1
|
Powers JM, Briggs HM, Campbell DR. Natural selection on floral volatiles and other traits can change with snowmelt timing and summer precipitation. THE NEW PHYTOLOGIST 2025; 245:332-346. [PMID: 39329349 PMCID: PMC11617657 DOI: 10.1111/nph.20157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024]
Abstract
Climate change is disrupting floral traits that mediate mutualistic and antagonistic species interactions. Plastic responses of these traits to multiple shifting conditions may be adaptive, depending on natural selection in new environments. We manipulated snowmelt date over three seasons (3-11 d earlier) in factorial combination with growing-season precipitation (normal, halved, or doubled) to measure plastic responses of volatile emissions and other floral traits in Ipomopsis aggregata. We quantified how precipitation and early snowmelt affected selection on traits by seed predators and pollinators. Within years, floral emissions did not respond to precipitation treatments but shifted with snowmelt treatment depending on the year. Across 3 yr, emissions correlated with both precipitation and snowmelt date. These effects were driven by changes in soil moisture. Selection on several traits changed with earlier snowmelt or reduced precipitation, in some cases driven by predispersal seed predation. Floral trait plasticity was not generally adaptive. Floral volatile emissions shifted in the face of two effects of climate change, and the new environments modulated selection imposed by interacting species. The complexity of the responses underscores the need for more studies of how climate change will affect floral volatiles and other floral traits.
Collapse
Affiliation(s)
- John M. Powers
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaIrvineCA92697USA
- Rocky Mountain Biological LaboratoryCrested ButteCO81224USA
| | - Heather M. Briggs
- Rocky Mountain Biological LaboratoryCrested ButteCO81224USA
- College of ScienceUniversity of UtahSalt Lake CityUT84102USA
| | - Diane R. Campbell
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaIrvineCA92697USA
- Rocky Mountain Biological LaboratoryCrested ButteCO81224USA
| |
Collapse
|
2
|
Dötterl S, Gershenzon J. Chemistry, biosynthesis and biology of floral volatiles: roles in pollination and other functions. Nat Prod Rep 2023; 40:1901-1937. [PMID: 37661854 DOI: 10.1039/d3np00024a] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Covering: 2010 to 2023Floral volatiles are a chemically diverse group of plant metabolites that serve multiple functions. Their composition is shaped by environmental, ecological and evolutionary factors. This review will summarize recent advances in floral scent research from chemical, molecular and ecological perspectives. It will focus on the major chemical classes of floral volatiles, on notable new structures, and on recent discoveries regarding the biosynthesis and the regulation of volatile emission. Special attention will be devoted to the various functions of floral volatiles, not only as attractants for different types of pollinators, but also as defenses of flowers against enemies. We will also summarize recent findings on how floral volatiles are affected by abiotic stressors, such as increased temperatures and drought, and by other organisms, such as herbivores and flower-dwelling microbes. Finally, this review will indicate current research gaps, such as the very limited knowledge of the isomeric pattern of chiral compounds and its importance in interspecific interactions.
Collapse
Affiliation(s)
- Stefan Dötterl
- Department of Environment & Biodiversity, Paris Lodron University Salzburg, Hellbrunnerstr 34, 5020 Salzburg, Austria.
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany.
| |
Collapse
|
3
|
Gao R, Hu B, Yuan Y, He M, Wang R, Lou Y, Mu J. Nitrogen addition affects floral and vegetative traits, reproduction, and pollinator performance in Capsicum annuum L. ANNALS OF BOTANY 2023; 132:1131-1144. [PMID: 37638856 PMCID: PMC10809046 DOI: 10.1093/aob/mcad121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/25/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND AND AIMS It has been demonstrated that nitrogen (N) addition alters flower morphology, floral rewards and pollinator performance. However, little is known about the effects of N addition on plant reproduction, including fruit set and seed set during selfing and outcrossing, floral and vegetative traits, and pollinator performance. We hypothesized that N addition would influence fruit set, seed set in selfed and outcrossed flowers, the relationship between vegetative and flower traits, and pollinator performance. METHODS A 2-year pot experiment was conducted in which Capsicum annuum was exposed to three levels of relatively short-term N supply, i.e. 0 g m-2 (no N addition, as a control), 4 g m-2 (4N) and 16 g m-2 (16N), which are equivalent to about 0-, 1- and 4-fold of the peak local N deposition. We measured flower rewards, flower morphology, flowering phenology, as well as pollinator visitation rate, fruit set and seed set by self- and outcross-fertilization of C. annuum. RESULTS The four levels of N addition increased plant biomass, biomass allocation to flowers, flower size, stigma-anther separation, nectar production and pollen production, resulting in an increase in pollinator visitation and fruit set. Nevertheless, the control and 16 levels of N addition reduced plant biomass, biomass allocation to flowers, flower size and stigma-anther separation, and nectar and pollen production, and consequently decreased pollinator visitation and fruit set. Exclusion of pollinators and hand-pollination experiments revealed that low levels of N addition were associated with high seed set in outcrossed flowers; however, this trend was reversed in flowers grown in the control and 16N treatments. CONCLUSION Our results suggest that an optimal level of 4N can enhance the correlation between flower traits, pollinator performance and plant reproduction. Our findings cast new light on the underlying mechanisms of plant-pollinator interactions and plant adaptation to nitrogen deposition.
Collapse
Affiliation(s)
- Rui Gao
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang 621000, China
| | - Baoshuang Hu
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang 621000, China
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Yibin Yuan
- Chengdu Academy of Environmental Science, Chengdu, 610072, China
| | - Mengying He
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang 621000, China
| | - Ruolan Wang
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang 621000, China
| | - Yuanxin Lou
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang 621000, China
| | - Junpeng Mu
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang 621000, China
| |
Collapse
|
4
|
Gfrerer E, Laina D, Gibernau M, Comes HP, Hörger AC, Dötterl S. Variation in scent amount but not in composition correlates with pollinator visits within populations of deceptive Arum maculatum L. (Araceae). FRONTIERS IN PLANT SCIENCE 2023; 13:1046532. [PMID: 36699827 PMCID: PMC9869488 DOI: 10.3389/fpls.2022.1046532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Floral scent is vital for pollinator attraction and varies among and within plant species. However, little is known about how inter-individual variation in floral scent affects the abundance and composition of floral visitor assemblages within populations. Moreover, for deceptive plants it is predicted that intra-population variation in scent can be maintained by negative frequency-dependent selection, but empirical evidence is still lacking. To investigate the ecological and evolutionary relations between inter-individual scent variation (i.e., total emission and composition) and floral visitors in deceptive plants, we studied floral scent, visitor assemblages, and fruit set in two populations of fly-pollinated (Psychodidae, Sphaeroceridae; Diptera) and deceptive Arum maculatum from Austria (JOS) and northern Italy (DAO). By correlating individual data on floral scent and visitor assemblages, we show that inter-individual variation in floral scent partly explains variation in visitor assemblages. The quantity of floral scent emitted per individual correlated positively with visitor abundance in both populations but explained visitor composition only in DAO, where strongly scented inflorescences attracted more sphaerocerid flies. However, in each population, the composition of floral scent did not correlate with the composition of floral visitors. There was also no evidence of negative frequency-dependent selection on floral scent. Instead, in JOS, more frequent scent phenotypes attracted more pollinators and were more likely to set an infructescence than rarer ones. Our results show that floral scent, despite being key in pollinator attraction in A. maculatum, only partly explains variation in pollinator abundance and composition. Overall, this study is the first to shed light on the importance of inter-individual variation in floral scent in explaining floral visitor assemblages at the population level in a deceptive plant species.
Collapse
Affiliation(s)
- Eva Gfrerer
- Department of Environment and Biodiversity, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Danae Laina
- Department of Environment and Biodiversity, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Marc Gibernau
- Laboratory of Sciences for the Environment, Centre National de la Recherche Scientifique (CNRS) – University of Corsica, Ajaccio, France
| | - Hans Peter Comes
- Department of Environment and Biodiversity, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Anja C. Hörger
- Department of Environment and Biodiversity, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Stefan Dötterl
- Department of Environment and Biodiversity, Paris Lodron University of Salzburg, Salzburg, Austria
| |
Collapse
|
5
|
Wu Y, Liu G, Sletvold N, Duan X, Tong Z, Li Q. Soil water and nutrient availability interactively modify pollinator-mediated directional and correlational selection on floral display. THE NEW PHYTOLOGIST 2023; 237:672-683. [PMID: 36229922 DOI: 10.1111/nph.18537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
The individual and combined effects of abiotic factors on pollinator-mediated selection on floral traits are not well documented. To examine potential interactive effects of water and nutrient availability on pollinator-mediated selection on three floral display traits of Primula tibetica, we manipulated pollination and nutrient availability in a factorial experiment, conducted at two common garden sites with different soil water content (natural vs addition). We found that both water and nutrient availability affected floral trait expression in P. tibetica and that hand pollination increased seed production most when both nutrient content and water content were high, indicating joint pollen and resource limitation. We documented selection on all floral traits, and pollinators contributed to directional and correlational selection on plant height and number of flowers. Soil water and nutrient availability interactively influenced the strength of both pollinator-mediated directional and correlational selection, with significant selection observed when nutrient or water availability was high, but not when none or both were added. The results suggest that resource limitation constrains the response of P. tibetica to among-individual variation in pollen receipt, that addition of nutrients or water leads to pollinator-mediated selection and that effects of the two abiotic factors are nonadditive.
Collapse
Affiliation(s)
- Yun Wu
- School of Architecture and Civil Engineering, Xihua University, Chengdu, 610039, China
| | - Guangli Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Nina Sletvold
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden
| | - Xuyu Duan
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhaoli Tong
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, 650091, China
- Laboratory of Ecology and Evolutionary Biology, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Qingjun Li
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, 650091, China
- Laboratory of Ecology and Evolutionary Biology, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| |
Collapse
|
6
|
Eisen KE, Ma R, Raguso RA. Among- and within-population variation in morphology, rewards, and scent in a hawkmoth-pollinated plant. AMERICAN JOURNAL OF BOTANY 2022; 109:1794-1810. [PMID: 35762273 DOI: 10.1002/ajb2.16030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
PREMISE Floral scent is a complex trait that mediates many plant-insect interactions, but our understanding of how floral scent variation evolves, either independently or in concert with other traits, remains limited. Assessing variation in floral scent at multiple levels of biological organization and comparing patterns of variation in scent to variation in other floral traits can contribute to our understanding of how scent variation evolves in nature. METHODS We used a greenhouse common garden experiment to investigate variation in floral scent at three scales-within plants, among plants, and among populations-and to determine whether scent, alone or in combination with morphology and rewards, contributes to population differentiation in Oenothera cespitosa subsp. marginata. Its range spans most of the biomes in the western United States, such that variation in both the abiotic and biotic environment could contribute to trait variation. RESULTS Multiple analytical approaches demonstrated substantial variation among and within populations in compound-specific and total floral scent measures. Overall, populations were differentiated in morphology and reward traits and in scent. Across populations, coupled patterns of variation in linalool, leucine-derived compounds, and hypanthium length are consistent with a long-tongued moth pollination syndrome. CONCLUSIONS The considerable variation in floral scent detected within populations suggests that, similar to other floral traits, variation in floral scent may have a heritable genetic component. Differences in patterns of population differentiation in floral scent and in morphology and rewards indicate that these traits may be shaped by different selective pressures.
Collapse
Affiliation(s)
- Katherine E Eisen
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
- Department of Biology, Lund University, Lund, Sweden
| | - Rong Ma
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
| | - Robert A Raguso
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
7
|
Opedal ØH, Gross K, Chapurlat E, Parachnowitsch A, Joffard N, Sletvold N, Ovaskainen O, Friberg M. Measuring, comparing and interpreting phenotypic selection on floral scent. J Evol Biol 2022; 35:1432-1441. [PMID: 36177776 PMCID: PMC9828191 DOI: 10.1111/jeb.14103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 01/12/2023]
Abstract
Natural selection on floral scent composition is a key element of the hypothesis that pollinators and other floral visitors drive scent evolution. The measure of such selection is complicated by the high-dimensional nature of floral scent data and uncertainty about the cognitive processes involved in scent-mediated communication. We use dimension reduction through reduced-rank regression to jointly estimate a scent composite trait under selection and the strength of selection acting on this trait. To assess and compare variation in selection on scent across species, time and space, we reanalyse 22 datasets on six species from four previous studies. The results agreed qualitatively with previous analyses in terms of identifying populations and scent compounds subject to stronger selection but also allowed us to evaluate and compare the strength of selection on scent across studies. Doing so revealed that selection on floral scent was highly variable, and overall about as common and as strong as selection on other phenotypic traits involved in pollinator attraction or pollen transfer. These results are consistent with an important role of floral scent in pollinator attraction. Our approach should be useful for further studies of plant-animal communication and for studies of selection on other high-dimensional phenotypes. In particular, our approach will be useful for studies of pollinator-mediated selection on complex scent blends comprising many volatiles, and when no prior information on the physiological responses of pollinators to scent compounds is available.
Collapse
Affiliation(s)
| | - Karin Gross
- Department of Environment & BiodiversityParis Lodron University of SalzburgSalzburgAustria
| | - Elodie Chapurlat
- Plant Ecology and Evolution, Department of Ecology and Genetics, EBCUppsala UniversityUppsalaSweden,Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
| | - Amy Parachnowitsch
- Department of BiologyUniversity of New BrunswickFrederictonNew BrunswickCanada
| | - Nina Joffard
- University of Lille, UMR 8198 – Evo‐Eco‐PaleoLilleFrance
| | - Nina Sletvold
- Plant Ecology and Evolution, Department of Ecology and Genetics, EBCUppsala UniversityUppsalaSweden
| | - Otso Ovaskainen
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland,Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiHelsinkiFinland,Centre for Biodiversity Dynamics, Department of BiologyNorwegian University of Science and TechnologyTrondheimNorway
| | - Magne Friberg
- Biodiversity Unit, Department of BiologyLund UniversityLundSweden
| |
Collapse
|
8
|
Wu Y, Duan X, Tong Z, Li Q. Pollinator-Mediated Selection on Floral Traits of Primula tibetica Differs Between Sites With Different Soil Water Contents and Among Different Levels of Nutrient Availability. FRONTIERS IN PLANT SCIENCE 2022; 13:807689. [PMID: 35300008 PMCID: PMC8921772 DOI: 10.3389/fpls.2022.807689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Abiotic environmental factors are predicted to affect plant traits and the intensity of plant-pollinator interactions. However, knowledge of their potential effects on pollinator-mediated selection on floral traits is still limited. We separately estimated the effects of soil water (two sites with different soil water contents) and N-P-K nutrient availability (different levels of nutrient addition) on pollinator-mediated selection on floral traits of Primula tibetica (an insect-pollinated perennial herbaceous species). Our results demonstrated that floral traits, plant reproductive success and pollinator-mediated selection on floral traits varied between sites with different soil water contents and among different levels of nutrient addition. The strength of pollinator-mediated selection was stronger at the site with low soil water content than at the site with high soil water content, and first decreased and then increased with increasing N-P-K nutrient addition. Our results support the hypothesis that abiotic environmental factors influence the importance of pollinators in shaping floral evolution.
Collapse
Affiliation(s)
- Yun Wu
- School of Architecture and Civil Engineering, Xihua University, Chengdu, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Xuyu Duan
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Zhaoli Tong
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Qingjun Li
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| |
Collapse
|
9
|
Manincor N, Andreu B, Buatois B, Lou Chao H, Hautekèete N, Massol F, Piquot Y, Schatz B, Schmitt E, Dufay M. Geographical variation of floral scents in generalist entomophilous species with variable pollinator communities. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - Benjamin Andreu
- CEFE Univ. Montpellier CNRS EPHE IRD Univ. Paul Valéry Montpellier 3 Montpellier France
| | - Bruno Buatois
- CEFE Univ. Montpellier CNRS EPHE IRD Univ. Paul Valéry Montpellier 3 Montpellier France
| | | | | | - François Massol
- Univ. Lille CNRS UMR 8198—Evo‐Eco‐Paleo Lille France
- Univ. Lille CNRS Inserm CHU Lille Institut Pasteur de Lille U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille Lille France
| | - Yves Piquot
- Univ. Lille CNRS UMR 8198—Evo‐Eco‐Paleo Lille France
| | - Bertrand Schatz
- CEFE Univ. Montpellier CNRS EPHE IRD Univ. Paul Valéry Montpellier 3 Montpellier France
| | - Eric Schmitt
- Univ. Lille CNRS UMR 8198—Evo‐Eco‐Paleo Lille France
| | - Mathilde Dufay
- Univ. Lille CNRS UMR 8198—Evo‐Eco‐Paleo Lille France
- CEFE Univ. Montpellier CNRS EPHE IRD Univ. Paul Valéry Montpellier 3 Montpellier France
| |
Collapse
|
10
|
Palmqvist B, Brazeau HA, Parachnowitsch AL. Differences in Floral Scent and Petal Reflectance Between Diploid and Tetraploid Chamerion angustifolium. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.734128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genome duplication in plants is thought to be a route to speciation due to cytotype incompatibility. However, to reduce cross-pollination between cytotypes in animal-pollinated species, distinctive floral phenotypes, which would allow pollinator-mediated assortative mating between flowers, are also expected. Chamerion angustifolium is a Holarctic species that forms a hybrid zone between diploid and tetraploid populations in the North American Rocky Mountains. Extensive research has shown that these cytotypes differ in many ways, including some floral traits, and that pollinators can discriminate between cytotypes, leading to assortative mating. However, two signals commonly used by insect pollinators have not been measured for this species, namely petal colour and floral scent. Using greenhouse-grown diploids and tetraploids of C. angustifolium from the ploidy hybrid-zone in the North American Rocky Mountains, we show that both floral scent signals and petal reflectance differ between cytotypes. These differences, along with differences in flower size shown previously, could help explain pollinator-mediated assortative mating observed in previous studies. However, these differences in floral phenotypes may vary in importance to pollinators. While the differences in scent included common floral volatiles readily detected by bumblebees, the differences in petal reflectance may not be perceived by bees based on their visual sensitivity across the spectra. Thus, our results suggest that differences in floral volatile emissions are more likely to contribute to pollinator discrimination between cytotypes and highlight the importance of understanding the sensory systems of pollinators when examining floral signals.
Collapse
|
11
|
Luizzi VJ, Friberg M, Petrén H. Phenotypic plasticity in floral scent in response to nutrient, but not water, availability in the perennial plant
Arabis alpina. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Victoria J. Luizzi
- Department of Ecology & Evolutionary Biology University of Arizona Tucson AZ USA
- Department of Biology Lund University Lund Sweden
| | | | | |
Collapse
|
12
|
Eisen KE, Geber MA, Raguso RA. Emission rates of species-specific volatiles vary across communities of Clarkia species: Evidence for multi-modal character displacement. Am Nat 2021; 199:824-840. [DOI: 10.1086/715501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Nocturnal pollination: an overlooked ecosystem service vulnerable to environmental change. Emerg Top Life Sci 2020; 4:19-32. [PMID: 32478390 PMCID: PMC7326339 DOI: 10.1042/etls20190134] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/14/2022]
Abstract
Existing assessments of the ecosystem service of pollination have been largely restricted to diurnal insects, with a particular focus on generalist foragers such as wild and honey bees. As knowledge of how these plant-pollinator systems function, their relevance to food security and biodiversity, and the fragility of these mutually beneficial interactions increases, attention is diverting to other, less well-studied pollinator groups. One such group are those that forage at night. In this review, we document evidence that nocturnal species are providers of pollination services (including pollination of economically valuable and culturally important crops, as well as wild plants of conservation concern), but highlight how little is known about the scale of such services. We discuss the primary mechanisms involved in night-time communication between plants and insect pollen-vectors, including floral scent, visual cues (and associated specialized visual systems), and thermogenic sensitivity (associated with thermogenic flowers). We highlight that these mechanisms are vulnerable to direct and indirect disruption by a range of anthropogenic drivers of environmental change, including air and soil pollution, artificial light at night, and climate change. Lastly, we highlight a number of directions for future research that will be important if nocturnal pollination services are to be fully understood and ultimately conserved.
Collapse
|
14
|
Campbell DR, Sosenski P, Raguso RA. Phenotypic plasticity of floral volatiles in response to increasing drought stress. ANNALS OF BOTANY 2019; 123:601-610. [PMID: 30364929 PMCID: PMC6417471 DOI: 10.1093/aob/mcy193] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 10/04/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Flowers emit a wide range of volatile compounds which can be critically important to interactions with pollinators or herbivores. Yet most studies of how the environment influences plant volatiles focus on leaf emissions, with little known about abiotic sources of variation in floral volatiles. Understanding phenotypic plasticity in floral volatile emissions has become increasingly important with globally increasing temperatures and changes in drought frequency and severity. Here quantitative relationships of floral volatile emissions to soil water content were analysed. METHODS Plants of the sub-alpine herb Ipomopsis aggregata and hybrids with its closest congener were subjected to a progressive dry down, mimicking the range of soil moistures experienced in the field. Floral volatiles and leaf gas exchange were measured at four time points during the drought. KEY RESULTS As the soil dried, floral volatile emissions increased overall and changed in composition, from more 1,3-octadiene and benzyl alcohol to higher representation of some terpenes. Emissions of individual compounds were not linearly related to volumetric water content in the soil. The dominant compound, the monoterpene α-pinene, made up the highest percentage of the scent mixture when soil moisture was intermediate. In contrast, emission of the sesquiterpene (E,E)-α-farnesene accelerated as the drought became more intense. Changes in floral volatiles did not track the time course of changes in photosynthetic rate or stomatal conductance. CONCLUSIONS This study shows responses of specific floral volatile organic compounds to soil moisture. The non-linear responses furthermore suggest that extreme droughts may have impacts that are not predictable from milder droughts. Floral volatiles are likely to change seasonally with early summer droughts in the Rocky Mountains, as well as over years as snowmelt becomes progressively earlier. Changes in water availability may have impacts on plant-animal interactions that are mediated through non-linear changes in floral volatiles.
Collapse
Affiliation(s)
- Diane R Campbell
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO, USA
- For correspondence. E-mail
| | - Paula Sosenski
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO, USA
- CONACYT – Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Robert A Raguso
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| |
Collapse
|
15
|
Extreme diversification of floral volatiles within and among species of Lithophragma (Saxifragaceae). Proc Natl Acad Sci U S A 2019; 116:4406-4415. [PMID: 30765532 DOI: 10.1073/pnas.1809007116] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A major challenge in evolutionary biology is to understand how complex traits of multiple functions have diversified and codiversified across interacting lineages and geographic ranges. We evaluate intra- and interspecific variation in floral scent, which is a complex trait of documented importance for mutualistic and antagonistic interactions between plants, pollinators, and herbivores. We performed a large-scale, phylogenetically structured study of an entire plant genus (Lithophragma, Saxifragaceae), of which several species are coevolving with specialized pollinating floral parasites of the moth genus Greya (Prodoxidae). We sampled 94 Lithophragma populations distributed across all 12 recognized Lithophragma species and subspecies, and four populations of related saxifragaceous species. Our results reveal an unusually high diversity of floral volatiles among populations, species, and clades within the genus. Moreover, we found unexpectedly major changes at each of these levels in the biosynthetic pathways used by local populations in their floral scents. Finally, we detected significant, but variable, genus- and species-level patterns of ecological convergence in the floral scent signal, including an impact of the presence and absence of two pollinating Greya moth species. We propose that one potential key to understanding floral scent variation in this hypervariable genus is its geographically diverse interactions with the obligate specialized Greya moths and, in some species and sites, more generalized copollinators.
Collapse
|