1
|
Pavlovič A, Koller J, Vrobel O, Chamrád I, Lenobel R, Tarkowski P. Is the co-option of jasmonate signalling for botanical carnivory a universal trait for all carnivorous plants? JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:334-349. [PMID: 37708289 PMCID: PMC10735409 DOI: 10.1093/jxb/erad359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/13/2023] [Indexed: 09/16/2023]
Abstract
The carnivorous plants in the order Caryophyllales co-opted jasmonate signalling from plant defence to botanical carnivory. However, carnivorous plants have at least 11 independent origins, and here we ask whether jasmonate signalling has been co-opted repeatedly in different evolutionary lineages. We experimentally wounded and fed the carnivorous plants Sarracenia purpurea (order Ericales), Cephalotus follicularis (order Oxalidales), Drosophyllum lusitanicum (order Caryophyllales), and measured electrical signals, phytohormone tissue level, and digestive enzymes activity. Coronatine was added exogenously to confirm the role of jasmonates in the induction of digestive process. Immunodetection of aspartic protease and proteomic analysis of digestive fluid was also performed. We found that prey capture induced accumulation of endogenous jasmonates only in D. lusitanicum, in accordance with increased enzyme activity after insect prey or coronatine application. In C. follicularis, the enzyme activity was constitutive while in S. purpurea was regulated by multiple factors. Several classes of digestive enzymes were identified in the digestive fluid of D. lusitanicum. Although carnivorous plants from different evolutionary lineages use the same digestive enzymes, the mechanism of their regulation differs. All investigated genera use jasmonates for their ancient role, defence, but jasmonate signalling has been co-opted for botanical carnivory only in some of them.
Collapse
Affiliation(s)
- Andrej Pavlovič
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Jana Koller
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Ondřej Vrobel
- Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
- Center of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, CZ-783 71 Olomouc, Czech Republic
| | - Ivo Chamrád
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - René Lenobel
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Petr Tarkowski
- Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
- Center of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, CZ-783 71 Olomouc, Czech Republic
| |
Collapse
|
2
|
Fu CN, Wicke S, Zhu AD, Li DZ, Gao LM. Distinctive plastome evolution in carnivorous angiosperms. BMC PLANT BIOLOGY 2023; 23:660. [PMID: 38124058 PMCID: PMC10731798 DOI: 10.1186/s12870-023-04682-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Independent origins of carnivory in multiple angiosperm families are fabulous examples of convergent evolution using a diverse array of life forms and habitats. Previous studies have indicated that carnivorous plants have distinct evolutionary trajectories of plastid genome (plastome) compared to their non-carnivorous relatives, yet the extent and general characteristics remain elusive. RESULTS We compared plastomes from 9 out of 13 carnivorous families and their non-carnivorous relatives to assess carnivory-associated evolutionary patterns. We identified inversions in all sampled Droseraceae species and four species of Utricularia, Pinguicula, Darlingtonia and Triphyophyllum. A few carnivores showed distinct shifts in inverted repeat boundaries and the overall repeat contents. Many ndh genes, along with some other genes, were independently lost in several carnivorous lineages. We detected significant substitution rate variations in most sampled carnivorous lineages. A significant overall substitution rate acceleration characterizes the two largest carnivorous lineages of Droseraceae and Lentibulariaceae. We also observe moderate substitution rates acceleration in many genes of Cephalotus follicularis, Roridula gorgonias, and Drosophyllum lusitanicum. However, only a few genes exhibit significant relaxed selection. CONCLUSION Our results indicate that the carnivory of plants have different effects on plastome evolution across carnivorous lineages. The complex mechanism under carnivorous habitats may have resulted in distinctive plastome evolution with conserved plastome in the Brocchinia hechtioides to strongly reconfigured plastomes structures in Droseraceae. Organic carbon obtained from prey and the efficiency of utilizing prey-derived nutrients might constitute possible explanation.
Collapse
Affiliation(s)
- Chao-Nan Fu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, 674100, Yunnan, China
| | - Susann Wicke
- Institute for Biology, Humboldt-University Berlin, Berlin, Germany
- Späth-Arboretum of the Humboldt-University Berlin, Berlin, Germany
| | - An-Dan Zhu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - De-Zhu Li
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Lian-Ming Gao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, 674100, Yunnan, China.
| |
Collapse
|
3
|
Liu S, Smith SD. Replicated radiations in the South American marsh pitcher plants (Heliamphora) lead to convergent carnivorous trap morphologies. AMERICAN JOURNAL OF BOTANY 2023; 110:e16230. [PMID: 37807697 DOI: 10.1002/ajb2.16230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 10/10/2023]
Abstract
PREMISE The evolution of carnivorous pitcher traps across multiple angiosperm lineages represents a classic example of morphological convergence. Nevertheless, no comparative study to-date has examined pitcher evolution from a quantitative morphometric perspective. METHODS In the present study, we used comparative morphometric approaches to quantify the shape space occupied by Heliamphora pitchers and to trace evolutionary trajectories through this space to examine patterns of divergence and convergence within the genus. We also investigated pitcher development, and, how the packing of pitchers is affected by crowding, a common condition in their natural environments. RESULTS Our results showed that Heliamphora pitchers have diverged along three main axes in morphospace: (1) pitcher curvature; (2) nectar spoon elaboration; and (3) pitcher stoutness. Both curvature and stoutness are correlated with pitcher size, suggesting structural constraints in pitcher morphological evolution. Among the four traits (curvature, spoon elaboration, stoutness, and size), all but curvature lacked phylogenetic signal and showed marked convergence across the phylogeny. We also observed tighter packing of pitchers in crowded conditions, and this effect was most pronounced in curved, slender pitchers. CONCLUSIONS Overall, our study demonstrates that diversification and convergent evolution of carnivory-related traits extends to finer evolutionary timescales, reinforcing the notion that ecological specialization may not necessarily be an evolutionary dead end.
Collapse
Affiliation(s)
- Sukuan Liu
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, 1900 Pleasant Street, Boulder, Colorado, 80309, USA
| | - Stacey D Smith
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, 1900 Pleasant Street, Boulder, Colorado, 80309, USA
| |
Collapse
|
4
|
Pavlovič A, Vrobel O, Tarkowski P. Water Cannot Activate Traps of the Carnivorous Sundew Plant Drosera capensis: On the Trail of Darwin's 150-Years-Old Mystery. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091820. [PMID: 37176877 PMCID: PMC10181276 DOI: 10.3390/plants12091820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
In his famous book Insectivorous plants, Charles Darwin observed that the bending response of tentacles in the carnivorous sundew plant Drosera rotundifolia was not triggered by a drop of water, but rather the application of many dissolved chemicals or mechanical stimulation. In this study, we tried to reveal this 150-years-old mystery using methods not available in his time. We measured electrical signals, phytohormone tissue level, enzyme activities and an abundance of digestive enzyme aspartic protease droserasin in response to different stimuli (water drop, ammonia, mechanostimulation, chitin, insect prey) in Cape sundew (Drosera capensis). Drops of water induced the lowest number of action potentials (APs) in the tentacle head, and accumulation of jasmonates in the trap was not significantly different from control plants. On the other hand, all other stimuli significantly increased jasmonate accumulation; the highest was found after the application of insect prey. Drops of water also did not induce proteolytic activity and an abundance of aspartic protease droserasin in contrast to other stimuli. We found that the tentacles of sundew plants are not responsive to water drops due to an inactive jasmonic acid signalling pathway, important for the induction of significant digestive enzyme activities.
Collapse
Affiliation(s)
- Andrej Pavlovič
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Ondřej Vrobel
- Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, CZ-783 71 Olomouc, Czech Republic
| | - Petr Tarkowski
- Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, CZ-783 71 Olomouc, Czech Republic
| |
Collapse
|
5
|
Pavlovič A, Kocáb O. Alternative oxidase (AOX) in the carnivorous pitcher plants of the genus Nepenthes: what is it good for? ANNALS OF BOTANY 2022; 129:357-365. [PMID: 34922341 PMCID: PMC8835642 DOI: 10.1093/aob/mcab151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND AIMS The carnivorous pitcher plants of the genus Nepenthes have evolved modified leaves that act as pitcher traps. The traps are specialized for prey attraction, capture, digestion and nutrient uptake but not for photosynthetic assimilation. METHODS In this study, we used antibodies against different photosynthetic (D1, Lhcb2, Lhcb4, RbcL) and respiratory-related (AOX, COXII) proteins for semi-quantification of these proteins in the assimilation part of the leaves and the pitcher traps of different Nepenthes species and hybrids. Different functional zones of the trap and the traps from different ontogenetic stages were investigated. The pitcher traps of the distantly related species Sarracenia purpurea ssp. venosa were used as an outgroup. In addition, chlorophyll fluorescence and infrared gas analysis were used for measurements of the net rate of photosynthesis (AN) and respiration in the dark (RD). KEY RESULTS The pitcher traps contained the same or lower abundance of photosynthesis-related proteins in accordance with their low AN in comparison to the assimilation part of the leaves. Surprisingly, all traps contained a high amount of alternative oxidase (AOX) and low amount of cytochrome c oxidase subunit II (COX II) than in the assimilation part of the leaves. Thermal imaging did not confirm the role of AOX in pitcher thermogenesis. CONCLUSIONS The pitcher traps contain a high amount of AOX enzyme. The possible role of AOX in specialized pitcher tissue is discussed based on knowledge of the role and function of AOX in non-carnivorous plants. The roles of AOX in prey attraction, balance between light and dark reactions of photosynthesis, homeostasis of reactive oxygen species, digestive physiology and nutrient assimilation are discussed.
Collapse
Affiliation(s)
- Andrej Pavlovič
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Ondřej Kocáb
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| |
Collapse
|
6
|
Dančák M, Majeský Ľ, Čermák V, Golos MR, Płachno BJ, Tjiasmanto W. First record of functional underground traps in a pitcher plant: Nepenthespudica (Nepenthaceae), a new species from North Kalimantan, Borneo. PHYTOKEYS 2022; 201:77-97. [PMID: 36762309 PMCID: PMC9848998 DOI: 10.3897/phytokeys.201.82872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/08/2022] [Indexed: 05/14/2023]
Abstract
Nepenthespudica, a new species from North Kalimantan, Indonesia, is described and illustrated. The species belongs to the N.hirsuta group (sensu Cheek and Jebb 1999) but exhibits some characters that are unique within the group or even within the genus. Above all, it produces underground, achlorophyllous shoots with well-developed, ventricose lower pitchers that form in soil cavities or directly in the soil. No lower pitchers are formed above ground. The main part of its prey are ants, besides other litter- and soil-inhabiting species of invertebrates. A number of infaunal species were found in both aerial and underground pitchers, mainly Diptera and nematodes. Nepenthespudica is known only from a few neighbouring localities in the Mentarang Hulu district of North Kalimantan, where it grows on ridgetops at an elevation of 1100-1300 m. Its discovery underlines the natural richness of Borneo's rainforest and the necessity to preserve this important ecosystem with its enormous and still undiscovered biodiversity.
Collapse
Affiliation(s)
- Martin Dančák
- Department of Ecology and Environmental Sciences, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Ľuboš Majeský
- Department of Ecology and Environmental Sciences, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Václav Čermák
- Department of Botany, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Michal R. Golos
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - Bartosz J. Płachno
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Wewin Tjiasmanto
- Department of Plant Cytology and Embryology, Faculty of Biology, Institute of Botany, Jagiellonian University in Kraków, 9 Gronostajowa St., 30-387 Kraków, Poland
| |
Collapse
|
7
|
Lichtscheidl I, Lancelle S, Weidinger M, Adlassnig W, Koller-Peroutka M, Bauer S, Krammer S, Hepler PK. Gland cell responses to feeding in Drosera capensis, a carnivorous plant. PROTOPLASMA 2021; 258:1291-1306. [PMID: 34155556 PMCID: PMC8523503 DOI: 10.1007/s00709-021-01667-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/11/2021] [Indexed: 05/08/2023]
Abstract
Glands of Drosera absorb and transport nutrients from captured prey, but the mechanism and dynamics remain unclear. In this study, we offered animal proteins in the form of fluorescent albumin (FITC-BSA) and observed the reactions of the glands by live cell imaging and fluorescence microscopy. The ultrastructure of these highly dynamic processes was also assessed in high-pressure frozen and freeze substituted (HPF-FS) cells. HPF-FS yielded excellent preservation of the cytoplasm of all cell types, although the cytosol looked different in gland cells as compared to endodermoid and stalk cells. Especially prominent were the ER and its contacts with the plasma membrane, plasmodesmata, and other organelles as well as continuities between organelles. Also distinct were actin microfilaments in association with ER and organelles. Application of FITC-BSA to glands caused the formation of fluorescent endosomes that pinched off the plasma membrane. Endosomes fused to larger aggregates, and accumulated in the bulk cytoplasm around the nucleus. They did not fuse with the cell sap vacuole but remained for at least three days; in addition, fluorescent vesicles also proceeded through endodermoid and transfer cells to the epidermal and parenchymal cells of the tentacle stalk.
Collapse
Affiliation(s)
- Irene Lichtscheidl
- Cell Imaging and Ultrastructure Research, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Sue Lancelle
- Biology Department, University of Massachusetts Amherst, 221 Morrill Science Center III; 611 North Pleasant Street, Amherst, MA 01003-9297 USA
| | - Marieluise Weidinger
- Cell Imaging and Ultrastructure Research, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Wolfram Adlassnig
- Cell Imaging and Ultrastructure Research, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Marianne Koller-Peroutka
- Cell Imaging and Ultrastructure Research, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Sonja Bauer
- Cell Imaging and Ultrastructure Research, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Stefanie Krammer
- Cell Imaging and Ultrastructure Research, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Peter K. Hepler
- Biology Department, University of Massachusetts Amherst, 221 Morrill Science Center III; 611 North Pleasant Street, Amherst, MA 01003-9297 USA
| |
Collapse
|
8
|
Jakšová J, Adamec L, Petřík I, Novák O, Šebela M, Pavlovič A. Contrasting effect of prey capture on jasmonate accumulation in two genera of aquatic carnivorous plants (Aldrovanda, Utricularia). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:459-465. [PMID: 34166972 DOI: 10.1016/j.plaphy.2021.06.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Terrestrial carnivorous plants of genera Drosera, Dionaea and Nepenthes within the order Caryophyllales employ jasmonates for the induction of digestive processes in their traps. Here, we focused on two aquatic carnivorous plant genera with different trapping mechanism from distinct families and orders: Aldrovanda (Droseraceae, Caryophyllales) with snap-traps and Utricularia (Lentibulariaceae, Lamiales) with suction traps. Using phytohormone analyses and simple biotest, we asked whether the jasmonates are involved in the activation of carnivorous response similar to that known in traps of terrestrial genera of Droseraceae (Drosera, Dionaea). The results showed that Utricularia, in contrast with Aldrovanda, does not use jasmonates for activation of carnivorous response and is the second genus in Lamiales, which has not co-opted jasmonate signalling for botanical carnivory. On the other hand, the nLC-MS/MS analyses revealed that both genera secreted digestive fluid containing cysteine protease homologous to dionain although the mode of its regulation may differ. Whereas in Utricularia the cysteine protease is present constitutively in digestive fluid, it is induced by prey and exogenous application of jasmonic acid in Aldrovanda.
Collapse
Affiliation(s)
- Jana Jakšová
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Lubomír Adamec
- Institute of Botany of the Czech Academy of Sciences, Department of Experimental and Functional Morphology, Dukelská135, CZ-379 82, Třeboň, Czech Republic
| | - Ivan Petřík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Marek Šebela
- Department of Biochemistry, Faculty of Science, and Centre of the Region Haná for Biotechnological and Agricultural Research, CATRIN, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Andrej Pavlovič
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic.
| |
Collapse
|
9
|
Hatcher CR, Sommer U, Heaney LM, Millett J. Metabolomic analysis reveals reliance on secondary plant metabolites to facilitate carnivory in the Cape sundew, Drosera capensis. ANNALS OF BOTANY 2021. [PMID: 34077503 DOI: 10.17028/rd.lboro.14188703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BACKGROUND AND AIMS Secondary metabolites are integral to multiple key plant processes (growth regulation, pollinator attraction and interactions with conspecifics, competitors and symbionts) yet their role in plant adaptation remains an underexplored area of research. Carnivorous plants use secondary metabolites to acquire nutrients from prey, but the extent of the role of secondary metabolites in plant carnivory is not known. We aimed to determine the extent of the role of secondary metabolites in facilitating carnivory of the Cape sundew, Drosera capensis. METHODS We conducted metabolomic analysis of 72 plants in a time-series experiment before and after simulated prey capture. We used ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) and the retention time index to identify compounds in the leaf trap tissue that changed up to 72 h following simulated prey capture. We identified associated metabolic pathways, and cross-compared these compounds with metabolites previously known to be involved in carnivorous plants across taxa. KEY RESULTS For the first time in a carnivorous plant, we have profiled the whole-leaf metabolome response to prey capture. Reliance on secondary plant metabolites was higher than previously thought - 2383 out of 3257 compounds in fed leaves had statistically significant concentration changes in comparison with unfed controls. Of these, ~34 compounds are also associated with carnivory in other species; 11 are unique to Nepenthales. At least 20 compounds had 10-fold changes in concentration, 12 of which had 30-fold changes and are typically associated with defence or attraction in non-carnivorous plants. CONCLUSIONS Secondary plant metabolites are utilized in plant carnivory to an extent greater than previously thought - we found a whole-metabolome response to prey capture. Plant carnivory, at the metabolic level, likely evolved from at least two distinct functions: attraction and defence. Findings of this study support the hypothesis that secondary metabolites play an important role in plant diversification and adaptation to new environments.
Collapse
Affiliation(s)
- Christopher R Hatcher
- Loughborough University, Loughborough, UK
- Agri-Tech Centre, Pershore College, Part of WCG, Pershore, UK
| | - Ulf Sommer
- Biocrates Life Sciences AG, Innsbruck, Austria
| | - Liam M Heaney
- Agri-Tech Centre, Pershore College, Part of WCG, Pershore, UK
| | | |
Collapse
|
10
|
Hatcher CR, Sommer U, Heaney LM, Millett J. Metabolomic analysis reveals reliance on secondary plant metabolites to facilitate carnivory in the Cape sundew, Drosera capensis. ANNALS OF BOTANY 2021; 128:301-314. [PMID: 34077503 PMCID: PMC8389465 DOI: 10.1093/aob/mcab065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND AIMS Secondary metabolites are integral to multiple key plant processes (growth regulation, pollinator attraction and interactions with conspecifics, competitors and symbionts) yet their role in plant adaptation remains an underexplored area of research. Carnivorous plants use secondary metabolites to acquire nutrients from prey, but the extent of the role of secondary metabolites in plant carnivory is not known. We aimed to determine the extent of the role of secondary metabolites in facilitating carnivory of the Cape sundew, Drosera capensis. METHODS We conducted metabolomic analysis of 72 plants in a time-series experiment before and after simulated prey capture. We used ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) and the retention time index to identify compounds in the leaf trap tissue that changed up to 72 h following simulated prey capture. We identified associated metabolic pathways, and cross-compared these compounds with metabolites previously known to be involved in carnivorous plants across taxa. KEY RESULTS For the first time in a carnivorous plant, we have profiled the whole-leaf metabolome response to prey capture. Reliance on secondary plant metabolites was higher than previously thought - 2383 out of 3257 compounds in fed leaves had statistically significant concentration changes in comparison with unfed controls. Of these, ~34 compounds are also associated with carnivory in other species; 11 are unique to Nepenthales. At least 20 compounds had 10-fold changes in concentration, 12 of which had 30-fold changes and are typically associated with defence or attraction in non-carnivorous plants. CONCLUSIONS Secondary plant metabolites are utilized in plant carnivory to an extent greater than previously thought - we found a whole-metabolome response to prey capture. Plant carnivory, at the metabolic level, likely evolved from at least two distinct functions: attraction and defence. Findings of this study support the hypothesis that secondary metabolites play an important role in plant diversification and adaptation to new environments.
Collapse
Affiliation(s)
- Christopher R Hatcher
- Loughborough University, Loughborough, UK
- Agri-Tech Centre, Pershore College, Part of WCG, Pershore, UK
| | - Ulf Sommer
- Biocrates Life Sciences AG, Innsbruck, Austria
| | - Liam M Heaney
- Agri-Tech Centre, Pershore College, Part of WCG, Pershore, UK
| | | |
Collapse
|
11
|
Adamec L, Matušíková I, Pavlovič A. Recent ecophysiological, biochemical and evolutional insights into plant carnivory. ANNALS OF BOTANY 2021; 128:241-259. [PMID: 34111238 PMCID: PMC8389183 DOI: 10.1093/aob/mcab071] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/07/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND Carnivorous plants are an ecological group of approx. 810 vascular species which capture and digest animal prey, absorb prey-derived nutrients and utilize them to enhance their growth and development. Extant carnivorous plants have evolved in at least ten independent lineages, and their adaptive traits represent an example of structural and functional convergence. Plant carnivory is a result of complex adaptations to mostly nutrient-poor, wet and sunny habitats when the benefits of carnivory exceed the costs. With a boost in interest and extensive research in recent years, many aspects of these adaptations have been clarified (at least partly), but many remain unknown. SCOPE We provide some of the most recent insights into substantial ecophysiological, biochemical and evolutional particulars of plant carnivory from the functional viewpoint. We focus on those processes and traits in carnivorous plants associated with their ecological characterization, mineral nutrition, cost-benefit relationships, functioning of digestive enzymes and regulation of the hunting cycle in traps. We elucidate mechanisms by which uptake of prey-derived nutrients leads to stimulation of photosynthesis and root nutrient uptake. CONCLUSIONS Utilization of prey-derived mineral (mainly N and P) and organic nutrients is highly beneficial for plants and increases the photosynthetic rate in leaves as a prerequisite for faster plant growth. Whole-genome and tandem gene duplications brought gene material for diversification into carnivorous functions and enabled recruitment of defence-related genes. Possible mechanisms for the evolution of digestive enzymes are summarized, and a comprehensive picture on the biochemistry and regulation of prey decomposition and prey-derived nutrient uptake is provided.
Collapse
Affiliation(s)
- Lubomír Adamec
- Institute of Botany of the Czech Academy of Sciences, Dukelská 135, CZ-379 01 Třeboň, Czech Republic
| | - Ildikó Matušíková
- University of Ss. Cyril and Methodius, Department of Ecochemistry and Radioecology, J. Herdu 2, SK-917 01 Trnava, Slovak Republic
| | - Andrej Pavlovič
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
- For correspondence. E-mail
| |
Collapse
|
12
|
Dávila-Lara A, Reichelt M, Wang D, Vogel H, Mithöfer A. Proof of anthocyanins in the carnivorous plant genus Nepenthes. FEBS Open Bio 2021; 11:2576-2585. [PMID: 34289256 PMCID: PMC8409308 DOI: 10.1002/2211-5463.13255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/17/2021] [Accepted: 07/20/2021] [Indexed: 11/29/2022] Open
Abstract
Yellow to red colored betalains are a chemotaxonomic feature of Caryophyllales, while in most other plant taxa, anthocyanins are responsible for these colors. The carnivorous plant family Nepenthaceae belongs to Caryophyllales; here, red‐pigmented tissues seem to attract insect prey. Strikingly, the chemical nature of red color in Nepenthes has never been elucidated. Although belonging to Caryophyllales, in Nepenthes, some molecular evidence supports the presence of anthocyanins rather than betalains. However, there was previously no direct chemical proof of this. Using ultra‐high‐performance liquid chromatography‐electrospray ionization‐high‐resolution mass spectrometry, we identified cyanidin glycosides in Nepenthes species and tissues. Further, we reveal the existence of a complete set of constitutively expressed anthocyanin biosynthetic genes in Nepenthes. Thus, here we finally conclude the long‐term open question regarding red pigmentation in Nepenthaceae.
Collapse
Affiliation(s)
- Alberto Dávila-Lara
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Ding Wang
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Heiko Vogel
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Axel Mithöfer
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
13
|
Liu H, Li M, Huang G, Li J, Xu F. Bioinspired Microstructure Platform for Modular Cell-Laden Microgel Fabrication. Macromol Biosci 2021; 21:e2100110. [PMID: 34216432 DOI: 10.1002/mabi.202100110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/22/2021] [Indexed: 11/08/2022]
Abstract
Cell-laden microgels have attracted increasing interest in various biomedical fields, as living building blocks to construct spatially organized multicellular structures or complex tissue features (e.g., cell spheroids and aligned cells/fibers). Although numerous approaches have been developed to tailor cell-laden microgels, there is still an unmet need for modular, versatile, convenient, and high-throughput methods. In this study, as inspired by the phenomena of water droplet manipulation from natural microstructures, a novel platform is developed to manipulate microscale hydrogel droplets and fabricate modular cell-laden microgels. First, taking antenna-like trichome as a template, catcher-like bioinspired microstructures are fabricated and hydrogel droplets are manipulated modularly in a versatile, convenient, and high-throughput manner, which is compatible with various types of hydrogels (e.g., photo-cross-linking, thermal-cross-linking, and ion-cross-linking). It is demonstrated that this platform can manipulate cell-laden microgels as modular units, such as two or more cell-laden microgels on one single catcher-like structure and different structures on one single chip. The authors also demonstrate the application of this platform on constructing complex tissue features like myocardial fibrosis tissue models to study cardiac fibrosis. The developed platform will be a powerful tool for engineering various in vitro tissue models for widespread biomedical applications.
Collapse
Affiliation(s)
- Han Liu
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan province & Education Ministry of P.R. China, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450016, P. R. China.,The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Moxiao Li
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Guoyou Huang
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, 430072, P. R. China
| | - Jiansheng Li
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan province & Education Ministry of P.R. China, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450016, P. R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
14
|
Cazalis R, Cottam R. An approach to the plant body: Assessing concrete and abstract aspects. Biosystems 2021; 207:104461. [PMID: 34166731 DOI: 10.1016/j.biosystems.2021.104461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/29/2021] [Accepted: 06/16/2021] [Indexed: 01/24/2023]
Abstract
The paper aims at proposing a representation of plants as individuals. The first section selects the population of plants to which this study is addressed. The second section describes the effective architecture of plants as modular systems with fixed and mobile elements, in other words, plants and their extensions. The third section presents how plants integrate the fixed and mobile modules into functional units through three areas of particular relevance to plant growth and development: nutrition, defence and pollination. Based on the tangible elements introduced in the previous sections, the fourth section presents the main issue of the proposal which is not apparent at first glance, namely, the local-global relationship in plants' architecture that determines their individuality as organisms. Finally, in the conclusion, we issue the challenge of developing a collective presentation of plants which satisfies their complementary dimension.
Collapse
Affiliation(s)
- Roland Cazalis
- Dept. of 'Sciences, Philosophies, Societies', ESPHIN, NAXYS, University of Namur, Namur, Belgium
| | - Ron Cottam
- The Living Systems Project, Department of Electronics and Informatics, Vrije Universiteit Brussel (VUB), Brussels, Belgium.
| |
Collapse
|
15
|
Shchennikova AV, Beletsky AV, Filyushin MA, Slugina MA, Gruzdev EV, Mardanov AV, Kochieva EZ, Ravin NV. Nepenthes × ventrata Transcriptome Profiling Reveals a Similarity Between the Evolutionary Origins of Carnivorous Traps and Floral Organs. FRONTIERS IN PLANT SCIENCE 2021; 12:643137. [PMID: 34122470 PMCID: PMC8194089 DOI: 10.3389/fpls.2021.643137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
The emergence of the carnivory syndrome and traps in plants is one of the most intriguing questions in evolutionary biology. In the present study, we addressed it by comparative transcriptomics analysis of leaves and leaf-derived pitcher traps from a predatory plant Nepenthes ventricosa × Nepenthes alata. Pitchers were collected at three stages of development and a total of 12 transcriptomes were sequenced and assembled de novo. In comparison with leaves, pitchers at all developmental stages were found to be highly enriched with upregulated genes involved in stress response, specification of shoot apical meristem, biosynthesis of sucrose, wax/cutin, anthocyanins, and alkaloids, genes encoding digestive enzymes (proteases and oligosaccharide hydrolases), and flowering-related MADS-box genes. At the same time, photosynthesis-related genes in pitchers were transcriptionally downregulated. As the MADS-box genes are thought to be associated with the origin of flower organs from leaves, we suggest that Nepenthes species could have employed a similar pathway involving highly conserved MADS-domain transcription factors to develop a novel structure, pitcher-like trap, for capture and digestion of animal prey during the evolutionary transition to carnivory. The data obtained should clarify the molecular mechanisms of trap initiation and development and may contribute to solving the problem of its emergence in plants.
Collapse
|
16
|
Fukushima K, Narukawa H, Palfalvi G, Hasebe M. A discordance of seasonally covarying cues uncovers misregulated phenotypes in the heterophyllous pitcher plant Cephalotus follicularis. Proc Biol Sci 2021; 288:20202568. [PMID: 33499794 PMCID: PMC7893253 DOI: 10.1098/rspb.2020.2568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Organisms withstand normal ranges of environmental fluctuations by producing a set of phenotypes genetically programmed as a reaction norm; however, extreme conditions can expose a misregulation of phenotypes called a hidden reaction norm. Although an environment consists of multiple factors, how combinations of these factors influence a reaction norm is not well understood. To elucidate the combinatorial effects of environmental factors, we studied the leaf shape plasticity of the carnivorous pitcher plant Cephalotus follicularis. Clonally propagated plants were subjected to 12-week-long growth experiments in different conditions controlled by growth chambers. Here, we show that the dimorphic response of forming a photosynthetic flat leaf or an insect-trapping pitcher leaf is regulated by two covarying environmental cues: temperature and photoperiod. Even within the normal ranges of temperature and photoperiod, unusual combinations of the two induced the production of malformed leaves that were rarely observed under the environmentally typical combinations. We identified such cases in combinations of a summer temperature with a short-to-neutral day length, whose average frequency in the natural Cephalotus habitats corresponded to a once-in-a-lifetime event for this perennial species. Our results suggest that even if individual cues are within the range of natural fluctuations, a hidden reaction norm can be exposed under their discordant combinations. We anticipate that climate change may challenge organismal responses through not only extreme cues but also through uncommon combinations of benign cues.
Collapse
Affiliation(s)
- Kenji Fukushima
- National Institute for Basic Biology, Okazaki 444-8585, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Okazaki 444-8585, Japan.,Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany
| | - Hideki Narukawa
- National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Gergo Palfalvi
- National Institute for Basic Biology, Okazaki 444-8585, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Okazaki 444-8585, Japan
| | - Mitsuyasu Hasebe
- National Institute for Basic Biology, Okazaki 444-8585, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Okazaki 444-8585, Japan
| |
Collapse
|
17
|
Ojeda F, Carrera C, Paniw M, García-Moreno L, Barbero GF, Palma M. Volatile and Semi-Volatile Organic Compounds May Help Reduce Pollinator-Prey Overlap in the Carnivorous Plant Drosophyllum lusitanicum (Drosophyllaceae). J Chem Ecol 2021; 47:73-86. [PMID: 33417071 DOI: 10.1007/s10886-020-01235-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/02/2020] [Accepted: 11/18/2020] [Indexed: 10/22/2022]
Abstract
Most carnivorous plants show a conspicuous separation between flowers and leaf-traps, which has been interpreted as an adaptive response to minimize pollinator-prey conflicts which will reduce fitness. Here, we used the carnivorous subshrub Drosophyllum lusitanicum (Drosophyllaceae) to explore if and how carnivorous plants with minimal physical separation of flower and trap avoid or reduce a likely conflict of pollinator and prey. We carried out an extensive field survey in the Aljibe Mountains, at the European side of the Strait of Gibraltar, of pollinating and prey insects of D. lusitanicum. We also performed a detailed analysis of flower and leaf volatile and semi-volatile organic compounds (VOCs and SVOCs, respectively) by direct thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) to ascertain whether this species shows different VOC/SVOC profiles in flowers and leaf-traps that might attract pollinators and prey, respectively. Our results show a low overlap between pollinator and prey groups as well as clear differences in the relative abundance of VOCs and SVOCs between flowers and leaf-traps. Coleopterans and hymenopterans were the most represented groups of floral visitors, whereas dipterans were the most diverse group of prey insects. Regarding VOCs and SVOCs, while aldehydes and carboxylic acids presented higher relative contents in leaf-traps, alkanes and plumbagin were the main VOC/SVOC compounds detected in flowers. We conclude that D. lusitanicum, despite its minimal flower-trap separation, does not seem to present a marked pollinator-prey conflict. Differences in the VOCs and SVOCs produced by flowers and leaf-traps may help explain the conspicuous differences between pollinator and prey guilds.
Collapse
Affiliation(s)
- Fernando Ojeda
- Departamento de Biología-IVAGRO, Universidad de Cádiz, Campus Río San Pedro, 11510, Puerto Real, Spain.
| | - Ceferino Carrera
- Departamento de Química Analítica-IVAGRO, Universidad de Cádiz, Campus Río San Pedro, 11510, Puerto Real, Spain
| | - Maria Paniw
- Ecological and Forestry Applications Research Centre (CREAF), Campus de Bellaterra (UAB) Edifici C, ES-08193, Cerdanyola del Vallès, Spain
| | - Luis García-Moreno
- Departamento de Química Analítica-IVAGRO, Universidad de Cádiz, Campus Río San Pedro, 11510, Puerto Real, Spain
| | - Gerardo F Barbero
- Departamento de Química Analítica-IVAGRO, Universidad de Cádiz, Campus Río San Pedro, 11510, Puerto Real, Spain
| | - Miguel Palma
- Departamento de Química Analítica-IVAGRO, Universidad de Cádiz, Campus Río San Pedro, 11510, Puerto Real, Spain
| |
Collapse
|
18
|
|
19
|
Kumar A, Memo M, Mastinu A. Plant behaviour: an evolutionary response to the environment? PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:961-970. [PMID: 32557960 DOI: 10.1111/plb.13149] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/01/2020] [Indexed: 05/21/2023]
Abstract
Plants are not just passive living beings that exist in nature. They are complex and highly adaptable species that react sensitively to environmental forces/stimuli with movement, morphological changes and through the communication via volatile molecules. In a way, plants mimic some traits of animal and human behaviour; they compete for limited resources by gaining more area for more sunlight and spread their roots underground. Furthermore, in order to survive and thrive, they evolve and 'learn' to control various environmental stress factors in order to increase the yield of flowering, fertilization and germination processes. The concept of associating complex behaviour, such as intelligence, with plants is still a highly debatable topic among researchers worldwide. Recent studies have shown that plants are able to discriminate between positive and negative experiences and 'learn' from them. Some botanists have interpreted these behavioural data as a form of primitive cognitive processes. Others have evaluated these responses as biological automatisms of plants determined by adaptation to the environment and absence of intelligence. This review aims to explore adaptive behavioural aspects of various plant species distributed in different ecosystems by emphasizing their biological complexity and survival instincts.
Collapse
Affiliation(s)
- A Kumar
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden
| | - M Memo
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - A Mastinu
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
20
|
Kocáb O, Jakšová J, Novák O, Petřík I, Lenobel R, Chamrád I, Pavlovič A. Jasmonate-independent regulation of digestive enzyme activity in the carnivorous butterwort Pinguicula × Tina. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3749-3758. [PMID: 32219314 PMCID: PMC7307851 DOI: 10.1093/jxb/eraa159] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/25/2020] [Indexed: 05/18/2023]
Abstract
Carnivorous plants within the order Caryophyllales use jasmonates, a class of phytohormone, in the regulation of digestive enzyme activities. We used the carnivorous butterwort Pinguicula × Tina from the order Lamiales to investigate whether jasmonate signaling is a universal and ubiquitous signaling pathway that exists outside the order Caryophyllales. We measured the electrical signals, enzyme activities, and phytohormone tissue levels in response to prey capture. Mass spectrometry was used to identify proteins in the digestive secretion. We identified eight enzymes in the digestive secretion, many of which were previously found in other genera of carnivorous plants. Among them, alpha-amylase is unique in carnivorous plants. Enzymatic activities increased in response to prey capture; however, the tissue content of jasmonic acid and its isoleucine conjugate remained rather low in contrast to the jasmonate response to wounding. Enzyme activities did not increase in response to the exogenous application of jasmonic acid or coronatine. Whereas similar digestive enzymes were co-opted from plant defense mechanisms among carnivorous plants, the mode of their regulation differs. The butterwort has not co-opted jasmonate signaling for the induction of enzyme activities in response to prey capture. Moreover, the presence of alpha-amylase in digestive fluid of P. × Tina, which has not been found in other genera of carnivorous plants, might indicate that non-defense-related genes have also been co-opted for carnivory.
Collapse
Affiliation(s)
- Ondřej Kocáb
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, Czech Republic
| | - Jana Jakšová
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences and Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc , Czech Republic
| | - Ivan Petřík
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences and Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc , Czech Republic
| | - René Lenobel
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, Czech Republic
| | - Ivo Chamrád
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, Czech Republic
| | - Andrej Pavlovič
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, Czech Republic
- Correspondence:
| |
Collapse
|
21
|
Thorogood C, Bauer U. Shedding light on photosynthesis in carnivorous plants. A commentary on: 'Nepenthes × ventrata photosynthesis under different nutrient applications'. ANNALS OF BOTANY 2020; 126:iv-v. [PMID: 32467971 PMCID: PMC7304462 DOI: 10.1093/aob/mcaa092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
This article comments on: Sebastià Capó-Bauçà, Marcel Font-Carrascosa, Miquel Ribas-Carbó, Andrej Pavlovč and Jeroni Galmés, Biochemical and mesophyll diffusional limits to photosynthesis are determined by prey and root nutrient uptake in the carnivorous pitcher plant Nepenthes × ventrata, Annals of Botany, Volume 126, Issue 1, 29 June 2020, Pages 25–37, https://doi.org/10.1093/aob/mcaa041.
Collapse
Affiliation(s)
| | - Ulrike Bauer
- School of Biological Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
22
|
Capó-Bauçà S, Font-Carrascosa M, Ribas-Carbó M, Pavlovič A, Galmés J. Biochemical and mesophyll diffusional limits to photosynthesis are determined by prey and root nutrient uptake in the carnivorous pitcher plant Nepenthes × ventrata. ANNALS OF BOTANY 2020; 126:25-37. [PMID: 32173732 PMCID: PMC7304475 DOI: 10.1093/aob/mcaa041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 03/10/2020] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS Carnivorous plants can enhance photosynthetic efficiency in response to prey nutrient uptake, but the underlying mechanisms of increased photosynthesis are largely unknown. Here we investigated photosynthesis in the pitcher plant Nepenthes × ventrata in response to different prey-derived and root mineral nutrition to reveal photosynthetic constrains. METHODS Nutrient-stressed plants were irrigated with full inorganic solution or fed with four different insects: wasps, ants, beetles or flies. Full dissection of photosynthetic traits was achieved by means of gas exchange, chlorophyll fluorescence and immunodetection of photosynthesis-related proteins. Leaf biochemical and anatomical parameters together with mineral composition, nitrogen and carbon isotopic discrimination of leaves and insects were also analysed. KEY RESULTS Mesophyll diffusion was the major photosynthetic limitation for nutrient-stressed Nepenthes × ventrata, while biochemistry was the major photosynthetic limitation after nutrient application. The better nutrient status of insect-fed and root-fertilized treatments increased chlorophyll, pigment-protein complexes and Rubisco content. As a result, both photochemical and carboxylation potential were enhanced, increasing carbon assimilation. Different nutrient application affected growth, and root-fertilized treatment led to the investment of more biomass in leaves instead of pitchers. CONCLUSIONS The study resolved a 35-year-old hypothesis that carnivorous plants increase photosynthetic assimilation via the investment of prey-derived nitrogen in the photosynthetic apparatus. The equilibrium between biochemical and mesophyll limitations of photosynthesis is strongly affected by the nutrient treatment.
Collapse
Affiliation(s)
- Sebastià Capó-Bauçà
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears–INAGEA, Palma, Balearic Islands, Spain
| | - Marcel Font-Carrascosa
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears–INAGEA, Palma, Balearic Islands, Spain
| | - Miquel Ribas-Carbó
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears–INAGEA, Palma, Balearic Islands, Spain
| | - Andrej Pavlovič
- Department of Biophysics, Centre of Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University in Olomouc, Šlechtitelů, CZ, Czech Republic
| | - Jeroni Galmés
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears–INAGEA, Palma, Balearic Islands, Spain
| |
Collapse
|
23
|
Transcriptome-wide shift from photosynthesis and energy metabolism upon endogenous fluid protein depletion in young Nepenthes ampullaria pitchers. Sci Rep 2020; 10:6575. [PMID: 32313042 PMCID: PMC7170878 DOI: 10.1038/s41598-020-63696-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/03/2020] [Indexed: 12/27/2022] Open
Abstract
Carnivorous pitcher plants produce specialised pitcher organs containing secretory glands, which secrete acidic fluids with hydrolytic enzymes for prey digestion and nutrient absorption. The content of pitcher fluids has been the focus of many fluid protein profiling studies. These studies suggest an evolutionary convergence of a conserved group of similar enzymes in diverse families of pitcher plants. A recent study showed that endogenous proteins were replenished in the pitcher fluid, which indicates a feedback mechanism in protein secretion. This poses an interesting question on the physiological effect of plant protein loss. However, there is no study to date that describes the pitcher response to endogenous protein depletion. To address this gap of knowledge, we previously performed a comparative RNA-sequencing experiment of newly opened pitchers (D0) against pitchers after 3 days of opening (D3C) and pitchers with filtered endogenous proteins (>10 kDa) upon pitcher opening (D3L). Nepenthes ampullaria was chosen as a model study species due to their abundance and unique feeding behaviour on leaf litters. The analysis of unigenes with top 1% abundance found protein translation and stress response to be overrepresented in D0, compared to cell wall related, transport, and signalling for D3L. Differentially expressed gene (DEG) analysis identified DEGs with functional enrichment in protein regulation, secondary metabolism, intracellular trafficking, secretion, and vesicular transport. The transcriptomic landscape of the pitcher dramatically shifted towards intracellular transport and defence response at the expense of energy metabolism and photosynthesis upon endogenous protein depletion. This is supported by secretome, transportome, and transcription factor analysis with RT-qPCR validation based on independent samples. This study provides the first glimpse into the molecular responses of pitchers to protein loss with implications to future cost/benefit analysis of carnivorous pitcher plant energetics and resource allocation for adaptation in stochastic environments.
Collapse
|
24
|
Hatcher CR, Ryves DB, Millett J. The function of secondary metabolites in plant carnivory. ANNALS OF BOTANY 2020; 125:399-411. [PMID: 31760424 PMCID: PMC7061172 DOI: 10.1093/aob/mcz191] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/22/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND Carnivorous plants are an ideal model system for evaluating the role of secondary metabolites in plant ecology and evolution. Carnivory is a striking example of convergent evolution to attract, capture and digest prey for nutrients to enhance growth and reproduction and has evolved independently at least ten times. Though the roles of many traits in plant carnivory have been well studied, the role of secondary metabolites in the carnivorous habit is considerably less understood. SCOPE This review provides the first synthesis of research in which secondary plant metabolites have been demonstrated to have a functional role in plant carnivory. From these studies we identify key metabolites for plant carnivory and their functional role, and highlight biochemical similarities across taxa. From this synthesis we provide new research directions for integrating secondary metabolites into understanding of the ecology and evolution of plant carnivory. CONCLUSIONS Carnivorous plants use secondary metabolites to facilitate prey attraction, capture, digestion and assimilation. We found ~170 metabolites for which a functional role in carnivory has been demonstrated. Of these, 26 compounds are present across genera that independently evolved a carnivorous habit, suggesting convergent evolution. Some secondary metabolites have been co-opted from other processes, such as defence or pollinator attraction. Secondary metabolites in carnivorous plants provide a potentially powerful model system for exploring the role of metabolites in plant evolution. They also show promise for elucidating how the generation of novel compounds, as well as the co-option of pre-existing metabolites, provides a strategy for plants to occupy different environments.
Collapse
Affiliation(s)
| | - David B Ryves
- Geography and Environment, Loughborough University, Loughborough, LE, UK
| | - Jonathan Millett
- Geography and Environment, Loughborough University, Loughborough, LE, UK
| |
Collapse
|
25
|
Pavlovič A, Libiaková M, Bokor B, Jakšová J, Petřík I, Novák O, Baluška F. Anaesthesia with diethyl ether impairs jasmonate signalling in the carnivorous plant Venus flytrap (Dionaea muscipula). ANNALS OF BOTANY 2020; 125:173-183. [PMID: 31677265 PMCID: PMC6948209 DOI: 10.1093/aob/mcz177] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/06/2019] [Accepted: 10/25/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS General anaesthetics are compounds that induce loss of responsiveness to environmental stimuli in animals and humans. The primary site of action of general anaesthetics is the nervous system, where anaesthetics inhibit neuronal transmission. Although plants do not have neurons, they generate electrical signals in response to biotic and abiotic stresses. Here, we investigated the effect of the general volatile anaesthetic diethyl ether on the ability to sense potential prey or herbivore attacks in the carnivorous plant Venus flytrap (Dionaea muscipula). METHODS We monitored trap movement, electrical signalling, phytohormone accumulation and gene expression in response to the mechanical stimulation of trigger hairs and wounding under diethyl ether treatment. KEY RESULTS Diethyl ether completely inhibited the generation of action potentials and trap closing reactions, which were easily and rapidly restored when the anaesthetic was removed. Diethyl ether also inhibited the later response: jasmonic acid (JA) accumulation and expression of JA-responsive genes (cysteine protease dionain and type I chitinase). However, external application of JA bypassed the inhibited action potentials and restored gene expression under diethyl ether anaesthesia, indicating that downstream reactions from JA are not inhibited. CONCLUSIONS The Venus flytrap cannot sense prey or a herbivore attack under diethyl ether treatment caused by inhibited action potentials, and the JA signalling pathway as a consequence.
Collapse
Affiliation(s)
- Andrej Pavlovič
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů, Olomouc, Czech Republic
| | - Michaela Libiaková
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina, Bratislava, Slovakia
| | - Boris Bokor
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina, Bratislava, Slovakia
- Comenius University Science Park, Comenius University in Bratislava, Ilkovičova, Bratislava, Slovakia
| | - Jana Jakšová
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů, Olomouc, Czech Republic
| | - Ivan Petřík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů, Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů, Olomouc, Czech Republic
| | | |
Collapse
|
26
|
Jakšová J, Libiaková M, Bokor B, Petřík I, Novák O, Pavlovič A. Taste for protein: Chemical signal from prey stimulates enzyme secretion through jasmonate signalling in the carnivorous plant Venus flytrap. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 146:90-97. [PMID: 31734521 DOI: 10.1016/j.plaphy.2019.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/07/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
Hunting cycle of the carnivorous plant Venus flytrap (Dionaea muscipula Ellis) is comprised of mechanism for rapid trap closure followed by slow hermetical sealing and activation of gene expression responsible for digestion of prey and nutrient uptake. In the present study, we focus on the late phase of Venus's flytrap hunting cycle when mechanical stimulation of the prey ceases and is replaced by chemical cues. We used two nitrogen-rich compounds (chitin and protein) in addition to mechanostimulation to investigate the electrical and jasmonate signalling responsible for induction of enzyme activities. Chemical stimulation by BSA protein and chitin did not induce any additional spontaneous action potentials (APs). However, chemical stimulation by protein induced the highest levels of jasmonic acid (JA) and its isoleucine conjugate (JA-Ile) as well as the expression of studied gene encoding a cysteine protease (dionain). Although chitin is probably the first chemical agent which is in direct contact with digestive glands, presence of protein in the secured trap mimics the presence of insect prey best.
Collapse
Affiliation(s)
- Jana Jakšová
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Michaela Libiaková
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina B2, SK-842 15, Bratislava, Slovakia
| | - Boris Bokor
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina B2, SK-842 15, Bratislava, Slovakia; Comenius University Science Park, Comenius University in Bratislava, Ilkovičova 8, SK-841 04, Bratislava, Slovakia
| | - Ivan Petřík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Andrej Pavlovič
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic.
| |
Collapse
|
27
|
Scharmann M, Grafe TU, Metali F, Widmer A. Sex is determined by XY chromosomes across the radiation of dioecious Nepenthes pitcher plants. Evol Lett 2019; 3:586-597. [PMID: 31867120 PMCID: PMC6906984 DOI: 10.1002/evl3.142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 08/23/2019] [Accepted: 09/03/2019] [Indexed: 12/17/2022] Open
Abstract
Species with separate sexes (dioecy) are a minority among flowering plants, but dioecy has evolved multiple times independently in their history. The sex-determination system and sex-linked genomic regions are currently identified in a limited number of dioecious plants only. Here, we study the sex-determination system in a genus of dioecious plants that lack heteromorphic sex chromosomes and are not amenable to controlled breeding: Nepenthes pitcher plants. We genotyped wild populations of flowering males and females of three Nepenthes taxa using ddRAD-seq and sequenced a male inflorescence transcriptome. We developed a statistical tool (privacy rarefaction) to distinguish true sex specificity from stochastic noise in read coverage of sequencing data from wild populations and identified male-specific loci and XY-patterned single nucleotide polymorphsims (SNPs) in all three Nepenthes taxa, suggesting the presence of homomorphic XY sex chromosomes. The male-specific region of the Y chromosome showed little conservation among the three taxa, except for the essential pollen development gene DYT1 that was confirmed as male specific by PCR in additional Nepenthes taxa. Hence, dioecy and part of the male-specific region of the Nepenthes Y-chromosomes likely have a single evolutionary origin.
Collapse
Affiliation(s)
- Mathias Scharmann
- Institute of Integrative BiologyETH ZurichZürich8092Switzerland
- Department of Ecology and EvolutionUniversity of LausanneLausanne1015Switzerland
| | - T. Ulmar Grafe
- Faculty of ScienceUniversiti Brunei DarussalamGadongBE 1410Brunei Darussalam
| | - Faizah Metali
- Faculty of ScienceUniversiti Brunei DarussalamGadongBE 1410Brunei Darussalam
| | - Alex Widmer
- Institute of Integrative BiologyETH ZurichZürich8092Switzerland
| |
Collapse
|
28
|
Klink S, Giesemann P, Gebauer G. Picky carnivorous plants? Investigating preferences for preys' trophic levels - a stable isotope natural abundance approach with two terrestrial and two aquatic Lentibulariaceae tested in Central Europe. ANNALS OF BOTANY 2019; 123:1167-1177. [PMID: 30865264 PMCID: PMC6612943 DOI: 10.1093/aob/mcz022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/01/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS Stable isotope two-source linear mixing models are frequently used to calculate the nutrient-uptake efficiency of carnivorous plants from pooled prey. This study aimed to separate prey into three trophic levels as pooled prey limits statements about the contribution of a specific trophic level to the nutrition of carnivorous plants. Phytoplankton were used as an autotrophic reference for aquatic plants as the lack of suitable reference plants impedes calculation of their efficiency. METHODS Terrestrial (Pinguicula) and aquatic (Utricularia) carnivorous plants alongside autotrophic reference plants and potential prey from six sites in Germany and Austria were analysed for their stable isotope natural abundances (δ15N, δ13C). A two-source linear mixing model was applied to calculate the nutrient-uptake efficiency of carnivorous plants from pooled prey. Prey preferences were determined using a Bayesian inference isotope mixing model. KEY RESULTS Phytophagous prey represented the main contribution to the nutrition of Pinguicula (approx. 55 %), while higher trophic levels contributed a smaller amount (diverse approx. 27 %, zoophagous approx. 17 %). As well as around 48 % nitrogen, a small proportion of carbon (approx. 9 %) from prey was recovered in the tissue of plants. Aquatic Utricularia australis received 29 % and U. minor 21 % nitrogen from zooplankton when applying phytoplankton as the autotrophic reference. CONCLUSIONS The separation of prey animals into trophic levels revealed a major nutritional contribution of lower trophic level prey (phytophagous) for temperate Pinguicula species. Naturally, prey of higher trophic levels (diverse, zoophagous) are rarer, resulting in a smaller chance of being captured. Phytoplankton represents an adequate autotrophic reference for aquatic systems to estimate the contribution of zooplankton-derived nitrogen to the tissue of carnivorous plants. The autonomous firing of Utricularia bladders results in the additional capture of phytoplankton, calling for new aquatic references to determine the nutritional importance of phytoplankton for aquatic carnivorous plants.
Collapse
Affiliation(s)
- Saskia Klink
- Laboratory of Isotope Biogeochemistry, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| | - Philipp Giesemann
- Laboratory of Isotope Biogeochemistry, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| | - Gerhard Gebauer
- Laboratory of Isotope Biogeochemistry, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
29
|
Pavlovič A, Mithöfer A. Jasmonate signalling in carnivorous plants: copycat of plant defence mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3379-3389. [PMID: 31120525 DOI: 10.1093/jxb/erz188] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/09/2019] [Indexed: 05/09/2023]
Abstract
The lipid-derived jasmonate phytohormones (JAs) regulate a wide spectrum of physiological processes in plants such as growth, development, tolerance to abiotic stresses, and defence against pathogen infection and insect attack. Recently, a new role for JAs has been revealed in carnivorous plants. In these specialized plants, JAs can induce the formation of digestive cavities and regulate enzyme production in response to different stimuli from caught prey. Appearing to be a new function for JAs in plants, a closer look reveals that the signalling pathways involved resemble known signalling pathways from plant defence mechanisms. Moreover, the digestion-related secretome of carnivorous plants is composed of many pathogenesis-related (PR) proteins and low molecular weight compounds, indicating that the plant carnivory syndrome is related to and has evolved from plant defence mechanisms. This review describes the similarities between defence and carnivory. It further describes how, after recognition of caught insects, JAs enable the carnivorous plants to digest and benefit from the prey. In addition, a causal connection between electrical and jasmonate signalling is discussed.
Collapse
Affiliation(s)
- Andrej Pavlovič
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů, CZ, Olomouc, Czech Republic
| | - Axel Mithöfer
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße, Jena, Germany
| |
Collapse
|
30
|
Nevill PG, Howell KA, Cross AT, Williams AV, Zhong X, Tonti-Filippini J, Boykin LM, Dixon KW, Small I. Plastome-Wide Rearrangements and Gene Losses in Carnivorous Droseraceae. Genome Biol Evol 2019; 11:472-485. [PMID: 30629170 PMCID: PMC6380313 DOI: 10.1093/gbe/evz005] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2019] [Indexed: 12/22/2022] Open
Abstract
The plastid genomes of four related carnivorous plants (Drosera regia, Drosera erythrorhiza, Aldrovanda vesiculosa, and Dionaea muscipula) were sequenced to examine changes potentially induced by the transition to carnivory. The plastid genomes of the Droseraceae show multiple rearrangements, gene losses, and large expansions or contractions of the inverted repeat. All the ndh genes are lost or nonfunctional, as well as in some of the species, clpP1, ycf1, ycf2 and some tRNA genes. Uniquely, among land plants, the trnK gene has no intron. Carnivory in the Droseraceae coincides with changes in plastid gene content similar to those induced by parasitism and mycoheterotrophy, suggesting parallel changes in chloroplast function due to the similar switch from autotrophy to (mixo-) heterotrophy. A molecular phylogeny of the taxa based on all shared plastid genes indicates that the "snap-traps" of Aldrovanda and Dionaea have a common origin.
Collapse
Affiliation(s)
- Paul G Nevill
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
- School of Plant Biology, The University of Western Australia, Crawley, Western Australia, Australia
- Kings Park and Botanic Garden, Kings Park, Western Australia, Australia
| | - Katharine A Howell
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, Australia
- The University of Notre Dame, Fremantle, Western Australia, Australia
| | - Adam T Cross
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
- School of Plant Biology, The University of Western Australia, Crawley, Western Australia, Australia
- Kings Park and Botanic Garden, Kings Park, Western Australia, Australia
| | - Anna V Williams
- School of Plant Biology, The University of Western Australia, Crawley, Western Australia, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Xiao Zhong
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, Australia
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Julian Tonti-Filippini
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, Australia
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Laura M Boykin
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, Australia
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Kingsley W Dixon
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
- School of Plant Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, Australia
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
31
|
Davis AL, Babb MH, Lowe MC, Yeh AT, Lee BT, Martin CH. Testing Darwin's Hypothesis about the Wonderful Venus Flytrap: Marginal Spikes Form a "Horrid Prison" for Moderate-Sized Insect Prey. Am Nat 2018; 193:309-317. [PMID: 30720364 DOI: 10.1086/701433] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Botanical carnivory is a novel feeding strategy associated with numerous physiological and morphological adaptations. However, the benefits of these novel carnivorous traits are rarely tested. We used field observations, lab experiments, and a seminatural experiment to test prey capture function of the marginal spikes on snap traps of the Venus flytrap (Dionaea muscipula). Our field and laboratory results suggested inefficient capture success: fewer than one in four prey encounters led to prey capture. Removing the marginal spikes decreased the rate of prey capture success for moderate-sized cricket prey by 90%, but this effect disappeared for larger prey. The nonlinear benefit of spikes suggests that they provide a better cage for capturing more abundant insects of moderate and small sizes, but they may also provide a foothold for rare large prey to escape. Our observations support Darwin's hypothesis that the marginal spikes form a "horrid prison" that increases prey capture success for moderate-sized prey, but the decreasing benefit for larger prey is unexpected and previously undocumented. Thus, we find surprising complexity in the adaptive landscape for one of the most wonderful evolutionary innovations among all plants. These findings enrich understanding of the evolution and diversification of novel trap morphology in carnivorous plants.
Collapse
|
32
|
Lehtinen S. Understanding the Venus flytrap through mathematical modelling. J Theor Biol 2018; 444:1-10. [PMID: 29421212 DOI: 10.1016/j.jtbi.2018.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 01/29/2018] [Accepted: 02/03/2018] [Indexed: 11/30/2022]
Abstract
Among carnivorous plants, the Venus flytrap is of particular interest for the rapid movement of its snap-traps and hypothesised prey selection, where small prey are allowed to escape from the traps. In this paper, we provide the first mathematical cost-benefit model for carnivory in the Venus flytrap. Specifically, we analyse the dynamics of prey capture; the costs and benefits of capturing and digesting its prey; and optimisation of trap size and prey selection. We fit the model to available data, making predictions regarding trap behaviour. In particular, we predict that non-prey sources, such as raindrops or wind, cause a large proportion of trap closures; only few trap closures result in a meal; most of the captured prey are allowed to escape; the closure mechanism of a trap is triggered about once every two days; and a trap has to wait more than a month for a meal. We also find that prey capture of traps of the Venus flytrap follows the Beddington-DeAngelis functional response. These predictions indicate that the Venus flytrap is highly selective in its prey capture.
Collapse
Affiliation(s)
- Sami Lehtinen
- Department of Mathematics and Statistics, FI-00014 University of Helsinki, Finland.
| |
Collapse
|
33
|
Gama ADS, de Paula M, da Silva RRV, Ferreira WS, de Medeiros PM. Exotic species as models to understand biocultural adaptation: Challenges to mainstream views of human-nature relations. PLoS One 2018; 13:e0196091. [PMID: 29708981 PMCID: PMC5927417 DOI: 10.1371/journal.pone.0196091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 03/27/2018] [Indexed: 11/21/2022] Open
Abstract
A central argument in the research on traditional knowledge, which persists in the scientific literature, is that the entrance of exotic plants in local medical systems is directly associated with acculturation. However, this logic has put an end for a long period to efforts to understand why such species have so successfully entered socio-ecological systems or even their real role in such systems. This study provides evidence that (1) in some socio-environmental contexts, exotic medicinal species usually confer greater adaptive advantages to local populations, and (2) despite their general importance, exotic species only excel in medical systems when cost-benefit ratio is favorable to them. Thus, in order to avoid the loss of knowledge about native plants and to ensure biocultural conservation, it is necessary to create strategies to amplify the advantages of these species.
Collapse
Affiliation(s)
- Aline Dourado Sena Gama
- Universidade Federal do Oeste da Bahia, Programa de Pós-Graduação em Ciências Ambientais, Estrada para o Barrocão, Barreiras, Bahia, Brazil
| | - Marcelo de Paula
- Universidade Federal do Oeste da Bahia, Programa de Pós-Graduação em Ciências Ambientais, Estrada para o Barrocão, Barreiras, Bahia, Brazil
| | | | | | | |
Collapse
|
34
|
Pavlovič A, Jakšová J, Novák O. Triggering a false alarm: wounding mimics prey capture in the carnivorous Venus flytrap (Dionaea muscipula). THE NEW PHYTOLOGIST 2017; 216:927-938. [PMID: 28850713 DOI: 10.1111/nph.14747] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/14/2017] [Indexed: 06/07/2023]
Abstract
In the carnivorous plant Venus flytrap (Dionaea muscipula), the sequence of events after prey capture resembles the well-known plant defence signalling pathway in response to pathogen or herbivore attack. Here, we used wounding to mimic prey capture to show the similarities and differences between botanical carnivory and plant defence mechanisms. We monitored movement, electrical signalling, jasmonate accumulation and digestive enzyme secretion in local and distal (systemic) traps in response to prey capture, the mechanical stimulation of trigger hairs and wounding. The Venus flytrap cannot discriminate between wounding and mechanical trigger hair stimulation. Both induced the same action potentials, rapid trap closure, hermetic trap sealing, the accumulation of jasmonic acid (JA) and its isoleucine conjugate (JA-Ile), and the secretion of proteases (aspartic and cysteine proteases), phosphatases and type I chitinase. The jasmonate accumulation and enzyme secretion were confined to the local traps, to which the stimulus was applied, which correlates with the propagation of electrical signals and the absence of a systemic response in the Venus flytrap. In contrast to plant defence mechanisms, the absence of a systemic response in carnivorous plant may represent a resource-saving strategy. During prey capture, it could be quite expensive to produce digestive enzymes in the traps on the plant without prey.
Collapse
Affiliation(s)
- Andrej Pavlovič
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Jana Jakšová
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCR and Palacký University, Šlechtitelů 11, CZ-783 71, Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCR and Palacký University, Šlechtitelů 11, CZ-783 71, Olomouc, Czech Republic
| |
Collapse
|
35
|
Kruse J, Gao P, Eibelmeier M, Alfarraj S, Rennenberg H. Dynamics of amino acid redistribution in the carnivorous Venus flytrap (Dionaea muscipula) after digestion of 13 C/ 15 N-labelled prey. PLANT BIOLOGY (STUTTGART, GERMANY) 2017; 19:886-895. [PMID: 28727249 DOI: 10.1111/plb.12603] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 07/17/2017] [Indexed: 06/07/2023]
Abstract
Amino acids represent an important component in the diet of the Venus flytrap (Dionaea muscipula), and supply plants with much needed nitrogen resources upon capture of insect prey. Little is known about the significance of prey-derived carbon backbones of amino acids for the success of Dionaea's carnivorous life-style. The present study aimed at characterizing the metabolic fate of 15 N and 13 C in amino acids acquired from double-labeled insect powder. We tracked changes in plant amino acid pools and their δ13 C- and δ15 N-signatures over a period of five weeks after feeding, as affected by contrasting feeding intensity and tissue type (i.e., fed and non-fed traps and attached petioles of Dionaea). Isotope signatures (i.e., δ13 C and δ15 N) of plant amino acid pools were strongly correlated, explaining 60% of observed variation. Residual variation was related to contrasting effects of tissue type, feeding intensity and elapsed time since feeding. Synthesis of nitrogen-rich transport compounds (i.e., amides) during peak time of prey digestion increased 15 N- relative to 13 C- abundances in amino acid pools. After completion of prey digestion, 13 C in amino acid pools was progressively exchanged for newly fixed 12 C. The latter process was most evident for non-fed traps and attached petioles of plants that had received ample insect powder. We argue that prey-derived amino acids contribute to respiratory energy gain and loss of 13 CO2 during conversion into transport compounds (i.e., 2 days after feeding), and that amino-nitrogen helps boost photosynthetic carbon gain later on (i.e., 5 weeks after feeding).
Collapse
Affiliation(s)
- J Kruse
- Institut für Forstbotanik und Baumphysiologie, Professur für Baumphysiologie, Universität Freiburg, Freiburg, Germany
| | - P Gao
- Institut für Forstbotanik und Baumphysiologie, Professur für Baumphysiologie, Universität Freiburg, Freiburg, Germany
| | - M Eibelmeier
- Institut für Forstbotanik und Baumphysiologie, Professur für Baumphysiologie, Universität Freiburg, Freiburg, Germany
| | - S Alfarraj
- College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - H Rennenberg
- Institut für Forstbotanik und Baumphysiologie, Professur für Baumphysiologie, Universität Freiburg, Freiburg, Germany
- College of Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
36
|
Baby S, Johnson AJ, Zachariah EJ, Hussain AA. Nepenthes pitchers are CO 2-enriched cavities, emit CO 2 to attract preys. Sci Rep 2017; 7:11281. [PMID: 28900277 PMCID: PMC5595901 DOI: 10.1038/s41598-017-11414-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 08/23/2017] [Indexed: 11/09/2022] Open
Abstract
Carnivorous plants of the genus Nepenthes supplement their nutrient deficiency by capturing arthropods or by mutualistic interactions, through their leaf-evolved biological traps (pitchers). Though there are numerous studies on these traps, mostly on their prey capture mechanisms, the gas composition inside them remains unknown. Here we show that, Nepenthes unopened pitchers are CO2-enriched 'cavities', when open they emit CO2, and the CO2 gradient around open pitchers acts as a cue attracting preys towards them. CO2 contents in near mature, unopened Nepenthes pitchers were in the range 2500-5000 ppm. Gas collected from inside open N. khasiana pitchers showed CO2 at 476.75 ± 59.83 ppm. CO2-enriched air-streaming through N. khasiana pitchers (at 619.83 ± 4.53 ppm) attracted (captured) substantially higher number of aerial preys compared to air-streamed pitchers (CO2 at 412.76 ± 4.51 ppm). High levels of CO2 dissolved in acidic Nepenthes pitcher fluids were also detected. We demonstrate respiration as the source of elevated CO2 within Nepenthes pitchers. Most unique features of Nepenthes pitchers, viz., high growth rate, enhanced carbohydrate levels, declined protein levels, low photosynthetic capacity, high respiration rate and evolved stomata, are influenced by the CO2-enriched environment within them.
Collapse
Affiliation(s)
- Sabulal Baby
- Phytochemistry and Phytopharmacology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Pacha-Palode, Thiruvananthapuram, 695 562, Kerala, India.
| | - Anil John Johnson
- Phytochemistry and Phytopharmacology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Pacha-Palode, Thiruvananthapuram, 695 562, Kerala, India
| | - Elavinamannil Jacob Zachariah
- Atmospheric Sciences Division, National Centre for Earth Science Studies, Post Box No. 7250, Akkulam, Thiruvananthapuram, 695 011, Kerala, India
| | - Abdul Azeez Hussain
- Garden Management Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Pacha-Palode, Thiruvananthapuram, 695 562, Kerala, India
| |
Collapse
|
37
|
Paniw M, Gil-Cabeza E, Ojeda F. Plant carnivory beyond bogs: reliance on prey feeding in Drosophyllum lusitanicum (Drosophyllaceae) in dry Mediterranean heathland habitats. ANNALS OF BOTANY 2017; 119:1035-1041. [PMID: 28065921 PMCID: PMC5604584 DOI: 10.1093/aob/mcw247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 10/26/2016] [Indexed: 05/22/2023]
Abstract
Background and Aims In a cost-benefit framework, plant carnivory is hypothesized to be an adaptation to nutrient-poor soils in sunny, wetland habitats. However, apparent exceptions to this cost-benefit model exist, although they have been rarely studied. One of these exceptions is the carnivorous subshrub Drosophyllum lusitanicum , which thrives in Mediterranean heathlands on dry sandstone soils and has relatively well-developed, xeromorphic roots. Here, the roles of leaf (carnivory) and root (soil) nutrient uptake in growth promotion of this particular species were assessed. Methods In a greenhouse experiment, plants were fed with laboratory-reared fruit flies ( Drosophila virilis ) and received two concentrations of soil nutrients in a factorial design. Above-ground plant growth and final above- and below-ground dry biomass after 13 weeks were recorded. Nutrient uptake via roots was also evaluated, using stable nitrogen isotope analysis. Key Results Insect feeding resulted in significantly higher growth and above- and below-ground biomass compared with soil fertilization. No additional benefits of fertilization were discernable when plants were insect-fed, indicating that roots were not efficient in nutrient absorption. Conclusions The first evidence of strong reliance on insect prey feeding in a dry-soil carnivorous plant with well-developed roots is provided, suggesting that carnivory per se does not preclude persistence in dry habitats. Instead, the combination of carnivory and xeromorphic root features allows Drosophyllum to thrive on non-waterlogged soils. New evidence is added to recent research emphasizing the role of root systems of carnivorous plants in explaining their distribution, partly challenging the cost-benefit hypothesis.
Collapse
Affiliation(s)
- M. Paniw
- Departamento de Biología, CASEM, Universidad de Cádiz, Campus Río San Pedro, E-11510 Puerto Real, Spain
| | | | | |
Collapse
|
38
|
Mithöfer A. What Darwin only divined: unraveling the hierarchy of signaling events upon prey catch in carnivorous sundew plants. THE NEW PHYTOLOGIST 2017; 213:1564-1566. [PMID: 28164339 DOI: 10.1111/nph.14463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Affiliation(s)
- Axel Mithöfer
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| |
Collapse
|
39
|
Krausko M, Perutka Z, Šebela M, Šamajová O, Šamaj J, Novák O, Pavlovič A. The role of electrical and jasmonate signalling in the recognition of captured prey in the carnivorous sundew plant Drosera capensis. THE NEW PHYTOLOGIST 2017; 213:1818-1835. [PMID: 27933609 DOI: 10.1111/nph.14352] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 10/17/2016] [Indexed: 05/28/2023]
Abstract
The carnivorous sundew plant (Drosera capensis) captures prey using sticky tentacles. We investigated the tentacle and trap reactions in response to the electrical and jasmonate signalling evoked by different stimuli to reveal how carnivorous sundews recognize digestible captured prey in their traps. We measured the electrical signals, phytohormone concentration, enzyme activities and Chla fluorescence in response to mechanical stimulation, wounding or insect feeding in local and systemic traps. Seven new proteins in the digestive fluid were identified using mass spectrometry. Mechanical stimuli and live prey induced a fast, localized tentacle-bending reaction and enzyme secretion at the place of application. By contrast, repeated wounding induced a nonlocalized convulsive tentacle movement and enzyme secretion in local but also in distant systemic traps. These differences can be explained in terms of the electrical signal propagation and jasmonate accumulation, which also had a significant impact on the photosynthesis in the traps. The electrical signals generated in response to wounding could partially mimic a mechanical stimulation of struggling prey and might trigger a false alarm, confirming that the botanical carnivory and plant defence mechanisms are related. To trigger the full enzyme activity, the traps must detect chemical stimuli from the captured prey.
Collapse
Affiliation(s)
- Miroslav Krausko
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina B2, Ilkovi?ova 6, Bratislava, SK-842 15, Slovakia
| | - Zdeněk Perutka
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, CZ-78371, Czech Republic
| | - Marek Šebela
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, CZ-78371, Czech Republic
| | - Olga Šamajová
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, CZ-783 71, Czech Republic
| | - Jozef Šamaj
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, CZ-783 71, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCR and Palacký University, Šlechtitelů 27, Olomouc, CZ-783 71, Czech Republic
| | - Andrej Pavlovič
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina B2, Ilkovi?ova 6, Bratislava, SK-842 15, Slovakia
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University , Šlechtitelů 27, Olomouc, CZ-783 71, Czech Republic
| |
Collapse
|
40
|
Lee L, Zhang Y, Ozar B, Sensen CW, Schriemer DC. Carnivorous Nutrition in Pitcher Plants (Nepenthes spp.) via an Unusual Complement of Endogenous Enzymes. J Proteome Res 2016; 15:3108-17. [PMID: 27436081 DOI: 10.1021/acs.jproteome.6b00224] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Plants belonging to the genus Nepenthes are carnivorous, using specialized pitfall traps called "pitchers" that attract, capture, and digest insects as a primary source of nutrients. We have used RNA sequencing to generate a cDNA library from the Nepenthes pitchers and applied it to mass spectrometry-based identification of the enzymes secreted into the pitcher fluid using a nonspecific digestion strategy superior to trypsin in this application. This first complete catalog of the pitcher fluid subproteome includes enzymes across a variety of functional classes. The most abundant proteins present in the secreted fluid are proteases, nucleases, peroxidases, chitinases, a phosphatase, and a glucanase. Nitrogen recovery involves a particularly rich complement of proteases. In addition to the two expected aspartic proteases, we discovered three novel nepenthensins, two prolyl endopeptidases that we name neprosins, and a putative serine carboxypeptidase. Additional proteins identified are relevant to pathogen-defense and secretion mechanisms. The full complement of acid-stable enzymes discovered in this study suggests that carnivory in the genus Nepenthes can be sustained by plant-based mechanisms alone and does not absolutely require bacterial symbiosis.
Collapse
Affiliation(s)
- Linda Lee
- Department of Biochemistry and Molecular Biology and the Southern Alberta Cancer Research Institute, University of Calgary , Calgary, Alberta T2N 4N1, Canada
| | - Ye Zhang
- Department of Biochemistry and Molecular Biology and the Southern Alberta Cancer Research Institute, University of Calgary , Calgary, Alberta T2N 4N1, Canada
| | - Brittany Ozar
- Department of Biochemistry and Molecular Biology and the Southern Alberta Cancer Research Institute, University of Calgary , Calgary, Alberta T2N 4N1, Canada
| | - Christoph W Sensen
- Institute of Molecular Biotechnology, Graz University of Technology , Graz 8010, Austria
| | - David C Schriemer
- Department of Biochemistry and Molecular Biology and the Southern Alberta Cancer Research Institute, University of Calgary , Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
41
|
Frenzke L, Lederer A, Malanin M, Eichhorn KJ, Neinhuis C, Voigt D. Plant pressure sensitive adhesives: similar chemical properties in distantly related plant lineages. PLANTA 2016; 244:145-154. [PMID: 27002970 DOI: 10.1007/s00425-016-2496-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 02/25/2016] [Indexed: 06/05/2023]
Abstract
A mixture of resins based on aliphatic esters and carboxylic acids occurs in distantly related genera Peperomia and Roridula , serving different functions as adhesion in seed dispersal and prey capture. According to mechanical characteristics, adhesive secretions on both leaves of the carnivorous flypaper Roridula gorgonias and epizoochorous fruits of Peperomia polystachya were expected to be similar. The chemical analysis of these adhesives turned out to be challenging because of the limited available mass for analysis. Size exclusion chromatography and Fourier transform infrared spectroscopy were suitable methods for the identification of a mixture of compounds, most appropriately containing natural resins based on aliphatic esters and carboxylic acids. The IR spectra of the Peperomia and Roridula adhesive resemble each other; they correspond to that of a synthetic ethylene-vinyl acetate copolymer, but slightly differ from that of natural tree resins. Thus, the pressure sensitive adhesive properties of the plant adhesives are chemically proved. Such adhesives seem to appear independently in distantly related plant lineages, habitats, life forms, as well as plant organs, and serve different functions such as prey capture in Roridula and fruit dispersal in Peperomia. However, more detailed chemical analyses still remain challenging because of the small available volume of plant adhesive.
Collapse
Affiliation(s)
- Lena Frenzke
- Institute for Botany, Technische Universität Dresden, 01069, Dresden, Germany
| | - Albena Lederer
- Analytical Department, Leibniz-Institute of Polymer Research Dresden, Hohe Str. 6, 01069, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | - Mikhail Malanin
- Analytical Department, Leibniz-Institute of Polymer Research Dresden, Hohe Str. 6, 01069, Dresden, Germany
| | - Klaus-Jochen Eichhorn
- Analytical Department, Leibniz-Institute of Polymer Research Dresden, Hohe Str. 6, 01069, Dresden, Germany
| | - Christoph Neinhuis
- Institute for Botany, Technische Universität Dresden, 01069, Dresden, Germany
| | - Dagmar Voigt
- Institute for Botany, Technische Universität Dresden, 01069, Dresden, Germany.
| |
Collapse
|
42
|
Pavlovič A, Krausko M, Adamec L. A carnivorous sundew plant prefers protein over chitin as a source of nitrogen from its traps. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 104:11-16. [PMID: 26998942 DOI: 10.1016/j.plaphy.2016.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/04/2016] [Accepted: 03/04/2016] [Indexed: 06/05/2023]
Abstract
Carnivorous plants have evolved in nutrient-poor wetland habitats. They capture arthropod prey, which is an additional source of plant growth limiting nutrients. One of them is nitrogen, which occurs in the form of chitin and proteins in prey carcasses. In this study, the nutritional value of chitin and protein and their digestion traits in the carnivorous sundew Drosera capensis L. were estimated using stable nitrogen isotope abundance. Plants fed on chitin derived 49% of the leaf nitrogen from chitin, while those fed on the protein bovine serum albumin (BSA) derived 70% of its leaf nitrogen from this. Moreover, leaf nitrogen content doubled in protein-fed in comparison to chitin-fed plants indicating that the proteins were digested more effectively in comparison to chitin and resulted in significantly higher chlorophyll contents. The surplus chlorophyll and absorbed nitrogen from the protein digestion were incorporated into photosynthetic proteins - the light harvesting antennae of photosystem II. The incorporation of insect nitrogen into the plant photosynthetic apparatus may explain the increased rate of photosynthesis and plant growth after feeding. This general response in many genera of carnivorous plants has been reported in many previous studies.
Collapse
Affiliation(s)
- Andrej Pavlovič
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic; Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina, SK-842 15, Bratislava, Slovakia.
| | - Miroslav Krausko
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina, SK-842 15, Bratislava, Slovakia
| | - Lubomír Adamec
- Institute of Botany of the Czech Academy of Sciences, Section of Plant Ecology, Dukelská 135, CZ-379 82, Třeboň, Czech Republic
| |
Collapse
|
43
|
Gaume L, Bazile V, Huguin M, Bonhomme V. Different pitcher shapes and trapping syndromes explain resource partitioning in Nepenthes species. Ecol Evol 2016; 6:1378-92. [PMID: 26865951 PMCID: PMC4739188 DOI: 10.1002/ece3.1920] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 11/09/2022] Open
Abstract
Nepenthes pitcher plants display interspecific diversity in pitcher form and diets. This species-rich genus might be a conspicuous candidate for an adaptive radiation. However, the pitcher traits of different species have never been quantified in a comparative study, nor have their possible adaptations to the resources they exploit been tested. In this study, we compare the pitcher features and prey composition of the seven Nepenthes taxa that grow in the heath forest of Brunei (Borneo) and investigate whether these species display different trapping syndromes that target different prey. The Nepenthes species are shown to display species-specific combinations of pitcher shapes, volumes, rewards, attraction and capture traits, and different degrees of ontogenetic pitcher dimorphism. The prey spectra also differ among plant species and between ontogenetic morphotypes in their combinations of ants, flying insects, termites, and noninsect guilds. According to a discriminant analysis, the Nepenthes species collected at the same site differ significantly in prey abundance and composition at the level of order, showing niche segregation but with varying degrees of niche overlap according to pairwise species comparisons. Weakly carnivorous species are first characterized by an absence of attractive traits. Generalist carnivorous species have a sweet odor, a wide pitcher aperture, and an acidic pitcher fluid. Guild specializations are explained by different combinations of morpho-functional traits. Ant captures increase with extrafloral nectar, fluid acidity, and slippery waxy walls. Termite captures increase with narrowness of pitchers, presence of a rim of edible trichomes, and symbiotic association with ants. The abundance of flying insects is primarily correlated with pitcher conicity, pitcher aperture diameter, and odor presence. Such species-specific syndromes favoring resource partitioning may result from local character displacement by competition and/or previous adaptations to geographically distinct environments.
Collapse
Affiliation(s)
- Laurence Gaume
- Université de MontpellierUMR AMAP: botAnique et Modélisation de l'Architecture des Plantes et des végétationsCIRAD – TA A51/PS2Boulevard de la LirondeF‐34398MontpellierFrance
- CNRSUMR AMAP: botAnique et Modélisation de l'Architecture des Plantes et des végétationsCIRAD – TA A51/PS2Boulevard de la LirondeF‐34398MontpellierFrance
| | - Vincent Bazile
- Université de MontpellierUMR AMAP: botAnique et Modélisation de l'Architecture des Plantes et des végétationsCIRAD – TA A51/PS2Boulevard de la LirondeF‐34398MontpellierFrance
| | - Maïlis Huguin
- CNRSUMR AMAP: botAnique et Modélisation de l'Architecture des Plantes et des végétationsCIRAD – TA A51/PS2Boulevard de la LirondeF‐34398MontpellierFrance
- Université François Rabelais60 rue du Plat D'EtainF‐37020ToursFrance
| | - Vincent Bonhomme
- Université de MontpellierUMR AMAP: botAnique et Modélisation de l'Architecture des Plantes et des végétationsCIRAD – TA A51/PS2Boulevard de la LirondeF‐34398MontpellierFrance
- Université de MontpellierUMR 5554 Institut des Sciences de l'EvolutionPlace Eugène BataillonF‐34095MontpellierFrance
| |
Collapse
|
44
|
Rottloff S, Miguel S, Biteau F, Nisse E, Hammann P, Kuhn L, Chicher J, Bazile V, Gaume L, Mignard B, Hehn A, Bourgaud F. Proteome analysis of digestive fluids in Nepenthes pitchers. ANNALS OF BOTANY 2016; 117:479-95. [PMID: 26912512 PMCID: PMC4765550 DOI: 10.1093/aob/mcw001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/06/2015] [Accepted: 11/16/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS Carnivorous plants have developed strategies to enable growth in nutrient-poor soils. For the genus Nepenthes, this strategy represents producing pitcher-modified leaves that can trap and digest various prey. These pitchers produce a digestive fluid composed of proteins, including hydrolytic enzymes. The focus of this study was on the identification of these proteins. METHODS In order to better characterize and have an overview of these proteins, digestive fluid was sampled from pitchers at different stages of maturity from five species of Nepenthes (N. mirabilis, N. alata, N. sanguinea, N. bicalcarata and N. albomarginata) that vary in their ecological niches and grew under different conditions. Three complementary approaches based on transcriptomic resources, mass spectrometry and in silico analysis were used. KEY RESULTS This study permitted the identification of 29 proteins excreted in the pitchers. Twenty of these proteins were never reported in Nepenthes previously and included serine carboxypeptidases, α- and β-galactosidases, lipid transfer proteins and esterases/lipases. These 20 proteins display sequence signals allowing their secretion into the pitcher fluid. CONCLUSIONS Nepenthes pitcher plants have evolved an arsenal of enzymes to digest prey caught in their traps. The panel of new proteins identified in this study provides new insights into the digestive process of these carnivorous plants.
Collapse
Affiliation(s)
- Sandy Rottloff
- INRA UMR 1121, Laboratoire Agronomie et Environnement, 2 avenue de la forêt de Haye TSA 40602, F-54518 Vandœuvre-lès-Nancy, France, Université de Lorraine UMR 1121, Laboratoire Agronomie et Environnement, 2 avenue de la forêt de Haye TSA 40602, F-54518 Vandœuvre-lès-Nancy, France, Aura Optik GmbH, Hans-Knöll-Str. 6, D-07745 Jena, Germany
| | - Sissi Miguel
- Plant Advanced Technologies SA, 13 Rue du bois de la Champelle, F-54500 Vandœuvre-lès-Nancy, France
| | - Flore Biteau
- INRA UMR 1121, Laboratoire Agronomie et Environnement, 2 avenue de la forêt de Haye TSA 40602, F-54518 Vandœuvre-lès-Nancy, France, Université de Lorraine UMR 1121, Laboratoire Agronomie et Environnement, 2 avenue de la forêt de Haye TSA 40602, F-54518 Vandœuvre-lès-Nancy, France
| | - Estelle Nisse
- Plant Advanced Technologies SA, 13 Rue du bois de la Champelle, F-54500 Vandœuvre-lès-Nancy, France
| | - Philippe Hammann
- Plant Advanced Technologies SA, 13 Rue du bois de la Champelle, F-54500 Vandœuvre-lès-Nancy, France
| | - Lauriane Kuhn
- Proteomic Platform, Institut de Biologie Moléculaire et Cellulaire, CNRS, FRC 1589, 15 rue Descartes, F-67084 Strasbourg cedex, France and
| | - Johana Chicher
- Proteomic Platform, Institut de Biologie Moléculaire et Cellulaire, CNRS, FRC 1589, 15 rue Descartes, F-67084 Strasbourg cedex, France and
| | - Vincent Bazile
- Université Montpellier II and CNRS, UMR AMAP: Botanique et bioinformatique de l'architecture des plantes, TA A51/PS2, Bd de la Lironde, F-34398 Montpellier cedex 5, France
| | - Laurence Gaume
- Université Montpellier II and CNRS, UMR AMAP: Botanique et bioinformatique de l'architecture des plantes, TA A51/PS2, Bd de la Lironde, F-34398 Montpellier cedex 5, France
| | - Benoit Mignard
- Plant Advanced Technologies SA, 13 Rue du bois de la Champelle, F-54500 Vandœuvre-lès-Nancy, France
| | - Alain Hehn
- INRA UMR 1121, Laboratoire Agronomie et Environnement, 2 avenue de la forêt de Haye TSA 40602, F-54518 Vandœuvre-lès-Nancy, France, Université de Lorraine UMR 1121, Laboratoire Agronomie et Environnement, 2 avenue de la forêt de Haye TSA 40602, F-54518 Vandœuvre-lès-Nancy, France,
| | - Frédéric Bourgaud
- INRA UMR 1121, Laboratoire Agronomie et Environnement, 2 avenue de la forêt de Haye TSA 40602, F-54518 Vandœuvre-lès-Nancy, France, Université de Lorraine UMR 1121, Laboratoire Agronomie et Environnement, 2 avenue de la forêt de Haye TSA 40602, F-54518 Vandœuvre-lès-Nancy, France
| |
Collapse
|
45
|
Böhm J, Scherzer S, Krol E, Kreuzer I, von Meyer K, Lorey C, Mueller TD, Shabala L, Monte I, Solano R, Al-Rasheid KAS, Rennenberg H, Shabala S, Neher E, Hedrich R. The Venus Flytrap Dionaea muscipula Counts Prey-Induced Action Potentials to Induce Sodium Uptake. Curr Biol 2016; 26:286-95. [PMID: 26804557 PMCID: PMC4751343 DOI: 10.1016/j.cub.2015.11.057] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 10/23/2015] [Accepted: 11/26/2015] [Indexed: 01/05/2023]
Abstract
Carnivorous plants, such as the Venus flytrap (Dionaea muscipula), depend on an animal diet when grown in nutrient-poor soils. When an insect visits the trap and tilts the mechanosensors on the inner surface, action potentials (APs) are fired. After a moving object elicits two APs, the trap snaps shut, encaging the victim. Panicking preys repeatedly touch the trigger hairs over the subsequent hours, leading to a hermetically closed trap, which via the gland-based endocrine system is flooded by a prey-decomposing acidic enzyme cocktail. Here, we asked the question as to how many times trigger hairs have to be stimulated (e.g., now many APs are required) for the flytrap to recognize an encaged object as potential food, thus making it worthwhile activating the glands. By applying a series of trigger-hair stimulations, we found that the touch hormone jasmonic acid (JA) signaling pathway is activated after the second stimulus, while more than three APs are required to trigger an expression of genes encoding prey-degrading hydrolases, and that this expression is proportional to the number of mechanical stimulations. A decomposing animal contains a sodium load, and we have found that these sodium ions enter the capture organ via glands. We identified a flytrap sodium channel DmHKT1 as responsible for this sodium acquisition, with the number of transcripts expressed being dependent on the number of mechano-electric stimulations. Hence, the number of APs a victim triggers while trying to break out of the trap identifies the moving prey as a struggling Na+-rich animal and nutrition for the plant. Video Abstract
Carnivorous Dionaea muscipula captures and processes nutrient- and sodium-rich prey Via mechano-sensor stimulation, an animal meal is recognized, captured, and processed Mechano-electrical waves induce JA signaling pathways that trigger prey digestion Number of stimulations controls the production of digesting enzymes and uptake modules
Collapse
Affiliation(s)
- Jennifer Böhm
- Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany
| | - Sönke Scherzer
- Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany
| | - Elzbieta Krol
- Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany
| | - Ines Kreuzer
- Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany
| | - Katharina von Meyer
- Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany
| | - Christian Lorey
- Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany; Naturwissenschaftliches Labor für Schüler, Friedrich-Koenig-Gymnasium, 97082 Würzburg, Germany
| | - Thomas D Mueller
- Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany
| | - Lana Shabala
- School of Land and Food, University of Tasmania, Hobart, TAS 7001, Australia
| | - Isabel Monte
- Plant Molecular Genetics Department, National Centre for Biotechnology (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Campus University Autónoma, 28049 Madrid, Spain
| | - Roberto Solano
- Plant Molecular Genetics Department, National Centre for Biotechnology (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Campus University Autónoma, 28049 Madrid, Spain
| | - Khaled A S Al-Rasheid
- Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany; Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Heinz Rennenberg
- Institute of Forest Sciences, University of Freiburg, Georges-Koehler-Allee 53/54, 79085 Freiburg, Germany
| | - Sergey Shabala
- School of Land and Food, University of Tasmania, Hobart, TAS 7001, Australia
| | - Erwin Neher
- Department for Membrane Biophysics, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany.
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany.
| |
Collapse
|