1
|
Gerard D, Thakkar M, Ferrão LFV. Tests for segregation distortion in tetraploid F1 populations. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:30. [PMID: 39814998 PMCID: PMC11735573 DOI: 10.1007/s00122-025-04816-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 01/01/2025] [Indexed: 01/18/2025]
Abstract
KEY MESSAGE In tetraploid F1 populations, traditional segregation distortion tests often inaccurately flag SNPs due to ignoring polyploid meiosis processes and genotype uncertainty. We develop tests that account for these factors. Genotype data from tetraploid F1 populations are often collected in breeding programs for mapping and genomic selection purposes. A common quality control procedure in these groups is to compare empirical genotype frequencies against those predicted by Mendelian segregation, where SNPs detected to have segregation distortion are discarded. However, current tests for segregation distortion are insufficient in that they do not account for double reduction and preferential pairing, two meiotic processes in polyploids that naturally change gamete frequencies, leading these tests to detect segregation distortion too often. Current tests also do not account for genotype uncertainty, again leading these tests to detect segregation distortion too often. Here, we incorporate double reduction, preferential pairing, and genotype uncertainty in likelihood ratio and Bayesian tests for segregation distortion. Our methods are implemented in a user-friendly R package, menbayes. We demonstrate the superiority of our methods to those currently used in the literature on both simulations and real data.
Collapse
Affiliation(s)
- David Gerard
- Department of Mathematics and Statistics, American University, Washington, DC, 20016, USA.
| | - Mira Thakkar
- Department of Mathematics and Statistics, American University, Washington, DC, 20016, USA
| | - Luis Felipe V Ferrão
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
2
|
Burridge AJ, Winfield M, Przewieslik‐Allen A, Edwards KJ, Siddique I, Barral‐Arca R, Griffiths S, Cheng S, Huang Z, Feng C, Dreisigacker S, Bentley AR, Brown‐Guedira G, Barker GL. Development of a next generation SNP genotyping array for wheat. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2235-2247. [PMID: 38520342 PMCID: PMC11258986 DOI: 10.1111/pbi.14341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/25/2024]
Abstract
High-throughput genotyping arrays have provided a cost-effective, reliable and interoperable system for genotyping hexaploid wheat and its relatives. Existing, highly cited arrays including our 35K Wheat Breeder's array and the Illumina 90K array were designed based on a limited amount of varietal sequence diversity and with imperfect knowledge of SNP positions. Recent progress in wheat sequencing has given us access to a vast pool of SNP diversity, whilst technological improvements have allowed us to fit significantly more probes onto a 384-well format Axiom array than previously possible. Here we describe a novel Axiom genotyping array, the 'Triticum aestivum Next Generation' array (TaNG), largely derived from whole genome skim sequencing of 204 elite wheat lines and 111 wheat landraces taken from the Watkins 'Core Collection'. We used a novel haplotype optimization approach to select SNPs with the highest combined varietal discrimination and a design iteration step to test and replace SNPs which failed to convert to reliable markers. The final design with 43 372 SNPs contains a combination of haplotype-optimized novel SNPs and legacy cross-platform markers. We show that this design has an improved distribution of SNPs compared to previous arrays and can be used to generate genetic maps with a significantly higher number of distinct bins than our previous array. We also demonstrate the improved performance of TaNGv1.1 for Genome-wide association studies (GWAS) and its utility for Copy Number Variation (CNV) analysis. The array is commercially available with supporting marker annotations and initial genotyping results freely available.
Collapse
Affiliation(s)
| | - Mark Winfield
- School of Biological SciencesUniversity of BristolBristolUK
| | | | | | - Imteaz Siddique
- Thermo Fisher Scientific3450 Central ExpresswaySanta ClaraCAUSA
| | | | | | - Shifeng Cheng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Zejian Huang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Cong Feng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | | | | | - Gina Brown‐Guedira
- Plant Science Research UnitUSDA Agricultural Research ServiceRaleighNCUSA
| | - Gary L. Barker
- School of Biological SciencesUniversity of BristolBristolUK
| |
Collapse
|
3
|
Clot CR, Vexler L, de La O Leyva-Perez M, Bourke PM, Engelen CJM, Hutten RCB, van de Belt J, Wijnker E, Milbourne D, Visser RGF, Juranić M, van Eck HJ. Identification of two mutant JASON-RELATED genes associated with unreduced pollen production in potato. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:79. [PMID: 38472376 PMCID: PMC10933213 DOI: 10.1007/s00122-024-04563-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/24/2024] [Indexed: 03/14/2024]
Abstract
KEY MESSAGE Multiple QTLs control unreduced pollen production in potato. Two major-effect QTLs co-locate with mutant alleles of genes with homology to AtJAS, a known regulator of meiotic spindle orientation. In diploid potato the production of unreduced gametes with a diploid (2n) rather than a haploid (n) number of chromosomes has been widely reported. Besides their evolutionary important role in sexual polyploidisation, unreduced gametes also have a practical value for potato breeding as a bridge between diploid and tetraploid germplasm. Although early articles argued for a monogenic recessive inheritance, the genetic basis of unreduced pollen production in potato has remained elusive. Here, three diploid full-sib populations were genotyped with an amplicon sequencing approach and phenotyped for unreduced pollen production across two growing seasons. We identified two minor-effect and three major-effect QTLs regulating this trait. The two QTLs with the largest effect displayed a recessive inheritance and an additive interaction. Both QTLs co-localised with genes encoding for putative AtJAS homologs, a key regulator of meiosis II spindle orientation in Arabidopsis thaliana. The function of these candidate genes is consistent with the cytological phenotype of mis-oriented metaphase II plates observed in the parental clones. The alleles associated with elevated levels of unreduced pollen showed deleterious mutation events: an exonic transposon insert causing a premature stop, and an amino acid change within a highly conserved domain. Taken together, our findings shed light on the natural variation underlying unreduced pollen production in potato and will facilitate interploidy breeding by enabling marker-assisted selection for this trait.
Collapse
Affiliation(s)
- Corentin R Clot
- Plant Breeding, Wageningen University and Research, Po Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Lea Vexler
- Plant Breeding, Wageningen University and Research, Po Box 386, 6700 AJ, Wageningen, The Netherlands
- Teagasc, Crops Research, Oak Park, Carlow, R93 XE12, Ireland
| | | | - Peter M Bourke
- Plant Breeding, Wageningen University and Research, Po Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Christel J M Engelen
- Plant Breeding, Wageningen University and Research, Po Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Ronald C B Hutten
- Plant Breeding, Wageningen University and Research, Po Box 386, 6700 AJ, Wageningen, The Netherlands
| | - José van de Belt
- Laboratory of Genetics, Wageningen University and Research, Po Box 16, 6700 AA, Wageningen, The Netherlands
| | - Erik Wijnker
- Laboratory of Genetics, Wageningen University and Research, Po Box 16, 6700 AA, Wageningen, The Netherlands
| | - Dan Milbourne
- Teagasc, Crops Research, Oak Park, Carlow, R93 XE12, Ireland
| | - Richard G F Visser
- Plant Breeding, Wageningen University and Research, Po Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Martina Juranić
- Plant Breeding, Wageningen University and Research, Po Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Herman J van Eck
- Plant Breeding, Wageningen University and Research, Po Box 386, 6700 AJ, Wageningen, The Netherlands.
| |
Collapse
|
4
|
Clot CR, Klein D, Koopman J, Schuit C, Engelen CJM, Hutten RCB, Brouwer M, Visser RGF, Jurani M, van Eck HJ. Crossover shortage in potato is caused by StMSH4 mutant alleles and leads to either highly uniform unreduced pollen or sterility. Genetics 2024; 226:iyad194. [PMID: 37943687 PMCID: PMC10763545 DOI: 10.1093/genetics/iyad194] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
The balanced segregation of homologous chromosomes during meiosis is essential for fertility and is mediated by crossovers (COs). A strong reduction of CO number leads to the unpairing of homologous chromosomes after the withdrawal of the synaptonemal complex. This results in the random segregation of univalents during meiosis I and ultimately to the production of unbalanced and sterile gametes. However, if CO shortage is combined with another meiotic alteration that restitutes the first meiotic division, then uniform and balanced unreduced male gametes, essentially composed of nonrecombinant homologs, are produced. This mitosis-like division is of interest to breeders because it transmits most of the parental heterozygosity to the gametes. In potato, CO shortage, a recessive trait previously referred to as desynapsis, was tentatively mapped to chromosome 8. In this article, we have fine-mapped the position of the CO shortage locus and identified StMSH4, an essential component of the class I CO pathway, as the most likely candidate gene. A 7 base-pair insertion in the second exon of StMSH4 was found to be associated with CO shortage in our mapping population. We also identified a second allele with a 3,820 base-pair insertion and confirmed that both alleles cannot complement each other. Such nonfunctional alleles appear to be common in potato cultivars. More than half of the varieties we tested are carriers of mutational load at the StMSH4 locus. With this new information, breeders can choose to remove alleles associated with CO shortage from their germplasm to improve fertility or to use them to produce highly uniform unreduced male gametes in alternative breeding schemes.
Collapse
Affiliation(s)
- Corentin R Clot
- Plant Breeding, Wageningen University & Research, Wageningen, 6700 AJ, The Netherlands
- Graduate School Experimental Plant Sciences, Wageningen University & Research, Wageningen, 6708 PB, The Netherlands
| | - Dennis Klein
- Plant Breeding, Wageningen University & Research, Wageningen, 6700 AJ, The Netherlands
| | - Joey Koopman
- Plant Breeding, Wageningen University & Research, Wageningen, 6700 AJ, The Netherlands
| | - Cees Schuit
- Bejo Zaden B.V., Warmenhuizen, 1749 CZ, The Netherlands
| | - Christel J M Engelen
- Plant Breeding, Wageningen University & Research, Wageningen, 6700 AJ, The Netherlands
| | - Ronald C B Hutten
- Plant Breeding, Wageningen University & Research, Wageningen, 6700 AJ, The Netherlands
| | - Matthijs Brouwer
- Plant Breeding, Wageningen University & Research, Wageningen, 6700 AJ, The Netherlands
| | - Richard G F Visser
- Plant Breeding, Wageningen University & Research, Wageningen, 6700 AJ, The Netherlands
| | - Martina Jurani
- Plant Breeding, Wageningen University & Research, Wageningen, 6700 AJ, The Netherlands
| | - Herman J van Eck
- Plant Breeding, Wageningen University & Research, Wageningen, 6700 AJ, The Netherlands
| |
Collapse
|
5
|
da Costa Lima Moraes A, Mollinari M, Ferreira RCU, Aono A, de Castro Lara LA, Pessoa-Filho M, Barrios SCL, Garcia AAF, do Valle CB, de Souza AP, Vigna BBZ. Advances in genomic characterization of Urochloa humidicola: exploring polyploid inheritance and apomixis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:238. [PMID: 37919432 DOI: 10.1007/s00122-023-04485-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/11/2023] [Indexed: 11/04/2023]
Abstract
KEY MESSAGE We present the highest-density genetic map for the hexaploid Urochloa humidicola. SNP markers expose genetic organization, reproduction, and species origin, aiding polyploid and tropical forage research. Tropical forage grasses are an important food source for animal feeding, with Urochloa humidicola, also known as Koronivia grass, being one of the main pasture grasses for poorly drained soils in the tropics. However, genetic and genomic resources for this species are lacking due to its genomic complexity, including high heterozygosity, evidence of segmental allopolyploidy, and reproduction by apomixis. These complexities hinder the application of marker-assisted selection (MAS) in breeding programs. Here, we developed the highest-density linkage map currently available for the hexaploid tropical forage grass U. humidicola. This map was constructed using a biparental F1 population generated from a cross between the female parent H031 (CIAT 26146), the only known sexual genotype for the species, and the apomictic male parent H016 (BRS cv. Tupi). The linkage analysis included 4873 single nucleotide polymorphism (SNP) markers with allele dosage information. It allowed mapping of the ASGR locus and apospory phenotype to linkage group 3, in a region syntenic with chromosome 3 of Urochloa ruziziensis and chromosome 1 of Setaria italica. We also identified hexaploid haplotypes for all individuals, assessed the meiotic configuration, and estimated the level of preferential pairing in parents during the meiotic process, which revealed the autopolyploid origin of sexual H031 in contrast to apomictic H016, which presented allopolyploid behavior in preferential pairing analysis. These results provide new information regarding the genetic organization, mode of reproduction, and allopolyploid origin of U. humidicola, potential SNPs markers associated with apomixis for MAS and resources for research on polyploids and tropical forage grasses.
Collapse
Affiliation(s)
- Aline da Costa Lima Moraes
- Department of Plant Biology, Biology Institute, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Marcelo Mollinari
- Department of Horticultural Science, Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | | | - Alexandre Aono
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | | | | | | | | | | | - Anete Pereira de Souza
- Department of Plant Biology, Biology Institute, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | | |
Collapse
|
6
|
Ding C, Zhang Z. Effective omics tools are still lacking for improvement of stress tolerance in polyploid crops. FRONTIERS IN PLANT SCIENCE 2023; 14:1295528. [PMID: 38023865 PMCID: PMC10646182 DOI: 10.3389/fpls.2023.1295528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023]
Affiliation(s)
- Chao Ding
- Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, Taiyuan, China
| | - Zhao Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Jacobs M, Thompson S, Platts AE, Body MJA, Kelsey A, Saad A, Abeli P, Teresi SJ, Schilmiller A, Beaudry R, Feldmann MJ, Knapp SJ, Song GQ, Miles T, Edger PP. Uncovering genetic and metabolite markers associated with resistance against anthracnose fruit rot in northern highbush blueberry. HORTICULTURE RESEARCH 2023; 10:uhad169. [PMID: 38025975 PMCID: PMC10660357 DOI: 10.1093/hr/uhad169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 08/29/2023] [Indexed: 12/01/2023]
Abstract
Anthracnose fruit rot (AFR), caused by the fungal pathogen Colletotrichum fioriniae, is among the most destructive and widespread fruit disease of blueberry, impacting both yield and overall fruit quality. Blueberry cultivars have highly variable resistance against AFR. To date, this pathogen is largely controlled by applying various fungicides; thus, a more cost-effective and environmentally conscious solution for AFR is needed. Here we report three quantitative trait loci associated with AFR resistance in northern highbush blueberry (Vaccinium corymbosum). Candidate genes within these genomic regions are associated with the biosynthesis of flavonoids (e.g. anthocyanins) and resistance against pathogens. Furthermore, we examined gene expression changes in fruits following inoculation with Colletotrichum in a resistant cultivar, which revealed an enrichment of significantly differentially expressed genes associated with certain specialized metabolic pathways (e.g. flavonol biosynthesis) and pathogen resistance. Using non-targeted metabolite profiling, we identified a flavonol glycoside with properties consistent with a quercetin rhamnoside as a compound exhibiting significant abundance differences among the most resistant and susceptible individuals from the genetic mapping population. Further analysis revealed that this compound exhibits significant abundance differences among the most resistant and susceptible individuals when analyzed as two groups. However, individuals within each group displayed considerable overlapping variation in this compound, suggesting that its abundance may only be partially associated with resistance against C. fioriniae. These findings should serve as a powerful resource that will enable breeding programs to more easily develop new cultivars with superior resistance to AFR and as the basis of future research studies.
Collapse
Affiliation(s)
- MacKenzie Jacobs
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
- Molecular Plant Science Program, Michigan State University, East Lansing, MI 48824, USA
| | - Samantha Thompson
- Molecular Plant Science Program, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Adrian E Platts
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Melanie J A Body
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Alexys Kelsey
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Amanda Saad
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Patrick Abeli
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
- Department of Horticulture and Natural Resources, Kansas State University, Olathe, KS 66061, USA
| | - Scott J Teresi
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
- Genetics and Genome Sciences Program, Michigan State University, East Lansing, MI 48824, USA
| | - Anthony Schilmiller
- Mass Spectrometry & Metabolomics Core, Michigan State University, East Lansing, MI 48824, USA
| | - Randolph Beaudry
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Mitchell J Feldmann
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Steven J Knapp
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Guo-qing Song
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Timothy Miles
- Molecular Plant Science Program, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
- Genetics and Genome Sciences Program, Michigan State University, East Lansing, MI 48824, USA
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
- Molecular Plant Science Program, Michigan State University, East Lansing, MI 48824, USA
- Genetics and Genome Sciences Program, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
8
|
Montanari S, Deng C, Koot E, Bassil NV, Zurn JD, Morrison-Whittle P, Worthington ML, Aryal R, Ashrafi H, Pradelles J, Wellenreuther M, Chagné D. A multiplexed plant-animal SNP array for selective breeding and species conservation applications. G3 (BETHESDA, MD.) 2023; 13:jkad170. [PMID: 37565490 PMCID: PMC10542201 DOI: 10.1093/g3journal/jkad170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/15/2023] [Accepted: 06/30/2023] [Indexed: 08/12/2023]
Abstract
Reliable and high-throughput genotyping platforms are of immense importance for identifying and dissecting genomic regions controlling important phenotypes, supporting selection processes in breeding programs, and managing wild populations and germplasm collections. Amongst available genotyping tools, single nucleotide polymorphism arrays have been shown to be comparatively easy to use and generate highly accurate genotypic data. Single-species arrays are the most commonly used type so far; however, some multi-species arrays have been developed for closely related species that share single nucleotide polymorphism markers, exploiting inter-species cross-amplification. In this study, the suitability of a multiplexed plant-animal single nucleotide polymorphism array, including both closely and distantly related species, was explored. The performance of the single nucleotide polymorphism array across species for diverse applications, ranging from intra-species diversity assessments to parentage analysis, was assessed. Moreover, the value of genotyping pooled DNA of distantly related species on the single nucleotide polymorphism array as a technique to further reduce costs was evaluated. Single nucleotide polymorphism performance was generally high, and species-specific single nucleotide polymorphisms proved suitable for diverse applications. The multi-species single nucleotide polymorphism array approach reported here could be transferred to other species to achieve cost savings resulting from the increased throughput when several projects use the same array, and the pooling technique adds another highly promising advancement to additionally decrease genotyping costs by half.
Collapse
Affiliation(s)
- Sara Montanari
- The New Zealand Institute for Plant and Food Research Ltd, Motueka 7198, New Zealand
| | - Cecilia Deng
- The New Zealand Institute for Plant and Food Research Ltd, Auckland 1025, New Zealand
| | - Emily Koot
- The New Zealand Institute for Plant and Food Research Ltd, Palmerston North 4410, New Zealand
| | - Nahla V Bassil
- USDA-ARS National Clonal Germplasm Repository, Corvallis, OR 97333, USA
| | - Jason D Zurn
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | | | | | - Rishi Aryal
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Hamid Ashrafi
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695, USA
| | | | - Maren Wellenreuther
- The New Zealand Institute for Plant and Food Research Ltd, Nelson 7010, New Zealand
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - David Chagné
- The New Zealand Institute for Plant and Food Research Ltd, Palmerston North 4410, New Zealand
| |
Collapse
|
9
|
Lau J, Gill H, Taniguti CH, Young EL, Klein PE, Byrne DH, Riera-Lizarazu O. QTL discovery for resistance to black spot and cercospora leaf spot, and defoliation in two interconnected F1 bi-parental tetraploid garden rose populations. FRONTIERS IN PLANT SCIENCE 2023; 14:1209445. [PMID: 37575936 PMCID: PMC10413565 DOI: 10.3389/fpls.2023.1209445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/19/2023] [Indexed: 08/15/2023]
Abstract
Garden roses are an economically important horticultural crop worldwide, and two major fungal pathogens, black spot (Diplocarpon rosae F.A. Wolf) and cercospora leaf spot of rose (Rosisphaerella rosicola Pass.), affect both the health and ornamental value of the plant. Most studies on black spot disease resistance have focused on diploid germplasm, and little work has been performed on cercospora leaf spot resistance. With the use of newly developed software tools for autopolyploid genetics, two interconnected tetraploid garden rose F1 populations (phenotyped over the course of 3 years) were used for quantitative trait locus (QTL) analysis of black spot and cercospora leaf spot resistance as well as plant defoliation. QTLs for black spot resistance were mapped to linkage groups (LGs) 1-6. QTLs for cercospora resistance and susceptibility were found in LGs 1, 4, and 5 and for defoliation in LGs 1, 3, and 5. The major locus on LG 5 for black spot resistance coincides with the previously discovered Rdr4 locus inherited from Rosa L. 'Radbrite' (Brite Eyes™), the common parent used in these mapping populations. This work is the first report of any QTL for cercospora resistance/susceptibility in tetraploid rose germplasm and the first report of defoliation QTL in roses. A major QTL for cercospora susceptibility coincides with the black spot resistance QTL on LG 5 (Rdr4). A major cercospora resistance QTL was found on LG 1. These populations provide a genetic resource that will further the knowledge base of rose genetics as more traits are studied. Studying more traits from these populations will allow for the stacking of various QTLs for desirable traits.
Collapse
Affiliation(s)
- Jeekin Lau
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | | | | | | | | | | | - Oscar Riera-Lizarazu
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
10
|
Hochhaus T, Lau J, Taniguti CH, Young EL, Byrne DH, Riera-Lizarazu O. Meta-Analysis of Rose Rosette Disease-Resistant Quantitative Trait Loci and a Search for Candidate Genes. Pathogens 2023; 12:pathogens12040575. [PMID: 37111461 PMCID: PMC10146096 DOI: 10.3390/pathogens12040575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Rose rosette disease (RRD), caused by the rose rosette emaravirus (RRV), is a major viral disease in roses (Rosa sp.) that threatens the rose industry. Recent studies have revealed quantitative trait loci (QTL) for reduced susceptibility to RRD in the linkage groups (LGs) 1, 5, 6, and 7 in tetraploid populations and the LGs 1, 3, 5, and 6 in diploid populations. In this study, we seek to better localize and understand the relationship between QTL identified in both diploid and tetraploid populations. We do so by remapping the populations found in these studies and performing a meta-analysis. This analysis reveals that the peaks and intervals for QTL using diploid and tetraploid populations co-localized on LG 1, suggesting that these are the same QTL. The same was seen on LG 3. Three meta-QTL were identified on LG 5, and two were discovered on LG 6. The meta-QTL on LG 1, MetaRRD1.1, had a confidence interval (CI) of 10.53 cM. On LG 3, MetaRRD3.1 had a CI of 5.94 cM. MetaRRD5.1 had a CI of 17.37 cM, MetaRRD5.2 had a CI of 4.33 cM, and MetaRRD5.3 had a CI of 21.95 cM. For LG 6, MetaRRD6.1 and MetaRRD6.2 had CIs of 9.81 and 8.81 cM, respectively. The analysis also led to the identification of potential disease resistance genes, with a primary interest in genes localized in meta-QTL intervals on LG 5 as this LG was found to explain the greatest proportion of phenotypic variance for RRD resistance. The results from this study may be used in the design of more robust marker-based selection tools to track and use a given QTL in a plant breeding context.
Collapse
Affiliation(s)
- Tessa Hochhaus
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133, USA
| | - Jeekin Lau
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133, USA
| | - Cristiane H Taniguti
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133, USA
| | - Ellen L Young
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133, USA
| | - David H Byrne
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133, USA
| | - Oscar Riera-Lizarazu
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133, USA
| |
Collapse
|
11
|
Vreeburg SME, Auxier B, Jacobs B, Bourke PM, van den Heuvel J, Zwaan BJ, Aanen DK. A genetic linkage map and improved genome assembly of the termite symbiont Termitomyces cryptogamus. BMC Genomics 2023; 24:123. [PMID: 36927388 PMCID: PMC10021994 DOI: 10.1186/s12864-023-09210-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND The termite-fungus symbiosis is an ancient stable mutualism of two partners that reproduce and disperse independently. With the founding of each termite colony the symbiotic association must be re-established with a new fungus partner. Complementarity in the ability to break down plant substrate may help to stabilize this symbiosis despite horizontal symbiont transmission. An alternative, non-exclusive, hypothesis is that a reduced rate of evolution may contribute to stabilize the symbiosis, the so-called Red King Effect. METHODS To explore this concept, we produced the first linkage map of a species of Termitomyces, using genotyping by sequencing (GBS) of 88 homokaryotic offspring. We constructed a highly contiguous genome assembly using PacBio data and a de-novo evidence-based annotation. This improved genome assembly and linkage map allowed for examination of the recombination landscape and its potential effect on the mutualistic lifestyle. RESULTS Our linkage map resulted in a genome-wide recombination rate of 22 cM/Mb, lower than that of other related fungi. However, the total map length of 1370 cM was similar to that of other related fungi. CONCLUSIONS The apparently decreased rate of recombination is primarily due to genome expansion of islands of gene-poor repetitive sequences. This study highlights the importance of inclusion of genomic context in cross-species comparisons of recombination rate.
Collapse
Affiliation(s)
- Sabine M E Vreeburg
- Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands
| | - Ben Auxier
- Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands.
| | - Bas Jacobs
- Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands.,Biometris, Wageningen University & Research, Wageningen, the Netherlands
| | - Peter M Bourke
- Plant Breeding, Wageningen University & Research, Wageningen, the Netherlands
| | - Joost van den Heuvel
- Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands
| | - Bas J Zwaan
- Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands
| | - Duur K Aanen
- Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
12
|
Mengist MF, Bostan H, De Paola D, Teresi SJ, Platts AE, Cremona G, Qi X, Mackey T, Bassil NV, Ashrafi H, Giongo L, Jibran R, Chagné D, Bianco L, Lila MA, Rowland LJ, Iovene M, Edger PP, Iorizzo M. Autopolyploid inheritance and a heterozygous reciprocal translocation shape chromosome genetic behavior in tetraploid blueberry (Vaccinium corymbosum). THE NEW PHYTOLOGIST 2023; 237:1024-1039. [PMID: 35962608 PMCID: PMC10087351 DOI: 10.1111/nph.18428] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/01/2022] [Indexed: 06/02/2023]
Abstract
Understanding chromosome recombination behavior in polyploidy species is key to advancing genetic discoveries. In blueberry, a tetraploid species, the line of evidences about its genetic behavior still remain poorly understood, owing to the inter-specific, and inter-ploidy admixture of its genome and lack of in depth genome-wide inheritance and comparative structural studies. Here we describe a new high-quality, phased, chromosome-scale genome of a diploid blueberry, clone W85. The genome was integrated with cytogenetics and high-density, genetic maps representing six tetraploid blueberry cultivars, harboring different levels of wild genome admixture, to uncover recombination behavior and structural genome divergence across tetraploid and wild diploid species. Analysis of chromosome inheritance and pairing demonstrated that tetraploid blueberry behaves as an autotetraploid with tetrasomic inheritance. Comparative analysis demonstrated the presence of a reciprocal, heterozygous, translocation spanning one homolog of chr-6 and one of chr-10 in the cultivar Draper. The translocation affects pairing and recombination of chromosomes 6 and 10. Besides the translocation detected in Draper, no other structural genomic divergences were detected across tetraploid cultivars and highly inter-crossable wild diploid species. These findings and resources will facilitate new genetic and comparative genomic studies in Vaccinium and the development of genomic assisted selection strategy for this crop.
Collapse
Affiliation(s)
- Molla F. Mengist
- Plants for Human Health InstituteNorth Carolina State UniversityKannapolisNC28081USA
| | - Hamed Bostan
- Plants for Human Health InstituteNorth Carolina State UniversityKannapolisNC28081USA
| | - Domenico De Paola
- Institute of Biosciences and BioresourcesNational Research Council of ItalyBari70126Italy
| | - Scott J. Teresi
- Department of HorticultureMichigan State UniversityEast LansingMI48824USA
| | - Adrian E. Platts
- Department of HorticultureMichigan State UniversityEast LansingMI48824USA
| | - Gaetana Cremona
- Institute of Biosciences and BioresourcesNational Research Council of ItalyPorticiNA80055Italy
| | - Xinpeng Qi
- Genetic Improvement for Fruits and Vegetables LaboratoryBeltsville Agricultural Research Center‐West, US Department of Agriculture, Agricultural Research ServiceBeltsvilleMD20705USA
| | - Ted Mackey
- Horticultural Crops Research UnitUS Department of Agriculture, Agricultural Research ServiceCorvallisOR97330USA
| | - Nahla V. Bassil
- National Clonal Germplasm RepositoryUS Department of Agriculture, Agricultural Research ServiceCorvallisOR97333USA
| | - Hamid Ashrafi
- Department of Horticultural ScienceNorth Carolina State UniversityRaleighNC27695USA
| | - Lara Giongo
- Foundation of Edmund MachSan Michele all'AdigeTN38098Italy
| | - Rubina Jibran
- Plant & Food ResearchFitzherbertPalmerston North4474New Zealand
| | - David Chagné
- Plant & Food ResearchFitzherbertPalmerston North4474New Zealand
| | - Luca Bianco
- Foundation of Edmund MachSan Michele all'AdigeTN38098Italy
| | - Mary A. Lila
- Plants for Human Health InstituteNorth Carolina State UniversityKannapolisNC28081USA
| | - Lisa J. Rowland
- Genetic Improvement for Fruits and Vegetables LaboratoryBeltsville Agricultural Research Center‐West, US Department of Agriculture, Agricultural Research ServiceBeltsvilleMD20705USA
| | - Marina Iovene
- Institute of Biosciences and BioresourcesNational Research Council of ItalyPorticiNA80055Italy
| | - Patrick P. Edger
- Department of HorticultureMichigan State UniversityEast LansingMI48824USA
| | - Massimo Iorizzo
- Plants for Human Health InstituteNorth Carolina State UniversityKannapolisNC28081USA
- Department of Horticultural ScienceNorth Carolina State UniversityRaleighNC27695USA
| |
Collapse
|
13
|
Wang R, Xing S, Bourke PM, Qi X, Lin M, Esselink D, Arens P, Voorrips RE, Visser RG, Sun L, Zhong Y, Gu H, Li Y, Li S, Maliepaard C, Fang J. Development of a 135K SNP genotyping array for Actinidia arguta and its applications for genetic mapping and QTL analysis in kiwifruit. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:369-380. [PMID: 36333116 PMCID: PMC9884011 DOI: 10.1111/pbi.13958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/22/2022] [Accepted: 10/31/2022] [Indexed: 05/11/2023]
Abstract
Kiwifruit (Actinidia spp) is a woody, perennial and deciduous vine. In this genus, there are multiple ploidy levels but the main cultivated cultivars are polyploid. Despite the availability of many genomic resources in kiwifruit, SNP genotyping is still a challenge given these different levels of polyploidy. Recent advances in SNP array technologies have offered a high-throughput genotyping platform for genome-wide DNA polymorphisms. In this study, we developed a high-density SNP genotyping array to facilitate genetic studies and breeding applications in kiwifruit. SNP discovery was performed by genome-wide DNA sequencing of 40 kiwifruit genotypes. The identified SNPs were stringently filtered for sequence quality, predicted conversion performance and distribution over the available Actinidia chinensis genome. A total of 134 729 unique SNPs were put on the array. The array was evaluated by genotyping 400 kiwifruit individuals. We performed a multidimensional scaling analysis to assess the diversity of kiwifruit germplasm, showing that the array was effective to distinguish kiwifruit accessions. Using a tetraploid F1 population, we constructed an integrated linkage map covering 3060.9 cM across 29 linkage groups and performed QTL analysis for the sex locus that has been identified on Linkage Group 3 (LG3) in Actinidia arguta. Finally, our dataset presented evidence of tetrasomic inheritance with partial preferential pairing in A. arguta. In conclusion, we developed and evaluated a 135K SNP genotyping array for kiwifruit. It has the advantage of a comprehensive design that can be an effective tool in genetic studies and breeding applications in this high-value crop.
Collapse
Affiliation(s)
- Ran Wang
- Zhengzhou Fruit Research InstituteChinese Academy of Agricultural SciencesZhengzhouChina
- Plant BreedingWageningen University & ResearchWageningenThe Netherlands
| | - Siyuan Xing
- Animal Breeding and GenomicsWageningen University & ResearchWageningenThe Netherlands
| | - Peter M. Bourke
- Plant BreedingWageningen University & ResearchWageningenThe Netherlands
| | - Xiuquan Qi
- Zhengzhou Fruit Research InstituteChinese Academy of Agricultural SciencesZhengzhouChina
| | - Miaomiao Lin
- Zhengzhou Fruit Research InstituteChinese Academy of Agricultural SciencesZhengzhouChina
| | - Danny Esselink
- Plant BreedingWageningen University & ResearchWageningenThe Netherlands
| | - Paul Arens
- Plant BreedingWageningen University & ResearchWageningenThe Netherlands
| | | | | | - Leiming Sun
- Zhengzhou Fruit Research InstituteChinese Academy of Agricultural SciencesZhengzhouChina
| | - Yunpeng Zhong
- Zhengzhou Fruit Research InstituteChinese Academy of Agricultural SciencesZhengzhouChina
| | - Hong Gu
- Zhengzhou Fruit Research InstituteChinese Academy of Agricultural SciencesZhengzhouChina
| | - Yukuo Li
- Zhengzhou Fruit Research InstituteChinese Academy of Agricultural SciencesZhengzhouChina
| | - Sikai Li
- Zhengzhou Fruit Research InstituteChinese Academy of Agricultural SciencesZhengzhouChina
| | - Chris Maliepaard
- Plant BreedingWageningen University & ResearchWageningenThe Netherlands
| | - Jinbao Fang
- Zhengzhou Fruit Research InstituteChinese Academy of Agricultural SciencesZhengzhouChina
| |
Collapse
|
14
|
Wang Y, Yu J, Jiang M, Lei W, Zhang X, Tang H. Sequencing and Assembly of Polyploid Genomes. Methods Mol Biol 2023; 2545:429-458. [PMID: 36720827 DOI: 10.1007/978-1-0716-2561-3_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Polyploidy has been observed throughout major eukaryotic clades and has played a vital role in the evolution of angiosperms. Recent polyploidizations often result in highly complex genome structures, posing challenges to genome assembly and phasing. Recent advances in sequencing technologies and genome assembly algorithms have enabled high-quality, near-complete chromosome-level assemblies of polyploid genomes. Advances in novel sequencing technologies include highly accurate single-molecule sequencing with HiFi reads, chromosome conformation capture with Hi-C technique, and linked reads sequencing. Additionally, new computational approaches have also significantly improved the precision and reliability of polyploid genome assembly and phasing, such as HiCanu, hifiasm, ALLHiC, and PolyGembler. Herein, we review recently published polyploid genomes and compare the various sequencing, assembly, and phasing approaches that are utilized in these genome studies. Finally, we anticipate that accurate and telomere-to-telomere chromosome-level assembly of polyploid genomes could ultimately become a routine procedure in the near future.
Collapse
Affiliation(s)
- Yibin Wang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiaxin Yu
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mengwei Jiang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenlong Lei
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xingtan Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Haibao Tang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
15
|
Thérèse Navarro A, Bourke PM, van de Weg E, Clot CR, Arens P, Finkers R, Maliepaard C. Smooth Descent: A ploidy-aware algorithm to improve linkage mapping in the presence of genotyping errors. Front Genet 2023; 14:1049988. [PMID: 36936433 PMCID: PMC10014611 DOI: 10.3389/fgene.2023.1049988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Linkage mapping is an approach to order markers based on recombination events. Mapping algorithms cannot easily handle genotyping errors, which are common in high-throughput genotyping data. To solve this issue, strategies have been developed, aimed mostly at identifying and eliminating these errors. One such strategy is SMOOTH, an iterative algorithm to detect genotyping errors. Unlike other approaches, SMOOTH can also be used to impute the most probable alternative genotypes, but its application is limited to diploid species and to markers heterozygous in only one of the parents. In this study we adapted SMOOTH to expand its use to any marker type and to autopolyploids with the use of identity-by-descent probabilities, naming the updated algorithm Smooth Descent (SD). We applied SD to real and simulated data, showing that in the presence of genotyping errors this method produces better genetic maps in terms of marker order and map length. SD is particularly useful for error rates between 5% and 20% and when error rates are not homogeneous among markers or individuals. With a starting error rate of 10%, SD reduced it to ∼5% in diploids, ∼7% in tetraploids and ∼8.5% in hexaploids. Conversely, the correlation between true and estimated genetic maps increased by 0.03 in tetraploids and by 0.2 in hexaploids, while worsening slightly in diploids (∼0.0011). We also show that the combination of genotype curation and map re-estimation allowed us to obtain better genetic maps while correcting wrong genotypes. We have implemented this algorithm in the R package Smooth Descent.
Collapse
|
16
|
Voorrips RE, Tumino G. PolyHaplotyper: haplotyping in polyploids based on bi-allelic marker dosage data. BMC Bioinformatics 2022; 23:442. [PMID: 36274121 PMCID: PMC9590153 DOI: 10.1186/s12859-022-04989-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 10/16/2022] [Indexed: 11/18/2022] Open
Abstract
Background For genetic analyses, multi-allelic markers have an advantage over bi-allelic markers like SNPs (single nucleotide polymorphisms) in that they carry more information about the genetic constitution of individuals. This is especially the case in polyploids, where individuals carry more than two alleles at each locus. Haploblocks are multi-allelic markers that can be derived by phasing sets of closely-linked SNP markers. Phased haploblocks, similarly to other multi-allelic markers, will therefore be advantageous in genetic tasks like linkage mapping, QTL mapping and genome-wide association studies. Results We present a new method to reconstruct haplotypes from SNP dosages derived from genotyping arrays, which is applicable to polyploids. This method is implemented in the software package PolyHaplotyper. In contrast to existing packages for polyploids it makes use of full-sib families among the samples to guide the haplotyping process. We show that in this situation it is much more accurate than other available software, using experimental hexaploid data and simulated tetraploid data. Conclusions Our method and the software package PolyHaplotyper in which it is implemented extend the available tools for haplotyping in polyploids. They perform especially well in situations where one or more full-sib families are present. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04989-0.
Collapse
|
17
|
Montanari S, Thomson S, Cordiner S, Günther CS, Miller P, Deng CH, McGhie T, Knäbel M, Foster T, Turner J, Chagné D, Espley R. High-density linkage map construction in an autotetraploid blueberry population and detection of quantitative trait loci for anthocyanin content. FRONTIERS IN PLANT SCIENCE 2022; 13:965397. [PMID: 36247546 PMCID: PMC9555082 DOI: 10.3389/fpls.2022.965397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Abstract
Highbush blueberry (Vaccinium corymbosum, 2n = 4x = 48) is the most cultivated type of blueberry, both in New Zealand and overseas. Its perceived nutritional value is conferred by phytonutrients, particularly anthocyanins. Identifying the genetic mechanisms that control the biosynthesis of these metabolites would enable faster development of cultivars with improved fruit qualities. Here, we used recently released tools for genetic mapping in autotetraploids to build a high-density linkage map in highbush blueberry and to detect quantitative trait loci (QTLs) for fruit anthocyanin content. Genotyping was performed by target sequencing, with ∼18,000 single nucleotide polymorphism (SNP) markers being mapped into 12 phased linkage groups (LGs). Fruits were harvested when ripe for two seasons and analyzed with high-performance liquid chromatography-mass spectrometry (HPLC-MS): 25 different anthocyanin compounds were identified and quantified. Two major QTLs that were stable across years were discovered, one on LG2 and one on LG4, and the underlying candidate genes were identified. Interestingly, the presence of anthocyanins containing acylated sugars appeared to be under strong genetic control. Information gained in this study will enable the design of molecular markers for marker-assisted selection and will help build a better understanding of the genetic control of anthocyanin biosynthesis in this crop.
Collapse
Affiliation(s)
- Sara Montanari
- The New Zealand Institute for Plant and Food Research Limited, Motueka, New Zealand
| | - Susan Thomson
- The New Zealand Institute for Plant and Food Research Limited, Lincoln, New Zealand
| | - Sarah Cordiner
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Catrin S. Günther
- The New Zealand Institute for Plant and Food Research Limited, Ruakura, New Zealand
| | - Poppy Miller
- The New Zealand Institute for Plant and Food Research Limited, Te Puke, New Zealand
| | - Cecilia H. Deng
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Tony McGhie
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Mareike Knäbel
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Toshi Foster
- The New Zealand Institute for Plant and Food Research Limited, Motueka, New Zealand
| | - Janice Turner
- The New Zealand Institute for Plant and Food Research Limited, Motueka, New Zealand
| | - David Chagné
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Richard Espley
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| |
Collapse
|
18
|
Mengist MF, Grace MH, Mackey T, Munoz B, Pucker B, Bassil N, Luby C, Ferruzzi M, Lila MA, Iorizzo M. Dissecting the genetic basis of bioactive metabolites and fruit quality traits in blueberries ( Vaccinium corymbosum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:964656. [PMID: 36119607 PMCID: PMC9478557 DOI: 10.3389/fpls.2022.964656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/26/2022] [Indexed: 06/01/2023]
Abstract
Blueberry is well-recognized as a healthy fruit with functionality derived largely from anthocyanin and chlorogenic acid. Despite their importance, no study to date has evaluated the genetic basis of these bioactives in blueberries and their relationship with fruit quality traits. Hence, to fill this gap, a mapping population including 196 F1 individuals was phenotyped for anthocyanin and chlorogenic acid concentration and fruit quality traits (titratable acidity, pH, and total soluble solids) over 3 years and data were used for QTL mapping and correlation analysis. Total soluble solids and chlorogenic acid were positively correlated with glycosylated anthocyanin and total anthocyanin, respectively, indicating that parallel selection for these traits is possible. Across all the traits, a total of 188 QTLs were identified on chromosomes 1, 2, 4, 8, 9, 11 and 12. Notably, four major regions with overlapping major-effect QTLs were identified on chromosomes 1, 2, 4 and 8, and were responsible for acylation and glycosylation of anthocyanins in a substrate and sugar donor specific manner. Through comparative transcriptome analysis, multiple candidate genes were identified for these QTLs, including glucosyltransferases and acyltransferases. Overall, the study provides the first insights into the genetic basis controlling anthocyanins accumulation and composition, chlorogenic acid and fruit quality traits, and establishes a framework to advance genetic studies and molecular breeding for anthocyanins in blueberry.
Collapse
Affiliation(s)
- Molla Fentie Mengist
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Mary H. Grace
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| | - Ted Mackey
- Horticultural Crops Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Corvallis, OR, United States
| | - Bryan Munoz
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Boas Pucker
- Institute of Plant Biology, TU Braunschweig, Braunschweig, Germany
- BRICS, TU Braunschweig, Braunschweig, Germany
| | - Nahla Bassil
- National Clonal Germplasm Repository, USDA-ARS, Corvallis, OR, United States
| | - Claire Luby
- Horticultural Crops Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Corvallis, OR, United States
| | - Mario Ferruzzi
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| | - Mary Ann Lila
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| | - Massimo Iorizzo
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
19
|
Rawandoozi ZJ, Young EL, Yan M, Noyan S, Fu Q, Hochhaus T, Rawandoozi MY, Klein PE, Byrne DH, Riera-Lizarazu O. QTL mapping and characterization of black spot disease resistance using two multi-parental diploid rose populations. HORTICULTURE RESEARCH 2022; 9:uhac183. [PMID: 37064269 PMCID: PMC10101596 DOI: 10.1093/hr/uhac183] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/10/2022] [Indexed: 06/17/2023]
Abstract
Black spot disease (BSD) (Diplocarpon rosae) is the most common and damaging fungal disease in garden roses (Rosa sp.). Although qualitative resistance to BSD has been extensively investigated, the research on quantitative resistance lags behind. The goal of this research was to study the genetic basis of BSD resistance in two multi-parental populations (TX2WOB and TX2WSE) through a pedigree-based analysis approach (PBA). Both populations were genotyped and evaluated for BSD incidence over five years in three locations in Texas. A total of 28 QTLs, distributed over all linkage groups (LGs), were detected across both populations. Consistent minor effect QTLs included two on LG1 and LG3 (TX2WOB and TX2WSE), two on LG4 and LG5 (TX2WSE), and one QTL on LG7 (TX2WOB). In addition, one major QTL detected in both populations was consistently mapped on LG3. This QTL was localized to an interval ranging from 18.9 to 27.8 Mbp on the Rosa chinensis genome and explained 20 and 33% of the phenotypic variation. Furthermore, haplotype analysis showed that this QTL had three distinct functional alleles. The parent PP-J14-3 was the common source of the LG3 BSD resistance in both populations. Taken together, this research presents the characterization of new SNP-tagged genetic determinants of BSD resistance, the discovery of marker-trait associations to enable parental choice based on their BSD resistance QTL haplotypes, and substrates for the development of trait-predictive DNA tests for routine use in marker-assisted breeding for BSD resistance.
Collapse
Affiliation(s)
- Zena J Rawandoozi
- Department of Horticultural Sciences, Texas A&M University, College
Station, TX 77843, USA
| | - Ellen L Young
- Department of Horticultural Sciences, Texas A&M University, College
Station, TX 77843, USA
| | - Muqing Yan
- Department of Horticultural Sciences, Texas A&M University, College
Station, TX 77843, USA
| | - Seza Noyan
- Department of Horticultural Sciences, Texas A&M University, College
Station, TX 77843, USA
| | - Qiuyi Fu
- Department of Horticultural Sciences, Texas A&M University, College
Station, TX 77843, USA
| | - Tessa Hochhaus
- Department of Horticultural Sciences, Texas A&M University, College
Station, TX 77843, USA
| | - Maad Y Rawandoozi
- Norman Borlaug Institute for International Agriculture and Development, Texas A&M
AgriLife Research, Texas A&M System, College Station, TX,
77843 USA
| | - Patricia E Klein
- Department of Horticultural Sciences, Texas A&M University, College
Station, TX 77843, USA
| | - David H Byrne
- Department of Horticultural Sciences, Texas A&M University, College
Station, TX 77843, USA
| | - Oscar Riera-Lizarazu
- Department of Horticultural Sciences, Texas A&M University, College
Station, TX 77843, USA
| |
Collapse
|
20
|
Pandey J, Scheuring DC, Koym JW, Vales MI. Genomic regions associated with tuber traits in tetraploid potatoes and identification of superior clones for breeding purposes. FRONTIERS IN PLANT SCIENCE 2022; 13:952263. [PMID: 35937326 PMCID: PMC9354404 DOI: 10.3389/fpls.2022.952263] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/29/2022] [Indexed: 05/05/2023]
Abstract
In potato breeding, morphological tuber traits are important selection targets to meet the demands of the fresh and processing markets. Understanding the genetic basis of tuber traits should guide selection and improve breeding efficiencies. However, this is challenging in potato due to the complexity of the traits and the polyploid nature of the potato genome. High-throughput affordable molecular markers and new software specific for polyploid species have the potential to unlock previously unattainable levels of understanding of the genetic basis of tuber traits in tetraploid potato. In this study, we genotyped a diversity panel of 214 advanced clones with the 22 K SNP potato array and phenotyped it in three field environments in Texas. We conducted a genome-wide association study using the GWASpoly software package to identify genomic regions associated with tuber morphological traits. Some of the QTLs discovered confirmed prior studies, whereas others were discovered for the first time. The main QTL for tuber shape was detected on chromosome 10 and explained 5.8% of the phenotypic variance. GWAS analysis of eye depth detected a significant QTL on chromosome 10 and explained 3.9% of the phenotypic variance. Another QTL peak for eye depth on chromosome 5 was located near the CDF1 gene, an important regulator of maturity in potato. Our study found that multiple QTLs govern russeting in potato. A major QTL for flesh color on chromosome 3 that explained 26% of the phenotypic variance likely represents the Y locus responsible for yellow flesh in potato tubers. Several QTLs were detected for purple skin color on chromosome 11. Furthermore, genomic estimated breeding values were obtained, which will aid in the early identification of superior parental clones that should increase the chances of producing progenies with higher frequencies of the desired tuber traits. These findings will contribute to a better understanding of the genetic basis of morphological traits in potato, as well as to identifying parents with the best breeding values to improve selection efficiency in our potato breeding program.
Collapse
Affiliation(s)
- Jeewan Pandey
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Douglas C. Scheuring
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Jeffrey W. Koym
- Texas A&M University AgriLife Research and Extension Center, Lubbock, TX, United States
| | - M. Isabel Vales
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
21
|
Young EL, Lau J, Bentley NB, Rawandoozi Z, Collins S, Windham MT, Klein PE, Byrne DH, Riera-Lizarazu O. Identification of QTLs for Reduced Susceptibility to Rose Rosette Disease in Diploid Roses. Pathogens 2022; 11:pathogens11060660. [PMID: 35745514 PMCID: PMC9227826 DOI: 10.3390/pathogens11060660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/27/2022] [Accepted: 06/06/2022] [Indexed: 01/27/2023] Open
Abstract
Resistance to rose rosette disease (RRD), a fatal disease of roses (Rosa spp.), is a high priority for rose breeding. As RRD resistance is time-consuming to phenotype, the identification of genetic markers for resistance could expedite breeding efforts. However, little is known about the genetics of RRD resistance. Therefore, we performed a quantitative trait locus (QTL) analysis on a set of inter-related diploid rose populations phenotyped for RRD resistance and identified four QTLs. Two QTLs were found in multiple years. The most consistent QTL is qRRV_TX2WSE_ch5, which explains approximately 20% and 40% of the phenotypic variation in virus quantity and severity of RRD symptoms, respectively. The second, a QTL on chromosome 1, qRRD_TX2WSE_ch1, accounts for approximately 16% of the phenotypic variation for severity. Finally, a third QTL on chromosome 3 was identified only in the multiyear analysis, and a fourth on chromosome 6 was identified in data from one year only. In addition, haplotypes associated with significant changes in virus quantity and severity were identified for qRRV_TX2WSE_ch5 and qRRD_TX2WSE_ch1. This research represents the first report of genetic determinants of resistance to RRD. In addition, marker trait associations discovered here will enable better parental selection when breeding for RRD resistance and pave the way for marker-assisted selection for RRD resistance.
Collapse
Affiliation(s)
- Ellen L. Young
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA; (E.L.Y.); (J.L.); (Z.R.); (P.E.K.); (D.H.B.)
| | - Jeekin Lau
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA; (E.L.Y.); (J.L.); (Z.R.); (P.E.K.); (D.H.B.)
| | - Nolan B. Bentley
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78705, USA;
| | - Zena Rawandoozi
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA; (E.L.Y.); (J.L.); (Z.R.); (P.E.K.); (D.H.B.)
| | - Sara Collins
- Department of Entomology and Plant Pathology, Institute of Agriculture, University of Tennessee, Knoxville, TN 37996, USA; (S.C.); (M.T.W.)
| | - Mark T. Windham
- Department of Entomology and Plant Pathology, Institute of Agriculture, University of Tennessee, Knoxville, TN 37996, USA; (S.C.); (M.T.W.)
| | - Patricia E. Klein
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA; (E.L.Y.); (J.L.); (Z.R.); (P.E.K.); (D.H.B.)
| | - David H. Byrne
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA; (E.L.Y.); (J.L.); (Z.R.); (P.E.K.); (D.H.B.)
| | - Oscar Riera-Lizarazu
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA; (E.L.Y.); (J.L.); (Z.R.); (P.E.K.); (D.H.B.)
- Correspondence: ; Tel.: +1-509-332-9075
| |
Collapse
|
22
|
Edger PP, Iorizzo M, Bassil NV, Benevenuto J, Ferrão LFV, Giongo L, Hummer K, Lawas LMF, Leisner CP, Li C, Munoz PR, Ashrafi H, Atucha A, Babiker EM, Canales E, Chagné D, DeVetter L, Ehlenfeldt M, Espley RV, Gallardo K, Günther CS, Hardigan M, Hulse-Kemp AM, Jacobs M, Lila MA, Luby C, Main D, Mengist MF, Owens GL, Perkins-Veazie P, Polashock J, Pottorff M, Rowland LJ, Sims CA, Song GQ, Spencer J, Vorsa N, Yocca AE, Zalapa J. There and back again; historical perspective and future directions for Vaccinium breeding and research studies. HORTICULTURE RESEARCH 2022; 9:uhac083. [PMID: 35611183 PMCID: PMC9123236 DOI: 10.1093/hr/uhac083] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/22/2022] [Indexed: 06/02/2023]
Abstract
The genus Vaccinium L. (Ericaceae) contains a wide diversity of culturally and economically important berry crop species. Consumer demand and scientific research in blueberry (Vaccinium spp.) and cranberry (Vaccinium macrocarpon) have increased worldwide over the crops' relatively short domestication history (~100 years). Other species, including bilberry (Vaccinium myrtillus), lingonberry (Vaccinium vitis-idaea), and ohelo berry (Vaccinium reticulatum) are largely still harvested from the wild but with crop improvement efforts underway. Here, we present a review article on these Vaccinium berry crops on topics that span taxonomy to genetics and genomics to breeding. We highlight the accomplishments made thus far for each of these crops, along their journey from the wild, and propose research areas and questions that will require investments by the community over the coming decades to guide future crop improvement efforts. New tools and resources are needed to underpin the development of superior cultivars that are not only more resilient to various environmental stresses and higher yielding, but also produce fruit that continue to meet a variety of consumer preferences, including fruit quality and health related traits.
Collapse
Affiliation(s)
- Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- MSU AgBioResearch, Michigan State University, East Lansing, MI, 48824, USA
| | - Massimo Iorizzo
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC USA
- Department of Horticultural Science, North Carolina State University, Raleigh, NC USA
| | - Nahla V Bassil
- USDA-ARS, National Clonal Germplasm Repository, Corvallis, OR 97333, USA
| | - Juliana Benevenuto
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Luis Felipe V Ferrão
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Lara Giongo
- Fondazione Edmund Mach - Research and Innovation CentreItaly
| | - Kim Hummer
- USDA-ARS, National Clonal Germplasm Repository, Corvallis, OR 97333, USA
| | - Lovely Mae F Lawas
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Courtney P Leisner
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Changying Li
- Phenomics and Plant Robotics Center, College of Engineering, University of Georgia, Athens, USA
| | - Patricio R Munoz
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Hamid Ashrafi
- Department of Horticultural Science, North Carolina State University, Raleigh, NC USA
| | - Amaya Atucha
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Ebrahiem M Babiker
- USDA-ARS Southern Horticultural Laboratory, Poplarville, MS 39470-0287, USA
| | - Elizabeth Canales
- Department of Agricultural Economics, Mississippi State University, Mississippi State, MS 39762, USA
| | - David Chagné
- The New Zealand Institute for Plant and Food Research Limited (PFR), Palmerston North, New Zealand
| | - Lisa DeVetter
- Department of Horticulture, Washington State University Northwestern Washington Research and Extension Center, Mount Vernon, WA, 98221, USA
| | - Mark Ehlenfeldt
- SEBS, Plant Biology, Rutgers University, New Brunswick NJ 01019 USA
| | - Richard V Espley
- The New Zealand Institute for Plant and Food Research Limited (PFR), Palmerston North, New Zealand
| | - Karina Gallardo
- School of Economic Sciences, Washington State University, Puyallup, WA 98371, USA
| | - Catrin S Günther
- The New Zealand Institute for Plant and Food Research Limited (PFR), Palmerston North, New Zealand
| | - Michael Hardigan
- USDA-ARS, Horticulture Crops Research Unit, Corvallis, OR 97333, USA
| | - Amanda M Hulse-Kemp
- USDA-ARS, Genomics and Bioinformatics Research Unit, Raleigh, NC 27695, USA
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - MacKenzie Jacobs
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48823, USA
| | - Mary Ann Lila
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC USA
| | - Claire Luby
- USDA-ARS, Horticulture Crops Research Unit, Corvallis, OR 97333, USA
| | - Dorrie Main
- Department of Horticulture, Washington State University, Pullman, WA, 99163, USA
| | - Molla F Mengist
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC USA
- Department of Horticultural Science, North Carolina State University, Raleigh, NC USA
| | | | | | - James Polashock
- SEBS, Plant Biology, Rutgers University, New Brunswick NJ 01019 USA
| | - Marti Pottorff
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC USA
| | - Lisa J Rowland
- USDA-ARS, Genetic Improvement of Fruits and Vegetables Laboratory, Beltsville, MD 20705, USA
| | - Charles A Sims
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611, USA
| | - Guo-qing Song
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Jessica Spencer
- Department of Horticultural Science, North Carolina State University, Raleigh, NC USA
| | - Nicholi Vorsa
- SEBS, Plant Biology, Rutgers University, New Brunswick NJ 01019 USA
| | - Alan E Yocca
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Juan Zalapa
- USDA-ARS, VCRU, Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
23
|
Ferreira RCU, da Costa Lima Moraes A, Chiari L, Simeão RM, Vigna BBZ, de Souza AP. An Overview of the Genetics and Genomics of the Urochloa Species Most Commonly Used in Pastures. FRONTIERS IN PLANT SCIENCE 2021; 12:770461. [PMID: 34966402 PMCID: PMC8710810 DOI: 10.3389/fpls.2021.770461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/17/2021] [Indexed: 06/14/2023]
Abstract
Pastures based on perennial monocotyledonous plants are the principal source of nutrition for ruminant livestock in tropical and subtropical areas across the globe. The Urochloa genus comprises important species used in pastures, and these mainly include Urochloa brizantha, Urochloa decumbens, Urochloa humidicola, and Urochloa ruziziensis. Despite their economic relevance, there is an absence of genomic-level information for these species, and this lack is mainly due to genomic complexity, including polyploidy, high heterozygosity, and genomes with a high repeat content, which hinders advances in molecular approaches to genetic improvement. Next-generation sequencing techniques have enabled the recent release of reference genomes, genetic linkage maps, and transcriptome sequences, and this information helps improve our understanding of the genetic architecture and molecular mechanisms involved in relevant traits, such as the apomictic reproductive mode. However, more concerted research efforts are still needed to characterize germplasm resources and identify molecular markers and genes associated with target traits. In addition, the implementation of genomic selection and gene editing is needed to reduce the breeding time and expenditure. In this review, we highlight the importance and characteristics of the four main species of Urochloa used in pastures and discuss the current findings from genetic and genomic studies and research gaps that should be addressed in future research.
Collapse
Affiliation(s)
| | - Aline da Costa Lima Moraes
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
| | - Lucimara Chiari
- Embrapa Gado de Corte, Brazilian Agricultural Research Corporation, Campo Grande, Brazil
| | - Rosangela Maria Simeão
- Embrapa Gado de Corte, Brazilian Agricultural Research Corporation, Campo Grande, Brazil
| | | | - Anete Pereira de Souza
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
- Department of Plant Biology, Biology Institute, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
24
|
Uwimana B, Mwanje G, Batte M, Akech V, Shah T, Vuylsteke M, Swennen R. Continuous Mapping Identifies Loci Associated With Weevil Resistance [ Cosmopolites sordidus (Germar)] in a Triploid Banana Population. FRONTIERS IN PLANT SCIENCE 2021; 12:753241. [PMID: 34912355 PMCID: PMC8667469 DOI: 10.3389/fpls.2021.753241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/14/2021] [Indexed: 06/14/2023]
Abstract
The first step toward marker-assisted selection is linking the phenotypes to molecular markers through quantitative trait loci (QTL) analysis. While the process is straightforward in self-pollinating diploid (2x) species, QTL analysis in polyploids requires unconventional methods. In this study, we have identified markers associated with weevil Cosmopolites sordidus (Germar) resistance in bananas using 138 triploid (2n = 3x) hybrids derived from a cross between a tetraploid "Monyet" (2n = 4x) and a 2x "Kokopo" (2n = 2x) banana genotypes. The population was genotyped by Diversity Arrays Technology Sequencing (DArTSeq), resulting in 18,009 polymorphic single nucleotide polymorphisms (SNPs) between the two parents. Marker-trait association was carried out by continuous mapping where the adjusted trait means for the corm peripheral damage (PD) and total cross-section damage (TXD), both on the logit scale, were regressed on the marker allele frequencies. Forty-four SNPs that were associated with corm PD were identified on the chromosomes 5, 6, and 8, with 41 of them located on chromosome 6 and segregated in "Kokopo." Eleven SNPs associated with corm total TXD were identified on chromosome 6 and segregated in "Monyet." The additive effect of replacing one reference allele with the alternative allele was determined at each marker position. The PD QTL was confirmed using conventional QTL linkage analysis in the simplex markers segregating in "Kokopo" (AAAA × RA). We also identified 43 putative genes in the vicinity of the markers significantly associated with the two traits. The identified loci associated with resistance to weevil damage will be used in the efforts of developing molecular tools for marker-assisted breeding in bananas.
Collapse
Affiliation(s)
- Brigitte Uwimana
- International Institute of Tropical Agriculture (IITA), Kampala, Uganda
| | - Gerald Mwanje
- International Institute of Tropical Agriculture (IITA), Kampala, Uganda
| | - Michael Batte
- International Institute of Tropical Agriculture (IITA), Kampala, Uganda
| | - Violet Akech
- International Institute of Tropical Agriculture (IITA), Kampala, Uganda
| | - Trushar Shah
- International Institute of Tropical Agriculture (IITA), International Livestock Research Institute Campus, Nairobi, Kenya
| | | | - Rony Swennen
- International Institute of Tropical Agriculture (IITA), Kampala, Uganda
- Department of Crop Biosystems, KU Leuven, Heverlee, Belgium
| |
Collapse
|
25
|
Amadeu RR, Muñoz PR, Zheng C, Endelman JB. QTL mapping in outbred tetraploid (and diploid) diallel populations. Genetics 2021; 219:iyab124. [PMID: 34740237 PMCID: PMC8570786 DOI: 10.1093/genetics/iyab124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/24/2021] [Indexed: 11/14/2022] Open
Abstract
Over the last decade, multiparental populations have become a mainstay of genetics research in diploid species. Our goal was to extend this paradigm to autotetraploids by developing software for quantitative trait locus (QTL) mapping in connected F1 populations derived from a set of shared parents. For QTL discovery, phenotypes are regressed on the dosage of parental haplotypes to estimate additive effects. Statistical properties of the model were explored by simulating half-diallel diploid and tetraploid populations with different population sizes and numbers of parents. Across scenarios, the number of progeny per parental haplotype (pph) largely determined the statistical power for QTL detection and accuracy of the estimated haplotype effects. Multiallelic QTL with heritability 0.2 were detected with 90% probability at 25 pph and genome-wide significance level 0.05, and the additive haplotype effects were estimated with over 90% accuracy. Following QTL discovery, the software enables a comparison of models with multiple QTL and nonadditive effects. To illustrate, we analyzed potato tuber shape in a half-diallel population with three tetraploid parents. A well-known QTL on chromosome 10 was detected, for which the inclusion of digenic dominance lowered the Deviance Information Criterion (DIC) by 17 points compared to the additive model. The final model also contained a minor QTL on chromosome 1, but higher-order dominance and epistatic effects were excluded based on the DIC. In terms of practical impacts, the software is already being used to select offspring based on the effect and dosage of particular haplotypes in breeding programs.
Collapse
Affiliation(s)
- Rodrigo R Amadeu
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Patricio R Muñoz
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Chaozhi Zheng
- Biometris, Wageningen University and Research, 6708 PB Wageningen, The Netherlands
| | - Jeffrey B Endelman
- Department of Horticulture, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
26
|
Zheng C, Amadeu RR, Munoz PR, Endelman JB. Haplotype reconstruction in connected tetraploid F1 populations. Genetics 2021; 219:6330625. [PMID: 34849879 DOI: 10.1093/genetics/iyab106] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 06/03/2021] [Indexed: 11/12/2022] Open
Abstract
In diploid species, many multiparental populations have been developed to increase genetic diversity and quantitative trait loci (QTL) mapping resolution. In these populations, haplotype reconstruction has been used as a standard practice to increase the power of QTL detection in comparison with the marker-based association analysis. However, such software tools for polyploid species are few and limited to a single biparental F1 population. In this study, a statistical framework for haplotype reconstruction has been developed and implemented in the software PolyOrigin for connected tetraploid F1 populations with shared parents, regardless of the number of parents or mating design. Given a genetic or physical map of markers, PolyOrigin first phases parental genotypes, then refines the input marker map, and finally reconstructs offspring haplotypes. PolyOrigin can utilize single nucleotide polymorphism (SNP) data coming from arrays or from sequence-based genotyping; in the latter case, bi-allelic read counts can be used (and are preferred) as input data to minimize the influence of genotype calling errors at low depth. With extensive simulation we show that PolyOrigin is robust to the errors in the input genotypic data and marker map. It works well for various population designs with ≥30 offspring per parent and for sequences with read depth as low as 10x. PolyOrigin was further evaluated using an autotetraploid potato dataset with a 3 × 3 half-diallel mating design. In conclusion, PolyOrigin opens up exciting new possibilities for haplotype analysis in tetraploid breeding populations.
Collapse
Affiliation(s)
- Chaozhi Zheng
- Biometris, Wageningen University and Research, Wageningen 6700AA, The Netherlands
| | - Rodrigo R Amadeu
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Patricio R Munoz
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Jeffrey B Endelman
- Department of Horticulture, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
27
|
Bourke PM, Voorrips RE, Hackett CA, van Geest G, Willemsen JH, Arens P, Smulders MJM, Visser RGF, Maliepaard C. Detecting quantitative trait loci and exploring chromosomal pairing in autopolyploids using polyqtlR. Bioinformatics 2021; 37:3822-3829. [PMID: 34358315 PMCID: PMC8570814 DOI: 10.1093/bioinformatics/btab574] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 11/13/2022] Open
Abstract
Motivation The investigation of quantitative trait loci (QTL) is an essential component in our understanding of how organisms vary phenotypically. However, many important crop species are polyploid (carrying more than two copies of each chromosome), requiring specialized tools for such analyses. Moreover, deciphering meiotic processes at higher ploidy levels is not straightforward, but is necessary to understand the reproductive dynamics of these species, or uncover potential barriers to their genetic improvement. Results Here, we present polyqtlR, a novel software tool to facilitate such analyses in (auto)polyploid crops. It performs QTL interval mapping in F1 populations of outcrossing polyploids of any ploidy level using identity-by-descent probabilities. The allelic composition of discovered QTL can be explored, enabling favourable alleles to be identified and tracked in the population. Visualization tools within the package facilitate this process, and options to include genetic co-factors and experimental factors are included. Detailed information on polyploid meiosis including prediction of multivalent pairing structures, detection of preferential chromosomal pairing and location of double reduction events can be performed. Availabilityand implementation polyqtlR is freely available from the Comprehensive R Archive Network (CRAN) at http://cran.r-project.org/package=polyqtlR. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Peter M Bourke
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708PB, The Netherlands
| | - Roeland E Voorrips
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708PB, The Netherlands
| | - Christine A Hackett
- Biomathematics and Statistics Scotland, Invergowrie, Dundee DD2 5DA, Scotland, UK
| | - Geert van Geest
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708PB, The Netherlands.,Deliflor Chrysanten B.V, Korte Kruisweg 163, Maasdijk, 2676BS, The Netherlands
| | - Johan H Willemsen
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708PB, The Netherlands
| | - Paul Arens
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708PB, The Netherlands
| | - Marinus J M Smulders
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708PB, The Netherlands
| | - Richard G F Visser
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708PB, The Netherlands
| | - Chris Maliepaard
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708PB, The Netherlands
| |
Collapse
|
28
|
Liao Y, Voorrips RE, Bourke PM, Tumino G, Arens P, Visser RGF, Smulders MJM, Maliepaard C. Using probabilistic genotypes in linkage analysis of polyploids. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2443-2457. [PMID: 34032878 PMCID: PMC8277618 DOI: 10.1007/s00122-021-03834-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/10/2021] [Indexed: 05/21/2023]
Abstract
KEY MESSAGE In polyploids, linkage mapping is carried out using genotyping with discrete dosage scores. Here, we use probabilistic genotypes and we validate it for the construction of polyploid linkage maps. Marker genotypes are generally called as discrete values: homozygous versus heterozygous in the case of diploids, or an integer allele dosage in the case of polyploids. Software for linkage map construction and/or QTL analysis usually relies on such discrete genotypes. However, it may not always be possible, or desirable, to assign definite values to genotype observations in the presence of uncertainty in the genotype calling. Here, we present an approach that uses probabilistic marker dosages for linkage map construction in polyploids. We compare our method to an approach based on discrete dosages, using simulated SNP array and sequence reads data with varying levels of data quality. We validate our approach using experimental data from a potato (Solanum tuberosum L.) SNP array applied to an F1 mapping population. In comparison to the approach based on discrete dosages, we mapped an additional 562 markers. All but three of these were mapped to the expected chromosome and marker position. For the remaining three markers, no physical position was known. The use of dosage probabilities is of particular relevance for map construction in polyploids using sequencing data, as these often result in a higher level of uncertainty regarding allele dosage.
Collapse
Affiliation(s)
- Yanlin Liao
- Wageningen University and Research Plant Breeding, P.O. Box 386, Wageningen, AJ, 6700, The Netherlands
| | - Roeland E Voorrips
- Wageningen University and Research Plant Breeding, P.O. Box 386, Wageningen, AJ, 6700, The Netherlands
| | - Peter M Bourke
- Wageningen University and Research Plant Breeding, P.O. Box 386, Wageningen, AJ, 6700, The Netherlands
| | - Giorgio Tumino
- Wageningen University and Research Plant Breeding, P.O. Box 386, Wageningen, AJ, 6700, The Netherlands
| | - Paul Arens
- Wageningen University and Research Plant Breeding, P.O. Box 386, Wageningen, AJ, 6700, The Netherlands
| | - Richard G F Visser
- Wageningen University and Research Plant Breeding, P.O. Box 386, Wageningen, AJ, 6700, The Netherlands
| | - Marinus J M Smulders
- Wageningen University and Research Plant Breeding, P.O. Box 386, Wageningen, AJ, 6700, The Netherlands
| | - Chris Maliepaard
- Wageningen University and Research Plant Breeding, P.O. Box 386, Wageningen, AJ, 6700, The Netherlands.
| |
Collapse
|
29
|
Mengist MF, Bostan H, Young E, Kay KL, Gillitt N, Ballington J, Kay CD, Ferruzzi MG, Ashrafi H, Lila MA, Iorizzo M. High-density linkage map construction and identification of loci regulating fruit quality traits in blueberry. HORTICULTURE RESEARCH 2021; 8:169. [PMID: 34333532 PMCID: PMC8325695 DOI: 10.1038/s41438-021-00605-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/08/2021] [Accepted: 06/13/2021] [Indexed: 05/21/2023]
Abstract
Fruit quality traits play a significant role in consumer preferences and consumption in blueberry (Vaccinium corymbosum L). The objectives of this study were to construct a high-density linkage map and to identify the underlying genetic basis of fruit quality traits in blueberry. A total of 287 F1 individuals derived from a cross between two southern highbush blueberry cultivars, 'Reveille' and 'Arlen', were phenotyped over three years (2016-2018) for fruit quality-related traits, including titratable acidity, pH, total soluble solids, and fruit weight. A high-density linkage map was constructed using 17k single nucleotide polymorphisms markers. The linkage map spanned a total of 1397 cM with an average inter-loci distance of 0.08 cM. The quantitative trait loci interval mapping based on the hidden Markov model identified 18 loci for fruit quality traits, including seven loci for fruit weight, three loci for titratable acidity, five loci for pH, and three loci for total soluble solids. Ten of these loci were detected in more than one year. These loci explained phenotypic variance ranging from 7 to 28% for titratable acidity and total soluble solid, and 8-13% for pH. However, the loci identified for fruit weight did not explain more than 10% of the phenotypic variance. We also reported the association between fruit quality traits and metabolites detected by Proton nuclear magnetic resonance analysis directly responsible for these fruit quality traits. Organic acids, citric acid, and quinic acid were significantly (P < 0.05) and positively correlated with titratable acidity. Sugar molecules showed a strong and positive correlation with total soluble solids. Overall, the study dissected the genetic basis of fruit quality traits and established an association between these fruit quality traits and metabolites.
Collapse
Affiliation(s)
- Molla F Mengist
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA
| | - Hamed Bostan
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA
| | - Elisheba Young
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, USA
| | - Kristine L Kay
- David H. Murdock Research Institute, Kannapolis, NC, USA
| | | | - James Ballington
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, USA
| | - Colin D Kay
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA
- Department of Food Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| | - Mario G Ferruzzi
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA
- Department of Food Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| | - Hamid Ashrafi
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, USA
| | - Mary Ann Lila
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA
- Department of Food Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| | - Massimo Iorizzo
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA.
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
30
|
Cheng B, Wan H, Han Y, Yu C, Luo L, Pan H, Zhang Q. Identification and QTL Analysis of Flavonoids and Carotenoids in Tetraploid Roses Based on an Ultra-High-Density Genetic Map. FRONTIERS IN PLANT SCIENCE 2021; 12:682305. [PMID: 34177997 PMCID: PMC8226220 DOI: 10.3389/fpls.2021.682305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/11/2021] [Indexed: 05/27/2023]
Abstract
Roses are highly valuable within the flower industry. The metabolites of anthocyanins, flavonols, and carotenoids in rose petals are not only responsible for the various visible petal colors but also important bioactive compounds that are important for human health. In this study, we performed a QTL analysis on pigment contents to locate major loci that determine the flower color traits. An F1 population of tetraploid roses segregating for flower color was used to construct an ultra-high-density genetic linkage map using whole-genome resequencing technology to detect genome-wide SNPs. Previously developed SSR and SNP markers were also utilized to increase the marker density. Thus, a total of 9,259 markers were mapped onto seven linkage groups (LGs). The final length of the integrated map was 1285.11 cM, with an average distance of 0.14 cM between adjacent markers. The contents of anthocyanins, flavonols and carotenoids of the population were assayed to enable QTL analysis. Across the 33 components, 46 QTLs were detected, explaining 11.85-47.72% of the phenotypic variation. The mapped QTLs were physically clustered and primarily distributed on four linkage groups, namely LG2, LG4, LG6, and LG7. These results improve the basis for flower color marker-assisted breeding of tetraploid roses and guide the development of rose products.
Collapse
Affiliation(s)
- Bixuan Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Huihua Wan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Yu Han
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Chao Yu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Le Luo
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Huitang Pan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| |
Collapse
|
31
|
Popowski E, Thomson SJ, Knäbel M, Tahir J, Crowhurst RN, Davy M, Foster TM, Schaffer RJ, Tustin DS, Allan AC, McCallum J, Chagné D. Construction of a high density genetic map for hexaploid kiwifruit (Actinidia chinensis var. deliciosa) using genotyping by sequencing. G3-GENES GENOMES GENETICS 2021; 11:6261761. [PMID: 34009255 PMCID: PMC8495948 DOI: 10.1093/g3journal/jkab142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/07/2021] [Indexed: 11/19/2022]
Abstract
Commercially grown kiwifruit (genus Actinidia) are generally of two sub-species which have a base haploid genome of 29 chromosomes. The yellow-fleshed Actinidia chinensis var. chinensis, is either diploid (2n = 2x = 58) or tetraploid (2n = 4x = 116) and the green-fleshed cultivar A. chinensis var. deliciosa “Hayward,” is hexaploid (2n = 6x = 174). Advances in breeding green kiwifruit could be greatly sped up by the use of molecular resources for more efficient and faster selection, for example using marker-assisted selection (MAS). The key genetic marker that has been implemented for MAS in hexaploid kiwifruit is for gender testing. The limited marker-trait association has been reported for other polyploid kiwifruit for fruit and production traits. We have constructed a high-density linkage map for hexaploid green kiwifruit using genotyping-by-sequence (GBS). The linkage map obtained consists of 3686 and 3940 markers organized in 183 and 176 linkage groups for the female and male parents, respectively. Both parental linkage maps are co-linear with the A. chinensis “Red5” reference genome of kiwifruit. The linkage map was then used for quantitative trait locus (QTL) mapping, and successfully identified QTLs for king flower number, fruit number and weight, dry matter accumulation, and storage firmness. These are the first QTLs to be reported and discovered for complex traits in hexaploid kiwifruit.
Collapse
Affiliation(s)
- Elizabeth Popowski
- The New Zealand Institute for Plant and Food Research Ltd (Plant & Food Research), Te Puke, New Zealand
| | | | | | | | | | - Marcus Davy
- The New Zealand Institute for Plant and Food Research Ltd (Plant & Food Research), Te Puke, New Zealand
| | | | - Robert J Schaffer
- Plant & Food Research, Motueka, New Zealand.,School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | | | - Andrew C Allan
- Plant & Food Research, Auckland, New Zealand.,School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | | | - David Chagné
- Plant & Food Research, Palmerston North, New Zealand
| |
Collapse
|
32
|
The recombination landscape and multiple QTL mapping in a Solanum tuberosum cv. 'Atlantic'-derived F 1 population. Heredity (Edinb) 2021; 126:817-830. [PMID: 33753876 PMCID: PMC8102480 DOI: 10.1038/s41437-021-00416-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 02/01/2023] Open
Abstract
There are many challenges involved with the genetic analyses of autopolyploid species, such as the tetraploid potato, Solanum tuberosum (2n = 4x = 48). The development of new analytical methods has made it valuable to re-analyze an F1 population (n = 156) derived from a cross involving 'Atlantic', a widely grown chipping variety in the USA. A fully integrated genetic map with 4285 single nucleotide polymorphisms, spanning 1630 cM, was constructed with MAPpoly software. We observed that bivalent configurations were the most abundant ones (51.0~72.4% depending on parent and linkage group), though multivalent configurations were also observed (2.2~39.2%). Seven traits were evaluated over four years (2006-8 and 2014) and quantitative trait loci (QTL) mapping was carried out using QTLpoly software. Based on a multiple-QTL model approach, we detected 21 QTL for 15 out of 27 trait-year combination phenotypes. A hotspot on linkage group 5 was identified with co-located QTL for maturity, plant yield, specific gravity, and internal heat necrosis resistance evaluated over different years. Additional QTL for specific gravity and dry matter were detected with maturity-corrected phenotypes. Among the genes around QTL peaks, we found those on chromosome 5 that have been previously implicated in maturity (StCDF1) and tuber formation (POTH1). These analyses have the potential to provide insights into the biology and breeding of tetraploid potato and other autopolyploid species.
Collapse
|
33
|
Tahir J, Brendolise C, Hoyte S, Lucas M, Thomson S, Hoeata K, McKenzie C, Wotton A, Funnell K, Morgan E, Hedderley D, Chagné D, Bourke PM, McCallum J, Gardiner SE, Gea L. QTL Mapping for Resistance to Cankers Induced by Pseudomonas syringae pv. actinidiae (Psa) in a Tetraploid Actinidia chinensis Kiwifruit Population. Pathogens 2020; 9:E967. [PMID: 33233616 PMCID: PMC7709049 DOI: 10.3390/pathogens9110967] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 11/30/2022] Open
Abstract
Polyploidy is a key driver of significant evolutionary changes in plant species. The genus Actinidia (kiwifruit) exhibits multiple ploidy levels, which contribute to novel fruit traits, high yields and resistance to the canker-causing dieback disease incited by Pseudomonas syringae pv. actinidiae (Psa) biovar 3. However, the genetic mechanism for resistance to Psa observed in polyploid kiwifruit is not yet known. In this study we performed detailed genetic analysis of a tetraploid Actinidia chinensis var. chinensis population derived from a cross between a female parent that exhibits weak tolerance to Psa and a highly Psa-resistant male parent. We used the capture-sequencing approach across the whole kiwifruit genome and generated the first ultra-dense maps in a tetraploid kiwifruit population. We located quantitative trait loci (QTLs) for Psa resistance on these maps. Our approach to QTL mapping is based on the use of identity-by-descent trait mapping, which allowed us to relate the contribution of specific alleles from their respective homologues in the male and female parent, to the control of Psa resistance in the progeny. We identified genes in the diploid reference genome whose function is suggested to be involved in plant defense, which underly the QTLs, including receptor-like kinases. Our study is the first to cast light on the genetics of a polyploid kiwifruit and suggest a plausible mechanism for Psa resistance in this species.
Collapse
Affiliation(s)
- Jibran Tahir
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92-169, Auckland 1025, New Zealand; (J.T.); (C.B.)
| | - Cyril Brendolise
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92-169, Auckland 1025, New Zealand; (J.T.); (C.B.)
| | - Stephen Hoyte
- The New Zealand Institute for Plant and Food Research Limited, Hamilton 3214, New Zealand;
| | - Marielle Lucas
- Breeding Department, Enza Zaden, 1602 DB Enkhuizen, The Netherlands;
| | - Susan Thomson
- The New Zealand Institute for Plant and Food Research Limited, Lincoln 7608, New Zealand;
| | - Kirsten Hoeata
- The New Zealand Institute for Plant and Food Research Limited, 412 No 1 Road, RD2, Te Puke 3182, New Zealand; (K.H.); (C.M.)
| | - Catherine McKenzie
- The New Zealand Institute for Plant and Food Research Limited, 412 No 1 Road, RD2, Te Puke 3182, New Zealand; (K.H.); (C.M.)
| | - Andrew Wotton
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North 4442, New Zealand; (A.W.); (K.F.); (E.M.); (D.H.); (D.C.)
| | - Keith Funnell
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North 4442, New Zealand; (A.W.); (K.F.); (E.M.); (D.H.); (D.C.)
| | - Ed Morgan
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North 4442, New Zealand; (A.W.); (K.F.); (E.M.); (D.H.); (D.C.)
| | - Duncan Hedderley
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North 4442, New Zealand; (A.W.); (K.F.); (E.M.); (D.H.); (D.C.)
| | - David Chagné
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North 4442, New Zealand; (A.W.); (K.F.); (E.M.); (D.H.); (D.C.)
| | - Peter M. Bourke
- Plant Sciences Group, Department of Plant Sciences, Wageningen University and Research, Droevendaalsesteeg 1, P.O. Box 386, 6700 AJ Wageningen, The Netherlands;
| | - John McCallum
- The New Zealand Institute for Plant and Food Research Limited, Lincoln 7608, New Zealand;
| | - Susan E. Gardiner
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North 4442, New Zealand; (A.W.); (K.F.); (E.M.); (D.H.); (D.C.)
| | - Luis Gea
- The New Zealand Institute for Plant and Food Research Limited, 412 No 1 Road, RD2, Te Puke 3182, New Zealand; (K.H.); (C.M.)
| |
Collapse
|
34
|
Aono AH, Costa EA, Rody HVS, Nagai JS, Pimenta RJG, Mancini MC, Dos Santos FRC, Pinto LR, Landell MGDA, de Souza AP, Kuroshu RM. Machine learning approaches reveal genomic regions associated with sugarcane brown rust resistance. Sci Rep 2020; 10:20057. [PMID: 33208862 PMCID: PMC7676261 DOI: 10.1038/s41598-020-77063-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 08/24/2020] [Indexed: 12/18/2022] Open
Abstract
Sugarcane is an economically important crop, but its genomic complexity has hindered advances in molecular approaches for genetic breeding. New cultivars are released based on the identification of interesting traits, and for sugarcane, brown rust resistance is a desirable characteristic due to the large economic impact of the disease. Although marker-assisted selection for rust resistance has been successful, the genes involved are still unknown, and the associated regions vary among cultivars, thus restricting methodological generalization. We used genotyping by sequencing of full-sib progeny to relate genomic regions with brown rust phenotypes. We established a pipeline to identify reliable SNPs in complex polyploid data, which were used for phenotypic prediction via machine learning. We identified 14,540 SNPs, which led to a mean prediction accuracy of 50% when using different models. We also tested feature selection algorithms to increase predictive accuracy, resulting in a reduced dataset with more explanatory power for rust phenotypes. As a result of this approach, we achieved an accuracy of up to 95% with a dataset of 131 SNPs related to brown rust QTL regions and auxiliary genes. Therefore, our novel strategy has the potential to assist studies of the genomic organization of brown rust resistance in sugarcane.
Collapse
Affiliation(s)
- Alexandre Hild Aono
- Molecular Biology and Genetic Engineering Center (CBMEG), University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Estela Araujo Costa
- Instituto de Ciência e Tecnologia (ICT), Universidade Federal de São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Hugo Vianna Silva Rody
- Instituto de Ciência e Tecnologia (ICT), Universidade Federal de São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - James Shiniti Nagai
- Instituto de Ciência e Tecnologia (ICT), Universidade Federal de São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Ricardo José Gonzaga Pimenta
- Molecular Biology and Genetic Engineering Center (CBMEG), University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Melina Cristina Mancini
- Molecular Biology and Genetic Engineering Center (CBMEG), University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | | - Luciana Rossini Pinto
- Advanced Center of Sugarcane Agrobusiness Technological Research, Agronomic Institute of Campinas (IAC), Ribeirão Preto, SP, Brazil
| | | | - Anete Pereira de Souza
- Molecular Biology and Genetic Engineering Center (CBMEG), University of Campinas (UNICAMP), Campinas, SP, Brazil.
- Department of Plant Biology, Institute of Biology (IB), University of Campinas (UNICAMP), Campinas, SP, Brazil.
| | - Reginaldo Massanobu Kuroshu
- Instituto de Ciência e Tecnologia (ICT), Universidade Federal de São Paulo (UNIFESP), São José dos Campos, SP, Brazil.
| |
Collapse
|
35
|
Zhou C, Olukolu B, Gemenet DC, Wu S, Gruneberg W, Cao MD, Fei Z, Zeng ZB, George AW, Khan A, Yencho GC, Coin LJM. Assembly of whole-chromosome pseudomolecules for polyploid plant genomes using outbred mapping populations. Nat Genet 2020; 52:1256-1264. [PMID: 33128049 DOI: 10.1038/s41588-020-00717-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 09/15/2020] [Indexed: 12/31/2022]
Abstract
Despite advances in sequencing technologies, assembly of complex plant genomes remains elusive due to polyploidy and high repeat content. Here we report PolyGembler for grouping and ordering contigs into pseudomolecules by genetic linkage analysis. Our approach also provides an accurate method with which to detect and fix assembly errors. Using simulated data, we demonstrate that our approach is of high accuracy and outperforms three existing state-of-the-art genetic mapping tools. Particularly, our approach is more robust to the presence of missing genotype data and genotyping errors. We used our method to construct pseudomolecules for allotetraploid lawn grass utilizing PacBio long reads in combination with restriction site-associated DNA sequencing, and for diploid Ipomoea trifida and autotetraploid potato utilizing contigs assembled from Illumina reads in combination with genotype data generated by single-nucleotide polymorphism arrays and genotyping by sequencing, respectively. We resolved 13 assembly errors for a published I. trifida genome assembly and anchored eight unplaced scaffolds in the published potato genome.
Collapse
Affiliation(s)
- Chenxi Zhou
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria, Australia
| | - Bode Olukolu
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, USA
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, USA
| | - Dorcus C Gemenet
- International Potato Center, Lima, Peru
- CGIAR Excellence in Breeding Platform, International Maize and Wheat Improvement Center, Nairobi, Kenya
| | - Shan Wu
- Boyce Thompson Institute, Cornell University, Ithaca, NY, USA
| | | | - Minh Duc Cao
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY, USA
| | - Zhao-Bang Zeng
- Department of Statistics, North Carolina State University, Raleigh, NC, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Andrew W George
- Data61, Commonwealth Scientific and Industrial Research Organisation, Brisbane, Queensland, Australia
| | - Awais Khan
- International Potato Center, Lima, Peru
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva, NY, USA
| | - G Craig Yencho
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, USA
| | - Lachlan J M Coin
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia.
- Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria, Australia.
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
36
|
Ahmed D, Curk F, Evrard JC, Froelicher Y, Ollitrault P. Preferential Disomic Segregation and C. micrantha/C. medica Interspecific Recombination in Tetraploid 'Giant Key' Lime; Outlook for Triploid Lime Breeding. FRONTIERS IN PLANT SCIENCE 2020; 11:939. [PMID: 32670332 PMCID: PMC7330052 DOI: 10.3389/fpls.2020.00939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 06/09/2020] [Indexed: 05/14/2023]
Abstract
The triploid 'Tahiti' lime (C. x latifolia (Yu. Tanaka) Tanaka) naturally originated from a merger between a haploid ovule of lemon (C. x limon (L.) Burm) and a diploid pollen from a 'Mexican' lime (C. x aurantiifolia (Christm.) Swing). The very limited natural inter-varietal diversity and gametic sterility of C. latifolia requires a phylogenomic based reconstruction breeding strategy to insure its diversification. We developed a strategy based on interploid hybridization between diploid lemon and the doubled diploid 'Giant Key' lime. This lime is a doubled diploid of 'Mexican' lime, itself a natural interspecific F1 hybrid between C. medica L. and C. micrantha Wester. For an optimized breeding program, we analyzed the meiotic behavior of the allotetraploid lime, the genetic structure of its diploid gametes, the interspecific recombination between C. medica and C. micrantha, and constructed its genetic map. A population of 272 triploid hybrids was generated using 'Giant Key' lime as pollinator. One hundred fifty-eight SNPs diagnostic of C. micrantha, regularly distributed throughout the citrus genome were successfully developed and applied. The genetic structure of the diploid gametes was examined based on C. micrantha doses along the genome. The diploid gametes transmitted in average 91.17% of the parental interspecific C. medica/C. micrantha heterozygosity. Three chromosomes (2, 8, and 9) showed disomic segregation with high preferential pairing values, while the remaining chromosomes showed an intermediate inheritance with a preferential disomic trend. A total of 131 SNPs were assigned to nine linkage groups to construct the genetic map. It spanned 272.8 cM with a low average recombination rate (0.99 cM Mb-1) and high synteny and colinearity with the reference clementine genome. Our results confirmed that an efficient reconstruction breeding strategy for 'Tahiti' lime is possible, based on interploid hybridization using a doubled diploid of C. aurantiifolia. The tetraploid parent should be selected for favorable agronomic traits and its genetic value should be efficiently inherited by the progeny thanks to transmission of the high level of parental heterozygosity. However, it would require developing numerous progeny to overcome the linkage drag caused by the limited interspecific recombination associated with the predominant disomic inheritance.
Collapse
Affiliation(s)
- Dalel Ahmed
- UMR AGAP, INRA, CIRAD, Montpellier SupAgro, Univ Montpellier, San Giuliano, France
| | - Franck Curk
- UMR AGAP, INRA, CIRAD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | | | | | | |
Collapse
|
37
|
Zurn JD, Zlesak DC, Holen M, Bradeen JM, Hokanson SC, Bassil NV. Mapping the black spot resistance locus Rdr3 in the shrub rose 'George Vancouver' allows for the development of improved diagnostic markers for DNA-informed breeding. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2011-2020. [PMID: 32166372 DOI: 10.1007/s00122-020-03574-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/28/2020] [Indexed: 05/22/2023]
Abstract
Rdr3 is a novel resistance gene of black spot in roses that maps to a chromosome 6 homolog. A new DNA test was developed and can be used to pyramid black spot resistance in roses. Diplocarpon rosae, the cause of rose black spot, is one of the most devastating foliar pathogens of cultivated roses (Rosa spp.). The primary method of disease control is fungicides, and they are viewed unfavorably by home gardeners due to potential environmental and health impacts. Planting rose cultivars with genetic resistance to black spot can reduce many of the fungicide applications needed in an integrated pest management system. To date, four resistance genes have been identified in roses (Rdr1, Rdr2, Rdr3, and Rdr4). Rdr3 was never mapped and is thought to be unique from Rdr1 and Rdr2. It is unknown whether it is an allele of Rdr4. To assess the novelty of Rdr3, a mapping population was created by crossing the Rdr3 containing cultivar George Vancouver with the susceptible cultivar Morden Blush. The mapping population was genotyped with the WagRhSNP 68 K Axiom array and mapped using the 'polymapR' package. Rdr3 was mapped to a chromosome 6 homolog confirming it is different from Rdr1 and Rdr2, found on chromosome 1, and from Rdr4, found on chromosome 5. The mapping information was used in conjunction with the Rosa chinensis genome assembly to develop new tightly linked SSRs for marker-assisted breeding. Three markers were able to predict the presence of Rdr3 in a 63-cultivar validation set. Additionally, 12 cultivars appear to have resistance genes other than Rdr3. The improved diagnostic markers will be a great asset to the rose-breeding community toward developing new black spot-resistant cultivars.
Collapse
Affiliation(s)
- Jason D Zurn
- USDA-ARS National Clonal Germplasm Repository, Corvallis, OR, USA
| | - David C Zlesak
- Department of Plant and Earth Science, University of Wisconsin-River Falls, River Falls, WI, USA
| | - Matthew Holen
- Department of Horticulture, University of Minnesota, St. Paul, MN, USA
| | - James M Bradeen
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, USA
| | - Stan C Hokanson
- Department of Horticulture, University of Minnesota, St. Paul, MN, USA
| | - Nahla V Bassil
- USDA-ARS National Clonal Germplasm Repository, Corvallis, OR, USA.
| |
Collapse
|
38
|
Multiple QTL Mapping in Autopolyploids: A Random-Effect Model Approach with Application in a Hexaploid Sweetpotato Full-Sib Population. Genetics 2020; 215:579-595. [PMID: 32371382 PMCID: PMC7337090 DOI: 10.1534/genetics.120.303080] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/26/2020] [Indexed: 11/18/2022] Open
Abstract
In developing countries, the sweetpotato, Ipomoea batatas (L.) Lam. [Formula: see text], is an important autopolyploid species, both socially and economically. However, quantitative trait loci (QTL) mapping has remained limited due to its genetic complexity. Current fixed-effect models can fit only a single QTL and are generally hard to interpret. Here, we report the use of a random-effect model approach to map multiple QTL based on score statistics in a sweetpotato biparental population ('Beauregard' × 'Tanzania') with 315 full-sibs. Phenotypic data were collected for eight yield component traits in six environments in Peru, and jointly adjusted means were obtained using mixed-effect models. An integrated linkage map consisting of 30,684 markers distributed along 15 linkage groups (LGs) was used to obtain the genotype conditional probabilities of putative QTL at every centiMorgan position. Multiple interval mapping was performed using our R package QTLpoly and detected a total of 13 QTL, ranging from none to four QTL per trait, which explained up to 55% of the total variance. Some regions, such as those on LGs 3 and 15, were consistently detected among root number and yield traits, and provided a basis for candidate gene search. In addition, some QTL were found to affect commercial and noncommercial root traits distinctly. Further best linear unbiased predictions were decomposed into additive allele effects and were used to compute multiple QTL-based breeding values for selection. Together with quantitative genotyping and its appropriate usage in linkage analyses, this QTL mapping methodology will facilitate the use of genomic tools in sweetpotato breeding as well as in other autopolyploids.
Collapse
|
39
|
Deo TG, Ferreira RCU, Lara LAC, Moraes ACL, Alves-Pereira A, de Oliveira FA, Garcia AAF, Santos MF, Jank L, de Souza AP. High-Resolution Linkage Map With Allele Dosage Allows the Identification of Regions Governing Complex Traits and Apospory in Guinea Grass ( Megathyrsus maximus). FRONTIERS IN PLANT SCIENCE 2020; 11:15. [PMID: 32161603 PMCID: PMC7054243 DOI: 10.3389/fpls.2020.00015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/08/2020] [Indexed: 05/11/2023]
Abstract
Forage grasses are mainly used in animal feed to fatten cattle and dairy herds, and guinea grass (Megathyrsus maximus) is considered one of the most productive of the tropical forage crops that reproduce by seeds. Due to the recent process of domestication, this species has several genomic complexities, such as autotetraploidy and aposporous apomixis. Consequently, approaches that relate phenotypic and genotypic data are incipient. In this context, we built a linkage map with allele dosage and generated novel information of the genetic architecture of traits that are important for the breeding of M. maximus. From a full-sib progeny, a linkage map containing 858 single nucleotide polymorphism (SNP) markers with allele dosage information expected for an autotetraploid was obtained. The high genetic variability of the progeny allowed us to map 10 quantitative trait loci (QTLs) related to agronomic traits, such as regrowth capacity and total dry matter, and 36 QTLs related to nutritional quality, which were distributed among all homology groups (HGs). Various overlapping regions associated with the quantitative traits suggested QTL hotspots. In addition, we were able to map one locus that controls apospory (apo-locus) in HG II. A total of 55 different gene families involved in cellular metabolism and plant growth were identified from markers adjacent to the QTLs and APOSPORY locus using the Panicum virgatum genome as a reference in comparisons with the genomes of Arabidopsis thaliana and Oryza sativa. Our results provide a better understanding of the genetic basis of reproduction by apomixis and traits important for breeding programs that considerably influence animal productivity as well as the quality of meat and milk.
Collapse
Affiliation(s)
- Thamiris G. Deo
- Center for Molecular Biology and Genetic Engineering, University of Campinas, Campinas, Brazil
| | - Rebecca C. U. Ferreira
- Center for Molecular Biology and Genetic Engineering, University of Campinas, Campinas, Brazil
| | - Letícia A. C. Lara
- Genetics Department, Escola Superior de Agricultura “Luiz de Queiroz,” University of São Paulo, Piracicaba, Brazil
| | - Aline C. L. Moraes
- Plant Biology Department, Biology Institute, University of Campinas, Campinas, Brazil
| | | | - Fernanda A. de Oliveira
- Center for Molecular Biology and Genetic Engineering, University of Campinas, Campinas, Brazil
| | - Antonio A. F. Garcia
- Genetics Department, Escola Superior de Agricultura “Luiz de Queiroz,” University of São Paulo, Piracicaba, Brazil
| | - Mateus F. Santos
- Embrapa Beef Cattle, Brazilian Agricultural Research Corporation, Campo Grande, Brazil
| | - Liana Jank
- Embrapa Beef Cattle, Brazilian Agricultural Research Corporation, Campo Grande, Brazil
| | - Anete P. de Souza
- Center for Molecular Biology and Genetic Engineering, University of Campinas, Campinas, Brazil
- Plant Biology Department, Biology Institute, University of Campinas, Campinas, Brazil
| |
Collapse
|
40
|
Cappai F, Amadeu RR, Benevenuto J, Cullen R, Garcia A, Grossman A, Ferrão LFV, Munoz P. High-Resolution Linkage Map and QTL Analyses of Fruit Firmness in Autotetraploid Blueberry. FRONTIERS IN PLANT SCIENCE 2020; 11:562171. [PMID: 33304360 PMCID: PMC7701094 DOI: 10.3389/fpls.2020.562171] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/21/2020] [Indexed: 05/21/2023]
Abstract
Blueberry (Vaccinium corymbosum and hybrids) is an autotetraploid crop whose commercial relevance has been growing steadily during the last 20 years. However, the ever-increasing cost of labor for hand-picking blueberry is one main constraint in competitive marketing of the fruit. Machine harvestability is, therefore, a key trait for the blueberry industry. Understanding the genetic architecture of traits related to machine harvestability through Quantitative Trait Loci (QTL) mapping is the first step toward implementation of molecular breeding for faster genetic gains. Despite recent advances in software development for autotetraploid genetic mapping, a high-resolution map is still not available for blueberry. In this study, we crafted a map for autotetraploid low-chill highbush blueberry containing 11,292 SNP markers and a total size of 1,953.97 cM (average density of 5.78 markers/cM). This map was subsequently used to perform QTL analyses in 2-year field trials for a trait crucial to machine harvesting: fruit firmness. Preliminary insights were also sought for single evaluations of firmness retention after cold storage, and fruit detachment force traits. Significant QTL peaks were identified for all the traits and overlapping QTL intervals were detected for firmness across the years. We found low-to-moderate QTL effects explaining the phenotypic variance, which suggest a quantitative nature of these traits. The QTL intervals were further speculated for putative gene repertoire. Altogether, our findings provide the basis for future fine-mapping and molecular breeding efforts for machine harvesting in blueberry.
Collapse
Affiliation(s)
- Francesco Cappai
- Blueberry Breeding and Genomics Lab, Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Rodrigo R. Amadeu
- Blueberry Breeding and Genomics Lab, Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Juliana Benevenuto
- Blueberry Breeding and Genomics Lab, Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Ryan Cullen
- Blueberry Breeding and Genomics Lab, Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Alexandria Garcia
- Blueberry Breeding and Genomics Lab, Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Adina Grossman
- Forage Breeding and Genetics Lab, Agronomy Department, University of Florida, Gainesville, FL, United States
| | - Luís Felipe V. Ferrão
- Blueberry Breeding and Genomics Lab, Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Patricio Munoz
- Blueberry Breeding and Genomics Lab, Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
- *Correspondence: Patricio Munoz
| |
Collapse
|
41
|
Foster TM, Bassil NV, Dossett M, Leigh Worthington M, Graham J. Genetic and genomic resources for Rubus breeding: a roadmap for the future. HORTICULTURE RESEARCH 2019; 6:116. [PMID: 31645970 PMCID: PMC6804857 DOI: 10.1038/s41438-019-0199-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/17/2019] [Accepted: 08/27/2019] [Indexed: 05/09/2023]
Abstract
Rubus fruits are high-value crops that are sought after by consumers for their flavor, visual appeal, and health benefits. To meet this demand, production of red and black raspberries (R. idaeus L. and R. occidentalis L.), blackberries (R. subgenus Rubus), and hybrids, such as Boysenberry and marionberry, is growing worldwide. Rubus breeding programmes are continually striving to improve flavor, texture, machine harvestability, and yield, provide pest and disease resistance, improve storage and processing properties, and optimize fruits and plants for different production and harvest systems. Breeders face numerous challenges, such as polyploidy, the lack of genetic diversity in many of the elite cultivars, and until recently, the relative shortage of genetic and genomic resources available for Rubus. This review will highlight the development of continually improving genetic maps, the identification of Quantitative Trait Loci (QTL)s controlling key traits, draft genomes for red and black raspberry, and efforts to improve gene models. The development of genetic maps and markers, the molecular characterization of wild species and germplasm, and high-throughput genotyping platforms will expedite breeding of improved cultivars. Fully sequenced genomes and accurate gene models facilitate identification of genes underlying traits of interest and enable gene editing technologies such as CRISPR/Cas9.
Collapse
Affiliation(s)
- Toshi M. Foster
- The New Zealand Institute for Plant and Food Research (PFR) Ltd, 55 Old Mill Road, Motueka, New Zealand
| | - Nahla V. Bassil
- USDA ARS National Clonal Germplasm Repository (NCGR), 33447 Peoria Rd., Corvallis, OR USA
| | - Michael Dossett
- Blueberry Council (in Partnership with Agriculture and Agri-Food Canada) Agassiz Food Research Centre, Columbia, BC V0M 1A0 Canada
| | - Margaret Leigh Worthington
- Department of Horticulture, University of Arkansas, 316 Plant Science Building, Fayetteville, AR 72701 USA
| | - Julie Graham
- The James Hutton Institute, Errol Road, Invergowrie, Dundee, DD2 5DA Scotland
| |
Collapse
|
42
|
Linkage Analysis and Haplotype Phasing in Experimental Autopolyploid Populations with High Ploidy Level Using Hidden Markov Models. G3-GENES GENOMES GENETICS 2019; 9:3297-3314. [PMID: 31405891 PMCID: PMC6778803 DOI: 10.1534/g3.119.400378] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Modern SNP genotyping technologies allow measurement of the relative abundance of different alleles for a given locus and consequently estimation of their allele dosage, opening a new road for genetic studies in autopolyploids. Despite advances in genetic linkage analysis in autotetraploids, there is a lack of statistical models to perform linkage analysis in organisms with higher ploidy levels. In this paper, we present a statistical method to estimate recombination fractions and infer linkage phases in full-sib populations of autopolyploid species with even ploidy levels for a set of SNP markers using hidden Markov models. Our method uses efficient two-point procedures to reduce the search space for the best linkage phase configuration and reestimate the final parameters by maximizing the likelihood of the Markov chain. To evaluate the method, and demonstrate its properties, we rely on simulations of autotetraploid, autohexaploid and autooctaploid populations and on a real tetraploid potato data set. The results show the reliability of our approach, including situations with complex linkage phase scenarios in hexaploid and octaploid populations.
Collapse
|
43
|
Mollinari M, Garcia AAF. Linkage Analysis and Haplotype Phasing in Experimental Autopolyploid Populations with High Ploidy Level Using Hidden Markov Models. G3 (BETHESDA, MD.) 2019. [PMID: 31405891 DOI: 10.1101/415232v2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Modern SNP genotyping technologies allow measurement of the relative abundance of different alleles for a given locus and consequently estimation of their allele dosage, opening a new road for genetic studies in autopolyploids. Despite advances in genetic linkage analysis in autotetraploids, there is a lack of statistical models to perform linkage analysis in organisms with higher ploidy levels. In this paper, we present a statistical method to estimate recombination fractions and infer linkage phases in full-sib populations of autopolyploid species with even ploidy levels for a set of SNP markers using hidden Markov models. Our method uses efficient two-point procedures to reduce the search space for the best linkage phase configuration and reestimate the final parameters by maximizing the likelihood of the Markov chain. To evaluate the method, and demonstrate its properties, we rely on simulations of autotetraploid, autohexaploid and autooctaploid populations and on a real tetraploid potato data set. The results show the reliability of our approach, including situations with complex linkage phase scenarios in hexaploid and octaploid populations.
Collapse
Affiliation(s)
- Marcelo Mollinari
- Department of Horticultural Science, Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, and
| | | |
Collapse
|
44
|
Quantifying the Power and Precision of QTL Analysis in Autopolyploids Under Bivalent and Multivalent Genetic Models. G3-GENES GENOMES GENETICS 2019; 9:2107-2122. [PMID: 31036677 PMCID: PMC6643892 DOI: 10.1534/g3.119.400269] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
New genotyping technologies, offering the possibility of high genetic resolution at low cost, have helped fuel a surge in interest in the genetic analysis of polyploid species. Nevertheless, autopolyploid species present extra challenges not encountered in diploids and allopolyploids, such as polysomic inheritance or double reduction. Here we investigate the power and precision of quantitative trait locus (QTL) analysis in outcrossing autopolyploids, comparing the results of a model that assumes random bivalent chromosomal pairing during meiosis to one that also allows for multivalents and double reduction. Through a series of simulation studies we found that marginal gains in QTL detection power are achieved using the double reduction model when multivalent pairing occurs. However, when exploring the effect of variable genotypic information across parental homologs, we found that both QTL detection power and precision require high and uniform genotypic information contents. This effect far outweighed considerations regarding bivalent or multivalent pairing (and double reduction) during meiosis. We propose that autopolyploid QTL studies be accompanied by both marker coverage information and per-homolog genotypic information coefficients (GIC). Application of these methods to an autotetraploid potato (Solanum tuberosum L.) mapping population confirmed our ability to locate and dissect QTL in highly heterozygous outcrossing autotetraploid populations.
Collapse
|
45
|
polyRAD: Genotype Calling with Uncertainty from Sequencing Data in Polyploids and Diploids. G3-GENES GENOMES GENETICS 2019; 9:663-673. [PMID: 30655271 PMCID: PMC6404598 DOI: 10.1534/g3.118.200913] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Low or uneven read depth is a common limitation of genotyping-by-sequencing (GBS) and restriction site-associated DNA sequencing (RAD-seq), resulting in high missing data rates, heterozygotes miscalled as homozygotes, and uncertainty of allele copy number in heterozygous polyploids. Bayesian genotype calling can mitigate these issues, but previously has only been implemented in software that requires a reference genome or uses priors that may be inappropriate for the population. Here we present several novel Bayesian algorithms that estimate genotype posterior probabilities, all of which are implemented in a new R package, polyRAD. Appropriate priors can be specified for mapping populations, populations in Hardy-Weinberg equilibrium, or structured populations, and in each case can be informed by genotypes at linked markers. The polyRAD software imports read depth from several existing pipelines, and outputs continuous or discrete numerical genotypes suitable for analyses such as genome-wide association and genomic prediction.
Collapse
|
46
|
Klaassen MT, Bourke PM, Maliepaard C, Trindade LM. Multi-allelic QTL analysis of protein content in a bi-parental population of cultivated tetraploid potato. EUPHYTICA: NETHERLANDS JOURNAL OF PLANT BREEDING 2019; 215:14. [PMID: 30872859 PMCID: PMC6390886 DOI: 10.1007/s10681-018-2331-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/22/2018] [Indexed: 05/26/2023]
Abstract
Protein content is a key quality trait for the potato starch industry. The objective of this study was to identify allele-specific quantitative trait loci (QTLs) for tuber protein content in cultivated potato (Solanum tuberosum L.) at the tetraploid level. We analysed 496 full-sib F1 clones in a 3-year field trial to dissect the complex genetic architecture of soluble tuber protein content. Genotypic data from a 60K single nucleotide polymorphism (SNP) array was used for SNP dosage scoring, constructing homologue specific linkage maps and assembly of a dense integrated chromosomal linkage map. From the integrated map, probabilistic multi-locus identity-by-descent (IBD) haplotypes (alleles) were estimated and used to detect associations between the IBD haplotypes and the phenotypic trait values. Moderate levels of trait heritability were estimated between 40 and 74% that correspond with previous studies. Our contemporary naive analysis identified potential additive QTLs on chromosomes 2, 3, 5 (top arm) and 9 across the years. Moreover, cofactor QTL analysis identified two masked QTLs on chromosomes 1 and 5 (lower arm). The QTLs on chromosomes 2, 5 (lower arm) and 9 are reported here for the first time. The QTLs that we identified on chromosomes 1, 3 and 5 (top arm) show overlap with previous studies for protein content in potato. Collectively the naive QTLs explained 12 to 17% of the phenotypic variance. The underlying alleles of the QTLs provided both positive and negative effects on the phenotype. Our work uncovers the complex genetic architecture of this trait and describes potential breeding strategies for improvement. As protein has emerged as a high-value component from industrial potato starch production, the dissection of the genetic architecture and subsequent improvement of this trait by breeding has great economic and environmental relevance.
Collapse
Affiliation(s)
- Michiel T. Klaassen
- Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
- Department of Applied Research, Aeres University of Applied Sciences, P.O. Box 374, 8250 AJ Dronten, The Netherlands
| | - Peter M. Bourke
- Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | - Chris Maliepaard
- Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | - Luisa M. Trindade
- Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| |
Collapse
|
47
|
Smulders MJM, Arens P, Bourke PM, Debener T, Linde M, Riek JD, Leus L, Ruttink T, Baudino S, Hibrant Saint-Oyant L, Clotault J, Foucher F. In the name of the rose: a roadmap for rose research in the genome era. HORTICULTURE RESEARCH 2019; 6:65. [PMID: 31069087 PMCID: PMC6499834 DOI: 10.1038/s41438-019-0156-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/18/2019] [Indexed: 05/07/2023]
Abstract
The recent completion of the rose genome sequence is not the end of a process, but rather a starting point that opens up a whole set of new and exciting activities. Next to a high-quality genome sequence other genomic tools have also become available for rose, including transcriptomics data, a high-density single-nucleotide polymorphism array and software to perform linkage and quantitative trait locus mapping in polyploids. Rose cultivars are highly heterogeneous and diverse. This vast diversity in cultivated roses can be explained through the genetic potential of the genus, introgressions from wild species into commercial tetraploid germplasm and the inimitable efforts of historical breeders. We can now investigate how this diversity can best be exploited and refined in future breeding work, given the rich molecular toolbox now available to the rose breeding community. This paper presents possible lines of research now that rose has entered the genomics era, and attempts to partially answer the question that arises after the completion of any draft genome sequence: 'Now that we have "the" genome, what's next?'. Having access to a genome sequence will allow both (fundamental) scientific and (applied) breeding-orientated questions to be addressed. We outline possible approaches for a number of these questions.
Collapse
Affiliation(s)
- Marinus J. M. Smulders
- Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | - Paul Arens
- Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | - Peter M. Bourke
- Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | - Thomas Debener
- Faculty of Natural Sciences, Institute for Plant Genetics, Molecular Plant Breeding, Leibniz University of Hannover, Herrenhäuser Strasse 2, 30419 Hannover, Germany
| | - Marcus Linde
- Faculty of Natural Sciences, Institute for Plant Genetics, Molecular Plant Breeding, Leibniz University of Hannover, Herrenhäuser Strasse 2, 30419 Hannover, Germany
| | - Jan De Riek
- ILVO, Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Caritasstraat 39, 9090 Melle, Belgium
| | - Leen Leus
- ILVO, Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Caritasstraat 39, 9090 Melle, Belgium
| | - Tom Ruttink
- ILVO, Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Caritasstraat 39, 9090 Melle, Belgium
| | - Sylvie Baudino
- BVpam CNRS, FRE 3727, UJM-Saint-Étienne, Univ. Lyon, Saint-Etienne, France
| | - Laurence Hibrant Saint-Oyant
- IRHS, Agrocampus-Ouest, INRA, Université d’Angers, SFR 4207 QuaSaV, 42 rue Georges Morel BP 60057, 49 071 Beaucouzé, France
| | - Jeremy Clotault
- IRHS, Agrocampus-Ouest, INRA, Université d’Angers, SFR 4207 QuaSaV, 42 rue Georges Morel BP 60057, 49 071 Beaucouzé, France
| | - Fabrice Foucher
- IRHS, Agrocampus-Ouest, INRA, Université d’Angers, SFR 4207 QuaSaV, 42 rue Georges Morel BP 60057, 49 071 Beaucouzé, France
| |
Collapse
|
48
|
Zurn JD, Zlesak DC, Holen M, Bradeen JM, Hokanson SC, Bassil NV. Mapping a Novel Black Spot Resistance Locus in the Climbing Rose Brite Eyes™ ('RADbrite'). FRONTIERS IN PLANT SCIENCE 2018; 9:1730. [PMID: 30534133 PMCID: PMC6275305 DOI: 10.3389/fpls.2018.01730] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/07/2018] [Indexed: 05/22/2023]
Abstract
Rose black spot, caused by Diplocarpon rosae, is one of the most devastating foliar diseases of cultivated roses (Rosa spp.). The globally distributed pathogen has the potential to cause large economic losses in the outdoor cultivation of roses. Fungicides are the primary method to manage the disease, but are often viewed unfavorably by home gardeners due to potential environmental and health impacts. As such, rose cultivars with genetic resistance to black spot are highly desired. The tetraploid climbing rose Brite EyesTM ('RADbrite') is known for its resistance to black spot. To better characterize the resistance present in Brite EyesTM, phenotyping was conducted on a 94 individual F1 population developed by crossing Brite EyesTM to the susceptible tetraploid rose 'Morden Blush'. Brite EyesTM was resistant to all D. rosae races evaluated except for race 12. The progeny were either resistant or susceptible to all races (2, 3, 8, 9, 10, 11, and 13) evaluated. The segregation ratio was 1:1 (χ2 = 0.3830, P = 0.5360) suggesting resistance is conferred by a single locus. The roses were genotyped with the WagRhSNP 68K Axiom array and the 'polymapR' package was used to construct a map. A single resistance locus (Rdr4) was identified on the long arm of chromosome 5 homoeolog 4. Three resistance loci have been previously identified (Rdr1, Rdr2, and Rdr3). Both Rdr1 and Rdr2 are located on a chromosome 1 homoeolog. The chromosomal location of Rdr3 is unknown, however, races 3 and 9 are virulent on Rdr3. Rdr4 is either a novel gene or an allele of Rdr3 as it provides resistance to races 3 and 9. Due to its broad resistance, Rdr4 is an excellent gene to introgress into new rose cultivars.
Collapse
Affiliation(s)
- Jason D. Zurn
- USDA-ARS National Clonal Germplasm Repository, Corvallis, OR, United States
| | - David C. Zlesak
- Department of Plant and Earth Science, University of Wisconsin River Falls, River Falls, WI, United States
| | - Matthew Holen
- Department of Horticulture, University of Minnesota, St. Paul, MN, United States
| | - James M. Bradeen
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
| | - Stan C. Hokanson
- Department of Horticulture, University of Minnesota, St. Paul, MN, United States
| | - Nahla V. Bassil
- USDA-ARS National Clonal Germplasm Repository, Corvallis, OR, United States
- *Correspondence: Nahla V. Bassil,
| |
Collapse
|