1
|
Wang J, Chen C, Yao G, Ding J, Wang L, Jiang H. Intelligent Protein Design and Molecular Characterization Techniques: A Comprehensive Review. Molecules 2023; 28:7865. [PMID: 38067593 PMCID: PMC10707872 DOI: 10.3390/molecules28237865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/13/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
In recent years, the widespread application of artificial intelligence algorithms in protein structure, function prediction, and de novo protein design has significantly accelerated the process of intelligent protein design and led to many noteworthy achievements. This advancement in protein intelligent design holds great potential to accelerate the development of new drugs, enhance the efficiency of biocatalysts, and even create entirely new biomaterials. Protein characterization is the key to the performance of intelligent protein design. However, there is no consensus on the most suitable characterization method for intelligent protein design tasks. This review describes the methods, characteristics, and representative applications of traditional descriptors, sequence-based and structure-based protein characterization. It discusses their advantages, disadvantages, and scope of application. It is hoped that this could help researchers to better understand the limitations and application scenarios of these methods, and provide valuable references for choosing appropriate protein characterization techniques for related research in the field, so as to better carry out protein research.
Collapse
Affiliation(s)
| | | | | | - Junjie Ding
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; (J.W.); (C.C.); (G.Y.)
| | - Liangliang Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; (J.W.); (C.C.); (G.Y.)
| | - Hui Jiang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; (J.W.); (C.C.); (G.Y.)
| |
Collapse
|
2
|
Rosmeita CN, Budiarti S, Mustopa AZ, Novianti E, Swasthikawati S, Chairunnisa S, Hertati A, Nurfatwa M, Ekawati N, Hasan N. Expression, purification, and characterization of self-assembly virus-like particles of capsid protein L1 HPV 52 in Pichia pastoris GS115. J Genet Eng Biotechnol 2023; 21:126. [PMID: 37981617 PMCID: PMC10657913 DOI: 10.1186/s43141-023-00571-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/26/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND Cervical cancer caused by the human papillomavirus (HPV) is one of the most frequent malignances globally. HPV 52 is a high-risk cancer-causing genotype that has been identified as the most prevalent type in Indonesia. Virus-like particles (VLP)-based vaccinations against HPV infection could benefit from self-assembled VLP of L1 capsid protein. RESULT The recombinant HPV 52 L1 was expressed in Pichia pastoris on a shake-flask scale with 0.5% methanol induction in this study. The copy number was used to compare the expression level and stability. The colony that survived on a solid medium containing 2000 μg/ml of Zeocin was selected and cultured to express HPV 52 L1. DNA was extracted from the chosen colony, and the copy was determined using qPCR. HPV 52 L1 protein was then purified through fast performance liquid chromatography. Transmission electron microscopy (TEM) evaluation confirmed the VLP self-assembly. The genomic DNA remained intact after 100 generations of serial cultivation under no selective pressure medium conditions, and the protein produced was relatively stable. However, the band intensity was slightly lower than in the parental colony. In terms of copy number, a low copy transformant resulted in low expression but produced a highly stable recombinant clone. Eventually, the L1 protein expressed in Pichia pastoris can self-assemble into VLP. Therefore, recombinant HPV possesses a stable clone and the ability to self-assemble into VLP. CONCLUSION The recombinant L1 HPV 52 protein is successfully expressed in P. pastoris within a size range of approximately 55 kDa and demonstrated favorable stability. The L1 protein expressed in Pichia pastoris successful self-assembled of HPV VLPs, thereby establishing their potential efficacy as a prophylactic vaccine.
Collapse
Affiliation(s)
- Chindy Nur Rosmeita
- Research Center for Genetic Engineering, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia
- Program of Biotechnology, Graduate School, IPB University, Bogor, Indonesia
| | - Sri Budiarti
- Program of Biotechnology, Graduate School, IPB University, Bogor, Indonesia
- Indonesia Research Center for Bioresources and Biotechnology, IPB University, Bogor, Indonesia
| | - Apon Zaenal Mustopa
- Research Center for Genetic Engineering, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia.
| | - Ela Novianti
- Research Center for Genetic Engineering, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia
| | - Sri Swasthikawati
- Research Center for Genetic Engineering, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia
| | - Sheila Chairunnisa
- Research Center for Genetic Engineering, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia
| | - Ai Hertati
- Research Center for Genetic Engineering, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia
| | - Maritsa Nurfatwa
- Research Center for Genetic Engineering, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia
| | - Nurlaili Ekawati
- Research Center for Genetic Engineering, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia
| | - Nurhasni Hasan
- Faculty of Pharmacy, Universitas Hasanuddin, Jl. Perintis Kemerdekaan Km 10, Makassar, 90245, Republic of Indonesia
| |
Collapse
|
3
|
Saleem S, Alghamdi KM, Mushtaq NU, Tahir I, Bahieldin A, Henrissat B, Alghamdi MK, Rehman RU, Hakeem KR. Computational and experimental analysis of foxtail millet under salt stress and selenium supplementation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:112695-112709. [PMID: 37837596 DOI: 10.1007/s11356-023-30364-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/05/2023] [Indexed: 10/16/2023]
Abstract
Salinity stress is a major threat to crop growth and productivity. Millets are stress-tolerant crops that can withstand the environmental constraints. Foxtail millet is widely recognized as a drought and salinity-tolerant crop owing to its efficient ROS scavenging mechanism. Ascorbate peroxidase (APX) is one of the reactive oxygen species (ROS) scavenging enzymes that leads to hydrogen peroxide (H2O2) detoxification and stabilization of the internal biochemical state of the cell under stress. This inherent capacity of the APX enzyme can further be enhanced by the application of an external mitigant. This study focuses on the impact of salt (NaCl) and selenium (Se) application on the APX enzyme activity of foxtail millet using in silico and in-vitro techniques and mRNA expression studies. The NaCl was applied in the concentrations, i.e., 150 mM and 200 mM, while the Se was applied in 1 μM, 5 μM, and 10 μM concentrations. The in silico studies involved three-dimensional structure modeling and molecular docking. The in vitro studies comprised the morphological and biochemical parameters, alongside mRNA expression studies in foxtail millet under NaCl stress and Se applications. The in silico studies revealed that the APX enzyme showed better interaction with Se as compared to NaCl, thus suggesting the enzyme-modulating role of Se. The morphological and biochemical analysis indicated that Se alleviated the NaCl (150 mM and 200 mM) and induced symptoms at 1 µM as compared to 5 and 10 µM by enhancing the morphological parameters, upregulating the gene expression and enzyme activity of APX, and ultimately reducing the H2O2 content significantly. The transcriptomic studies confirmed the upregulation of chloroplastic APX in response to salt stress and selenium supplementation. Hence, it can be concluded that Se as a mitigant at lower concentrations can alleviate NaCl stress in foxtail millet.
Collapse
Affiliation(s)
- Seerat Saleem
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, India
| | - Khalid M Alghamdi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Naveed Ul Mushtaq
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, India
| | - Inayatullah Tahir
- Department of Botany, School of Biological Sciences, University of Kashmir, Srinagar, 190006, India
| | - Ahmad Bahieldin
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | | | - Mohammad K Alghamdi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Reiaz Ul Rehman
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, India
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.
- Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.
- Department of Public Health, Daffodil International University, Dhaka, 1341, Bangladesh.
| |
Collapse
|
4
|
Qian Y, Hu X, Wang J, Li Y, Liu Y, Xie L. Polyzwitterionic micelles with antimicrobial-conjugation for eradication of drug-resistant bacterial biofilms. Colloids Surf B Biointerfaces 2023; 231:113542. [PMID: 37717312 DOI: 10.1016/j.colsurfb.2023.113542] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
The presence of bacterial biofilms has presented a significant challenge to human health. This study presents the development of biofilm microenvironment-responsive polymeric micelles as a novel approach to address the challenges posed by bacterial biofilms. These micelles are composed of two key components: a zwitterionic component, inspired by protein isoelectric points, containing balanced quantities of primary amines and carboxylic groups that undergo a positive charge transformation in acidic microenvironments, and a hydrophobic triclosan conjugate capable of releasing triclosan in the presence of bacterial lipases. Through the synergistic combination of pH-responsiveness and lipase-responsiveness, we have significantly improved drug penetration into biofilms and enhanced its efficacy in killing bacteria. With their remarkable drug-loading capacity and the ability to specifically target and eliminate bacteria within biofilms, these zwitterionic polymeric micelles hold great promise as an effective alternative for treating biofilm-associated infections. Their unique properties enable efficient drug delivery and heightened effectiveness against biofilm-related infections.
Collapse
Affiliation(s)
- Yunhong Qian
- The People's Hospital of Yuhuan, Yuhuan, Zhejiang 317600, China; Fushun People's Hospital, Zigong, Sichuan 643200, China
| | - Xiaoli Hu
- Department of Gynecology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jinhui Wang
- The People's Hospital of Yuhuan, Yuhuan, Zhejiang 317600, China
| | - Yuanfeng Li
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Yong Liu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China.
| | - Lingping Xie
- The People's Hospital of Yuhuan, Yuhuan, Zhejiang 317600, China.
| |
Collapse
|
5
|
Kim TH, Song Z, Jung J, Sung JS, Kang MJ, Shim WB, Lee M, Pyun JC. Functionalized Parylene Films for Enhancement of Antibody Production by Hybridoma Cells. ACS APPLIED BIO MATERIALS 2023; 6:3726-3738. [PMID: 37647153 DOI: 10.1021/acsabm.3c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
In this study, the influence of microenvironments on antibody production of hybridoma cells was analyzed using six types of functionalized parylene films, parylene-N and parylene-C (before and after UV radiation), parylene-AM, and parylene-H, and using polystyrene as a negative control. Hybridoma cells were cultured on modified parylene films that produced a monoclonal antibody against the well-known fungal toxin ochratoxin-A. Surface properties were analyzed for each parylene film, such as roughness, chemical functional groups, and hydrophilicity. The proliferation rate of the hybridoma cells was observed for each parylene film by counting the number of adherent cells, and the total amount of produced antibodies from different parylene films was estimated using indirect ELISA. In comparison with the polystyrene, the antibody-production by parylene-H and parylene-AM was estimated to be observed to be as high as 210-244% after the culture of 24 h. These results indicate that the chemical functional groups of the culture plate could influence antibody production. To analyze the influence of the microenvironments of the modified parylene films, we performed cell cycle analysis to estimate the ratio of the G0/G1, S, and G2/M phases of the hybridoma cells on each parylene film. From the normalized proportion of phases of the cell cycle, the difference in antibody production from different surfaces was considered to result from the difference in the proliferation rate of hybridoma cells, which occurred from the different physical and chemical properties of the parylene films. Finally, protein expression was analyzed using an mRNA array to determine the effect of parylene films on protein expression in hybridoma cells. The expression of three antibody production-related genes (CD40, Sox4, and RelB) was analyzed in hybridoma cells cultured on modified parylene films.
Collapse
Affiliation(s)
- Tae-Hun Kim
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Zhiquan Song
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Jaeyong Jung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Jeong-Soo Sung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Min-Jung Kang
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea
| | - Won-Bo Shim
- Department of Food Science and Technology & Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Gyeongnam 52828, South Korea
| | - Misu Lee
- Division of Life Sciences, College of Life Science and Bioengineering and △Institute for New Drug Development, College of Life Science and Bioengineering, Incheon National University, Incheon 22012, South Korea
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 03722, South Korea
| |
Collapse
|
6
|
Shi WN, Fan F, Zhang TR, Liu JY, Wang XH, Chang S. Terahertz phase shift sensing and identification of a chiral amino acid based on a protein-modified metasurface through the isoelectric point and peptide bonding. BIOMEDICAL OPTICS EXPRESS 2023; 14:1096-1106. [PMID: 36950227 PMCID: PMC10026576 DOI: 10.1364/boe.484181] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
The efficient sensing of amino acids, especially the distinction of their chiral enantiomers, is important for biological, chemical, and pharmaceutical research. In this work, a THz phase shift sensing method was performed for amino acid detection based on a polarization-dependent electromagnetically induced transparency (EIT) metasurface. More importantly, a method for binding the specific amino acids to the functional proteins modified on the metasurface was developed based on the isoelectric point theory so that the specific recognition for Arginine (Arg) was achieved among the four different amino acids. The results show that via high-Q phase shift, the detection precision for L-Arg is 2.5 × 10-5 g /ml, much higher than traditional sensing parameters. Due to the specific electrostatic adsorption by the functionalized metasurface to L-Arg, its detection sensitivity and precision are 22 times higher than the other amino acids. Furthermore, by comparing nonfunctionalized and functionalized metasurfaces, the D- and L-chiral enantiomers of Arg were distinguished due to their different binding abilities to the functionalized metasurface. Therefore, this EIT metasurface sensor and its specific binding method improve both detection precision and specificity in THz sensing for amino acids, and it will promote the development of THz highly sensitive detection of chiral enantiomers.
Collapse
Affiliation(s)
- Wei-Nan Shi
- Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, China
| | - Fei Fan
- Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, China
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Tianjin 300350, China
| | - Tian-Rui Zhang
- Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, China
| | - Jia-Yue Liu
- Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, China
| | - Xiang-Hui Wang
- Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, China
| | - ShengJiang Chang
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Tianjin 300350, China
| |
Collapse
|
7
|
Pu S, Hadinoto K. Salting-Out crystallization of glycopeptide Vancomycin: Phase behavior study to control the crystal habit. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Bragagnolo N, Audette GF. Solution characterization of the dynamic conjugative entry exclusion protein TraG. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2022; 9:064702. [PMID: 36590369 PMCID: PMC9797247 DOI: 10.1063/4.0000171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
The R100 plasmid and the secretion system it encodes are representative of F-like conjugative type IV secretion systems for the transmission of mobile DNA elements in gram-negative bacteria, serving as a major contributor to the spread of antibiotic resistance in bacterial pathogens. The TraG protein of F-like systems consists of a membrane-bound N-terminal domain and a periplasmic C-terminal domain, denoted TraG*. TraG* is essential in preventing redundant DNA transfer through a process termed entry exclusion. In the donor cell, it interacts with TraN to facilitate mating pair stabilization; however, if a mating pore forms between bacteria with identical plasmids, TraG* interacts with its cognate TraS in the inner membrane of the recipient bacterium to prevent redundant donor-donor conjugation. Structural studies of TraG* from the R100 plasmid have revealed the presence of a dynamic region between the N- and C-terminal domains of TraG. Thermofluor, circular dichroism, collision-induced unfolding-mass spectrometry, and size exclusion chromatography linked to multiangle light scattering and small angle x-ray scattering experiments indicated an N-terminal truncation mutant displayed higher stability and less disordered content relative to full-length TraG*. The 45 N-terminal residues of TraG* are hypothesized to serve as part of a flexible linker between the two independently functioning domains.
Collapse
Affiliation(s)
- Nicholas Bragagnolo
- Centre for Research on Biomolecular Interactions, Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| | - Gerald F. Audette
- Centre for Research on Biomolecular Interactions, Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
9
|
Peng F, Jin Y, Wang K, Wang X, Xiao Y, Xu H. Glycosylated Zein Composite Nanoparticles for Efficient Delivery of Betulinic Acid: Fabrication, Characterization, and In Vitro Release Properties. Foods 2022; 11:foods11172589. [PMID: 36076775 PMCID: PMC9455462 DOI: 10.3390/foods11172589] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Betulinic acid (BA) has anti-inflammatory, antioxidative stress, and antitumor activities, but BA bioavailability is low due to its poor water solubility and short half-life. This study aimed to construct a BA delivery system to improve its utilization in vitro. Glycosylated zein (G-zein) was prepared using the wet heating method, and BA-loaded zein composite nanoparticles were prepared using the antisolvent method. Compared to zein, G-zein had the advantages of higher solubility and lower surface hydrophobicity. The encapsulation efficiency of G-zein@BA reached over 80% when the BA concentration was 1 mg/mL. Compared to zein@BA nanoparticles, G-zein@BA was characterized by smaller droplets, higher encapsulation efficiency, and a more stable morphology. The sustained release and solubility of G-zein@BA nanoparticles were also superior to those of zein@BA. Compared with free BA, the dispersions of zein@BA and G-zein@BA nanoparticles in water increased 2.27- and 2.91-fold, respectively. In addition, zein@BA and G-zein@BA nanoparticles markedly inhibited the proliferation of HepG2 cells. This study provides new insights into the structural properties and antitumor activity of BA composite nanoparticles to aid in the development of zein particles as functional materials to deliver bioactive compounds.
Collapse
Affiliation(s)
- Fei Peng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yu Jin
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Kunhua Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Xiaojing Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yaqing Xiao
- Food Processing Research Institute, Anhui Engineering Laboratory for Agro-Products Processing, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
- Correspondence: (Y.X.); (H.X.)
| | - Huaide Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
- Correspondence: (Y.X.); (H.X.)
| |
Collapse
|
10
|
Chowdhury ZM, Bhattacharjee A, Ahammad I, Hossain MU, Jaber AA, Rahman A, Dev PC, Salimullah M, Keya CA. Exploration of Streptococcus core genome to reveal druggable targets and novel therapeutics against S. pneumoniae. PLoS One 2022; 17:e0272945. [PMID: 35980906 PMCID: PMC9387852 DOI: 10.1371/journal.pone.0272945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 07/29/2022] [Indexed: 11/18/2022] Open
Abstract
Streptococcus pneumoniae (S. pneumoniae), the major etiological agent of community-acquired pneumonia (CAP) contributes significantly to the global burden of infectious diseases which is getting resistant day by day. Nearly 30% of the S. pneumoniae genomes encode hypothetical proteins (HPs), and better understandings of these HPs in virulence and pathogenicity plausibly decipher new treatments. Some of the HPs are present across many Streptococcus species, systematic assessment of these unexplored HPs will disclose prospective drug targets. In this study, through a stringent bioinformatics analysis of the core genome and proteome of S. pneumoniae PCS8235, we identified and analyzed 28 HPs that are common in many Streptococcus species and might have a potential role in the virulence or pathogenesis of the bacteria. Functional annotations of the proteins were conducted based on the physicochemical properties, subcellular localization, virulence prediction, protein-protein interactions, and identification of essential genes, to find potentially druggable proteins among 28 HPs. The majority of the HPs are involved in bacterial transcription and translation. Besides, some of them were homologs of enzymes, binding proteins, transporters, and regulators. Protein-protein interactions revealed HP PCS8235_RS05845 made the highest interactions with other HPs and also has TRP structural motif along with virulent and pathogenic properties indicating it has critical cellular functions and might go under unconventional protein secretions. The second highest interacting protein HP PCS8235_RS02595 interacts with the Regulator of chromosomal segregation (RocS) which participates in chromosome segregation and nucleoid protection in S. pneumoniae. In this interacting network, 54% of protein members have virulent properties and 40% contain pathogenic properties. Among them, most of these proteins circulate in the cytoplasmic area and have hydrophilic properties. Finally, molecular docking and dynamics simulation demonstrated that the antimalarial drug Artenimol can act as a drug repurposing candidate against HP PCS8235_RS 04650 of S. pneumoniae. Hence, the present study could aid in drugs against S. pneumoniae.
Collapse
Affiliation(s)
| | | | - Ishtiaque Ahammad
- Bioinformatics Division, National Institute of Biotechnology, Dhaka, Bangladesh
| | | | - Abdullah All Jaber
- Department of Biochemistry & Microbiology, North South University, Dhaka, Bangladesh
| | - Anisur Rahman
- Bioinformatics Division, National Institute of Biotechnology, Dhaka, Bangladesh
| | | | - Md. Salimullah
- Molecular Biotechnology Division, National Institute of Biotechnology, Dhaka, Bangladesh
| | - Chaman Ara Keya
- Department of Biochemistry & Microbiology, North South University, Dhaka, Bangladesh
- * E-mail:
| |
Collapse
|
11
|
Amari S, Sugawara C, Kudo S, Takiyama H. Investigation of Operation Strategy Based on Solution pH for Improving the Crystal Quality Formed during Reactive Crystallization of l-Aspartic Acid. ACS OMEGA 2022; 7:2989-2995. [PMID: 35097291 PMCID: PMC8793050 DOI: 10.1021/acsomega.1c06015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/31/2021] [Indexed: 05/10/2023]
Abstract
The production of crystalline particles with a thick and low degree of agglomeration is required because the agglomerated crystals with thin primary particles, which are frequently formed during reactive crystallization, deteriorate the crystal size distribution (CSD) of the final product due to their fragile morphology. This study aimed to develop an operation strategy for improving the degree of agglomeration and thickness of crystalline particles in the reactive crystallization considering the effect of the solution pH using l-aspartic acid as an experimental system. The scanning electron microscopy observations showed that the thickness of primary particles which form agglomerated crystals could be increased by operating the crystallization under low solution pH conditions. In contrast, it was found that operating the crystallization under high solution pH led to a decrease in the nucleation rate of crystalline particles, which resulted in a decrease in the degree of agglomeration. Then, an operation method, that is, changing the addition method of feed solutions to overcome the trade-off between the thickness and degree of agglomeration, was proposed by considering the effect of solution pH. Consequently, crystalline particles with a narrow CSD could be successfully obtained using the proposed method due to the suppression of the agglomeration and increase of the thickness. Therefore, the development of the operation strategy based on the effect of the solution pH on the degree of agglomeration and thickness is important to produce crystalline particles with improved CSD in reactive crystallization.
Collapse
|
12
|
Kozlowski LP. Proteome-pI 2.0: proteome isoelectric point database update. Nucleic Acids Res 2022; 50:D1535-D1540. [PMID: 34718696 PMCID: PMC8728302 DOI: 10.1093/nar/gkab944] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 09/28/2021] [Accepted: 10/04/2021] [Indexed: 11/18/2022] Open
Abstract
Proteome-pI 2.0 is an update of an online database containing predicted isoelectric points and pKa dissociation constants of proteins and peptides. The isoelectric point-the pH at which a particular molecule carries no net electrical charge-is an important parameter for many analytical biochemistry and proteomics techniques. Additionally, it can be obtained directly from the pKa values of individual charged residues of the protein. The Proteome-pI 2.0 database includes data for over 61 million protein sequences from 20 115 proteomes (three to four times more than the previous release). The isoelectric point for proteins is predicted by 21 methods, whereas pKa values are inferred by one method. To facilitate bottom-up proteomics analysis, individual proteomes were digested in silico with the five most commonly used proteases (trypsin, chymotrypsin, trypsin + LysC, LysN, ArgC), and the peptides' isoelectric point and molecular weights were calculated. The database enables the retrieval of virtual 2D-PAGE plots and customized fractions of a proteome based on the isoelectric point and molecular weight. In addition, isoelectric points for proteins in NCBI non-redundant (nr), UniProt, SwissProt, and Protein Data Bank are available in both CSV and FASTA formats. The database can be accessed at http://isoelectricpointdb2.org.
Collapse
Affiliation(s)
- Lukasz Pawel Kozlowski
- Institute of Informatics, Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw, Warsaw, Mazovian Voivodeship 02-097, Poland
| |
Collapse
|
13
|
Guo Y, Nishida N, Hoshino T. Quantifying the Separation of Positive and Negative Areas in Electrostatic Potential for Predicting Feasibility of Ammonium Sulfate for Protein Crystallization. J Chem Inf Model 2021; 61:4571-4581. [PMID: 34565151 DOI: 10.1021/acs.jcim.1c00505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ammonium sulfate (AS) and poly(ethylene glycol) (PEG) are the most popular precipitants in protein crystallization. Some proteins are preferably crystallized by AS, while some are by PEG. The electrostatic potential is related to the preference of the precipitant agents. The iso-surfaces of the electrostatic potentials for the AS-crystallized proteins display a common shape and a distinct separation between the positive and negative areas. In contrast, the PEG-crystallized proteins show unclear positive and negative separation. In this work, we propose schemes to quantitatively evaluate the separation for predicting which precipitant is favorable for crystal growth between AS or PEG. Three methods were attempted to quantify the amplitude of the separation, separation distance, dipole moment, and shape regularity. The positive and negative areas are approximated to the spherical potentials caused by point charges. The first method is a measurement of the distance between the positive and negative point charges. The second one is an assessment including the quantity of electric charge into the distance. The last one is an approach monitoring the clarity of the positive and negative separation. The average value for 25 kinds of AS-preferring proteins was higher than that for the PEG-preferring ones in all three methods. Therefore, every method can distinguish the proteins preferring AS for crystal growth from those preferring PEG. These methods require an iso-surface of the electrostatic potential depicted at a certain contouring value. The shape of the iso-surface depends on the contouring value. The dependency on contour was examined by depicting the iso-surfaces of electrostatic potential with three values at ±0.8, ±0.5, and ±0.2 kT/e. While reducing the contouring value leads to the increase in separation distance and the decrease in shape regularity, dipole moment is independent of the alteration of contouring value. While the AS-preferring proteins are distinguishable from the PEG-preferring ones in any contouring values, the iso-surface at ±0.5 kT/e seems adequate for regular use. The dipole moment assessment is feasible for the choice of potent precipitants for crystal growth in experiments.
Collapse
Affiliation(s)
- Yan Guo
- Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan
| | - Noritaka Nishida
- Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan
| | - Tyuji Hoshino
- Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
14
|
Cheng R, Li J, Ríos de Anda I, Taylor TWC, Faers MA, Anderson JLR, Seddon AM, Royall CP. Protein-polymer mixtures in the colloid limit: Aggregation, sedimentation, and crystallization. J Chem Phys 2021; 155:114901. [PMID: 34551522 DOI: 10.1063/5.0052122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
While proteins have been treated as particles with a spherically symmetric interaction, of course in reality, the situation is rather more complex. A simple step toward higher complexity is to treat the proteins as non-spherical particles and that is the approach we pursue here. We investigate the phase behavior of the enhanced green fluorescent protein (eGFP) under the addition of a non-adsorbing polymer, polyethylene glycol. From small angle x-ray scattering, we infer that the eGFP undergoes dimerization and we treat the dimers as spherocylinders with aspect ratio L/D - 1 = 1.05. Despite the complex nature of the proteins, we find that the phase behavior is similar to that of hard spherocylinders with an ideal polymer depletant, exhibiting aggregation and, in a small region of the phase diagram, crystallization. By comparing our measurements of the onset of aggregation with predictions for hard colloids and ideal polymers [S. V. Savenko and M. Dijkstra, J. Chem. Phys. 124, 234902 (2006) and Lo Verso et al., Phys. Rev. E 73, 061407 (2006)], we find good agreement, which suggests that the behavior of the eGFP is consistent with that of hard spherocylinders and ideal polymers.
Collapse
Affiliation(s)
- Rui Cheng
- HH Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
| | - Jingwen Li
- HH Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
| | | | - Thomas W C Taylor
- HH Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
| | | | - J L Ross Anderson
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Annela M Seddon
- HH Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
| | - C Patrick Royall
- HH Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
| |
Collapse
|
15
|
Kozlowski LP. IPC 2.0: prediction of isoelectric point and pKa dissociation constants. Nucleic Acids Res 2021; 49:W285-W292. [PMID: 33905510 PMCID: PMC8262712 DOI: 10.1093/nar/gkab295] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/03/2021] [Accepted: 04/12/2021] [Indexed: 01/05/2023] Open
Abstract
The isoelectric point is the pH at which a particular molecule is electrically neutral due to the equilibrium of positive and negative charges. In proteins and peptides, this depends on the dissociation constant (pKa) of charged groups of seven amino acids and NH+ and COO− groups at polypeptide termini. Information regarding isoelectric point and pKa is extensively used in two-dimensional gel electrophoresis (2D-PAGE), capillary isoelectric focusing (cIEF), crystallisation, and mass spectrometry. Therefore, there is a strong need for the in silico prediction of isoelectric point and pKa values. In this paper, I present Isoelectric Point Calculator 2.0 (IPC 2.0), a web server for the prediction of isoelectric points and pKa values using a mixture of deep learning and support vector regression models. The prediction accuracy (RMSD) of IPC 2.0 for proteins and peptides outperforms previous algorithms: 0.848 versus 0.868 and 0.222 versus 0.405, respectively. Moreover, the IPC 2.0 prediction of pKa using sequence information alone was better than the prediction from structure-based methods (0.576 versus 0.826) and a few folds faster. The IPC 2.0 webserver is freely available at www.ipc2-isoelectric-point.org
Collapse
Affiliation(s)
- Lukasz Pawel Kozlowski
- Institute of Informatics, Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw, Warsaw, Mazovian Voivodeship 02-097, Poland
| |
Collapse
|
16
|
Hallan SS, Sguizzato M, Esposito E, Cortesi R. Challenges in the Physical Characterization of Lipid Nanoparticles. Pharmaceutics 2021; 13:pharmaceutics13040549. [PMID: 33919859 PMCID: PMC8070758 DOI: 10.3390/pharmaceutics13040549] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
Nano-sized drug transporters have become an efficient approach with considerable commercial values. Nanomedicine is not only limited to drug delivery by means of different administration routes, such as intravenous, oral, transdermal, nasal, pulmonary, and more, but also has applications in a multitude of areas, such as a vaccine, antibacterial, diagnostics and imaging, and gene delivery. This review will focus on lipid nanosystems with a wide range of applications, taking into consideration their composition, properties, and physical parameters. However, designing suitable protocol for the physical evaluation of nanoparticles is still conflicting. The main obstacle is concerning the sensitivity, reproducibility, and reliability of the adopted methodology. Some important techniques are compared and discussed in this report. Particularly, a comparison between different techniques involved in (a) the morphologic characterization, such as Cryo-TEM, SEM, and X-ray; (b) the size measurement, such as dynamic light scattering, sedimentation field flow fractionation, and optical microscopy; and (c) surface properties, namely zeta potential measurement, is described. In addition, an amperometric tool in order to investigate antioxidant activity and the response of nanomaterials towards the skin membrane has been presented.
Collapse
Affiliation(s)
- Supandeep Singh Hallan
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (S.S.H.); (M.S.); (E.E.)
| | - Maddalena Sguizzato
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (S.S.H.); (M.S.); (E.E.)
| | - Elisabetta Esposito
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (S.S.H.); (M.S.); (E.E.)
| | - Rita Cortesi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (S.S.H.); (M.S.); (E.E.)
- Biotechnology Interuniversity Consortium (C.I.B.), Ferrara Section, University of Ferrara, I-44121 Ferrara, Italy
- Correspondence:
| |
Collapse
|
17
|
Zhang TD, Chen LL, Lin WJ, Shi WP, Wang JQ, Zhang CY, Guo WH, Deng X, Yin DC. Searching for conditions of protein self-assembly by protein crystallization screening method. Appl Microbiol Biotechnol 2021; 105:2759-2773. [PMID: 33683398 DOI: 10.1007/s00253-021-11188-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/29/2021] [Accepted: 02/17/2021] [Indexed: 11/28/2022]
Abstract
The self-assembly of biomacromolecules is an extremely important process. It is potentially useful in the fields of life science and materials science. To carry out the study on the self-assembly of proteins, it is necessary to find out the suitable self-assembly conditions, which have always been a challenging task in practice. Inspired by the screening technique in the field of protein crystallization, we proposed using the same screening technique for seeking suitable protein self-assembly conditions. Based on this consideration, we selected 5 proteins (β-lactoglobulin, hemoglobin, pepsin, lysozyme, α-chymotrypsinogen (II) A) together with 5 screening kits (IndexTM, BML, Morpheus, JCSG, PEG/Ion ScreenTM) to investigate the performance of these crystallization screening techniques in order to discover new optimized conditions of protein self-assembly. The screens were all kept at 293 K for certain days, and were analyzed using optical microscope, scanning electron microscope, transmission electron microscope, atomic force microscope, fluorescence microscope, and atomic absorption spectroscope. The results demonstrated that the method of protein crystallization screening can be successfully applied in the screening of self-assembly conditions. This method is fast, high throughput, and easily implemented in an automated system, with a low protein consumption feature. These results suggested that such strategy can be applied to finding new conditions or forms in routine research of protein self-assembly. KEY POINTS: • Protein crystallization screening method is successfully applied in the screening of self-assembly conditions. • This screening method can be applied on various kinds of proteins and possess a feature of low protein consumption. • This screening method is fast, high throughput, and easily implemented in an automated system.
Collapse
Affiliation(s)
- Tuo-Di Zhang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Liang-Liang Chen
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wen-Juan Lin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wen-Pu Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jia-Qi Wang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Chen-Yan Zhang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | | | - Xudong Deng
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Da-Chuan Yin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China.
| |
Collapse
|
18
|
Wilson J, Ristic M, Kirkwood J, Hargreaves D, Newman J. Predicting the Effect of Chemical Factors on the pH of Crystallization Trials. iScience 2020; 23:101219. [PMID: 32540772 PMCID: PMC7298652 DOI: 10.1016/j.isci.2020.101219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/14/2020] [Accepted: 05/27/2020] [Indexed: 01/13/2023] Open
Abstract
In macromolecular crystallization, success is often dependent on the pH of the experiment. However, little is known about the pH of reagents used, and it is generally assumed that the pH of the experiment will closely match that of any buffering chemical in the solution. We use a large dataset of experimentally measured solution pH values to show that this assumption can be very wrong and generate a model that can be used to successfully predict the overall solution pH of a crystallization experiment. Furthermore, we investigate the time dependence of the pH of some polyethylene glycol polymers widely used in protein crystallization under different storage conditions. The overall pH of crystallization solutions can be modeled The model was trained and tested on a set of more than 40,000 measured pH values A pH value can be assigned to a non-buffered crystallization cocktail A 12-month stability study of polyethylene glycol suggests ways to store PEGs
Collapse
Affiliation(s)
- Julie Wilson
- Department of Mathematics, University of York, York, UK.
| | - Marko Ristic
- Collaborative Crystallisation Centre, CSIRO, Parkville, VIC, Australia
| | | | - David Hargreaves
- AstraZeneca, Darwin Building, Cambridge Science Park, Cambridge, UK
| | - Janet Newman
- Collaborative Crystallisation Centre, CSIRO, Parkville, VIC, Australia.
| |
Collapse
|
19
|
Malash MN, Hussein NA, Muawia S, Nasr MI, Siam R. An optimized protocol for high yield expression and purification of an extremophilic protein. Protein Expr Purif 2020; 169:105585. [PMID: 31987929 DOI: 10.1016/j.pep.2020.105585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 11/18/2022]
Affiliation(s)
- Mohamed N Malash
- Microbiology and Immunology Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, Egypt; Biology Department, School of Sciences and Engineering, American University in Cairo, New Cairo, Cairo, Egypt; Molecular Biology Department, Genetic Engineering and Biotechnology Research Institute, Sadat City University, Menofia, Egypt
| | - Nahla A Hussein
- Molecular Biology Department, Genetic Engineering and Biotechnology Research Division, National Research Centre, Cairo, Egypt
| | - Shaden Muawia
- Molecular Biology Department, Genetic Engineering and Biotechnology Research Institute, Sadat City University, Menofia, Egypt
| | - Mahmoud I Nasr
- Molecular Biology Department, Genetic Engineering and Biotechnology Research Institute, Sadat City University, Menofia, Egypt
| | - Rania Siam
- Biology Department, School of Sciences and Engineering, American University in Cairo, New Cairo, Cairo, Egypt; University of Medicine and Health Sciences, St. Kitts, West Indies.
| |
Collapse
|
20
|
Luptak J, Bista M, Fisher D, Flavell L, Gao N, Wickson K, Kazmirski SL, Howard T, Rawlins PB, Hargreaves D. Antibody fragments structurally enable a drug-discovery campaign on the cancer target Mcl-1. Acta Crystallogr D Struct Biol 2019; 75:1003-1014. [PMID: 31692474 PMCID: PMC6834078 DOI: 10.1107/s2059798319014116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 10/16/2019] [Indexed: 11/23/2022] Open
Abstract
Apoptosis is a crucial process by which multicellular organisms control tissue growth, removal and inflammation. Disruption of the normal apoptotic function is often observed in cancer, where cell death is avoided by the overexpression of anti-apoptotic proteins of the Bcl-2 (B-cell lymphoma 2) family, including Mcl-1 (myeloid cell leukaemia 1). This makes Mcl-1 a potential target for drug therapy, through which normal apoptosis may be restored by inhibiting the protective function of Mcl-1. Here, the discovery and biophysical properties of an anti-Mcl-1 antibody fragment are described and the utility of both the scFv and Fab are demonstrated in generating an Mcl-1 crystal system amenable to iterative structure-guided drug design.
Collapse
Affiliation(s)
- Jakub Luptak
- Discovery Sciences, R&D Biopharmaceuticals, AstraZeneca, Cambridge CB4 0WG, England
| | - Michal Bista
- Discovery Sciences, R&D Biopharmaceuticals, AstraZeneca, Cambridge CB4 0WG, England
| | - David Fisher
- Discovery Sciences, R&D Biopharmaceuticals, AstraZeneca, Cambridge CB4 0WG, England
| | - Liz Flavell
- Discovery Sciences, R&D Biopharmaceuticals, AstraZeneca, Cambridge CB4 0WG, England
| | - Ning Gao
- Discovery Sciences, R&D Biopharmaceuticals, AstraZeneca, Waltham, MA 02451, USA
| | - Kate Wickson
- Discovery Sciences, R&D Biopharmaceuticals, AstraZeneca, Cambridge CB4 0WG, England
| | - Steven L. Kazmirski
- Discovery Sciences, R&D Biopharmaceuticals, AstraZeneca, Waltham, MA 02451, USA
| | - Tina Howard
- Discovery Sciences, R&D Biopharmaceuticals, AstraZeneca, Cambridge CB4 0WG, England
| | - Philip B. Rawlins
- Discovery Sciences, R&D Biopharmaceuticals, AstraZeneca, Cambridge CB4 0WG, England
| | - David Hargreaves
- Discovery Sciences, R&D Biopharmaceuticals, AstraZeneca, Cambridge CB4 0WG, England
| |
Collapse
|
21
|
Effect of isoelectric point on cheese whey wastewater treatment using a microbial electrochemical system. Bioelectrochemistry 2019; 130:107200. [PMID: 31382227 DOI: 10.1016/j.bioelechem.2018.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 08/11/2018] [Accepted: 08/19/2018] [Indexed: 11/21/2022]
Abstract
In this study, a microbial electrochemical system (MES) was employed to investigate the effect of isoelectric point (IEP) on cheese whey wastewater treatment. The experiments were carried out in a bioreactor equipped with a semicircular carbon cloth and stainless steel electrodes as anode and cathode, respectively. The effects of IEP, whey protein concentration, electrical current, and time were studied. The IEP of the whey protein was determined at pH 5.9. The optimum electrical current was obtained at 6 mA for synthetic cheese whey wastewater. The results of rotary exponential doping showed that the third structure of proteins chenges to the second structure at the IEP. The highest protein removal (98%) was obtained at pH 6. The results showed that 76%, 83%, and 98% protein removal were achieved at 2, 4, and 8 h, respectively.
Collapse
|
22
|
Mohanta TK, Khan A, Hashem A, Abd Allah EF, Al-Harrasi A. The molecular mass and isoelectric point of plant proteomes. BMC Genomics 2019; 20:631. [PMID: 31382875 PMCID: PMC6681478 DOI: 10.1186/s12864-019-5983-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/17/2019] [Indexed: 01/02/2023] Open
Abstract
Background Cell contain diverse array of proteins with different molecular weight and isoelectric point (pI). The molecular weight and pI of protein play important role in determining the molecular biochemical function. Therefore, it was important to understand the detail regarding the molecular weight and pI of the plant proteins. Results A proteome-wide analysis of plant proteomes from 145 species revealed a pI range of 1.99 (epsin) to 13.96 (hypothetical protein). The spectrum of molecular mass of the plant proteins varied from 0.54 to 2236.8 kDa. A putative Type-I polyketide synthase (22244 amino acids) in Volvox carteri was found to be the largest protein in the plant kingdom. However, Type-I polyketide synthase was not found in higher plant species. Titin (806.46 kDa) and misin/midasin (730.02 kDa) were the largest proteins identified in higher plant species. The pI and molecular weight of the plant proteins showed a trimodal distribution. An acidic pI (56.44% of proteins) was found to be predominant over a basic pI (43.34% of proteins) and the abundance of acidic pI proteins was higher in unicellular algae species relative to multicellular higher plants. In contrast, the seaweed, Porphyra umbilicalis, possesses a higher proportion of basic pI proteins (70.09%). Plant proteomes were also found to contain selenocysteine (Sec), amino acid that was found only in lower eukaryotic aquatic plant lineage. Amino acid composition analysis showed Leu was high and Trp was low abundant amino acids in the plant proteome. Additionally, the plant proteomes also possess ambiguous amino acids Xaa (unknown), Asx (asparagine or aspartic acid), Glx (glutamine or glutamic acid), and Xle (leucine or isoleucine) as well. Conclusion The diverse molecular weight and isoelectric point range of plant proteome will be helpful to understand their biochemical and functional aspects. The presence of selenocysteine proteins in lower eukaryotic organism is of interest and their expression in higher plant system can help us to understand their functional role. Electronic supplementary material The online version of this article (10.1186/s12864-019-5983-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tapan Kumar Mohanta
- Natural and Medical Science Research Centre, University of Nizwa, 616, Nizwa, Oman.
| | - Abdullatif Khan
- Natural and Medical Science Research Centre, University of Nizwa, 616, Nizwa, Oman
| | - Abeer Hashem
- Botany and Microbiology Department, King Saud University, Riyadh, 11451, Saudi Arabia
| | | | - Ahmed Al-Harrasi
- Natural and Medical Science Research Centre, University of Nizwa, 616, Nizwa, Oman.
| |
Collapse
|
23
|
Leyva-Carrillo L, Hernandez-Palomares M, Valenzuela-Soto EM, Figueroa-Soto CG, Yepiz-Plascencia G. Purification and partial biochemical characterization of recombinant lactate dehydrogenase 1 (LDH-1) of the white shrimp Litopenaeus vannamei. Protein Expr Purif 2019; 164:105461. [PMID: 31351993 DOI: 10.1016/j.pep.2019.105461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/24/2019] [Accepted: 07/24/2019] [Indexed: 11/17/2022]
Abstract
Lactate dehydrogenase (LDH) is a key enzyme to produce energy during hypoxia by anaerobic glycolysis. In the white shrimp Litopenaeus vannamei, two protein subunits (LDH-1 and LDH-2) were previously identified, deduced from two different transcripts that come from the same LDH gene by processing via mutually exclusive alternative splicing. LDH-1 contains exon five and LDH-2 contains exon six and the two proteins differ only in 15 amino acid residues. Both subunits were independently cloned and overexpressed in E. coli as a fusion protein containing a chitin binding domain. Previously, recombinant LDH-2 was successfully purified and characterized, but LDH-1 was insoluble and aggregated forming inclusion bodies. We report the production of soluble LDH-1 by testing different pHs in the buffers used to lyse the bacterial cells before the purification step and the characterization of the purified protein to show that the cDNA indeed codes for a functional and active protein. The recombinant native protein is a homotetramer of approximately 140 kDa composed by 36 kDa subunits and has higher affinity for pyruvate than for lactate. LDH-1 has an optimum pH of 7.5 and is stable between pH 8.0 and 9.0; pH data analysis showed two pKa values of 6.1 ± 0.15 and 8.8 ± 0.15 suggesting a histidine and asparagine, respectively, involved in the active site. The enzyme optimal temperature was 44 °C and it was stable between 20 and 60 °C. LDH-1 was slightly activated by NaCl, KCl and MgCl2 and fully inhibited by ZnCl2.
Collapse
Affiliation(s)
- Lilia Leyva-Carrillo
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C, Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col La Victoria, Hermosillo, Sonora, C.P. 83304, Mexico
| | - Magally Hernandez-Palomares
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C, Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col La Victoria, Hermosillo, Sonora, C.P. 83304, Mexico
| | - Elisa M Valenzuela-Soto
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C, Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col La Victoria, Hermosillo, Sonora, C.P. 83304, Mexico.
| | - Ciria G Figueroa-Soto
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C, Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col La Victoria, Hermosillo, Sonora, C.P. 83304, Mexico
| | - Gloria Yepiz-Plascencia
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C, Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col La Victoria, Hermosillo, Sonora, C.P. 83304, Mexico.
| |
Collapse
|
24
|
Selectivity enhanced cation exchange chromatography for simultaneous determination of peptide variants. Talanta 2019; 199:347-354. [DOI: 10.1016/j.talanta.2019.02.082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 11/17/2022]
|
25
|
Layer-by-layer assembly as a robust method to construct extracellular matrix mimic surfaces to modulate cell behavior. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.02.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Muenchen DK, Martinazzo J, Brezolin AN, de Cezaro AM, Rigo AA, Mezarroba MN, Manzoli A, de Lima Leite F, Steffens J, Steffens C. Cantilever Functionalization Using Peroxidase Extract of Low Cost for Glyphosate Detection. Appl Biochem Biotechnol 2018; 186:1061-1073. [PMID: 29862444 DOI: 10.1007/s12010-018-2799-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/28/2018] [Indexed: 01/10/2023]
Abstract
A cantilever nanobiosensor functionalized with vegetable source of peroxidase was developed as an innovative way for glyphosate herbicide detection over a wide concentration range (0.01 to 10 mg L-1) using atomic force microscopy (AFM) technique. The extract obtained from zucchini (Cucurbita pepo source of peroxidase), with high enzymatic activity and stability has been used as bio-recognition element to develop a nanobiosensor. The polarization-modulated reflection absorption infrared spectroscopy (PM-RAIRS) demonstrated the deposition of enzyme on cantilever surface using self-assembled monolayers (SAM) by the presence of the amide I and II bands. The detection mechanism of glyphosate was based on the changes in surface tension caused by the analyte adsorption, resulting in a conformational change in the enzyme structure. In this way, the results of nanobiosensor demonstrate the potential of the sensing device for detecting glyphosate with a detection limit of 0.028 mg L-1.
Collapse
Affiliation(s)
- Daniela Kunkel Muenchen
- Department of Food Engineering, URI - Erechim, Av. Sete de Setembro, 1621, Erechim, Rio Grande do Sul, 99709-910, Brazil
| | - Janine Martinazzo
- Department of Food Engineering, URI - Erechim, Av. Sete de Setembro, 1621, Erechim, Rio Grande do Sul, 99709-910, Brazil
| | - Alexandra Nava Brezolin
- Department of Food Engineering, URI - Erechim, Av. Sete de Setembro, 1621, Erechim, Rio Grande do Sul, 99709-910, Brazil
| | - Alana Marie de Cezaro
- Department of Food Engineering, URI - Erechim, Av. Sete de Setembro, 1621, Erechim, Rio Grande do Sul, 99709-910, Brazil
| | - Aline Andressa Rigo
- Department of Food Engineering, URI - Erechim, Av. Sete de Setembro, 1621, Erechim, Rio Grande do Sul, 99709-910, Brazil
| | - Mateus Nava Mezarroba
- Department of Food Engineering, URI - Erechim, Av. Sete de Setembro, 1621, Erechim, Rio Grande do Sul, 99709-910, Brazil
| | - Alexandra Manzoli
- Department of Food Engineering, URI - Erechim, Av. Sete de Setembro, 1621, Erechim, Rio Grande do Sul, 99709-910, Brazil
| | - Fábio de Lima Leite
- Department of Physics, Chemistry and Mathematics, Nanoneurobiophysics Research Group, Federal University of São Carlos (UFSCar), P.O. Box 3031, Sorocaba, São Paulo, 18052-780, Brazil
| | - Juliana Steffens
- Department of Food Engineering, URI - Erechim, Av. Sete de Setembro, 1621, Erechim, Rio Grande do Sul, 99709-910, Brazil
| | - Clarice Steffens
- Department of Food Engineering, URI - Erechim, Av. Sete de Setembro, 1621, Erechim, Rio Grande do Sul, 99709-910, Brazil.
| |
Collapse
|
27
|
Martinazzo J, Muenchen DK, Brezolin AN, Cezaro AM, Rigo AA, Manzoli A, Hoehne L, Leite FL, Steffens J, Steffens C. Cantilever nanobiosensor using tyrosinase to detect atrazine in liquid medium. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2018; 53:229-236. [PMID: 29319411 DOI: 10.1080/03601234.2017.1421833] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The aim of this study was to develop a cantilever nanobiosensor for atrazine detection in liquid medium by immobilising the biological recognition element (tyrosinase vegetal extract) on its surface with self-assembled monolayers using gold, 16-mercaptohexadecanoic acid, 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride/n-hydroxysuccinimide. Cantilever nanobiosensors presented a surface compression tension increase when atrazine concentrations were increased, with a limit of detection and limit of quantification of 7.754 ppb (parts per billion) and 22.792 ppb, respectively. From the voltage results obtained, the evaluation of atrazine contamination in river and drinking water were very close to those of the reference sample and ultrapure water, demonstrating the ability of the cantilever nanobiosensor to distinguish different water samples and different concentrations of atrazine. Cantilever nanosensor surface functionalization was characterised by combining polarisation modulation infrared reflection-absorption spectroscopy and atomic force microscopy and indicating film thickness in nanometric scale (80.2 ± 0.4 nm). Thus, the cantilever nanobiosensor developed for this study using low cost tyrosinase vegetal extract was adequate for atrazine detection, a potential tool in the environmental field.
Collapse
Affiliation(s)
- Janine Martinazzo
- a Department of Food Engineering , URI - Erechim Campus , Erechim , RS , Brazil
| | - Daniela K Muenchen
- a Department of Food Engineering , URI - Erechim Campus , Erechim , RS , Brazil
| | | | - Alana M Cezaro
- a Department of Food Engineering , URI - Erechim Campus , Erechim , RS , Brazil
| | - Aline A Rigo
- a Department of Food Engineering , URI - Erechim Campus , Erechim , RS , Brazil
| | - Alexandra Manzoli
- a Department of Food Engineering , URI - Erechim Campus , Erechim , RS , Brazil
| | - Lucélia Hoehne
- b Department of Biotechnology , Univates , Lajeado , RS , Brazil
| | - Fábio L Leite
- c Department of Physics , Chemistry and Mathematics , Nanoneurobiophysics Research Group, Federal University of São Carlos (UFSCar) , Sorocaba , SP , Brazil
| | - Juliana Steffens
- a Department of Food Engineering , URI - Erechim Campus , Erechim , RS , Brazil
| | - Clarice Steffens
- a Department of Food Engineering , URI - Erechim Campus , Erechim , RS , Brazil
| |
Collapse
|
28
|
Ereño-Orbea J, Sicard T, Cui H, Carson J, Hermans P, Julien JP. Structural Basis of Enhanced Crystallizability Induced by a Molecular Chaperone for Antibody Antigen-Binding Fragments. J Mol Biol 2017; 430:322-336. [PMID: 29277294 DOI: 10.1016/j.jmb.2017.12.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 11/30/2017] [Accepted: 12/13/2017] [Indexed: 12/20/2022]
Abstract
Monoclonal antibodies constitute one of the largest groups of drugs to treat cancers and immune disorders, and are guiding the design of vaccines against infectious diseases. Fragments antigen-binding (Fabs) have been preferred over monoclonal antibodies for the structural characterization of antibody-antigen complexes due to their relatively low flexibility. Nonetheless, Fabs often remain challenging to crystallize because of the surface characteristics of complementary determining regions and the residual flexibility in the hinge region between the variable and constant domains. Here, we used a variable heavy-chain (VHH) domain specific for the human kappa light chain to assist in the structure determination of three therapeutic Fabs that were recalcitrant to crystallization on their own. We show that this ligand alters the surface properties of the antibody-ligand complex and lowers its aggregation temperature to favor crystallization. The VHH crystallization chaperone also restricts the flexible hinge of Fabs to a narrow range of angles, and so independently of the variable region. Our findings contribute a valuable approach to antibody structure determination and provide biophysical insight into the principles that govern the crystallization of macromolecules.
Collapse
Affiliation(s)
- June Ereño-Orbea
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada M5G 0A4
| | - Taylor Sicard
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada M5G 0A4; Department of Biochemistry, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Hong Cui
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada M5G 0A4
| | - Jacob Carson
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada M5G 0A4
| | - Pim Hermans
- BAC, BV, part of Thermo Fisher Scientific, Leiden, the Netherlands
| | - Jean-Philippe Julien
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada M5G 0A4; Department of Biochemistry, University of Toronto, Toronto, ON, Canada M5S 1A8; Department of Immunology, University of Toronto, Toronto, ON, Canada M5S 1A8.
| |
Collapse
|
29
|
Ramanauskas K, Igić B. The evolutionary history of plant T2/S-type ribonucleases. PeerJ 2017; 5:e3790. [PMID: 28924504 PMCID: PMC5598434 DOI: 10.7717/peerj.3790] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/18/2017] [Indexed: 12/22/2022] Open
Abstract
A growing number of T2/S-RNases are being discovered in plant genomes. Members of this protein family have a variety of known functions, but the vast majority are still uncharacterized. We present data and analyses of phylogenetic relationships among T2/S-RNases, and pay special attention to the group that contains the female component of the most widespread system of self-incompatibility in flowering plants. The returned emphasis on the initially identified component of this mechanism yields important conjectures about its evolutionary context. First, we find that the clade involved in self-rejection (class III) is found exclusively in core eudicots, while the remaining clades contain members from other vascular plants. Second, certain features, such as intron patterns, isoelectric point, and conserved amino acid regions, help differentiate S-RNases, which are necessary for expression of self-incompatibility, from other T2/S-RNase family members. Third, we devise and present a set of approaches to clarify new S-RNase candidates from existing genome assemblies. We use genomic features to identify putative functional and relictual S-loci in genomes of plants with unknown mechanisms of self-incompatibility. The widespread occurrence of possible relicts suggests that the loss of functional self-incompatibility may leave traces long after the fact, and that this manner of molecular fossil-like data could be an important source of information about the history and distribution of both RNase-based and other mechanisms of self-incompatibility. Finally, we release a public resource intended to aid the search for S-locus RNases, and help provide increasingly detailed information about their taxonomic distribution.
Collapse
Affiliation(s)
- Karolis Ramanauskas
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Boris Igić
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States of America
| |
Collapse
|
30
|
Chen RQ, Cheng QD, Chen JJ, Sun DS, Ao LB, Li DW, Lu QQ, Yin DC. An investigation of the effects of varying pH on protein crystallization screening. CrystEngComm 2017. [DOI: 10.1039/c6ce02136k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Kozlowski LP. Proteome-pI: proteome isoelectric point database. Nucleic Acids Res 2016; 45:D1112-D1116. [PMID: 27789699 PMCID: PMC5210655 DOI: 10.1093/nar/gkw978] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/07/2016] [Accepted: 10/13/2016] [Indexed: 11/13/2022] Open
Abstract
Proteome-pI is an online database containing information about predicted
isoelectric points for 5029 proteomes calculated using 18 methods. The isoelectric point,
the pH at which a particular molecule carries no net electrical charge, is an important
parameter for many analytical biochemistry and proteomics techniques, especially for 2D
gel electrophoresis (2D-PAGE), capillary isoelectric focusing, liquid chromatography–mass
spectrometry and X-ray protein crystallography. The database, available at http://isoelectricpointdb.org
allows the retrieval of virtual 2D-PAGE plots and the development of customised fractions
of proteome based on isoelectric point and molecular weight. Moreover,
Proteome-pI facilitates statistical comparisons of the various
prediction methods as well as biological investigation of protein isoelectric point space
in all kingdoms of life. For instance, using Proteome-pI data, it is
clear that Eukaryotes, which evolved tight control of homeostasis, encode proteins with
pI values near the cell pH. In contrast, Archaea living frequently in
extreme environments can possess proteins with a wide range of isoelectric points. The
database includes various statistics and tools for interactive browsing, searching and
sorting. Apart from data for individual proteomes, datasets corresponding to major protein
databases such as UniProtKB/TrEMBL and the NCBI non-redundant (nr)
database have also been precalculated and made available in CSV format.
Collapse
Affiliation(s)
- Lukasz P Kozlowski
- Quantitative and Computational Biology Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Lower Saxony, 37077, Germany
| |
Collapse
|
32
|
Abstract
BACKGROUND Accurate estimation of the isoelectric point (pI) based on the amino acid sequence is useful for many analytical biochemistry and proteomics techniques such as 2-D polyacrylamide gel electrophoresis, or capillary isoelectric focusing used in combination with high-throughput mass spectrometry. Additionally, pI estimation can be helpful during protein crystallization trials. RESULTS Here, I present the Isoelectric Point Calculator (IPC), a web service and a standalone program for the accurate estimation of protein and peptide pI using different sets of dissociation constant (pKa) values, including two new computationally optimized pKa sets. According to the presented benchmarks, the newly developed IPC pKa sets outperform previous algorithms by at least 14.9 % for proteins and 0.9 % for peptides (on average, 22.1 % and 59.6 %, respectively), which corresponds to an average error of the pI estimation equal to 0.87 and 0.25 pH units for proteins and peptides, respectively. Moreover, the prediction of pI using the IPC pKa's leads to fewer outliers, i.e., predictions affected by errors greater than a given threshold. CONCLUSIONS The IPC service is freely available at http://isoelectric.ovh.org Peptide and protein datasets used in the study and the precalculated pI for the PDB and some of the most frequently used proteomes are available for large-scale analysis and future development. REVIEWERS This article was reviewed by Frank Eisenhaber and Zoltán Gáspári.
Collapse
|
33
|
Bhattacharjee S. DLS and zeta potential - What they are and what they are not? J Control Release 2016; 235:337-351. [PMID: 27297779 DOI: 10.1016/j.jconrel.2016.06.017] [Citation(s) in RCA: 1880] [Impact Index Per Article: 235.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 02/07/2023]
Abstract
Adequate characterization of NPs (nanoparticles) is of paramount importance to develop well defined nanoformulations of therapeutic relevance. Determination of particle size and surface charge of NPs are indispensable for proper characterization of NPs. DLS (dynamic light scattering) and ZP (zeta potential) measurements have gained popularity as simple, easy and reproducible tools to ascertain particle size and surface charge. Unfortunately, on practical grounds plenty of challenges exist regarding these two techniques including inadequate understanding of the operating principles and dealing with critical issues like sample preparation and interpretation of the data. As both DLS and ZP have emerged from the realms of physical colloid chemistry - it is difficult for researchers engaged in nanomedicine research to master these two techniques. Additionally, there is little literature available in drug delivery research which offers a simple, concise account on these techniques. This review tries to address this issue while providing the fundamental principles of these techniques, summarizing the core mathematical principles and offering practical guidelines on tackling commonly encountered problems while running DLS and ZP measurements. Finally, the review tries to analyze the relevance of these two techniques from translatory perspective.
Collapse
Affiliation(s)
- Sourav Bhattacharjee
- School of Veterinary Medicine, University College Dublin (UCD), Belfield, Dublin 4, Ireland.
| |
Collapse
|
34
|
Fejfarová K, Kádek A, Mrázek H, Hausner J, Tretyachenko V, Koval' T, Man P, Hašek J, Dohnálek J. Crystallization of nepenthesin I using a low-pH crystallization screen. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2016; 72:24-8. [PMID: 26750480 DOI: 10.1107/s2053230x15022323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/20/2015] [Indexed: 12/19/2022]
Abstract
Nepenthesins are aspartic proteases secreted by carnivorous pitcher plants of the genus Nepenthes. They significantly differ in sequence from other plant aspartic proteases. This difference, which provides more cysteine residues in the structure of nepenthesins, may contribute to their unique stability profile. Recombinantly produced nepenthesin 1 (rNep1) from N. gracilis in complex with pepstatin A was crystallized under two different crystallization conditions using a newly formulated low-pH crystallization screen. The diffraction data were processed to 2.9 and 2.8 Å resolution, respectively. The crystals belonged to space group P212121, with unit-cell parameters a = 86.63, b = 95.90, c = 105.40 Å, α = β = γ = 90° and a = 86.28, b = 97.22, c = 103.78 Å, α = β = γ = 90°, respectively. Matthews coefficient and solvent-content calculations suggest the presence of two molecules of rNep1 in the asymmetric unit. Here, the details of the crystallization experiment and analysis of the X-ray data are reported.
Collapse
Affiliation(s)
- Karla Fejfarová
- Institute of Macromolecular Chemistry CAS, v.v.i., Heyrovského nám. 2/1888, 162 06 Praha 6, Czech Republic
| | - Alan Kádek
- Faculty of Science, Charles University in Prague, Albertov 6, 128 44 Praha 2, Czech Republic
| | - Hynek Mrázek
- Institute of Microbiology CAS, v.v.i., Vídeňská 1083, 142 20 Praha 4, Czech Republic
| | - Jiří Hausner
- Faculty of Science, Charles University in Prague, Albertov 6, 128 44 Praha 2, Czech Republic
| | - Vyacheslav Tretyachenko
- Faculty of Science, Charles University in Prague, Albertov 6, 128 44 Praha 2, Czech Republic
| | - Tomáš Koval'
- Institute of Macromolecular Chemistry CAS, v.v.i., Heyrovského nám. 2/1888, 162 06 Praha 6, Czech Republic
| | - Petr Man
- Faculty of Science, Charles University in Prague, Albertov 6, 128 44 Praha 2, Czech Republic
| | - Jindřich Hašek
- Institute of Biotechnology CAS, v.v.i., Vídeňská 1083, 142 20 Praha 4, Czech Republic
| | - Jan Dohnálek
- Institute of Macromolecular Chemistry CAS, v.v.i., Heyrovského nám. 2/1888, 162 06 Praha 6, Czech Republic
| |
Collapse
|
35
|
Ristic M, Rosa N, Seabrook SA, Newman J. Formulation screening by differential scanning fluorimetry: how often does it work? Acta Crystallogr F Struct Biol Commun 2015; 71:1359-64. [PMID: 26457531 PMCID: PMC4601604 DOI: 10.1107/s2053230x15012662] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/01/2015] [Indexed: 11/10/2022] Open
Abstract
There is strong evidence to suggest that a protein sample needs to be well folded and uniform in order to form protein crystals, and it is accepted knowledge that the formulation can have profound effects on the behaviour of the protein sample. The technique of differential scanning fluorimetry (DSF) is a very accessible method to determine protein stability as a function of the formulation chemistry and the temperature. A diverse set of 252 soluble protein samples was subjected to a standard formulation-screening protocol using DSF. Automated analysis of the DSF results suggest that in over 35% of cases buffer screening significantly increases the stability of the protein sample. Of the 28 standard formulations tested, three stood out as being statistically better than the others: these included a formulation containing the buffer citrate, long known to be `protein friendly'; bis-tris and ADA were also identified as being very useful buffers in protein formulations.
Collapse
Affiliation(s)
- Marko Ristic
- Manufacturing Flagship, CSIRO, 343 Royal Parade, Parkville, VIC 3052, Australia
| | - Nicholas Rosa
- Manufacturing Flagship, CSIRO, 343 Royal Parade, Parkville, VIC 3052, Australia
| | - Shane A. Seabrook
- Manufacturing Flagship, CSIRO, 343 Royal Parade, Parkville, VIC 3052, Australia
| | - Janet Newman
- Manufacturing Flagship, CSIRO, 343 Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|
36
|
Kirkwood J, Hargreaves D, O’Keefe S, Wilson J. Analysis of crystallization data in the Protein Data Bank. Acta Crystallogr F Struct Biol Commun 2015; 71:1228-34. [PMID: 26457511 PMCID: PMC4601584 DOI: 10.1107/s2053230x15014892] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/08/2015] [Indexed: 11/10/2022] Open
Abstract
The Protein Data Bank (PDB) is the largest available repository of solved protein structures and contains a wealth of information on successful crystallization. Many centres have used their own experimental data to draw conclusions about proteins and the conditions in which they crystallize. Here, data from the PDB were used to reanalyse some of these results. The most successful crystallization reagents were identified, the link between solution pH and the isoelectric point of the protein was investigated and the possibility of predicting whether a protein will crystallize was explored.
Collapse
Affiliation(s)
- Jobie Kirkwood
- Department of Chemistry, University of York, York YO10 5DD, England
| | - David Hargreaves
- AstraZeneca, Darwin Building, Cambridge Science Park, Cambridge CB4 0WG, England
| | - Simon O’Keefe
- Department of Computer Science, University of York, York YO10 5DD, England
| | - Julie Wilson
- Department of Chemistry, University of York, York YO10 5DD, England
- Department of Mathematics, University of York, York YO10 5DD, England
| |
Collapse
|