1
|
Wu S, Qu Z, Chen D, Wu H, Caiyin Q, Qiao J. Deciphering and designing microbial communities by genome-scale metabolic modelling. Comput Struct Biotechnol J 2024; 23:1990-2000. [PMID: 38765607 PMCID: PMC11098673 DOI: 10.1016/j.csbj.2024.04.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/21/2024] [Accepted: 04/21/2024] [Indexed: 05/22/2024] Open
Abstract
Microbial communities are shaped by the complex interactions among organisms and the environment. Genome-scale metabolic models (GEMs) can provide deeper insights into the complexity and ecological properties of various microbial communities, revealing their intricate interactions. Many researchers have modified GEMs for the microbial communities based on specific needs. Thus, GEMs need to be comprehensively summarized to better understand the trends in their development. In this review, we summarized the key developments in deciphering and designing microbial communities using different GEMs. A timeline of selected highlights in GEMs indicated that this area is evolving from the single-strain level to the microbial community level. Then, we outlined a framework for constructing GEMs of microbial communities. We also summarized the models and resources of static and dynamic community-level GEMs. We focused on the role of external environmental and intracellular resources in shaping the assembly of microbial communities. Finally, we discussed the key challenges and future directions of GEMs, focusing on the integration of GEMs with quorum sensing mechanisms, microbial ecology interactions, machine learning algorithms, and automatic modeling, all of which contribute to consortia-based applications in different fields.
Collapse
Affiliation(s)
- Shengbo Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing 312300, China
| | - Zheping Qu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Danlei Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing 312300, China
| | - Hao Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing 312300, China
| | - Qinggele Caiyin
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing 312300, China
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin 300072, China
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing 312300, China
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
2
|
Fresnais L, Perin O, Riu A, Grall R, Ott A, Fromenty B, Gallardo JC, Stingl M, Frainay C, Jourdan F, Poupin N. A strategy to detect metabolic changes induced by exposure to chemicals from large sets of condition-specific metabolic models computed with enumeration techniques. BMC Bioinformatics 2024; 25:234. [PMID: 38992584 PMCID: PMC11238488 DOI: 10.1186/s12859-024-05845-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 06/14/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND The growing abundance of in vitro omics data, coupled with the necessity to reduce animal testing in the safety assessment of chemical compounds and even eliminate it in the evaluation of cosmetics, highlights the need for adequate computational methodologies. Data from omics technologies allow the exploration of a wide range of biological processes, therefore providing a better understanding of mechanisms of action (MoA) related to chemical exposure in biological systems. However, the analysis of these large datasets remains difficult due to the complexity of modulations spanning multiple biological processes. RESULTS To address this, we propose a strategy to reduce information overload by computing, based on transcriptomics data, a comprehensive metabolic sub-network reflecting the metabolic impact of a chemical. The proposed strategy integrates transcriptomic data to a genome scale metabolic network through enumeration of condition-specific metabolic models hence translating transcriptomics data into reaction activity probabilities. Based on these results, a graph algorithm is applied to retrieve user readable sub-networks reflecting the possible metabolic MoA (mMoA) of chemicals. This strategy has been implemented as a three-step workflow. The first step consists in building cell condition-specific models reflecting the metabolic impact of each exposure condition while taking into account the diversity of possible optimal solutions with a partial enumeration algorithm. In a second step, we address the challenge of analyzing thousands of enumerated condition-specific networks by computing differentially activated reactions (DARs) between the two sets of enumerated possible condition-specific models. Finally, in the third step, DARs are grouped into clusters of functionally interconnected metabolic reactions, representing possible mMoA, using the distance-based clustering and subnetwork extraction method. The first part of the workflow was exemplified on eight molecules selected for their known human hepatotoxic outcomes associated with specific MoAs well described in the literature and for which we retrieved primary human hepatocytes transcriptomic data in Open TG-GATEs. Then, we further applied this strategy to more precisely model and visualize associated mMoA for two of these eight molecules (amiodarone and valproic acid). The approach proved to go beyond gene-based analysis by identifying mMoA when few genes are significantly differentially expressed (2 differentially expressed genes (DEGs) for amiodarone), bringing additional information from the network topology, or when very large number of genes were differentially expressed (5709 DEGs for valproic acid). In both cases, the results of our strategy well fitted evidence from the literature regarding known MoA. Beyond these confirmations, the workflow highlighted potential other unexplored mMoA. CONCLUSION The proposed strategy allows toxicology experts to decipher which part of cellular metabolism is expected to be affected by the exposition to a given chemical. The approach originality resides in the combination of different metabolic modelling approaches (constraint based and graph modelling). The application to two model molecules shows the strong potential of the approach for interpretation and visual mining of complex omics in vitro data. The presented strategy is freely available as a python module ( https://pypi.org/project/manamodeller/ ) and jupyter notebooks ( https://github.com/LouisonF/MANA ).
Collapse
Affiliation(s)
- Louison Fresnais
- UMR1331 Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
- L'Oréal Research and Innovation, Aulnay-sous-Bois, France.
| | - Olivier Perin
- L'Oréal Research and Innovation, Aulnay-sous-Bois, France
| | - Anne Riu
- L'Oréal Research and Innovation, Aulnay-sous-Bois, France
| | - Romain Grall
- L'Oréal Research and Innovation, Aulnay-sous-Bois, France
| | - Alban Ott
- L'Oréal Research and Innovation, Aulnay-sous-Bois, France
| | - Bernard Fromenty
- Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1317, UMR_S 1241, INSERM, Univ Rennes, INRAE, 35000, Rennes, France
| | - Jean-Clément Gallardo
- UMR1331 Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Maximilian Stingl
- UMR1331 Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Clément Frainay
- UMR1331 Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Fabien Jourdan
- UMR1331 Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Nathalie Poupin
- UMR1331 Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| |
Collapse
|
3
|
Lange E, Kranert L, Krüger J, Benndorf D, Heyer R. Microbiome modeling: a beginner's guide. Front Microbiol 2024; 15:1368377. [PMID: 38962127 PMCID: PMC11220171 DOI: 10.3389/fmicb.2024.1368377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/27/2024] [Indexed: 07/05/2024] Open
Abstract
Microbiomes, comprised of diverse microbial species and viruses, play pivotal roles in human health, environmental processes, and biotechnological applications and interact with each other, their environment, and hosts via ecological interactions. Our understanding of microbiomes is still limited and hampered by their complexity. A concept improving this understanding is systems biology, which focuses on the holistic description of biological systems utilizing experimental and computational methods. An important set of such experimental methods are metaomics methods which analyze microbiomes and output lists of molecular features. These lists of data are integrated, interpreted, and compiled into computational microbiome models, to predict, optimize, and control microbiome behavior. There exists a gap in understanding between microbiologists and modelers/bioinformaticians, stemming from a lack of interdisciplinary knowledge. This knowledge gap hinders the establishment of computational models in microbiome analysis. This review aims to bridge this gap and is tailored for microbiologists, researchers new to microbiome modeling, and bioinformaticians. To achieve this goal, it provides an interdisciplinary overview of microbiome modeling, starting with fundamental knowledge of microbiomes, metaomics methods, common modeling formalisms, and how models facilitate microbiome control. It concludes with guidelines and repositories for modeling. Each section provides entry-level information, example applications, and important references, serving as a valuable resource for comprehending and navigating the complex landscape of microbiome research and modeling.
Collapse
Affiliation(s)
- Emanuel Lange
- Multidimensional Omics Data Analysis, Department for Bioanalytics, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
- Graduate School Digital Infrastructure for the Life Sciences, Bielefeld Institute for Bioinformatics Infrastructure (BIBI), Faculty of Technology, Bielefeld University, Bielefeld, Germany
| | - Lena Kranert
- Institute for Automation Engineering, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Jacob Krüger
- Engineering of Software-Intensive Systems, Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Dirk Benndorf
- Applied Biosciences and Bioprocess Engineering, Anhalt University of Applied Sciences, Köthen, Germany
| | - Robert Heyer
- Multidimensional Omics Data Analysis, Department for Bioanalytics, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
- Graduate School Digital Infrastructure for the Life Sciences, Bielefeld Institute for Bioinformatics Infrastructure (BIBI), Faculty of Technology, Bielefeld University, Bielefeld, Germany
- Multidimensional Omics Data Analysis, Faculty of Technology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
4
|
Hari A, Zarrabi A, Lobo D. mergem: merging, comparing, and translating genome-scale metabolic models using universal identifiers. NAR Genom Bioinform 2024; 6:lqae010. [PMID: 38312936 PMCID: PMC10836943 DOI: 10.1093/nargab/lqae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/15/2023] [Accepted: 01/16/2024] [Indexed: 02/06/2024] Open
Abstract
Numerous methods exist to produce and refine genome-scale metabolic models. However, due to the use of incompatible identifier systems for metabolites and reactions, computing and visualizing the metabolic differences and similarities of such models is a current challenge. Furthermore, there is a lack of automated tools that can combine the strengths of multiple reconstruction pipelines into a curated single comprehensive model by merging different drafts, which possibly use incompatible namespaces. Here we present mergem, a novel method to compare, merge, and translate two or more metabolic models. Using a universal metabolic identifier mapping system constructed from multiple metabolic databases, mergem robustly can compare models from different pipelines, merge their common elements, and translate their identifiers to other database systems. mergem is implemented as a command line tool, a Python package, and on the web-application Fluxer, which allows simulating and visually comparing multiple models with different interactive flux graphs. The ability to merge, compare, and translate diverse genome scale metabolic models can facilitate the curation of comprehensive reconstructions and the discovery of unique and common metabolic features among different organisms.
Collapse
Affiliation(s)
- Archana Hari
- Department of Biological Sciences, University of Maryland, Baltimore County, 1000 Hilltop Circle Baltimore, MD 21250, USA
| | - Arveen Zarrabi
- Department of Biological Sciences, University of Maryland, Baltimore County, 1000 Hilltop Circle Baltimore, MD 21250, USA
| | - Daniel Lobo
- Department of Biological Sciences, University of Maryland, Baltimore County, 1000 Hilltop Circle Baltimore, MD 21250, USA
- Greenebaum Comprehensive Cancer Center and Center for Stem Cell Biology & Regenerative Medicine, University of Maryland, School of Medicine, 22 S. Greene Street, Baltimore, MD 21201, USA
| |
Collapse
|
5
|
Nègre D, Larhlimi A, Bertrand S. Reconciliation and evolution of Penicillium rubens genome-scale metabolic networks-What about specialised metabolism? PLoS One 2023; 18:e0289757. [PMID: 37647283 PMCID: PMC10468094 DOI: 10.1371/journal.pone.0289757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/24/2023] [Indexed: 09/01/2023] Open
Abstract
In recent years, genome sequencing of filamentous fungi has revealed a high proportion of specialised metabolites with growing pharmaceutical interest. However, detecting such metabolites through in silico genome analysis does not necessarily guarantee their expression under laboratory conditions. However, one plausible strategy for enabling their production lies in modifying the growth conditions. Devising a comprehensive experimental design testing in different culture environments is time-consuming and expensive. Therefore, using in silico modelling as a preliminary step, such as Genome-Scale Metabolic Network (GSMN), represents a promising approach to predicting and understanding the observed specialised metabolite production in a given organism. To address these questions, we reconstructed a new high-quality GSMN for the Penicillium rubens Wisconsin 54-1255 strain, a commonly used model organism. Our reconstruction, iPrub22, adheres to current convention standards and quality criteria, incorporating updated functional annotations, orthology searches with different GSMN templates, data from previous reconstructions, and manual curation steps targeting primary and specialised metabolites. With a MEMOTE score of 74% and a metabolic coverage of 45%, iPrub22 includes 5,192 unique metabolites interconnected by 5,919 reactions, of which 5,033 are supported by at least one genomic sequence. Of the metabolites present in iPrub22, 13% are categorised as belonging to specialised metabolism. While our high-quality GSMN provides a valuable resource for investigating known phenotypes expressed in P. rubens, our analysis identifies bottlenecks related, in particular, to the definition of what is a specialised metabolite, which requires consensus within the scientific community. It also points out the necessity of accessible, standardised and exhaustive databases of specialised metabolites. These questions must be addressed to fully unlock the potential of natural product production in P. rubens and other filamentous fungi. Our work represents a foundational step towards the objective of rationalising the production of natural products through GSMN modelling.
Collapse
Affiliation(s)
- Delphine Nègre
- Nantes Université, Institut des Substances et Organismes de la Mer, ISOMer, Nantes, France
- Nantes Université, École Centrale Nantes, CNRS, Nantes, France
| | | | - Samuel Bertrand
- Nantes Université, Institut des Substances et Organismes de la Mer, ISOMer, Nantes, France
| |
Collapse
|
6
|
Marin de Mas I, Herand H, Carrasco J, Nielsen LK, Johansson PI. A Protocol for the Automatic Construction of Highly Curated Genome-Scale Models of Human Metabolism. Bioengineering (Basel) 2023; 10:bioengineering10050576. [PMID: 37237646 DOI: 10.3390/bioengineering10050576] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/24/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Genome-scale metabolic models (GEMs) have emerged as a tool to understand human metabolism from a holistic perspective with high relevance in the study of many diseases and in the metabolic engineering of human cell lines. GEM building relies on either automated processes that lack manual refinement and result in inaccurate models or manual curation, which is a time-consuming process that limits the continuous update of reliable GEMs. Here, we present a novel algorithm-aided protocol that overcomes these limitations and facilitates the continuous updating of highly curated GEMs. The algorithm enables the automatic curation and/or expansion of existing GEMs or generates a highly curated metabolic network based on current information retrieved from multiple databases in real time. This tool was applied to the latest reconstruction of human metabolism (Human1), generating a series of the human GEMs that improve and expand the reference model and generating the most extensive and comprehensive general reconstruction of human metabolism to date. The tool presented here goes beyond the current state of the art and paves the way for the automatic reconstruction of a highly curated, up-to-date GEM with high potential in computational biology as well as in multiple fields of biological science where metabolism is relevant.
Collapse
Affiliation(s)
- Igor Marin de Mas
- Novo Nordisk Foundation Center for Biosustainability, Danish Technical University, 2800 Lyngby, Denmark
- CAG Center for Endotheliomics, Copenhagen University Hospital, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, 1165 Copenhagen, Denmark
| | - Helena Herand
- Novo Nordisk Foundation Center for Biosustainability, Danish Technical University, 2800 Lyngby, Denmark
- CAG Center for Endotheliomics, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Jorge Carrasco
- Novo Nordisk Foundation Center for Biosustainability, Danish Technical University, 2800 Lyngby, Denmark
| | - Lars K Nielsen
- Novo Nordisk Foundation Center for Biosustainability, Danish Technical University, 2800 Lyngby, Denmark
- CAG Center for Endotheliomics, Copenhagen University Hospital, 2100 Copenhagen, Denmark
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane 4072, Australia
| | - Pär I Johansson
- CAG Center for Endotheliomics, Copenhagen University Hospital, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, 1165 Copenhagen, Denmark
| |
Collapse
|
7
|
Kumar RK, Singh NK, Balakrishnan S, Parker CW, Raman K, Venkateswaran K. Metabolic modeling of the International Space Station microbiome reveals key microbial interactions. MICROBIOME 2022; 10:102. [PMID: 35791019 PMCID: PMC9258157 DOI: 10.1186/s40168-022-01279-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/08/2022] [Indexed: 05/16/2023]
Abstract
BACKGROUND Recent studies have provided insights into the persistence and succession of microbes aboard the International Space Station (ISS), notably the dominance of Klebsiella pneumoniae. However, the interactions between the various microbes aboard the ISS and how they shape the microbiome remain to be clearly understood. In this study, we apply a computational approach to predict possible metabolic interactions in the ISS microbiome and shed further light on its organization. RESULTS Through a combination of a systems-based graph-theoretical approach, and a constraint-based community metabolic modeling approach, we demonstrated several key interactions in the ISS microbiome. These complementary approaches provided insights into the metabolic interactions and dependencies present amongst various microbes in a community, highlighting key interactions and keystone species. Our results showed that the presence of K. pneumoniae is beneficial to many other microorganisms it coexists with, notably those from the Pantoea genus. Species belonging to the Enterobacteriaceae family were often found to be the most beneficial for the survival of other microorganisms in the ISS microbiome. However, K. pneumoniae was found to exhibit parasitic and amensalistic interactions with Aspergillus and Penicillium species, respectively. To prove this metabolic prediction, K. pneumoniae and Aspergillus fumigatus were co-cultured under normal and simulated microgravity, where K. pneumoniae cells showed parasitic characteristics to the fungus. The electron micrography revealed that the presence of K. pneumoniae compromised the morphology of fungal conidia and degenerated its biofilm-forming structures. CONCLUSION Our study underscores the importance of K. pneumoniae in the ISS, and its potential positive and negative interactions with other microbes, including potential pathogens. This integrated modeling approach, combined with experiments, demonstrates the potential for understanding the organization of other such microbiomes, unravelling key organisms and their interdependencies. Video Abstract.
Collapse
Affiliation(s)
- Rachita K Kumar
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), Indian Institute of Technology Madras, Chennai, 600 036, India
- Center for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology Madras, Chennai, 600 036, India
| | - Nitin Kumar Singh
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, M/S 89-2, 4800 Oak Grove Dr, Pasadena, CA, CA 91109, USA
| | - Sanjaay Balakrishnan
- Center for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology Madras, Chennai, 600 036, India
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600 036, India
| | - Ceth W Parker
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, M/S 89-2, 4800 Oak Grove Dr, Pasadena, CA, CA 91109, USA
| | - Karthik Raman
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), Indian Institute of Technology Madras, Chennai, 600 036, India.
- Center for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology Madras, Chennai, 600 036, India.
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600 036, India.
| | - Kasthuri Venkateswaran
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, M/S 89-2, 4800 Oak Grove Dr, Pasadena, CA, CA 91109, USA.
| |
Collapse
|
8
|
Kumar RK, Singh NK, Balakrishnan S, Parker CW, Raman K, Venkateswaran K. Metabolic modeling of the International Space Station microbiome reveals key microbial interactions. MICROBIOME 2022. [PMID: 35791019 DOI: 10.1101/2021.09.03.458819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
BACKGROUND Recent studies have provided insights into the persistence and succession of microbes aboard the International Space Station (ISS), notably the dominance of Klebsiella pneumoniae. However, the interactions between the various microbes aboard the ISS and how they shape the microbiome remain to be clearly understood. In this study, we apply a computational approach to predict possible metabolic interactions in the ISS microbiome and shed further light on its organization. RESULTS Through a combination of a systems-based graph-theoretical approach, and a constraint-based community metabolic modeling approach, we demonstrated several key interactions in the ISS microbiome. These complementary approaches provided insights into the metabolic interactions and dependencies present amongst various microbes in a community, highlighting key interactions and keystone species. Our results showed that the presence of K. pneumoniae is beneficial to many other microorganisms it coexists with, notably those from the Pantoea genus. Species belonging to the Enterobacteriaceae family were often found to be the most beneficial for the survival of other microorganisms in the ISS microbiome. However, K. pneumoniae was found to exhibit parasitic and amensalistic interactions with Aspergillus and Penicillium species, respectively. To prove this metabolic prediction, K. pneumoniae and Aspergillus fumigatus were co-cultured under normal and simulated microgravity, where K. pneumoniae cells showed parasitic characteristics to the fungus. The electron micrography revealed that the presence of K. pneumoniae compromised the morphology of fungal conidia and degenerated its biofilm-forming structures. CONCLUSION Our study underscores the importance of K. pneumoniae in the ISS, and its potential positive and negative interactions with other microbes, including potential pathogens. This integrated modeling approach, combined with experiments, demonstrates the potential for understanding the organization of other such microbiomes, unravelling key organisms and their interdependencies. Video Abstract.
Collapse
Affiliation(s)
- Rachita K Kumar
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), Indian Institute of Technology Madras, Chennai, 600 036, India
- Center for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology Madras, Chennai, 600 036, India
| | - Nitin Kumar Singh
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, M/S 89-2, 4800 Oak Grove Dr, Pasadena, CA, CA 91109, USA
| | - Sanjaay Balakrishnan
- Center for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology Madras, Chennai, 600 036, India
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600 036, India
| | - Ceth W Parker
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, M/S 89-2, 4800 Oak Grove Dr, Pasadena, CA, CA 91109, USA
| | - Karthik Raman
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), Indian Institute of Technology Madras, Chennai, 600 036, India.
- Center for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology Madras, Chennai, 600 036, India.
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600 036, India.
| | - Kasthuri Venkateswaran
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, M/S 89-2, 4800 Oak Grove Dr, Pasadena, CA, CA 91109, USA.
| |
Collapse
|
9
|
Benito-Vaquerizo S, Parera Olm I, de Vroet T, Schaap PJ, Sousa DZ, Martins Dos Santos VAP, Suarez-Diez M. Genome-scale metabolic modelling enables deciphering ethanol metabolism via the acrylate pathway in the propionate-producer Anaerotignum neopropionicum. Microb Cell Fact 2022; 21:116. [PMID: 35710409 PMCID: PMC9205015 DOI: 10.1186/s12934-022-01841-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Microbial production of propionate from diluted streams of ethanol (e.g., deriving from syngas fermentation) is a sustainable alternative to the petrochemical production route. Yet, few ethanol-fermenting propionigenic bacteria are known, and understanding of their metabolism is limited. Anaerotignum neopropionicum is a propionate-producing bacterium that uses the acrylate pathway to ferment ethanol and CO2 to propionate and acetate. In this work, we used computational and experimental methods to study the metabolism of A. neopropionicum and, in particular, the pathway for conversion of ethanol into propionate. RESULTS Our work describes iANEO_SB607, the first genome-scale metabolic model (GEM) of A. neopropionicum. The model was built combining the use of automatic tools with an extensive manual curation process, and it was validated with experimental data from this and published studies. The model predicted growth of A. neopropionicum on ethanol, lactate, sugars and amino acids, matching observed phenotypes. In addition, the model was used to implement a dynamic flux balance analysis (dFBA) approach that accurately predicted the fermentation profile of A. neopropionicum during batch growth on ethanol. A systematic analysis of the metabolism of A. neopropionicum combined with model simulations shed light into the mechanism of ethanol fermentation via the acrylate pathway, and revealed the presence of the electron-transferring complexes NADH-dependent reduced ferredoxin:NADP+ oxidoreductase (Nfn) and acryloyl-CoA reductase-EtfAB, identified for the first time in this bacterium. CONCLUSIONS The realisation of the GEM iANEO_SB607 is a stepping stone towards the understanding of the metabolism of the propionate-producer A. neopropionicum. With it, we have gained insight into the functioning of the acrylate pathway and energetic aspects of the cell, with focus on the fermentation of ethanol. Overall, this study provides a basis to further exploit the potential of propionigenic bacteria as microbial cell factories.
Collapse
Affiliation(s)
- Sara Benito-Vaquerizo
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, Wageningen, 6708WE, The Netherlands
| | - Ivette Parera Olm
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, Wageningen, 6708WE, The Netherlands
| | - Thijs de Vroet
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, Wageningen, 6708WE, The Netherlands
| | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, Wageningen, 6708WE, The Netherlands
| | - Diana Z Sousa
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, Wageningen, 6708WE, The Netherlands.,Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, Vening Meinesz building C, Princetonlaan 6, Utrecht, 3584 CB, The Netherlands
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, Wageningen, 6708WE, The Netherlands.,Bioprocess Engineering, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, Wageningen, 6708WE, The Netherlands.
| |
Collapse
|
10
|
Zamani Amirzakaria J, Marashi SA, Malboobi MA, Lohrasebi T, Forouzan E. Critical assessment of genome-scale metabolic models of Arabidopsis thaliana. Mol Omics 2022; 18:328-335. [PMID: 35081193 DOI: 10.1039/d1mo00351h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Genome-scale metabolic models (GEMs) have enabled researchers to perform systems-level studies of living organisms. Flux balance analysis (FBA), as a constraint-based technique, enables computation of reaction fluxes and prediction of the metabolic phenotypes of a cell under a set of specified conditions. The quality of a GEM is important for obtaining accurate predictions. In this study, we evaluated the quality of five available GEMs for Arabidopsis thaliana from various points of views. To do this, we inspected some of their important features, including the number of reactions with well-defined gene-protein-reaction rules, number of blocked reactions, mass-unbalanced reactions, prediction accuracy in the simulation of key metabolic functions and existence of erroneous energy generating cycles (EGCs). All of the models were found to include some mass-unbalanced reactions. Moreover, four out of five models were found to include EGCs. However, Aracell includes the maximum number of blocked reactions, which suggests the presence of several incomplete pathways. These results clearly show that simulation by using these models may result in erroneous predictions and all of the publicly available GEMs for A. thaliana require extensive curations before being applied in practice.
Collapse
Affiliation(s)
- Javad Zamani Amirzakaria
- Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| | - Sayed-Amir Marashi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Mohammad Ali Malboobi
- Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| | - Tahmineh Lohrasebi
- Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| | - Esmail Forouzan
- Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| |
Collapse
|
11
|
Feierabend M, Renz A, Zelle E, Nöh K, Wiechert W, Dräger A. High-Quality Genome-Scale Reconstruction of Corynebacterium glutamicum ATCC 13032. Front Microbiol 2021; 12:750206. [PMID: 34867870 PMCID: PMC8634658 DOI: 10.3389/fmicb.2021.750206] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/19/2021] [Indexed: 11/30/2022] Open
Abstract
Corynebacterium glutamicum belongs to the microbes of enormous biotechnological relevance. In particular, its strain ATCC 13032 is a widely used producer of L-amino acids at an industrial scale. Its apparent robustness also turns it into a favorable platform host for a wide range of further compounds, mainly because of emerging bio-based economies. A deep understanding of the biochemical processes in C. glutamicum is essential for a sustainable enhancement of the microbe's productivity. Computational systems biology has the potential to provide a valuable basis for driving metabolic engineering and biotechnological advances, such as increased yields of healthy producer strains based on genome-scale metabolic models (GEMs). Advanced reconstruction pipelines are now available that facilitate the reconstruction of GEMs and support their manual curation. This article presents iCGB21FR, an updated and unified GEM of C. glutamicum ATCC 13032 with high quality regarding comprehensiveness and data standards, built with the latest modeling techniques and advanced reconstruction pipelines. It comprises 1042 metabolites, 1539 reactions, and 805 genes with detailed annotations and database cross-references. The model validation took place using different media and resulted in realistic growth rate predictions under aerobic and anaerobic conditions. The new GEM produces all canonical amino acids, and its phenotypic predictions are consistent with laboratory data. The in silico model proved fruitful in adding knowledge to the metabolism of C. glutamicum: iCGB21FR still produces L-glutamate with the knock-out of the enzyme pyruvate carboxylase, despite the common belief to be relevant for the amino acid's production. We conclude that integrating high standards into the reconstruction of GEMs facilitates replicating validated knowledge, closing knowledge gaps, and making it a useful basis for metabolic engineering. The model is freely available from BioModels Database under identifier MODEL2102050001.
Collapse
Affiliation(s)
- Martina Feierabend
- Computational Systems Biology of Infections and Antimicrobial-Resistant Pathogens, Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, Tübingen, Germany
- Department of Computer Science, University of Tübingen, Tübingen, Germany
| | - Alina Renz
- Computational Systems Biology of Infections and Antimicrobial-Resistant Pathogens, Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, Tübingen, Germany
- Department of Computer Science, University of Tübingen, Tübingen, Germany
| | - Elisabeth Zelle
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Katharina Nöh
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Wolfgang Wiechert
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Computational Systems Biotechnology (AVT.CSB), RWTH Aachen University, Aachen, Germany
| | - Andreas Dräger
- Computational Systems Biology of Infections and Antimicrobial-Resistant Pathogens, Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, Tübingen, Germany
- Department of Computer Science, University of Tübingen, Tübingen, Germany
| |
Collapse
|
12
|
Jenior ML, Leslie JL, Powers DA, Garrett EM, Walker KA, Dickenson ME, Petri WA, Tamayo R, Papin JA. Novel Drivers of Virulence in Clostridioides difficile Identified via Context-Specific Metabolic Network Analysis. mSystems 2021; 6:e0091921. [PMID: 34609164 PMCID: PMC8547418 DOI: 10.1128/msystems.00919-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/17/2021] [Indexed: 12/20/2022] Open
Abstract
The pathogen Clostridioides difficile causes toxin-mediated diarrhea and is the leading cause of hospital-acquired infection in the United States. Due to growing antibiotic resistance and recurrent infection, targeting C. difficile metabolism presents a new approach to combat this infection. Genome-scale metabolic network reconstructions (GENREs) have been used to identify therapeutic targets and uncover properties that determine cellular behaviors. Thus, we constructed C. difficile GENREs for a hypervirulent isolate (strain [str.] R20291) and a historic strain (str. 630), validating both with in vitro and in vivo data sets. Growth simulations revealed significant correlations with measured carbon source usage (positive predictive value [PPV] ≥ 92.7%), and single-gene deletion analysis showed >89.0% accuracy. Next, we utilized each GENRE to identify metabolic drivers of both sporulation and biofilm formation. Through contextualization of each model using transcriptomes generated from in vitro and infection conditions, we discovered reliance on the pentose phosphate pathway as well as increased usage of cytidine and N-acetylneuraminate when virulence expression is reduced, which was subsequently supported experimentally. Our results highlight the ability of GENREs to identify novel metabolite signals in higher-order phenotypes like bacterial pathogenesis. IMPORTANCE Clostridioides difficile has become the leading single cause of hospital-acquired infections. Numerous studies have demonstrated the importance of specific metabolic pathways in aspects of C. difficile pathophysiology, from initial colonization to regulation of virulence factors. In the past, genome-scale metabolic network reconstruction (GENRE) analysis of bacteria has enabled systematic investigation of the genetic and metabolic properties that contribute to downstream virulence phenotypes. With this in mind, we generated and extensively curated C. difficile GENREs for both a well-studied laboratory strain (str. 630) and a more recently characterized hypervirulent isolate (str. R20291). In silico validation of both GENREs revealed high degrees of agreement with experimental gene essentiality and carbon source utilization data sets. Subsequent exploration of context-specific metabolism during both in vitro growth and infection revealed consistent patterns of metabolism which corresponded with experimentally measured increases in virulence factor expression. Our results support that differential C. difficile virulence is associated with distinct metabolic programs related to use of carbon sources and provide a platform for identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Matthew L. Jenior
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Jhansi L. Leslie
- Department of Medicine, Division of Infectious Diseases & International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Deborah A. Powers
- Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
| | - Elizabeth M. Garrett
- Department of Microbiology & Immunology, University of North Carolina Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Kimberly A. Walker
- Department of Microbiology & Immunology, University of North Carolina Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Mary E. Dickenson
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - William A. Petri
- Department of Medicine, Division of Infectious Diseases & International Health, University of Virginia, Charlottesville, Virginia, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, Virginia, USA
- Department of Pathology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Rita Tamayo
- Department of Microbiology & Immunology, University of North Carolina Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Jason A. Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
- Department of Medicine, Division of Infectious Diseases & International Health, University of Virginia, Charlottesville, Virginia, USA
- Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
13
|
Carey MA, Dräger A, Beber ME, Papin JA, Yurkovich JT. Community standards to facilitate development and address challenges in metabolic modeling. Mol Syst Biol 2021; 16:e9235. [PMID: 32845080 PMCID: PMC8411906 DOI: 10.15252/msb.20199235] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Standardization of data and models facilitates effective communication, especially in computational systems biology. However, both the development and consistent use of standards and resources remain challenging. As a result, the amount, quality, and format of the information contained within systems biology models are not consistent and therefore present challenges for widespread use and communication. Here, we focused on these standards, resources, and challenges in the field of constraint-based metabolic modeling by conducting a community-wide survey. We used this feedback to (i) outline the major challenges that our field faces and to propose solutions and (ii) identify a set of features that defines what a "gold standard" metabolic network reconstruction looks like concerning content, annotation, and simulation capabilities. We anticipate that this community-driven outline will help the long-term development of community-inspired resources as well as produce high-quality, accessible models within our field. More broadly, we hope that these efforts can serve as blueprints for other computational modeling communities to ensure the continued development of both practical, usable standards and reproducible, knowledge-rich models.
Collapse
Affiliation(s)
- Maureen A Carey
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Andreas Dräger
- Computational Systems Biology of Infection and Antimicrobial-Resistant Pathogens, Institute for Biomedical Informatics (IBMI), University of Tübingen, Tübingen, Germany.,Department of Computer Science, University of Tübingen, Tübingen, Germany.,German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Moritz E Beber
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Denmark
| | - Jason A Papin
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA.,Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | | |
Collapse
|
14
|
Österberg L, Domenzain I, Münch J, Nielsen J, Hohmann S, Cvijovic M. A novel yeast hybrid modeling framework integrating Boolean and enzyme-constrained networks enables exploration of the interplay between signaling and metabolism. PLoS Comput Biol 2021; 17:e1008891. [PMID: 33836000 PMCID: PMC8059808 DOI: 10.1371/journal.pcbi.1008891] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 04/21/2021] [Accepted: 03/18/2021] [Indexed: 12/11/2022] Open
Abstract
The interplay between nutrient-induced signaling and metabolism plays an important role in maintaining homeostasis and its malfunction has been implicated in many different human diseases such as obesity, type 2 diabetes, cancer, and neurological disorders. Therefore, unraveling the role of nutrients as signaling molecules and metabolites together with their interconnectivity may provide a deeper understanding of how these conditions occur. Both signaling and metabolism have been extensively studied using various systems biology approaches. However, they are mainly studied individually and in addition, current models lack both the complexity of the dynamics and the effects of the crosstalk in the signaling system. To gain a better understanding of the interconnectivity between nutrient signaling and metabolism in yeast cells, we developed a hybrid model, combining a Boolean module, describing the main pathways of glucose and nitrogen signaling, and an enzyme-constrained model accounting for the central carbon metabolism of Saccharomyces cerevisiae, using a regulatory network as a link. The resulting hybrid model was able to capture a diverse utalization of isoenzymes and to our knowledge outperforms constraint-based models in the prediction of individual enzymes for both respiratory and mixed metabolism. The model showed that during fermentation, enzyme utilization has a major contribution in governing protein allocation, while in low glucose conditions robustness and control are prioritized. In addition, the model was capable of reproducing the regulatory effects that are associated with the Crabtree effect and glucose repression, as well as regulatory effects associated with lifespan increase during caloric restriction. Overall, we show that our hybrid model provides a comprehensive framework for the study of the non-trivial effects of the interplay between signaling and metabolism, suggesting connections between the Snf1 signaling pathways and processes that have been related to chronological lifespan of yeast cells.
Collapse
Affiliation(s)
- Linnea Österberg
- Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Iván Domenzain
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| | - Julia Münch
- Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
- BioInnovation Institute, Copenhagen, Denmark
| | - Stefan Hohmann
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Marija Cvijovic
- Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
15
|
Domenzain I, Li F, Kerkhoven EJ, Siewers V. Evaluating accessibility, usability and interoperability of genome-scale metabolic models for diverse yeasts species. FEMS Yeast Res 2021; 21:foab002. [PMID: 33428734 PMCID: PMC7943257 DOI: 10.1093/femsyr/foab002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/08/2021] [Indexed: 12/18/2022] Open
Abstract
Metabolic network reconstructions have become an important tool for probing cellular metabolism in the field of systems biology. They are used as tools for quantitative prediction but also as scaffolds for further knowledge contextualization. The yeast Saccharomyces cerevisiae was one of the first organisms for which a genome-scale metabolic model (GEM) was reconstructed, in 2003, and since then 45 metabolic models have been developed for a wide variety of relevant yeasts species. A systematic evaluation of these models revealed that-despite this long modeling history-the sequential process of tracing model files, setting them up for basic simulation purposes and comparing them across species and even different versions, is still not a generalizable task. These findings call the yeast modeling community to comply to standard practices on model development and sharing in order to make GEMs accessible and useful for a wider public.
Collapse
Affiliation(s)
- Iván Domenzain
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-412 96, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Kemivägen 10, SE-412 96, Gothenburg, Sweden
| | - Feiran Li
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-412 96, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Kemivägen 10, SE-412 96, Gothenburg, Sweden
| | - Eduard J Kerkhoven
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-412 96, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Kemivägen 10, SE-412 96, Gothenburg, Sweden
| | - Verena Siewers
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-412 96, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Kemivägen 10, SE-412 96, Gothenburg, Sweden
| |
Collapse
|
16
|
Correia K, Mahadevan R. Pan‐Genome‐Scale Network Reconstruction: Harnessing Phylogenomics Increases the Quantity and Quality of Metabolic Models. Biotechnol J 2020; 15:e1900519. [DOI: 10.1002/biot.201900519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 07/22/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Kevin Correia
- Department of Chemical Engineering and Applied Chemistry University of Toronto 200 College Street Toronto Ontario M5S 3E5 Canada
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry University of Toronto 200 College Street Toronto Ontario M5S 3E5 Canada
- Institute of Biomedical Engineering University of Toronto 164 College Street Toronto Ontario M5S 3G9 Canada
| |
Collapse
|
17
|
Keating SM, Waltemath D, König M, Zhang F, Dräger A, Chaouiya C, Bergmann FT, Finney A, Gillespie CS, Helikar T, Hoops S, Malik‐Sheriff RS, Moodie SL, Moraru II, Myers CJ, Naldi A, Olivier BG, Sahle S, Schaff JC, Smith LP, Swat MJ, Thieffry D, Watanabe L, Wilkinson DJ, Blinov ML, Begley K, Faeder JR, Gómez HF, Hamm TM, Inagaki Y, Liebermeister W, Lister AL, Lucio D, Mjolsness E, Proctor CJ, Raman K, Rodriguez N, Shaffer CA, Shapiro BE, Stelling J, Swainston N, Tanimura N, Wagner J, Meier‐Schellersheim M, Sauro HM, Palsson B, Bolouri H, Kitano H, Funahashi A, Hermjakob H, Doyle JC, Hucka M. SBML Level 3: an extensible format for the exchange and reuse of biological models. Mol Syst Biol 2020; 16:e9110. [PMID: 32845085 PMCID: PMC8411907 DOI: 10.15252/msb.20199110] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 06/24/2020] [Accepted: 07/09/2020] [Indexed: 12/25/2022] Open
Abstract
Systems biology has experienced dramatic growth in the number, size, and complexity of computational models. To reproduce simulation results and reuse models, researchers must exchange unambiguous model descriptions. We review the latest edition of the Systems Biology Markup Language (SBML), a format designed for this purpose. A community of modelers and software authors developed SBML Level 3 over the past decade. Its modular form consists of a core suited to representing reaction-based models and packages that extend the core with features suited to other model types including constraint-based models, reaction-diffusion models, logical network models, and rule-based models. The format leverages two decades of SBML and a rich software ecosystem that transformed how systems biologists build and interact with models. More recently, the rise of multiscale models of whole cells and organs, and new data sources such as single-cell measurements and live imaging, has precipitated new ways of integrating data with models. We provide our perspectives on the challenges presented by these developments and how SBML Level 3 provides the foundation needed to support this evolution.
Collapse
|
18
|
Witting M. Suggestions for Standardized Identifiers for Fatty Acyl Compounds in Genome Scale Metabolic Models and Their Application to the WormJam Caenorhabditis elegans Model. Metabolites 2020; 10:E130. [PMID: 32231124 PMCID: PMC7241080 DOI: 10.3390/metabo10040130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/23/2020] [Accepted: 03/26/2020] [Indexed: 12/27/2022] Open
Abstract
Genome scale metabolic models (GSMs) are a representation of the current knowledge on the metabolism of a given organism or superorganism. They group metabolites, genes, enzymes and reactions together to form a mathematical model and representation that can be used to analyze metabolic networks in silico or used for analysis of omics data. Beside correct mass and charge balance, correct structural annotation of metabolites represents an important factor for analysis of these metabolic networks. However, several metabolites in different GSMs have no or only partial structural information associated with them. Here, a new systematic nomenclature for acyl-based metabolites such as fatty acids, acyl-carnitines, acyl-coenzymes A or acyl-carrier proteins is presented. This nomenclature enables one to encode structural details in the metabolite identifiers and improves human readability of reactions. As proof of principle, it was applied to the fatty acid biosynthesis and degradation in the Caenorhabditis elegans consensus model WormJam.
Collapse
Affiliation(s)
- Michael Witting
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
- Chair of Analytical Food Chemistry, TU München, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany
| |
Collapse
|
19
|
Lieven C, Beber ME, Olivier BG, Bergmann FT, Ataman M, Babaei P, Bartell JA, Blank LM, Chauhan S, Correia K, Diener C, Dräger A, Ebert BE, Edirisinghe JN, Faria JP, Feist AM, Fengos G, Fleming RMT, García-Jiménez B, Hatzimanikatis V, van Helvoirt W, Henry CS, Hermjakob H, Herrgård MJ, Kaafarani A, Kim HU, King Z, Klamt S, Klipp E, Koehorst JJ, König M, Lakshmanan M, Lee DY, Lee SY, Lee S, Lewis NE, Liu F, Ma H, Machado D, Mahadevan R, Maia P, Mardinoglu A, Medlock GL, Monk JM, Nielsen J, Nielsen LK, Nogales J, Nookaew I, Palsson BO, Papin JA, Patil KR, Poolman M, Price ND, Resendis-Antonio O, Richelle A, Rocha I, Sánchez BJ, Schaap PJ, Malik Sheriff RS, Shoaie S, Sonnenschein N, Teusink B, Vilaça P, Vik JO, Wodke JAH, Xavier JC, Yuan Q, Zakhartsev M, Zhang C. MEMOTE for standardized genome-scale metabolic model testing. Nat Biotechnol 2020; 38:272-276. [PMID: 32123384 PMCID: PMC7082222 DOI: 10.1038/s41587-020-0446-y] [Citation(s) in RCA: 241] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Christian Lieven
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Moritz E Beber
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Brett G Olivier
- Systems Biology Lab, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | | | - Meric Ataman
- Ecole Polytechnique Fédérale de Lausanne, Laboratory of Computational Systems Biotechnology, Lausanne, Switzerland
| | - Parizad Babaei
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Jennifer A Bartell
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Lars M Blank
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Siddharth Chauhan
- Department of Bioengineering, University of California, La Jolla, CA, USA
| | - Kevin Correia
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Christian Diener
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genomica & Coordinación de la Investigación Científica-Red de Apoyo a la Investigación, UNAM, Mexico City, Mexico
- Institute for Systems Biology, Seattle, WA, USA
| | - Andreas Dräger
- Computational Systems Biology of Infection and Antimicrobial-Resistant Pathogens, Institute for Biomedical Informatics (IBMI), Tübingen, Germany
- Department of Computer Science, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Birgitta E Ebert
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | | | | | - Adam M Feist
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- Department of Bioengineering, University of California, La Jolla, CA, USA
| | - Georgios Fengos
- Ecole Polytechnique Fédérale de Lausanne, Laboratory of Computational Systems Biotechnology, Lausanne, Switzerland
| | - Ronan M T Fleming
- Analytical Biosciences, Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Beatriz García-Jiménez
- Department of Systems Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Vassily Hatzimanikatis
- Ecole Polytechnique Fédérale de Lausanne, Laboratory of Computational Systems Biotechnology, Lausanne, Switzerland
| | - Wout van Helvoirt
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Oslo, Norway
- Hanze University of Applied Sciences, Groningen, the Netherlands
| | | | - Henning Hermjakob
- European Bioinformatics Institute, European Molecular Biology Laboratory (EMBL-EBI), Wellcome Trust Genome Campus, Cambridge, UK
| | - Markus J Herrgård
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Ali Kaafarani
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Hyun Uk Kim
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program), BioProcess Engineering Research Center, BioInformatics Research Center, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Zachary King
- Department of Bioengineering, University of California, La Jolla, CA, USA
| | - Steffen Klamt
- Analysis and Redesign of Biological Networks, Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg, Magdeburg, Germany
| | - Edda Klipp
- Theoretical Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jasper J Koehorst
- Department of Agrotechnology and Food Sciences, Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands
| | - Matthias König
- Theoretical Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Meiyappan Lakshmanan
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Dong-Yup Lee
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- School of Chemical Engineering Sungkyunkwan University, Jangan-gu Suwon, Gyeonggi-do, Republic of Korea
| | - Sang Yup Lee
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program), BioProcess Engineering Research Center, BioInformatics Research Center, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Sunjae Lee
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Nathan E Lewis
- Department of Bioengineering, University of California, La Jolla, CA, USA
- Department of Pediatrics and Novo Nordisk Foundation Center for Biosustainability, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Filipe Liu
- Argonne National Laboratory, Lemont, IL, USA
| | - Hongwu Ma
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, P.R. China
| | - Daniel Machado
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | | | - Adil Mardinoglu
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Gregory L Medlock
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Jonathan M Monk
- Department of Bioengineering, University of California, La Jolla, CA, USA
| | - Jens Nielsen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- Chalmers University of Technology, Department of Biology and Biological Engineering, Division of Systems and Synthetic Biology, Göteborg, Sweden
| | - Lars Keld Nielsen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Juan Nogales
- Department of Systems Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Intawat Nookaew
- Chalmers University of Technology, Department of Biology and Biological Engineering, Division of Systems and Synthetic Biology, Göteborg, Sweden
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
| | - Bernhard O Palsson
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- Department of Bioengineering, University of California, La Jolla, CA, USA
| | - Jason A Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Kiran R Patil
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | | | | | - Osbaldo Resendis-Antonio
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genomica & Coordinación de la Investigación Científica-Red de Apoyo a la Investigación, UNAM, Mexico City, Mexico
| | - Anne Richelle
- Department of Pediatrics and Novo Nordisk Foundation Center for Biosustainability, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Isabel Rocha
- Centre of Biological Engineering, University of Minho, Braga, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-NOVA), Oeiras, Portugal
| | - Benjamín J Sánchez
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- Chalmers University of Technology, Department of Biology and Biological Engineering, Division of Systems and Synthetic Biology, Göteborg, Sweden
| | - Peter J Schaap
- Department of Agrotechnology and Food Sciences, Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands
| | - Rahuman S Malik Sheriff
- European Bioinformatics Institute, European Molecular Biology Laboratory (EMBL-EBI), Wellcome Trust Genome Campus, Cambridge, UK
| | - Saeed Shoaie
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Nikolaus Sonnenschein
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| | - Bas Teusink
- Systems Biology Lab, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | | | - Jon Olav Vik
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Judith A H Wodke
- Theoretical Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Joana C Xavier
- Institute for Molecular Evolution, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Qianqian Yuan
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, P.R. China
| | - Maksim Zakhartsev
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Cheng Zhang
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
20
|
Hadadi N, Pandey V, Chiappino-Pepe A, Morales M, Gallart-Ayala H, Mehl F, Ivanisevic J, Sentchilo V, Meer JRVD. Mechanistic insights into bacterial metabolic reprogramming from omics-integrated genome-scale models. NPJ Syst Biol Appl 2020; 6:1. [PMID: 32001719 PMCID: PMC6946695 DOI: 10.1038/s41540-019-0121-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/28/2019] [Indexed: 11/18/2022] Open
Abstract
Understanding the adaptive responses of individual bacterial strains is crucial for microbiome engineering approaches that introduce new functionalities into complex microbiomes, such as xenobiotic compound metabolism for soil bioremediation. Adaptation requires metabolic reprogramming of the cell, which can be captured by multi-omics, but this data remains formidably challenging to interpret and predict. Here we present a new approach that combines genome-scale metabolic modeling with transcriptomics and exometabolomics, both of which are common tools for studying dynamic population behavior. As a realistic demonstration, we developed a genome-scale model of Pseudomonas veronii 1YdBTEX2, a candidate bioaugmentation agent for accelerated metabolism of mono-aromatic compounds in soil microbiomes, while simultaneously collecting experimental data of P. veronii metabolism during growth phase transitions. Predictions of the P. veronii growth rates and specific metabolic processes from the integrated model closely matched experimental observations. We conclude that integrative and network-based analysis can help build predictive models that accurately capture bacterial adaptation responses. Further development and testing of such models may considerably improve the successful establishment of bacterial inoculants in more complex systems.
Collapse
Affiliation(s)
- Noushin Hadadi
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland.
| | - Vikash Pandey
- Laboratory of Computational Systems Biotechnology, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Anush Chiappino-Pepe
- Laboratory of Computational Systems Biotechnology, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Marian Morales
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland
| | | | - Florence Mehl
- Metabolomics Platform, University of Lausanne, 1015, Lausanne, Switzerland
| | | | - Vladimir Sentchilo
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Jan R van der Meer
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland
| |
Collapse
|
21
|
Evaluating the Pathway for Co-fermentation of Glucose and Xylose for Enhanced Bioethanol Production Using Flux Balance Analysis. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-019-0026-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
22
|
Deciphering the metabolic capabilities of Bifidobacteria using genome-scale metabolic models. Sci Rep 2019; 9:18222. [PMID: 31796826 PMCID: PMC6890778 DOI: 10.1038/s41598-019-54696-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 11/13/2019] [Indexed: 12/17/2022] Open
Abstract
Bifidobacteria, the initial colonisers of breastfed infant guts, are considered as the key commensals that promote a healthy gastrointestinal tract. However, little is known about the key metabolic differences between different strains of these bifidobacteria, and consequently, their suitability for their varied commercial applications. In this context, the present study applies a constraint-based modelling approach to differentiate between 36 important bifidobacterial strains, enhancing their genome-scale metabolic models obtained from the AGORA (Assembly of Gut Organisms through Reconstruction and Analysis) resource. By studying various growth and metabolic capabilities in these enhanced genome-scale models across 30 different nutrient environments, we classified the bifidobacteria into three specific groups. We also studied the ability of the different strains to produce short-chain fatty acids, finding that acetate production is niche- and strain-specific, unlike lactate. Further, we captured the role of critical enzymes from the bifid shunt pathway, which was found to be essential for a subset of bifidobacterial strains. Our findings underline the significance of analysing metabolic capabilities as a powerful approach to explore distinct properties of the gut microbiome. Overall, our study presents several insights into the nutritional lifestyles of bifidobacteria and could potentially be leveraged to design species/strain-specific probiotics or prebiotics.
Collapse
|
23
|
iMet: A graphical user interface software tool to merge metabolic networks. Heliyon 2019; 5:e01766. [PMID: 31286073 PMCID: PMC6587100 DOI: 10.1016/j.heliyon.2019.e01766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 04/10/2019] [Accepted: 05/15/2019] [Indexed: 11/23/2022] Open
Abstract
Nowadays, studying microorganisms has become faster and deeper than the last decades, thanks to the modeling of genome-scale metabolic networks. Completed genome sequencing projects of microorganisms and annotating these sequences have provided a worthwhile platform for reconstructing and modeling genome-scale metabolic networks. The genome-scale metabolic network reconstruction is a laborious and time-consuming task which needs an extensive study and search in different types of databases. Furthermore, it also requires an iterative process of creating and curating the obtained network, particularly with experimental methods. Hence, different types of reconstructions and models of a targeted microorganism can be found with different qualities, as the goal and need of researchers differ. Due to these circumstances, scientists have to continue with only one of the reconstructed metabolic networks of each microorganism and ignore the rest in their in silico works. It is clear that having a tool which merges different metabolic networks of a single organism can be a useful and effective way to study them with minimal cost and time. To meet this need, we have developed iMet, the standalone graphical user interface (GUI) software tool to merge multiple reconstructed metabolic networks of microorganisms. As a case study, we merged three reconstructed metabolic networks of a cyanobacterium using iMet, and then all of them (including the new merged one) became modeled. The results of our evaluations including Flux Balance Analysis (FBA), revealed enhancing metabolic network coverage as well as increasing yield of desired products in the new obtained model.
Collapse
|
24
|
Magnúsdóttir S, Heinken A, Fleming RMT, Thiele I. Reply to "Challenges in modeling the human gut microbiome". Nat Biotechnol 2019; 36:686-691. [PMID: 30080835 DOI: 10.1038/nbt.4212] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Stefanía Magnúsdóttir
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Almut Heinken
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Ronan M T Fleming
- Division of Analytical Biosciences, Leiden Academic Centre for Drug Research, Faculty of Science, University of Leiden, Leiden, The Netherlands
| | - Ines Thiele
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
25
|
Pham N, van Heck RGA, van Dam JCJ, Schaap PJ, Saccenti E, Suarez-Diez M. Consistency, Inconsistency, and Ambiguity of Metabolite Names in Biochemical Databases Used for Genome-Scale Metabolic Modelling. Metabolites 2019; 9:E28. [PMID: 30736318 PMCID: PMC6409771 DOI: 10.3390/metabo9020028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/24/2019] [Accepted: 01/31/2019] [Indexed: 12/22/2022] Open
Abstract
Genome-scale metabolic models (GEMs) are manually curated repositories describing the metabolic capabilities of an organism. GEMs have been successfully used in different research areas, ranging from systems medicine to biotechnology. However, the different naming conventions (namespaces) of databases used to build GEMs limit model reusability and prevent the integration of existing models. This problem is known in the GEM community, but its extent has not been analyzed in depth. In this study, we investigate the name ambiguity and the multiplicity of non-systematic identifiers and we highlight the (in)consistency in their use in 11 biochemical databases of biochemical reactions and the problems that arise when mapping between different namespaces and databases. We found that such inconsistencies can be as high as 83.1%, thus emphasizing the need for strategies to deal with these issues. Currently, manual verification of the mappings appears to be the only solution to remove inconsistencies when combining models. Finally, we discuss several possible approaches to facilitate (future) unambiguous mapping.
Collapse
Affiliation(s)
- Nhung Pham
- Laboratory of Systems and Synthetic Biology; Wageningen University & Research, 6708 WE, Wageningen, The Netherlands.
| | - Ruben G A van Heck
- Laboratory of Systems and Synthetic Biology; Wageningen University & Research, 6708 WE, Wageningen, The Netherlands.
| | - Jesse C J van Dam
- Laboratory of Systems and Synthetic Biology; Wageningen University & Research, 6708 WE, Wageningen, The Netherlands.
| | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology; Wageningen University & Research, 6708 WE, Wageningen, The Netherlands.
| | - Edoardo Saccenti
- Laboratory of Systems and Synthetic Biology; Wageningen University & Research, 6708 WE, Wageningen, The Netherlands.
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology; Wageningen University & Research, 6708 WE, Wageningen, The Netherlands.
| |
Collapse
|
26
|
Piñero J, Furlong LI, Sanz F. In silico models in drug development: where we are. Curr Opin Pharmacol 2018; 42:111-121. [PMID: 30205360 DOI: 10.1016/j.coph.2018.08.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/30/2018] [Accepted: 08/13/2018] [Indexed: 02/07/2023]
Abstract
The use and utility of computational models in drug development has significantly grown in the last decades, fostered by the availability of high throughput datasets and new data analysis strategies. These in silico approaches are demonstrating their ability to generate reliable predictions as well as new knowledge on the mode of action of drugs and the mechanisms underlying their side effects, altogether helping to reduce the costs of drug development. The aim of this review is to provide a panorama of developments in the field in the last two years.
Collapse
Affiliation(s)
- Janet Piñero
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences (DCEXS), Hospital del Mar Medical Research Institute (IMIM), Universitat Pompeu Fabra (UPF), Carrer Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Laura I Furlong
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences (DCEXS), Hospital del Mar Medical Research Institute (IMIM), Universitat Pompeu Fabra (UPF), Carrer Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Ferran Sanz
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences (DCEXS), Hospital del Mar Medical Research Institute (IMIM), Universitat Pompeu Fabra (UPF), Carrer Dr. Aiguader 88, 08003 Barcelona, Spain.
| |
Collapse
|
27
|
Enumerating all possible biosynthetic pathways in metabolic networks. Sci Rep 2018; 8:9932. [PMID: 29967471 PMCID: PMC6028704 DOI: 10.1038/s41598-018-28007-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/14/2018] [Indexed: 12/24/2022] Open
Abstract
Exhaustive identification of all possible alternate pathways that exist in metabolic networks can provide valuable insights into cellular metabolism. With the growing number of metabolic reconstructions, there is a need for an efficient method to enumerate pathways, which can also scale well to large metabolic networks, such as those corresponding to microbial communities. We developed MetQuest, an efficient graph-theoretic algorithm to enumerate all possible pathways of a particular size between a given set of source and target molecules. Our algorithm employs a guided breadth-first search to identify all feasible reactions based on the availability of the precursor molecules, followed by a novel dynamic-programming based enumeration, which assembles these reactions into pathways of a specified size producing the target from the source. We demonstrate several interesting applications of our algorithm, ranging from identifying amino acid biosynthesis pathways to identifying the most diverse pathways involved in degradation of complex molecules. We also illustrate the scalability of our algorithm, by studying large graphs such as those corresponding to microbial communities, and identify several metabolic interactions happening therein. MetQuest is available as a Python package, and the source codes can be found at https://github.com/RamanLab/metquest.
Collapse
|
28
|
Lieven C, Herrgård MJ, Sonnenschein N. Microbial Methylotrophic Metabolism: Recent Metabolic Modeling Efforts and Their Applications In Industrial Biotechnology. Biotechnol J 2018; 13:e1800011. [PMID: 29917330 DOI: 10.1002/biot.201800011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/31/2018] [Indexed: 11/08/2022]
Abstract
Developing methylotrophic bacteria into cell factories that meet the chemical demand of the future could be both economical and environmentally friendly. Methane is not only an abundant, low-cost resource but also a potent greenhouse gas, the capture of which could help to reduce greenhouse gas emissions. Rational strain design workflows rely on the availability of carefully combined knowledge often in the form of genome-scale metabolic models to construct high-producer organisms. In this review, the authors present the most recent genome-scale metabolic models in aerobic methylotrophy and their applications. Further, the authors present models for the study of anaerobic methanotrophy through reverse methanogenesis and suggest organisms that may be of interest for expanding one-carbon industrial biotechnology. Metabolic models of methylotrophs are scarce, yet they are important first steps toward rational strain-design in these organisms.
Collapse
Affiliation(s)
- Christian Lieven
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Markus J Herrgård
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Nikolaus Sonnenschein
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
29
|
Aite M, Chevallier M, Frioux C, Trottier C, Got J, Cortés MP, Mendoza SN, Carrier G, Dameron O, Guillaudeux N, Latorre M, Loira N, Markov GV, Maass A, Siegel A. Traceability, reproducibility and wiki-exploration for "à-la-carte" reconstructions of genome-scale metabolic models. PLoS Comput Biol 2018; 14:e1006146. [PMID: 29791443 PMCID: PMC5988327 DOI: 10.1371/journal.pcbi.1006146] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 06/05/2018] [Accepted: 04/17/2018] [Indexed: 11/27/2022] Open
Abstract
Genome-scale metabolic models have become the tool of choice for the global analysis of microorganism metabolism, and their reconstruction has attained high standards of quality and reliability. Improvements in this area have been accompanied by the development of some major platforms and databases, and an explosion of individual bioinformatics methods. Consequently, many recent models result from "à la carte" pipelines, combining the use of platforms, individual tools and biological expertise to enhance the quality of the reconstruction. Although very useful, introducing heterogeneous tools, that hardly interact with each other, causes loss of traceability and reproducibility in the reconstruction process. This represents a real obstacle, especially when considering less studied species whose metabolic reconstruction can greatly benefit from the comparison to good quality models of related organisms. This work proposes an adaptable workspace, AuReMe, for sustainable reconstructions or improvements of genome-scale metabolic models involving personalized pipelines. At each step, relevant information related to the modifications brought to the model by a method is stored. This ensures that the process is reproducible and documented regardless of the combination of tools used. Additionally, the workspace establishes a way to browse metabolic models and their metadata through the automatic generation of ad-hoc local wikis dedicated to monitoring and facilitating the process of reconstruction. AuReMe supports exploration and semantic query based on RDF databases. We illustrate how this workspace allowed handling, in an integrated way, the metabolic reconstructions of non-model organisms such as an extremophile bacterium or eukaryote algae. Among relevant applications, the latter reconstruction led to putative evolutionary insights of a metabolic pathway.
Collapse
Affiliation(s)
| | - Marie Chevallier
- IRISA, Univ Rennes, Inria, CNRS, Rennes, France
- ECOBIO, Univ Rennes, CNRS, Rennes, France
| | | | - Camille Trottier
- IRISA, Univ Rennes, Inria, CNRS, Rennes, France
- UMR 6004 ComBi, Université de Nantes, CNRS, Nantes, France
| | - Jeanne Got
- IRISA, Univ Rennes, Inria, CNRS, Rennes, France
| | - María Paz Cortés
- Centro de Modelamiento Matemático, Universidad de Chile, Santiago, Chile
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
- Centro para la Regulación del Genoma (Fondap 15090007), Universidad de Chile, Santiago, Chile
| | - Sebastián N. Mendoza
- Centro de Modelamiento Matemático, Universidad de Chile, Santiago, Chile
- Centro para la Regulación del Genoma (Fondap 15090007), Universidad de Chile, Santiago, Chile
| | - Grégory Carrier
- Laboratoire de Physiologie et de Biotechnologie des Algues, IFREMER, Nantes, France
| | | | | | - Mauricio Latorre
- Centro de Modelamiento Matemático, Universidad de Chile, Santiago, Chile
- Centro para la Regulación del Genoma (Fondap 15090007), Universidad de Chile, Santiago, Chile
- Instituto de ciencias de la ingeniería, Universidad de O'Higgins, Rancagua, Chile
- Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
| | - Nicolás Loira
- Centro de Modelamiento Matemático, Universidad de Chile, Santiago, Chile
- Centro para la Regulación del Genoma (Fondap 15090007), Universidad de Chile, Santiago, Chile
| | - Gabriel V. Markov
- UMR 8227, Integrative Biology of Marine Models, Station biologique de Roscoff, Sorbonne Université, CNRS, Roscoff, France
| | - Alejandro Maass
- Centro de Modelamiento Matemático, Universidad de Chile, Santiago, Chile
- Centro para la Regulación del Genoma (Fondap 15090007), Universidad de Chile, Santiago, Chile
| | - Anne Siegel
- IRISA, Univ Rennes, Inria, CNRS, Rennes, France
| |
Collapse
|
30
|
Measuring Cellular Biomass Composition for Computational Biology Applications. Processes (Basel) 2018. [DOI: 10.3390/pr6050038] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
31
|
Abstract
Understanding microbial ecosystems means unlocking the path toward a deeper knowledge of the fundamental mechanisms of life. Engineered microbial communities are also extremely relevant to tackling some of today's grand societal challenges. Advanced meta-omics experimental techniques provide crucial insights into microbial communities, but have been so far mostly used for descriptive, exploratory approaches to answer the initial 'who is there?' QUESTION An ecosystem is a complex network of dynamic spatio-temporal interactions among organisms as well as between organisms and the environment. Mathematical models with their abstraction capability are essential to capture the underlying phenomena and connect the different scales at which these systems act. Differential equation models and constraint-based stoichiometric models are deterministic approaches that can successfully provide a macroscopic description of the outcome from microscopic behaviors. In this mini-review, we present classical and recent applications of these modeling methods and illustrate the potential of their integration. Indeed, approaches that can capture multiple scales are needed in order to understand emergent patterns in ecosystems and their dynamics regulated by different spatio-temporal phenomena. We finally discuss promising examples of methods proposing the integration of differential equations with constraint-based stoichiometric models and argue that more work is needed in this direction.
Collapse
|
32
|
Sen P, Kemppainen E, Orešič M. Perspectives on Systems Modeling of Human Peripheral Blood Mononuclear Cells. Front Mol Biosci 2018; 4:96. [PMID: 29376056 PMCID: PMC5767226 DOI: 10.3389/fmolb.2017.00096] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 12/21/2017] [Indexed: 12/12/2022] Open
Abstract
Human peripheral blood mononuclear cells (PBMCs) are the key drivers of the immune responses. These cells undergo activation, proliferation and differentiation into various subsets. During these processes they initiate metabolic reprogramming, which is coordinated by specific gene and protein activities. PBMCs as a model system have been widely used to study metabolic and autoimmune diseases. Herein we review various omics and systems-based approaches such as transcriptomics, epigenomics, proteomics, and metabolomics as applied to PBMCs, particularly T helper subsets, that unveiled disease markers and the underlying mechanisms. We also discuss and emphasize several aspects of T cell metabolic modeling in healthy and disease states using genome-scale metabolic models.
Collapse
Affiliation(s)
- Partho Sen
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Esko Kemppainen
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Matej Orešič
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.,School of Medical Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
33
|
Abstract
Microbial communities are widespread in the environment, and to isolate and identify species or to determine relations among microorganisms, some 'omics methods like metagenomics, proteomics, and metabolomics have been used. When combined with various 'omics data, models known as artificial microbial ecosystems (AME) are powerful methods that can make functional predictions about microbial communities. Reconstruction of an AME model is the first step for model analysis. Many techniques have been applied to the construction of AME models, e.g., the compartmentalization approach, community objectives method, and dynamic analysis approach. Of these approaches, species compartmentalization is the most relevant to genetics. Besides, some algorithms have been developed for the analysis of AME models. In this chapter, we present a general protocol for the use of the species compartmentalization method to reconstruct a model of microbial communities. Then, the analysis of an AME is discussed.
Collapse
|
34
|
Computational Prediction of Synthetic Lethals in Genome-Scale Metabolic Models Using Fast-SL. Methods Mol Biol 2018; 1716:315-336. [PMID: 29222760 DOI: 10.1007/978-1-4939-7528-0_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this chapter, we describe Fast-SL, an in silico approach to predict synthetic lethals in genome-scale metabolic models. Synthetic lethals are sets of genes or reactions where only the simultaneous removal of all genes or reactions in the set abolishes growth of an organism. In silico approaches to predict synthetic lethals are based on Flux Balance Analysis (FBA), a popular constraint-based analysis method based on linear programming. FBA has been shown to accurately predict the viability of various genome-scale metabolic models. Fast-SL builds on the framework of FBA and enables the prediction of synthetic lethal reactions or genes in different organisms, under various environmental conditions. Predicting synthetic lethals in metabolic network models allows us to generate hypotheses on possible novel genetic interactions and potential candidates for combinatorial therapy, in case of pathogenic organisms. We here summarize the Fast-SL approach for analyzing metabolic networks and detail the procedure to predict synthetic lethals in any given metabolic model. We illustrate the approach by predicting synthetic lethals in Escherichia coli. The Fast-SL implementation for MATLAB is available from https://github.com/RamanLab/FastSL/ .
Collapse
|
35
|
Dufault-Thompson K, Steffensen JL, Zhang Y. Using PSAMM for the Curation and Analysis of Genome-Scale Metabolic Models. Methods Mol Biol 2018; 1716:131-150. [PMID: 29222752 DOI: 10.1007/978-1-4939-7528-0_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PSAMM is an open source software package that supports the iterative curation and analysis of genome-scale models (GEMs). It aims to integrate the annotation and consistency checking of metabolic models with the simulation of metabolic fluxes. The model representation in PSAMM is compatible with version tracking systems like Git, which allows for full documentation of model file changes and enables collaborative curations of large, complex models. This chapter provides a protocol for using PSAMM functions and a detailed description of the various aspects in setting up and using PSAMM for the simulation and analysis of metabolic models. The overall PSAMM workflow outlined in this chapter includes the import and export of model files, the documentation of model modifications using the Git version control system, the application of consistency checking functions for model curations, and the numerical simulation of metabolic models.
Collapse
Affiliation(s)
- Keith Dufault-Thompson
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, RI, USA
| | - Jon Lund Steffensen
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, RI, USA
| | - Ying Zhang
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, RI, USA.
| |
Collapse
|
36
|
The MONGOOSE Rational Arithmetic Toolbox. Methods Mol Biol 2017. [PMID: 29222749 DOI: 10.1007/978-1-4939-7528-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The modeling of metabolic networks has seen a rapid expansion following the complete sequencing of thousands of genomes. The constraint-based modeling framework has emerged as one of the most popular approaches to reconstructing and analyzing genome-scale metabolic models. Its main assumption is that of a quasi-steady-state, requiring that the production of each internal metabolite be balanced by its consumption. However, due to the multiscale nature of the models, the large number of reactions and metabolites, and the use of floating-point arithmetic for the stoichiometric coefficients, ensuring that this assumption holds can be challenging.The MONGOOSE toolbox addresses this problem by using rational arithmetic, thus ensuring that models are analyzed in a reproducible manner and consistently with modeling assumptions. In this chapter we present a protocol for the complete analysis of a metabolic network model using the MONGOOSE toolbox, via its newly developed GUI, and describe how it can be used as a model-checking platform both during and after the model construction process.
Collapse
|
37
|
Jacoby R, Peukert M, Succurro A, Koprivova A, Kopriva S. The Role of Soil Microorganisms in Plant Mineral Nutrition-Current Knowledge and Future Directions. FRONTIERS IN PLANT SCIENCE 2017; 8:1617. [PMID: 28974956 PMCID: PMC5610682 DOI: 10.3389/fpls.2017.01617] [Citation(s) in RCA: 351] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 09/04/2017] [Indexed: 05/18/2023]
Abstract
In their natural environment, plants are part of a rich ecosystem including numerous and diverse microorganisms in the soil. It has been long recognized that some of these microbes, such as mycorrhizal fungi or nitrogen fixing symbiotic bacteria, play important roles in plant performance by improving mineral nutrition. However, the full range of microbes associated with plants and their potential to replace synthetic agricultural inputs has only recently started to be uncovered. In the last few years, a great progress has been made in the knowledge on composition of rhizospheric microbiomes and their dynamics. There is clear evidence that plants shape microbiome structures, most probably by root exudates, and also that bacteria have developed various adaptations to thrive in the rhizospheric niche. The mechanisms of these interactions and the processes driving the alterations in microbiomes are, however, largely unknown. In this review, we focus on the interaction of plants and root associated bacteria enhancing plant mineral nutrition, summarizing the current knowledge in several research fields that can converge to improve our understanding of the molecular mechanisms underpinning this phenomenon.
Collapse
Affiliation(s)
| | | | | | | | - Stanislav Kopriva
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of CologneCologne, Germany
| |
Collapse
|
38
|
Revealing the mystery of metabolic adaptations using a genome scale model of Leishmania infantum. Sci Rep 2017; 7:10262. [PMID: 28860532 PMCID: PMC5579285 DOI: 10.1038/s41598-017-10743-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 08/14/2017] [Indexed: 11/08/2022] Open
Abstract
Human macrophage phagolysosome and sandfly midgut provide antagonistic ecological niches for Leishmania parasites to survive and proliferate. Parasites optimize their metabolism to utilize the available inadequate resources by adapting to those environments. Lately, a number of metabolomics studies have revived the interest to understand metabolic strategies utilized by the Leishmania parasite for optimal survival within its hosts. For the first time, we propose a reconstructed genome-scale metabolic model for Leishmania infantum JPCM5, the analyses of which not only captures observations reported by metabolomics studies in other Leishmania species but also divulges novel features of the L. infantum metabolome. Our results indicate that Leishmania metabolism is organized in such a way that the parasite can select appropriate alternatives to compensate for limited external substrates. A dynamic non-essential amino acid motif exists within the network that promotes a restricted redistribution of resources to yield required essential metabolites. Further, subcellular compartments regulate this metabolic re-routing by reinforcing the physiological coupling of specific reactions. This unique metabolic organization is robust against accidental errors and provides a wide array of choices for the parasite to achieve optimal survival.
Collapse
|
39
|
Cankorur-Cetinkaya A, Dikicioglu D, Oliver SG. Metabolic modeling to identify engineering targets for Komagataella phaffii: The effect of biomass composition on gene target identification. Biotechnol Bioeng 2017; 114:2605-2615. [PMID: 28691262 PMCID: PMC5659126 DOI: 10.1002/bit.26380] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/29/2017] [Accepted: 07/02/2017] [Indexed: 01/29/2023]
Abstract
Genome‐scale metabolic models are valuable tools for the design of novel strains of industrial microorganisms, such as Komagataella phaffii (syn. Pichia pastoris). However, as is the case for many industrial microbes, there is no executable metabolic model for K. phaffiii that confirms to current standards by providing the metabolite and reactions IDs, to facilitate model extension and reuse, and gene‐reaction associations to enable identification of targets for genetic manipulation. In order to remedy this deficiency, we decided to reconstruct the genome‐scale metabolic model of K. phaffii by reconciling the extant models and performing extensive manual curation in order to construct an executable model (Kp.1.0) that conforms to current standards. We then used this model to study the effect of biomass composition on the predictive success of the model. Twelve different biomass compositions obtained from published empirical data obtained under a range of growth conditions were employed in this investigation. We found that the success of Kp1.0 in predicting both gene essentiality and growth characteristics was relatively unaffected by biomass composition. However, we found that biomass composition had a profound effect on the distribution of the fluxes involved in lipid, DNA, and steroid biosynthetic processes, cellular alcohol metabolic process, and oxidation‐reduction process. Furthermore, we investigated the effect of biomass composition on the identification of suitable target genes for strain development. The analyses revealed that around 40% of the predictions of the effect of gene overexpression or deletion changed depending on the representation of biomass composition in the model. Considering the robustness of the in silico flux distributions to the changing biomass representations enables better interpretation of experimental results, reduces the risk of wrong target identification, and so both speeds and improves the process of directed strain development.
Collapse
Affiliation(s)
- Ayca Cankorur-Cetinkaya
- Cambridge Systems Biology Centre & Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Duygu Dikicioglu
- Cambridge Systems Biology Centre & Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Stephen G Oliver
- Cambridge Systems Biology Centre & Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
40
|
Lopes H, Rocha I. Genome-scale modeling of yeast: chronology, applications and critical perspectives. FEMS Yeast Res 2017; 17:3950252. [PMID: 28899034 PMCID: PMC5812505 DOI: 10.1093/femsyr/fox050] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/07/2017] [Indexed: 01/21/2023] Open
Abstract
Over the last 15 years, several genome-scale metabolic models (GSMMs) were developed for different yeast species, aiding both the elucidation of new biological processes and the shift toward a bio-based economy, through the design of in silico inspired cell factories. Here, an historical perspective of the GSMMs built over time for several yeast species is presented and the main inheritance patterns among the metabolic reconstructions are highlighted. We additionally provide a critical perspective on the overall genome-scale modeling procedure, underlining incomplete model validation and evaluation approaches and the quest for the integration of regulatory and kinetic information into yeast GSMMs. A summary of experimentally validated model-based metabolic engineering applications of yeast species is further emphasized, while the main challenges and future perspectives for the field are finally addressed.
Collapse
Affiliation(s)
- Helder Lopes
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Isabel Rocha
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
41
|
A Diverse Community To Study Communities: Integration of Experiments and Mathematical Models To Study Microbial Consortia. J Bacteriol 2017; 199:JB.00865-16. [PMID: 28533216 PMCID: PMC5512218 DOI: 10.1128/jb.00865-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The last few years have seen the advancement of high-throughput experimental techniques that have produced an extraordinary amount of data. Bioinformatics and statistical analyses have become instrumental to interpreting the information coming from, e.g., sequencing data and often motivate further targeted experiments. The broad discipline of “computational biology” extends far beyond the well-established field of bioinformatics, but it is our impression that more theoretical methods such as the use of mathematical models are not yet as well integrated into the research studying microbial interactions. The empirical complexity of microbial communities presents challenges that are difficult to address with in vivo/in vitro approaches alone, and with microbiology developing from a qualitative to a quantitative science, we see stronger opportunities arising for interdisciplinary projects integrating theoretical approaches with experiments. Indeed, the addition of in silico experiments, i.e., computational simulations, has a discovery potential that is, unfortunately, still largely underutilized and unrecognized by the scientific community. This minireview provides an overview of mathematical models of natural ecosystems and emphasizes that one critical point in the development of a theoretical description of a microbial community is the choice of problem scale. Since this choice is mostly dictated by the biological question to be addressed, in order to employ theoretical models fully and successfully it is vital to implement an interdisciplinary view at the conceptual stages of the experimental design.
Collapse
|
42
|
Ye C, Xu N, Dong C, Ye Y, Zou X, Chen X, Guo F, Liu L. IMGMD: A platform for the integration and standardisation of In silico Microbial Genome-scale Metabolic Models. Sci Rep 2017; 7:727. [PMID: 28389638 PMCID: PMC5429687 DOI: 10.1038/s41598-017-00820-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 03/16/2017] [Indexed: 11/12/2022] Open
Abstract
Genome-scale metabolic models (GSMMs) constitute a platform that combines genome sequences and detailed biochemical information to quantify microbial physiology at the system level. To improve the unity, integrity, correctness, and format of data in published GSMMs, a consensus IMGMD database was built in the LAMP (Linux + Apache + MySQL + PHP) system by integrating and standardizing 328 GSMMs constructed for 139 microorganisms. The IMGMD database can help microbial researchers download manually curated GSMMs, rapidly reconstruct standard GSMMs, design pathways, and identify metabolic targets for strategies on strain improvement. Moreover, the IMGMD database facilitates the integration of wet-lab and in silico data to gain an additional insight into microbial physiology. The IMGMD database is freely available, without any registration requirements, at http://imgmd.jiangnan.edu.cn/database.
Collapse
Affiliation(s)
- Chao Ye
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Nan Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Chuan Dong
- Key Laboratory for Neuroinformation of Ministry of Education, University of Electronic Science and Technology of China, No. 4, 2nd Section, North Jianshe Road, Chengdu, Sichuan, 610054, China
| | - Yuannong Ye
- School of Biology and Engineering, Guizhou Medical University, Dongqing Road, Huaxi District, Guiyang, Guizhou, 550025, China
- School of Big Health, Guizhou Medical University, Dongqing Road, Huaxi District, Guiyang, Guizhou, 550025, China
| | - Xuan Zou
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Fengbiao Guo
- Key Laboratory for Neuroinformation of Ministry of Education, University of Electronic Science and Technology of China, No. 4, 2nd Section, North Jianshe Road, Chengdu, Sichuan, 610054, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
43
|
Blais EM, Rawls KD, Dougherty BV, Li ZI, Kolling GL, Ye P, Wallqvist A, Papin JA. Reconciled rat and human metabolic networks for comparative toxicogenomics and biomarker predictions. Nat Commun 2017; 8:14250. [PMID: 28176778 PMCID: PMC5309818 DOI: 10.1038/ncomms14250] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 12/13/2016] [Indexed: 12/20/2022] Open
Abstract
The laboratory rat has been used as a surrogate to study human biology for more than a century. Here we present the first genome-scale network reconstruction of Rattus norvegicus metabolism, iRno, and a significantly improved reconstruction of human metabolism, iHsa. These curated models comprehensively capture metabolic features known to distinguish rats from humans including vitamin C and bile acid synthesis pathways. After reconciling network differences between iRno and iHsa, we integrate toxicogenomics data from rat and human hepatocytes, to generate biomarker predictions in response to 76 drugs. We validate comparative predictions for xanthine derivatives with new experimental data and literature-based evidence delineating metabolite biomarkers unique to humans. Our results provide mechanistic insights into species-specific metabolism and facilitate the selection of biomarkers consistent with rat and human biology. These models can serve as powerful computational platforms for contextualizing experimental data and making functional predictions for clinical and basic science applications. The rat is a widely-used model for human biology, but we must be aware of metabolic differences. Here, the authors reconstruct the genome-scale metabolic network of the rat, and after reconciling it with an improved human metabolic model, demonstrate the power of the models to integrate toxicogenomics data, providing species-specific biomarker predictions in response to a panel of drugs.
Collapse
Affiliation(s)
- Edik M Blais
- Department of Biomedical Engineering, University of Virginia, Box 800759, Health System, Charlottesville, Virginia 22908, USA
| | - Kristopher D Rawls
- Department of Biomedical Engineering, University of Virginia, Box 800759, Health System, Charlottesville, Virginia 22908, USA
| | - Bonnie V Dougherty
- Department of Biomedical Engineering, University of Virginia, Box 800759, Health System, Charlottesville, Virginia 22908, USA
| | - Zhuo I Li
- Department of Biomedical Engineering, University of Virginia, Box 800759, Health System, Charlottesville, Virginia 22908, USA
| | - Glynis L Kolling
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Ping Ye
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, US Army Medical Research and Materiel Command, Fort Detrick, Maryland 21702, USA
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, US Army Medical Research and Materiel Command, Fort Detrick, Maryland 21702, USA
| | - Jason A Papin
- Department of Biomedical Engineering, University of Virginia, Box 800759, Health System, Charlottesville, Virginia 22908, USA
| |
Collapse
|
44
|
Park BG, Kim M, Kim J, Yoo H, Kim BG. Systems biology for understanding and engineering of heterotrophic oleaginous microorganisms. Biotechnol J 2016; 12. [DOI: 10.1002/biot.201600104] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Beom Gi Park
- School of Chemical and Biological Engineering, Institute of Molecular Biology and Genetics, and Bioengineering Institute; Seoul National University; Seoul Republic of Korea
| | - Minsuk Kim
- School of Chemical and Biological Engineering, Institute of Molecular Biology and Genetics, and Bioengineering Institute; Seoul National University; Seoul Republic of Korea
| | - Joonwon Kim
- School of Chemical and Biological Engineering, Institute of Molecular Biology and Genetics, and Bioengineering Institute; Seoul National University; Seoul Republic of Korea
| | - Heewang Yoo
- Interdisciplinary Program for Biochemical Engineering and Biotechnology; Seoul National University; Seoul Republic of Korea
| | - Byung-Gee Kim
- School of Chemical and Biological Engineering, Institute of Molecular Biology and Genetics, and Bioengineering Institute; Seoul National University; Seoul Republic of Korea
- Interdisciplinary Program for Biochemical Engineering and Biotechnology; Seoul National University; Seoul Republic of Korea
| |
Collapse
|
45
|
PSAMM: A Portable System for the Analysis of Metabolic Models. PLoS Comput Biol 2016; 12:e1004732. [PMID: 26828591 PMCID: PMC4734835 DOI: 10.1371/journal.pcbi.1004732] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 01/05/2016] [Indexed: 11/19/2022] Open
Abstract
The genome-scale models of metabolic networks have been broadly applied in phenotype prediction, evolutionary reconstruction, community functional analysis, and metabolic engineering. Despite the development of tools that support individual steps along the modeling procedure, it is still difficult to associate mathematical simulation results with the annotation and biological interpretation of metabolic models. In order to solve this problem, here we developed a Portable System for the Analysis of Metabolic Models (PSAMM), a new open-source software package that supports the integration of heterogeneous metadata in model annotations and provides a user-friendly interface for the analysis of metabolic models. PSAMM is independent of paid software environments like MATLAB, and all its dependencies are freely available for academic users. Compared to existing tools, PSAMM significantly reduced the running time of constraint-based analysis and enabled flexible settings of simulation parameters using simple one-line commands. The integration of heterogeneous, model-specific annotation information in PSAMM is achieved with a novel format of YAML-based model representation, which has several advantages, such as providing a modular organization of model components and simulation settings, enabling model version tracking, and permitting the integration of multiple simulation problems. PSAMM also includes a number of quality checking procedures to examine stoichiometric balance and to identify blocked reactions. Applying PSAMM to 57 models collected from current literature, we demonstrated how the software can be used for managing and simulating metabolic models. We identified a number of common inconsistencies in existing models and constructed an updated model repository to document the resolution of these inconsistencies. The broad application of genome-scale metabolic modeling has made it a useful technique for tackling fundamental questions in biological research and engineering. Today over 100 models have been constructed for organisms that carry out a diverse array of metabolic activities spanning all three kingdoms of life. These models, however, have been curated independently following different conventions. The maintenance of model consistency has been challenging due to the lack of consensus in model representation and the absence of integrated modeling software for associating mathematical simulations with the annotation and biological interpretation of metabolic models. To solve this problem, we developed a new software package, PSAMM, and a new model format that incorporates heterogeneous, model-specific annotation information into modular representations of model definitions and simulation settings. PSAMM provides significant advances in standardizing the workflow of model annotation and consistency checking. Compared to existing tools, PSAMM supports more flexible configurations and is more efficient in running constraint-based simulations. All functions of PSAMM are freely available for academic users and can be downloaded from a public Git repository (https://zhanglab.github.io/psamm/) under the GNU General Public License.
Collapse
|
46
|
Zhang C, Hua Q. Applications of Genome-Scale Metabolic Models in Biotechnology and Systems Medicine. Front Physiol 2016; 6:413. [PMID: 26779040 PMCID: PMC4703781 DOI: 10.3389/fphys.2015.00413] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/15/2015] [Indexed: 12/21/2022] Open
Abstract
Genome-scale metabolic models (GEMs) have become a popular tool for systems biology, and they have been used in many fields such as industrial biotechnology and systems medicine. Since more and more studies are being conducted using GEMs, they have recently received considerable attention. In this review, we introduce the basic concept of GEMs and provide an overview of their applications in biotechnology, systems medicine, and some other fields. In addition, we describe the general principle of the applications and analyses built on GEMs. The purpose of this review is to introduce the application of GEMs in biological analysis and to promote its wider use by biologists.
Collapse
Affiliation(s)
- Cheng Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and TechnologyShanghai, China
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, East China University of Science and TechnologyShanghai, China
- Shanghai Collaborative Innovation Center for Biomanufacturing TechnologyShanghai, China
| |
Collapse
|
47
|
Mohammadi R, Fallah-Mehrabadi J, Bidkhori G, Zahiri J, Javad Niroomand M, Masoudi-Nejad A. A systems biology approach to reconcile metabolic network models with application to Synechocystis sp. PCC 6803 for biofuel production. MOLECULAR BIOSYSTEMS 2016; 12:2552-61. [DOI: 10.1039/c6mb00119j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Metabolic network models can be optimized for the production of desired materials like biofuels.
Collapse
Affiliation(s)
- Reza Mohammadi
- Laboratory of Systems Biology and Bioinformatics (LBB)
- Institute of Biochemistry and Biophysics
- University of Tehran
- Tehran
- Iran
| | | | | | - Javad Zahiri
- Bioinformatics and Computational Omics Lab (BioCOOL)
- Department of Biophysics
- Faculty of Biological Sciences
- Tarbiat Modares University
- Tehran
| | - Mohammad Javad Niroomand
- Learning Intelligent Systems Lab
- School of Electrical and Computer Engineering
- University of Tehran
- Tehran
- Iran
| | - Ali Masoudi-Nejad
- Laboratory of Systems Biology and Bioinformatics (LBB)
- Institute of Biochemistry and Biophysics
- University of Tehran
- Tehran
- Iran
| |
Collapse
|
48
|
Ebrahim A, Almaas E, Bauer E, Bordbar A, Burgard AP, Chang RL, Dräger A, Famili I, Feist AM, Fleming RM, Fong SS, Hatzimanikatis V, Herrgård MJ, Holder A, Hucka M, Hyduke D, Jamshidi N, Lee SY, Le Novère N, Lerman JA, Lewis NE, Ma D, Mahadevan R, Maranas C, Nagarajan H, Navid A, Nielsen J, Nielsen LK, Nogales J, Noronha A, Pal C, Palsson BO, Papin JA, Patil KR, Price ND, Reed JL, Saunders M, Senger RS, Sonnenschein N, Sun Y, Thiele I. Do genome-scale models need exact solvers or clearer standards? Mol Syst Biol 2015; 11:831. [PMID: 26467284 PMCID: PMC4631202 DOI: 10.15252/msb.20156157] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Ali Ebrahim
- Department of Bioengineering, University of California, San Diego, CA, USA
| | - Eivind Almaas
- Department of Biotechnology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Eugen Bauer
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belval, Luxembourg
| | | | | | - Roger L Chang
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Andreas Dräger
- Department of Bioengineering, University of California, San Diego, CA, USA Center for Bioinformatics Tuebingen (ZBIT), University of Tuebingen, Tübingen, Germany
| | | | - Adam M Feist
- Department of Bioengineering, University of California, San Diego, CA, USA
| | - Ronan Mt Fleming
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belval, Luxembourg
| | - Stephen S Fong
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Vassily Hatzimanikatis
- Laboratory of Computational Systems Biotechnology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Markus J Herrgård
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Allen Holder
- Department of Mathematics, Rose-Hulman Institute of Technology, Terre Haute, IN, USA
| | - Michael Hucka
- Department of Computing and Mathematical Science, California Institute of Technology, Pasadena, CA, USA
| | - Daniel Hyduke
- Department of Biological Engineering, Utah State University, Logan, UT, USA
| | - Neema Jamshidi
- Department of Radiology, University of California, Los Angeles, CA, USA Institute of Engineering in Medicine, University of California, San Diego, CA, USA
| | - Sang Yup Lee
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | | | - Joshua A Lerman
- Department of Bioengineering, University of California, San Diego, CA, USA
| | - Nathan E Lewis
- Department of Pediatrics, University of California, San Diego, CA, USA
| | - Ding Ma
- Department of Management Science and Engineering, Stanford University, Stanford, CA, USA
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Costas Maranas
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, USA
| | | | - Ali Navid
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Jens Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Lars K Nielsen
- Australian Institute for Bioengineering & Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia
| | - Juan Nogales
- Department of Environmental Biology, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Alberto Noronha
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belval, Luxembourg
| | - Csaba Pal
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, CA, USA
| | - Jason A Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Kiran R Patil
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Jennifer L Reed
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael Saunders
- Department of Management Science and Engineering, Stanford University, Stanford, CA, USA
| | - Ryan S Senger
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Nikolaus Sonnenschein
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Yuekai Sun
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Ines Thiele
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belval, Luxembourg
| |
Collapse
|
49
|
Heinken A, Thiele I. Systems biology of host-microbe metabolomics. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2015; 7:195-219. [PMID: 25929487 PMCID: PMC5029777 DOI: 10.1002/wsbm.1301] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/25/2015] [Accepted: 04/01/2015] [Indexed: 12/15/2022]
Abstract
The human gut microbiota performs essential functions for host and well‐being, but has also been linked to a variety of disease states, e.g., obesity and type 2 diabetes. The mammalian body fluid and tissue metabolomes are greatly influenced by the microbiota, with many health‐relevant metabolites being considered ‘mammalian–microbial co‐metabolites’. To systematically investigate this complex host–microbial co‐metabolism, a systems biology approach integrating high‐throughput data and computational network models is required. Here, we review established top‐down and bottom‐up systems biology approaches that have successfully elucidated relationships between gut microbiota‐derived metabolites and host health and disease. We focus particularly on the constraint‐based modeling and analysis approach, which enables the prediction of mechanisms behind metabolic host–microbe interactions on the molecular level. We illustrate that constraint‐based models are a useful tool for the contextualization of metabolomic measurements and can further our insight into host–microbe interactions, yielding, e.g., in potential novel drugs and biomarkers. WIREs Syst Biol Med 2015, 7:195–219. doi: 10.1002/wsbm.1301 For further resources related to this article, please visit the WIREs website. Conflict of interest: The authors have declared no conflicts of interest for this article.
Collapse
Affiliation(s)
- Almut Heinken
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belval, Luxembourg
| | - Ines Thiele
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belval, Luxembourg
| |
Collapse
|