1
|
Zhuo M, Wang X, Shi Y, Chen K, Qiu X. Time-series variation in the locomotor behavior and vocal traits of Japanese medaka (Oryzias latipes) acutely exposed to organophosphorus pesticide chlorpyrifos. Comp Biochem Physiol C Toxicol Pharmacol 2024; 283:109954. [PMID: 38838796 DOI: 10.1016/j.cbpc.2024.109954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/26/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
Organophosphorus pesticides (OPs), such as chlorpyrifos (CPF), are the most commonly used pesticides worldwide. Considering that OPs will eventually enter aquatic ecosystems due to runoff from agricultural lands, accidental leakage, and other unforeseen emergencies, monitoring water pollution of those substances is crucial for environmental protection and public health. In this study, Japanese medaka (Oryzias latipes) were exposed to CPF (0.03, 0.06, and 0.12 mg/L) for 6 h, and the time-series variations in their locomotor behavior and vocal traits were investigated. Compared with that measured before exposure, significantly changed locomotor behavior and vocal traits in Japanese medaka exposed to CPF could be observed at 4 h after exposure and thereafter, and the pattern of behavioral changes depends on the CPF concentrations. Exposure to CPF also changed the frequency-sound pressure level curve of Japanese medaka at 6 h after exposure, especially at 0.12 mg/L. Moreover, CPF exposure could significantly inhibit the acetylcholinesterase (AChE) activity in the brains and eyes of medaka, which exhibited significant correlations with the variation of locomotor behavioral and vocal traits. Considering that inhibiting the AChE activity is the primary mechanism underlying the neurobehavioral toxicity of all OPs, our finding suggested that simultaneously monitoring changes in the locomotor behavioral and vocal traits has a high potential to reflect the pollution of organophosphorus substances.
Collapse
Affiliation(s)
- Mengcheng Zhuo
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xi Wang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yanhong Shi
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Kun Chen
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Xuchun Qiu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
2
|
Williams BR, McAfee D, Connell SD. Anthropogenic noise disrupts acoustic cues for recruitment. Proc Biol Sci 2024; 291:20240741. [PMID: 39043238 PMCID: PMC11265905 DOI: 10.1098/rspb.2024.0741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/27/2024] [Accepted: 06/25/2024] [Indexed: 07/25/2024] Open
Abstract
Anthropogenic noise is rising and may interfere with natural acoustic cues used by organisms to recruit. Newly developed acoustic technology provides enriched settlement cues to boost recruitment of target organisms navigating to restoration sites, but can it boost recruitment in noise-polluted sites? To address this dilemma, we coupled replicated aquarium experiments with field experiments. Under controlled and replicated laboratory conditions, acoustic enrichment boosted recruitment by 2.57 times in the absence of anthropogenic noise, but yielded comparable recruitment in its presence (i.e. no boosting effect). Using the same technique, we then tested the replicability of these responses in real-world settings where independently replicated 'sites' are unfeasible owing to the inherent differences in soundscapes. Again, acoustic enrichment increased recruitment where anthropogenic noise was low (by 3.33 times), but had no effect at a site of noise pollution. Together, these coupled laboratory-to-field outcomes indicate that anthropogenic noise can mask the signal of acoustic enrichment. While noise pollution may reduce the effectiveness of acoustic enrichment, some of our reported observations suggest that anthropogenic noise per se might also provide an attractive cue for oyster larvae to recruit. These findings underscore the complexity of larval behavioural responses to acoustic stimuli during recruitment processes.
Collapse
Affiliation(s)
- Brittany R. Williams
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, Adelaide5005, Australia
| | - Dominic McAfee
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, Adelaide5005, Australia
- Environment Institute, The University of Adelaide, Adelaide5005, Australia
| | - Sean D. Connell
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, Adelaide5005, Australia
- Environment Institute, The University of Adelaide, Adelaide5005, Australia
| |
Collapse
|
3
|
Prosnier L. Zooplankton as a model to study the effects of anthropogenic sounds on aquatic ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172489. [PMID: 38621539 DOI: 10.1016/j.scitotenv.2024.172489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 03/23/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
There is a growing interest in the impact of acoustic pollution on aquatic ecosystems. Currently, research has primarily focused on hearing species, particularly fishes and mammals. However, species from lower trophic levels, including many invertebrates, are less studied despite their ecological significance. Among these taxa, studies examining the effects of sound on holozooplankton are extremely rare. This literature review examines the effects of sound on both marine and freshwater zooplankton. It highlights two differences: the few used organisms and the types of sound source. Marine studies focus on the effects of very intense acute sound on copepods, while freshwater studies focus on less intense chronic sound on cladocerans. But, in both, various negative effects are reported. The effects of sound remain largely unknown, although previous studies have shown that zooplankton can detect vibrations using mechanoreceptors. The perception of their environment can be affected by sounds, potentially causing stress. Limited research suggests that sound may affect the physiology, behaviour, and fitness of zooplankton. Following this review, I highlight the potential to use methods from ecology, ecotoxicology, and parasitology to study the effects of sound at the individual level, including changes in physiology, development, survival, and behaviour. Responses to sound, which could alter species interactions and population dynamics, are expected to have larger-scale implications with bottom-up effects, such as changes in food web dynamics and ecosystem functioning. To improve the study of the effect of sound, to better use zooplankton as biological models and as bioindicators, researchers need to better understand how they perceive their acoustic environment. Consequently, an important challenge is the measurement of particle motion to establish useable dose-response relationships and particle motion soundscapes.
Collapse
Affiliation(s)
- Loïc Prosnier
- Faculté des Sciences et Techniques, University of Saint Etienne, Saint-Etienne, France; France Travail, Saint-Etienne, France.
| |
Collapse
|
4
|
Ogurek SDL, Halliday WD, Woods MB, Brown N, Balshine S, Juanes F. Boat noise impedes vocalizations of wild plainfin midshipman fish. MARINE POLLUTION BULLETIN 2024; 203:116412. [PMID: 38703628 DOI: 10.1016/j.marpolbul.2024.116412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 05/06/2024]
Abstract
Marine noise is recognised as a growing threat that can induce maladaptive behavioural changes in many aquatic animals, including fishes. The plainfin midshipman is a soniferous fish with a prolonged breeding period, during which males produce tonal hums that attract females, and grunts and growls during agonistic interactions. In this study, we used acoustic recordings to assess the effects of boat noise on the presence, peak frequencies, and durations of plainfin midshipman calls in the wild. We found that all three call types were less likely to occur, and the peak frequencies of hums and grunts increased in the presence of boat noise. We also show that loud and quiet boat noise affected plainfin midshipman vocalizations similarly. As anthropogenic noise is likely to increase in the ocean, it will be important to understand how such noise can affect communication systems, and consequently population health and resiliency.
Collapse
Affiliation(s)
| | - William D Halliday
- School of Earth and Ocean Sciences, University of Victoria, Victoria, BC, Canada; Wildlife Conservation Society Canada, Whitehorse, YT, Canada
| | | | - Nick Brown
- Department of Biology, University of Victoria, Victoria, BC, Canada; Department of Psychology, Neuroscience, & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Sigal Balshine
- Department of Psychology, Neuroscience, & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Francis Juanes
- Department of Biology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
5
|
Vane LS, Morris-Drake A, Arbon JJ, Thomson RJ, Layton M, Kern JM, Radford AN. Investigating the impact of anthropogenic noise on the decision-making of dwarf mongoose offspring. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240192. [PMID: 39076821 PMCID: PMC11285877 DOI: 10.1098/rsos.240192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 07/31/2024]
Abstract
Anthropogenic (man-made) noise constitutes a novel and widespread pollutant which is increasing in prevalence in terrestrial and aquatic ecosystems, resulting in alterations of natural soundscapes. There is proliferating evidence that noise leads to maladaptive behaviour in wildlife, yet few studies have addressed the effect on mammalian parent-offspring interactions. We investigated the impact of road noise on dwarf mongoose (Helogale parvula) offspring nearest-neighbour decision-making while foraging, using a field-based playback experiment. We predicted that offspring would forage closer to groupmates, especially adult and dominant individuals, when experiencing road noise compared with ambient sound to reduce communication masking and alleviate stress. We also predicted that noise would have a reduced effect with increasing offspring age owing to reduced reliance on adult groupmates for provisioning and predator defence. However, we found that mean nearest-neighbour distance and nearest-neighbour intrinsic characteristics (age, sex and dominance status) did not differ significantly between sound treatments, and these responses did not vary significantly with focal individual age. Noise may not impact nearest-neighbour decision-making owing to habituation from chronic natural exposure; alternatively, noise could induce stress and distraction, resulting in maladaptive decision-making. Future work should aim to detangle the underlying mechanisms mediating parent-offspring interactions in conditions of anthropogenic noise.
Collapse
Affiliation(s)
- Lauren S. Vane
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Amy Morris-Drake
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Josh J. Arbon
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Robyn J. Thomson
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Megan Layton
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Julie M. Kern
- School of Environmental and Rural Science, University of New England, ArmidaleNSW 2351, Australia
| | - Andrew N. Radford
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| |
Collapse
|
6
|
Hom KN, Quigley TD, Rodriguez RD, Gdanski SG, Lazrinth XI, Jones R, Forlano PM. Characterization of anthropogenic noise and oyster toadfish (Opsanus tau) calling behavior in urban and small-town coastal soundscapesa). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 155:1230-1239. [PMID: 38341750 DOI: 10.1121/10.0024763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/18/2024] [Indexed: 02/13/2024]
Abstract
The oyster toadfish (Opsanus tau) is an ideal model to examine the effects of anthropogenic noise on behavior because they rely on acoustic signals for mate attraction and social interactions. We predict that oyster toadfish have acclimated to living in noise-rich environments because they are common in waterways of urban areas, like New York City (NYC). We used passive acoustic monitoring at two locations to see if calling behavior patterns are altered in areas of typically high boat traffic versus low boat traffic (Pier 40, NYC, NY, and Eel Pond, Woods Hole, MA, respectively). We hypothesized that toadfish in NYC would adjust their circadian calling behavior in response to daily anthropogenic noise patterns. We quantified toadfish calls and ship noise over three 24-h periods in the summer reproductive period at both locations. We observed an inverse relationship between the duration of noise and the number of toadfish calls at Pier 40 in comparison to Eel Pond. Additionally, toadfish at Pier 40 showed significant differences in peak calling behavior compared to Eel Pond. Therefore, oyster toadfish may have acclimated to living in an urban environment by potentially altering their communication behavior in the presence of boat noise.
Collapse
Affiliation(s)
- Kelsey N Hom
- Subprogram in Ecology, Evolutionary Biology and Behavior, The Graduate Center, City University of New York (CUNY), New York, New York 10031, USA
| | - Thomas D Quigley
- Subprogram in Ecology, Evolutionary Biology and Behavior, The Graduate Center, City University of New York (CUNY), New York, New York 10031, USA
| | - Rachel D Rodriguez
- Department of Biology, Brooklyn College, City University of New York (CUNY), Brooklyn, New York 11210, USA
| | - Sydney G Gdanski
- Department of Biology, Brooklyn College, City University of New York (CUNY), Brooklyn, New York 11210, USA
| | - Xylo I Lazrinth
- Department of Biology, Brooklyn College, City University of New York (CUNY), Brooklyn, New York 11210, USA
| | | | - Paul M Forlano
- Subprogram in Ecology, Evolutionary Biology and Behavior, The Graduate Center, City University of New York (CUNY), New York, New York 10031, USA
| |
Collapse
|
7
|
Badlowski GA, Boyle KS. Repeated boat noise exposure damages inner ear sensory hair cells and decreases hearing sensitivity in Atlantic croaker (Micropogonias undulatus). J Exp Biol 2024; 227:jeb245093. [PMID: 38099450 DOI: 10.1242/jeb.245093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/06/2023] [Indexed: 01/25/2024]
Abstract
Anthropogenic noise is becoming a major underwater pollutant because of rapidly increasing boat traffic worldwide. But its impact on aquatic organisms remains largely unknown. Previous studies have focused mainly on high-frequency and impulsive noises (i.e. sonar); however, boat noise is more pervasive, continuous, and its highest intensity and component frequencies overlap the auditory bandwidth of most fishes. We assessed the impacts of boat noise on saccular sensory hair cell density and hearing thresholds of a soniferous species, Atlantic croaker (Micropogonias undulatus). In two laboratory experiments, individuals were subjected to simulated boat noise: a single 15-min exposure and 3 days of intermittent noise (simulating passing vessels). Immediately after both experiments, fish were either (1) tested for hearing sensitivity with auditory evoked potential (AEP) tests or (2) euthanized for fluorescent phalloidin and TUNEL labeling for hair cell density counts. Relative to controls, no differences were observed in auditory thresholds nor hair cell density between individuals subjected to a single 15-min noise exposure. However, fish from the 3-day experiment showed decreased sensory hair cell density, increased apoptotic cells, and higher hearing thresholds than control fish at 300, 800 and 1000 Hz. Our results demonstrate that impacts from boat noise depend upon the duration and frequency of exposure. For a species reliant on vocalization for communication, these impacts may hinder spawning success, increase predation risks and significantly alter the ecosystem.
Collapse
Affiliation(s)
- Gina A Badlowski
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| | - Kelly S Boyle
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| |
Collapse
|
8
|
Kügler A, Lammers MO, Pack AA, Tenorio-Hallé L, Thode AM. Diel spatio-temporal patterns of humpback whale singing on a high-density breeding ground. ROYAL SOCIETY OPEN SCIENCE 2024; 11:230279. [PMID: 38269074 PMCID: PMC10805604 DOI: 10.1098/rsos.230279] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024]
Abstract
Humpback whale song chorusing dominates the marine soundscape in Hawai'i during winter months, yet little is known about spatio-temporal habitat use patterns of singers. We analysed passive acoustic monitoring data from five sites off Maui and found that ambient noise levels associated with song chorusing decreased during daytime hours nearshore but increased offshore. To resolve whether these changes reflect a diel offshore-onshore movement or a temporal difference in singing activity, data from 71 concurrently conducted land-based theodolite surveys were analysed. Non-calf pods (n = 3082), presumably including the majority of singers, were found further offshore with increasing time of the day. Separately, we acoustically localized 217 nearshore singers using vector-sensors. During the day, distances to shore and minimum distances among singers increased, and singers switched more between being stationary and singing while travelling. Together, these findings suggest that the observed diel trends in humpback whale chorusing off Maui represent a pattern of active onshore-offshore movement of singers. We hypothesize that this may result from singers attempting to reduce intraspecific acoustic masking when densities are high nearshore and avoidance of a loud, non-humpback, biological evening chorus offshore, creating a dynamic of movement of singers aimed at increasing the efficiency of their acoustic display.
Collapse
Affiliation(s)
- Anke Kügler
- University of Hawai‘i at Mānoa, Honolulu, HI, USA
- Bioacoustics and Behavioral Ecology Lab, Syracuse University, Syracuse, NY, USA
- Oceanwide Science Institute, Honolulu, HI, USA
| | - Marc O. Lammers
- Oceanwide Science Institute, Honolulu, HI, USA
- Hawaiian Islands Humpback Whale National Marine Sanctuary, Kīhei, HI, USA
| | - Adam A. Pack
- University of Hawai‘i at Hilo, Hilo, HI, USA
- The Dolphin Institute, Hilo, HI, USA
| | - Ludovic Tenorio-Hallé
- Marine Physical Laboratory, Scripps Institute of Oceanography, University of California, San Diego, La Jolla, CA, USA
| | - Aaron M. Thode
- Marine Physical Laboratory, Scripps Institute of Oceanography, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
9
|
Johnson JV, Chequer AD, Goodbody-Gringley G. Insights from the 2-year-long human confinement experiment in Grand Cayman reveal the resilience of coral reef fish communities. Sci Rep 2023; 13:21806. [PMID: 38071390 PMCID: PMC10710434 DOI: 10.1038/s41598-023-49221-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
In March 2020, the world went into lockdown to curb the spread of the novel coronavirus (SARS-CoV-2), with immediate impacts on wildlife across ecosystems. The strict 2-year long lockdown in Grand Cayman provided an unprecedented opportunity to assess how the 'human confinement experiment' influenced the community composition of reef fish. Using a suite of multivariate statistics, our findings revealed a stark increase in reef fish biomass during the 2 years of lockdown, especially among herbivores, including parrotfish, with drastic increases in juvenile parrotfishes identified. Additionally, when comparing baseline data of the community from 2018 to the 2 years during lockdown, over a three-fold significant increase in mean reef fish biomass was observed, with a clear shift in community composition. Our findings provide unique insights into the resilience of reef fish communities when local anthropogenic stressors are removed for an unprecedented length of time. Given the functional role of herbivores including parrotfish, our results suggest that reductions in human water-based activities have positive implications for coral reef ecosystems and should be considered in future management strategies.
Collapse
Affiliation(s)
- Jack V Johnson
- Reef Ecology and Evolution Lab, Central Caribbean Marine Institute, Little Cayman, Cayman Islands.
| | - Alex D Chequer
- Reef Ecology and Evolution Lab, Central Caribbean Marine Institute, Little Cayman, Cayman Islands
| | | |
Collapse
|
10
|
Colbert BR, Popper AN, Bailey H. Call rate of oyster toadfish (Opsanus tau) is affected by aggregate sound level but not by specific vessel passagesa). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 154:2088-2098. [PMID: 37787601 DOI: 10.1121/10.0021174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/13/2023] [Indexed: 10/04/2023]
Abstract
Anthropogenic sound is a prevalent environmental stressor that can have significant impacts on aquatic species, including fishes. In this study, the effects of anthropogenic sound on the vocalization behavior of oyster toadfish (Opasnus tau) at multiple time scales was investigated using passive acoustic monitoring. The effects of specific vessel passages were investigated by comparing vocalization rates immediately after a vessel passage with that of control periods using a generalized linear model. The effects of increased ambient sound levels as a result of aggregate exposure within hourly periods over a month were also analyzed using generalized additive models. To place the response to vessel sounds within an ecologically appropriate context, the effect of environmental variables on call density was compared to that of increasing ambient sound levels. It was found that the immediate effect of vessel passage was not a significant predictor for toadfish vocalization rate. However, analyzed over a longer time period, increased vessel-generated sound lowered call rate and there was a greater effect size from vessel sound than any environmental variable. This demonstrates the importance of evaluating responses to anthropogenic sound, including chronic sounds, on multiple time scales when assessing potential impacts.
Collapse
Affiliation(s)
- Benjamin R Colbert
- Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, Solomons, Maryland 20688, USA
| | - A N Popper
- Department of Biology, University of Maryland, College Park, Maryland 20742, USA
| | - Helen Bailey
- Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, Solomons, Maryland 20688, USA
| |
Collapse
|
11
|
Candolin U, Rahman T. Behavioural responses of fishes to anthropogenic disturbances: Adaptive value and ecological consequences. JOURNAL OF FISH BIOLOGY 2023; 103:773-783. [PMID: 36647916 DOI: 10.1111/jfb.15322] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/14/2023] [Indexed: 05/17/2023]
Abstract
Aquatic ecosystems are changing at an accelerating rate because of human activities. The changes alter the abundance and distribution of fishes, with potential consequences for ecosystem structure and function. Behavioural responses often underlie these changes in population dynamics, such as altered habitat choice or foraging activity. Here, we present a framework for understanding how and why behaviour is affected by human activities and how the behavioural responses in turn influence higher ecological levels. We further review the literature to assess the present state of the field and identify gaps in our knowledge. We begin with discussing the factors that determine how an individual responds to a change in the environment and whether the response is adaptive or not. In particular, we explain the importance of the evolutionary history of the species. We then search the literature to assess our current knowledge of the impact of human disturbances on the behaviour of fishes and the consequences for ecosystems. The search reveals that much attention has been directed to the impact of human activities on the behaviour of fishes, but that worryingly little is known about the consequences of these responses for populations, communities and ecosystems. Yet, behavioural responses can have profound ecological consequences given that behaviour underly many, if not most, species interactions. Thus, more attention should be paid to the mechanisms and pathways through which behavioural responses influence higher ecological levels. Such information is needed if we are to determine the ultimate effects of human activities on biodiversity and the function and stability of aquatic ecosystems.
Collapse
Affiliation(s)
- Ulrika Candolin
- Organismal & Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Tawfiqur Rahman
- Organismal & Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| |
Collapse
|
12
|
Zigler A, Straw S, Tokuda I, Bronson E, Riede T. Critical calls: Circadian and seasonal periodicity in vocal activity in a breeding colony of Panamanian golden frogs (Atelopus zeteki). PLoS One 2023; 18:e0286582. [PMID: 37590183 PMCID: PMC10434951 DOI: 10.1371/journal.pone.0286582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/18/2023] [Indexed: 08/19/2023] Open
Abstract
The Panamanian golden frog (Atelopus zeteki) is a critically endangered species and currently is believed to survive and reproduce only in human care. Panamanian golden frog males are considerably vocal which may be an important component in their successful reproduction, though little is currently known about their calls. To better understand the behavior and vocal patterns of this species and to improve breeding efforts in the assurance colony, we employed individual sound recording of male advertisement calls and acoustic monitoring of a breeding colony to investigate variation in the vocal behavior of Panamanian golden frogs. The goal was to capture variability within and among frogs as well as patterns of periodicity over time. First, the advertisement calls from individual male Panamanian golden frogs were recorded, and acoustic parameters were analyzed for individual differences. Results suggest that male advertisement calls demonstrate individual- and population specificity. Second, data collected through a year-long acoustic monitoring of the breeding colony were investigated for circadian and circannual periodicity. Male vocal activity revealed a circadian periodicity entrained by the daily light schedule. Seasonal periodicity was also found with highest vocal activities between December and March. The finding of a seasonal periodicity is worth noting given that the population had been bred for 20 years under constant environmental conditions. Finally, results suggest that vocal activity was responsive to daily animal care activity. Vocal activity decreased substantially when personnel entered the room and engaged in animal husbandry activities. The findings illustrate the usefulness of acoustic monitoring to provide insight into animal behavior in a zoo setting in a key breeding colony of endangered animals, and calling pattern observations may be utilized to modify husbandry practices to improve Panamanian golden frog breeding success and general care.
Collapse
Affiliation(s)
- Alan Zigler
- The Maryland Zoo in Baltimore, Baltimore, Maryland, United States of America
| | - Stephanie Straw
- College of Veterinary Medicine, Midwestern University, Glendale, Arizona, United States of America
| | - Isao Tokuda
- Graduate School of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Ellen Bronson
- The Maryland Zoo in Baltimore, Baltimore, Maryland, United States of America
| | - Tobias Riede
- Department of Physiology, Midwestern University, Glendale, Arizona, United States of America
| |
Collapse
|
13
|
Maurer N, Baltzer J, Schaffeld T, Ruser A, Schnitzler JG, Siebert U. Effects of amplitude and duration of noise exposure on the hearing and anti-predator behaviour of common roach (Rutilus rutilus) and sand goby (Pomatoschistus minutus). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 154:671-681. [PMID: 37550238 DOI: 10.1121/10.0020535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/13/2023] [Indexed: 08/09/2023]
Abstract
This study investigates whether an exposure to two different received sound pressure levels at equal cumulative energy affects anti-predator behaviour and auditory detection thresholds of common roach (Rutilus rutilus) and sand goby (Pomatoschistus minutus) differently. This was examined in regard to a vessel slowdown as a management strategy to decrease vessel noise impact on fishes. Using continuous broadband noise, we found significant temporary threshold shifts (TTS) in roach, with 11.9 and 13.4 dB at 250 and 1000 Hz respectively, for the louder exposure. In contrast, gobies exhibited a non-significant shift of 6.6 dB at 125 Hz. Group cohesion increased in roach exposed to an artificial predator in the control group, but not during noise exposures. Gobies showed an initial freezing reaction towards the predator stimulus remaining motionless regardless of treatment. Our results show that a reduction in vessel speed with a corresponding reduction in source level could mitigate the effects on the auditory senses of sensitive fish, but does not appear to have any mitigating effect on their noise-induced behavioural changes. Further studies should investigate the effects of multiple vessel passages, but also the ecological consequences of the described effects on hearing and behaviour at individual and population level.
Collapse
Affiliation(s)
- Nina Maurer
- Institute for Terrestrial and Aquatic Wildlife Research (ITAW), University of Veterinary Medicine Hannover, Foundation, Germany
| | - Johannes Baltzer
- Institute for Terrestrial and Aquatic Wildlife Research (ITAW), University of Veterinary Medicine Hannover, Foundation, Germany
| | - Tobias Schaffeld
- Institute for Terrestrial and Aquatic Wildlife Research (ITAW), University of Veterinary Medicine Hannover, Foundation, Germany
| | - Andreas Ruser
- Institute for Terrestrial and Aquatic Wildlife Research (ITAW), University of Veterinary Medicine Hannover, Foundation, Germany
| | - Joseph G Schnitzler
- Institute for Terrestrial and Aquatic Wildlife Research (ITAW), University of Veterinary Medicine Hannover, Foundation, Germany
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research (ITAW), University of Veterinary Medicine Hannover, Foundation, Germany
| |
Collapse
|
14
|
Somogyi NA, Rountree RA. The sound production of Aplodinotus grunniens in the presence of boat sounds. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 154:831-840. [PMID: 37563830 DOI: 10.1121/10.0020542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/16/2023] [Indexed: 08/12/2023]
Abstract
Archived soundscape data from Lake Champlain, New York, were used to examine the effect of anthropogenic sounds produced by recreational boating on freshwater drum (Aplodinotus grunniens) soniferous behavior. Drum progressed from sporadic calling during the day to calls that increasingly overlapped culminating in a chorus in the late afternoon and evening. The response of drum to boat noise appeared to differ among these states, perhaps reflecting differences in the underlying behaviors. In response to boat noise, freshwater drum spawning choruses occurred later in the day, thus avoiding the noisiest periods. The peak frequency and knock rate of calls also increased in the presence of boat noise. Of the acoustical adjustments observed, the most strongly shown were those which increased the likelihood of signal reception, suggesting a Lombard effect response. Therefore, these data suggest freshwater drum have plasticity in their acoustical behavior, potentially shifting chorusing time, and altering sound characteristics to optimize communication in the presence of anthropogenic noise. However, additional work is needed to further clarify the response of freshwater drum to anthropogenic noise.
Collapse
Affiliation(s)
- Nicholas A Somogyi
- Department of Fish and Wildlife Science, Oregon State University, Corvallis, Oregon 97331, USA
| | - Rodney A Rountree
- Department of Biology, University of Victoria, Victoria, British Columbia, V8P 5C2, Canada
| |
Collapse
|
15
|
Dickerson AL, Hall ML, Jones TM. Effects of variation in natural and artificial light at night on acoustic communication: a review and prospectus. Anim Behav 2023. [DOI: 10.1016/j.anbehav.2023.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
16
|
Trabulo R, Amorim MCP, Fonseca PJ, Vieira M, Matos AB, Marin-Cudraz T, Lemos MFL, Moutinho AB, Novais SC, Pousão-Ferreira P, Candeias-Mendes A, Faria AM. Impact of anthropogenic noise on the survival and development of meagre (Argyrosomus regius) early life stages. MARINE ENVIRONMENTAL RESEARCH 2023; 185:105894. [PMID: 36738699 DOI: 10.1016/j.marenvres.2023.105894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
The growth of human populations has been driving an unprecedent and widespread increase in marine traffic, posing a real threat to marine biodiversity. Even though we are now aware of the negative effects of shipping noise exposure on fish, information about the impact on their early life stages continues to lack. Meagre (Argyrosomus regius) is a vocal fish that uses estuaries with high levels of anthropogenic noise pollution as both breeding areas and nurseries. Here, the effects of boat noise exposure on the development and survival of meagre larvae were studied. Embryos and larvae were exposed to either noise (boat noise playback) or control treatments (coils producing a similar electric field to the speakers) and hatching rate, survival rate, morphometric traits and stress-related biomarkers, at hatching and at 2 days-post-hatching (dph) were analyzed. Results showed no conclusive effects of the impact of boat noise playback, even though there was an increased lipid droplet consumption and a decrease in body depth at 2dph larvae under this stressor. The assessment of oxidative stress and energy metabolism-related biomarkers at hatching showed a marginal decrease in superoxide dismutase (SOD) activity and no changes in DNA damage or electron transport system activity (ETS), although it cannot be disregarded that those effects could only be visible at later stages of larval development. Whether these morphological and developmental results have implications in later stages remains to be investigated. Further studies with longer exposure and wild meagre could help deepen this knowledge and provide a better understanding of how anthropogenic noise can impact meagre early stages.
Collapse
Affiliation(s)
- Rita Trabulo
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal; MARE - Marine and Environmental Sciences Centre, ARNET - Aquatic Research Network, ISPA - Instituto Universitário, Lisbon, Portugal.
| | - M Clara P Amorim
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal; MARE - Marine and Environmental Sciences Centre, ARNET - Aquatic Research Network, ISPA - Instituto Universitário, Lisbon, Portugal
| | - Paulo J Fonseca
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal; cE3c - Center for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Lisbon, Portugal
| | - Manuel Vieira
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal; MARE - Marine and Environmental Sciences Centre, ARNET - Aquatic Research Network, ISPA - Instituto Universitário, Lisbon, Portugal; cE3c - Center for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Lisbon, Portugal
| | - André B Matos
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal; MARE - Marine and Environmental Sciences Centre, ARNET - Aquatic Research Network, ISPA - Instituto Universitário, Lisbon, Portugal
| | - Thibaut Marin-Cudraz
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Marco F L Lemos
- MARE-Marine and Environmental Sciences Centre, ARNET - Aquatic Research Network, ESTM, Politécnico de Leiria, Peniche, Portugal
| | - Ariana B Moutinho
- MARE-Marine and Environmental Sciences Centre, ARNET - Aquatic Research Network, ESTM, Politécnico de Leiria, Peniche, Portugal
| | - Sara C Novais
- MARE-Marine and Environmental Sciences Centre, ARNET - Aquatic Research Network, ESTM, Politécnico de Leiria, Peniche, Portugal
| | - Pedro Pousão-Ferreira
- Instituto Português do Mar e da Atmosfera, Av. 5 de Outubro, 8700-305, Olhão, Portugal
| | - Ana Candeias-Mendes
- Instituto Português do Mar e da Atmosfera, Av. 5 de Outubro, 8700-305, Olhão, Portugal
| | - Ana M Faria
- MARE - Marine and Environmental Sciences Centre, ARNET - Aquatic Research Network, ISPA - Instituto Universitário, Lisbon, Portugal
| |
Collapse
|
17
|
Zhang X, Zhou J, Xu W, Zhan W, Zou H, Lin J. Transcriptomic and Behavioral Studies of Small Yellow Croaker ( Larimichthyspolyactis) in Response to Noise Exposure. Animals (Basel) 2022; 12:2061. [PMID: 36009652 PMCID: PMC9405241 DOI: 10.3390/ani12162061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/28/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022] Open
Abstract
Noise has the potential to induce physiological stress in marine fishes, which may lead to all sorts of ecological consequences. In the current study, we used the RNA-sequencing (RNA-seq) method to sequence the whole transcriptome of the brain in small yellow croaker (Larimichthys polyactis). The animals were exposed to a mix of noises produced by different types of boat played back in a tank, then the brain tissues were collected after the fish had been exposed to a 120 dB noise for 0.5 h. In total, 762 differently expressed genes (DEGs) between the two groups were identified, including 157 up regulated and 605 down regulated genes in the noise exposure group compared with the control group. Gene ontology (GO) enrichment analysis indicated that the most up regulated gene categories included synaptic membranes, receptor-mediated endocytosis and the neurotransmitter secretion process. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways found that endocytosis, cell adhesion molecules and the extracellular matrix (ECM) receptor interaction pathway were over-represented. Specifically, ECM-related genes, including lamin2, lamin3, lamin4, coll1a2, coll5a1 and col4a5 were down regulated in the noise exposure group, implying the impaired composition of the ECM. In addition, the behavioral experiment revealed that L. polyactis exhibited avoidance behaviors to run away from the noise source at the beginning of the noise exposure period. At the end of the noise exposure period, L. polyactis kept motionless on the surface of the water and lost the ability to keep their balance. Taken together, our results indicate that exposure to noise stress contributes to neurological dysfunction in the brain and impaired locomotor ability in L. polyactis.
Collapse
Affiliation(s)
- Xuguang Zhang
- Engineering Technology Research Center of Marine Ranching, College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Jun Zhou
- Engineering Technology Research Center of Marine Ranching, College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Wengang Xu
- School of Ocean, Yantai University, Yantai 264005, China
| | - Wei Zhan
- Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Huafeng Zou
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- The Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Jun Lin
- Engineering Technology Research Center of Marine Ranching, College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
18
|
Komyakova V, Jaffrés JBD, Strain EMA, Cullen-Knox C, Fudge M, Langhamer O, Bender A, Yaakub SM, Wilson E, Allan BJM, Sella I, Haward M. Conceptualisation of multiple impacts interacting in the marine environment using marine infrastructure as an example. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154748. [PMID: 35337877 DOI: 10.1016/j.scitotenv.2022.154748] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/12/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
The human population is increasingly reliant on the marine environment for food, trade, tourism, transport, communication and other vital ecosystem services. These services require extensive marine infrastructure, all of which have direct or indirect ecological impacts on marine environments. The rise in global marine infrastructure has led to light, noise and chemical pollution, as well as facilitation of biological invasions. As a result, marine systems and associated species are under increased pressure from habitat loss and degradation, formation of ecological traps and increased mortality, all of which can lead to reduced resilience and consequently increased invasive species establishment. Whereas the cumulative bearings of collective human impacts on marine populations have previously been demonstrated, the multiple impacts associated with marine infrastructure have not been well explored. Here, building on ecological literature, we explore the impacts that are associated with marine infrastructure, conceptualising the notion of correlative, interactive and cumulative effects of anthropogenic activities on the marine environment. By reviewing the range of mitigation approaches that are currently available, we consider the role that eco-engineering, marine spatial planning and agent-based modelling plays in complementing the design and placement of marine structures to incorporate the existing connectivity pathways, ecological principles and complexity of the environment. Because the effect of human-induced, rapid environmental change is predicted to increase in response to the growth of the human population, this study demonstrates that the development and implementation of legislative framework, innovative technologies and nature-informed solutions are vital, preventative measures to mitigate the multiple impacts associated with marine infrastructure.
Collapse
Affiliation(s)
- Valeriya Komyakova
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia; Centre for Marine Socioecology, University of Tasmania, Hobart, Tasmania 7053, Australia.
| | - Jasmine B D Jaffrés
- C&R Consulting, Townsville, Australia; College of Science and Engineering, James Cook University, Townsville, Australia
| | - Elisabeth M A Strain
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia; Centre for Marine Socioecology, University of Tasmania, Hobart, Tasmania 7053, Australia
| | - Coco Cullen-Knox
- Centre for Marine Socioecology, University of Tasmania, Hobart, Tasmania 7053, Australia
| | - Maree Fudge
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia; Centre for Marine Socioecology, University of Tasmania, Hobart, Tasmania 7053, Australia; College of Business and Economics, University of Tasmania, Australia
| | - Olivia Langhamer
- Division of Electricity, Department of Electrical Engineering, Uppsala University, Sweden
| | - Anke Bender
- Division of Electricity, Department of Electrical Engineering, Uppsala University, Sweden
| | - Siti M Yaakub
- Sustainability & Climate Solutions Department, DHI Water & Environment (S), Singapore
| | - Eloise Wilson
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia; Centre for Marine Socioecology, University of Tasmania, Hobart, Tasmania 7053, Australia
| | - Bridie J M Allan
- Department of Marine Science, University of Otago, Dunedin 9016, New Zealand
| | | | - Marcus Haward
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia; Centre for Marine Socioecology, University of Tasmania, Hobart, Tasmania 7053, Australia; Blue Economy Cooperative Research Centre, PO Box 897, Launceston, Tasmania 7250, Australia
| |
Collapse
|
19
|
Picciulin M, Zucchetta M, Facca C, Malavasi S. Boat-induced pressure does not influence breeding site selection of a vulnerable fish species in a highly anthropized coastal area. MARINE POLLUTION BULLETIN 2022; 180:113750. [PMID: 35597000 DOI: 10.1016/j.marpolbul.2022.113750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
The brown meagre (Sciaena umbra) is a vulnerable vocal fish species that may be affected by boat noise. The breeding site distribution along the anthropized Venice sea inlets was investigated, by using the species' chorusing activity as a proxy of spawning. Passive acoustic campaigns were repeated at 40 listening points distributed within the three inlets during three-time windows in both summer 2019 and 2020. The role of temporal, morphological, and hydrodynamic variables explaining the observed distribution patterns was evaluated using a GLM approach, considering also human-induced pressures among the candidate predictors. The GLM analysis indicates a higher probability of recording S. umbra chorus after sunset in deeper areas of the inlets, characterized by low water current, while the underwater noise overlapping the species' hearing range and boat abundance did not play any role. This suggests that the species' breeding site choice in the inlets was not influences by boat-induced pressure.
Collapse
Affiliation(s)
- Marta Picciulin
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari, University of Venice, via Torino 155, Mestre, 30172 Venice, Italy.
| | - Matteo Zucchetta
- Institute of Polar Sciences, ISP-CNR, via Torino 155, Mestre, 30172 Venice, Italy.
| | - Chiara Facca
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari, University of Venice, via Torino 155, Mestre, 30172 Venice, Italy.
| | - Stefano Malavasi
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari, University of Venice, via Torino 155, Mestre, 30172 Venice, Italy.
| |
Collapse
|
20
|
Maiditsch IP, Ladich F. Effects of noise on acoustic and visual signalling in the Croaking Gourami: differences in adaptation strategies in fish. BIOACOUSTICS 2022. [DOI: 10.1080/09524622.2022.2086174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
| | - Friedrich Ladich
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
21
|
Kühn S, Utne-Palm AC, de Jong K. Two of the most common crustacean zooplankton Meganyctiphanes norvegica and Calanus spp. produce sounds within the hearing range of their fish predators. BIOACOUSTICS 2022. [DOI: 10.1080/09524622.2022.2070542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Saskia Kühn
- Research and Technology Centre West Coast/Forschungs- und Technologiezentrum Westküste, Kiel University, Büsum, Germany
- Life Science and Technology, Groningen University, (RUG), Groningen, The Netherlands
| | - Anne Christine Utne-Palm
- Fish Capture, Institute of Marine Research/Havforskningsinstituttet, Bergen, Postboks 1870 Nordnes, Norway
| | - Karen de Jong
- Ecosystem Acoustics, Institute of Marine Research/Havforskningsinstituttet, Bergen, Postboks 1870 Nordnes, Norway
| |
Collapse
|
22
|
Wilson KC, Širović A, Semmens BX, Gittings SR, Pattengill-Semmens CV, McCoy C. Grouper source levels and aggregation dynamics inferred from passive acoustic localization at a multispecies spawning site. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 151:3052. [PMID: 35649949 DOI: 10.1121/10.0010236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/25/2022] [Indexed: 06/15/2023]
Abstract
Four species of grouper (family Epinephlidae), Red Hind (Epinephelus guttatus), Nassau (Epinephelus striatus), Black (Mycteroperca bonaci), and Yellowfin Grouper (Mycteroperca venenosa) share an aggregation site in Little Cayman, Cayman Islands and produce sounds while aggregating. Continuous observation of these aggregations is challenging because traditional diver or ship-based methods are limited in time and space. Passive acoustic localization can overcome this challenge for sound-producing species, allowing observations over long durations and at fine spatial scales. A hydrophone array was deployed in February 2017 over a 9-day period that included Nassau Grouper spawning. Passive acoustic localization was used to find positions of the grouper-produced calls recorded during this time, which enabled the measurement of call source levels and evaluation of spatiotemporal aspects of calling. Yellowfin Grouper had the lowest mean peak-to-peak (PP) call source level, and Nassau Grouper had the highest mean PP call source level (143.7 and 155.2 dB re: 1 μPa at 1 m for 70-170 Hz, respectively). During the days that Nassau Grouper spawned, calling peaked after sunset. Similarly, when Red Hind calls were abundant, calls were highest in the afternoon and evening. The measured source levels can be used to estimate communication and detection ranges and implement passive acoustic density estimation for these fishes.
Collapse
Affiliation(s)
- Katherine C Wilson
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, USA
| | - Ana Širović
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, USA
| | - Brice X Semmens
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, USA
| | - Stephen R Gittings
- National Oceanic and Atmospheric Administration, Office of National Marine Sanctuaries, Silver Spring, Maryland 20910, USA
| | | | - Croy McCoy
- Reef Environmental Education Foundation, Key Largo, Florida 33037, USA
| |
Collapse
|
23
|
Balebail S, Sisneros JA. Long duration advertisement calls of nesting male plainfin midshipman fish are honest indicators of size and condition. J Exp Biol 2022; 225:274840. [PMID: 35332923 DOI: 10.1242/jeb.243889] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/21/2022] [Indexed: 11/20/2022]
Abstract
The plainfin midshipman fish (Porichthys notatus) has long served as a model organism for neuroethology research on acoustic communication and related social behaviors. Type I or "singing" males produce highly stereotyped, periodic advertisement calls that are the longest known uninterrupted vertebrate vocalizations, lasting up to two hours in duration. Despite the extensive literature on the acoustic behaviour of this species, it remains unclear whether reproductive males signal their quality via their highly energetic, multiharmonic advertisement calls. Here, we recorded the advertisement calls of 22 reproductive type I males at night in a controlled laboratory setting in which males were housed in artificial tanks maintained at a constant temperature (13.9+0.3°C). The duration of the advertisement calls from type I males was observed to increase from the first call of the night to the middle call after which call duration remained steady until the early morning hours and first light. A strong positive correlation was observed between loudness (SPL and maximum SPL) of the advertisement call and body size (mass and standard length; rs>0.8). In addition, an asymptotic relationship was observed between the harmonic frequencies (F0-F10) of the advertisement calls and male body condition, with harmonic frequencies initially increasing with body condition but then plateauing at higher body condition. Taken together, our results suggest that type I male advertisement calls provide reliable honest information about male quality regarding size and body condition. Such condition dependent information of calling males could potentially be used by receptive females to help facilitate mate choice decisions.
Collapse
Affiliation(s)
- Sujay Balebail
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Joseph A Sisneros
- Department of Biology, University of Washington, Seattle, WA 98195, USA.,Department of Psychology, University of Washington, Seattle, WA 98195, USA.,Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
24
|
A Fish and Dolphin Biophony in the Boat Noise-Dominated Soundscape of the Cres-Lošinj Archipelago (Croatia). JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10020300] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Spatio-temporal variability of marine soundscapes reflects environmental dynamics and local habitat health. This study characterizes the coastal soundscape of the Cres-Lošinj Natura 2000 Site of Community Importance, encompassing the non-tourist (11–15 March 2020) and the tourist (26–30 July 2020) season. A total of 240 h of continuous recordings were manually analyzed and the abundance of animal vocalizations and boat noise was obtained; sound pressure levels were calculated for the low (63–2000 Hz) and high (2000–20,000 Hz) frequency range. Two fish sound types were drivers of both seasonal and diel variability of the low-frequency soundscape. The first is emitted by the cryptic Roche’s snake blenny (Ophidion rochei), while the second, whose emitter remains unknown, was previously only described in canyons and coralligenous habitats of the Western Mediterranean Sea. The high-frequency bands were characterized by bottlenose dolphin (Tursiops truncatus) vocalizations, indicating dolphins’ use of area for various purposes. Boat noise, however, dominated the local soundscape along the whole considered periods and higher sound pressure levels were found during the Tourist season. Human-generated noise pollution, which has been previously found 10 years ago, is still present in the area and this urges management actions.
Collapse
|
25
|
Killen SS, Cortese D, Cotgrove L, Jolles JW, Munson A, Ioannou CC. The Potential for Physiological Performance Curves to Shape Environmental Effects on Social Behavior. Front Physiol 2021; 12:754719. [PMID: 34858209 PMCID: PMC8632012 DOI: 10.3389/fphys.2021.754719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/19/2021] [Indexed: 01/03/2023] Open
Abstract
As individual animals are exposed to varying environmental conditions, phenotypic plasticity will occur in a vast array of physiological traits. For example, shifts in factors such as temperature and oxygen availability can affect the energy demand, cardiovascular system, and neuromuscular function of animals that in turn impact individual behavior. Here, we argue that nonlinear changes in the physiological traits and performance of animals across environmental gradients—known as physiological performance curves—may have wide-ranging effects on the behavior of individual social group members and the functioning of animal social groups as a whole. Previous work has demonstrated how variation between individuals can have profound implications for socially living animals, as well as how environmental conditions affect social behavior. However, the importance of variation between individuals in how they respond to changing environmental conditions has so far been largely overlooked in the context of animal social behavior. First, we consider the broad effects that individual variation in performance curves may have on the behavior of socially living animals, including: (1) changes in the rank order of performance capacity among group mates across environments; (2) environment-dependent changes in the amount of among- and within-individual variation, and (3) differences among group members in terms of the environmental optima, the critical environmental limits, and the peak capacity and breadth of performance. We then consider the ecological implications of these effects for a range of socially mediated phenomena, including within-group conflict, within- and among group assortment, collective movement, social foraging, predator-prey interactions and disease and parasite transfer. We end by outlining the type of empirical work required to test the implications for physiological performance curves in social behavior.
Collapse
Affiliation(s)
- Shaun S Killen
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Daphne Cortese
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Lucy Cotgrove
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Jolle W Jolles
- Center for Ecological Research and Forestry Applications (CREAF), Campus de Bellaterra (UAB), Barcelona, Spain
| | - Amelia Munson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Christos C Ioannou
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
26
|
Meyer N, Schafft M, Wegner B, Wolter C, Arlinghaus R, Venohr M, von Oheimb G. A day on the shore: Ecological impacts of non-motorised recreational activities in and around inland water bodies. J Nat Conserv 2021. [DOI: 10.1016/j.jnc.2021.126073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Vieira M, Beauchaud M, Amorim MCP, Fonseca PJ. Boat noise affects meagre (Argyrosomus regius) hearing and vocal behaviour. MARINE POLLUTION BULLETIN 2021; 172:112824. [PMID: 34391007 DOI: 10.1016/j.marpolbul.2021.112824] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Aquatic noise has increased in last decades imposing new constraints on aquatic animals' acoustic communication. Meagre (Argyrosomus regius) produce loud choruses during the breeding season, likely facilitating aggregations and mating, and are thus amenable to being impacted by anthropogenic noise. We assessed the impact of boat noise on this species acoustic communication by: evaluating possible masking effects of boat noise on hearing using Auditory Evoked Potentials (AEP) and inspecting changes in chorus sound levels from free ranging fish upon boat passages. Our results point to a significant masking effect of anthropogenic noise since we observed a reduction of ca. 20 dB on the ability to discriminate conspecific calls when exposed to boat noise. Furthermore, we verified a reduction in chorus energy during ferryboat passages, a behavioural effect that might ultimately impact spawning. This study is one of few addressing the effects of boat noise by combining different methodologies both in the lab and with free ranging animals.
Collapse
Affiliation(s)
- Manuel Vieira
- Departamento de Biologia Animal and cE3c_Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal; MARE_Marine and Environmental Sciences Centre, ISPA, Instituto Universitário, Lisbon, Portugal, and Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.
| | - Marilyn Beauchaud
- Equipe de Neuro-Ethologie Sensorielle; (ENES/CRNL, CNRS UMR 5292, Inserm UMR S 1028) Faculté des Sciences et Techniques, Université Jean-Monnet de Lyon/Saint-Etienne, Saint-Etienne, France
| | - M Clara P Amorim
- MARE_Marine and Environmental Sciences Centre, ISPA, Instituto Universitário, Lisbon, Portugal, and Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Paulo J Fonseca
- Departamento de Biologia Animal and cE3c_Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
28
|
Sex Associated Effects of Noise Pollution in Stone Sculpin ( Paracottus knerii) as a Model Object in the Context of Human-Induced Rapid Environmental Change. BIOLOGY 2021; 10:biology10101063. [PMID: 34681163 PMCID: PMC8533501 DOI: 10.3390/biology10101063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/06/2021] [Accepted: 10/15/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary In this comprehensive multidisciplinary study, we applied a novel multilevel approach to stone sculpins Paracottus knerii Dybowski, 1874, as model organisms and test for the first time the hypothesis of sex-dependent differences in response to long-term noise exposure in fish. The results testify that the stone sculpin females appeared to experience excessive stress, while the males showed adaptive recalibrations. These effects may be explained by a unique adaptive strategy of offspring care in the stone sculpin males and their biological role in reproductive behavior within the species. The findings obtained may help to elucidate the links between noise exposure in the context of human-induced rapid environmental change (HIREC), long-term sex-related changes in fishes, and the possible further evolutionary success of a species. Such HIREC modeling not only provides information about the potential consequences under anthropogenic pressure but also can help identify the natural mechanisms of stress resistance in different species, including those related to sex, and also contribute to the development of effective environmental management practices. Abstract This work simulates the consequences of HIREC using stone sculpins as model organisms. Sex-dependent effects of long-term noise exposure at mean sound pressure levels of 160–179 dB re 1 μPa (SPLpk–pk) were measured. We applied a multilevel approach to testing the stress response: a comparative analysis of the macula sacculi and an assessment of hematological and molecular stress responses. Noise exposure resulted in hair cell loss, changes in some cytometric parameters in blood, and an increase in the number of functionally active mitochondria in the red blood cells of males and its decrease in females, demonstrating a mitochondrial allostatic load and depletion of functional reserve. Finally, a statistically significant decrease in the telomerase activity of the auditory epithelium and a shortening of telomere length in the brain as molecular markers of stress were observed after noise exposure only in females. No significant decrease in telomerase activity and shortening of telomere length in nerve target tissues were observed in stressed males. However, we recorded an increase in the telomerase activity in male gonads. This sex-dependent difference in load may be associated with accelerated cellular aging in females and lower stress-related long-term risk in males. In this article, we discuss possible reasons for these noise-induced stress effects.
Collapse
|
29
|
Pine MK, Wilson L, Jeffs AG, McWhinnie L, Juanes F, Scuderi A, Radford CA. A Gulf in lockdown: How an enforced ban on recreational vessels increased dolphin and fish communication ranges. GLOBAL CHANGE BIOLOGY 2021; 27:4839-4848. [PMID: 34254409 DOI: 10.1111/gcb.15798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
From midnight of 26 March 2020, New Zealand became one of the first countries to enter a strict lockdown to combat the spread of COVID-19. The lockdown banned all non-essential services and travel both on land and sea. Overnight, the country's busiest coastal waterway, the Hauraki Gulf Marine Park, became devoid of almost all recreational and non-essential commercial vessels. An almost instant change in the marine soundscape ensued, with ambient sound levels in busy channels dropping nearly threefold the first 12 h. This sudden drop led fish and dolphins to experience an immediate increase in their communication ranges by up to an estimated 65%. Very low vessel activity during the lockdown (indicated by the presence of vessel noise over the day) revealed new insights into cumulative noise effects from vessels on auditory masking. For example, at sites nearer Auckland City, communication ranges increased approximately 18 m (22%) or 50 m (11%) for every 10% decrease in vessel activity for fish and dolphins, respectively. However, further from the city and in deeper water, these communication ranges were increased by approximately 13 m (31%) or 510 m (20%). These new data demonstrate how noise from small vessels can impact underwater soundscapes and how marine animals will have to adapt to ever-growing noise pollution.
Collapse
Affiliation(s)
- Matthew K Pine
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Louise Wilson
- Institute of Marine Science, University of Auckland, Auckland, New Zealand
| | - Andrew G Jeffs
- Institute of Marine Science, University of Auckland, Auckland, New Zealand
| | - Lauren McWhinnie
- School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, UK
- Department of Geography, University of Victoria, Victoria, BC, Canada
| | - Francis Juanes
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Alessia Scuderi
- Marine and Environmental Science Faculty, University of Cádiz, Cádiz, Spain
- Association Nereide, Cádiz, Spain
| | - Craig A Radford
- Institute of Marine Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
30
|
Wang J, Wang D, Hu G, Yang L, Liu Z, Yan D, Serikuly N, Alpyshov E, Demin KA, Strekalova T, Gil Barcellos LJ, Barcellos HHA, Amstislavskaya TG, de Abreu MS, Kalueff AV. The role of auditory and vibration stimuli in zebrafish neurobehavioral models. Behav Processes 2021; 193:104505. [PMID: 34547376 DOI: 10.1016/j.beproc.2021.104505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022]
Abstract
Strongly affecting human and animal physiology, sounds and vibration are critical environmental factors whose complex role in behavioral and brain functions necessitates further clinical and experimental studies. Zebrafish are a promising model organism for neuroscience research, including probing the contribution of auditory and vibration stimuli to neurobehavioral processes. Here, we summarize mounting evidence on the role of sound and vibration in zebrafish behavior and brain function, and outline future directions of translational research in this field. With the growing environmental exposure to noise and vibration, we call for more active use of zebrafish models for probing neurobehavioral and bioenvironmental consequences of acute and long-term exposure to sounds and vibration in complex biological systems.
Collapse
Affiliation(s)
- Jingtao Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - Dongmei Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - Guojun Hu
- School of Pharmacy, Southwest University, Chongqing, China
| | - LongEn Yang
- School of Pharmacy, Southwest University, Chongqing, China
| | - ZiYuan Liu
- School of Pharmacy, Southwest University, Chongqing, China
| | - Dongni Yan
- School of Pharmacy, Southwest University, Chongqing, China
| | - Nazar Serikuly
- School of Pharmacy, Southwest University, Chongqing, China
| | - Erik Alpyshov
- School of Pharmacy, Southwest University, Chongqing, China
| | - Konstantin A Demin
- St. Petersburg State University, St. Petersburg, Russia; Neurobiology Program, Sirius University, Sochi, Russia
| | - Tatiana Strekalova
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia; Maastricht University, Maastricht, The Netherlands; Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Leonardo J Gil Barcellos
- Graduate Programs in Bio-experimentation and Environmental Sciences, University of Passo Fundo, Passo Fundo, Brazil; Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| | | | | | - Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil; Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russia.
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Ural Federal University, Ekaterinburg, Russia.
| |
Collapse
|
31
|
Boyd AD, Gowans S, Mann DA, Simard P. Tropical Storm Debby: Soundscape and fish sound production in Tampa Bay and the Gulf of Mexico. PLoS One 2021; 16:e0254614. [PMID: 34255792 PMCID: PMC8277075 DOI: 10.1371/journal.pone.0254614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/29/2021] [Indexed: 11/24/2022] Open
Abstract
Tropical cyclones have large effects on marine ecosystems through direct (e.g., storm surge) and indirect (e.g., nutrient runoff) effects. Given their intensity, understanding their effects on the marine environment is an important goal for conservation and resource management. In June 2012, Tropical Storm Debby impacted coastal Florida including Tampa Bay. Acoustic recorders were deployed prior to the storm at a shallow water location inside Tampa Bay and a deeper water location in the Gulf of Mexico. Ambient noise levels were significantly higher during the storm, and the highest increases were observed at lower frequencies (≤ 500 Hz). Although the storm did not directly hit the area, mean ambient noise levels were as high as 13.5 dB RMS above levels in non-storm conditions. At both the shallow water and the deep water station, the rate of fish calls showed a variety of patterns over the study period, with some rates decreasing during the storm and others showing no apparent reaction. The rates of fish calls were frequently correlated with storm conditions (storm surge, water temperature), but also with lunar cycle. Reactions to the storm were generally stronger in the inshore station, although fish sounds increased quickly after the storm's passage. Although this was not a major tropical cyclone nor a direct hit on the area, the storm did appear to elicit a behavioral response from the fish community, and ambient noise levels likely limited the abilities of marine species to use sound for activities such as communication. Given the increases in intensity and rainfall predicted for tropical cyclones due to climate change, further studies of the ecological effects of tropical cyclones are needed.
Collapse
Affiliation(s)
- Anjali D. Boyd
- Eckerd College, Marine Science Discipline, St. Petersburg, Florida, United States of America
| | - Shannon Gowans
- Eckerd College, Marine Science Discipline, St. Petersburg, Florida, United States of America
- Eckerd College, Marine Science and Biology Disciplines, St. Petersburg, Florida, United States of America
| | - David A. Mann
- Loggerhead Instruments, Sarasota, Florida, United States of America
| | - Peter Simard
- Eckerd College, Environmental Studies Discipline, St. Petersburg, Florida, United States of America
| |
Collapse
|
32
|
Alves D, Vieira M, Amorim MCP, Fonseca PJ. Boat noise interferes with Lusitanian toadfish acoustic communication. J Exp Biol 2021; 224:269006. [PMID: 34102670 DOI: 10.1242/jeb.234849] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 04/22/2021] [Indexed: 12/13/2022]
Abstract
Anthropogenic noise is considered a major underwater pollutant as increasing ocean background noise due to human activities is impacting aquatic organisms. One of the most prevalent anthropogenic sounds is boat noise. Although motorboat traffic has increased in the past few decades, its impact on the communication of fish is still poorly known. The highly vocal Lusitanian toadfish (Halobatrachus didactylus) is an excellent model to test the impact of this anthropogenic stressor as it relies on acoustic communication to attract mates. Here, we performed two experiments to test the impact of boat noise on the acoustic communication of the Lusitanian toadfish. Using the auditory evoked potential (AEP) technique, we first compared the maximum distance a fish can perceive a boatwhistle (BW), the mate attraction acoustic signal, before and after embedding it in boat noise. Noises from a small motorboat and from a ferryboat reduced the active space from a control value of 6.4-10.4 m to 2.0-2.5 m and 6.3-6.7 m, respectively. In the second experiment we monitored the acoustic behaviour of breeding males exposed to boat noise playbacks and we observed an increase in the inter-onset interval of BWs and a disruption of the usual vocal interactions between singing males. These results demonstrate that boat noise can severely reduce the acoustic active space and affect the chorusing behaviour in this species, which may have consequences in breeding success for individuals and could thus affect fitness.
Collapse
Affiliation(s)
- Daniel Alves
- Departamento de Biologia Animal and cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Bloco C2. Campo Grande, 1749-016 Lisboa, Portugal
| | - Manuel Vieira
- Departamento de Biologia Animal and cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Bloco C2. Campo Grande, 1749-016 Lisboa, Portugal
| | - M Clara P Amorim
- MARE - Marine and Environmental Sciences Centre, ISPA-Instituto Universitário, Lisbon, Portugal
| | - Paulo J Fonseca
- Departamento de Biologia Animal and cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Bloco C2. Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
33
|
Ferrier-Pagès C, Leal MC, Calado R, Schmid DW, Bertucci F, Lecchini D, Allemand D. Noise pollution on coral reefs? - A yet underestimated threat to coral reef communities. MARINE POLLUTION BULLETIN 2021; 165:112129. [PMID: 33588103 DOI: 10.1016/j.marpolbul.2021.112129] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 05/08/2023]
Abstract
Noise pollution is an anthropogenic stressor that is increasingly recognized for its negative impact on the physiology, behavior and fitness of marine organisms. Driven by the recent expansion of maritime shipping, artisanal fishing and tourism (e.g., motorboats used for recreational purpose), underwater noise increased greatly on coral reefs. In this review, we first provide an overview on how reef organisms sense and use sound. Thereafter we review the current knowledge on how underwater noise affects different reef organisms. Although the majority of available examples are limited to few fish species, we emphasize how the impact of noise differs based on an organisms' acoustic sensitivity, mobility and developmental stage, as well as between noise type, source and duration. Finally, we highlight measures available to governments, the shipping industry and individual users and provide directions for polices and research aimed to manage this global issue of noise emission on coral reefs.
Collapse
Affiliation(s)
- Christine Ferrier-Pagès
- Centre Scientifique de Monaco, Coral Ecophysiology Team, 8 Quai Antoine 1er, MC-98000, Monaco.
| | - Miguel C Leal
- ECOMARE, Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ricardo Calado
- ECOMARE, Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | | | - Frédéric Bertucci
- Functional and Evolutionary Morphology Lab, University of Liege, Belgium; PSL University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, 98729 Moorea, French Polynesia
| | - David Lecchini
- PSL University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, 98729 Moorea, French Polynesia; Laboratoire d'Excellence "CORAIL", Perpignan, France
| | - Denis Allemand
- Centre Scientifique de Monaco, Coral Ecophysiology Team, 8 Quai Antoine 1er, MC-98000, Monaco
| |
Collapse
|
34
|
Lara RA, Vasconcelos RO. Impact of noise on development, physiological stress and behavioural patterns in larval zebrafish. Sci Rep 2021; 11:6615. [PMID: 33758247 PMCID: PMC7988139 DOI: 10.1038/s41598-021-85296-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/26/2021] [Indexed: 01/31/2023] Open
Abstract
Noise pollution is increasingly present in aquatic ecosystems, causing detrimental effects on growth, physiology and behaviour of organisms. However, limited information exists on how this stressor affects animals in early ontogeny, a critical period for development and establishment of phenotypic traits. We tested the effects of chronic noise exposure to increasing levels (130 and 150 dB re 1 μPa, continuous white noise) and different temporal regimes on larval zebrafish (Danio rerio), an important vertebrate model in ecotoxicology. The acoustic treatments did not affect general development or hatching but higher noise levels led to increased mortality. The cardiac rate, yolk sac consumption and cortisol levels increased significantly with increasing noise level at both 3 and 5 dpf (days post fertilization). Variation in noise temporal patterns (different random noise periods to simulate shipping activity) suggested that the time regime is more important than the total duration of noise exposure to down-regulate physiological stress. Moreover, 5 dpf larvae exposed to 150 dB continuous noise displayed increased dark avoidance in anxiety-related dark/light preference test and impaired spontaneous alternation behaviour. We provide first evidence of noise-induced physiological stress and behavioural disturbance in larval zebrafish, showing that both noise amplitude and timing negatively impact key developmental endpoints in early ontogeny.
Collapse
Affiliation(s)
- Rafael A Lara
- Institute of Science and Environment, University of Saint Joseph, Macao S.A.R., China.
- Departamento de Biología, Universidad de Sevilla, Seville, Spain.
| | - Raquel O Vasconcelos
- Institute of Science and Environment, University of Saint Joseph, Macao S.A.R., China.
| |
Collapse
|
35
|
Jiménez-Vargas GM, Vargas-Salinas F. Does anthropogenic noise promotes advertisement call adjustments in the rubí poison frog Andinobates bombetes? BEHAVIOUR 2021. [DOI: 10.1163/1568539x-bja10080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Anthropogenic noise, characterized by higher intensities at low frequencies, can restrict acoustic communication between conspecifics and eventually reduce the fitness of populations. We analysed changes in the call features of 52 males of the poison frog A. bombetes subjected to anthropogenic noise through playback experiments. Thirty-one males did not call during playbacks, but the remaining 21 males did. Fourteen of those 21 males increased their dominant call frequency on average 130.76 Hz when exposed to noise. Males did not increase or diminish the emission rate, number of pulses, and duration of their calls. It is possible that males by increasing the frequency of their calls are showing a behavioural strategy that maintain signal-to-noise ratio, which allows them to communicate acoustically in noisy habitats. Further studies are necessary to corroborate this hypothesis given that the magnitude of the increase in call frequency was small (<100 Hz) for most males.
Collapse
Affiliation(s)
- Gina Marcela Jiménez-Vargas
- Grupo de Evolución, Ecología y Conservación EECO, Programa de Biología, Facultad de Ciencias Básicas y Tecnologías, Universidad del Quindío, Armenia, Colombia
| | - Fernando Vargas-Salinas
- Grupo de Evolución, Ecología y Conservación EECO, Programa de Biología, Facultad de Ciencias Básicas y Tecnologías, Universidad del Quindío, Armenia, Colombia
| |
Collapse
|
36
|
Nikolich K, Halliday WD, Pine MK, Cox K, Black M, Morris C, Juanes F. The sources and prevalence of anthropogenic noise in Rockfish Conservation Areas with implications for marine reserve planning. MARINE POLLUTION BULLETIN 2021; 164:112017. [PMID: 33517084 DOI: 10.1016/j.marpolbul.2021.112017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Underwater noise pollution is a recognized threat to marine life. In British Columbia, Canada, Pacific rockfish (Sebastes spp.) were historically overfished, prompting the establishment of Rockfish Conservation Areas (RCAs). However, there are no restrictions prohibiting vessel transits in RCAs. We hypothesized that RCAs do not protect rockfish from sub-lethal harm from noise. We compared noise levels at three RCAs with adjacent unprotected reference sites from August 2018-June 2019. While RCAs had lower levels of noise overall than reference sites, this trend was inconsistent; some RCA sites had higher levels of noise during certain time periods than non-RCA sites. A vessel noise detector was the best predictor of noise level over three frequency bands (20-100 Hz, 100-1000 Hz, 1-10 kHz), and predicted sound levels which could mask rockfish communication. We conclude that RCAs do not reliably protect rockfish from noise pollution, and recommend further study into potential impacts on stock recovery.
Collapse
Affiliation(s)
- Katrina Nikolich
- Fisheries Ecology and Marine Conservation Laboratory, University of Victoria, Victoria, British Columbia, Canada.
| | - William D Halliday
- Fisheries Ecology and Marine Conservation Laboratory, University of Victoria, Victoria, British Columbia, Canada; Wildlife Conservation Society Canada, Victoria, British Columbia, Canada
| | - Matthew K Pine
- Fisheries Ecology and Marine Conservation Laboratory, University of Victoria, Victoria, British Columbia, Canada
| | - Kieran Cox
- Fisheries Ecology and Marine Conservation Laboratory, University of Victoria, Victoria, British Columbia, Canada; Hakai Institute, Calvert Island, British Columbia, Canada
| | - Morgan Black
- Fisheries Ecology and Marine Conservation Laboratory, University of Victoria, Victoria, British Columbia, Canada; Hakai Institute, Calvert Island, British Columbia, Canada
| | - Corey Morris
- Fisheries and Oceans Canada, Northwest Atlantic Fisheries Centre, St. John's, Newfoundland, Canada
| | - Francis Juanes
- Fisheries Ecology and Marine Conservation Laboratory, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
37
|
It Is Not Just a Matter of Noise: Sciaena umbra Vocalizes More in the Busiest Areas of the Venice Tidal Inlets. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9020237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Boat noise is known to have a detrimental effect on a vulnerable Mediterranean sciaenid, the brown meagre Sciaena umbra. During summer 2019, two acoustic surveys were conducted at 40 listening points distributed within the inlet areas of Venice (northern Adriatic Sea). Two five-minute recordings were collected per each point during both the boat traffic hours and the peak of the species’ vocal activity with the aims of (1) characterizing the local noise levels and (2) evaluating the fish spatial distribution by means of its sounds. High underwater broadband noise levels were found (sound pressure levels (SPLs)50–20kHz 107–137 dB re 1 μPa). Interestingly, a significantly higher background noise within the species’ hearing sensibility (100–3150 Hz) was highlighted in the afternoon (113 ± 5 dB re 1 μPa) compared to the night (103 ± 7 dB re 1 μPa) recordings due to a high vessel traffic. A cluster analysis based on Sciaena umbra vocalizations separated the listening points in three groups: highly vocal groups experienced higher vessel presence and higher afternoon noise levels compared to the lower ones. Since the species’ sounds are a proxy of spawning events, this suggests that the reproductive activity was placed in the noisier part of the inlets.
Collapse
|
38
|
Duarte CM, Chapuis L, Collin SP, Costa DP, Devassy RP, Eguiluz VM, Erbe C, Gordon TAC, Halpern BS, Harding HR, Havlik MN, Meekan M, Merchant ND, Miksis-Olds JL, Parsons M, Predragovic M, Radford AN, Radford CA, Simpson SD, Slabbekoorn H, Staaterman E, Van Opzeeland IC, Winderen J, Zhang X, Juanes F. The soundscape of the Anthropocene ocean. Science 2021; 371:371/6529/eaba4658. [DOI: 10.1126/science.aba4658] [Citation(s) in RCA: 161] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Carlos M. Duarte
- Red Sea Research Centre (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
- Arctic Research Centre, Department of Biology, Aarhus University, C.F. Møllers Allé 8, DK-8000 Århus C, Denmark
| | - Lucille Chapuis
- Biosciences, University of Exeter, Prince of Wales Road, Exeter EX4 4PS, UK
| | - Shaun P. Collin
- School of Life Sciences, La Trobe University, Bundoora, VIC 3086, Australia
| | - Daniel P. Costa
- Institute of Marine Sciences, University of California, Santa Cruz, CA 95060, USA
| | - Reny P. Devassy
- Red Sea Research Centre (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Victor M. Eguiluz
- Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), E07122 Palma de Mallorca, Spain
| | - Christine Erbe
- Centre for Marine Science & Technology, Curtin University, Perth, WA 6102, Australia
| | - Timothy A. C. Gordon
- Biosciences, University of Exeter, Prince of Wales Road, Exeter EX4 4PS, UK
- Australian Institute of Marine Science, Perth, WA 6009, Australia
| | - Benjamin S. Halpern
- National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, CA 93101, USA
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106, USA
| | - Harry R. Harding
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Michelle N. Havlik
- Red Sea Research Centre (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Mark Meekan
- Australian Institute of Marine Science, Perth, WA 6009, Australia
| | - Nathan D. Merchant
- Centre for Environment, Fisheries and Aquaculture Science, Lowestoft NR33 0HT, UK
| | - Jennifer L. Miksis-Olds
- Center for Acoustics Research and Education, University of New Hampshire, Durham, NH 03824, USA
| | - Miles Parsons
- Centre for Marine Science & Technology, Curtin University, Perth, WA 6102, Australia
- Australian Institute of Marine Science, Perth, WA 6009, Australia
| | - Milica Predragovic
- Red Sea Research Centre (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Andrew N. Radford
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Craig A. Radford
- Institute of Marine Science, Leigh Marine Laboratory, University of Auckland, P.O. Box 349, Warkworth 0941, New Zealand
| | - Stephen D. Simpson
- Biosciences, University of Exeter, Prince of Wales Road, Exeter EX4 4PS, UK
| | - Hans Slabbekoorn
- Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA Leiden, Netherlands
| | | | - Ilse C. Van Opzeeland
- Alfred-Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | | | - Xiangliang Zhang
- Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Francis Juanes
- Department of Biology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
39
|
Pyć CD, Vallarta J, Rice AN, Zeddies DG, Maxner EE, Denes SL. Vocal behavior of the endangered splendid toadfish and potential masking by anthropogenic noise. CONSERVATION SCIENCE AND PRACTICE 2021. [DOI: 10.1111/csp2.352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Cynthia D. Pyć
- JASCO Applied Sciences (Canada) Ltd Victoria British Columbia Canada
| | | | - Aaron N. Rice
- Center for Conservation Bioacoustics, Cornell Lab of Ornithology Cornell University Ithaca New York USA
| | | | - Emily E. Maxner
- JASCO Applied Sciences (Canada) Ltd Dartmouth Nova Scotia Canada
| | | |
Collapse
|
40
|
Acoustic Characteristics of Small Research Vessels. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8120970] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Vessel noise is an acute and chronic stressor of a wide variety of marine fauna. Understanding, modelling and mitigating the impacts of this pollutant requires quantification of acoustic signatures for various vessel classes for input into propagation models and at present there is a paucity of such data for small vessels (<25 m). Our study provides this information for three small vessels (<6 m length and 30, 90 and 180 hp engines). The closest point of approach was recorded at various ranges across a flat, ≈10 m deep sandy lagoon, for multiple passes at multiple speeds (≈5, 10, 20, 30 km h−1) by each vessel at Lizard Island, Great Barrier Reef, Australia. Radiated noise levels (RNLs) and environment-affected source levels (ASLs) determined by linear regression were estimated for each vessel and speed. From the slowest to fastest speeds, median RNLs ranged between 153.4 and 166.1 dB re 1 µPa m, whereas ASLs ranged from 146.7 to 160.0 dB re 1 µPa m. One-third octave band-level RNLs are provided for each vessel–speed scenario, together with their interpolated received levels with range. Our study provides data on source spectra of small vessels to assist in understanding and modelling of acoustic exposure experienced by marine fauna.
Collapse
|
41
|
Greggor AL, Berger-Tal O, Blumstein DT. The Rules of Attraction: The Necessary Role of Animal Cognition in Explaining Conservation Failures and Successes. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2020. [DOI: 10.1146/annurev-ecolsys-011720-103212] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Integrating knowledge and principles of animal behavior into wildlife conservation and management has led to some concrete successes but has failed to improve conservation outcomes in other cases. Many conservation interventions involve attempts to either attract or repel animals, which we refer to as approach/avoidance issues. These attempts can be reframed as issues of manipulating the decisions animals make, which are driven by their perceptual abilities and attentional biases, as well as the value animals attribute to current stimuli and past learned experiences. These processes all fall under the umbrella of animal cognition. Here, we highlight rules that emerge when considering approach/avoidance conservation issues through the lens of cognitive-based management. For each rule, we review relevant conservation successes and failures to better predict the conditions in which behavior can be manipulated, and we suggest how to avoid future failures.
Collapse
Affiliation(s)
- Alison L. Greggor
- Department of Recovery Ecology, Institute for Conservation Research, San Diego Zoo Global, Escondido, California 92027, USA
| | - Oded Berger-Tal
- Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel
| | - Daniel T. Blumstein
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
42
|
McCloskey KP, Chapman KE, Chapuis L, McCormick MI, Radford AN, Simpson SD. Assessing and mitigating impacts of motorboat noise on nesting damselfish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115376. [PMID: 32829125 DOI: 10.1016/j.envpol.2020.115376] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/02/2020] [Accepted: 08/04/2020] [Indexed: 05/15/2023]
Abstract
Motorboats are a pervasive, growing source of anthropogenic noise in marine environments, with known impacts on fish physiology and behaviour. However, empirical evidence for the disruption of parental care remains scarce and stems predominantly from playback studies. Additionally, there is a paucity of experimental studies examining noise-mitigation strategies. We conducted two field experiments to investigate the effects of noise from real motorboats on the parental-care behaviours of a common coral-reef fish, the Ambon damselfish Pomacentrus amboinensis, which exhibits male-only egg care. When exposed to motorboat noise, we found that males exhibited vigilance behaviour 34% more often and spent 17% more time remaining vigilant, compared to an ambient-sound control. We then investigated nest defence in the presence of an introduced conspecific male intruder, incorporating a third noise treatment of altered motorboat-driving practice that was designed to mitigate noise exposure via speed and distance limitations. The males spent 22% less time interacting with the intruder and 154% more time sheltering during normal motorboat exposure compared to the ambient-sound control, with nest-defence levels in the mitigation treatment equivalent to those in ambient conditions. Our results reveal detrimental impacts of real motorboat noise on some aspects of parental care in fish, and successfully demonstrate the positive effects of an affordable, easily implemented mitigation strategy. We strongly advocate the integration of mitigation strategies into future experiments in this field, and the application of evidence-based policy in our increasingly noisy world.
Collapse
Affiliation(s)
- Kieran P McCloskey
- Biosciences, University of Exeter, Hatherly Laboratories, Prince of Wales Road, Exeter, EX4 4PS, UK.
| | - Katherine E Chapman
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Lucille Chapuis
- Biosciences, University of Exeter, Hatherly Laboratories, Prince of Wales Road, Exeter, EX4 4PS, UK
| | - Mark I McCormick
- Department of Marine Biology and Aquaculture, James Cook University, Townsville, Queensland, 4811, Australia; Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
| | - Andrew N Radford
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Stephen D Simpson
- Biosciences, University of Exeter, Hatherly Laboratories, Prince of Wales Road, Exeter, EX4 4PS, UK
| |
Collapse
|
43
|
Chanda K, Chakraborty B, Mahale VP, Latha G, Fernandes W. Characterizing three shallow-water locations off Goa, India, using passive acoustic data. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 148:1536. [PMID: 33003864 DOI: 10.1121/10.0001960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
In this study, an analysis of the passive acoustic data is carried out for the quantitative characterization of shallow-water acoustic environments from three major estuarine systems of Goa during the months of March and April. The identification of fish sounds was carried out using waveform and peak power spectral densities (PSDs) of the individual fish calls. Fish sound data showed that the toadfish of the Batrachoididae family (Colletteichthys dussumieri species) produced a spectral level 112.27 ± 4.48 dB re 1 μPa2 /Hz at 448.96 ± 40.30 Hz frequency from the mangrove-dominated tidally influenced Mandovi estuary. Similarly, in a coral reef area near Grande Island in the Zuari estuary, Tiger Perch fish from the Terapontidae family (Terapon threaps species) were identified, having spectral levels 106.91 ± 3.08 dB re 1 μPa2 /Hz at 1791.56 ± 106.55 Hz frequency. From the Sal estuary, PSD levels were found to be around 98.24 ± 2.98 dB re 1 μPa2/Hz at 1796.95 ± 72.76 Hz frequency for Tiger Perch of the Terapontidae family (T. threaps species). To characterize the contributions of biophony (fish), geophony (wind and flow, etc.), and anthrophony (boats, etc.), cluster analysis is employed. In the Mandovi estuary, the root-mean-square sound pressure level (SPLrms) of broadband toadfish was a function of the water flow and temperature. In the Zuari estuary, SPLrms was a function of the water temperature and wind, whereas in the Sal estuary, wind mainly influenced the SPLrms.
Collapse
Affiliation(s)
- Kranthikumar Chanda
- Council of Scientific and Industrial Research-National Institute of Oceanography, Dona Paula, Goa 403 004, India
| | - Bishwajit Chakraborty
- Council of Scientific and Industrial Research-National Institute of Oceanography, Dona Paula, Goa 403 004, India
| | - V P Mahale
- Council of Scientific and Industrial Research-National Institute of Oceanography, Dona Paula, Goa 403 004, India
| | - G Latha
- Earth System Science Organisation-National Institute of Ocean Technology, Pallikaranai, Chennai 600 100, India
| | - W Fernandes
- Council of Scientific and Industrial Research-National Institute of Oceanography, Dona Paula, Goa 403 004, India
| |
Collapse
|
44
|
Butler JM, Maruska KP. Noise during mouthbrooding impairs maternal care behaviors and juvenile development and alters brain transcriptomes in the African cichlid fish Astatotilapia burtoni. GENES BRAIN AND BEHAVIOR 2020; 20:e12692. [PMID: 32779314 DOI: 10.1111/gbb.12692] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 02/01/2023]
Abstract
Anthropogenic noise has increased underwater ambient sound levels in the range in which most fishes detect and produce acoustic signals. Although the impacts of increased background noise on fish development have been studied in a variety of species, there is a paucity of information on how noise affects parental care. Mouthbrooding is an energetically costly form of parental care in which the brooding fish carries developing larvae in the buccal cavity for the duration of development. In the African cichlid Astatotilapia burtoni, females carry their brood for ~2 weeks during which time they do not eat. To test the hypothesis that increased background noise impacts maternal care behaviors and brood development, we exposed brooding females to a 3-h period of excess noise (~140 dB) played through an underwater speaker. Over half of noise-exposed brooding females cannibalized or pre-maturely released their brood, but 90% of control females exhibited normal brooding behaviors. RNA-seq analysis revealed that transcripts related to feeding and parental care were differentially expressed in the brains of noise-exposed females. Juveniles that were exposed to noise during their brood period within the mother's mouth had lower body condition factors, higher mortality and altered head transcriptomes compared with control broods. Furthermore, onset of adult-typical coloration and behaviors was delayed compared with control fish. Together, these data indicate that noise has severe impacts on reproductive fitness in mouthbrooding females. Our results, combined with past studies, indicate that parental care stages are extremely susceptible to noise-induced perturbations with detrimental effects on species persistence.
Collapse
Affiliation(s)
- Julie M Butler
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA.,Stanford University, Biology Department, Stanford, California, USA
| | - Karen P Maruska
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
45
|
Anthropogenic noise reduces male reproductive investment in an acoustically signaling insect. Behav Ecol Sociobiol 2020. [DOI: 10.1007/s00265-020-02868-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
46
|
Vessel noise affects routine swimming and escape response of a coral reef fish. PLoS One 2020; 15:e0235742. [PMID: 32702032 PMCID: PMC7377389 DOI: 10.1371/journal.pone.0235742] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 06/23/2020] [Indexed: 12/02/2022] Open
Abstract
An increasing number of studies have shown that anthropogenic noise can negatively affect aspects of the anti-predator behaviour of reef fishes, potentially affecting fitness and survival. However, it has been suggested that effects could differ among noise sources. The present study compared two common sources of anthropogenic noise and investigated its effects on behavioural traits critical for fish survival. In a tank-based experiment we examined the effects of noise from 4-stroke motorboats and ships (bulk carriers > 50,000 tonnes) on the routine swimming and escape response of a coral reef fish, the whitetail damselfish (Pomacentrus chrysurus). Both 4-stroke boat and ship noise playbacks affected the fast-start response and routine swimming of whitetail damselfish, however the magnitude of the effects differed. Fish exposed to ship noise moved shorter distances and responded more slowly (higher response latency) to the startle stimulus compared to individuals under the 4-stroke noise treatment. Our study suggests that 4-stroke and ship noise can affect activity and escape response of individuals to a simulated predation threat, potentially compromising their anti-predator behaviour.
Collapse
|
47
|
|
48
|
Pine MK, Nikolich K, Martin B, Morris C, Juanes F. Assessing auditory masking for management of underwater anthropogenic noise. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 147:3408. [PMID: 32486818 DOI: 10.1121/10.0001218] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Masking is often assessed by quantifying changes, due to increasing noise, to an animal's communication or listening range. While the methods used to measure communication or listening ranges are functionally similar if used for vocalizations, they differ in their approaches: communication range is focused on the sender's call, while the listening range is centered on the listener's ability to perceive any signal. How these two methods differ in their use and output is important for management recommendations. Therefore it was investigated how these two methods may alter the conclusions of masking assessments based on Atlantic cod calls in the presence of a commercial air gun array. The two methods diverged with increasing distance from the masking noise source with maximum effects lasting longer between air gun pulses in terms of communication range than listening range. Reductions in the cod's communication ranges were sensitive to fluctuations in the call's source level. That instability was not observed for the listening range. Overall, changes to the cod's communication range were more conservative but very sensitive to the call source level. A high level of confidence in the call is therefore required, while confidence in the receiver's audiogram and soundscape is required for the listening range method.
Collapse
Affiliation(s)
- Matthew K Pine
- Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| | - Katrina Nikolich
- Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| | - Bruce Martin
- JASCO Applied Sciences, 202-32 Troop Avenue, Dartmouth, Nova Scotia B3B 1Z1, Canada
| | - Corey Morris
- Science Branch, Fisheries and Oceans Canada, P.O. 5667, Saint John's, Newfoundland A1C 5X1, Canada
| | - Francis Juanes
- Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| |
Collapse
|
49
|
Ivanova SV, Kessel ST, Espinoza M, McLean MF, O'Neill C, Landry J, Hussey NE, Williams R, Vagle S, Fisk AT. Shipping alters the movement and behavior of Arctic cod (Boreogadus saida), a keystone fish in Arctic marine ecosystems. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2020; 30:e02050. [PMID: 31821656 PMCID: PMC7187319 DOI: 10.1002/eap.2050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/02/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
Anthropogenic noise associated with shipping has emerged as a major disruptor of aquatic animal behavior worldwide. The Arctic marine realm has historically experienced little noise-generating human activity; however, the continual loss of sea ice has facilitated a dramatic increase in shipping activity. Here, we use a combination of acoustic telemetry and modeling of ship noise to examine the temporospatial habitat use of key Arctic forage fish, Arctic cod (Boreogadus saida) in the presence and absence of vessels in Resolute Bay, Nunavut, Canada. The presence and movement of vessels induced a horizontal shift in the home ranges of Arctic cod with low core overlap when compared to periods without vessel activity. Home range displacement occurred near the vessel. Individuals also altered their swimming behaviors in response to vessel presence with searching decreasing and travelling increasing in proportion. Results indicate that Arctic cod perceive vessel noise and presence as a threat and react by moving away and decreasing exploratory activities. These changes in fish behavior also coincide with the critical open water feeding period suggesting an interruption in exploitation of important and seasonally abundant food resources, and carry broader implications for dependent seabirds and marine mammals, and indirectly for all Arctic indigenous peoples' subsistence and long-term cultural traditions. Our study implies that strategic management is required for aquatic acoustic disturbance as an environmental stressor in the Arctic marine ecosystem, and highlights ecologically and socially important impacts that require timely conservation action.
Collapse
Affiliation(s)
- Silviya V. Ivanova
- Great Lakes Institute for Environmental ResearchUniversity of Windsor401 Sunset AvenueWindsorOntarioN9B 3P4Canada
| | - Steven T. Kessel
- Great Lakes Institute for Environmental ResearchUniversity of Windsor401 Sunset AvenueWindsorOntarioN9B 3P4Canada
- Present address:
Daniel P. Haerther Center for Conservation and ResearchJohn G. Shedd Aquarium1200 S Lake Shore DriveChicagoIllinois60605USA
| | - Mario Espinoza
- Centro de Investigación en Ciencias del Mar y Limnología & Escuela de BiologíaUniversidad de Costa RicaSan Pedro de Montes de OcaSan José2060Costa Rica
| | - Montana F. McLean
- Biology DepartmentDalhousie UniversityHalifaxNova ScotiaB3H 4R2Canada
| | - Caitlin O'Neill
- Institute of Ocean Sciences, Fisheries and Oceans Canada9860 West Saanich RoadSidneyBritish ColumbiaV8L 4B2Canada
| | - Justin Landry
- Great Lakes Institute for Environmental ResearchUniversity of Windsor401 Sunset AvenueWindsorOntarioN9B 3P4Canada
| | - Nigel E. Hussey
- Great Lakes Institute for Environmental ResearchUniversity of Windsor401 Sunset AvenueWindsorOntarioN9B 3P4Canada
| | - Rob Williams
- Pew Fellow in Marine Conservation, Oceans Initiative2219 Fairview Avenue E #9SeattleWashington98102USA
| | - Svein Vagle
- Institute of Ocean Sciences, Fisheries and Oceans Canada9860 West Saanich RoadSidneyBritish ColumbiaV8L 4B2Canada
| | - Aaron T. Fisk
- Great Lakes Institute for Environmental ResearchUniversity of Windsor401 Sunset AvenueWindsorOntarioN9B 3P4Canada
| |
Collapse
|
50
|
Hutchison ZL, Gill AB, Sigray P, He H, King JW. Anthropogenic electromagnetic fields (EMF) influence the behaviour of bottom-dwelling marine species. Sci Rep 2020; 10:4219. [PMID: 32144341 PMCID: PMC7060209 DOI: 10.1038/s41598-020-60793-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 01/27/2020] [Indexed: 01/19/2023] Open
Abstract
Many marine animals have evolved sensory abilities to use electric and magnetic cues in essential aspects of life history, such as to detect prey, predators and mates as well as to orientate and migrate. Potential disruption of vital cues by human activities must be understood in order to mitigate potential negative influences. Cable deployments in coastal waters are increasing worldwide, in capacity and number, owing to growing demands for electrical power and telecommunications. Increasingly, the local electromagnetic environment used by electro- and magneto-sensitive species will be altered. We quantified biologically relevant behavioural responses of the presumed, magneto-receptive American lobster and the electro-sensitive Little skate to electromagnetic field (EMF) emissions of a subsea high voltage direct current (HVDC) transmission cable for domestic electricity supply. We demonstrate a striking increase in exploratory/foraging behaviour in skates in response to EMF and a more subtle exploratory response in lobsters. In addition, by directly measuring both the magnetic and electric field components of the EMF emitted by HVDC cables we found that there were DC and unexpectedly AC components. Modelling, restricted to the DC component, showed good agreement with measured results. Our cross-disciplinary study highlights the need to integrate an understanding of the natural and anthropogenic EMF environment together with the responses of sensitive animals when planning future cable deployments and predicting their environmental effects.
Collapse
Affiliation(s)
- Zoë L Hutchison
- Graduate School of Oceanography, University of Rhode Island, South Kingstown, USA.
| | - Andrew B Gill
- PANGALIA Environmental, Bedfordshire, England, UK. .,Cefas, Centre for Environment, Fisheries and Aquaculture Science, Suffolk, England, UK.
| | - Peter Sigray
- FOI, Department of Underwater Research, Stockholm, Sweden
| | - Haibo He
- Department of Electrical, Computer and Biomedical Engineering, University of Rhode Island, South Kingstown, USA
| | - John W King
- Graduate School of Oceanography, University of Rhode Island, South Kingstown, USA
| |
Collapse
|