1
|
Gao Y, Tang W, Zhong Y, Guo X, Qin K, Wang Y, Kramarenko EY, Zou J. Printing Untethered Self-Reconfigurable, Self-Amputating Soft Robots from Recyclable Self-Healing Fibers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2410167. [PMID: 39691083 DOI: 10.1002/advs.202410167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/10/2024] [Indexed: 12/19/2024]
Abstract
Regarding the challenge of self-reconfiguration and self-amputation of soft robots, existing studies mainly focus on modular soft robots and connection methods between modules. Different from these studies, this study focus on the behavior of individual soft robots from a material perspective. Here, a kind of soft fibers, which consist of hot melt adhesive particles, magnetizable microparticles, and ferroferric oxide microparticles embedded in a thermoplastic polyurethane matrix are proposed. The soft fibers can achieve wireless self-healing and reversible bonding of the fibers by eddy current heating and can be actuated by magnetic fields. Moreover, the soft fibers are recyclable and printable. Building on this material foundation, an integrated material-structure-actuation printing strategy using soft fibers for the design and fabrication of soft robots are reported. The robots printed by this strategy can achieve their untethered motions and wireless self-healing. Soft gripper, soft crawling robot, and soft multi-legged robot, are then fabricated which demonstrates the self-healing, self-reconfigurable, self-amputating, and sustainable performances of soft robots so as to adapt to different environments and tasks. This integrated material-structure-actuation printing strategy using soft fibers is universal, easy to implement, and mass-manufactured, opening a door for sustainable, eco-friendly, untethered, self-reconfigurable, self-amputating soft robots.
Collapse
Affiliation(s)
- Yidan Gao
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Wei Tang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yiding Zhong
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Xinyu Guo
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Kecheng Qin
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yonghao Wang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Elena Yu Kramarenko
- Faculty of Physics, Lomonosov Moscow State University, Moscow, 119991, Russia
- Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences, Moscow, 117393, Russia
| | - Jun Zou
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
2
|
Van Zele N, Nicot T, Lengagne T, Ksas R, Lourdais O. Physiological costs of warning: Defensive hissing increases metabolic rate and evaporative water loss in a venomous snake. Physiol Behav 2024; 287:114708. [PMID: 39366538 DOI: 10.1016/j.physbeh.2024.114708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
To minimize predation risk and the cost of confronting predators, prey have developed a range of defensive strategies and warning signals. Although advantageous, defensive warnings may also induce physiological and energy costs to the emitter. Ventilatory sounds (hissing) are the most distributed warning sound in vertebrates. Because they involve the respiratory apparatus, defensive hissing may substantially increase evaporative water loss. Herein, we examined the determinants of hissing as well as its physiological costs in a medium-sized venomous snake, the long-nosed viper (Vipera ammodytes). We first used a neutral arena and applied standardized stimulation to measure the occurrence and acoustic characteristics of warning hissing. Then, we used open-flow respirometry to quantify changes in respiratory gas exchanges (oxygen consumption and evaporative water loss) during defensive responses. We demonstrated that males are more likely to engage in sound warnings when stimulated. Expirations generated the strongest signals compared to inspiration but did not differ between sexes. We found that defensive hissing dramatically increased average metabolic rate and evaporative water loss during the 10-minute stimulation period, and this effect was more pronounced in males. Metabolic rates and evaporative water loss were closely related to the duration of hissing. Overall, our results indicate that respiratory-based warning sounds induce significant physiological costs and may alter water balance. The higher responsiveness in males than females likely reflects sexually selective pressure (higher mobility for mate acquisition) and enhanced risk exposure.
Collapse
Affiliation(s)
- Nicolas Van Zele
- Université Claude Bernard Lyon 1, LEHNA UMR 5023, CNRS, ENTPE, F-69622, Villeurbanne, France; Centre d'Etudes Biologiques de Chizé-La Rochelle, CEBC-CNRS UMR7372, 79360, Villiers en Bois, France.
| | - Thomas Nicot
- Centre d'Etudes Biologiques de Chizé-La Rochelle, CEBC-CNRS UMR7372, 79360, Villiers en Bois, France
| | - Thierry Lengagne
- Université Claude Bernard Lyon 1, LEHNA UMR 5023, CNRS, ENTPE, F-69622, Villeurbanne, France
| | - Rémi Ksas
- Venom World, 5 avenue des fleurs de la paix, 17200 , Royan
| | - Olivier Lourdais
- Centre d'Etudes Biologiques de Chizé-La Rochelle, CEBC-CNRS UMR7372, 79360, Villiers en Bois, France; School of Life Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
3
|
Mongeau JM, Yang Y, Escalante I, Cowan N, Jayaram K. Moving in an Uncertain World: Robust and Adaptive Control of Locomotion from Organisms to Machine Intelligence. Integr Comp Biol 2024; 64:1390-1407. [PMID: 39090982 PMCID: PMC11579605 DOI: 10.1093/icb/icae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
Whether walking, running, slithering, or flying, organisms display a remarkable ability to move through complex and uncertain environments. In particular, animals have evolved to cope with a host of uncertainties-both of internal and external origin-to maintain adequate performance in an ever-changing world. In this review, we present mathematical methods in engineering to highlight emerging principles of robust and adaptive control of organismal locomotion. Specifically, by drawing on the mathematical framework of control theory, we decompose the robust and adaptive hierarchical structure of locomotor control. We show how this decomposition along the robust-adaptive axis provides testable hypotheses to classify behavioral outcomes to perturbations. With a focus on studies in non-human animals, we contextualize recent findings along the robust-adaptive axis by emphasizing two broad classes of behaviors: (1) compensation to appendage loss and (2) image stabilization and fixation. Next, we attempt to map robust and adaptive control of locomotion across some animal groups and existing bio-inspired robots. Finally, we highlight exciting future directions and interdisciplinary collaborations that are needed to unravel principles of robust and adaptive locomotion.
Collapse
Affiliation(s)
- Jean-Michel Mongeau
- Department of Mechanical Engineering, Pennsylvania State University, University Park, 16802 PA, USA
| | - Yu Yang
- Department of Mechanical Engineering, Johns Hopkins University, 3400 North Charles Street, 21218 MD, USA
| | - Ignacio Escalante
- Department of Biological Sciences, University of Illinois, Chicago, 845 W Taylor St, 60607 IL, USA
| | - Noah Cowan
- Department of Mechanical Engineering, Johns Hopkins University, 3400 North Charles Street, 21218 MD, USA
| | - Kaushik Jayaram
- Department of Mechanical Engineering, University of Colorado Boulder, UCB 427, 80309 CO, USA
| |
Collapse
|
4
|
Escalante I, O'Brien SL. Robustness to Leg Loss in Opiliones: A Review and Framework Considerations for Future Research. Integr Comp Biol 2024; 64:1338-1353. [PMID: 38782725 DOI: 10.1093/icb/icae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/08/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024] Open
Abstract
Animals have evolved behavioral and morphological traits that allow them to respond to environmental challenges. However, these traits may have long-term consequences that could impact an animal's performance, fitness, and welfare. Several species in a group of the arachnid order of Opiliones release their legs voluntarily to escape predators. These animals use their legs for locomotion, sensation, and reproduction. Here, we first compile data across species in the suborder Eupnoi, showing that more than half of individuals are found missing legs. Then, we review recent work on the ultimate and proximate implications of leg loss in Opiliones. Field and laboratory experiments showed that leg loss (a) did not affect their survival or mating success and (b) compromised the kinematics and energetics of locomotion, but individuals recovered velocity and acceleration quickly. These findings demonstrate that these animals display robustness, that is, the ability to withstand and overcome the potential consequences of bodily damage. This may explain why leg loss is so prevalent in Opiliones. Additionally, we encourage researchers to consider expanding their hypotheses beyond traditional adaptationist and ableist lenses and incorporate a comprehensive examination of animal welfare when studying animals' responses to bodily damage. Finally, we highlight avenues for future research in Opiliones, namely assessing how individuals move in three-dimensional environments, the neural plasticity aiding recovery post-leg loss, applications for bio-inspired design, and evidence-based animal welfare measures.
Collapse
Affiliation(s)
- Ignacio Escalante
- Department of Biological Sciences, University of Illinois-Chicago, IL, USA. 845 W Taylor St. Chicago, IL 60607
| | - Shannon L O'Brien
- Animal Welfare Science Program, Lincoln Park Zoo, 2001 N Clark St. Chicago, IL 60614, USA
| |
Collapse
|
5
|
Lietzenmayer LB, Taylor LA. Mantidfly larvae use cues on substrate to locate and distinguish different sexes and life stages of potential spider hosts. Sci Rep 2024; 14:27457. [PMID: 39523405 PMCID: PMC11551181 DOI: 10.1038/s41598-024-79093-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
In many animals, early-life decisions influence long-term fitness. Mantidflies are spider egg predators; their tiny larvae climb aboard spiders to find eggs, but little is known about how they find spiders. We tested the hypothesis that mantidfly larvae (Dicromantispa sayi) detect and respond to substrate-borne spider cues (e.g., silk and/or excreta). We presented larvae with filter paper exposed to different types of spiders (adult female, adult male, or juvenile Habronattus trimaculatus jumping spiders) versus a no-cue control. Larvae spent more time on filter paper with spider cues. We then tested the hypothesis that mantidflies make finer distinctions between spiders when given direct choices between these cues. Larvae did not discriminate between sexes but spent more time (and exhibited more phoretic behavior) on filter paper with female or male cues compared with juvenile cues. While this suggests that mantidflies actively seek out adult spiders, we also found that adult spiders were more active than juveniles and may have simply deposited more silk and excreta, providing a stronger cue to detect. We discuss these findings in the context of the risks and benefits of different spider hosts, and how early-life spider-searching strategies may shape a mantidfly's long-term fitness.
Collapse
Affiliation(s)
- Laurel B Lietzenmayer
- Entomology and Nematology Department, University of Florida, Gainesville, FL, 32611, USA.
| | - Lisa A Taylor
- Entomology and Nematology Department, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
6
|
Martin-Blanco CA, Navarro P, Esteban-Collado J, Serra F, Almudi I, Casares F. Gill regeneration in the mayfly Cloeon uncovers new molecular pathways in insect regeneration. Open Biol 2024; 14:240118. [PMID: 39591992 PMCID: PMC11597413 DOI: 10.1098/rsob.240118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/23/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
The capacity to regenerate lost organs is widespread among animals, and yet the number of species in which regeneration has been experimentally probed using molecular and functional assays is very small. This is also the case for insects, for which we still lack a complete picture of their regeneration mechanisms and the extent of their conservation. Here, we contribute to filling this gap by investigating regeneration in the mayfly Cloeon dipterum. We focus on the abdominal gills of Cloeon nymphs, which are critical for osmoregulation and gas exchange. After amputation, gills re-grow faster than they do during normal development. Direct cell count and EdU assays indicate that growth acceleration involves an uniform increase in cell proliferation throughout the gill, rather than a localized growth zone. Accordingly, transcriptomic analysis reveals an early enrichment in cell cycle-related genes. Other gene classes are also enriched in regenerating gills, including protein neddylation and other proteostatic processes. We then showed the conservation of these mechanisms by functionally testing protein neddylation, the activin signalling pathway or the mRNA-binding protein Lin28, among other genes, in Drosophila larval/pupal wing regeneration. Globally, our results contribute to elucidating regeneration mechanisms in mayflies and the conservation of mechanisms involved in regeneration across insects.
Collapse
Affiliation(s)
- Carlos A. Martin-Blanco
- CABD (Andalusian Center for Developmental Biology), CSIC/Universidad Pablo de Olavide/Junta de Andalucía, Seville41013, Spain
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Diagonal 643, 08028, Barcelona, Spain
| | - Pablo Navarro
- CABD (Andalusian Center for Developmental Biology), CSIC/Universidad Pablo de Olavide/Junta de Andalucía, Seville41013, Spain
| | - José Esteban-Collado
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Diagonal 643, 08028, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Diagonal 643, 08028, Barcelona, Spain
| | - Florenci Serra
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Diagonal 643, 08028, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Diagonal 643, 08028, Barcelona, Spain
| | - Isabel Almudi
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Diagonal 643, 08028, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Diagonal, 643, 08028, Barcelona, Spain
| | - Fernando Casares
- CABD (Andalusian Center for Developmental Biology), CSIC/Universidad Pablo de Olavide/Junta de Andalucía, Seville41013, Spain
| |
Collapse
|
7
|
Selvan Christyraj JD, Vaidhyalingham AB, Sengupta C, Rajagopalan K, Vadivelu K, Suresh NK, Venkatachalam B. Functional significance of earthworm clitellum in regulating the various biological aspects of cell survival and regeneration. Dev Dyn 2024. [PMID: 39373082 DOI: 10.1002/dvdy.751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/19/2024] [Accepted: 09/20/2024] [Indexed: 10/08/2024] Open
Abstract
Earthworms are a highly abundant species in nature, with nearly 7000 different species being discovered. Despite the similarities in morphology among earthworm species, their regeneration capabilities vary based on the clitellum. The clitellum plays a crucial role in the clitellum-dependent worms, as it is involved in the processes of regeneration and reproduction in earthworms. The fascinating characteristic of the clitellum, which serves as a hub for stem cells in clitellum-dependent worms, plays a crucial role in various biological processes that require further exploration. This review focuses on the overall physiological functions and uncovers the lesser-known roles of the clitellum that have been documented in various research articles. In recent times, numerous studies have been conducted using the earthworm model to explore various areas. In that regard, the clitellum's different roles in regulating and controlling stem cells, the regeneration process, regulation of organogenesis, stress response, aging, autotomy, and various features have been briefly discussed. Ultimately, we emphasized the unique and versatile role of the clitellum in the animal model, making it an ideal choice for studying development, regeneration, stem cells, organogenesis, toxicology, autotomy, and aging response.
Collapse
Affiliation(s)
- Jackson Durairaj Selvan Christyraj
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Ashwin Barath Vaidhyalingham
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Chandini Sengupta
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Kamarajan Rajagopalan
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Kayalvizhi Vadivelu
- Department of Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Nandha Kumar Suresh
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Bharathi Venkatachalam
- Department of Microbiology, Vivekanandha Arts and Science, College for Women, Salem, India
| |
Collapse
|
8
|
Yang B, Nasab AM, Woodman SJ, Thomas E, Tilton LG, Levin M, Kramer-Bottiglio R. Self-Amputating and Interfusing Machines. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400241. [PMID: 38780175 DOI: 10.1002/adma.202400241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/25/2024] [Indexed: 05/25/2024]
Abstract
Biological organisms exhibit phenomenal adaptation through morphology-shifting mechanisms including self-amputation, regeneration, and collective behavior. For example, reptiles, crustaceans, and insects amputate their own appendages in response to threats. Temporary fusion between individuals enables collective behaviors, such as in ants that temporarily fuse to build bridges. The concept of morphological editing often involves the addition and subtraction of mass and can be linked to modular robotics, wherein synthetic body morphology may be revised by rearranging parts. This work describes a reversible cohesive interface made of thermoplastic elastomer that allows for strong attachment and easy detachment of distributed soft robot modules without direct human handling. The reversible joint boasts a modulus similar to materials commonly used in soft robotics, and can thus be distributed throughout soft robot bodies without introducing mechanical incongruities. To demonstrate utility, the reversible joint is implemented in two embodiments: a soft quadruped robot that self-amputates a limb when stuck, and a cluster of three soft-crawling robots that fuse to cross a land gap. This work points toward future robots capable of radical shape-shifting via changes in mass through autotomy and interfusion, as well as highlights the crucial role that interfacial stiffness change plays in autotomizable biological and artificial systems.
Collapse
Affiliation(s)
- Bilige Yang
- School of Engineering & Applied Science, Yale University, 9 Hillhouse Avenue, New Haven, CT, 06511, USA
| | - Amir Mohammadi Nasab
- School of Engineering & Applied Science, Yale University, 9 Hillhouse Avenue, New Haven, CT, 06511, USA
| | - Stephanie J Woodman
- School of Engineering & Applied Science, Yale University, 9 Hillhouse Avenue, New Haven, CT, 06511, USA
| | - Eugene Thomas
- School of Engineering & Applied Science, Yale University, 9 Hillhouse Avenue, New Haven, CT, 06511, USA
| | - Liana G Tilton
- School of Engineering & Applied Science, Yale University, 9 Hillhouse Avenue, New Haven, CT, 06511, USA
| | - Michael Levin
- Department of Biology, Allen Discovery Center at Tufts University, 200 Boston Ave. Suite 4604, Medford, MA, 02155, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Cir, Boston, MA, 02115, USA
| | - Rebecca Kramer-Bottiglio
- School of Engineering & Applied Science, Yale University, 9 Hillhouse Avenue, New Haven, CT, 06511, USA
| |
Collapse
|
9
|
Barr S, Elwood RW. Effects of Acetic Acid and Morphine in Shore Crabs, Carcinus maenas: Implications for the Possibility of Pain in Decapods. Animals (Basel) 2024; 14:1705. [PMID: 38891753 PMCID: PMC11171055 DOI: 10.3390/ani14111705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
Noxious chemicals, coupled with morphine treatment, are often used in studies on pain in vertebrates. Here we show that injection of morphine caused several behavioural changes in the crab, Carcinus maenas, including reduced pressing against the sides of the enclosure and more rubbing and picking at the mouth parts and, at least for a short time, more defensive displays. Subsequent injection of acetic acid into one rear leg caused rubbing of the injected leg and the injected leg was held vertically off the ground. These activities directed at or involving the specific leg are consistent with previous observations of directed behaviour following noxious stimuli and are consistent with the idea that decapods experience pain. Further, acetic acid but not injection of water induced autotomy of the injected leg in these animals. Because autotomy is temporally associated with directed behaviour, it is possible that the autotomy is a pain-related response. Acetic acid is clearly a noxious substance when applied to decapods. However, morphine had no effect on the activities associated with acetic acid injection and thus there is no evidence for an analgesic effect. Further, the injection of acetic acid did not interfere with behavioural effects of morphine. The activities directed towards the site of injection are like those observed with injection, or with external application, of various noxious substances and the present study adds to a growing body of knowledge about possible pain in decapods.
Collapse
Affiliation(s)
| | - Robert W. Elwood
- School of Biological Sciences, Queen’s University, Belfast BT9 5DL, UK;
| |
Collapse
|
10
|
Jobson S, Hamel JF, Mercier A. Shake it off: exploring drivers and outcomes of autotomy in marine invertebrates. Biol Lett 2024; 20:20240015. [PMID: 38807548 PMCID: PMC11285939 DOI: 10.1098/rsbl.2024.0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/13/2024] [Accepted: 04/03/2024] [Indexed: 05/30/2024] Open
Abstract
Autotomy refers to self-amputation where the loss of a limb or organ is generally said to be (1) in response to stressful external stimuli; (2) voluntary and nervously mediated; (3) supported by adaptive features that increase efficiency and simultaneously mediate the cost; and (4) morphologically delineated by a predictable breakage plane. It is estimated that this phenomenon has evolved independently nine different times across the animal kingdom, appearing in many different taxa, including vertebrate and invertebrate as well as aquatic and terrestrial animals. Marine invertebrates use this behaviour in a diversity of manners that have yet to be globally reviewed and critically examined. Here, published data from marine invertebrate taxa were used to explore instances of injury as an evolutionary driver of autotomy. Findings suggest that phyla (e.g. Echinodermata and Arthropoda) possibly experiencing high rates of injury (tissue damage or loss) are more likely to be able to perform autotomy. Additionally, this review looks at various morphological, physiological and environmental conditions that have either driven the evolution or maintained the behaviour of autotomy in marine invertebrates. Finally, the use of autotomic abilities in the development of more sustainable and less ecologically invasive fisheries is explored.
Collapse
Affiliation(s)
- Sara Jobson
- Department of Ocean Sciences, Memorial University, St John’s (Newfoundland and Labrador), Canada
| | - Jean-François Hamel
- Society for the Exploration and Valuing of the Environment, St Philips (Newfoundland and Labrador), Canada
| | - Annie Mercier
- Department of Ocean Sciences, Memorial University, St John’s (Newfoundland and Labrador), Canada
| |
Collapse
|
11
|
Houston AI, Fromhage L, McNamara JM. A general framework for modelling trade-offs in adaptive behaviour. Biol Rev Camb Philos Soc 2024; 99:56-69. [PMID: 37609707 DOI: 10.1111/brv.13011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 08/05/2023] [Accepted: 08/09/2023] [Indexed: 08/24/2023]
Abstract
An animal's behaviour can influence many variables, such as its energy reserves, its risk of injury or mortality, and its rate of reproduction. To identify the optimal action in a given situation, these various effects can be compared in the common currency of reproductive value. While this idea has been widely used to study trade-offs between pairs of variables, e.g. between energy gain versus survival, here we present a unified framework that makes explicit how these various trade-offs fit together. This unification covers a wide range of biological phenomena, highlighting similarities in their logical structure and helping to identify knowledge gaps. To fill one such gap, we present a new model of foraging under the risk of predation and damage accumulation. We conclude by discussing the use and limitations of state-dependent optimisation theory in predicting biological observations.
Collapse
Affiliation(s)
- Alasdair I Houston
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Lutz Fromhage
- University of Jyväskylä, PO Box 35, Jyväskylä, 40014, Finland
| | - John M McNamara
- School of Mathematics, University of Bristol, Fry Building, Woodland Road, Bristol, BS8 1UG, UK
| |
Collapse
|
12
|
Niekampf M, Meyer P, Quade FSC, Schmidt AR, Salditt T, Bradler S. High disparity in repellent gland anatomy across major lineages of stick and leaf insects (Insecta: Phasmatodea). BMC ZOOL 2024; 9:1. [PMID: 38163865 PMCID: PMC10759571 DOI: 10.1186/s40850-023-00189-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/30/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Phasmatodea are well known for their ability to disguise themselves by mimicking twigs, leaves, or bark, and are therefore commonly referred to as stick and leaf insects. In addition to this and other defensive strategies, many phasmatodean species use paired prothoracic repellent glands to release defensive chemicals when disturbed by predators or parasites. These glands are considered as an autapomorphic trait of the Phasmatodea. However, detailed knowledge of the gland anatomy and chemical compounds is scarce and only a few species were studied until now. We investigated the repellent glands for a global sampling of stick and leaf insects that represents all major phasmatodean lineages morphologically via µCT scans and analyzed the anatomical traits in a phylogenetic context. RESULTS All twelve investigated species possess prothoracic repellent glands that we classify into four distinct gland types. 1: lobe-like glands, 2: sac-like glands without ejaculatory duct, 3: sac-like glands with ejaculatory duct and 4: tube-like glands. Lobe-like glands are exclusively present in Timema, sac-like glands without ejaculatory duct are only found in Orthomeria, whereas the other two types are distributed across all other taxa (= Neophasmatodea). The relative size differences of these glands vary significantly between species, with some glands not exceeding in length the anterior quarter of the prothorax, and other glands extending to the end of the metathorax. CONCLUSIONS We could not detect any strong correlation between aposematic or cryptic coloration of the examined phasmatodeans and gland type or size. We hypothesize that a comparatively small gland was present in the last common ancestor of Phasmatodea and Euphasmatodea, and that the gland volume increased independently in subordinate lineages of the Occidophasmata and Oriophasmata. Alternatively, the stem species of Neophasmatodea already developed large glands that were reduced in size several times independently. In any case, our results indicate a convergent evolution of the gland types, which was probably closely linked to properties of the chemical components and different predator selection pressures. Our study is the first showing the great anatomical variability of repellent glands in stick and leaf insects.
Collapse
Affiliation(s)
- Marco Niekampf
- Department of Animal Evolution and Biodiversity, Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Untere Karspüle 2, 37073, Göttingen, Germany.
| | - Paul Meyer
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany
| | - Felix S C Quade
- Department of Developmental Biology, Göttingen Center for Molecular Biosciences, Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Justus-Von-Liebig-Weg 11, 37077, Göttingen, Germany
- Present address, Institut Für Zelltechnologie, Blücherstraße 63, 18055, Rostock, Germany
| | - Alexander R Schmidt
- Department of Geobiology, University of Göttingen, Goldschmidtstraße 3, 37077, Göttingen, Germany
| | - Tim Salditt
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany
| | - Sven Bradler
- Department of Animal Evolution and Biodiversity, Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Untere Karspüle 2, 37073, Göttingen, Germany
| |
Collapse
|
13
|
Golding D, Rupp KL, Sustar A, Pratt B, Tuthill JC. Snow flies self-amputate freezing limbs to sustain behavior at sub-zero temperatures. Curr Biol 2023; 33:4549-4556.e3. [PMID: 37757830 PMCID: PMC10842534 DOI: 10.1016/j.cub.2023.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/02/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023]
Abstract
Temperature profoundly impacts all living creatures. In spite of the thermodynamic constraints on biology, some animals have evolved to live and move in extremely cold environments. Here, we investigate behavioral mechanisms of cold tolerance in the snow fly (Chionea spp.), a flightless crane fly that is active throughout the winter in boreal and alpine environments of the northern hemisphere. Using thermal imaging, we show that adult snow flies maintain the ability to walk down to an average body temperature of -7°C. At this supercooling limit, ice crystallization occurs within the snow fly's hemolymph and rapidly spreads throughout the body, resulting in death. However, we discovered that snow flies frequently survive freezing by rapidly amputating legs before ice crystallization can spread to their vital organs. Self-amputation of freezing limbs is a last-ditch tactic to prolong survival in frigid conditions that few animals can endure. Understanding the extreme physiology and behavior of snow insects holds particular significance at this moment when their alpine habitats are rapidly changing due to anthropogenic climate change. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Dominic Golding
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Katie L Rupp
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Anne Sustar
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Brandon Pratt
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - John C Tuthill
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
14
|
Rai S, Singh A, Omkar O, Mishra G. Effect of larval thermal conditions on limb regeneration in a ladybird beetle, Cheilomenes sexmaculata. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:825-837. [PMID: 37465962 DOI: 10.1002/jez.2733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/20/2023] [Accepted: 06/30/2023] [Indexed: 07/20/2023]
Abstract
In view of global environmental change, ecological factors especially temperature, affect development of the poikilotherms like insects. Since ladybirds are at risk of injury under mass-rearing conditions, their ability to regenerate injured limbs is highly crucial for their survival. Therefore, the effect of limb regeneration in relation to temperature forms the basis of the present study. The immature stages of insects, being more vulnerable to the surrounding temperature, were considered to study the effect of the prior thermal experience of larvae on regeneration. We exposed the early larval stages of the ladybird beetle, Cheilomenes sexmaculata, to different temperature conditions pre- and postamputation. Exposure of immature stages to extreme temperatures did not affect the ability to regenerate and regeneration occurred at given temperature conditions. However, the regenerated legs were smaller in size across given temperatures as compared to unamputated legs. Body weights in amputated treatments showed no difference and remained unchanged across temperatures when compared to unamputated treatments. Postamputation developmental duration, equivalent to recovery time postlimb amputation, was found to be affected by larval thermal conditions. Recovery was faster in larval treatments exposed to higher temperatures. Thus, larval thermal conditions though did not affect the ability to regenerate lost limbs directly, it does modulate the time taken to regenerate.
Collapse
Affiliation(s)
- Shriza Rai
- Department of Zoology, Ladybird Research Laboratory, University of Lucknow, Lucknow, India
| | - Anupama Singh
- Department of Statistics, University of Lucknow, Lucknow, India
| | - Omkar Omkar
- Department of Zoology, University of Lucknow, Lucknow, India
| | - Geetanjali Mishra
- Department of Zoology, Ladybird Research Laboratory, University of Lucknow, Lucknow, India
| |
Collapse
|
15
|
Griffen BD, Bolander M, Blakeslee A, Crane LC, Repetto MF, Tepolt CK, Toscano BJ. Past energy allocation overwhelms current energy stresses in determining energy allocation trade-offs. Ecol Evol 2023; 13:e10402. [PMID: 37560183 PMCID: PMC10408252 DOI: 10.1002/ece3.10402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/15/2023] [Accepted: 07/24/2023] [Indexed: 08/11/2023] Open
Abstract
Regeneration of lost appendages is a gradual process in many species, spreading energetic costs of regeneration through time. Energy allocated to the regeneration of lost appendages cannot be used for other purposes and, therefore, commonly elicits energetic trade-offs in biological processes. We used limb loss in the Asian shore crab Hemigrapsus sanguineus to compare the strength of energetic trade-offs resulting from historic limb losses that have been partially regenerated versus current injuries that have not yet been repaired. Consistent with previous studies, we show that limb loss and regeneration results in trade-offs that reduce reproduction, energy storage, and growth. As may be expected, we show that trade-offs in these metrics from historic limb losses far outweigh trade-offs from current limb losses, and correlate directly with the degree of historic limb loss that has been regenerated. As regenerating limbs get closer to their normal size, these historical injuries get harder to detect, despite the continued allocation of additional resources to limb development. Our results demonstrate the importance of and a method for identifying historic appendage losses and of quantifying the amount of regeneration that has already occurred, as opposed to assessing only current injury, to accurately assess the strength of energetic trade-offs in animals recovering from nonlethal injury.
Collapse
Affiliation(s)
| | | | - April Blakeslee
- Department of BiologyEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | | | | | - Carolyn K. Tepolt
- Department of BiologyWoods Hole Oceanographic InstitutionWoods HoleMassachusettsUSA
| | | |
Collapse
|
16
|
Powell EC, Painting CJ, Machado G, Holwell GI. Juvenile leg autotomy predicts adult male morph in a New Zealand harvestman with weapon polymorphism. Behav Ecol 2023; 34:613-620. [PMID: 37434639 PMCID: PMC10332453 DOI: 10.1093/beheco/arad029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 03/08/2023] [Accepted: 03/29/2023] [Indexed: 07/13/2023] Open
Abstract
Intraspecific weapon polymorphisms that arise via conditional thresholds may be affected by juvenile experience such as predator encounters, yet this idea has rarely been tested. The New Zealand harvestman Forsteropsalis pureora has three male morphs: majors (alphas and betas) are large-bodied with large chelicerae used in male-male contests, while minors (gammas) are small-bodied with small chelicerae and scramble to find mates. Individuals use leg autotomy to escape predators and there is no regeneration of the missing leg. Here, we tested whether juvenile experience affects adult morph using leg autotomy scars as a proxy of predator encounters. Juvenile males that lost at least one leg (with either locomotory or sensory function) had a 45 times higher probability of becoming a minor morph at adulthood than intact juvenile males. Leg loss during development may affect foraging, locomotion, and/or physiology, potentially linking a juvenile's predator encounters to their final adult morph and future reproductive tactic.
Collapse
Affiliation(s)
- Erin C Powell
- Te Kura Mātauranga Koiora/School of Biological Sciences, University of Auckland, 3a Symonds St, Auckland 1010, New Zealand
| | - Christina J Painting
- Te Aka Mātuatua School of Science, University of Waikato, Gate 8, Hillcrest Road, Hamilton 3240, New Zealand
| | - Glauco Machado
- LAGE do Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Travessa 14, no. 101, Cidade Universitária, São Paulo CEP 05.508-090, Brazil
| | - Gregory I Holwell
- Te Kura Mātauranga Koiora/School of Biological Sciences, University of Auckland, 3a Symonds St, Auckland 1010, New Zealand
| |
Collapse
|
17
|
Rennolds CW, Bely AE. Integrative biology of injury in animals. Biol Rev Camb Philos Soc 2023; 98:34-62. [PMID: 36176189 PMCID: PMC10087827 DOI: 10.1111/brv.12894] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 01/12/2023]
Abstract
Mechanical injury is a prevalent challenge in the lives of animals with myriad potential consequences for organisms, including reduced fitness and death. Research on animal injury has focused on many aspects, including the frequency and severity of wounding in wild populations, the short- and long-term consequences of injury at different biological scales, and the variation in the response to injury within or among individuals, species, ontogenies, and environmental contexts. However, relevant research is scattered across diverse biological subdisciplines, and the study of the effects of injury has lacked synthesis and coherence. Furthermore, the depth of knowledge across injury biology is highly uneven in terms of scope and taxonomic coverage: much injury research is biomedical in focus, using mammalian model systems and investigating cellular and molecular processes, while research at organismal and higher scales, research that is explicitly comparative, and research on invertebrate and non-mammalian vertebrate species is less common and often less well integrated into the core body of knowledge about injury. The current state of injury research presents an opportunity to unify conceptually work focusing on a range of relevant questions, to synthesize progress to date, and to identify fruitful avenues for future research. The central aim of this review is to synthesize research concerning the broad range of effects of mechanical injury in animals. We organize reviewed work by four broad and loosely defined levels of biological organization: molecular and cellular effects, physiological and organismal effects, behavioural effects, and ecological and evolutionary effects of injury. Throughout, we highlight the diversity of injury consequences within and among taxonomic groups while emphasizing the gaps in taxonomic coverage, causal understanding, and biological endpoints considered. We additionally discuss the importance of integrating knowledge within and across biological levels, including how initial, localized responses to injury can lead to long-term consequences at the scale of the individual animal and beyond. We also suggest important avenues for future injury biology research, including distinguishing better between related yet distinct injury phenomena, expanding the subjects of injury research to include a greater variety of species, and testing how intrinsic and extrinsic conditions affect the scope and sensitivity of injury responses. It is our hope that this review will not only strengthen understanding of animal injury but will contribute to building a foundation for a more cohesive field of 'injury biology'.
Collapse
|
18
|
Byatt TC, Martin P. Parallel repair mechanisms in plants and animals. Dis Model Mech 2023; 16:286774. [PMID: 36706000 PMCID: PMC9903144 DOI: 10.1242/dmm.049801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
All organisms have acquired mechanisms for repairing themselves after accidents or lucky escape from predators, but how analogous are these mechanisms across phyla? Plants and animals are distant relatives in the tree of life, but both need to be able to efficiently repair themselves, or they will perish. Both have an outer epidermal barrier layer and a circulatory system that they must protect from infection. However, plant cells are immotile with rigid cell walls, so they cannot raise an animal-like immune response or move away from the insult, as animals can. Here, we discuss the parallel strategies and signalling pathways used by plants and animals to heal their tissues, as well as key differences. A more comprehensive understanding of these parallels and differences could highlight potential avenues to enhance healing of patients' wounds in the clinic and, in a reciprocal way, for developing novel alternatives to agricultural pesticides.
Collapse
Affiliation(s)
- Timothy C. Byatt
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK,Authors for correspondence (; )
| | - Paul Martin
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK,Authors for correspondence (; )
| |
Collapse
|
19
|
Pizarro JE, Laspiur A, Acosta JC, Blanco GM, Boretto JM. High reproductive effort in a vulnerable lizard from high altitudes in Argentina: Reproductive biology and sexual dimorphism in Phymaturus extrilidus. AN ACAD BRAS CIENC 2022; 94:e20210179. [PMID: 36515324 DOI: 10.1590/0001-3765202220210179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022] Open
Abstract
Reproductive biology is fundamental to understanding the ecology and evolution of lizards which, in turn, is essential for the definition of the species´ conservation status. We studied life-history traits related to the reproduction of the Phymaturus extrilidus lizard, including the male and female reproductive cycles, litter size, mean annual reproductive output, reproductive effort, sexual maturity size and sexual dimorphism, body condition, and fat body cycles. We found sexual dimorphism in size and shape, supporting the hypotheses of sexual and fecundity selection. Females exhibited biennial reproductive cycles synchronous with the annual prenuptial male cycle, adjusted for the maturation of the vitellogenic follicles of females. Females of P. extrilidus have the highest mean annual reproductive output (MARO=1.14) recorded in Phymaturus, and this is accompanied by the highest reproductive effort (C=0.28, C energetic =0.31). Births occur from late summer to early autumn. The female reproductive cycle, strictly biennial, like all species of the P. palluma group, and the vitellogenesis in particular, appear to be limited by body condition and the amount of fat body stored. This study presents the fundamental reproductive traits of P. extrilidus that can provide valuable information to be used in the evaluation of the conservation status of this species.
Collapse
Affiliation(s)
- Jesús E Pizarro
- Universidad Nacional de San Juan, Facultad de Ciencias Exactas, Departamento de Biología, Físicas y Naturales, Av. Ignacio de la Roza 590 (Oeste), Rivadavia, J5402DCS San Juan, Argentina
| | - Alejandro Laspiur
- Universidad Nacional de San Juan, Escuela Universitaria de Ciencias de la Salud, Rawson y Arenales, Albardón, J5402DCS San Juan, Argentina.,Universidad Nacional del Comahue, Laboratorio de Eco-fisiología e Historia de Vida de Reptiles, INIBIOMA, CONICET, Quintral 1250, 8400 Bariloche, Argentina
| | - Juan C Acosta
- Universidad Nacional de San Juan, Facultad de Ciencias Exactas, Departamento de Biología, Físicas y Naturales, Av. Ignacio de la Roza 590 (Oeste), Rivadavia, J5402DCS San Juan, Argentina
| | - Graciela M Blanco
- Universidad Nacional de San Juan, Facultad de Ciencias Exactas, Departamento de Biología, Físicas y Naturales, Av. Ignacio de la Roza 590 (Oeste), Rivadavia, J5402DCS San Juan, Argentina
| | - Jorgelina M Boretto
- Universidad Nacional del Comahue, Laboratorio de Eco-fisiología e Historia de Vida de Reptiles, INIBIOMA, CONICET, Quintral 1250, 8400 Bariloche, Argentina
| |
Collapse
|
20
|
Physiological Effects of Tail Regeneration following Autotomy in Italian Wall Lizards, Podarcis siculus. J HERPETOL 2022. [DOI: 10.1670/21-021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
21
|
Smolinský R, Hiadlovská Z, Maršala Š, Škrabánek P, Škrobánek M, Martínková N. High predation risk decimates survival during the reproduction season. Ecol Evol 2022; 12:e9407. [PMID: 36262266 PMCID: PMC9576000 DOI: 10.1002/ece3.9407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/30/2022] Open
Abstract
Predators attack conspicuous prey phenotypes that are present in the environment. Male display behavior of conspicuous nuptial coloration becomes risky in the presence of a predator, and adult males face higher predation risk. High predation risk in one sex will lead to low survival and sex ratio bias in adult cohorts, unless the increased predation risk is compensated by higher escape rate.Here, we tested the hypothesis that sand lizards (Lacerta agilis) have sex-specific predation risk and escape rate. We expected the differences to manifest in changes in sex ratio with age, differences in frequency of tail autotomy, and in sex-specific survival rate.We developed a statistical model to estimate predation risk and escape rate, combining the observed sex ratio and frequency of tail autotomy with likelihood-based survival rate. Using Bayesian framework, we estimated the model parameters. We projected the date of the tail autotomy events from growth rates derived from capture-recapture data measurements.We found statistically stable sex ratio in age groups, equal frequency of tail regenerates between sexes, and similar survival rate. Predation risk is similar between sexes, and escape rate increases survival by about 5%. We found low survival rate and a low number of tail autotomy events in females during months when sand lizards mate and lay eggs, indicating high predator pressure throughout reproduction. Our data show that gravid females fail to escape predation.The risks of reproduction season in an ectotherm are a convolution of morphological changes (conspicuous coloration in males and body allometry changes in gravid females), behavior (nuptial displays), and environmental conditions which challenge lizard thermal performance. Performance of endotherm predators in cold spring months endangers gravid females more than displaying males in bright nuptial coloration.
Collapse
Affiliation(s)
- Radovan Smolinský
- Department of Biology, Faculty of EducationMasaryk UniversityBrnoCzech Republic
| | - Zuzana Hiadlovská
- Institute of Animal Physiology and GeneticsCzech Academy of SciencesBrnoCzech Republic
| | - Štěpán Maršala
- Institute of Automation and Computer ScienceBrno University of TechnologyBrnoCzech Republic
| | - Pavel Škrabánek
- Institute of Automation and Computer ScienceBrno University of TechnologyBrnoCzech Republic
| | - Michal Škrobánek
- Department of Biology, Faculty of EducationMasaryk UniversityBrnoCzech Republic
| | - Natália Martínková
- Institute of Vertebrate BiologyCzech Academy of SciencesBrnoCzech Republic
- RECETOX, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| |
Collapse
|
22
|
Li X, Huang D. Predators or Herbivores: Cockroaches of Manipulatoridae Revisited with a New Genus from Cretaceous Myanmar Amber (Dictyoptera: Blattaria: Corydioidea). INSECTS 2022; 13:732. [PMID: 36005357 PMCID: PMC9409346 DOI: 10.3390/insects13080732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/01/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Manipulator modificaputis Vršanský and Bechly, 2015 (Manipulatoridae, Corydioidea) is a purported predatory cockroach from Cretaceous Myanmar amber, based on a single male. It is distinctive by the nimble head, elongate pronotum and legs, and particularly by the extraordinarily long maxillary palpi. In the present study, we redescribe Manipulator modificaputis based on six new fossils including males and females, and comment on the original description. The closely related Manipulatoides obscura gen. & sp. nov. is proposed on the basis of five fossils, including males and females. It differs from Manipulator in weaker spination of the legs, including the type-C forefemoral spination instead of the type-A of Manipulator. Some undetermined adults and nymphs are also described. We discuss the ethology of Manipulatoridae and speculate that they might feed on flowers. They are unlikely to be specialized predators since they lack necessary weaponry for capturing prey; in contrast, their unique morphotype appears to be suitable for efficient foraging and locomotion amid flowering twigs. The possibility of being kleptoparasites of the spider-web is also discussed. In addition, regenerated four-segmented tarsi are found from the new species.
Collapse
|
23
|
Hendry AP, Hendry CA, Hendry AS, Roffey HL, Hendry MA. Performance of wild animals with "broken" traits: Movement patterns in nature of moose with leg injuries. Ecol Evol 2022; 12:e9127. [PMID: 35923947 PMCID: PMC9339739 DOI: 10.1002/ece3.9127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 11/10/2022] Open
Abstract
Organismal traits are presumed to be well suited for performance in the tasks required for survival, growth, and reproduction. Major injuries to such traits should therefore compromise performance and prevent success in the natural world; yet some injured animals can survive for long periods of time and contribute to future generations. We here examine 3 years of camera trap observations along a remote trail through old-growth forest in northern British Columbia, Canada. The most common observations were of moose (2966), wolves (476), and brown bears (224). The moose overwhelmingly moved in one direction along the trail in the late fall and early winter and in the other direction in the spring. This movement was clustered/contagious, with days on which many moose traveled often being interspersed with days on which few moose traveled. On the video recordings, we identified 12 injured moose, representing 1.4% of all moose observations. Seven injuries were to the carpus, three were to the antebrachium, and two were to the tarsus-and they are hypothesized to reflect damage to ligaments, tendons, and perhaps bones. The injured moose were limping in all cases, sometimes severely; and yet they did not differ noticeably from uninjured moose in the direction, date, contagiousness, or speed of movement along the trail. We discuss the potential relevance of these findings for the action of natural selection in the evolution of organismal traits important for performance.
Collapse
Affiliation(s)
- Andrew P. Hendry
- Redpath Museum and Department of BiologyMcGill UniversityMontrealQuébecCanada
| | | | | | | | | |
Collapse
|
24
|
Ontogeny and caudal autotomy fracture planes in a large scincid lizard, Egernia kingii. Sci Rep 2022; 12:7051. [PMID: 35488011 PMCID: PMC9054770 DOI: 10.1038/s41598-022-10962-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 04/14/2022] [Indexed: 11/09/2022] Open
Abstract
Many lizard species use caudal autotomy, the ability to self-amputate a portion of the tail, as an effective but costly survival strategy. However, as a lizard grows, its increased size may reduce predation risk allowing for less costly strategies (e.g., biting and clawing) to be used as the primary defence. The King's skink (Egernia kingii) is a large scincid up to approximately 244 mm snout to vent length (SVL) in size when adult. Adults rely less on caudal autotomy than do juveniles due to their size and strength increase during maturation. It has been hypothesised that lower behavioural reliance on autotomy in adults is reflected in loss or restriction of caudal vertebrae fracture planes through ossification as caudal intra-vertebral fracture planes in some species ossify during ontogenetic growth. To test this, we used micro-CT to image the tails of a growth series of seven individuals of E. kingii. We show that fracture planes are not lost or restricted ontogenetically within E. kingii, with adults retaining between 39-44 autotomisable vertebrae following 5-6 non-autotomisable vertebrae. Even though mature E. kingii rely less on caudal autotomy than do juveniles, this research shows that they retain the maximum ability to autotomise their tails, providing a last resort option to avoid threats. The potential costs associated with retaining caudal autotomy are most likely mitigated through neurological control of autotomy and E. kingii's longevity.
Collapse
|
25
|
Díaz-Ricaurte JC, Guevara-Molina EC, Alves-Nunes JM, Serrano FC, Hrncir M. Linking body condition and thermal physiology in limping crickets: Does limb autotomy incur costs concerning behavioral thermal tolerance? JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:393-402. [PMID: 35167191 DOI: 10.1002/jez.2577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Many ectotherms have the ability to voluntarily detach a body part, known as autotomy, usually in response to predator attacks. Autotomy can have an immediate benefit for survival, but it can also involve costs related to the individual's body condition. Even though the effects of autotomy have been studied in many ecophysiological aspects, its short-term costs on the ability to tolerate high environmental temperatures are still unexplored. Herein, we evaluated the effects of autotomy on the behavioral thermal tolerance (VTMax ) in the cricket Gryllus assimilis. We hypothesized that, due to the increased energetic costs to maintain homeostasis, autotomized crickets have a lower VTMax than intact ones. Additionally, we investigated differences in VTMax between sexes, as well as the effects of heating rates and body mass on their VTMax . Contrary to our hypothesis, we found no differences between VTMax of autotomized and intact individuals. However, we observed that females have a higher VTMax than males, regardless of their condition (i.e., autotomized and intact). Moreover, we detected significant effects of body mass and heating rate on behavioral thermal tolerances. The results of our study indicate that costs associated with limb autotomy at high environmental temperatures might be intricate and not immediately impactful. Furthermore, important aspects of reproduction and ecology might be responsible for differences in VTMax between males and females. Our results contribute to understanding the ecological and physiological aspects of ectotherms and how they respond to changing climatic conditions.
Collapse
Affiliation(s)
- Juan C Díaz-Ricaurte
- Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Escola Superior de Agricultura Luiz de Queiroz, Centro de Energia Nuclear na Agricultura, Programa de Pós-Graduação em Ecologia Aplicada, Universidade de São Paulo, Piracicaba, São Paulo, Brazil
- Semillero de Investigación en Ecofisiología y Biogeografía de Vertebrados, Grupo de investigación en Biodiversidad y Desarrollo Amazónico (BYDA), Centro de investigaciones Amazónicas Macagual-Cesar Augusto Estrada Gonzales, Universidad de la Amazonia, Florencia, Caquetá, Colombia
| | - Estefany C Guevara-Molina
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - João M Alves-Nunes
- Laboratório de Ecologia e Evolução, Instituto Butantan, São Paulo, São Paulo, Brazil
- Programa de Pós-Graduação em Biologia Animal, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista "Júlio de Mesquita Filho", São José do Rio Preto, São Paulo, Brazil
| | - Filipe C Serrano
- Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Michael Hrncir
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
26
|
Fernández-Rodríguez I, Braña F. Allocation costs of regeneration: tail regeneration constrains body growth under low food availability in juvenile lizards. Oecologia 2022; 198:853-864. [PMID: 34907460 PMCID: PMC9056467 DOI: 10.1007/s00442-021-05084-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 11/19/2021] [Indexed: 11/27/2022]
Abstract
The balance of energy allocated to development and growth of different body compartments may incur allocation conflicts and can thereby entail physiological and evolutionary consequences. Regeneration after autotomy restores the functionality lost after shedding a body part but requires a strong energy investment that may trade-off with other processes, like reproduction or growth. Caudal autotomy is a widespread antipredator strategy in lizards, but regeneration may provoke decreased growth rates in juveniles that could have subsequent consequences. Here, we assessed the growth of intact and regenerating hatchling wall lizards (Podarcis muralis) exposed to different food regimens. Regenerating juveniles presented slightly but significantly lower body growth rates than individuals with intact tails when facing low food availability, but there were no differences when food was supplied ad libitum. Regenerating individuals fed ad libitum increased their ingestion rates compared to intact ones during the period of greatest tail growth, which also reveals a cost of tail regeneration. When resources were scarce, hatchlings invested more in tail regeneration in relation to body growth, rather than delay regeneration to give priority to body growth. We propose that, in juvenile lizards, regeneration could be prioritized even at the expense of body growth to restore the functionality of the lost tail, likely increasing survivorship and the probability to reach reproductive maturity. Our study indicates that food availability is a key factor for the occurrence of trade-offs between regeneration and other growth processes, so that environmental conditions would be determinant for the severity of the costs of regeneration.
Collapse
Affiliation(s)
- Irene Fernández-Rodríguez
- Department of Organisms and Systems Biology (Zoology), University of Oviedo, 33071, Oviedo, Spain.
- Biodiversity Research Institute (IMIB, UO/CSIC/PA), University of Oviedo, Mieres, Spain.
| | - Florentino Braña
- Department of Organisms and Systems Biology (Zoology), University of Oviedo, 33071, Oviedo, Spain
- Biodiversity Research Institute (IMIB, UO/CSIC/PA), University of Oviedo, Mieres, Spain
| |
Collapse
|
27
|
Hamasaki K, Wachi Y, Dan S. Post-autotomy limb movement in the porcellanid crab Petrolisthes japonicus. ETHOL ECOL EVOL 2022. [DOI: 10.1080/03949370.2021.1936653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Katsuyuki Hamasaki
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Konan, Minato, Tokyo 108-8477, Japan
| | - Yuuki Wachi
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Konan, Minato, Tokyo 108-8477, Japan
| | - Shigeki Dan
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Konan, Minato, Tokyo 108-8477, Japan
| |
Collapse
|
28
|
Fernández‐Rodríguez I, Braña F. Short‐term and long‐term consequences of regeneration on the reproductive investment of a multivoltine lizard. J Zool (1987) 2022. [DOI: 10.1111/jzo.12959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- I. Fernández‐Rodríguez
- Department of Organisms and Systems Biology (Zoology) University of Oviedo Oviedo Spain
- Biodiversity Research Institute (IMIB, CSIC/UO/PA) University of Oviedo Mieres Spain
| | - F. Braña
- Department of Organisms and Systems Biology (Zoology) University of Oviedo Oviedo Spain
| |
Collapse
|
29
|
Chowdhury K, Lin S, Lai SL. Comparative Study in Zebrafish and Medaka Unravels the Mechanisms of Tissue Regeneration. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.783818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Tissue regeneration has been in the spotlight of research for its fascinating nature and potential applications in human diseases. The trait of regenerative capacity occurs diversely across species and tissue contexts, while it seems to decline over evolution. Organisms with variable regenerative capacity are usually distinct in phylogeny, anatomy, and physiology. This phenomenon hinders the feasibility of studying tissue regeneration by directly comparing regenerative with non-regenerative animals, such as zebrafish (Danio rerio) and mice (Mus musculus). Medaka (Oryzias latipes) is a fish model with a complete reference genome and shares a common ancestor with zebrafish approximately 110–200 million years ago (compared to 650 million years with mice). Medaka shares similar features with zebrafish, including size, diet, organ system, gross anatomy, and living environment. However, while zebrafish regenerate almost every organ upon experimental injury, medaka shows uneven regenerative capacity. Their common and distinct biological features make them a unique platform for reciprocal analyses to understand the mechanisms of tissue regeneration. Here we summarize current knowledge about tissue regeneration in these fish models in terms of injured tissues, repairing mechanisms, available materials, and established technologies. We further highlight the concept of inter-species and inter-organ comparisons, which may reveal mechanistic insights and hint at therapeutic strategies for human diseases.
Collapse
|
30
|
Narvaez CA, Moura AJ, Scutella DF, Cucchiara JP, Stark AY, Russell MP. Plasticity in fluctuating hydrodynamic conditions: Tube feet regeneration in sea urchins. J Exp Biol 2022; 225:274209. [PMID: 35044457 DOI: 10.1242/jeb.242848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 01/05/2022] [Indexed: 11/20/2022]
Abstract
Regenerating structures critical for survival provide excellent model systems for the study of phenotypic plasticity. These body components must regenerate their morphology and functionality quickly while subjected to different environmental stressors. Sea urchins live in high energy environments where hydrodynamic conditions pose significant challenges. Adhesive tube feet provide secure attachment to the substratum but can be amputated by predation and hydrodynamic forces. Tube feet display functional and morphological plasticity in response to environmental conditions, but regeneration to their pre-amputation status has not been achieved under quiescent laboratory settings. In this study, we assessed the effect of turbulent water movement, periodic emersion, and quiescent conditions on the regeneration process of tube feet morphology (length, disc area) and functionality (maximum disc tenacity, stem breaking force). Disc area showed significant plasticity in response to the treatments; when exposed to emersion and turbulent water movement, disc area was larger than tube feet regenerated in quiescent conditions. However, no treatment stimulated regeneration to pre-amputation sizes. Tube feet length was unaffected by treatments and remained shorter than non-amputated tube feet. Stem breaking force for amputated and not amputated treatments increased in all cases when compared to pre-amputation values. Maximum tenacity (force per unit area) was similar among tube feet subjected to simulated field conditions and amputation treatments. Our results suggest the role of active plasticity of tube feet functional morphology in response to field-like conditions and demonstrate the plastic response of invertebrates to laboratory conditions.
Collapse
Affiliation(s)
- Carla A Narvaez
- Department of Biology, Villanova University, 800 E. Lancaster Ave., Villanova, Pennsylvania 19085, USA
| | - Andrew J Moura
- Department of Biology, Villanova University, 800 E. Lancaster Ave., Villanova, Pennsylvania 19085, USA
| | - Daniel F Scutella
- Department of Biology, Villanova University, 800 E. Lancaster Ave., Villanova, Pennsylvania 19085, USA
| | - Jack P Cucchiara
- Department of Biology, Villanova University, 800 E. Lancaster Ave., Villanova, Pennsylvania 19085, USA
| | - Alyssa Y Stark
- Department of Biology, Villanova University, 800 E. Lancaster Ave., Villanova, Pennsylvania 19085, USA
| | - Michael P Russell
- Department of Biology, Villanova University, 800 E. Lancaster Ave., Villanova, Pennsylvania 19085, USA
| |
Collapse
|
31
|
Robustness in action: Leg loss does not affect mating success in male harvestmen. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03127-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Abstract
Defensive strategies, like other life-history traits favored by natural selection, may pose constraints on reproduction. A common anti-predator defense strategy that increases immediate survival is autotomy—the voluntary release of body parts. This type of morphological damage is considered to impose future costs for reproduction and fitness. We tested an alternative hypothesis that animals are robust (able to withstand and overcome perturbations) to this type of damage and do not experience any fitness costs in reproductive contexts. We explored the effects of experimental leg loss on the reproductive behavior of one species of Neotropical Prionostemma harvestmen. These arachnids undergo autotomy frequently, do not regenerate legs, and their courtship and mating necessitate the use of legs. We assessed the effect of losing different types of legs (locomotor or sensory) on courtship behavior and mating success in males. We found no differences in the mating success or in any measured aspect of reproductive behavior between eight-legged males and males that experienced loss of legs of any type. Additionally, we found that morphological traits related to body size did not predict mating success. Overall, our experimental findings support the null hypothesis that harvestmen are robust to the consequences of morphological damage and natural selection favors strategies that increase robustness.
Significance statement
In order to survive encounters with predators, animals have evolved many defensive strategies. Some of those behaviors, however, can come with a cost to their overall body condition. For example, some animals can voluntarily lose body parts (tails, legs, etc.) to escape. This process can then affect many aspects of an animal’s life, including reproduction. In a group of harvestmen (daddy long-legs) from Costa Rica, we tested the hypothesis that males are robust to the potential consequences of losing legs, and will not experience costs. We found that males that lost either legs used for locomotion or for sensory perception reproduced in the same way as animals with all of their legs. Consequently, we demonstrate that these arachnids are able to withstand the loss of legs with no effects on reproduction.
Collapse
|
32
|
Hamasaki K, Fang Y, Dan S. Cheliped function in the porcellanid crab Petrolisthes japonicus: autotomy as an effective antipredator defence mechanism. ETHOL ECOL EVOL 2022. [DOI: 10.1080/03949370.2021.2015450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Katsuyuki Hamasaki
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Konan, Minato, Tokyo 108-8477, Japan
| | - Yingdon Fang
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Konan, Minato, Tokyo 108-8477, Japan
| | - Shigeki Dan
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Konan, Minato, Tokyo 108-8477, Japan
| |
Collapse
|
33
|
Abstract
In his prominent book Regeneration (1901), T.H. Morgan's collected and synthesized theoretical and experimental findings from a diverse array of regenerating animals and plants. Through his endeavor, he introduced a new way to study regeneration and its evolution, setting a conceptual framework that still guides today's research and that embraces the contemporary evolutionary and developmental approaches.In the first part of the chapter, we summarize Morgan's major tenets and use it as a narrative thread to advocate interpreting regenerative biology through the theoretical tools provided by evolution and developmental biology, but also to highlight potential caveats resulting from the rapid proliferation of comparative studies and from the expansion of experimental laboratory models. In the second part, we review some experimental evo-devo approaches, highlighting their power and some of their interpretative dangers. Finally, in order to further understand the evolution of regenerative abilities, we portray an adaptive perspective on the evolution of regeneration and suggest a framework for investigating the adaptive nature of regeneration.
Collapse
Affiliation(s)
| | - Alexandre Alié
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Villefranche-sur-Mer, France
| | - Stefano Tiozzo
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Villefranche-sur-Mer, France.
| |
Collapse
|
34
|
|
35
|
Emberts Z, Somjee U, Wiens JJ. Damage from intraspecific combat is costly. Behav Ecol 2021. [DOI: 10.1093/beheco/arab090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
When individuals engage in fights with conspecifics over access to resources, injuries can occur. Most theoretical models suggest that the costs associated with these injuries should influence an individual’s decision to retreat from a fight. Thus, damage from intraspecific combat is frequently noted and quantified. However, the fitness-related costs associated with this damage are not. Quantifying the cost of fighting-related damage is important because most theoretical models assume that it is the cost associated with the damage (not the damage itself) that should influence an individual’s decision to retreat. Here, we quantified the cost of fighting-related injuries in the giant mesquite bug, Thasus neocalifornicus. We demonstrate that experimentally simulated fighting injuries result in metabolic costs and costs to flight performance. We also show that flight costs are more severe when the injuries are larger. Overall, our results provide empirical support for the fundamental assumption that damage acquired during intraspecific combat is costly.
Collapse
Affiliation(s)
- Zachary Emberts
- Department of Ecology and Evolutionary Biology, University of Arizona , Tucson, AZ, 85721 , USA
| | - Ummat Somjee
- Smithsonian Tropical Research Institute , Balboa, Ancón, 211-8000 , Panamá
| | - John J Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona , Tucson, AZ, 85721 , USA
| |
Collapse
|
36
|
Barr JI, Boisvert CA, Bateman PW. At What Cost? Trade-Offs and Influences on Energetic Investment in Tail Regeneration in Lizards Following Autotomy. J Dev Biol 2021; 9:53. [PMID: 34940500 PMCID: PMC8709428 DOI: 10.3390/jdb9040053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 01/20/2023] Open
Abstract
Caudal autotomy, the ability to shed a portion of the tail, is a widespread defence strategy among lizards. Following caudal autotomy, and during regeneration, lizards face both short- and long-term costs associated with the physical loss of the tail and the energy required for regeneration. As such, the speed at which the individual regenerates its tail (regeneration rate) should reflect the fitness priorities of the individual. However, multiple factors influence the regeneration rate in lizards, making inter-specific comparisons difficult and hindering broader scale investigations. We review regeneration rates for lizards and tuatara from the published literature, discuss how species' fitness priorities and regeneration rates are influenced by specific, life history and environmental factors, and provide recommendations for future research. Regeneration rates varied extensively (0-4.3 mm/day) across the 56 species from 14 family groups. Species-specific factors, influencing regeneration rates, varied based on the type of fracture plane, age, sex, reproductive season, and longevity. Environmental factors including temperature, photoperiod, nutrition, and stress also affected regeneration rates, as did the method of autotomy induction, and the position of the tail also influenced regeneration rates for lizards. Additionally, regeneration could alter an individual's behaviour, growth, and reproductive output, but this varied depending on the species.
Collapse
Affiliation(s)
- James I. Barr
- School of Molecular and Life Sciences, Curtin University, Kent Street, Bentley, WA 6102, Australia
| | - Catherine A. Boisvert
- School of Molecular and Life Sciences, Curtin University, Kent Street, Bentley, WA 6102, Australia
| | - Philip W. Bateman
- School of Molecular and Life Sciences, Curtin University, Kent Street, Bentley, WA 6102, Australia
| |
Collapse
|
37
|
Fernández-Rodríguez I, Braña F. Behavioral patterns in the early-stage antipredator response change after tail autotomy in adult wall lizards. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 337:250-257. [PMID: 34783183 DOI: 10.1002/jez.2562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 11/10/2022]
Abstract
Autotomy is a drastic antipredator defense consisting of the voluntary shedding of a body part to escape from the predators. The loss of a body part may impair locomotion, feeding or mating, so animals may face a higher predation risk shortly after autotomy. Thus, until regeneration is completed, prey may adjust their behavior to reduce predation risk, and this could involve secondary costs. We assessed the effect of tail loss on the antipredator behavior of wall lizards (Podarcis muralis), comparing the behavior of tailed and tailless individuals exposed to a predatory snake (Coronella austriaca) scent, under controlled experimental conditions. Tailless lizards spent significantly more time performing behaviors with antipredatory significance (e.g., moving slowly), whereas tailed individuals performed exploratory walking for significantly more time. Moreover, tailless lizards spent more time basking, which probably increases the effectiveness of their cryptic design and decreases detection by predators. Lizards intensified the tongue flick rates when exposed to a pungent control or snake scents, as compared to their response to a neutral control. Besides, both tailed and tailless lizards intensified some aspects of their antipredator behavior (walking slowly and avoiding refuge use) when exposed to snake scent, which indicates discrimination of the smell of predatory snakes. Lizards decreased refuge use when exposed to predator scents, probably because the refuges are evaluated as unsafe due to a high concentration of snake scents. To conclude, our experiments showed that, after losing their tails, wall lizards modify their behavior in a way that likely minimizes predation risk.
Collapse
Affiliation(s)
- Irene Fernández-Rodríguez
- Department of Organisms and Systems Biology (Zoology), University of Oviedo, Oviedo, Spain.,Research Unit of Biodiversity (UMIB, UO/CSIC/PA), University of Oviedo, Mieres, Spain
| | - Florentino Braña
- Department of Organisms and Systems Biology (Zoology), University of Oviedo, Oviedo, Spain
| |
Collapse
|
38
|
Regeneration in Reptiles Generally and the New Zealand Tuatara in Particular as a Model to Analyse Organ Regrowth in Amniotes: A Review. J Dev Biol 2021; 9:jdb9030036. [PMID: 34564085 PMCID: PMC8482124 DOI: 10.3390/jdb9030036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 01/18/2023] Open
Abstract
The ability to repair injuries among reptiles, i.e., ectothermic amniotes, is similar to that of mammals with some noteworthy exceptions. While large wounds in turtles and crocodilians are repaired through scarring, the reparative capacity involving the tail derives from a combined process of wound healing and somatic growth, the latter being continuous in reptiles. When the tail is injured in juvenile crocodilians, turtles and tortoises as well as the tuatara (Rhynchocephalia: Sphenodon punctatus, Gray 1842), the wound is repaired in these reptiles and some muscle and connective tissue and large amounts of cartilage are regenerated during normal growth. This process, here indicated as “regengrow”, can take years to produce tails with similar lengths of the originals and results in only apparently regenerated replacements. These new tails contain a cartilaginous axis and very small (turtle and crocodilians) to substantial (e.g., in tuatara) muscle mass, while most of the tail is formed by an irregular dense connective tissue containing numerous fat cells and sparse nerves. Tail regengrow in the tuatara is a long process that initially resembles that of lizards (the latter being part of the sister group Squamata within the Lepidosauria) with the formation of an axial ependymal tube isolated within a cartilaginous cylinder and surrounded by an irregular fat-rich connective tissue, some muscle bundles, and neogenic scales. Cell proliferation is active in the apical regenerative blastema, but much reduced cell proliferation continues in older regenerated tails, where it occurs mostly in the axial cartilage and scale epidermis of the new tail, but less commonly in the regenerated spinal cord, muscles, and connective tissues. The higher tissue regeneration of Sphenodon and other lepidosaurians provides useful information for attempts to improve organ regeneration in endothermic amniotes.
Collapse
|
39
|
Fernández-Rodríguez I, Barroso FM, Carretero MA. An integrative analysis of the short-term effects of tail autotomy on thermoregulation and dehydration rates in wall lizards. J Therm Biol 2021; 99:102976. [PMID: 34420620 DOI: 10.1016/j.jtherbio.2021.102976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/13/2021] [Accepted: 04/18/2021] [Indexed: 11/26/2022]
Abstract
Maintaining body temperature is essential for the optimal performance of physiological functions. Ectotherms depend on external heat sources to thermoregulate. However, thermoregulation may be constrained by body condition and hydration state. Autotomy (i.e., the voluntary shed of a body part) evolved in various animal lineages and allowed surviving certain events (such as predator attacks), but it may affect body condition and volume/surface ratios, increase dehydration and constrain thermoregulation. In the framework of a general analysis of the evolution of autotomy, here we assessed the effects of tail loss on the thermal preferences and evaporative water loss rates (EWL) in the lizard Podarcis bocagei, integrating the thermal and hydric factors. We did not observe shifts in the thermal preferences of experimentally autotomized lizards when compared to the controls, which contradicted the hypothesis that they would raise preferred temperature to increase metabolic rates and accelerate regeneration. Evaporative water loss rates were also similar for tailed and tailless individuals, suggesting negligible increase of water loss through the injury and no specific ecophysiological responses after autotomy. Therefore, the changes observed in autotomized lizards in the field are to be considered primarily behavioural, rather than physiological, and thermoregulation could be secondarily affected by behavioural compensations for an increased predation risk after autotomy. Functional studies are necessary to understand how lizards' interaction with the environment is altered after autotomy, and further studies including different dehydration levels would be useful to fully understand the effect of water shortage on lizards' performance after caudal autotomy.
Collapse
Affiliation(s)
- Irene Fernández-Rodríguez
- CIBIO, Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, nº7, Vairão, 4485-661, Vila do Conde, Portugal; Department of Organisms and Systems Biology (Zoology), University of Oviedo, Oviedo, 33071, Spain; Research Unit of Biodiversity (UMIB, UO/CSIC/PA), University of Oviedo, Mieres, Spain.
| | - Frederico M Barroso
- CIBIO, Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, nº7, Vairão, 4485-661, Vila do Conde, Portugal; Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, R. Campo Alegre, s/n, 4169 - 007, Porto, Portugal
| | - Miguel A Carretero
- CIBIO, Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, nº7, Vairão, 4485-661, Vila do Conde, Portugal; Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, R. Campo Alegre, s/n, 4169 - 007, Porto, Portugal
| |
Collapse
|
40
|
Escalante I, Elias DO. The type of leg lost affects habitat use but not survival in a non-regenerating arthropod. Ecol Evol 2021; 11:10672-10685. [PMID: 34367605 PMCID: PMC8328409 DOI: 10.1002/ece3.7879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/03/2022] Open
Abstract
Finding shelter and surviving encounters with predators are pervasive challenges for animals. These challenges may be exacerbated after individuals experience bodily damage. Certain forms of damage arise voluntarily in animals; for instance, some taxa release appendages (tails, legs, or other body parts) as a defensive strategy ("autotomy"). This behavior, however, may pose long-term negative consequences for habitat use and survival. Additionally, these putative consequences are expected to vary according to the function of the lost body part. We tested the effects of losing different functional leg types (locomotor or sensory) on future habitat use and survival in a Neotropical species of Prionostemma harvestmen (Arachnida: Opiliones) that undergo frequent autotomy but do not regrow limbs. Daytime surveys revealed that both eight-legged harvestmen and harvestmen missing legs roosted in similar frequencies across habitats (tree bark, mossy tree, or fern), and perched at similar heights. Mark-recapture data showed that harvestmen that lost sensory legs roosted in tree bark less frequently, but on mossy trees more frequently. On the contrary, we did not observe changes in habitat use for eight-legged animals or animals that lost locomotor legs. This change might be related to sensory exploration and navigation. Lastly, we found that recapture rates across substrates were not affected by the type of legs lost, suggesting that leg loss does not impact survival. This potential lack of effect might play a role in why a defensive strategy like autotomy is so prevalent in harvestmen despite the lack of regeneration.
Collapse
Affiliation(s)
- Ignacio Escalante
- Department of Environmental Sciences, Policy, & ManagementUniversity of California ‐ BerkeleyCAUSA
- Present address:
Behavioral & Molecular Ecology GroupDepartment of Biological SciencesUniversity of Wisconsin – MilwaukeeMilwaukeeWIUSA
| | - Damian O. Elias
- Department of Environmental Sciences, Policy, & ManagementUniversity of California ‐ BerkeleyCAUSA
| |
Collapse
|
41
|
Gutiérrez-Gutiérrez Ó, Felix DA, Salvetti A, Amro EM, Thems A, Pietsch S, Koeberle A, Rudolph KL, González-Estévez C. Regeneration in starved planarians depends on TRiC/CCT subunits modulating the unfolded protein response. EMBO Rep 2021; 22:e52905. [PMID: 34190393 PMCID: PMC8344900 DOI: 10.15252/embr.202152905] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/15/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
Planarians are able to stand long periods of starvation by maintaining adult stem cell pools and regenerative capacity. The molecular pathways that are needed for the maintenance of regeneration during starvation are not known. Here, we show that down‐regulation of chaperonin TRiC/CCT subunits abrogates the regeneration capacity of planarians during starvation, but TRiC/CCT subunits are dispensable for regeneration in fed planarians. Under starvation, they are required to maintain mitotic fidelity and for blastema formation. We show that TRiC subunits modulate the unfolded protein response (UPR) and are required to maintain ATP levels in starved planarians. Regenerative defects in starved CCT‐depleted planarians can be rescued by either chemical induction of mild endoplasmic reticulum stress, which leads to induction of the UPR, or by the supplementation of fatty acids. Together, these results indicate that CCT‐dependent UPR induction promotes regeneration of planarians under food restriction.
Collapse
Affiliation(s)
| | - Daniel A Felix
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Alessandra Salvetti
- Department of Clinical and Experimental Medicine, Unit of Experimental Biology and Genetics, University of Pisa, Pisa, Italy
| | - Elias M Amro
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Anne Thems
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Stefan Pietsch
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Andreas Koeberle
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany.,Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - K Lenhard Rudolph
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | | |
Collapse
|
42
|
Feleke M, Bennett S, Chen J, Chandler D, Hu X, Xu J. Biological insights into the rapid tissue regeneration of freshwater crayfish and crustaceans. Cell Biochem Funct 2021; 39:740-753. [PMID: 34165197 DOI: 10.1002/cbf.3653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/03/2021] [Indexed: 11/12/2022]
Abstract
The freshwater crayfish is capable of regenerating limbs, following autotomy, injury and predation. In arthropod species, regeneration and moulting are two processes linked and strongly regulated by ecdysone. The regeneration of crayfish limbs is divided into wound healing, blastema formation, cellular reprogramming and tissue patterning. Limb blastema cells undergo proliferation, dedifferentiation and redifferentiation. A limb bud, containing folded segments of the regenerating limb, is encased within a cuticular sheath. The functional limb regenerates, in proecdysis, in two to three consecutive moults. Rapid tissue growth is regulated by hormones, limb nerves and local cells. The TGF-β/activin signalling pathway has been determined in the crayfish, P. fallax f. virginalis, and is suggested as a potential regulator of tissue regeneration. In this review article, we discuss current understanding of tissue regeneration in the crayfish and various crustaceans. A thorough understanding of the cellular, genetic and molecular pathways of these biological processes is promising for the development of therapeutic applications for a wide array of diseases in regenerative medicine.
Collapse
Affiliation(s)
- Mesalie Feleke
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Samuel Bennett
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Jiazhi Chen
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia.,Guangdong Provincial Key Laboratory of Industrial Surfactant, Guangdong Research Institute of Petrochemical and Fine Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| | - David Chandler
- Australian Genome Research Facility, Medical Research Foundation, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Xiaoyong Hu
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Guangdong Research Institute of Petrochemical and Fine Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Jiake Xu
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
43
|
Pfeiffenberger JA, Hsieh ST. Autotomy-induced effects on the locomotor performance of the ghost crab Ocypode quadrata. J Exp Biol 2021; 224:238065. [PMID: 33785503 DOI: 10.1242/jeb.233536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 03/23/2021] [Indexed: 02/02/2023]
Abstract
The voluntary amputation of an appendage, or autotomy, is an effective defensive mechanism that allows an animal to escape aggressive interactions. However, animals may suffer long-term costs that can reduce their overall fitness. Atlantic ghost crabs (Ocypode quadrata) are one of the fastest terrestrial invertebrates, and regularly lose one or more limbs in response to an antagonist encounter. When running laterally at fast speeds, they adopt a quadrupedal gait using their first and second pairs of legs while raising their fourth, and sometimes the third, pair of legs off the ground. This suggests that some limbs may be more important for achieving maximal locomotor performance than others. The goal of this study was to determine whether the loss of certain limbs would affect running performance more than others, and what compensatory strategies were used. Crabs were assigned to four different paired limb removal treatments or the control group and run on an enclosed trackway in their natural habitat. Ghost crabs were found to adjust stride kinematics in response to limb loss. Loss of the second or third limb pairs caused a reduction in running speed by about 25%, suggesting that the remaining intact limbs were unable to compensate for the loss of either limb, either due to a lack of propulsive forces produced by these limbs or issues stemming from re-coupling limb arrangements. Loss of any of the other limbs had no detectable effect on running speed. We conclude that compensatory ability varies depending on the limb that is lost.
Collapse
Affiliation(s)
| | - S Tonia Hsieh
- Department of Biology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
44
|
Eco-evolutionary dynamics of autotomy. THEOR ECOL-NETH 2021. [DOI: 10.1007/s12080-021-00507-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
45
|
Naidenov LA, Allen WL. Tail autotomy works as a pre-capture defense by deflecting attacks. Ecol Evol 2021; 11:3058-3064. [PMID: 33841766 PMCID: PMC8019039 DOI: 10.1002/ece3.7213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 11/29/2022] Open
Abstract
Caudal autotomy is a dramatic antipredator adaptation where prey shed their tail in order to escape capture by a predator. The mechanism underlying the effectiveness of caudal autotomy as a pre-capture defense has not been thoroughly investigated. We tested two nonexclusive hypotheses, that caudal autotomy works by providing the predator with a "consolation prize" that makes it break off the hunt to consume the shed tail, and the deflection hypothesis, where the autotomy event directs predator attacks to the autotomized tail enabling prey escape. Our experiment utilized domestic dogs Canis familiaris as model predator engaged to chase a snake-like stimulus with a detachable tail. The tail was manipulated to vary in length (long versus short) and conspicuousness (green versus blue), with the prediction that dog attacks on the tail should increase with length under the consolation-prize hypothesis and conspicuous color under the deflection hypothesis. The tail was attacked on 35% of trials, supporting the potential for pre-capture autotomy to offer antipredator benefits. Dogs were attracted to the tail when it was conspicuously colored, but not when it was longer. This supports the idea that deflection of predator attacks through visual effects is the prime antipredator mechanism underlying the effectiveness of caudal autotomy as opposed to provision of a consolation prize meal.
Collapse
|
46
|
Safian D, Wiegertjes GF, Pollux BJA. The Fish Family Poeciliidae as a Model to Study the Evolution and Diversification of Regenerative Capacity in Vertebrates. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.613157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The capacity of regenerating a new structure after losing an old one is a major challenge in the animal kingdom. Fish have emerged as an interesting model to study regeneration due to their high and diverse regenerative capacity. To date, most efforts have focused on revealing the mechanisms underlying fin regeneration, but information on why and how this capacity evolves remains incomplete. Here, we propose the livebearing fish family Poeciliidae as a promising new model system to study the evolution of fin regeneration. First, we review the current state of knowledge on the evolution of regeneration in the animal kingdom, with a special emphasis on fish fins. Second, we summarize recent advances in our understanding of the mechanisms behind fin regeneration in fish. Third, we discuss potential evolutionary pressures that may modulate the regenerative capacity of fish fins and propose three new theories for how natural and sexual selection can lead to the evolution of fin regeneration: (1) signaling-driven fin regeneration, (2) predation-driven fin regeneration, and (3) matrotrophy-suppressed fin regeneration. Finally, we argue that fish from the family Poeciliidae are an excellent model system to test these theories, because they comprise of a large variety of species in a well-defined phylogenetic framework that inhabit very different environments and display remarkable variation in reproductive traits, allowing for comparative studies of fin regeneration among closely related species, among populations within species or among individuals within populations. This new model system has the potential to shed new light on the underlying genetic and molecular mechanisms driving the evolution and diversification of regeneration in vertebrates.
Collapse
|
47
|
Gilad T, Dorfman A, Subach A, Scharf I. Leg or antenna injury in Cataglyphis ants impairs survival but does not hinder searching for food. Curr Zool 2021; 68:441-450. [PMID: 36090143 PMCID: PMC9450180 DOI: 10.1093/cz/zoab027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/09/2021] [Indexed: 11/13/2022] Open
Abstract
Abstract
Injury is common in nature resulting, for example, from fighting, partial predation, or the wear of body parts. Injury is costly, expressed in impaired performance, failure in competition, and a shorter life span. A survey of the literature revealed the frequent occurrence of injury in ants and its various causes. We examined whether leg or antenna injury impacts food-discovery time and reduces the likelihood of reaching food in workers of the desert ant Cataglyphis niger. We examined the search-related consequences of injury in groups of either 4 or 8 workers searching for food in a short arena, a long arena, and a maze. We conducted a small field survey to evaluate the prevalence of injury in the studied population. Finally, we compared the survival rates of injured versus uninjured workers in the laboratory. Injury was common in the field, with almost 9% of the workers collected out of the nest, found to be injured. Injured workers survived shorter than uninjured ones and there was a positive link between injury severity and survival. However, we could not detect an effect of injury on any of the searching-related response variables, neither in the arenas nor in the mazes tested. We suggest that workers that survive such injury are only moderately affected by it.
Collapse
Affiliation(s)
- Tomer Gilad
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Arik Dorfman
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Aziz Subach
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Inon Scharf
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| |
Collapse
|
48
|
Corradetti B, Dogra P, Pisano S, Wang Z, Ferrari M, Chen SH, Sidman RL, Pasqualini R, Arap W, Cristini V. Amphibian regeneration and mammalian cancer: Similarities and contrasts from an evolutionary biology perspective: Comparing the regenerative potential of mammalian embryos and urodeles to develop effective strategies against human cancer. Bioessays 2021; 43:e2000339. [PMID: 33751590 DOI: 10.1002/bies.202000339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022]
Abstract
Here we review and discuss the link between regeneration capacity and tumor suppression comparing mammals (embryos versus adults) with highly regenerative vertebrates. Similar to mammal embryo morphogenesis, in amphibians (essentially newts and salamanders) the reparative process relies on a precise molecular and cellular machinery capable of sensing abnormal signals and actively reprograming or eliminating them. As the embryo's evil twin, tumor also retains common functional attributes. The immune system plays a pivotal role in maintaining a physiological balance to provide surveillance against tumor initiation or to support its initiation and progression. We speculate that susceptibility to cancer development in adult mammals may be determined by the loss of an advanced regenerative capability during evolution and believe that gaining mechanistic insights into how regenerative capacity linked to tumor suppression is postnatally lost in mammals might illuminate an as yet unrecognized route to cancer treatment.
Collapse
Affiliation(s)
- Bruna Corradetti
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, USA.,Texas A&M Health Science Center, College of Medicine, 8446 Riverside Pkwy, Bryan, TX, 77807, USA.,Swansea University Medical School, Swansea, Wales, UK
| | - Prashant Dogra
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, Texas, USA
| | - Simone Pisano
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, USA.,Swansea University Medical School, Swansea, Wales, UK
| | - Zhihui Wang
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, Texas, USA.,Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Mauro Ferrari
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Shu-Hsia Chen
- Immunotherapy Research Center, Houston Methodist Research Institute, Houston, Texas, USA.,Cancer Center, Houston Methodist Research Institute, Houston, Texas, USA
| | - Richard L Sidman
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Renata Pasqualini
- Rutgers Cancer Institute of New Jersey, Newark, New Jersey, USA.,Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Wadih Arap
- Rutgers Cancer Institute of New Jersey, Newark, New Jersey, USA.,Division of Hematology/Oncology, Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Vittorio Cristini
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, Texas, USA.,Department of Imaging Physics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA.,Physiology, Biophysics, and Systems Biology Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
49
|
Elchaninov A, Sukhikh G, Fatkhudinov T. Evolution of Regeneration in Animals: A Tangled Story. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.621686] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The evolution of regenerative capacity in multicellular animals represents one of the most complex and intriguing problems in biology. How could such a seemingly advantageous trait as self-repair become consistently attenuated by the evolution? This review article examines the concept of the origin and nature of regeneration, its connection with the processes of embryonic development and asexual reproduction, as well as with the mechanisms of tissue homeostasis. The article presents a variety of classical and modern hypotheses explaining different trends in the evolution of regenerative capacity which is not always beneficial for the individual and notably for the species. Mechanistically, these trends are driven by the evolution of signaling pathways and progressive restriction of differentiation plasticity with concomitant advances in adaptive immunity. Examples of phylogenetically enhanced regenerative capacity are considered as well, with appropriate evolutionary reasoning for the enhancement and discussion of its molecular mechanisms.
Collapse
|
50
|
Hosotani M, Nakamura T, Ichii O, Irie T, Sunden Y, Elewa YHA, Watanabe T, Ueda H, Mishima T, Kon Y. Unique histological features of the tail skin of cotton rat ( Sigmodon hispidus) related to caudal autotomy. Biol Open 2021; 10:bio.058230. [PMID: 33563609 PMCID: PMC7904004 DOI: 10.1242/bio.058230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Caudal autotomy in rodents is an evolutionarily acquired phenomenon enabling escape from predators, by discarding the tail skin after traumatic injuries. The histological mechanisms underlying caudal autotomy seem to differ among species. Cotton rats (Sigmodon hispidus), which are important laboratory rodents for human infectious diseases, possess a fragile tail. In this study, we compared the tail histology of cotton rats with that of laboratory rats (Rattus norvegicus), which have no fragility on their tail, to elucidate the process of rodent caudal autotomy. First, the cotton rats developed a false autotomy characterized by loss of the tail sheath with the caudal vertebrae remaining without tail regeneration. Second, we found the fracture plane was continuous from the interscale of the tail epidermis to the dermis, which was lined with an alignment of E-cadherin+ cells. Third, we found an obvious cleavage plane between the dermis and subjacent tissues of the cotton-rat tail, where the subcutis was composed of looser, finer, and fragmented collagen fibers compared with those of the rat. Additionally, the cotton-rat tail was easily torn, with minimum bleeding. The median coccygeal artery of the cotton rat had a thick smooth muscle layer, and its lumen was filled with the peeled intima with fibrin coagulation, which might be associated with reduced bleeding following caudal autotomy. Taken together, we reveal the unique histological features of the tail relating to the caudal autotomy process in the cotton rat, and provide novel insights to help clarify the rodent caudal autotomy mechanism. Summary: The unique histological structures in derimis, subcutis and coccygeal artery of the tail skin are related to the caudal autotomy mechanism in the cotton rat.
Collapse
Affiliation(s)
- Marina Hosotani
- Laboratory of Veterinary Anatomy, Department of Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Teppei Nakamura
- Laboratory of Anatomy, Department of Basic Veterinary Science, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan .,Department of Biological Safety Research, Chitose Laboratory, Japan Food Research Laboratories, Chitose, Hokkaido, Japan
| | - Osamu Ichii
- Laboratory of Anatomy, Department of Basic Veterinary Science, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan.,Laboratory of Agrobiomedical Science, Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takao Irie
- Medical Zoology Group, Department of Infectious Diseases, Hokkaido Institute of Public Health, Sapporo, Hokkaido, Japan.,Laboratory of Veterinary Parasitic Diseases, Department of Veterinary Sciences, Faculty of Agriculture, Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan
| | - Yuji Sunden
- Laboratory of Veterinary Pathology, Faculty of Agriculture, Tottori University, Tottori 680-8550, Japan
| | - Yaser Hosny Ali Elewa
- Laboratory of Anatomy, Department of Basic Veterinary Science, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan.,Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Takafumi Watanabe
- Laboratory of Veterinary Anatomy, Department of Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Hiromi Ueda
- Laboratory of Veterinary Anatomy, Department of Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Takashi Mishima
- Department of Biological Safety Research, Chitose Laboratory, Japan Food Research Laboratories, Chitose, Hokkaido, Japan
| | - Yasuhiro Kon
- Laboratory of Anatomy, Department of Basic Veterinary Science, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|