1
|
Guillory WX, de Medeiros Magalhães F, Coelho FEA, Bonatelli IAS, Palma-Silva C, Moraes EM, Garda AA, Burbrink FT, Gehara M. Geoclimatic drivers of diversification in the largest arid and semi-arid environment of the Neotropics: Perspectives from phylogeography. Mol Ecol 2024; 33:e17431. [PMID: 38877815 DOI: 10.1111/mec.17431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/16/2024]
Abstract
The South American Dry Diagonal, also called the Diagonal of Open Formations, is a large region of seasonally dry vegetation extending from northeastern Brazil to northern Argentina, comprising the Caatinga, Cerrado, and Chaco subregions. A growing body of phylogeography literature has determined that a complex history of climatic changes coupled with more ancient geological events has produced a diverse and endemic-rich Dry Diagonal biota. However, the exact drivers are still under investigation, and their relative strengths and effects are controversial. Pleistocene climatic fluctuations structured lineages via vegetation shifts, refugium formation, and corridors between the Amazon and Atlantic forests. In some taxa, older geological events, such as the reconfiguration of the São Francisco River, uplift of the Central Brazilian Plateau, or the Miocene inundation of the Chaco by marine incursions, were more important. Here, we review the Dry Diagonal phylogeography literature, discussing each hypothesized driver of diversification and assessing degree of support. Few studies statistically test these hypotheses, with most support drawn from associating encountered phylogeographic patterns such as population structure with the timing of ancient geoclimatic events. Across statistical studies, most hypotheses are well supported, with the exception of the Pleistocene Arc Hypothesis. However, taxonomic and regional biases persist, such as a proportional overabundance of herpetofauna studies, and the under-representation of Chaco studies. Overall, both Pleistocene climate change and Neogene geological events shaped the evolution of the Dry Diagonal biota, though the precise effects are regionally and taxonomically varied. We encourage further use of model-based analyses to test evolutionary scenarios, as well as interdisciplinary collaborations to progress the field beyond its current focus on the traditional set of geoclimatic hypotheses.
Collapse
Affiliation(s)
- Wilson X Guillory
- Department of Earth and Environmental Sciences, Rutgers University Newark, Newark, New Jersey, USA
- Department of Biological Sciences, Rutgers University Newark, Newark, New Jersey, USA
| | | | | | - Isabel A S Bonatelli
- Departamento de Ecologia e Biologia Evolutiva, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
| | - Clarisse Palma-Silva
- Departamento de Biologia Vegetal, Universidade Estadual de Campinas, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, Brazil
| | - Evandro M Moraes
- Departamento de Biologia, Universidade Federal de São Carlos (UFSCar), Sorocaba, São Paulo, Brazil
| | - Adrian Antonio Garda
- Departamento de Botânica e Zoologia, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Frank T Burbrink
- Department of Herpetology, The American Museum of Natural History, New York City, New York, USA
| | - Marcelo Gehara
- Department of Earth and Environmental Sciences, Rutgers University Newark, Newark, New Jersey, USA
| |
Collapse
|
2
|
Lima JS, Collevatti RG, de Oliveira LK, Chaves LJ, Naves RV, Soares TN, Filho JAFD, de Campos Telles MP. Forecasting effects of climate changes on the population genetic structure of Anacardium occidentale in the Cerrado biome, Brazil. Genetica 2023; 151:357-367. [PMID: 37922114 DOI: 10.1007/s10709-023-00199-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 10/10/2023] [Indexed: 11/05/2023]
Abstract
There has been a continuous interest in understanding the patterns of genetic diversity in natural populations because of the role of intraspecific genetic diversity as the basis of all evolutionary change and thus, its potential effects on population persistence when facing environmental changes. Here, we provided the first description of genetic diversity distribution and population structure of Anacardium occidentale L. (cashew) from the Brazilian Cerrado, one of the most economically important tropical crops in the world. We applied Bayesian clustering approaches (STRUCTURE and POPS) that allow predicting the effects of future climatic changes on the population genetic structure of A. occidentale. We identified distinct genetic groups corresponding to the southwestern, central, and northern regions of the species' range. The characterized genetic clusters will disappear under future climate change scenarios, leading to a homogenization of genetic variability across the landscape. Our findings suggest a high likelihood for the loss of genetic diversity, which in turn will reduce the evolutionary potential of the species to cope with predicted future climatic changes. Results from this study may help develop management strategies to conserve the genetic diversity and structure of natural cashew populations.
Collapse
Affiliation(s)
| | - Rosane Garcia Collevatti
- Laboratório de Genética & Biodiversidade, Instituto de Ciências Biológicas (ICB), Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | | | | | | | - Thannya Nascimento Soares
- Laboratório de Genética & Biodiversidade, Instituto de Ciências Biológicas (ICB), Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | | | - Mariana Pires de Campos Telles
- Laboratório de Genética & Biodiversidade, Instituto de Ciências Biológicas (ICB), Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
- Escola de Ciências Médicas E da Vida, Pontifícia Universidade Católica de Goiás, Goiânia, GO, Brazil
| |
Collapse
|
3
|
Comparative population genomics in Tabebuia alliance shows evidence of adaptation in Neotropical tree species. Heredity (Edinb) 2022; 128:141-153. [PMID: 35132209 PMCID: PMC8897506 DOI: 10.1038/s41437-021-00491-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 11/08/2022] Open
Abstract
The role of natural selection in shaping spatial patterns of genetic diversity in the Neotropics is still poorly understood. Here, we perform a genome scan with 24,751 probes targeting 11,026 loci in two Neotropical Bignoniaceae tree species: Handroanthus serratifolius from the seasonally dry tropical forest (SDTF) and Tabebuia aurea from savannas, and compared with the population genomics of H. impetiginosus from SDTF. OutFLANK detected 29 loci in 20 genes with selection signal in H. serratifolius and no loci in T. aurea. Using BayPass, we found evidence of selection in 335 loci in 312 genes in H. serratifolius, 101 loci in 92 genes in T. aurea, and 448 loci in 416 genes in H. impetiginosus. All approaches evidenced several genes affecting plant response to environmental stress and primary metabolic processes. The three species shared no SNPs with selection signal, but we found SNPs affecting the same gene in pair of species. Handroanthus serratifolius showed differences in allele frequencies at SNPs with selection signal among ecosystems, mainly between Caatinga/Cerrado and Atlantic Forest, while H. impetiginosus had one allele fixed across all populations, and T. aurea had similar allele frequency distribution among ecosystems and polymorphism across populations. Taken together, our results indicate that natural selection related to environmental stress shaped the spatial pattern of genetic diversity in the three species. However, the three species have different geographical distribution and niches, which may affect tolerances and adaption, and natural selection may lead to different signatures due to the differences in adaptive landscapes in different niches.
Collapse
|
4
|
Miao J, Farhat P, Wang W, Ruhsam M, Milne R, Yang H, Tso S, Li J, Xu J, Opgenoorth L, Miehe G, Mao K. Evolutionary history of two rare endemic conifer species from the eastern Qinghai-Tibet Plateau. ANNALS OF BOTANY 2021; 128:903-918. [PMID: 34472580 PMCID: PMC8577208 DOI: 10.1093/aob/mcab114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND AIMS Understanding the population genetics and evolutionary history of endangered species is urgently needed in an era of accelerated biodiversity loss. This knowledge is most important for regions with high endemism that are ecologically vulnerable, such as the Qinghai-Tibet Plateau (QTP). METHODS The genetic variation of 84 juniper trees from six populations of Juniperus microsperma and one population of Juniperus erectopatens, two narrow-endemic junipers from the QTP that are sister to each other, was surveyed using RNA-sequencing data. Coalescent-based analyses were used to test speciation, migration and demographic scenarios. Furthermore, positively selected and climate-associated genes were identified, and the genetic load was assessed for both species. KEY RESULTS Analyses of 149 052 single nucleotide polymorphisms showed that the two species are well differentiated and monophyletic. They diverged around the late Pliocene, but interspecific gene flow continued until the Last Glacial Maximum. Demographic reconstruction by Stairway Plot detected two severe bottlenecks for J. microsperma but only one for J. erectopatens. The identified positively selected genes and climate-associated genes revealed habitat adaptation of the two species. Furthermore, although J. microsperma had a much wider geographical distribution than J. erectopatens, the former possesses lower genetic diversity and a higher genetic load than the latter. CONCLUSIONS This study sheds light on the evolution of two endemic juniper species from the QTP and their responses to Quaternary climate fluctuations. Our findings emphasize the importance of speciation and demographic history reconstructions in understanding the current distribution pattern and genetic diversity of threatened species in mountainous regions.
Collapse
Affiliation(s)
- Jibin Miao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, PR China
- College of Science, Tibet University, Lhasa 850000, PR China
| | - Perla Farhat
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, PR China
- CEITEC – Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Wentao Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Markus Ruhsam
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, UK
| | - Richard Milne
- Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh EH9 3JH, UK
| | - Heng Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Sonam Tso
- College of Science, Tibet University, Lhasa 850000, PR China
| | - Jialiang Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Jingjing Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Lars Opgenoorth
- Faculty of Biology and Geology, University of Marburg, 35032 Marburg, Germany
| | - Georg Miehe
- Faculty of Biology and Geology, University of Marburg, 35032 Marburg, Germany
| | - Kangshan Mao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, PR China
- College of Science, Tibet University, Lhasa 850000, PR China
| |
Collapse
|
5
|
Collevatti RG, Rodrigues EE, Vitorino LC, Lima-Ribeiro MS, Chaves LJ, Telles MPC. Unravelling the genetic differentiation among varieties of the Neotropical savanna tree Hancornia speciosa Gomes. ANNALS OF BOTANY 2018; 122:973-984. [PMID: 29897397 PMCID: PMC6266125 DOI: 10.1093/aob/mcy060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 04/04/2018] [Indexed: 06/08/2023]
Abstract
Background and Aims Spatial distribution of species genetic diversity is often driven by geographical distance (isolation by distance) or environmental conditions (isolation by environment), especially under climate change scenarios such as Quaternary glaciations. Here, we used coalescent analyses coupled with ecological niche modelling (ENM), spatially explicit quantile regression analyses and the multiple matrix regression with randomization (MMRR) approach to unravel the patterns of genetic differentiation in the widely distributed Neotropical savanna tree, Hancornia speciosa (Apocynaceae). Due to its high morphological differentiation, the species was originally classified into six botanical varieties by Monachino, and has recently been recognized as only two varieties by Flora do Brasil 2020. Thus, H. speciosa is a good biological model for learning about evolution of phenotypic plasticity under genetic and ecological effects, and predicting their responses to changing environmental conditions. Methods We sampled 28 populations (777 individuals) of Monachino's four varieties of H. speciosa and used seven microsatellite loci to genotype them. Key Results Bayesian clustering showed five distinct genetic groups (K = 5) with high admixture among Monachino's varieties, mainly among populations in the central area of the species geographical range. Genetic differentiation among Monachino's varieties was lower than the genetic differentiation among populations within varieties, with higher within-population inbreeding. A high historical connectivity among populations of the central Cerrado shown by coalescent analyses may explain the high admixture among varieties. In addition, areas of higher climatic suitability also presented higher genetic diversity in such a way that the wide historical refugium across central Brazil might have promoted the long-term connectivity among populations. Yet, FST was significantly related to geographic distances, but not to environmental distances, and coalescent analyses and ENM predicted a demographical scenario of quasi-stability through time. Conclusions Our findings show that demographical history and isolation by distance, but not isolation by environment, drove genetic differentiation of populations. Finally, the genetic clusters do not support the two recently recognized botanical varieties of H. speciosa, but partially support Monachino's classification at least for the four sampled varieties, similar to morphological variation.
Collapse
Affiliation(s)
- Rosane G Collevatti
- Laboratório de Genética & Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brasil
| | - Eduardo E Rodrigues
- Laboratório de Genética & Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brasil
| | | | - Matheus S Lima-Ribeiro
- Laboratório de Macroecologia, Instituto de Biociências, Universidade Federal de Goiás (UFG), Regional Jataí, Jataí, GO, Brasil
| | - Lázaro J Chaves
- Escola de Agronomia, Universidade Federal de Goiás, Goiânia, GO, Brasil
| | - Mariana P C Telles
- Laboratório de Genética & Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brasil
- Escola de Ciências Agrárias e Biológicas, Pontifícia Universidade Católica de Goiás, Goiânia, GO, Brasil
| |
Collapse
|