papaveraceae. We then assessed the expression of candidate genes for the key developmental events responsible for the shift from disymmetry to transverse zygomorphy, namely CrabsClaw for nectary formation (PapCRC), ShootMeristemless (PapSTL) for spur formation, and Cycloidea (PapCYL) for growth control. KEY RESULTS We found that an early disymmetric groundplan is common to all species studied, and that actinomorphy was acquired after sepal initiation in Papaveroideae. The shift from disymmetry to zygomorphy in Fumarioideae was associated with early asymmetric growth of stamen filaments, followed by asymmetric development of nectary outgrowth and spur along the transverse plane. Patterns of PapSTL expression could not be clearly related to spur formation. PapCRC and PapCYL genes were expressed in the nectary outgrowths, with a pattern of expression correlated with asymmetric nectary development in the zygomorphic species. Additionally, PapCYL genes were found asymmetrically expressed along the transverse plane in the basal region of outer petals in the zygomorphic species. CONCLUSION Genes of PapCRC and PapCYL families could be direct or indirect targets of the initial transversally asymmetric cue responsible for the shift from disymmetry to zygomorphy in Fumarioideae.
Collapse
Affiliation(s)
- Catherine Damerval
- UMR de Génétique Végétale, CNRS/Université Paris-Sud/INRA, Ferme du Moulon 91190 Gif-sur-Yvette, France.
| | | | | | | | | | | | | |
Collapse
|
31
|
Airoldi CA, Davies B. Gene Duplication and the Evolution of Plant MADS-box Transcription Factors. J Genet Genomics 2012; 39:157-65. [DOI: 10.1016/j.jgg.2012.02.008] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 02/14/2012] [Accepted: 02/15/2012] [Indexed: 11/17/2022]
|
32
|
Preston JC, Hileman LC. Parallel evolution of TCP and B-class genes in Commelinaceae flower bilateral symmetry. EvoDevo 2012; 3:6. [PMID: 22394484 PMCID: PMC3359255 DOI: 10.1186/2041-9139-3-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 03/06/2012] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Flower bilateral symmetry (zygomorphy) has evolved multiple times independently across angiosperms and is correlated with increased pollinator specialization and speciation rates. Functional and expression analyses in distantly related core eudicots and monocots implicate independent recruitment of class II TCP genes in the evolution of flower bilateral symmetry. Furthermore, available evidence suggests that monocot flower bilateral symmetry might also have evolved through changes in B-class homeotic MADS-box gene function. METHODS In order to test the non-exclusive hypotheses that changes in TCP and B-class gene developmental function underlie flower symmetry evolution in the monocot family Commelinaceae, we compared expression patterns of teosinte branched1 (TB1)-like, DEFICIENS (DEF)-like, and GLOBOSA (GLO)-like genes in morphologically distinct bilaterally symmetrical flowers of Commelina communis and Commelina dianthifolia, and radially symmetrical flowers of Tradescantia pallida. RESULTS Expression data demonstrate that TB1-like genes are asymmetrically expressed in tepals of bilaterally symmetrical Commelina, but not radially symmetrical Tradescantia, flowers. Furthermore, DEF-like genes are expressed in showy inner tepals, staminodes and stamens of all three species, but not in the distinct outer tepal-like ventral inner tepals of C. communis. CONCLUSIONS Together with other studies, these data suggest parallel recruitment of TB1-like genes in the independent evolution of flower bilateral symmetry at early stages of Commelina flower development, and the later stage homeotic transformation of C. communis inner tepals into outer tepals through the loss of DEF-like gene expression.
Collapse
Affiliation(s)
- Jill C Preston
- Department of Ecology and Evolutionary Biology, University of Kansas,1200 Sunnyside Avenue, Lawrence, KS 66045, USA
| | - Lena C Hileman
- Department of Ecology and Evolutionary Biology, University of Kansas,1200 Sunnyside Avenue, Lawrence, KS 66045, USA
| |
Collapse
|
33
|
Becker A, Alix K, Damerval C. The evolution of flower development: current understanding and future challenges. ANNALS OF BOTANY 2011; 107:1427-31. [PMID: 21793247 PMCID: PMC3108812 DOI: 10.1093/aob/mcr122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Affiliation(s)
- Annette Becker
- University of Bremen, Evolutionary Developmental Genetics Group, Leobener Str., UFT, 28359 Bremen, Germany
| | | | - Catherine Damerval
- CNRS – UMR 0320/8120 Génétique Végétale INRA/Univ. Paris-Sud/CNRS/AgroParisTech, Ferme du Moulon, F-91190 Gif-sur-Yvette, France
- For correspondence. E-mail
| |
Collapse
|