1
|
Qiu Y, Li Z, Köhler C. Ancestral duplication of MADS-box genes in land plants empowered the functional divergence between sporophytes and gametophytes. THE NEW PHYTOLOGIST 2024; 244:358-363. [PMID: 39149858 DOI: 10.1111/nph.20065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 07/30/2024] [Indexed: 08/17/2024]
Affiliation(s)
- Yichun Qiu
- Department of Plant Reproductive Biology and Epigenetics, Max Planck Institute of Molecular Plant Physiology, Potsdam, 14476, Germany
| | - Zhen Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, VIB, Ghent, 9052, Belgium
| | - Claudia Köhler
- Department of Plant Reproductive Biology and Epigenetics, Max Planck Institute of Molecular Plant Physiology, Potsdam, 14476, Germany
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant Biology, Uppsala, 75007, Sweden
| |
Collapse
|
2
|
Zhang R, Zhang J, Xu YX, Sun JM, Dai SJ, Shen H, Yan YH. Dynamic evolution of MADS-box genes in extant ferns via large-scale phylogenomic analysis. FRONTIERS IN PLANT SCIENCE 2024; 15:1410554. [PMID: 38974983 PMCID: PMC11224435 DOI: 10.3389/fpls.2024.1410554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/03/2024] [Indexed: 07/09/2024]
Abstract
Introduction Several studies of MADS-box transcription factors in flowering plants have been conducted, and these studies have indicated that they have conserved functions in floral organ development; MIKC-type MADS-box genes has been proved to be expanded in ferns, however, few systematic studies of these transcription factors have been conducted in non-seed plants. Although ferns and seed plants are sister groups, they exhibit substantial morphological differences. Methods Here, we clarified the evolution of MADS-box genes across 71 extant fern species using available transcriptome, genome, and gene expression data. Results We obtained a total of 2,512 MADS-box sequences, ranging from 9 to 89 per species. The most recent common ancestor (MRCA) of ferns contained approximately three type I genes and at least 5-6 type II MADS-box genes. The domains, motifs, expression of type I and type II proteins, and the structure of the both type genes were conserved in ferns as to other land plants. Within type II genes, MIKC*-type proteins are involved in gametophyte development in ferns; MIKCC-type proteins have broader expression patterns in ferns than in seed plants, and these protein sequences are likely conserved in extant seed plants and ferns because of their diverse roles in diploid sporophyte development. More than 90% of MADS-box genes are type II genes, and MIKCC genes, especially CRM1 and CRM6-like genes, have undergone a large expansion in leptosporangiate ferns; the diverse expression patterns of these genes might be related to the fuctional diversification and increased complexity of the plant body plan. Tandem duplication of CRM1 and CRM6-like genes has contributed to the expansion of MIKCC genes. Conclusion or Discussion This study provides new insights into the diversity, evolution, and functions of MADS-box genes in extant ferns.
Collapse
Affiliation(s)
- Rui Zhang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Jiao Zhang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Yue-Xia Xu
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
- College of Life Science, Shanghai Normal University, Shanghai, China
| | - Jun-Mei Sun
- School of Science, Qiongtai Normal University, Haikou, Hainan, China
| | - Shao-Jun Dai
- College of Life Science, Shanghai Normal University, Shanghai, China
| | - Hui Shen
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Yue-Hong Yan
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, National Orchid Conservation Center of China and the Orchid Conservation and Research Center of Shenzhen, Shenzhen, China
| |
Collapse
|
3
|
Bowman JL, Moyroud E. Reflections on the ABC model of flower development. THE PLANT CELL 2024; 36:1334-1357. [PMID: 38345422 PMCID: PMC11062442 DOI: 10.1093/plcell/koae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/07/2024] [Indexed: 05/02/2024]
Abstract
The formulation of the ABC model by a handful of pioneer plant developmental geneticists was a seminal event in the quest to answer a seemingly simple question: how are flowers formed? Fast forward 30 years and this elegant model has generated a vibrant and diverse community, capturing the imagination of developmental and evolutionary biologists, structuralists, biochemists and molecular biologists alike. Together they have managed to solve many floral mysteries, uncovering the regulatory processes that generate the characteristic spatio-temporal expression patterns of floral homeotic genes, elucidating some of the mechanisms allowing ABC genes to specify distinct organ identities, revealing how evolution tinkers with the ABC to generate morphological diversity, and even shining a light on the origins of the floral gene regulatory network itself. Here we retrace the history of the ABC model, from its genesis to its current form, highlighting specific milestones along the way before drawing attention to some of the unsolved riddles still hidden in the floral alphabet.
Collapse
Affiliation(s)
- John L Bowman
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Melbourne, VIC 3800, Australia
| | - Edwige Moyroud
- The Sainsbury Laboratory, Cambridge University, Cambridge CB2 1LR, UK
- Department of Genetics, University of Cambridge, Cambridge CB2 3EJ, UK
| |
Collapse
|
4
|
Schneitz K. The 1991 review by Coen and Meyerowitz on the war of the whorls and the ABC model of floral organ identity. QUANTITATIVE PLANT BIOLOGY 2023; 4:e13. [PMID: 37901687 PMCID: PMC10600569 DOI: 10.1017/qpb.2023.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/31/2023]
Abstract
The 1991 review paper by Coen and Meyerowitz on the control of floral organ development set out the evidence available at that time, which led to the now famous ABC model of floral organ identity control. The authors summarised the genetic and molecular analyses that had been carried out in a relatively short time by several laboratories, mainly in Arabidopsis thaliana and Antirrhinum majus. The work was a successful example of how systematic genetic and molecular analysis can decipher the mechanism that controls a developmental process in plants. The ABC model is a combinatorial model in which each floral whorl acquires its identity through a unique combination of floral homeotic gene activities. The review also highlights the similarities in the regulation of floral organ identity between evolutionarily distant plant species, emphasising the general relevance of the model and paving the way for comprehensive studies of the evolution of floral diversity.
Collapse
Affiliation(s)
- Kay Schneitz
- Plant Developmental Biology, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| |
Collapse
|
5
|
Gramzow L, Sharma R, Theißen G. Evolutionary Dynamics of FLC-like MADS-Box Genes in Brassicaceae. PLANTS (BASEL, SWITZERLAND) 2023; 12:3281. [PMID: 37765445 PMCID: PMC10536770 DOI: 10.3390/plants12183281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
MADS-box genes encode transcription factors that play important roles in the development and evolution of plants. There are more than a dozen clades of MADS-box genes in angiosperms, of which those with functions in the specification of floral organ identity are especially well-known. From what has been elucidated in the model plant Arabidopsis thaliana, the clade of FLC-like MADS-box genes, comprising FLC-like genes sensu strictu and MAF-like genes, are somewhat special among the MADS-box genes of plants since FLC-like genes, especially MAF-like genes, show unusual evolutionary dynamics, in that they generate clusters of tandemly duplicated genes. Here, we make use of the latest genomic data of Brassicaceae to study this remarkable feature of the FLC-like genes in a phylogenetic context. We have identified all FLC-like genes in the genomes of 29 species of Brassicaceae and reconstructed the phylogeny of these genes employing a Maximum Likelihood method. In addition, we conducted selection analyses using PAML. Our results reveal that there are three major clades of FLC-like genes in Brassicaceae that all evolve under purifying selection but with remarkably different strengths. We confirm that the tandem arrangement of MAF-like genes in the genomes of Brassicaceae resulted in a high rate of duplications and losses. Interestingly, MAF-like genes also seem to be prone to transposition. Considering the role of FLC-like genes sensu lato (s.l.) in the timing of floral transition, we hypothesize that this rapid evolution of the MAF-like genes was a main contributor to the successful adaptation of Brassicaceae to different environments.
Collapse
Affiliation(s)
- Lydia Gramzow
- Matthias Schleiden Institute/Genetics, Friedrich Schiller University Jena, 07743 Jena, Germany
| | | | | |
Collapse
|
6
|
Nie C, Xu X, Zhang X, Xia W, Sun H, Li N, Ding Z, Lv Y. Genome-Wide Identified MADS-Box Genes in Prunus campanulata 'Plena' and Theirs Roles in Double-Flower Development. PLANTS (BASEL, SWITZERLAND) 2023; 12:3171. [PMID: 37687417 PMCID: PMC10490222 DOI: 10.3390/plants12173171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
The MADS-box gene family plays key roles in flower induction, floral initiation, and floral morphogenesis in flowering plants. To understand their functions in the double-flower formation of Prunus campanulata 'Plena' (hereafter referred to as PCP), which is an excellent flowering cherry cultivar, we performed genome-wide identification of the MADS-box gene family. In this study, 71 MADS-box genes were identified and grouped into the Mα, Mβ, Mγ and MIKC subfamilies according to their structures and phylogenetic relationships. All 71 MADS-box genes were located on eight chromosomes of PCP. Analysis of the cis-acting elements in the promoter region of MADS-box genes indicated that they were associated mainly with auxin, abscisic acid, gibberellin, MeJA (methyl jasmonate), and salicylic acid responsiveness, which may be involved in floral development and differentiation. By observing the floral organ phenotype, we found that the double-flower phenotype of PCP originated from petaloid stamens. The analysis of MIKC-type MADS-box genes in PCP vegetative and floral organs by qRT-PCR revealed six upregulated genes involved in petal development and three downregulated genes participating in stamen identity. Comparative analysis of petaloid stamens and normal stamens also indicated that the expression level of the AG gene (PcMADS40) was significantly reduced. Thus, we speculated that these upregulated and downregulated genes, especially PcMADS40, may lead to petaloid stamen formation and thus double flowers. This study lays a theoretical foundation for MADS-box gene identification and classification and studying the molecular mechanism underlying double flowers in other ornamental plants.
Collapse
Affiliation(s)
- Chaoren Nie
- Wuhan Institute of Landscape Architecture, Wuhan 430081, China; (C.N.); (X.Z.); (W.X.); (H.S.); (N.L.); (Z.D.)
| | - Xiaoguo Xu
- Wuhan Landscape Ecology Group Co., Ltd., Wuhan 430070, China;
| | - Xiaoqin Zhang
- Wuhan Institute of Landscape Architecture, Wuhan 430081, China; (C.N.); (X.Z.); (W.X.); (H.S.); (N.L.); (Z.D.)
| | - Wensheng Xia
- Wuhan Institute of Landscape Architecture, Wuhan 430081, China; (C.N.); (X.Z.); (W.X.); (H.S.); (N.L.); (Z.D.)
| | - Hongbing Sun
- Wuhan Institute of Landscape Architecture, Wuhan 430081, China; (C.N.); (X.Z.); (W.X.); (H.S.); (N.L.); (Z.D.)
| | - Na Li
- Wuhan Institute of Landscape Architecture, Wuhan 430081, China; (C.N.); (X.Z.); (W.X.); (H.S.); (N.L.); (Z.D.)
| | - Zhaoquan Ding
- Wuhan Institute of Landscape Architecture, Wuhan 430081, China; (C.N.); (X.Z.); (W.X.); (H.S.); (N.L.); (Z.D.)
| | - Yingmin Lv
- School of Landscape Architecture, Beijing Forestry of University, Beijing 100083, China
| |
Collapse
|
7
|
Qiu Y, Li Z, Walther D, Köhler C. Updated Phylogeny and Protein Structure Predictions Revise the Hypothesis on the Origin of MADS-box Transcription Factors in Land Plants. Mol Biol Evol 2023; 40:msad194. [PMID: 37652031 PMCID: PMC10484287 DOI: 10.1093/molbev/msad194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023] Open
Abstract
MADS-box transcription factors (TFs), among the first TFs extensively studied, exhibit a wide distribution across eukaryotes and play diverse functional roles. Varying by domain architecture, MADS-box TFs in land plants are categorized into Type I (M-type) and Type II (MIKC-type). Type I and II genes have been considered orthologous to the SRF and MEF2 genes in animals, respectively, presumably originating from a duplication before the divergence of eukaryotes. Here, we exploited the increasing availability of eukaryotic MADS-box sequences and reassessed their evolution. While supporting the ancient duplication giving rise to SRF- and MEF2-types, we found that Type I and II genes originated from the MEF2-type genes through another duplication in the most recent common ancestor (MRCA) of land plants. Protein structures predicted by AlphaFold2 and OmegaFold support our phylogenetic analyses, with plant Type I and II TFs resembling the MEF2-type structure, rather than SRFs. We hypothesize that the ancestral SRF-type TFs were lost in the MRCA of Archaeplastida (the kingdom Plantae sensu lato). The retained MEF2-type TFs acquired a Keratin-like domain and became MIKC-type before the divergence of Streptophyta. Subsequently in the MRCA of land plants, M-type TFs evolved from a duplicated MIKC-type precursor through loss of the Keratin-like domain, leading to the Type I clade. Both Type I and II TFs expanded and functionally differentiated in concert with the increasing complexity of land plant body architecture. The recruitment of these originally stress-responsive TFs into developmental programs, including those underlying reproduction, may have facilitated the adaptation to the terrestrial environment.
Collapse
Affiliation(s)
- Yichun Qiu
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Swedish University of Agricultural Sciences & Linnean Center for Plant Biology, Uppsala BioCenter, Uppsala, Sweden
| | - Zhen Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Dirk Walther
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Claudia Köhler
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Swedish University of Agricultural Sciences & Linnean Center for Plant Biology, Uppsala BioCenter, Uppsala, Sweden
| |
Collapse
|
8
|
Lin Y, Qi X, Wan Y, Chen Z, Fang H, Liang C. Genome-wide analysis of the MADS-box gene family in Lonicera japonica and a proposed floral organ identity model. BMC Genomics 2023; 24:447. [PMID: 37553575 PMCID: PMC10408238 DOI: 10.1186/s12864-023-09509-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 07/08/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Lonicera japonica Thunb. is widely used in traditional Chinese medicine. Medicinal L. japonica mainly consists of dried flower buds and partially opened flowers, thus flowers are an important quality indicator. MADS-box genes encode transcription factors that regulate flower development. However, little is known about these genes in L. japonica. RESULTS In this study, 48 MADS-box genes were identified in L. japonica, including 20 Type-I genes (8 Mα, 2 Mβ, and 10 Mγ) and 28 Type-II genes (26 MIKCc and 2 MIKC*). The Type-I and Type-II genes differed significantly in gene structure, conserved domains, protein structure, chromosomal distribution, phylogenesis, and expression pattern. Type-I genes had a simpler gene structure, lacked the K domain, had low protein structure conservation, were tandemly distributed on the chromosomes, had more frequent lineage-specific duplications, and were expressed at low levels. In contrast, Type-II genes had a more complex gene structure; contained conserved M, I, K, and C domains; had highly conserved protein structure; and were expressed at high levels throughout the flowering period. Eleven floral homeotic MADS-box genes that are orthologous to the proposed Arabidopsis ABCDE model of floral organ identity determination, were identified in L. japonica. By integrating expression pattern and protein interaction data for these genes, we developed a possible model for floral organ identity determination. CONCLUSION This study genome-widely identified and characterized the MADS-box gene family in L. japonica. Eleven floral homeotic MADS-box genes were identified and a possible model for floral organ identity determination was also developed. This study contributes to our understanding of the MADS-box gene family and its possible involvement in floral organ development in L. japonica.
Collapse
Affiliation(s)
- Yi Lin
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiwu Qi
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Yan Wan
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zequn Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Hailing Fang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Chengyuan Liang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China.
- Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
9
|
Xiong W, Risse J, Berke L, Zhao T, van de Geest H, Oplaat C, Busscher M, Ferreira de Carvalho J, van der Meer IM, Verhoeven KJF, Schranz ME, Vijverberg K. Phylogenomic analysis provides insights into MADS-box and TCP gene diversification and floral development of the Asteraceae, supported by de novo genome and transcriptome sequences from dandelion ( Taraxacum officinale). FRONTIERS IN PLANT SCIENCE 2023; 14:1198909. [PMCID: PMC10338227 DOI: 10.3389/fpls.2023.1198909] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/26/2023] [Indexed: 07/15/2023]
Abstract
The Asteraceae is the largest angiosperm family with more than 25,000 species. Individual studies have shown that MADS-box and TCP transcription factors are regulators of the development and symmetry of flowers, contributing to their iconic flower-head (capitulum) and floret. However, a systematic study of MADS-box and TCP genes across the Asteraceae is lacking. We performed a comparative analysis of genome sequences of 33 angiosperm species including our de novo assembly of diploid sexual dandelion (Taraxacum officinale) and 11 other Asteraceae to investigate the lineage-specific evolution of MADS-box and TCP genes in the Asteraceae. We compared the phylogenomic results of MADS-box and TCP genes with their expression in T. officinale floral tissues at different developmental stages to demonstrate the regulation of genes with Asteraceae-specific attributes. Here, we show that MADS-box MIKCc and TCP-CYCLOIDEA (CYC) genes have expanded in the Asteraceae. The phylogenomic analysis identified AGAMOUS-like (AG-like: SEEDSTICK [STK]-like), SEPALATA-like (SEP3-like), and TCP-PROLIFERATING CELL FACTOR (PCF)-like copies with lineage-specific genomic contexts in the Asteraceae, Cichorioideae, or dandelion. Different expression patterns of some of these gene copies suggest functional divergence. We also confirm the presence and revisit the evolutionary history of previously named “Asteraceae-Specific MADS-box genes (AS-MADS).” Specifically, we identify non-Asteraceae homologs, indicating a more ancient origin of this gene clade. Syntenic relationships support that AS-MADS is paralogous to FLOWERING LOCUS C (FLC) as demonstrated by the shared ancient duplication of FLC and SEP3.
Collapse
Affiliation(s)
- Wei Xiong
- Biosystematics Group, Wageningen University and Research, Wageningen, Netherlands
| | - Judith Risse
- Bioinformatics Group, Wageningen University and Research, Wageningen, Netherlands
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - Lidija Berke
- Biosystematics Group, Wageningen University and Research, Wageningen, Netherlands
| | - Tao Zhao
- Biosystematics Group, Wageningen University and Research, Wageningen, Netherlands
| | | | - Carla Oplaat
- Biosystematics Group, Wageningen University and Research, Wageningen, Netherlands
| | - Marco Busscher
- Biosystematics Group, Wageningen University and Research, Wageningen, Netherlands
- Bioscience, Wageningen University and Research, Wageningen, Netherlands
| | - Julie Ferreira de Carvalho
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | | | - Koen J. F. Verhoeven
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - M. Eric Schranz
- Biosystematics Group, Wageningen University and Research, Wageningen, Netherlands
| | - Kitty Vijverberg
- Biosystematics Group, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
10
|
Käppel S, Rümpler F, Theißen G. Cracking the Floral Quartet Code: How Do Multimers of MIKC C-Type MADS-Domain Transcription Factors Recognize Their Target Genes? Int J Mol Sci 2023; 24:8253. [PMID: 37175955 PMCID: PMC10178880 DOI: 10.3390/ijms24098253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
MADS-domain transcription factors (MTFs) are involved in the control of many important processes in eukaryotes. They are defined by the presence of a unique and highly conserved DNA-binding domain, the MADS domain. MTFs bind to double-stranded DNA as dimers and recognize specific sequences termed CArG boxes (such as 5'-CC(A/T)6GG-3') and similar sequences that occur hundreds of thousands of times in a typical flowering plant genome. The number of MTF-encoding genes increased by around two orders of magnitude during land plant evolution, resulting in roughly 100 genes in flowering plant genomes. This raises the question as to how dozens of different but highly similar MTFs accurately recognize the cis-regulatory elements of diverse target genes when the core binding sequence (CArG box) occurs at such a high frequency. Besides the usual processes, such as the base and shape readout of individual DNA sequences by dimers of MTFs, an important sublineage of MTFs in plants, termed MIKCC-type MTFs (MC-MTFs), has evolved an additional mechanism to increase the accurate recognition of target genes: the formation of heterotetramers of closely related proteins that bind to two CArG boxes on the same DNA strand involving DNA looping. MC-MTFs control important developmental processes in flowering plants, ranging from root and shoot to flower, fruit and seed development. The way in which MC-MTFs bind to DNA and select their target genes is hence not only of high biological interest, but also of great agronomic and economic importance. In this article, we review the interplay of the different mechanisms of target gene recognition, from the ordinary (base readout) via the extravagant (shape readout) to the idiosyncratic (recognition of the distance and orientation of two CArG boxes by heterotetramers of MC-MTFs). A special focus of our review is on the structural prerequisites of MC-MTFs that enable the specific recognition of target genes.
Collapse
Affiliation(s)
| | | | - Günter Theißen
- Matthias Schleiden Institute/Genetics, Friedrich Schiller University Jena, 07743 Jena, Germany; (S.K.); (F.R.)
| |
Collapse
|
11
|
A 3D-printed analytical device seamlessly integrating sample treatment for electrochemical detection of IAA in Marchantia polymorpha. Anal Bioanal Chem 2023; 415:1385-1393. [PMID: 36705731 DOI: 10.1007/s00216-023-04529-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/21/2022] [Accepted: 01/05/2023] [Indexed: 01/28/2023]
Abstract
Because of the pivotal point of Marchantia polymorpha (M. polymorpha) in plant evolution, its auxin (mainly indole-3-acetic acid, IAA) levels could provide useful evidence for the study of the evolution of IAA. However, M. polymorpha could not be easily pretreated for electrochemical detection because they are at the entry level of land plants. Herein, we designed a three-dimensional (3D)-printed analytical device for seamless integration of sample treatment and electrochemical detection. Specifically, the electrochemical cell could be used as a mortar in which a tiny plant sample could be ground with a 3D-printed pestle, followed by mixing with the buffer solution under vibration for electrochemical detection of IAA with a disposable working electrode at the bottom of the cell. Using our strategy, the limits of quantification could reach 0.05 μmol L-1 after optimization of parameters. We were able to demonstrate that IAA in different tissues of wild-type and mutant M. polymorpha could be successfully differentiated after they were treated with the 3D-printed analytical device. The obtained results were comparable to the samples blended with zirconium beads while the differences of IAA levels in different tissues of M. polymorpha agreed well with previous reports. This study suggested the potential of sample treatment integrated with electrochemical detection for analysis of IAA using the 3D printing techniques and their possible applications in the research of plants and other fields.
Collapse
|
12
|
Velasco VME, Ferreira A, Zaman S, Noordermeer D, Ensminger I, Wegrzyn JL. A long-read and short-read transcriptomics approach provides the first high-quality reference transcriptome and genome annotation for Pseudotsuga menziesii (Douglas-fir). G3 (BETHESDA, MD.) 2023; 13:jkac304. [PMID: 36454025 PMCID: PMC10468028 DOI: 10.1093/g3journal/jkac304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/13/2021] [Accepted: 10/19/2022] [Indexed: 12/02/2022]
Abstract
Douglas-fir (Pseudotsuga menziesii) is native to western North America. It grows in a wide range of environmental conditions and is an important timber tree. Although there are several studies on the gene expression responses of Douglas-fir to abiotic cues, the absence of high-quality transcriptome and genome data is a barrier to further investigation. Like for most conifers, the available transcriptome and genome reference dataset for Douglas-fir remains fragmented and requires refinement. We aimed to generate a highly accurate, and complete reference transcriptome and genome annotation. We deep-sequenced the transcriptome of Douglas-fir needles from seedlings that were grown under nonstress control conditions or a combination of heat and drought stress conditions using long-read (LR) and short-read (SR) sequencing platforms. We used 2 computational approaches, namely de novo and genome-guided LR transcriptome assembly. Using the LR de novo assembly, we identified 1.3X more high-quality transcripts, 1.85X more "complete" genes, and 2.7X more functionally annotated genes compared to the genome-guided assembly approach. We predicted 666 long noncoding RNAs and 12,778 unique protein-coding transcripts including 2,016 putative transcription factors. We leveraged the LR de novo assembled transcriptome with paired-end SR and a published single-end SR transcriptome to generate an improved genome annotation. This was conducted with BRAKER2 and refined based on functional annotation, repetitive content, and transcriptome alignment. This high-quality genome annotation has 51,419 unique gene models derived from 322,631 initial predictions. Overall, our informatics approach provides a new reference Douglas-fir transcriptome assembly and genome annotation with considerably improved completeness and functional annotation.
Collapse
Affiliation(s)
| | - Alyssa Ferreira
- Department of Evolution and Ecology, University of
Connecticut, Storrs, CT 06269, USA
| | - Sumaira Zaman
- Department of Evolution and Ecology, University of
Connecticut, Storrs, CT 06269, USA
| | - Devin Noordermeer
- Department of Biology, University of Toronto,
Mississauga, ON L5L 1C8, Canada
- Graduate Department of Cell and Systems Biology, University of
Toronto, Toronto, ON M5S, Canada
| | - Ingo Ensminger
- Department of Biology, University of Toronto,
Mississauga, ON L5L 1C8, Canada
- Graduate Department of Cell and Systems Biology, University of
Toronto, Toronto, ON M5S, Canada
- Graduate Department of Ecology and Evolutionary Biology, University of
Toronto, Toronto, ON M5S, Canada
| | - Jill L Wegrzyn
- Department of Evolution and Ecology, University of
Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
13
|
Genome-Wide Identification of MADS-Box Family Genes in Safflower ( Carthamus tinctorius L.) and Functional Analysis of CtMADS24 during Flowering. Int J Mol Sci 2023; 24:ijms24021026. [PMID: 36674539 PMCID: PMC9862418 DOI: 10.3390/ijms24021026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/14/2022] [Accepted: 12/27/2022] [Indexed: 01/07/2023] Open
Abstract
Safflower is an important economic crop with a plethora of industrial and medicinal applications around the world. The bioactive components of safflower petals are known to have pharmacological activity that promotes blood circulation and reduces blood stasis. However, fine-tuning the genetic mechanism of flower development in safflower is still required. In this study, we report the genome-wide identification of MADS-box transcription factors in safflower and the functional characterization of a putative CtMADS24 during vegetative and reproductive growth. In total, 77 members of MADS-box-encoding genes were identified from the safflower genome. The phylogenetic analysis divided CtMADS genes into two types and 15 subfamilies. Similarly, bioinformatic analysis, such as of conserved protein motifs, gene structures, and cis-regulatory elements, also revealed structural conservation of MADS-box genes in safflower. Furthermore, the differential expression pattern of CtMADS genes by RNA-seq data indicated that type II genes might play important regulatory roles in floral development. Similarly, the qRT-PCR analysis also revealed the transcript abundance of 12 CtMADS genes exhibiting tissue-specific expression in different flower organs. The nucleus-localized CtMADS24 of the AP1 subfamily was validated by transient transformation in tobacco using GFP translational fusion. Moreover, CtMADS24-overexpressed transgenic Arabidopsis exhibited early flowering and an abnormal phenotype, suggesting that CtMADS24 mediated the expression of genes involved in floral organ development. Taken together, these findings provide valuable information on the regulatory role of CtMADS24 during flower development in safflower and for the selection of important genes for future molecular breeding programs.
Collapse
|
14
|
Dreni L. The ABC of Flower Development in Monocots: The Model of Rice Spikelet. Methods Mol Biol 2023; 2686:59-82. [PMID: 37540354 DOI: 10.1007/978-1-0716-3299-4_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The initial seminal studies of flower developmental genetics were made from observations in several eudicot model species, particularly Arabidopsis and Antirrhinum. However, an increasing amount of research in monocot model and crop species is finally giving the credit that monocots deserve for their position in the evolutionary history of Angiosperms, their astonishing diversification and adaptation, their diversified floral structures, their pivotal function in most ecosystems on Earth and, finally, their importance in agriculture and farming, economy, landscaping and feeding mankind. Rice is a staple crop and the major monocot model to study the reproductive phase and flower evolution. Inspired by this, this chapter reviews a story of highly conserved functions related to the ABC model of flower development. Nevertheless, this model is complicated in rice by cases of gene neofunctionalization, like the recruitment of MADS-box genes for the development of the unique organs known as lemma and palea, subfunctionalization, and rewiring of conserved molecular pathways.
Collapse
Affiliation(s)
- Ludovico Dreni
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| |
Collapse
|
15
|
Coiro M, Roberts EA, Hofmann CC, Seyfullah LJ. Cutting the long branches: Consilience as a path to unearth the evolutionary history of Gnetales. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1082639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Gnetales are one of the most fascinating groups within seed plants. Although the advent of molecular phylogenetics has generated some confidence in their phylogenetic placement of Gnetales within seed plants, their macroevolutionary history still presents many unknowns. Here, we review the reasons for such unknowns, and we focus the discussion on the presence of “long branches” both in their molecular and morphological history. The increased rate of molecular evolution and genome instability as well as the numerous unique traits (both reproductive and vegetative) in the Gnetales have been obstacles to a better understanding of their evolution. Moreover, the fossil record of the Gnetales, though relatively rich, has not yet been properly reviewed and investigated using a phylogenetic framework. Despite these apparent blocks to progress we identify new avenues to enable us to move forward. We suggest that a consilience approach, involving different disciplines such as developmental genetics, paleobotany, molecular phylogenetics, and traditional anatomy and morphology might help to “break” these long branches, leading to a deeper understanding of this mysterious group of plants.
Collapse
|
16
|
Akhter S, Westrin KJ, Zivi N, Nordal V, Kretzschmar WW, Delhomme N, Street NR, Nilsson O, Emanuelsson O, Sundström JF. Cone-setting in spruce is regulated by conserved elements of the age-dependent flowering pathway. THE NEW PHYTOLOGIST 2022; 236:1951-1963. [PMID: 36076311 PMCID: PMC9825996 DOI: 10.1111/nph.18449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Reproductive phase change is well characterized in angiosperm model species, but less studied in gymnosperms. We utilize the early cone-setting acrocona mutant to study reproductive phase change in the conifer Picea abies (Norway spruce), a gymnosperm. The acrocona mutant frequently initiates cone-like structures, called transition shoots, in positions where wild-type P. abies always produces vegetative shoots. We collect acrocona and wild-type samples, and RNA-sequence their messenger RNA (mRNA) and microRNA (miRNA) fractions. We establish gene expression patterns and then use allele-specific transcript assembly to identify mutations in acrocona. We genotype a segregating population of inbred acrocona trees. A member of the SQUAMOSA BINDING PROTEIN-LIKE (SPL) gene family, PaSPL1, is active in reproductive meristems, whereas two putative negative regulators of PaSPL1, miRNA156 and the conifer specific miRNA529, are upregulated in vegetative and transition shoot meristems. We identify a mutation in a putative miRNA156/529 binding site of the acrocona PaSPL1 allele and show that the mutation renders the acrocona allele tolerant to these miRNAs. We show co-segregation between the early cone-setting phenotype and trees homozygous for the acrocona mutation. In conclusion, we demonstrate evolutionary conservation of the age-dependent flowering pathway and involvement of this pathway in regulating reproductive phase change in the conifer P. abies.
Collapse
Affiliation(s)
- Shirin Akhter
- Department of Plant Biology, Linnean Center for Plant Biology, Uppsala BioCentreSwedish University of Agricultural Sciences (SLU)SE‐750 07UppsalaSweden
| | - Karl Johan Westrin
- Science for Life Laboratory, Department of Gene TechnologyKTH Royal Institute of TechnologySE‐171 65SolnaSweden
| | - Nathan Zivi
- Department of Plant Biology, Linnean Center for Plant Biology, Uppsala BioCentreSwedish University of Agricultural Sciences (SLU)SE‐750 07UppsalaSweden
- Skogforsk, Uppsala Science ParkUppsalaSE‐751 83Sweden
| | - Veronika Nordal
- Department of Plant Biology, Linnean Center for Plant Biology, Uppsala BioCentreSwedish University of Agricultural Sciences (SLU)SE‐750 07UppsalaSweden
| | - Warren W. Kretzschmar
- Science for Life Laboratory, Department of Gene TechnologyKTH Royal Institute of TechnologySE‐171 65SolnaSweden
| | - Nicolas Delhomme
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science CentreSwedish University of Agricultural Sciences (SLU)SE‐901 83UmeåSweden
| | - Nathaniel R. Street
- Department of Plant Physiology, Umeå Plant Science CentreUmeå UniversitySE‐901 87UmeåSweden
| | - Ove Nilsson
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science CentreSwedish University of Agricultural Sciences (SLU)SE‐901 83UmeåSweden
| | - Olof Emanuelsson
- Science for Life Laboratory, Department of Gene TechnologyKTH Royal Institute of TechnologySE‐171 65SolnaSweden
| | - Jens F. Sundström
- Department of Plant Biology, Linnean Center for Plant Biology, Uppsala BioCentreSwedish University of Agricultural Sciences (SLU)SE‐750 07UppsalaSweden
| |
Collapse
|
17
|
Wang E, Lu W, Liang H, Zhang X, Huo S, Song X, Wang J, Zhao Y. Morpho-histology, endogenous hormone dynamics, and transcriptome profiling in Dacrydium pectinatum during female cone development. FRONTIERS IN PLANT SCIENCE 2022; 13:954788. [PMID: 36061797 PMCID: PMC9428629 DOI: 10.3389/fpls.2022.954788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Dacrydium pectinatum de Laubenfels is a perennial dioeciously gymnosperm species dominant in tropical montane rain forests. Due to deforestation, natural disasters, long infancy, and poor natural regeneration ability, the population of this species has been significantly reduced and listed as an endangered protected plant. To better understand the female cone development in D. pectinatum, we examined the morphological and anatomical changes, analyzed the endogenous hormone dynamics, and profiled gene expression. The female reproductive structures were first observed in January. The morpho-histological observations suggest that the development of the D. pectinatum megaspore can be largely divided into six stages: early flower bud differentiation, bract primordium differentiation, ovule primordium differentiation, dormancy, ovule maturity, and seed maturity. The levels of gibberellins (GA), auxin (IAA), abscisic acid (ABA), and cytokinin (CTK) fluctuate during the process of female cone development. The female cones of D. pectinatum need to maintain a low level of GA3-IAA-ABA steady state to promote seed germination. The first transcriptome database for female D. pectinatum was generated, revealing 310,621 unigenes. Differential expression analyses revealed several floral (MADS2, AGL62, and LFY) and hormone biosynthesis and signal transduction (CKX, KO, KAO, ABA4, ACO, etc.) genes that could be critical for female cone development. Our study provides new insights into the cone development in D. pectinatum and the foundation for female cone induction with hormones.
Collapse
Affiliation(s)
- Enbo Wang
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, China
| | - Wenju Lu
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, China
| | - Haiying Liang
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, United States
| | - Xumeng Zhang
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, China
| | - Shaojie Huo
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, China
| | - Xiqiang Song
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, China
| | - Jian Wang
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, China
| | - Ying Zhao
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, China
| |
Collapse
|
18
|
Fritsche S, Rippel Salgado L, Boron AK, Hanning KR, Donaldson LA, Thorlby G. Transcriptional Regulation of Pine Male and Female Cone Initiation and Development: Key Players Identified Through Comparative Transcriptomics. Front Genet 2022; 13:815093. [PMID: 35368695 PMCID: PMC8971679 DOI: 10.3389/fgene.2022.815093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/24/2022] [Indexed: 11/24/2022] Open
Abstract
With long reproductive timescales, large complex genomes, and a lack of reliable reference genomes, understanding gene function in conifers is extremely challenging. Consequently, our understanding of which genetic factors influence the development of reproductive structures (cones) in monoecious conifers remains limited. Genes with inferred roles in conifer reproduction have mostly been identified through homology and phylogenetic reconstruction with their angiosperm counterparts. We used RNA-sequencing to generate transcriptomes of the early morphological stages of cone development in the conifer species Pinus densiflora and used these to gain a deeper insight into the transcriptional changes during male and female cone development. Paired-end Illumina sequencing was used to generate transcriptomes from non-reproductive tissue and male and female cones at four time points with a total of 382.82 Gbp of data generated. After assembly and stringent filtering, a total of 37,164 transcripts were retrieved, of which a third were functionally annotated using the Mercator plant pipeline. Differentially expressed gene (DEG) analysis resulted in the identification of 172,092 DEGs in the nine tissue types. This, alongside GO gene enrichment analyses, pinpointed transcripts putatively involved in conifer reproductive structure development, including co-orthologs of several angiosperm flowering genes and several that have not been previously reported in conifers. This study provides a comprehensive transcriptome resource for male and early female cone development in the gymnosperm species Pinus densiflora. Characterisation of this resource has allowed the identification of potential key players and thus provides valuable insights into the molecular regulation of reproductive structure development in monoecious conifers.
Collapse
Affiliation(s)
- Steffi Fritsche
- Forest Genetics and Biotechnology, Scion, Rotorua, New Zealand
| | - Leonardo Rippel Salgado
- Forest Genetics and Biotechnology, Scion, Rotorua, New Zealand
- Molecular and Digital Breeding, The New Zealand Institute for Plant and Food Research, Te Puke, New Zealand
| | | | | | | | - Glenn Thorlby
- Forest Genetics and Biotechnology, Scion, Rotorua, New Zealand
- *Correspondence: Glenn Thorlby,
| |
Collapse
|
19
|
Webster C, Figueroa‐Corona L, Méndez‐González ID, Álvarez‐Soto L, Neale DB, Jaramillo‐Correa JP, Wegrzyn JL, Vázquez‐Lobo A. Comparative analysis of differential gene expression indicates divergence in ontogenetic strategies of leaves in two conifer genera. Ecol Evol 2022; 12:e8611. [PMID: 35222971 PMCID: PMC8848466 DOI: 10.1002/ece3.8611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/21/2021] [Accepted: 01/23/2022] [Indexed: 11/09/2022] Open
Abstract
In land plants, heteroblasty broadly refers to a drastic change in morphology during growth through ontogeny. Juniperus flaccida and Pinus cembroides are conifers of independent lineages known to exhibit leaf heteroblasty between the juvenile and adult life stage of development. Juvenile leaves of P. cembroides develop spirally on the main stem and appear decurrent, flattened, and needle-like; whereas adult photosynthetic leaves are triangular or semi-circular needle-like, and grow in whorls on secondary or tertiary compact dwarf shoots. By comparison, J. flaccida juvenile leaves are decurrent and needle-like, and adult leaves are compact, short, and scale-like. Comparative analyses were performed to evaluate differences in anatomy and gene expression patterns between developmental phases in both species. RNA from 12 samples was sequenced and analyzed with available software. They were assembled de novo from the RNA-Seq reads. Following assembly, 63,741 high-quality transcripts were functionally annotated in P. cembroides and 69,448 in J. flaccida. Evaluation of the orthologous groups yielded 4140 shared gene families among the four references (adult and juvenile from each species). Activities related to cell division and development were more abundant in juveniles than adults in P. cembroides, and more abundant in adults than juveniles in J. flaccida. Overall, there were 509 up-regulated and 81 down-regulated genes in the juvenile condition of P. cembroides and 14 up-regulated and 22 down-regulated genes in J. flaccida. Gene interaction network analysis showed evidence of co-expression and co-localization of up-regulated genes involved in cell wall and cuticle formation, development, and phenylpropanoid pathway, in juvenile P. cembroides leaves. Whereas in J. flaccida, differential expression and gene interaction patterns were detected in genes involved in photosynthesis and chloroplast biogenesis. Although J. flaccida and P. cembroides both exhibit leaf heteroblastic development, little overlap was detected, and unique genes and pathways were highlighted in this study.
Collapse
Affiliation(s)
- Cynthia Webster
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticutUSA
| | - Laura Figueroa‐Corona
- Departamento de Ecología EvolutivaInstituto de EcologíaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Iván David Méndez‐González
- Departamento de Ecología EvolutivaInstituto de EcologíaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
- Department of Biological SciencesUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Lluvia Álvarez‐Soto
- Facultad de Ciencias BiológicasUniversidad Autónoma del Estado de MorelosCuernavacaMéxico
| | - David B. Neale
- Department of Plant SciencesUniversity of CaliforniaDavisCaliforniaUSA
| | - Juan Pablo Jaramillo‐Correa
- Departamento de Ecología EvolutivaInstituto de EcologíaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Jill L. Wegrzyn
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticutUSA
| | - Alejandra Vázquez‐Lobo
- Centro de Investigación en Biodiversidad y ConservaciónUniversidad Autónoma del Estado de MorelosCuernavacaMéxico
| |
Collapse
|
20
|
Qiu Y, Köhler C. Endosperm Evolution by Duplicated and Neofunctionalized Type I MADS-Box Transcription Factors. Mol Biol Evol 2022; 39:msab355. [PMID: 34897514 PMCID: PMC8788222 DOI: 10.1093/molbev/msab355] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MADS-box transcription factors (TFs) are present in nearly all major eukaryotic groups. They are divided into Type I and Type II that differ in domain structure, functional roles, and rates of evolution. In flowering plants, major evolutionary innovations like flowers, ovules, and fruits have been closely connected to Type II MADS-box TFs. The role of Type I MADS-box TFs in angiosperm evolution remains to be identified. Here, we show that the formation of angiosperm-specific Type I MADS-box clades of Mγ and Mγ-interacting Mα genes (Mα*) can be tracked back to the ancestor of all angiosperms. Angiosperm-specific Mγ and Mα* genes were preferentially expressed in the endosperm, consistent with their proposed function as heterodimers in the angiosperm-specific embryo nourishing endosperm tissue. We propose that duplication and diversification of Type I MADS genes underpin the evolution of the endosperm, a developmental innovation closely connected to the origin and success of angiosperms.
Collapse
Affiliation(s)
- Yichun Qiu
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant Biology, Uppsala, Sweden
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Claudia Köhler
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant Biology, Uppsala, Sweden
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| |
Collapse
|
21
|
Niu S, Li J, Bo W, Yang W, Zuccolo A, Giacomello S, Chen X, Han F, Yang J, Song Y, Nie Y, Zhou B, Wang P, Zuo Q, Zhang H, Ma J, Wang J, Wang L, Zhu Q, Zhao H, Liu Z, Zhang X, Liu T, Pei S, Li Z, Hu Y, Yang Y, Li W, Zan Y, Zhou L, Lin J, Yuan T, Li W, Li Y, Wei H, Wu HX. The Chinese pine genome and methylome unveil key features of conifer evolution. Cell 2021; 185:204-217.e14. [PMID: 34965378 DOI: 10.1016/j.cell.2021.12.006] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/23/2021] [Accepted: 12/03/2021] [Indexed: 12/30/2022]
Abstract
Conifers dominate the world's forest ecosystems and are the most widely planted tree species. Their giant and complex genomes present great challenges for assembling a complete reference genome for evolutionary and genomic studies. We present a 25.4-Gb chromosome-level assembly of Chinese pine (Pinus tabuliformis) and revealed that its genome size is mostly attributable to huge intergenic regions and long introns with high transposable element (TE) content. Large genes with long introns exhibited higher expressions levels. Despite a lack of recent whole-genome duplication, 91.2% of genes were duplicated through dispersed duplication, and expanded gene families are mainly related to stress responses, which may underpin conifers' adaptation, particularly in cold and/or arid conditions. The reproductive regulation network is distinct compared with angiosperms. Slow removal of TEs with high-level methylation may have contributed to genomic expansion. This study provides insights into conifer evolution and resources for advancing research on conifer adaptation and development.
Collapse
Affiliation(s)
- Shihui Niu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China.
| | - Jiang Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Wenhao Bo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Weifei Yang
- Annoroad Gene Technology (Beijing) Co., Ltd, Beijing 100180, P.R. China
| | - Andrea Zuccolo
- Center for Desert Agriculture, Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia; Institute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Stefania Giacomello
- SciLife Lab, KTH Royal Institute of Technology, Tomtebodavägen 23, SE-171 65 Stockholm, Sweden
| | - Xi Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Fangxu Han
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Junhe Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Yitong Song
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Yumeng Nie
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Biao Zhou
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Peiyi Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Quan Zuo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Hui Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Jingjing Ma
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Jun Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Lvji Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Qianya Zhu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Huanhuan Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Zhanmin Liu
- Qigou State-owned Forest Farm, Pingquan, Hebei Province 067509, P. R. China
| | - Xuemei Zhang
- Annoroad Gene Technology (Beijing) Co., Ltd, Beijing 100180, P.R. China
| | - Tao Liu
- Annoroad Gene Technology (Beijing) Co., Ltd, Beijing 100180, P.R. China
| | - Surui Pei
- Annoroad Gene Technology (Beijing) Co., Ltd, Beijing 100180, P.R. China
| | - Zhimin Li
- Annoroad Gene Technology (Beijing) Co., Ltd, Beijing 100180, P.R. China
| | - Yao Hu
- Alibaba Group, Hangzhou 311121, P.R. China
| | - Yehui Yang
- Alibaba Group, Hangzhou 311121, P.R. China
| | - Wenzhao Li
- Alibaba Group, Hangzhou 311121, P.R. China
| | - Yanjun Zan
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Linnaeus väg 6, 901 83 Umeå, Sweden
| | - Linghua Zhou
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Linnaeus väg 6, 901 83 Umeå, Sweden
| | - Jinxing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Tongqi Yuan
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China; College of Material Science and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Wei Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Yue Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA.
| | - Harry X Wu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China; Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Linnaeus väg 6, 901 83 Umeå, Sweden; CSIRO National Research Collection Australia, Black Mountain Laboratory, Canberra, ACT 2601, Australia.
| |
Collapse
|
22
|
Comprehensive Analysis of Five Phyllostachys edulis SQUA-like Genes and Their Potential Functions in Flower Development. Int J Mol Sci 2021; 22:ijms221910868. [PMID: 34639205 PMCID: PMC8509223 DOI: 10.3390/ijms221910868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/27/2021] [Accepted: 10/04/2021] [Indexed: 11/17/2022] Open
Abstract
Bamboo is one of the most important non-timber forest resources worldwide. It has considerable economic value and unique flowering characteristics. The long juvenile phase in bamboo and unpredictable flowering time limit breeding and genetic improvement and seriously affect the productivity and application of bamboo forests. Members of SQUA-like subfamily genes play an essential role in controlling flowering time and floral organ identity. A comprehensive study was conducted to explain the functions of five SQUA-like subfamily genes in Phyllostachys edulis. Expression analysis revealed that all PeSQUAs have higher transcript levels in the reproductive period than in the juvenile phase. However, PeSQUAs showed divergent expression patterns during inflorescence development. The protein–protein interaction (PPI) patterns among PeSQUAs and other MADS-box members were analyzed by yeast two-hybrid (Y2H) experiments. Consistent with amino acid sequence similarity and phylogenetic analysis, the PPI patterns clustered into two groups. PeMADS2, 13, and 41 interacted with multiple PeMADS proteins, whereas PeMADS3 and 28 hardly interacted with other proteins. Based on our results, PeSQUA might possess different functions by forming protein complexes with other MADS-box proteins at different flowering stages. Furthermore, we chose PeMADS2 for functional analysis. Ectopic expression of PeMADS2 in Arabidopsis and rice caused early flowering, and abnormal phenotype was observed in transgenic Arabidopsis lines. RNA-seq analysis indicated that PeMADS2 integrated multiple pathways regulating floral transition to trigger early flowering time in rice. This function might be due to the interaction between PeMADS2 and homologous in rice. Therefore, we concluded that the five SQUA-like genes showed functional conservation and divergence based on sequence differences and were involved in floral transitions by forming protein complexes in P. edulis. The MADS-box protein complex model obtained in the current study will provide crucial insights into the molecular mechanisms of bamboo’s unique flowering characteristics.
Collapse
|
23
|
Alhindi T, Al-Abdallat AM. Genome-Wide Identification and Analysis of the MADS-Box Gene Family in American Beautyberry ( Callicarpa americana). PLANTS 2021; 10:plants10091805. [PMID: 34579338 PMCID: PMC8466759 DOI: 10.3390/plants10091805] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 12/27/2022]
Abstract
The MADS-box gene family encodes a number of transcription factors that play key roles in various plant growth and development processes from response to environmental cues to cell differentiation and organ identity, especially the floral organogenesis, as in the prominent ABCDE model of flower development. Recently, the genome of American beautyberry (Callicarpa americana) has been sequenced. It is a shrub native to the southern region of United States with edible purple-colored berries; it is a member of the Lamiaceae family, a family of medical and agricultural importance. Seventy-eight MADS-box genes were identified from 17 chromosomes of the C. americana assembled genome. Peptide sequences blast and analysis of phylogenetic relationships with MADS-box genes of Sesame indicum, Solanum lycopersicum, Arabidopsis thaliana, and Amborella trichopoda were performed. Genes were separated into 32 type I and 46 type II MADS-box genes. C. americana MADS-box genes were clustered into four groups: MIKCC, MIKC*, Mα-type, and Mγ-type, while the Mβ-type group was absent. Analysis of the gene structure revealed that from 1 to 15 exons exist in C. americana MADS-box genes. The number of exons in type II MADS-box genes (5–15) greatly exceeded the number in type I genes (1–9). The motif distribution analysis of the two types of MADS-box genes showed that type II MADS-box genes contained more motifs than type I genes. These results suggested that C. americana MADS-box genes type II had more complex structures and might have more diverse functions. The role of MIKC-type MADS-box genes in flower and fruit development was highlighted when the expression profile was analyzed in different organs transcriptomes. This study is the first genome-wide analysis of the C. americana MADS-box gene family, and the results will further support any functional and evolutionary studies of C. americana MADS-box genes and serve as a reference for related studies of other plants in the medically important Lamiaceae family.
Collapse
Affiliation(s)
- Tareq Alhindi
- Department of Biological Sciences, School of Science, The University of Jordan, Amman 11942, Jordan
- Correspondence:
| | - Ayed M. Al-Abdallat
- Department of Horticulture and Crop Science, School of Agriculture, The University of Jordan, Amman 11942, Jordan;
| |
Collapse
|
24
|
Hou C, Tian Y, Wang Y, Lian H, Liang D, Shi S, Deng N, He B. Revealing the developmental dynamics in male strobilus transcriptome of Gnetum luofuense using nanopore sequencing technology. Sci Rep 2021; 11:10516. [PMID: 34006996 PMCID: PMC8131605 DOI: 10.1038/s41598-021-90082-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 04/29/2021] [Indexed: 02/03/2023] Open
Abstract
Gnetum is a pantropical distributed gymnosperm genus. As being dioecious, Gnetum species apply female and male strobili to attract and provide nutrition to insect pollinators. Due to its unique gross morphology, a Gnetum male strobilus receives much attention in previous taxonomic and evolutionary studies. However, underlying molecular mechanisms that control male strobilus development and pollination adaptation have not been well studied. In the present study, nine full-length transcriptomes were sequenced from three developmental stages of the G. luofuense male strobili using Oxford Nanopore Technologies. In addition, weighted gene co-expression network analysis (WGCNA), and RT-qPCR analysis were performed. Our results show that a total of 3138 transcription factors and 466 long non-coding RNAs (lncRNAs) were identified, and differentially expressed lncRNAs and TFs reveal a dynamic pattern during the male strobilus development. Our results show that MADS-box and Aux/IAA TFs were differentially expressed at the three developmental stages, suggesting their important roles in the regulation of male strobilus development of G. luofuense. Results of WGCNA analysis and annotation of differentially expressed transcripts corroborate that the male strobilus development of G. luofuense is closely linked to plant hormone changes, photosynthesis, pollination drop secretion and reproductive organ defense. Our results provide a valuable resource for understanding the molecular mechanisms that drive organ evolution and pollination biology in Gnetum.
Collapse
Affiliation(s)
- Chen Hou
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
- Guangdong Academy of Forestry, Guangshanyilu No. 233, Longdong District, Guangzhou, 510520, China
| | - Yuxin Tian
- Hunan Academy of Forestry, Changsha, Hunan, No. 658 Shaoshan Road, Tianxin District, Changsha, 410004, China
- Hunan Cili Forest Ecosystem State Research Station, Cili, Hunan, Changsha, 410004, China
| | - Yingli Wang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
- Guangdong Academy of Forestry, Guangshanyilu No. 233, Longdong District, Guangzhou, 510520, China
| | - Huiming Lian
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
- Guangdong Academy of Forestry, Guangshanyilu No. 233, Longdong District, Guangzhou, 510520, China
| | - Dongcheng Liang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
- Guangdong Academy of Forestry, Guangshanyilu No. 233, Longdong District, Guangzhou, 510520, China
| | - Shengqing Shi
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Nan Deng
- Hunan Academy of Forestry, Changsha, Hunan, No. 658 Shaoshan Road, Tianxin District, Changsha, 410004, China.
- Hunan Cili Forest Ecosystem State Research Station, Cili, Hunan, Changsha, 410004, China.
| | - Boxiang He
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China.
- Guangdong Academy of Forestry, Guangshanyilu No. 233, Longdong District, Guangzhou, 510520, China.
| |
Collapse
|
25
|
Fernandez‐Pozo N, Metz T, Chandler JO, Gramzow L, Mérai Z, Maumus F, Mittelsten Scheid O, Theißen G, Schranz ME, Leubner‐Metzger G, Rensing SA. Aethionema arabicum genome annotation using PacBio full-length transcripts provides a valuable resource for seed dormancy and Brassicaceae evolution research. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:275-293. [PMID: 33453123 PMCID: PMC8641386 DOI: 10.1111/tpj.15161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/31/2020] [Accepted: 01/08/2021] [Indexed: 05/06/2023]
Abstract
Aethionema arabicum is an important model plant for Brassicaceae trait evolution, particularly of seed (development, regulation, germination, dormancy) and fruit (development, dehiscence mechanisms) characters. Its genome assembly was recently improved but the gene annotation was not updated. Here, we improved the Ae. arabicum gene annotation using 294 RNA-seq libraries and 136 307 full-length PacBio Iso-seq transcripts, increasing BUSCO completeness by 11.6% and featuring 5606 additional genes. Analysis of orthologs showed a lower number of genes in Ae. arabicum than in other Brassicaceae, which could be partially explained by loss of homeologs derived from the At-α polyploidization event and by a lower occurrence of tandem duplications after divergence of Aethionema from the other Brassicaceae. Benchmarking of MADS-box genes identified orthologs of FUL and AGL79 not found in previous versions. Analysis of full-length transcripts related to ABA-mediated seed dormancy discovered a conserved isoform of PIF6-β and antisense transcripts in ABI3, ABI4 and DOG1, among other cases found of different alternative splicing between Turkey and Cyprus ecotypes. The presented data allow alternative splicing mining and proposition of numerous hypotheses to research evolution and functional genomics. Annotation data and sequences are available at the Ae. arabicum DB (https://plantcode.online.uni-marburg.de/aetar_db).
Collapse
Affiliation(s)
- Noe Fernandez‐Pozo
- Plant Cell BiologyDepartment of BiologyUniversity of MarburgMarburgGermany
| | - Timo Metz
- Plant Cell BiologyDepartment of BiologyUniversity of MarburgMarburgGermany
| | - Jake O. Chandler
- School of Biological SciencesRoyal Holloway University of LondonEghamSurreyUK
| | - Lydia Gramzow
- Matthias Schleiden Institute/GeneticsFriedrich Schiller University JenaJenaGermany
| | - Zsuzsanna Mérai
- Gregor Mendel Institute of Molecular Plant BiologyAustrian Academy of SciencesVienna BioCenter (VBC)ViennaAustria
| | | | - Ortrun Mittelsten Scheid
- Gregor Mendel Institute of Molecular Plant BiologyAustrian Academy of SciencesVienna BioCenter (VBC)ViennaAustria
| | - Günter Theißen
- Matthias Schleiden Institute/GeneticsFriedrich Schiller University JenaJenaGermany
| | - M. Eric Schranz
- Biosystematics GroupWageningen UniversityWageningenThe Netherlands
| | - Gerhard Leubner‐Metzger
- School of Biological SciencesRoyal Holloway University of LondonEghamSurreyUK
- Laboratory of Growth RegulatorsCentre of the Region Haná for Biotechnological and Agricultural ResearchPalacký University and Institute of Experimental BotanyAcademy of Sciences of the Czech RepublicOlomoucCzech Republic
| | - Stefan A. Rensing
- Plant Cell BiologyDepartment of BiologyUniversity of MarburgMarburgGermany
- BIOSS Centre for Biological Signaling StudiesUniversity of FreiburgFreiburgGermany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO)University of MarburgMarburgGermany
| |
Collapse
|
26
|
Hu Y, Wang L, Jia R, Liang W, Zhang X, Xu J, Chen X, Lu D, Chen M, Luo Z, Xie J, Cao L, Xu B, Yu Y, Persson S, Zhang D, Yuan Z. Rice transcription factor MADS32 regulates floral patterning through interactions with multiple floral homeotic genes. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2434-2449. [PMID: 33337484 DOI: 10.1093/jxb/eraa588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Floral patterning is regulated by intricate networks of floral identity genes. The peculiar MADS32 subfamily genes, absent in eudicots but prevalent in monocots, control floral organ identity. However, how the MADS32 family genes interact with other floral homeotic genes during flower development is mostly unknown. We show here that the rice homeotic transcription factor OsMADS32 regulates floral patterning by interacting synergistically with E class protein OsMADS6 in a dosage-dependent manner. Furthermore, our results indicate important roles for OsMADS32 in defining stamen, pistil, and ovule development through physical and genetic interactions with OsMADS1, OsMADS58, and OsMADS13, and in specifying floral meristem identity with OsMADS6, OsMADS3, and OsMADS58, respectively. Our findings suggest that OsMADS32 is an important factor for floral meristem identity maintenance and that it integrates the action of other MADS-box homeotic proteins to sustain floral organ specification and development in rice. Given that OsMADS32 is an orphan gene and absent in eudicots, our data substantially expand our understanding of flower development in plants.
Collapse
Affiliation(s)
- Yun Hu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Li Wang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ru Jia
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xuelian Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Xu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaofei Chen
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Dan Lu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Mingjiao Chen
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhijing Luo
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiayang Xie
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Liming Cao
- Crop Breeding & Cultivation Research Institute, Shanghai Academy of Agriculture Sciences, Shanghai, China
| | - Ben Xu
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Yu Yu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Staffan Persson
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- School of Biosciences, University of Melbourne, Parkville VIC, Melbourne, Australia
- Department for Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
- Copenhagen Plant Science Center, University of Copenhagen, Frederiksberg C, Denmark
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, South Australia, Australia
| | - Zheng Yuan
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
27
|
Ambrose BA, Smalls TL, Zumajo-Cardona C. All type II classic MADS-box genes in the lycophyte Selaginella moellendorffii are broadly yet discretely expressed in vegetative and reproductive tissues. Evol Dev 2021; 23:215-230. [PMID: 33666357 DOI: 10.1111/ede.12375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/13/2021] [Accepted: 01/30/2021] [Indexed: 11/29/2022]
Abstract
The MADS-box genes constitute a large transcription factor family that appear to have evolved by duplication and diversification of function. Two types of MADS-box genes are distinguished throughout eukaryotes, types I and II. Type II classic MADS-box genes, also known as MIKC-type, are key developmental regulators in flowering plants and are particularly well-studied for their role in floral organ specification. However, very little is known about the role that these genes might play outside of the flowering plants. We investigated the evolution of type II classic MADS-box genes across land plants by performing a maximum likelihood analysis with a particular focus on lycophytes. Here, we present the expression patterns of all three type II classic MADS-box homologs throughout plant development in the lycophyte Selaginella moellendorffii: SmMADS1, SmMADS3, and SmMADS6. We used scanning electron microscopy and histological analyses to define stages of sporangia development in S. moellendorffii. We performed phylogenetic analyses of this gene lineage across land plants and found that lycophyte sequences appeared before the multiple duplication events that gave rise to the major MADS-box gene lineages in seed plants. Our expression analyses by in situ hybridization show that all type II classic MADS-box genes in S. moellendorffii have broad but distinct patterns of expression in vegetative and reproductive tissues, where SmMADS1 and SmMADS6 only differ during late sporangia development. The broad expression during S. moellendorffii development suggests that MADS-box genes have undergone neofunctionalization and subfunctionalization after duplication events in seed plants.
Collapse
Affiliation(s)
| | | | - Cecilia Zumajo-Cardona
- New York Botanical Garden, Bronx, Bronx, New York, USA.,The Graduate Center, City University of New York, New York, New York, USA
| |
Collapse
|
28
|
Meade LE, Plackett ARG, Hilton J. Reconstructing development of the earliest seed integuments raises a new hypothesis for the evolution of ancestral seed-bearing structures. THE NEW PHYTOLOGIST 2021; 229:1782-1794. [PMID: 32639670 DOI: 10.1111/nph.16792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
How plant seeds originated remains unresolved, in part due to disconnects between fossil intermediates and developmental genetics in extant species. The Carboniferous fossil Genomosperma is considered among the most primitive known seeds, with highly lobed integument and exposed nucellus. We have used this key fossil taxon to investigate the evolutionary origins of seed development. We examined sectioned Genomosperma specimens using modern digital 3D reconstruction techniques and established population-level measurements of Genomosperma ovules for quantitative analysis. Genomosperma ovules show significant variation in integumentary lobe fusion and curvature. Our analysis suggests that this variation represents a single species with significant variations in lobe number and fusion, reminiscent of floral development in extant species. We conclude that changes in lobe flexure occurred late in development, consistent with a previously hypothesized function in pollen guidance/retention. We also identify seeds of Genomosperma within cupules for the first time. The presence of a cupule adds evidence towards the plesiomorphy of cupules within seed plants. Together with the similarities identified between the Genomosperma lobed integument and floral organs, we propose that the cupule, integument and nucellus together developed in a shoot-like fashion, potentially ancestral to extant seed plant reproductive shoots.
Collapse
Affiliation(s)
- Luke E Meade
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Andrew R G Plackett
- Birmingham Institute of Forest Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Jason Hilton
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Birmingham Institute of Forest Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
29
|
Won SY, Jung JA, Kim JS. Genome-wide analysis of the MADS-Box gene family in Chrysanthemum. Comput Biol Chem 2020; 90:107424. [PMID: 33340990 DOI: 10.1016/j.compbiolchem.2020.107424] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/19/2020] [Accepted: 11/28/2020] [Indexed: 10/22/2022]
Abstract
MADS-box family transcription factors play key roles in various developmental processes in plants. Here, we identified 108 MADS-box genes in the genome of chrysanthemum (Chrysanthemum nankingense). We classified these genes based on their phylogenetic relationships with MADS-box genes in Arabidopsis thaliana and lettuce (Lactuca sativa). Type I genes were subdivided into classes Mα (19 genes), Mβ (12 genes), and Mγ (10 genes), and type II genes were subdivided into classes MIKCC (64 genes) and MIKC* (3 genes). The MIKCC class genes were further divided into 16 subclasses that included genes described in the ABCDE flower development model. Each group of MADS-box genes showed a specific pattern of conserved protein motifs and exon-intron structure. We analyzed the expression levels of each MADS-box gene in root, stem, leaf, flower bud, disc floret, and ray floret tissues. Subfamilies AGL18, FLC, and SVP contained more members in chrysanthemum. The asterid-specific TM8 subfamily and eleven Asteraceae Specific-MADS CnMADS genes were present in chrysanthemum. Chrysanthemum is the lacking members of the AGL15 subfamily. Among the genes responsible for the ABCDE model, B-class genes were expanded in chrysanthemum with three AP3 and four PI genes. One AP3 homolog functions in marginal ray floret development, whereas the two other AP3 homologs function in the development of the central disc floret. Two of the four PI genes are expressed in chrysanthemum, specifically in both types of florets. The results of this study lay the foundation for further studies of the roles of MADS-box genes in flower development in chrysanthemum and of the evolution of MADS-box genes in plants.
Collapse
Affiliation(s)
- So Youn Won
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea.
| | - Jae-A Jung
- Floriculture Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Jung Sun Kim
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| |
Collapse
|
30
|
Deng N, Hou C, He B, Ma F, Song Q, Shi S, Liu C, Tian Y. A full-length transcriptome and gene expression analysis reveal genes and molecular elements expressed during seed development in Gnetum luofuense. BMC PLANT BIOLOGY 2020; 20:531. [PMID: 33228526 PMCID: PMC7685604 DOI: 10.1186/s12870-020-02729-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/31/2020] [Indexed: 05/07/2023]
Abstract
BACKGROUND Gnetum is an economically important tropical and subtropical gymnosperm genus with various dietary, industrial and medicinal uses. Many carbohydrates, proteins and fibers accumulate during the ripening of Gnetum seeds. However, the molecular mechanisms related to this process remain unknown. RESULTS We therefore assembled a full-length transcriptome from immature and mature G. luofuense seeds using PacBio sequencing reads. We identified a total of 5726 novel genes, 9061 alternative splicing events, 3551 lncRNAs, 2160 transcription factors, and we found that 8512 genes possessed at least one poly(A) site. In addition, gene expression comparisons of six transcriptomes generated by Illumina sequencing showed that 14,323 genes were differentially expressed from an immature stage to a mature stage with 7891 genes upregulated and 6432 genes downregulated. The expression of 14 differentially expressed transcription factors from the MADS-box, Aux/IAA and bHLH families was validated by qRT-PCR, suggesting that they may have important roles in seed ripening of G. luofuense. CONCLUSIONS These findings provide a valuable molecular resource for understanding seed development of gymnosperms.
Collapse
Affiliation(s)
- Nan Deng
- Hunan Academy of Forestry, Changsha, Hunan, No.658 Shaoshan Road, Tianxin District, Changsha, 410004, China
- Hunan Cili Forest Ecosystem State Research Station, Cili, Changsha, 410004, Hunan, China
| | - Chen Hou
- Guangdong Academy of Forestry, Guangzhou, 510520, China
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Boxiang He
- Guangdong Academy of Forestry, Guangzhou, 510520, China
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Fengfeng Ma
- Hunan Academy of Forestry, Changsha, Hunan, No.658 Shaoshan Road, Tianxin District, Changsha, 410004, China
- Hunan Cili Forest Ecosystem State Research Station, Cili, Changsha, 410004, Hunan, China
| | - Qingan Song
- Hunan Academy of Forestry, Changsha, Hunan, No.658 Shaoshan Road, Tianxin District, Changsha, 410004, China
- Hunan Cili Forest Ecosystem State Research Station, Cili, Changsha, 410004, Hunan, China
| | - Shengqing Shi
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, No. 1 Dongxiaofu, Xiangshan Road, Haidian, Beijing, 100091, China
| | - Caixia Liu
- Hunan Academy of Forestry, Changsha, Hunan, No.658 Shaoshan Road, Tianxin District, Changsha, 410004, China.
| | - Yuxin Tian
- Hunan Academy of Forestry, Changsha, Hunan, No.658 Shaoshan Road, Tianxin District, Changsha, 410004, China.
- Hunan Cili Forest Ecosystem State Research Station, Cili, Changsha, 410004, Hunan, China.
| |
Collapse
|
31
|
Wang D, Hao Z, Long X, Wang Z, Zheng X, Ye D, Peng Y, Wu W, Hu X, Wang G, Zheng R, Shi J, Chen J. The Transcriptome of Cunninghamia lanceolata male/female cone reveal the association between MIKC MADS-box genes and reproductive organs development. BMC PLANT BIOLOGY 2020; 20:508. [PMID: 33153428 PMCID: PMC7643283 DOI: 10.1186/s12870-020-02634-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 08/30/2020] [Indexed: 05/24/2023]
Abstract
BACKGROUND Cunninghamia lanceolata (Chinese fir), a member of the conifer family Cupressaceae, is one of the most popular cultivated trees for wood production in China. Continuous research is being performed to improve C. lanceolata breeding values. Given the high rate of seed abortion (one of the reasons being the failure of ovule and pollen development) in C. lanceolata, the proper formation of female/male cones could theoretically increase the number of offspring in future generations. MIKC MADS-box genes are well-known for their roles in the flower/cone development and comprise the typical/atypical floral development model for both angiosperms and gymnosperms. RESULTS We performed a transcriptomic analysis to find genes differentially expressed between female and male cones at a single, carefully determined developmental stage, focusing on the MIKC MADS-box genes. We finally obtained 47 unique MIKC MADS-box genes from C. lanceolata and divided these genes into separate branches. 27 out of the 47 MIKC MADS-box genes showed differential expression between female and male cones, and most of them were not expressed in leaves. Out of these 27 genes, most B-class genes (AP3/PI) were up-regulated in the male cone, while TM8 genes were up-regulated in the female cone. Then, with no obvious overall preference for AG (class C + D) genes in female/male cones, it seems likely that these genes are involved in the development of both cones. Finally, a small number of genes such as GGM7, SVP, AGL15, that were specifically expressed in female/male cones, making them candidate genes for sex-specific cone development. CONCLUSIONS Our study identified a number of MIKC MADS-box genes showing differential expression between female and male cones in C. lanceolata, illustrating a potential link of these genes with C. lanceolata cone development. On the basis of this, we postulated a possible cone development model for C. lanceolata. The gene expression library showing differential expression between female and male cones shown here, can be used to discover unknown regulatory networks related to sex-specific cone development in the future.
Collapse
Affiliation(s)
- Dandan Wang
- Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhaodong Hao
- Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiaofei Long
- Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhanjun Wang
- College of Life Sciences, Hefei Normal University, Hefei, 230601, China
| | - Xueyan Zheng
- National Germplasm Bank of Chinese fir at Fujian Yangkou Forest Farm, Shunchang, 353211, China
| | - Daiquan Ye
- National Germplasm Bank of Chinese fir at Fujian Yangkou Forest Farm, Shunchang, 353211, China
| | - Ye Peng
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Weihuang Wu
- Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiangyang Hu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Guibin Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Renhua Zheng
- Fujian Academy of Forestry, Fuzhou, 350012, China
| | - Jisen Shi
- Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Jinhui Chen
- Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
32
|
Lin Z, Cao D, Damaris RN, Yang P. Genome-wide identification of MADS-box gene family in sacred lotus (Nelumbo nucifera) identifies a SEPALLATA homolog gene involved in floral development. BMC PLANT BIOLOGY 2020; 20:497. [PMID: 33121437 PMCID: PMC7599106 DOI: 10.1186/s12870-020-02712-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Sacred lotus (Nelumbo nucifera) is a vital perennial aquatic ornamental plant. Its flower shape determines the horticultural and ornamental values. However, the mechanisms underlying lotus flower development are still elusive. MADS-box transcription factors are crucial in various features of plant development, especially in floral organogenesis and specification. It is still unknown how the MADS-box transcription factors regulate the floral organogenesis in lotus. RESULTS To obtain a comprehensive insight into the functions of MADS-box genes in sacred lotus flower development, we systematically characterized members of this gene family based on the available genome information. A total of 44 MADS-box genes were identified, of which 16 type I and 28 type II genes were categorized based on the phylogenetic analysis. Furthermore, the structure of MADS-box genes and their expressional patterns were also systematically analyzed. Additionally, subcellular localization analysis showed that they are mainly localized in the nucleus, of which a SEPALLATA3 (SEP3) homolog NnMADS14 was proven to be involved in the floral organogenesis. CONCLUSION These results provide some fundamental information about the MADS-box gene family and their functions, which might be helpful in not only understanding the mechanisms of floral organogenesis but also breeding of high ornamental value cultivars in lotus.
Collapse
Affiliation(s)
- Zhongyuan Lin
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062 China
- Institute of Oceanography, Minjiang University, Fuzhou, 350108 China
| | - Dingding Cao
- Institute of Oceanography, Minjiang University, Fuzhou, 350108 China
| | - Rebecca Njeri Damaris
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062 China
| |
Collapse
|
33
|
Rudall PJ. Colourful cones: how did flower colour first evolve? JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:759-767. [PMID: 31714579 DOI: 10.1093/jxb/erz479] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/14/2019] [Indexed: 05/09/2023]
Abstract
Angiosperms that are biotically pollinated typically produce flowers with bright and contrasting colours that help to attract pollinators and hence contribute to the reproductive success of the species. This colourful array contrasts with the much less multicoloured reproductive structures of the four living gymnosperm lineages, which are mostly wind pollinated, though cycads and Gnetales are predominantly pollinated by insects that feed on surface fluids from the pollination drops. This review examines the possible evolutionary pathways and cryptic clues for flower colour in both living and fossil seed plants. It investigates how the ancestral flowering plants could have overcome the inevitable trade-off that exists between attracting pollinators and minimizing herbivory, and explores the possible evolutionary and biological inferences from the colours that occur in some living gymnosperms. The red colours present in the seed-cone bracts of some living conifers result from accumulation of anthocyanin pigments; their likely primary function is to help protect the growing plant tissues under particular environmental conditions. Thus, the visual cue provided by colour in flower petals could have first evolved as a secondary effect, probably post-dating the evolution of bee colour vision but occurring before the subsequent functional accumulation of a range of different flower pigments.
Collapse
|
34
|
Gramzow L, Lobbes D, Innard N, Theißen G. Independent origin of MIRNA genes controlling homologous target genes by partial inverted duplication of antisense-transcribed sequences. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:401-419. [PMID: 31571291 DOI: 10.1111/tpj.14550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/21/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
Some microRNAs (miRNAs) are key regulators of developmental processes, mainly by controlling the accumulation of transcripts encoding transcription factors that are important for morphogenesis. MADS-box genes encode a family of transcription factors which control diverse developmental processes in flowering plants. Here we study the convergent evolution of two MIRNA (MIR) gene families, named MIR444 and MIR824, targeting members of the same clade of MIKCC -group MADS-box genes. We show that these two MIR genes most likely originated independently in monocots (MIR444) and in Brassicales (eudicots, MIR824). We provide evidence that, in both cases, the future target gene was transcribed in antisense prior to the evolution of the MIR genes. Both MIR genes then likely originated by a partial inverted duplication of their target genes, resulting in natural antisense organization of the newly evolved MIR gene and its target gene at birth. We thus propose a model for the origin of MIR genes, MEPIDAS (MicroRNA Evolution by Partial Inverted Duplication of Antisense-transcribed Sequences). MEPIDAS is a refinement of the inverted duplication hypothesis. According to MEPIDAS, a MIR gene evolves at a genomic locus at which the future target gene is also transcribed in the antisense direction. A partial inverted duplication at this locus causes the antisense transcript to fold into a stem-loop structure that is recognized by the miRNA biogenesis machinery to produce a miRNA that regulates the gene at this locus. Our analyses exemplify how to elucidate the origin of conserved miRNAs by comparative genomics and will guide future studies. OPEN RESEARCH BADGE: This article has earned an Open Data Badge for making publicly available the digitally-shareable data necessary to reproduce the reported results. The data is available at https://www.ncbi.nlm.nih.gov/genbank/.
Collapse
Affiliation(s)
- Lydia Gramzow
- Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, 07743, Jena, Germany
| | - Dajana Lobbes
- Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, 07743, Jena, Germany
| | - Nathan Innard
- Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, 07743, Jena, Germany
| | - Günter Theißen
- Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, 07743, Jena, Germany
| |
Collapse
|
35
|
Hoffmeier A, Gramzow L, Bhide AS, Kottenhagen N, Greifenstein A, Schubert O, Mummenhoff K, Becker A, Theißen G. A Dead Gene Walking: Convergent Degeneration of a Clade of MADS-Box Genes in Crucifers. Mol Biol Evol 2019; 35:2618-2638. [PMID: 30053121 DOI: 10.1093/molbev/msy142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Genes are "born," and eventually they "die." These processes shape the phenotypic evolution of organisms and are hence of great biological interest. If genes die in plants, they generally do so quite rapidly. Here, we describe the fate of GOA-like genes that evolve in a dramatically different manner. GOA-like genes belong to the subfamily of Bsister genes of MIKC-type MADS-box genes. Typical MIKC-type genes encode conserved transcription factors controlling plant development. We show that ABS-like genes, a clade of Bsister genes, are indeed highly conserved in crucifers (Brassicaceae) maintaining the ancestral function of Bsister genes in ovule and seed development. In contrast, their closest paralogs, the GOA-like genes, have been undergoing convergent gene death in Brassicaceae. Intriguingly, erosion of GOA-like genes occurred after millions of years of coexistence with ABS-like genes. We thus describe Delayed Convergent Asymmetric Degeneration, a so far neglected but possibly frequent pattern of duplicate gene evolution that does not fit classical scenarios. Delayed Convergent Asymmetric Degeneration of GOA-like genes may have been initiated by a reduction in the expression of an ancestral GOA-like gene in the stem group of Brassicaceae and driven by dosage subfunctionalization. Our findings have profound implications for gene annotations in genomics, interpreting patterns of gene evolution and using genes in phylogeny reconstructions of species.
Collapse
Affiliation(s)
- Andrea Hoffmeier
- Genetics, Matthias Schleiden Institute, Friedrich-Schiller-University Jena, Jena, Germany
| | - Lydia Gramzow
- Genetics, Matthias Schleiden Institute, Friedrich-Schiller-University Jena, Jena, Germany
| | - Amey S Bhide
- Plant Developmental Biology Group, Institute of Botany, Justus-Liebig-University Giessen, Giessen, Germany
| | - Nina Kottenhagen
- Genetics, Matthias Schleiden Institute, Friedrich-Schiller-University Jena, Jena, Germany
| | - Andreas Greifenstein
- Genetics, Matthias Schleiden Institute, Friedrich-Schiller-University Jena, Jena, Germany
| | - Olesia Schubert
- Plant Developmental Biology Group, Institute of Botany, Justus-Liebig-University Giessen, Giessen, Germany
| | - Klaus Mummenhoff
- Department of Biology/Botany, University of Osnabrück, Osnabrück, Germany
| | - Annette Becker
- Plant Developmental Biology Group, Institute of Botany, Justus-Liebig-University Giessen, Giessen, Germany
| | - Günter Theißen
- Genetics, Matthias Schleiden Institute, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
36
|
Rümpler F, Theißen G. Reconstructing the ancestral flower of extant angiosperms: the 'war of the whorls' is heating up. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2615-2622. [PMID: 30870567 DOI: 10.1093/jxb/erz106] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/28/2019] [Indexed: 05/06/2023]
Abstract
The origin of the angiosperm flower is a long-standing problem of botany and evolutionary biology. One widely accepted milestone towards solving it is the reconstruction of the ancestral flower of extant angiosperms, here termed 'AFEA'. A recent approach employing novel methods gave results that were not anticipated. Most notably the reconstructed phyllotaxis of AFEA soon was criticized and sparked a heated debate in the literature. To better explain, clarify, and perhaps cool the debate, we first summarize the results of previous attempts to reconstruct AFEA and contrast them with the more recent, controversial prediction of its structure. We then outline the major arguments made by contrasting parties in the recent debate. Finally, we discuss two key topics, the molecular mechanism of phyllotaxis and the role of gene regulatory networks during flower development and evolution, that may help to clarify the issue in the intermediate future.
Collapse
Affiliation(s)
- Florian Rümpler
- Friedrich Schiller University Jena, Matthias Schleiden Institute - Genetics, Philosophenweg, Jena, Germany
| | - Günter Theißen
- Friedrich Schiller University Jena, Matthias Schleiden Institute - Genetics, Philosophenweg, Jena, Germany
| |
Collapse
|
37
|
Shen G, Yang CH, Shen CY, Huang KS. Origination and selection of ABCDE and AGL6 subfamily MADS-box genes in gymnosperms and angiosperms. Biol Res 2019; 52:25. [PMID: 31018872 PMCID: PMC6480507 DOI: 10.1186/s40659-019-0233-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/18/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The morphological diversity of flower organs is closely related to functional divergence within the MADS-box gene family. Bryophytes and seedless vascular plants have MADS-box genes but do not have ABCDE or AGAMOUS-LIKE6 (AGL6) genes. ABCDE and AGL6 genes belong to the subgroup of MADS-box genes. Previous works suggest that the B gene was the first ABCDE and AGL6 genes to emerge in plant but there are no mentions about the probable origin time of ACDE and AGL6 genes. Here, we collected ABCDE and AGL6 gene 381 protein sequences and 361 coding sequences from gymnosperms and angiosperms and reconstructed a complete Bayesian phylogeny of these genes. In this study, we want to clarify the probable origin time of ABCDE and AGL6 genes is a great help for understanding the role of the formation of the flower, which can decipher the forming order of MADS-box genes in the future. RESULTS These genes appeared to have been under purifying selection and their evolutionary rates are not significantly different from each other. Using the Bayesian evolutionary analysis by sampling trees (BEAST) tool, we estimated that: the mutation rate of the ABCDE and AGL6 genes was 2.617 × 10-3 substitutions/site/million years, and that B genes originated 339 million years ago (MYA), CD genes originated 322 MYA, and A genes shared the most recent common ancestor with E/AGL6 296 MYA, respectively. CONCLUSIONS The phylogeny of ABCDE and AGL6 genes subfamilies differed. The APETALA1 (AP1 or A gene) subfamily clustered into one group. The APETALA3/PISTILLATA (AP3/PI or B genes) subfamily clustered into two groups: the AP3 and PI clades. The AGAMOUS/SHATTERPROOF/SEEDSTICK (AG/SHP/STK or CD genes) subfamily clustered into a single group. The SEPALLATA (SEP or E gene) subfamily in angiosperms clustered into two groups: the SEP1/2/4 and SEP3 clades. The AGL6 subfamily clustered into a single group. Moreover, ABCDE and AGL6 genes appeared in the following order: AP3/PI → AG/SHP/STK → AGL6/SEP/AP1. In this study, we collected candidate sequences from gymnosperms and angiosperms. This study highlights important events in the evolutionary history of the ABCDE and AGL6 gene families and clarifies their evolutionary path.
Collapse
Affiliation(s)
- Gangxu Shen
- Department of Electrical Engineering, I-Shou University, Kaohsiung, Taiwan
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
| | - Chih-Hui Yang
- College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Chi-Yen Shen
- Department of Electrical Engineering, I-Shou University, Kaohsiung, Taiwan
| | - Keng-Shiang Huang
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
- College of Medicine, I-Shou University, Kaohsiung, Taiwan
| |
Collapse
|
38
|
Fritsche S, Klocko AL, Boron A, Brunner AM, Thorlby G. Strategies for Engineering Reproductive Sterility in Plantation Forests. FRONTIERS IN PLANT SCIENCE 2018; 9:1671. [PMID: 30498505 PMCID: PMC6249417 DOI: 10.3389/fpls.2018.01671] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 10/26/2018] [Indexed: 05/03/2023]
Abstract
A considerable body of research exists concerning the development of technologies to engineer sterility in forest trees. The primary driver for this work has been to mitigate concerns arising from gene flow from commercial plantings of genetically engineered (GE) trees to non-GE plantations, or to wild or feral relatives. More recently, there has been interest in the use of sterility technologies as a means to mitigate the global environmental and socio-economic damage caused by the escape of non-native invasive tree species from planted forests. The current sophisticated understanding of the molecular processes underpinning sexual reproduction in angiosperms has facilitated the successful demonstration of a number of control strategies in hardwood tree species, particularly in the model hardwood tree Poplar. Despite gymnosperm softwood trees, such as pines, making up the majority of the global planted forest estate, only pollen sterility, via cell ablation, has been demonstrated in softwoods. Progress has been limited by the lack of an endogenous model system, long timescales required for testing, and key differences between softwood reproductive pathways and those of well characterized angiosperm model systems. The availability of comprehensive genome and transcriptome resources has allowed unprecedented insights into the reproductive processes of both hardwood and softwood tree species. This increased fundamental knowledge together with the implementation of new breeding technologies, such as gene editing, which potentially face a less oppressive regulatory regime, is making the implementation of engineered sterility into commercial forestry a realistic possibility.
Collapse
Affiliation(s)
| | - Amy L. Klocko
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, United States
| | | | - Amy M. Brunner
- Department of Forest Resources and Environmental Conservation, Virginia Tech, Blacksburg, VA, United States
| | | |
Collapse
|
39
|
Gao H, Wang Z, Li S, Hou M, Zhou Y, Zhao Y, Li G, Zhao H, Ma H. Genome-wide survey of potato MADS-box genes reveals that StMADS1 and StMADS13 are putative downstream targets of tuberigen StSP6A. BMC Genomics 2018; 19:726. [PMID: 30285611 PMCID: PMC6171223 DOI: 10.1186/s12864-018-5113-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 09/25/2018] [Indexed: 11/17/2022] Open
Abstract
Background MADS-box genes encode transcription factors that are known to be involved in several aspects of plant growth and development, especially in floral organ specification. To date, the comprehensive analysis of potato MADS-box gene family is still lacking after the completion of potato genome sequencing. A genome-wide characterization, classification, and expression analysis of MADS-box transcription factor gene family was performed in this study. Results A total of 153 MADS-box genes were identified and categorized into MIKC subfamily (MIKCC and MIKC*) and M-type subfamily (Mα, Mβ, and Mγ) based on their phylogenetic relationships to the Arabidopsis and rice MADS-box genes. The potato M-type subfamily had 114 members, which is almost three times of the MIKC members (39), indicating that M-type MADS-box genes have a higher duplication rate and/or a lower loss rate during potato genome evolution. Potato MADS-box genes were present on all 12 potato chromosomes with substantial clustering that mainly contributed by the M-type members. Chromosomal localization of potato MADS-box genes revealed that MADS-box genes, mostly MIKC, were located on the duplicated segments of the potato genome whereas tandem duplications mainly contributed to the M-type gene expansion. The potato MIKC subfamily could be further classified into 11 subgroups and the TT16-like, AGL17-like, and FLC-like subgroups found in Arabidopsis were absent in potato. Moreover, the expressions of potato MADS-box genes in various tissues were analyzed by using RNA-seq data and verified by quantitative real-time PCR, revealing that the MIKCC genes were mainly expressed in flower organs and several of them were highly expressed in stolon and tubers. StMADS1 and StMADS13 were up-regulated in the StSP6A-overexpression plants and down-regulated in the StSP6A-RNAi plant, and their expression in leaves and/or young tubers were associated with high level expression of StSP6A. Conclusion Our study identifies the family members of potato MADS-box genes and investigate the evolution history and functional divergence of MADS-box gene family. Moreover, we analyze the MIKCC expression patterns and screen for genes involved in tuberization. Finally, the StMADS1 and StMADS13 are most likely to be downstream target of StSP6A and involved in tuber development. Electronic supplementary material The online version of this article (10.1186/s12864-018-5113-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huhu Gao
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ziming Wang
- School of Stomatology, Wuhan University, Wuhan, 430072, Hubei, China
| | - Silu Li
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Menglu Hou
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yao Zhou
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yaqi Zhao
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Guojun Li
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hua Zhao
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Haoli Ma
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
40
|
Zhang Y, Tang D, Lin X, Ding M, Tong Z. Genome-wide identification of MADS-box family genes in moso bamboo (Phyllostachys edulis) and a functional analysis of PeMADS5 in flowering. BMC PLANT BIOLOGY 2018; 18:176. [PMID: 30176795 PMCID: PMC6122543 DOI: 10.1186/s12870-018-1394-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/27/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND MADS-box genes encode a large family of transcription factors that play significant roles in plant growth and development. Bamboo is an important non-timber forest product worldwide, but previous studies on the moso bamboo (Phyllostachys edulis) MADS-box gene family were not accurate nor sufficiently detailed. RESULTS Here, a complete genome-wide identification and characterization of the MADS-box genes in moso bamboo was conducted. There was an unusual lack of type-I MADS-box genes in the bamboo genome database ( http://202.127.18.221/bamboo/index.php ), and some of the PeMADS sequences are fragmented and/or inaccurate. We performed several bioinformatics techniques to obtain more precise sequences using transcriptome assembly. In total, 42 MADS-box genes, including six new type-I MADS-box genes, were identified in bamboo, and their structures, phylogenetic relationships, predicted conserved motifs and promoter cis-elements were systematically investigated. An expression analysis of the bamboo MADS-box genes in floral organs and leaves revealed that several key members are involved in bamboo inflorescence development, like their orthologous genes in Oryza. The ectopic overexpression of one MADS-box gene, PeMADS5, in Arabidopsis triggered an earlier flowering time and the development of an aberrant flower phenotype, suggesting that PeMADS5 acts as a floral activator and is involved in bamboo flowering. CONCLUSION We produced the most comprehensive information on MADS-box genes in moso bamboo. Additionally, a critical PeMADS gene (PeMADS5) responsible for the transition from vegetative to reproductive growth was identified and shown to be related to bamboo floral development.
Collapse
Affiliation(s)
- Yuting Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin’an, Zhejiang China
| | - Dingqin Tang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin’an, Zhejiang China
| | - Xinchun Lin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin’an, Zhejiang China
| | - Mingquan Ding
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agriculture and Food Science, Zhejiang A & F University, Lin’an, Zhejiang China
| | - Zaikang Tong
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin’an, Zhejiang China
| |
Collapse
|
41
|
Deng Y, Zheng H, Yan Z, Liao D, Li C, Zhou J, Liao H. Full-Length Transcriptome Survey and Expression Analysis of Cassia obtusifolia to Discover Putative Genes Related to Aurantio-Obtusin Biosynthesis, Seed Formation and Development, and Stress Response. Int J Mol Sci 2018; 19:ijms19092476. [PMID: 30134624 PMCID: PMC6163539 DOI: 10.3390/ijms19092476] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 12/23/2022] Open
Abstract
The seed is the pharmaceutical and breeding organ of Cassia obtusifolia, a well-known medical herb containing aurantio-obtusin (a kind of anthraquinone), food, and landscape. In order to understand the molecular mechanism of the biosynthesis of aurantio-obtusin, seed formation and development, and stress response of C. obtusifolia, it is necessary to understand the genomics information. Although previous seed transcriptome of C. obtusifolia has been carried out by short-read next-generation sequencing (NGS) technology, the vast majority of the resulting unigenes did not represent full-length cDNA sequences and supply enough gene expression profile information of the various organs or tissues. In this study, fifteen cDNA libraries, which were constructed from the seed, root, stem, leaf, and flower (three repetitions with each organ) of C. obtusifolia, were sequenced using hybrid approach combining single-molecule real-time (SMRT) and NGS platform. More than 4,315,774 long reads with 9.66 Gb sequencing data and 361,427,021 short reads with 108.13 Gb sequencing data were generated by SMRT and NGS platform, respectively. 67,222 consensus isoforms were clustered from the reads and 81.73% (61,016) of which were longer than 1000 bp. Furthermore, the 67,222 consensus isoforms represented 58,106 nonredundant transcripts, 98.25% (57,092) of which were annotated and 25,573 of which were assigned to specific metabolic pathways by KEGG. CoDXS and CoDXR genes were directly used for functional characterization to validate the accuracy of sequences obtained from transcriptome. A total of 658 seed-specific transcripts indicated their special roles in physiological processes in seed. Analysis of transcripts which were involved in the early stage of anthraquinone biosynthesis suggested that the aurantio-obtusin in C. obtusifolia was mainly generated from isochorismate and Mevalonate/methylerythritol phosphate (MVA/MEP) pathway, and three reactions catalyzed by Menaquinone-specific isochorismate synthase (ICS), 1-deoxy-d-xylulose-5-phosphate synthase (DXS) and isopentenyl diphosphate (IPPS) might be the limited steps. Several seed-specific CYPs, SAM-dependent methyltransferase, and UDP-glycosyltransferase (UDPG) supplied promising candidate genes in the late stage of anthraquinone biosynthesis. In addition, four seed-specific transcriptional factors including three MYB Transcription Factor (MYB) and one MADS-box Transcription Factor (MADS) transcriptional factors) and alternative splicing might be involved with seed formation and development. Meanwhile, most members of Hsp20 genes showed high expression level in seed and flower; seven of which might have chaperon activities under various abiotic stresses. Finally, the expressional patterns of genes with particular interests showed similar trends in both transcriptome assay and qRT-PCR. In conclusion, this is the first full-length transcriptome sequencing reported in Caesalpiniaceae family, and thus providing a more complete insight into aurantio-obtusin biosynthesis, seed formation and development, and stress response as well in C. obtusifolia.
Collapse
Affiliation(s)
- Yin Deng
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Hui Zheng
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Zicheng Yan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Dongying Liao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Chaolin Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Jiayu Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Hai Liao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
42
|
Theißen G, Rümpler F, Gramzow L. Array of MADS-Box Genes: Facilitator for Rapid Adaptation? TRENDS IN PLANT SCIENCE 2018; 23:563-576. [PMID: 29802068 DOI: 10.1016/j.tplants.2018.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/24/2018] [Accepted: 04/25/2018] [Indexed: 05/18/2023]
Abstract
In a world of global warming, the question emerges whether all plants have suitable mechanisms to keep pace with the rapidly changing environment. Most previous studies have focused on either the ability of plants to rapidly acclimatize via physiological and developmental plasticity, or long-term adaptation over thousands of years. However, we wonder whether plants can also adapt to changes in the environment within only a few generations. We hypothesize that rapidly evolving clusters of tandemly duplicated developmental control genes represent a source for fast adaptation. Specifically, we propose that a tandem cluster of FLC-like MADS-box genes involved in the transition to flowering in Arabidopsis functions as a facilitator for rapid adaptation to changes in ambient temperature.
Collapse
Affiliation(s)
- Günter Theißen
- Friedrich Schiller University Jena, Matthias Schleiden Institute for Genetics, Bioinformatics and Molecular Botany, Philosophenweg 12, D-07743 Jena, Germany.
| | - Florian Rümpler
- Friedrich Schiller University Jena, Matthias Schleiden Institute for Genetics, Bioinformatics and Molecular Botany, Philosophenweg 12, D-07743 Jena, Germany
| | - Lydia Gramzow
- Friedrich Schiller University Jena, Matthias Schleiden Institute for Genetics, Bioinformatics and Molecular Botany, Philosophenweg 12, D-07743 Jena, Germany
| |
Collapse
|
43
|
Coenen H, Viaene T, Vandenbussche M, Geuten K. TM8 represses developmental timing in Nicotiana benthamiana and has functionally diversified in angiosperms. BMC PLANT BIOLOGY 2018; 18:129. [PMID: 29929474 PMCID: PMC6013966 DOI: 10.1186/s12870-018-1349-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 06/11/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND MADS-box genes are key regulators of plant reproductive development and members of most lineages of this gene family have been extensively studied. However, the function and diversification of the ancient TM8 lineage remains elusive to date. The available data suggest a possible function in flower development in tomato and fast evolution through numerous gene loss events in flowering plants. RESULTS We show the broad conservation of TM8 within angiosperms and find that in contrast to other MADS-box gene lineages, no gene duplicates have been retained after major whole genome duplication events. Through knock-down of NbTM8 by virus induced gene silencing in Nicotiana benthamiana, we show that NbTM8 represses miR172 together with another MADS-box gene, SHORT VEGETATIVE PHASE (NbSVP). In the closely related species Petunia hybrida, PhTM8 is not expressed under the conditions we investigated and consistent with this, a knock-out mutant did not show a phenotype. Finally, we generated transgenic tomato plants in which TM8 was silenced or ectopically expressed, but these plants did not display a clear phenotype. Therefore, no clear function could be confirmed for Solanum lycopersium. CONCLUSIONS While the presence of TM8 is generally conserved, it remains difficult to propose a general function in angiosperms. Based on all the available data to date, supplemented with our own results, TM8 function seems to have diversified quickly throughout angiosperms and acts as repressor of miR172 in Nicotiana benthamiana, together with NbSVP.
Collapse
Affiliation(s)
- Heleen Coenen
- Department of Biology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
| | - Tom Viaene
- Department of Biology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
| | - Michiel Vandenbussche
- Laboratoire Reproduction et Développement des Plantes, University Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342 Lyon, France
| | - Koen Geuten
- Department of Biology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
| |
Collapse
|
44
|
Porth I, White R, Jaquish B, Ritland K. Partial correlation analysis of transcriptomes helps detangle the growth and defense network in spruce. THE NEW PHYTOLOGIST 2018; 218:1349-1359. [PMID: 29504642 DOI: 10.1111/nph.15075] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/17/2018] [Indexed: 05/21/2023]
Abstract
In plants, there can be a trade-off between resource allocations to growth vs defense. Here, we use partial correlation analysis of gene expression to make inferences about the nature of this interaction. We studied segregating progenies of Interior spruce subject to weevil attack. In a controlled experiment, we measured pre-attack plant growth and post-attack damage with several morphological measures, and profiled transcriptomes of 188 progeny. We used partial correlations of individual transcripts (expressed sequence tags, ESTs) with pairs of growth/defense traits to identify important nodes and edges in the inferred underlying gene network, for example, those pairs of growth/defense traits with high mutual correlation with a single EST transcript. We give a method to identify such ESTs. A terpenoid ABC transporter gene showed strongest correlations (P = 0.019); its transcript represented a hub within the compact 166-member gene-gene interaction network (P = 0.004) of the negative genetic correlations between growth and subsequent pest attack. A small 21-member interaction network (P = 0.004) represented the uncovered positive correlations. Our study demonstrates partial correlation analysis identifies important gene networks underlying growth and susceptibility to the weevil in spruce. In particular, we found transcripts that strongly modify the trade-off between growth and defense, and allow identification of networks more central to the trade-off.
Collapse
Affiliation(s)
- Ilga Porth
- Département des Sciences du Bois et de la Forêt, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, G1V 0A6, Canada
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Richard White
- Department of Statistics, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Barry Jaquish
- British Columbia Ministry of Forests, Lands, and Natural Resource Operations, Victoria, BC, V8W 9C2, Canada
| | - Kermit Ritland
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
45
|
Schilling S, Pan S, Kennedy A, Melzer R. MADS-box genes and crop domestication: the jack of all traits. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1447-1469. [PMID: 29474735 DOI: 10.1093/jxb/erx479] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/10/2018] [Indexed: 05/25/2023]
Abstract
MADS-box genes are key regulators of virtually every aspect of plant reproductive development. They play especially prominent roles in flowering time control, inflorescence architecture, floral organ identity determination, and seed development. The developmental and evolutionary importance of MADS-box genes is widely acknowledged. However, their role during flowering plant domestication is less well recognized. Here, we provide an overview illustrating that MADS-box genes have been important targets of selection during crop domestication and improvement. Numerous examples from a diversity of crop plants show that various developmental processes have been shaped by allelic variations in MADS-box genes. We propose that new genomic and genome editing resources provide an excellent starting point for further harnessing the potential of MADS-box genes to improve a variety of reproductive traits in crops. We also suggest that the biophysics of MADS-domain protein-protein and protein-DNA interactions, which is becoming increasingly well characterized, makes them especially suited to exploit coding sequence variations for targeted breeding approaches.
Collapse
Affiliation(s)
- Susanne Schilling
- School of Biology and Environmental Science, University College Dublin, Irel
| | - Sirui Pan
- School of Biology and Environmental Science, University College Dublin, Irel
| | - Alice Kennedy
- School of Biology and Environmental Science, University College Dublin, Irel
| | - Rainer Melzer
- School of Biology and Environmental Science, University College Dublin, Irel
| |
Collapse
|
46
|
Akhter S, Kretzschmar WW, Nordal V, Delhomme N, Street NR, Nilsson O, Emanuelsson O, Sundström JF. Integrative Analysis of Three RNA Sequencing Methods Identifies Mutually Exclusive Exons of MADS-Box Isoforms During Early Bud Development in Picea abies. FRONTIERS IN PLANT SCIENCE 2018; 9:1625. [PMID: 30483285 PMCID: PMC6243048 DOI: 10.3389/fpls.2018.01625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/18/2018] [Indexed: 05/06/2023]
Abstract
Recent efforts to sequence the genomes and transcriptomes of several gymnosperm species have revealed an increased complexity in certain gene families in gymnosperms as compared to angiosperms. One example of this is the gymnosperm sister clade to angiosperm TM3-like MADS-box genes, which at least in the conifer lineage has expanded in number of genes. We have previously identified a member of this sub-clade, the conifer gene DEFICIENS AGAMOUS LIKE 19 (DAL19), as being specifically upregulated in cone-setting shoots. Here, we show through Sanger sequencing of mRNA-derived cDNA and mapping to assembled conifer genomic sequences that DAL19 produces six mature mRNA splice variants in Picea abies. These splice variants use alternate first and last exons, while their four central exons constitute a core region present in all six transcripts. Thus, they are likely to be transcript isoforms. Quantitative Real-Time PCR revealed that two mutually exclusive first DAL19 exons are differentially expressed across meristems that will form either male or female cones, or vegetative shoots. Furthermore, mRNA in situ hybridization revealed that two mutually exclusive last DAL19 exons were expressed in a cell-specific pattern within bud meristems. Based on these findings in DAL19, we developed a sensitive approach to transcript isoform assembly from short-read sequencing of mRNA. We applied this method to 42 putative MADS-box core regions in P. abies, from which we assembled 1084 putative transcripts. We manually curated these transcripts to arrive at 933 assembled transcript isoforms of 38 putative MADS-box genes. 152 of these isoforms, which we assign to 28 putative MADS-box genes, were differentially expressed across eight female, male, and vegetative buds. We further provide evidence of the expression of 16 out of the 38 putative MADS-box genes by mapping PacBio Iso-Seq circular consensus reads derived from pooled sample sequencing to assembled transcripts. In summary, our analyses reveal the use of mutually exclusive exons of MADS-box gene isoforms during early bud development in P. abies, and we find that the large number of identified MADS-box transcripts in P. abies results not only from expansion of the gene family through gene duplication events but also from the generation of numerous splice variants.
Collapse
Affiliation(s)
- Shirin Akhter
- Linnean Center for Plant Biology, Uppsala BioCenter, Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Warren W. Kretzschmar
- Science for Life Laboratory, Department of Gene Technology, School of Engineering Sciences in Biotechnology, Chemistry and Health, KTH Royal Institute of Technology, Solna, Sweden
| | - Veronika Nordal
- Linnean Center for Plant Biology, Uppsala BioCenter, Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Nicolas Delhomme
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Nathaniel R. Street
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Ove Nilsson
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Olof Emanuelsson
- Science for Life Laboratory, Department of Gene Technology, School of Engineering Sciences in Biotechnology, Chemistry and Health, KTH Royal Institute of Technology, Solna, Sweden
| | - Jens F. Sundström
- Linnean Center for Plant Biology, Uppsala BioCenter, Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- *Correspondence: Jens F. Sundström,
| |
Collapse
|
47
|
Theißen G, Melzer R, Rümpler F. MADS-domain transcription factors and the floral quartet model of flower development: linking plant development and evolution. Development 2017; 143:3259-71. [PMID: 27624831 DOI: 10.1242/dev.134080] [Citation(s) in RCA: 247] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The floral quartet model of floral organ specification poses that different tetramers of MIKC-type MADS-domain transcription factors control gene expression and hence the identity of floral organs during development. Here, we provide a brief history of the floral quartet model and review several lines of recent evidence that support the model. We also describe how the model has been used in contemporary developmental and evolutionary biology to shed light on enigmatic topics such as the origin of land and flowering plants. Finally, we suggest a novel hypothesis describing how floral quartet-like complexes may interact with chromatin during target gene activation and repression.
Collapse
Affiliation(s)
- Günter Theißen
- Department of Genetics, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Rainer Melzer
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Florian Rümpler
- Department of Genetics, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
48
|
MacKintosh C, Ferrier DEK. Recent advances in understanding the roles of whole genome duplications in evolution. F1000Res 2017; 6:1623. [PMID: 28928963 PMCID: PMC5590085 DOI: 10.12688/f1000research.11792.2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/23/2018] [Indexed: 01/21/2023] Open
Abstract
Ancient whole-genome duplications (WGDs)- paleopolyploidy events-are key to solving Darwin's 'abominable mystery' of how flowering plants evolved and radiated into a rich variety of species. The vertebrates also emerged from their invertebrate ancestors via two WGDs, and genomes of diverse gymnosperm trees, unicellular eukaryotes, invertebrates, fishes, amphibians and even a rodent carry evidence of lineage-specific WGDs. Modern polyploidy is common in eukaryotes, and it can be induced, enabling mechanisms and short-term cost-benefit assessments of polyploidy to be studied experimentally. However, the ancient WGDs can be reconstructed only by comparative genomics: these studies are difficult because the DNA duplicates have been through tens or hundreds of millions of years of gene losses, mutations, and chromosomal rearrangements that culminate in resolution of the polyploid genomes back into diploid ones (rediploidisation). Intriguing asymmetries in patterns of post-WGD gene loss and retention between duplicated sets of chromosomes have been discovered recently, and elaborations of signal transduction systems are lasting legacies from several WGDs. The data imply that simpler signalling pathways in the pre-WGD ancestors were converted via WGDs into multi-stranded parallelised networks. Genetic and biochemical studies in plants, yeasts and vertebrates suggest a paradigm in which different combinations of sister paralogues in the post-WGD regulatory networks are co-regulated under different conditions. In principle, such networks can respond to a wide array of environmental, sensory and hormonal stimuli and integrate them to generate phenotypic variety in cell types and behaviours. Patterns are also being discerned in how the post-WGD signalling networks are reconfigured in human cancers and neurological conditions. It is fascinating to unpick how ancient genomic events impact on complexity, variety and disease in modern life.
Collapse
Affiliation(s)
- Carol MacKintosh
- Division of Cell and Developmental Biology, University of Dundee, Dundee, Scotland, DD1 5EH, UK
| | - David E K Ferrier
- The Scottish Oceans Institute, University of St Andrews, Scotland, KY16 8LB, UK
| |
Collapse
|
49
|
Zhao T, Holmer R, de Bruijn S, Angenent GC, van den Burg HA, Schranz ME. Phylogenomic Synteny Network Analysis of MADS-Box Transcription Factor Genes Reveals Lineage-Specific Transpositions, Ancient Tandem Duplications, and Deep Positional Conservation. THE PLANT CELL 2017; 29:1278-1292. [PMID: 28584165 PMCID: PMC5502458 DOI: 10.1105/tpc.17.00312] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/02/2017] [Accepted: 06/02/2017] [Indexed: 05/06/2023]
Abstract
Conserved genomic context provides critical information for comparative evolutionary analysis. With the increase in numbers of sequenced plant genomes, synteny analysis can provide new insights into gene family evolution. Here, we exploit a network analysis approach to organize and interpret massive pairwise syntenic relationships. Specifically, we analyzed synteny networks of the MADS-box transcription factor gene family using 51 completed plant genomes. In combination with phylogenetic profiling, several novel evolutionary patterns were inferred and visualized from synteny network clusters. We found lineage-specific clusters that derive from transposition events for the regulators of floral development (APETALA3 and PI) and flowering time (FLC) in the Brassicales and for the regulators of root development (AGL17) in Poales. We also identified two large gene clusters that jointly encompass many key phenotypic regulatory Type II MADS-box gene clades (SEP1, SQUA, TM8, SEP3, FLC, AGL6, and TM3). Gene clustering and gene trees support the idea that these genes are derived from an ancient tandem gene duplication that likely predates the radiation of the seed plants and then expanded by subsequent polyploidy events. We also identified angiosperm-wide conservation of synteny of several other less studied clades. Combined, these findings provide new hypotheses for the genomic origins, biological conservation, and divergence of MADS-box gene family members.
Collapse
Affiliation(s)
- Tao Zhao
- Biosystematics Group, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Rens Holmer
- Laboratory for Molecular Biology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Suzanne de Bruijn
- Laboratory for Molecular Biology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Gerco C Angenent
- Laboratory for Molecular Biology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Harrold A van den Burg
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - M Eric Schranz
- Biosystematics Group, Wageningen University, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
50
|
Kitazawa Y, Iwabuchi N, Himeno M, Sasano M, Koinuma H, Nijo T, Tomomitsu T, Yoshida T, Okano Y, Yoshikawa N, Maejima K, Oshima K, Namba S. Phytoplasma-conserved phyllogen proteins induce phyllody across the Plantae by degrading floral MADS domain proteins. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2799-2811. [PMID: 28505304 PMCID: PMC5853863 DOI: 10.1093/jxb/erx158] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/13/2017] [Indexed: 05/21/2023]
Abstract
ABCE-class MADS domain transcription factors (MTFs) are key regulators of floral organ development in angiosperms. Aberrant expression of these genes can result in abnormal floral traits such as phyllody. Phyllogen is a virulence factor conserved in phytoplasmas, plant pathogenic bacteria of the class Mollicutes. It triggers phyllody in Arabidopsis thaliana by inducing degradation of A- and E-class MTFs. However, it is still unknown whether phyllogen can induce phyllody in plants other than A. thaliana, although phytoplasma-associated phyllody symptoms are observed in a broad range of angiosperms. In this study, phyllogen was shown to cause phyllody phenotypes in several eudicot species belonging to three different families. Moreover, phyllogen can interact with MTFs of not only angiosperm species including eudicots and monocots but also gymnosperms and a fern, and induce their degradation. These results suggest that phyllogen induces phyllody in angiosperms and inhibits MTF function in diverse plant species.
Collapse
Affiliation(s)
- Yugo Kitazawa
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Nozomu Iwabuchi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Misako Himeno
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Momoka Sasano
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Hiroaki Koinuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Takamichi Nijo
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Tatsuya Tomomitsu
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Tetsuya Yoshida
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Yukari Okano
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Nobuyuki Yoshikawa
- Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka-shi, Iwate, Japan
| | - Kensaku Maejima
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Kenro Oshima
- Faculty of Bioscience, Hosei University, 3-7-2 Kajino-cho, Koganei-shi, Tokyo, Japan
| | - Shigetou Namba
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
- Correspondence:
| |
Collapse
|