1
|
Göttlinger T, Pirritano M, Simon M, Fuß J, Lohaus G. Metabolic and transcriptomic analyses of nectaries reveal differences in the mechanism of nectar production between monocots (Ananas comosus) and dicots (Nicotiana tabacum). BMC PLANT BIOLOGY 2024; 24:940. [PMID: 39385091 PMCID: PMC11462711 DOI: 10.1186/s12870-024-05630-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/24/2024] [Indexed: 10/11/2024]
Abstract
BACKGROUND Nectar is offered by numerous flowering plants to attract pollinators. To date, the production and secretion of nectar have been analyzed mainly in eudicots, particularly rosids such as Arabidopsis. However, due to the enormous diversity of flowering plants, further research on other plant species, especially monocots, is needed. Ananas comosus (monocot) is an economically important species that is ideal for such analyses because it produces easily accessible nectar in sufficient quantities. In addition, the analyses were also carried out with Nicotiana tabacum (dicot, asterids) for comparison. RESULTS We performed transcriptome sequencing (RNA-Seq) analyses of the nectaries of Ananas comosus and Nicotiana tabacum, to test whether the mechanisms described for nectar production and secretion in Arabidopsis are also present in these plant species. The focus of these analyses is on carbohydrate metabolism and transport (e.g., sucrose-phosphate synthases, invertases, sucrose synthases, SWEETs and further sugar transporters). In addition, the metabolites were analyzed in the nectar, nectaries and leaves of both plant species to address the question of whether concentration gradients for different metabolites exist between the nectaries and nectar The nectar of N. tabacum contains large amounts of glucose, fructose and sucrose, and the sucrose concentration in the nectar appears to be similar to the sucrose concentration in the nectaries. Nectar production and secretion in this species closely resemble corresponding processes in some other dicots, including sucrose synthesis in nectaries and sucrose secretion by SWEET9. The nectar of A. comosus also contains large amounts of glucose, fructose and sucrose and in this species the sucrose concentration in the nectar appears to be higher than the sucrose concentration in the nectaries. Furthermore, orthologs of SWEET9 generally appear to be absent in A. comosus and other monocots. Therefore, sucrose export by SWEETs from nectaries into nectar can be excluded; rather, other mechanisms, such as active sugar export or exocytosis, are more likely. CONCLUSION The mechanisms of nectar production and secretion in N. tabacum appear to be largely similar to those in other dicots, whereas in the monocotyledonous species A. comosus, different synthesis and transport processes are involved.
Collapse
Affiliation(s)
- Thomas Göttlinger
- Molecular Plant Science/Plant Biochemistry, University of Wuppertal, Wuppertal, Germany.
| | - Marcello Pirritano
- Molecular Cell Biology and Microbiology, University of Wuppertal, Wuppertal, Germany
| | - Martin Simon
- Molecular Cell Biology and Microbiology, University of Wuppertal, Wuppertal, Germany
| | - Janina Fuß
- Competence Centre for Genomic Analysis, Kiel, Germany
| | - Gertrud Lohaus
- Molecular Plant Science/Plant Biochemistry, University of Wuppertal, Wuppertal, Germany
| |
Collapse
|
2
|
Menon A, Pandurangan Maragatham V, Samuel M, Arunraj R. Properties and applications of α-galactosidase in agricultural waste processing and secondary agricultural process industries. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:21-31. [PMID: 37555350 DOI: 10.1002/jsfa.12911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/09/2023] [Accepted: 08/09/2023] [Indexed: 08/10/2023]
Abstract
Agriculture products form the foundation building blocks of our daily lives. Although they have been claimed to be renewable resources with a low carbon footprint, the agricultural community is constantly challenged to overcome two post-harvest bottlenecks: first, farm bio-waste, a substantial economic and environmental burden to the farming sector, and second, an inefficient agricultural processing sector, plagued by the need for significant energy input to generate the products. Both these sectors require extensive processing technologies that are demanding in their energy requirements and expensive. To address these issues, an enzyme(s)-based green chemistry is available to break down complex structures into bio-degradable compounds that source alternate energy with valuable by-products and co-products. α-Galactosidase is a widespread class of glycoside hydroxylases that hydrolyzes α-galactosyl moieties in simple and complex oligo and polysaccharides, glycolipids, and glycoproteins. As a result of its growing importance, in this review we discuss the source of the enzyme, production and purification systems, and enzyme properties. We also elaborate on the enzyme's potential in agricultural bio-waste management, secondary agricultural industries like sugar refining, soymilk derivatives, food and confectionery, and animal feed processing. Insight into this vital enzyme will provide new avenues for less expensive green chemistry-based secondary agricultural processing and agricultural sustainability. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Anindita Menon
- Department of Genetic Engineering, SRM Institute of Science and Technology, College of Engineering and Technology, Kattankulathur, India
| | - Vetriselvi Pandurangan Maragatham
- Department of Genetic Engineering, SRM Institute of Science and Technology, College of Engineering and Technology, Kattankulathur, India
| | - Marcus Samuel
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Rex Arunraj
- Department of Genetic Engineering, SRM Institute of Science and Technology, College of Engineering and Technology, Kattankulathur, India
| |
Collapse
|
3
|
Liu H, Liu X, Zhao Y, Nie J, Yao X, Lv L, Yang J, Ma N, Guo Y, Li Y, Yang X, Lin T, Sui X. Alkaline α-galactosidase 2 (CsAGA2) plays a pivotal role in mediating source-sink communication in cucumber. PLANT PHYSIOLOGY 2022; 189:1501-1518. [PMID: 35357489 PMCID: PMC9237694 DOI: 10.1093/plphys/kiac152] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/07/2022] [Indexed: 05/27/2023]
Abstract
Sugars are necessary for plant growth and fruit development. Cucumber (Cucumis sativus L.) transports sugars, mainly raffinose family oligosaccharides (RFOs), in the vascular bundle. As the dominant sugars in cucumber fruit, glucose and fructose are derived from sucrose, which is the product of RFO hydrolysis by α-galactosidase (α-Gal). Here, we characterized the cucumber alkaline α-galactosidase 2 (CsAGA2) gene and found that CsAGA2 has undergone human selection during cucumber domestication. Further experiments showed that the expression of CsAGA2 increases gradually during fruit development, especially in fruit vasculature. In CsAGA2-RNA interference (RNAi) lines, fruit growth was delayed because of lower hexose production in the peduncle and fruit main vascular bundle (MVB). In contrast, CsAGA2-overexpressing (OE) plants displayed bigger fruits. Functional enrichment analysis of transcriptional data indicated that genes related to sugar metabolism, cell wall metabolism, and hormone signaling were significantly downregulated in the peduncle and fruit MVBs of CsAGA2-RNAi plants. Moreover, downregulation of CsAGA2 also caused negative feedback regulation on source leaves, which was shown by reduced photosynthetic efficiency, fewer plasmodesmata at the surface between mesophyll cell and intermediary cell (IC) or between IC and sieve element, and downregulated gene expression and enzyme activities related to phloem loading, as well as decreased sugar production and exportation from leaves and petioles. The opposite trend was observed in CsAGA2-OE lines. Overall, we conclude that CsAGA2 is essential for cucumber fruit set and development through mediation of sugar communication between sink strength and source activity.
Collapse
Affiliation(s)
| | | | - Yalong Zhao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Jing Nie
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xuehui Yao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Lijun Lv
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Junwei Yang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Ning Ma
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yicong Guo
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yaxin Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xueyong Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tao Lin
- Authors for correspondence: (T.L.); (X.S.)
| | | |
Collapse
|
4
|
Maignan V, Bernay B, Géliot P, Avice JC. Biostimulant impacts of Glutacetine® and derived formulations (VNT1 and VNT4) on the bread wheat grain proteome. J Proteomics 2021; 244:104265. [PMID: 33992839 DOI: 10.1016/j.jprot.2021.104265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/20/2021] [Accepted: 05/10/2021] [Indexed: 11/16/2022]
Abstract
Nitrogen (N) fertilizer is essential to ensure grain yield and quality in bread wheat. Improving N use efficiency is therefore crucial for wheat grain protein quality. In the present work, we analysed the effects on the winter wheat grain proteome of biostimulants containing Glutacetine® or two derived formulations (VNT1 and 4) when mixed with urea-ammonium-nitrate fertilizer. A large-scale quantitative proteomics analysis of two wheat flour fractions produced a dataset of 4369 identified proteins. Quantitative analysis revealed 9, 39 and 96 proteins with a significant change in abundance after Glutacetine®, VNT1 and VNT4 treatments, respectively, with a common set of 11 proteins that were affected by two different biostimulants. The major effects impacted proteins involved in (i) protein synthesis regulation (mainly ribosomal and binding proteins), (ii) defence and responses to stresses (including chitin-binding protein, heat shock 70 kDa protein 1 and glutathione S-transferase proteins), (iii) storage functions related to gluten protein alpha-gliadins and starch synthase and (iv) seed development with proteins implicated in protease activity, energy machinery, and the C and N metabolism pathways. Altogether, our study showed that Glutacetine®, VNT1 and VNT4 biostimulants positively affected protein composition related to grain quality. Data are available via ProteomeXchange with identifier PXD021513. SIGNIFICANCE: We performed a large-scale quantitative proteomics study of the total protein extracts from flour samples to determine the effect of Glutacetine®-based biostimulants treatment on the protein composition of bread wheat grain. To our knowledge, only a few studies in the literature have applied proteomic approaches to study bread wheat grains and in particular to investigate the effect of biostimulants on the grain proteome of this cereal crop. In addition, most approaches used fractional extraction of proteins to target reserve proteins followed electrophoresis which leads to low identification rate of proteins. We identified and quantified a large protein dataset of 4369 proteins and determined ontological class of proteins affected by biostimulants treatments. Our proteomics investigation revealed the important role of these new biostimulants in achieving significant changes in protein synthesis regulation, storage functions, protease activity, energy machinery, C and N metabolism pathways and responses to biotic and abiotic stresses in grain.
Collapse
Affiliation(s)
- Victor Maignan
- Normandie Univ, UNICAEN, INRAE, UMR EVA, SFR Normandie Végétal FED4277, Esplanade de la Paix, F-14032 Caen, France; Via Végétale, 44430 Le Loroux-Bottereau, France.
| | - Benoit Bernay
- Plateforme Proteogen, SFR ICORE 4206, Université de Caen Basse-Normandie, Esplanade de la paix, 14032 Caen cedex, France
| | | | - Jean-Christophe Avice
- Normandie Univ, UNICAEN, INRAE, UMR EVA, SFR Normandie Végétal FED4277, Esplanade de la Paix, F-14032 Caen, France
| |
Collapse
|
5
|
Popova V, Ivanova T, Stoyanova A, Nikolova V, Hristeva T, Zheljazkov VD. GC-MS Composition and Olfactory Profile of Concretes from the Flowers of Four Nicotiana Species. Molecules 2020; 25:E2617. [PMID: 32512824 PMCID: PMC7321308 DOI: 10.3390/molecules25112617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 11/29/2022] Open
Abstract
The genus Nicotiana (Solanaceae) includes over 70 species, with a long history of traditional use; many of them are nowadays used in bioengineering, biosynthesis, molecular biology, and other studies, while common tobacco, N. tabacum L., is one of the most economically important industrial crops worldwide. Although Nicotiana species have been extensively investigated, relatively less research has focused on flowers, especially research related to obtaining aromatic products for cosmetic and perfumery use. On the other hand, there is evidence that Nicotiana flowers accumulate various secondary metabolites with a distinct aroma and biological activities, and the flowers represent a biomass available in sufficient quantities. Therefore, this study aimed to determinate the chemical composition (by GC-MS) and the olfactory profiles of a specific type of natural aromatic product (concrete), obtained from the flowers of four Nicotiana species, in a direct comparison between them. The yields of extracted concrete were sufficiently high, varying between the species, 1.4% (N. rustica L.), 2.5% (N. glutinosa L.), 1.6% (N. alata Link&Otto genotype with white flowers), 2.7% (N. alata genotype with pink flowers), 3.2% (N. tabacum, Oriental type), and 5.2% (N. tabacum, Virginia type). The major components of the obtained concretes belonged to different chemical classes: N. rustica and N. tabacum (OR), the hydrocarbons n-tetratriacontane (14.5%; 15.0%) and n-triacontane (12.1%; 13.3%), and 3-methyl-pentanoic acid (11.1%; 12.2%); N. glutinosa, the diterpenes sclareol (25.9%), 3-α-hydroxy-manool (16.3%), and 13-epimanool (14.9%); N. alata (WF), the phenylpropanoid terephthalic acid and di(2-ethylhexyl) ester (42.9%); N. alata (PF), the diterpene tributyl acetylcitrate (30.7%); and N. tabacum (FCV), the hydrocarbons n-hexacosane (12.9%) and n-pentacosane (12.9%). Each of the flower concretes revealed a characteristic odor profile. This is the first report about Nicotiana species as a source for obtaining flower concretes; these initial results about the concrete yield, olfactory profile, and chemical composition are a prerequisite for the possible processing of Nicotiana flowers into new aromatic products for use in perfumery and cosmetics. The study provides new data in favor of the potential of the four Nicotiana species as aromatic plants, as well as a possible alternative use of flowers, a valuable, but discarded, plant material in other applications.
Collapse
Affiliation(s)
- Venelina Popova
- Department of Tobacco, Sugar, Vegetable and Essential Oils, University of Food Technologies, 4002 Plovdiv, Bulgaria; (V.P.); (T.I.); (A.S.)
| | - Tanya Ivanova
- Department of Tobacco, Sugar, Vegetable and Essential Oils, University of Food Technologies, 4002 Plovdiv, Bulgaria; (V.P.); (T.I.); (A.S.)
| | - Albena Stoyanova
- Department of Tobacco, Sugar, Vegetable and Essential Oils, University of Food Technologies, 4002 Plovdiv, Bulgaria; (V.P.); (T.I.); (A.S.)
| | - Violeta Nikolova
- Tobacco and Tobacco Products Institute–Bulgarian Agricultural Academy, 4108 Markovo, Bulgaria; (V.N.); (T.H.)
| | - Tsveta Hristeva
- Tobacco and Tobacco Products Institute–Bulgarian Agricultural Academy, 4108 Markovo, Bulgaria; (V.N.); (T.H.)
| | - Valtcho D. Zheljazkov
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
6
|
Silva F, Guirgis A, von Aderkas P, Borchers CH, Thornburg R. LC-MS/MS based comparative proteomics of floral nectars reveal different mechanisms involved in floral defense of Nicotiana spp., Petunia hybrida and Datura stramonium. J Proteomics 2020; 213:103618. [PMID: 31846763 DOI: 10.1016/j.jprot.2019.103618] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/01/2019] [Accepted: 12/13/2019] [Indexed: 11/19/2022]
Abstract
Tobacco floral nectar (FN) is a biological fluid produced by nectaries composed of sugars, amino acids and proteins called nectarins, involved in the floral defense. FN provides an ideal source of nutrients for microorganisms. Understanding the role of nectar proteins is essential to predict impacts in microbial growth, composition and plants-pollinators interactions. Using LC-MS/MS-based comparative proteomic analysis we identified 22 proteins from P. hybrida, 35 proteins from D. stramonium, and 144 proteins from 23 species of Nicotiana. The data are available at ProteomeXchance (PXD014760). GO analysis and secretory signal prediction demonstrated that defense/stress was the largest group of proteins in the genus Nicotiana. The Nicotiana spp. proteome consisted of 105 exclusive proteins such as lipid transfer proteins (LTPs), Nectar Redox Cycle proteins, proteases inhibitors, and PR-proteins. Analysis by taxonomic sections demonstrated that LTPs were most abundant in Undulatae and Noctiflora, while nectarins were more abundant in Rusticae, Suaveolens, Polydicliae, and Alata sections. Peroxidases (Pox) and chitinases (Chit) were exclusive to P. hybrida, while D. stramonium had only seven unique proteins. Biochemical analysis confirmed these differences. These findings support the hypothesis that, although conserved, there is differential abundance of proteins related to defense/stress which may impact the mechanisms of floral defense. SIGNIFICANCE: This study represents a comparative proteomic analysis of floral nectars of the Nicotiana spp. with two correlated Solanaceous species. Significant differences were identified between the proteome of taxonomic sections providing relevant insights into the group of proteins related to defense/stress associated with Nectar Redox Cycle, antimicrobial proteins and signaling pathways. The activity of FNs proteins is suggested impact the microbial growth. The knowledge about these proteomes provides significant insights into the diversity of proteins secreted in the nectars and the array of mechanisms used by Nicotiana spp. in its floral defense.
Collapse
Affiliation(s)
- FredyA Silva
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Adel Guirgis
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA; Institute of Genetic Engineering and Biotechnology, Menofiya University, Sadat City, Egypt
| | - Patrick von Aderkas
- Centre for Forest Biology, Department of Biology, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Christoph H Borchers
- University of Victoria - Genome BC Proteomics Centre, University of Victoria, Victoria, BC V8P 5C2, Canada; Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 5C2, Canada; Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2, Canada; Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2, Canada
| | - Robert Thornburg
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA.
| |
Collapse
|
7
|
Bhatia S, Singh A, Batra N, Singh J. Microbial production and biotechnological applications of α-galactosidase. Int J Biol Macromol 2019; 150:1294-1313. [PMID: 31747573 DOI: 10.1016/j.ijbiomac.2019.10.140] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/12/2019] [Accepted: 10/15/2019] [Indexed: 12/13/2022]
Abstract
α-Galactosidase, (E.C. 3.2.1.22) is an exoglycosidase that target galactooligosaccharides such as raffinose, melibiose, stachyose and branched polysaccharides like galactomannans and galacto-glucomannans by catalysing the hydrolysis of α-1,6 linked terminal galactose residues. The enzyme has been isolated and characterized from microbial, plant and animal sources. This ubiquitous enzyme possesses physiological significance and immense industrial potential. Optimization of the growth conditions and efficient purification strategies can lead to a significant increase in the enzyme production. To boost commercial productivity, cloning of novel α-galactosidase genes and their heterologous expression in suitable host has gained popularity. Enzyme immobilization leads to its greater reutilization, superior thermostability, pH tolerance and increased activity. The enzyme is well explored in food industry in the removal of raffinose family oligosaccharides (RFOs) in soymilk and sugar crystallization process. It also improves animal feed quality and biomass processing. Applications of the enzyme is in the area of biomedicine includes therapeutic advances in treatment of Fabry disease, blood group conversion and removal of α-gal type immunogenic epitopes in xenotransplantation. With considerable biotechnological applications, this enzyme has been vastly commercialized and holds greater future prospects.
Collapse
Affiliation(s)
- Sonu Bhatia
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Abhinashi Singh
- Department of Biotechnology, G.G.D.S.D. College, Sector-32-C, Chandigarh, India
| | - Navneet Batra
- Department of Biotechnology, G.G.D.S.D. College, Sector-32-C, Chandigarh, India
| | - Jagtar Singh
- Department of Biotechnology, Panjab University, Chandigarh, India.
| |
Collapse
|
8
|
Ma XL, Milne RI, Zhou HX, Song YQ, Fang JY, Zha HG. Proteomics and post-secretory content adjustment of Nicotiana tabacum nectar. PLANTA 2019; 250:1703-1715. [PMID: 31414205 DOI: 10.1007/s00425-019-03258-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 08/08/2019] [Indexed: 06/10/2023]
Abstract
MAIN CONCLUSION The tobacco nectar proteome mainly consists of pathogenesis-related proteins with two glycoproteins. Expression of nectarins was non-synchronous, and not nectary specific. After secretion, tobacco nectar changed from sucrose rich to hexose rich. Floral nectar proteins (nectarins) play important roles in inhibiting microbial growth in nectar, and probably also tailoring nectar chemistry before or after secretion; however, very few plant species have had their nectar proteomes thoroughly investigated. Nectarins from Nicotiana tabacum (NT) were separated using two-dimensional gel electrophoresis and then analysed using mass spectrometry. Seven nectarins were identified: acidic endochitinase, β-xylosidase, α-galactosidase, α-amylase, G-type lectin S-receptor-like serine/threonine-protein kinase, pathogenesis-related protein 5, and early nodulin-like protein 2. An eighth nectarin, a glycoprotein with unknown function, was identified following isolation from NT nectar using a Qproteome total glycoprotein kit, separation by SDS-PAGE, and identification by mass spectrometry. Expression of all identified nectarins, plus four invertase genes, was analysed by qRT PCR; none of these genes had nectary-specific expression, and none had synchronous expression. The total content of sucrose, hexoses, proteins, phenolics, and hydrogen peroxide were determined at different time intervals in secreted nectar, both within the nectar tube (in vivo) and following extraction from it during incubation at 30 °C for up to 40 h in plastic tubes (in vitro). After secretion, the ratio of hexose to sucrose substantially increased for in vivo nectar, but no sugar composition changes were detected in vitro. This implies that sucrose hydrolysis in vivo might be done by fixed apoplastic invertase. Both protein and hydrogen peroxide levels declined in vitro but not in vivo, implying that some factors other than nectarins act to maintain their levels in the flower, after secretion.
Collapse
Affiliation(s)
- Xue-Long Ma
- College of Life and Environment Sciences, Huangshan University, Huangshan, China
| | - Richard I Milne
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, UK
| | - Hong-Xia Zhou
- College of Life and Environment Sciences, Huangshan University, Huangshan, China
| | - Yue-Qin Song
- College of Life and Environment Sciences, Huangshan University, Huangshan, China
| | - Jiang-Yu Fang
- College of Life and Environment Sciences, Huangshan University, Huangshan, China
| | - Hong-Guang Zha
- College of Life and Environment Sciences, Huangshan University, Huangshan, China.
| |
Collapse
|
9
|
Nguyen HTH, Bouteau F, Mazars C, Kuse M, Kawano T. The involvement of calmodulin and protein kinases in the upstream of cytosolic and nucleic calcium signaling induced by hypoosmotic shock in tobacco cells. PLANT SIGNALING & BEHAVIOR 2018; 13:e1494467. [PMID: 30067454 PMCID: PMC6149468 DOI: 10.1080/15592324.2018.1494467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 06/19/2018] [Indexed: 05/21/2023]
Abstract
Changes in Ca2+ concentrations in cytosol ([Ca2+]C) or nucleus ([Ca2+]N) may play some vital roles in plants under hypoosmotic shock (Hypo-OS). Here, we observed that Hypo-OS induces biphasic increases in [Ca2+]C and [Ca2+]N in two tobacco cell lines (BY-2) expressing apoaequorin either in the cytosol or in the nucleus. Both [Ca2+]C and [Ca2+]N were sensitively modulated by the inhibitors of calmodulin and protein kinases, supporting the view that calmodulin suppresses the 1st peaks and and protein kinases enhance 2nd peaks in [Ca2+]C and [Ca2+]N. Data also suggested that the 1st and 2nd events depend on the internal and extracellular Ca2+ sources, respectively.
Collapse
Affiliation(s)
- H. T. H. Nguyen
- Laboratory of Chemical Biology and Bioengineering, Faculty and Graduate School of Environmental Engineering, The University of Kitakyushu, Kitakyushu, Japan
| | - F. Bouteau
- Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain, Université Paris Diderot, Paris, France
- University of Florence LINV Kitakyushu Research Center (LINV@Kitakyushu), Kitakyushu, Japan
- International Photosynthesis Industrialization Research Center, The University of Kitakyushu, Kitakyushu, Japan
| | - C. Mazars
- Laboratoire de Recherches en Sciences Végétales, Université de Toulouse UPS, CNRS UMR, Castanet-Tolosan, France
| | - M. Kuse
- Laboratory of Natural Products Chemistry, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - T. Kawano
- Laboratory of Chemical Biology and Bioengineering, Faculty and Graduate School of Environmental Engineering, The University of Kitakyushu, Kitakyushu, Japan
- University of Florence LINV Kitakyushu Research Center (LINV@Kitakyushu), Kitakyushu, Japan
- International Photosynthesis Industrialization Research Center, The University of Kitakyushu, Kitakyushu, Japan
- Univ. Paris-Diderot, Sorbonne Paris Cité, Paris Interdisciplinary Energy Research Institute (PIERI), Paris, France
| |
Collapse
|
10
|
Zhou HX, Milne RI, Ma XL, Song YQ, Fang JY, Sun H, Zha HG. Characterization of a L-Gulono-1,4-Lactone Oxidase Like Protein in the Floral Nectar of Mucuna sempervirens, Fabaceae. FRONTIERS IN PLANT SCIENCE 2018; 9:1109. [PMID: 30105046 PMCID: PMC6077269 DOI: 10.3389/fpls.2018.01109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/10/2018] [Indexed: 06/08/2023]
Abstract
Floral nectar plays important roles in the interaction between animal-pollinated plants and pollinators. Its components include water, sugars, amino acids, vitamins, and proteins. Growing empirical evidence shows that most of the proteins secreted in nectar (nectarines) are enzymes that can tailor nectar chemistry for their animal mutualists or reduce the growth of microorganisms in nectar. However, to date, the function of many nectarines remains unknown, and very few plant species have had their nectar proteome thoroughly investigated. Mucuna sempervirens (Fabaceae) is a perennial woody vine native to China. Nectarines from this species were separated using two-dimensional gel electrophoresis, and analyzed using mass spectrometry. A L-gulonolactone oxidase like protein (MsGulLO) was detected, and the full length cDNA was cloned: it codes for a protein of 573 amino acids with a predicted signal peptide. MsGulLO has high similarity to L-gulonolactone oxidase 5 (AtGulLO5) in Arabidopsis thaliana, which was suggested to be involved in the pathway of ascorbate biosynthesis; however, both MsGulLO and AtGulLO5 are divergent from animal L-gulonolactone oxidases. MsGulLO was expressed mainly in flowers, and especially in nectary before blooming. However, cloning and gene expression analysis showed that L-galactonolactone dehydrogenase (MsGLDH), a vital enzyme in plant ascorbate biosynthesis, was expressed in all of flowers, roots, stems, and especially leaves. MsGulLO was purified to near homogeneity from raw MS nectar by gel filtration chromatography. The enzyme was determined to be a neutral monomeric protein with an apparent molecular mass of 70 kDa. MsGulLO is not a flavin-containing protein, and has neither L-galactonolactone dehydrogenase activity, nor the L-gulonolactone activity that is usual in animal GulLOs. However, it has weak oxidase activity with the following substrates: L-gulono-1,4-lactone, L -galactono-1,4-lactone, D-gluconic acid-δ-lactone, glucose, and fructose. MsGulLO is suggested to function in hydrogen peroxide generation in nectar but not in plant ascorbate biosynthesis.
Collapse
Affiliation(s)
- Hong-Xia Zhou
- College of Life and Environment Sciences, Huangshan University, Huangshan, China
| | - Richard I. Milne
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Xue-Long Ma
- College of Life and Environment Sciences, Huangshan University, Huangshan, China
| | - Yue-Qin Song
- College of Life and Environment Sciences, Huangshan University, Huangshan, China
| | - Jian-Yu Fang
- College of Life and Environment Sciences, Huangshan University, Huangshan, China
| | - Hang Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Hong-Guang Zha
- College of Life and Environment Sciences, Huangshan University, Huangshan, China
| |
Collapse
|
11
|
Kytidou K, Beekwilder J, Artola M, van Meel E, Wilbers RHP, Moolenaar GF, Goosen N, Ferraz MJ, Katzy R, Voskamp P, Florea BI, Hokke CH, Overkleeft HS, Schots A, Bosch D, Pannu N, Aerts JMFG. Nicotiana benthamiana α-galactosidase A1.1 can functionally complement human α-galactosidase A deficiency associated with Fabry disease. J Biol Chem 2018; 293:10042-10058. [PMID: 29674318 PMCID: PMC6028973 DOI: 10.1074/jbc.ra118.001774] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/17/2018] [Indexed: 11/06/2022] Open
Abstract
α-Galactosidases (EC 3.2.1.22) are retaining glycosidases that cleave terminal α-linked galactose residues from glycoconjugate substrates. α-Galactosidases take part in the turnover of cell wall-associated galactomannans in plants and in the lysosomal degradation of glycosphingolipids in animals. Deficiency of human α-galactosidase A (α-Gal A) causes Fabry disease (FD), a heritable, X-linked lysosomal storage disorder, characterized by accumulation of globotriaosylceramide (Gb3) and globotriaosylsphingosine (lyso-Gb3). Current management of FD involves enzyme-replacement therapy (ERT). An activity-based probe (ABP) covalently labeling the catalytic nucleophile of α-Gal A has been previously designed to study α-galactosidases for use in FD therapy. Here, we report that this ABP labels proteins in Nicotiana benthamiana leaf extracts, enabling the identification and biochemical characterization of an N. benthamiana α-galactosidase we name here A1.1 (gene accession ID GJZM-1660). The transiently overexpressed and purified enzyme was a monomer lacking N-glycans and was active toward 4-methylumbelliferyl-α-d-galactopyranoside substrate (Km = 0.17 mm) over a broad pH range. A1.1 structural analysis by X-ray crystallography revealed marked similarities with human α-Gal A, even including A1.1's ability to hydrolyze Gb3 and lyso-Gb3, which are not endogenous in plants. Of note, A1.1 uptake into FD fibroblasts reduced the elevated lyso-Gb3 levels in these cells, consistent with A1.1 delivery to lysosomes as revealed by confocal microscopy. The ease of production and the features of A1.1, such as stability over a broad pH range, combined with its capacity to degrade glycosphingolipid substrates, warrant further examination of its value as a potential therapeutic agent for ERT-based FD management.
Collapse
Affiliation(s)
| | - Jules Beekwilder
- the Plant Sciences Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, and
| | | | | | - Ruud H P Wilbers
- the Plant Sciences Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, and
| | - Geri F Moolenaar
- Cloning and Protein Purification Facility, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC Leiden
| | - Nora Goosen
- Cloning and Protein Purification Facility, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC Leiden
| | | | | | | | | | - Cornelis H Hokke
- the Department of Parasitology, Centre of Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | | | - Arjen Schots
- the Plant Sciences Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, and
| | - Dirk Bosch
- the Plant Sciences Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, and
| | | | | |
Collapse
|
12
|
Chatt EC, von Aderkas P, Carter CJ, Smith D, Elliott M, Nikolau BJ. Sex-Dependent Variation of Pumpkin ( Cucurbita maxima cv. Big Max) Nectar and Nectaries as Determined by Proteomics and Metabolomics. FRONTIERS IN PLANT SCIENCE 2018; 9:860. [PMID: 30008725 PMCID: PMC6034135 DOI: 10.3389/fpls.2018.00860] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/04/2018] [Indexed: 05/06/2023]
Abstract
Nectar is a floral reward that sustains mutualisms with pollinators, which in turn, improves fruit set. While it is known that nectar is a chemically complex solution, extensive identification and quantification of this complexity has been lacking. Cucurbita maxima cv. Big Max, like many cucurbits, is monoecious with separate male and female flowers. Attraction of bees to the flowers through the reward of nectar is essential for reproductive success in this economically valuable crop. In this study, the sex-dependent variation in composition of male and female nectar and the nectaries were defined using a combination of GC-MS based metabolomics and LC-MS/MS based proteomics. Metabolomics analysis of nectar detected 88 metabolites, of which 40 were positively identified, and includes sugars, sugar alcohols, aromatics, diols, organic acids, and amino acids. There are differences in 29 metabolites between male and female nectar. The nectar proteome consists of 45 proteins, of which 70% overlap between nectar types. Only two proteins are unique to female nectar, and 10 are specific to male nectar. The nectary proteome data, accessible at ProteomeXchange with identifier PXD009810, contained 339 identifiable proteins, 71% of which were descriptively annotatable by homology to Plantae. The abundance of 45 proteins differs significantly between male and female nectaries, as determined by iTRAQ labeling. This rich dataset significantly expands the known complexity of nectar composition, supports the hypothesis of H+-driven nectar solute export, and provides genetic and chemical targets to understand plant-pollinator interactions.
Collapse
Affiliation(s)
- Elizabeth C. Chatt
- Department of Biochemistry Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
| | | | - Clay J. Carter
- Department of Plant and Microbial Biology, University of Minnesota Twin Cities, St. Paul, MN, United States
| | - Derek Smith
- UVic Genome BC Protein Centre, Victoria, BC, Canada
| | | | - Basil J. Nikolau
- Department of Biochemistry Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
| |
Collapse
|
13
|
Roy R, Schmitt AJ, Thomas JB, Carter CJ. Review: Nectar biology: From molecules to ecosystems. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 262:148-164. [PMID: 28716410 DOI: 10.1016/j.plantsci.2017.04.012] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 04/17/2017] [Accepted: 04/19/2017] [Indexed: 05/06/2023]
Abstract
Plants attract mutualistic animals by offering a reward of nectar. Specifically, floral nectar (FN) is produced to attract pollinators, whereas extrafloral nectar (EFN) mediates indirect defenses through the attraction of mutualist predatory insects to limit herbivory. Nearly 90% of all plant species, including 75% of domesticated crops, benefit from animal-mediated pollination, which is largely facilitated by FN. Moreover, EFN represents one of the few defense mechanisms for which stable effects on plant health and fitness have been demonstrated in multiple systems, and thus plays a crucial role in the resistance phenotype of plants producing it. In spite of its central role in plant-animal interactions, the molecular events involved in the development of both floral and extrafloral nectaries (the glands that produce nectar), as well as the synthesis and secretion of the nectar itself, have been poorly understood until recently. This review will cover major recent developments in the understanding of (1) nectar chemistry and its role in plant-mutualist interactions, (2) the structure and development of nectaries, (3) nectar production, and (4) its regulation by phytohormones.
Collapse
Affiliation(s)
- Rahul Roy
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Anthony J Schmitt
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Jason B Thomas
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Clay J Carter
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA.
| |
Collapse
|
14
|
Ma XL, Milne RI, Zhou HX, Fang JY, Zha HG. Floral nectar of the obligate outcrossing Canavalia gladiata (Jacq.) DC. (Fabaceae) contains only one predominant protein, a class III acidic chitinase. PLANT BIOLOGY (STUTTGART, GERMANY) 2017; 19:749-759. [PMID: 28544154 DOI: 10.1111/plb.12583] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/15/2017] [Indexed: 06/07/2023]
Abstract
Floral nectar can affect the fitness of insect-pollinated plants, through both attraction and manipulation of pollinators. Self-incompatible insect-pollinated plants receive more insect visits than their self-compatible relatives, and the nectar of such species might face increased risk of infestation by pathogens carried by pollinators than self-compatible plants. Proteins in nectar (nectarins) play an important role in protecting the nectar, but little is known regarding nectarins in self-incompatible species. The nectarins from a self-incompatible and insect-pollinated leguminous crop, Canavalia gladiata, were separated using two-dimensional electrophoresis and analysed using mass spectrometry. The predominant nectarin gene was cloned and the gene expression pattern investigated using quantitative real-time PCR. Chitinolytic activity in the nectar was tested with different substrates. The C. gladiata nectar proteome only has one predominant nectarin, an acidic class III chitinase (CaChi3). The full-length CaChi3 gene was cloned, coding for a protein of 298 amino acids with a predicted signal peptide. CaChi3 is very similar to members of the class III chitinase family, whose evolution is dominated by purifying selection. CaChi3 was expressed in both nectary and leaves. CaChi3 has thermostable chitinolytic activity according to glycol-chitin zymography or a fluorogenic substratem but has no lysozyme activity. Chitinase might be a critical protein component in nectar. The extremely simple nectar proteome in C. gladiata disproves the hypothesis that self-incompatible species always have more complex nectar proteomes. Accessibility of nectar might be a significant determinant of the evolutionary pressure to develop nectar defence mechanisms.
Collapse
Affiliation(s)
- X L Ma
- College of Life and Environment Sciences, Huangshan University, Anhui, China
| | - R I Milne
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, UK
- Royal Botanic Garden, Edinburgh, UK
| | - H X Zhou
- College of Life and Environment Sciences, Huangshan University, Anhui, China
| | - J Y Fang
- College of Life and Environment Sciences, Huangshan University, Anhui, China
| | - H G Zha
- College of Life and Environment Sciences, Huangshan University, Anhui, China
| |
Collapse
|
15
|
Zhou Y, Li M, Zhao F, Zha H, Yang L, Lu Y, Wang G, Shi J, Chen J. Floral Nectary Morphology and Proteomic Analysis of Nectar of Liriodendron tulipifera Linn. FRONTIERS IN PLANT SCIENCE 2016; 7:826. [PMID: 27379122 PMCID: PMC4905952 DOI: 10.3389/fpls.2016.00826] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/26/2016] [Indexed: 05/08/2023]
Abstract
Nectar is a primary nutrient reward for a variety of pollinators. Recent studies have demonstrated that nectar also has defensive functions against microbial invasion. In this study, the Liriodendron tulipifera nectary was first examined by scanning electron microscopy, and then the nectar was analyzed by two-dimensional gel electrophoresis and liquid chromatography-tandem mass spectrometry, which led to identification of 42 nectar proteins involved in various biological functions. Bioinformatic analysis was then performed on an identified novel rubber elongation factor (REF) protein in L. tulipifera nectar. The protein was particularly abundant, representing ∼60% of the major bands of 31 to 43 kDa, and showed high, stage-specific expression in nectary tissue. The REF family proteins are the major allergens in latex. We propose that REF in L. tulipifera nectar has defensive characteristics against microorganisms.
Collapse
Affiliation(s)
- Yanwei Zhou
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry UniversityNanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry UniversityNanjing, China
| | - Meiping Li
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry UniversityNanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry UniversityNanjing, China
| | - Fangfang Zhao
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry UniversityNanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry UniversityNanjing, China
| | - Hongguang Zha
- College of Life and Environment Science, Huangshan UniversityHuangshan, China
| | - Liming Yang
- School of Life science, Huaiyin Normal UniversityHuai’an, China
| | - Ye Lu
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry UniversityNanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry UniversityNanjing, China
| | - Guangping Wang
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry UniversityNanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry UniversityNanjing, China
| | - Jisen Shi
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry UniversityNanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry UniversityNanjing, China
- *Correspondence: Jinhui Chen, ; Jisen Shi,
| | - Jinhui Chen
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry UniversityNanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry UniversityNanjing, China
- *Correspondence: Jinhui Chen, ; Jisen Shi,
| |
Collapse
|
16
|
Zha HG, Liu T, Zhou JJ, Sun H. MS-desi, a desiccation-related protein in the floral nectar of the evergreen velvet bean (Mucuna sempervirens Hemsl): molecular identification and characterization. PLANTA 2013; 238:77-89. [PMID: 23568404 DOI: 10.1007/s00425-013-1876-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 03/27/2013] [Indexed: 05/11/2023]
Abstract
Plant desiccation-related proteins (DRPs) were first identified as pcC13-62 from the resurrection plant Craterostigma plantagineum and it has been suggested they are involved in plant desiccation tolerance. We identified and characterized a plant DRP, which we called MS-desi, in the floral nectar of a subtropical bean species, Mucuna sempervirens (MS). MS-desi is a major nectar protein (nectarin) of the bean plant and expresses exclusively in the stylopodium, where the nectary is located. The full-length MS-desi gene encodes for a protein of 306 amino acids with a molecular mass of 33,248 Da, and possesses a ferritin-like domain and a signal peptide of 30 amino acids. Structural and phylogenetic analysis demonstrated MS-desi has high similarity to members of the plant DRPs, including pcC 13-62 protein. MS-desi has a similar hydropathy profile to that of pcC13-62 with a grand average of hydropathy index of 0.130 for MS-desi and 0.106 for pcC13-62 protein, which is very different from those of dehydrins and late embryogenesis abundant proteins. The protein's secondary structures, both predicted from the amino acid sequence and directly analysed by far UV circular dichroism, showed that MS-desi is mainly composed of alpha helices and is relatively temperature dependent. The structure change is reversible within a wide range of temperatures. Purified MS-desi and raw MS floral nectar showed dose-dependent citrate synthase inhibition activity, but insensitivity to lactate dehydrogenase, suggesting that, unlike dehydrins, it does not act as a chaperone. The overall results constitute, to our knowledge, the first study on a desiccation-related protein in plant floral nectar.
Collapse
Affiliation(s)
- Hong-Guang Zha
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | | | | | | |
Collapse
|
17
|
Orona-Tamayo D, Wielsch N, Escalante-Pérez M, Svatos A, Molina-Torres J, Muck A, Ramirez-Chávez E, Ádame-Alvarez RM, Heil M. Short-term proteomic dynamics reveal metabolic factory for active extrafloral nectar secretion by Acacia cornigera ant-plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:546-54. [PMID: 23075038 DOI: 10.1111/tpj.12052] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 10/10/2012] [Accepted: 10/12/2012] [Indexed: 05/09/2023]
Abstract
Despite the ecological and evolutionary importance of nectar, mechanisms controlling its synthesis and secretion remain largely unknown. It is widely believed that nectar is 'secreted phloem sap', but current research reveals a biochemical complexity that is unlikely to stem directly from the phloem. We used the short daily peak in production of extrafloral nectar by Acacia cornigera to investigate metabolic and proteomic dynamics before, during and after 2 h of diurnal secretion. Neither hexoses nor dominating nectar proteins (nectarins) were detected in the phloem before or during nectar secretion, excluding the phloem as the direct source of major nectar components. Enzymes involved in the anabolism of sugars, amino acids, proteins, and nectarins, such as invertase, β-1,3-glucanase and thaumatin-like protein, accumulated in the nectary directly before secretion and diminished quantitatively after the daily secretion process. The corresponding genes were expressed almost exclusively in nectaries. By contrast, protein catabolic enzymes were mainly present and active after the secretion peak, and may function in termination of the secretion process. Thus the metabolic machinery for extrafloral nectar production is synthesized and active during secretion and degraded thereafter. Knowing the key enzymes involved and the spatio-temporal patterns in their expression will allow elucidation of mechanisms by which plants control nectar quality and quantity.
Collapse
Affiliation(s)
- Domancar Orona-Tamayo
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados-Irapuato (CINVESTAV), Guanajuato, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Zhou ML, Zhang Q, Zhou M, Sun ZM, Zhu XM, Shao JR, Tang YX, Wu YM. Genome-wide identification of genes involved in raffinose metabolism in Maize. Glycobiology 2012; 22:1775-85. [PMID: 22879458 DOI: 10.1093/glycob/cws121] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The raffinose family oligosaccharides (RFOs), such as raffinose and stachyose, are synthesized by a set of distinct galactosyltransferases, which sequentially add galactose units to sucrose. The accumulation of RFOs in plant cells are closely associated with the responses to environmental factors, such as cold, heat and drought stresses. Systematic analysis of genes involved in the raffinose metabolism has not been reported to date. Searching the recently available working draft of the maize genome, six kinds of enzyme genes were speculated, which should encode all the enzymes involved in the raffinose metabolism in maize. Expression patterns of some related putative genes were analyzed. The conserved domains and phylogenetic relationships among the deduced maize proteins and their homologs isolated from other plant species were revealed. It was discovered that some of the key enzymes, such as galactinol synthase (ZmGolS5, ZmGolS45 and ZmGolS37), raffinose synthase (ZmRS1, ZmRS2, ZmRS3 and ZmRS10), stachyose synthase (ZmRS8) and β-fructofuranosidase, are encoded by multiple gene members with different expression patterns. These results reveal the complexity of the raffinose metabolism and the existence of metabolic channels for diverse RFOs in maize and provide useful information for improving maize stress tolerance through genetic engineering.
Collapse
Affiliation(s)
- Mei-Liang Zhou
- School of Life and Basic Sciences, Sichuan Agricultural University, Yaan, Sichuan 625014, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|