1
|
Qiu S, Wang J, Pei T, Gao R, Xiang C, Chen J, Zhang C, Xiao Y, Li Q, Wu Z, He M, Wang R, Zhao Q, Xu Z, Hu J, Chen W. Functional evolution and diversification of CYP82D subfamily members have shaped flavonoid diversification in the genus Scutellaria. PLANT COMMUNICATIONS 2025; 6:101134. [PMID: 39277789 DOI: 10.1016/j.xplc.2024.101134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/27/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Flavonoids, the largest class of polyphenols, exhibit substantial structural and functional diversity, yet their evolutionary diversification and specialized functions remain largely unexplored. The genus Scutellaria is notable for its rich flavonoid diversity, particularly of 6/8-hydroxylated variants biosynthesized by the cytochrome P450 subfamily CYP82D. Our study analyzes metabolic differences between Scutellaria baicalensis and Scutellaria barbata, and the results suggest that CYP82Ds have acquired a broad range of catalytic functions over their evolution. By integrating analyses of metabolic networks and gene evolution across 22 Scutellaria species, we rapidly identified 261 flavonoids and delineated five clades of CYP82Ds associated with various catalytic functions. This approach revealed a unique catalytic mode for 6/8-hydroxylation of flavanone substrates and the first instance of 7-O-demethylation of flavonoid substrates catalyzed by a cytochrome P450. Ancestral sequence reconstruction and functional validation demonstrated that gradual neofunctionalization of CYP82Ds has driven the chemical diversity of flavonoids in the genus Scutellaria throughout its evolutionary history. These findings enhance our understanding of flavonoid diversity, reveal the intricate roles of CYP82Ds in Scutellaria species, and highlight the extensive catalytic versatility of cytochrome P450 members within plant taxa.
Collapse
Affiliation(s)
- Shi Qiu
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing 100700, China
| | - Jing Wang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tianlin Pei
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, CAS Center for Excellence in Molecular Plant Sciences Chenshan Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Ranran Gao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing 100700, China
| | - Chunlei Xiang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Junfeng Chen
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chen Zhang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying Xiao
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qing Li
- Department of Pharmacy, Second Affiliated Hospital of Navy Medical University, Shanghai 200003, China
| | - Ziding Wu
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Min He
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rong Wang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qing Zhao
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, CAS Center for Excellence in Molecular Plant Sciences Chenshan Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai 201602, China.
| | - Zhichao Xu
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China.
| | - Jiadong Hu
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Second Affiliated Hospital of Navy Medical University, Shanghai 200003, China.
| | - Wansheng Chen
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Second Affiliated Hospital of Navy Medical University, Shanghai 200003, China.
| |
Collapse
|
2
|
Schafran P, Hauser DA, Nelson JM, Xu X, Mueller LA, Kulshrestha S, Smalley I, de Vries S, Irisarri I, de Vries J, Davies K, Villarreal JCA, Li FW. Pan-phylum genomes of hornworts reveal conserved autosomes but dynamic accessory and sex chromosomes. NATURE PLANTS 2025; 11:49-62. [PMID: 39753957 DOI: 10.1038/s41477-024-01883-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/27/2024] [Indexed: 01/25/2025]
Abstract
Hornworts, one of the three bryophyte phyla, show some of the deepest divergences in extant land plants, with some families separated by more than 300 million years. Previous hornwort genomes represented only one genus, limiting the ability to infer evolution within hornworts and their early land plant ancestors. Here we report ten new chromosome-scale genomes representing all hornwort families and most of the genera. We found that, despite the deep divergence, synteny was surprisingly conserved across all hornwort genomes, a pattern that might be related to the absence of whole-genome duplication. We further uncovered multiple accessory and putative sex chromosomes that are highly repetitive and CpG methylated. In contrast to autosomes, these chromosomes mostly lack syntenic relationships with one another and are evolutionarily labile. Notable gene retention and losses were identified, including those responsible for flavonoid biosynthesis, stomata patterning and phytohormone reception, which have implications in reconstructing the evolution of early land plants. Together, our pan-phylum genomes revealed an array of conserved and divergent genomic features in hornworts, highlighting the uniqueness of this deeply diverged lineage.
Collapse
Affiliation(s)
| | | | | | - Xia Xu
- Boyce Thompson Institute, Ithaca, NY, USA
| | - Lukas A Mueller
- Boyce Thompson Institute, Ithaca, NY, USA
- Plant Breeding and Genetics Section, Cornell University, Ithaca, NY, USA
| | - Samarth Kulshrestha
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Isabel Smalley
- Department of Biology, University of Minnesota Duluth, Duluth, MN, USA
| | - Sophie de Vries
- Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Campus Institute Data Science, Department of Applied Bioinformatics, University of Göttingen, Göttingen, Germany
| | - Iker Irisarri
- Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Campus Institute Data Science, Department of Applied Bioinformatics, University of Göttingen, Göttingen, Germany
- Section Phylogenomics, Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Zoological Museum Hamburg, Hamburg, Germany
| | - Jan de Vries
- Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Campus Institute Data Science, Department of Applied Bioinformatics, University of Göttingen, Göttingen, Germany
| | - Kevin Davies
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | | | - Fay-Wei Li
- Boyce Thompson Institute, Ithaca, NY, USA.
- Plant Biology Section, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
3
|
Dunn T, Sethuraman A. Accurate Inference of the Polyploid Continuum Using Forward-Time Simulations. Mol Biol Evol 2024; 41:msae241. [PMID: 39549274 DOI: 10.1093/molbev/msae241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/22/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024] Open
Abstract
Multiple rounds of whole-genome duplication (WGD) followed by diploidization have occurred throughout the evolutionary history of angiosperms. Much work has been done to model the genomic consequences and evolutionary significance of WGD. While researchers have historically modeled polyploids as either allopolyploids or autopolyploids, the variety of natural polyploids span a continuum of differentiation across multiple parameters, such as the extent of polysomic versus disomic inheritance, and the degree of genetic differentiation between the ancestral lineages. Here we present a forward-time polyploid genome evolution simulator called SpecKS. SpecKS models polyploid speciation as originating from a 2D continuum, whose dimensions account for both the level of genetic differentiation between the ancestral parental genomes, as well the time lag between ancestral speciation and their subsequent reunion in the derived polyploid. Using extensive simulations, we demonstrate that changes in initial conditions along either dimension of the 2D continuum deterministically affect the shape of the Ks histogram. Our findings indicate that the error in the common method of estimating WGD time from the Ks histogram peak scales with the degree of allopolyploidy, and we present an alternative, accurate estimation method that is independent of the degree of allopolyploidy. Lastly, we use SpecKS to derive tests that infer both the lag time between parental divergence and WGD time, and the diversity of the ancestral species, from an input Ks histogram. We apply the latter test to transcriptomic data from over 200 species across the plant kingdom, the results of which are concordant with the prevailing theory that the majority of angiosperm lineages are derived from diverse parental genomes and may be of allopolyploid origin.
Collapse
Affiliation(s)
- Tamsen Dunn
- Department of Biology, San Diego State University, San Diego, CA, USA
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, USA
| | - Arun Sethuraman
- Department of Biology, San Diego State University, San Diego, CA, USA
| |
Collapse
|
4
|
Zong D, Xu Y, Zhang X, Gan P, Wang H, Chen X, Liang H, Zhou J, Lu Y, Li P, Ma S, Yu J, Jiang T, Liao S, Ren M, Li L, Liu H, Sahu SK, Li L, Wang S, He C. A multiomics investigation into the evolution and specialized metabolisms of three Toxicodendron cultivars. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2683-2699. [PMID: 39589867 DOI: 10.1111/tpj.17138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024]
Abstract
Toxicodendron species are economically and medicinally important trees because of their rich sources of natural products. We present three chromosome-level genome assemblies of Toxicodendron vernicifluum 'Dali', Toxicodendron succedaneum 'Vietnam', and T. succedaneum 'Japan', which display diverse production capacities of specialized metabolites. Genome synteny and structural variation analyses revealed large genomic differences between the two species (T. vernicifluum and T. succedaneum) but fewer differences between the two cultivars within the species. Despite no occurrence of recent whole-genome duplications, Toxicodendron showed evidence of local duplications. The genomic modules with high expression of genes encoding metabolic flux regulators and chalcone synthase-like enzymes were identified via multiomics analyses, which may be responsible for the greater urushiol accumulation in T. vernicifluum 'Dali' than in other Toxicodendron species. In addition, our analyses revealed the regulatory patterns of lipid metabolism in T. succedaneum 'Japan', which differ from those of other Toxicodendron species and may contribute to its high lipid accumulation. Furthermore, we identified the key regulatory elements of lipid metabolism at each developmental stage, which could aid in molecular breeding to improve the production of urushiol and lipids in Toxicodendron species. In summary, this study provides new insights into the genomic underpinnings of the evolution and diversity of specialized metabolic pathways in three Toxicodendron cultivars through multiomics studies.
Collapse
Affiliation(s)
- Dan Zong
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Yan Xu
- BGI Research, Wuhan, 430074, China
| | - Xiaolin Zhang
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Peihua Gan
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | | | | | | | - Jintao Zhou
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Yu Lu
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Peiling Li
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Shaojie Ma
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Jinde Yu
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Tao Jiang
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Shengxi Liao
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, 650216, China
| | - Meirong Ren
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Linzhou Li
- BGI Research, Wuhan, 430074, China
- BGI Research, Shenzhen, 518083, China
| | - Huan Liu
- BGI Research, Shenzhen, 518083, China
| | - Sunil Kumar Sahu
- BGI Research, Wuhan, 430074, China
- BGI Research, Shenzhen, 518083, China
| | - Laigeng Li
- Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 20032, China
| | - Sibo Wang
- BGI Research, Wuhan, 430074, China
- BGI Research, Shenzhen, 518083, China
| | - Chengzhong He
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| |
Collapse
|
5
|
Ouyang F, Guo H, Xie W, Song Y, Yan Z, Peng Z, Zhang Y, Qu R, Xin H, Yuan Z, Xiao Z, Men X. Chromosome-level genome of Osmia excavata (Hymenoptera: Megachilidae) provides insights into low-temperature tolerance of Osmia pollinator. JOURNAL OF ECONOMIC ENTOMOLOGY 2024:toae257. [PMID: 39471471 DOI: 10.1093/jee/toae257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/01/2024] [Accepted: 10/17/2024] [Indexed: 11/01/2024]
Abstract
The solitary bee Osmia excavata (Hymenoptera: Megachilidae) is a key pollinator managed on a large scale. It has been widely used for commercial pollination of fruit trees, vegetables, and other crops with high efficiency in increasing the crop seeding rate, yield, and seed quality in Northern hemisphere. Here, a high-quality chromosome-level genome of O. excavata was generated using PacBio sequencing along with Hi-C technology. The genome size was 207.02 Mb, of which 90.25% of assembled sequences were anchored to 16 chromosomes with a contig N50 of 9,485 kb. Approximately 186.83 Mb, accounting for 27.93% of the genome, was identified as repeat sequences. The genome comprises 12,259 protein-coding genes, 96.24% of which were functionally annotated. Comparative genomics analysis suggested that the common ancestor of O. excavata and Osmia bicornis (Hymenoptera: Megachilidae) lived 8.54 million years ago. Furthermore, cytochrome P450 family might be involved in the responses of O. excavata to low-temperature stress. Taken together, the chromosome-level genome assembly of O. excavata provides in-depth knowledge and will be a helpful resource for the pollination biology research.
Collapse
Affiliation(s)
- Fang Ouyang
- College of Life Sciences, Hebei University, Baoding, Hebei, China
- Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Honggang Guo
- College of Bioscience and Resource Environment/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing University of Agriculture, Beijing, China
| | - Wen Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing, China
| | - Yingying Song
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Zhuo Yan
- Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | | - Yongsheng Zhang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Ritao Qu
- Yantai Agricultural Technology Extension Center, Yantai, China
| | - Huaigen Xin
- Tianjin Qiyuan Biotechnology Development Co., Ltd., Tianjin, China
| | - Zheming Yuan
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Zhishu Xiao
- Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xingyuan Men
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
6
|
Wei T, Li H, Huang X, Yang P. Chromosome-level genome assembly of two cultivated Jujubes. Sci Data 2024; 11:1144. [PMID: 39420037 PMCID: PMC11486999 DOI: 10.1038/s41597-024-03992-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 10/11/2024] [Indexed: 10/19/2024] Open
Abstract
Jujube (Ziziphus jujuba Mill.) is a valuable tree species with economic, edible, medicinal, and ecological conservation benefits. In this study, we used PacBio HiFi sequencing and Hi-C technology to assemble chromosome-level genomes of two cultivated Jujubes, namely 'Lingwuchangzao' and 'Shiguang'. The genome sizes of 'Lingwuchangzao' and 'Shiguang' were 385.66 Mb and 394.12 Mb, respectively, with contig N50 sizes of 30.62 Mb and 4.30 Mb. These genomes contained 31,082 and 31,015 protein-coding genes, with repeat element contents of 42.11% and 42.33%, respectively. Phylogenetic analysis revealed that 'Lingwuchangzao' was sister to 'Shiguang' and followed by 'Dongzao'. Additionally, comparative analysis of gene families among 'Lingwuchangzao', 'Shiguang', 'Dongzao', 'Junzao', and 'Suanzao' identified 15,988 (57.98%) core gene families, 11,191 (40.59%) disposable gene families, and 394 (1.43%) private gene families. Overall, the assembly of the genomes of these two cultivated Jujube varieties provides valuable genetic information for Jujube evolution, functional genomics research, and molecular breeding.
Collapse
Affiliation(s)
- Tianjun Wei
- Institute of Horticulture, NingXia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China.
| | - Hui Li
- Institute of Horticulture, NingXia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Xueshuang Huang
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, 418000, China
| | - Peng Yang
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, 418000, China.
| |
Collapse
|
7
|
González-Pech RA, Shepherd J, Fuller ZL, LaJeunesse TC, Parkinson JE. The genome of a giant clam zooxanthella (Cladocopium infistulum) offers few clues to adaptation as an extracellular symbiont with high thermotolerance. BMC Genomics 2024; 25:914. [PMID: 39354409 PMCID: PMC11443893 DOI: 10.1186/s12864-024-10822-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/20/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Cladocopium infistulum (Symbiodiniaceae) is a dinoflagellate specialized to live in symbiosis with western Pacific giant clams (Tridacnidae). Unlike coral-associated symbionts, which reside within the host cells, C. infistulum inhabits the extracellular spaces of the clam's digestive diverticula. It is phylogenetically basal to a large species complex of stress-tolerant Cladocopium, many of which are associated with important reef-building corals in the genus Porites. This close phylogenetic relationship may explain why C. infistulum exhibits high thermotolerance relative to other tridacnid symbionts. Moreover, past analyses of microsatellite loci indicated that Cladocopium underwent whole-genome duplication prior to the adaptive radiations that led to its present diversity. RESULTS A draft genome assembly of C. infistulum was produced using long- and short-read sequences to explore the genomic basis for adaptations underlying thermotolerance and extracellular symbiosis among dinoflagellates and to look for evidence of genome duplication. Comparison to three other Cladocopium genomes revealed no obvious over-representation of gene groups or families whose functions would be important for maintaining C. infistulum's unique physiological and ecological properties. Preliminary analyses support the existence of partial or whole-genome duplication among Cladocopium, but additional high-quality genomes are required to substantiate these findings. CONCLUSION Although this investigation of Cladocopium infistulum revealed no patterns diagnostic of heat tolerance or extracellular symbiosis in terms of overrepresentation of gene functions or genes under selection, it provided a valuable genomic resource for comparative analyses. It also indicates that ecological divergence among Cladocopium species, and potentially among other dinoflagellates, is partially governed by mechanisms other than gene content. Thus, additional high-quality, multiomic data are needed to explore the molecular basis of key phenotypes among symbiotic microalgae.
Collapse
Affiliation(s)
- Raúl A González-Pech
- Department of Integrative Biology, University of South Florida, Tampa, FL, 33620, USA.
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA.
| | - Jihanne Shepherd
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
- Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Zachary L Fuller
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Todd C LaJeunesse
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
- Institute of Energy and the Environment, The Pennsylvania State University, University Park, PA, 16802, USA
| | | |
Collapse
|
8
|
Lewin TD, Liao IJY, Luo YJ. Annelid Comparative Genomics and the Evolution of Massive Lineage-Specific Genome Rearrangement in Bilaterians. Mol Biol Evol 2024; 41:msae172. [PMID: 39141777 PMCID: PMC11371463 DOI: 10.1093/molbev/msae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024] Open
Abstract
The organization of genomes into chromosomes is critical for processes such as genetic recombination, environmental adaptation, and speciation. All animals with bilateral symmetry inherited a genome structure from their last common ancestor that has been highly conserved in some taxa but seemingly unconstrained in others. However, the evolutionary forces driving these differences and the processes by which they emerge have remained largely uncharacterized. Here, we analyze genome organization across the phylum Annelida using 23 chromosome-level annelid genomes. We find that while many annelid lineages have maintained the conserved bilaterian genome structure, the Clitellata, a group containing leeches and earthworms, possesses completely scrambled genomes. We develop a rearrangement index to quantify the extent of genome structure evolution and show that, compared to the last common ancestor of bilaterians, leeches and earthworms have among the most highly rearranged genomes of any currently sampled species. We further show that bilaterian genomes can be classified into two distinct categories-high and low rearrangement-largely influenced by the presence or absence, respectively, of chromosome fission events. Our findings demonstrate that animal genome structure can be highly variable within a phylum and reveal that genome rearrangement can occur both in a gradual, stepwise fashion, or rapid, all-encompassing changes over short evolutionary timescales.
Collapse
Affiliation(s)
- Thomas D Lewin
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Yi-Jyun Luo
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
9
|
Locatelli NS, Baums IB. Genomes of the Caribbean reef-building corals Colpophyllia natans, Dendrogyra cylindrus, and Siderastrea siderea. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.21.608299. [PMID: 39229226 PMCID: PMC11370458 DOI: 10.1101/2024.08.21.608299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Corals populations worldwide are declining rapidly due to elevated ocean temperatures and other human impacts. The Caribbean harbors a high number of threatened, endangered, and critically endangered coral species compared to reefs of the larger Indo-Pacific. The reef corals of the Caribbean are also long diverged from their Pacific counterparts and may have evolved different survival strategies. Most genomic resources have been developed for Pacific coral species which may impede our ability to study the changes in genetic composition of Caribbean reef communities in response to global change. To help fill the gap in genomic resources, we used PacBio HiFi sequencing to generate the first genome assemblies for three Caribbean, reef-building corals, Colpophyllia natans, Dendrogyra cylindrus, and Siderastrea siderea. We also explore the genomic novelties that shape scleractinian genomes. Notably, we find abundant gene duplications of all classes (e.g., tandem and segmental), especially in S. siderea. This species has one of the largest genomes of any scleractinian coral (822Mb) which seems to be driven by repetitive content and gene family expansion and diversification. As the genome size of S. siderea was double the size expected of stony corals, we also evaluated the possibility of an ancient whole genome duplication using Ks tests and found no evidence of such an event in the species. By presenting these genome assemblies, we hope to develop a better understanding of coral evolution as a whole and to enable researchers to further investigate the population genetics and diversity of these three species.
Collapse
Affiliation(s)
- Nicolas S Locatelli
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Iliana B Baums
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Ammerländer, Heerstraße 231, 26129 Oldenburg, Germany
- Alfred Wegener Institute, Helmholtz-Centre for Polar and Marine Research (AWI), Am Handelshafen Bremerhaven, Germany
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstraße 114-118, 26129 Oldenburg, Germany
| |
Collapse
|
10
|
Xia W, Wang S, Liu X, Chen Y, Lin C, Liu R, Liu H, Li J, Zhu J. Chromosome-level genome provides new insight into the overwintering process of Korla pear (Pyrus sinkiangensis Yu). BMC PLANT BIOLOGY 2024; 24:773. [PMID: 39138412 PMCID: PMC11323677 DOI: 10.1186/s12870-024-05490-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
Korla pear has a unique taste and aroma and is a breeding parent of numerous pear varieties. It is susceptible to Valsa mali var. pyri, which invades bark wounded by freezing injury. Its genetic relationships have not been fully defined and could offer insight into the mechanism for freezing tolerance and disease resistance. We generated a high-quality, chromosome-level genome assembly for Korla pear via the Illumina and PacBio circular consensus sequencing (CCS) platforms and high-throughput chromosome conformation capture (Hi-C). The Korla pear genome is ~ 496.63 Mb, and 99.18% of it is assembled to 17 chromosomes. Collinearity and phylogenetic analyses indicated that Korla might be derived from Pyrus pyrifolia and that it diverged ~ 3.9-4.6 Mya. During domestication, seven late embryogenesis abundant (LEA), two dehydrin (DHN), and 54 disease resistance genes were lost from Korla pear compared with P. betulifolia. Moreover, 21 LEA and 31 disease resistance genes were common to the Korla pear and P. betulifolia genomes but were upregulated under overwintering only in P. betulifolia because key cis elements were missing in Korla pear. Gene deletion and downregulation during domestication reduced freezing tolerance and disease resistance in Korla pear. These results could facilitate the breeding of novel pear varieties with high biotic and abiotic stress resistance.
Collapse
Affiliation(s)
- Wenwen Xia
- Key Laboratory of Agricultural Biotechnology, College of Life Science, Shihezi University, Shihezi, 832000, China
| | - Saisai Wang
- Key Laboratory of Agricultural Biotechnology, College of Life Science, Shihezi University, Shihezi, 832000, China
| | - Xiaoyan Liu
- Key Laboratory of Agricultural Biotechnology, College of Life Science, Shihezi University, Shihezi, 832000, China
| | - Yifei Chen
- Key Laboratory of Agricultural Biotechnology, College of Life Science, Shihezi University, Shihezi, 832000, China
| | - Caixia Lin
- Xinjiang Production and Construction Crops, Institute of Agricultural Sciences, Tiemenguan, 841007, China
| | - Ruina Liu
- Key Laboratory of Agricultural Biotechnology, College of Life Science, Shihezi University, Shihezi, 832000, China
| | - Hailiang Liu
- Key Laboratory of Agricultural Biotechnology, College of Life Science, Shihezi University, Shihezi, 832000, China
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200123, China
| | - Jin Li
- Key Laboratory of Agricultural Biotechnology, College of Life Science, Shihezi University, Shihezi, 832000, China.
| | - Jianbo Zhu
- Key Laboratory of Agricultural Biotechnology, College of Life Science, Shihezi University, Shihezi, 832000, China.
| |
Collapse
|
11
|
Wang H, Chen M, Wei X, Xia R, Pei D, Huang X, Han B. Computational tools for plant genomics and breeding. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1579-1590. [PMID: 38676814 DOI: 10.1007/s11427-024-2578-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/25/2024] [Indexed: 04/29/2024]
Abstract
Plant genomics and crop breeding are at the intersection of biotechnology and information technology. Driven by a combination of high-throughput sequencing, molecular biology and data science, great advances have been made in omics technologies at every step along the central dogma, especially in genome assembling, genome annotation, epigenomic profiling, and transcriptome profiling. These advances further revolutionized three directions of development. One is genetic dissection of complex traits in crops, along with genomic prediction and selection. The second is comparative genomics and evolution, which open up new opportunities to depict the evolutionary constraints of biological sequences for deleterious variant discovery. The third direction is the development of deep learning approaches for the rational design of biological sequences, especially proteins, for synthetic biology. All three directions of development serve as the foundation for a new era of crop breeding where agronomic traits are enhanced by genome design.
Collapse
Affiliation(s)
- Hai Wang
- State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
- Sanya Institute of China Agricultural University, Sanya, 572025, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China.
| | - Mengjiao Chen
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Xin Wei
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Rui Xia
- College of Horticulture, South China Agricultural University, Guangzhou, 510640, China
| | - Dong Pei
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Xuehui Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Bin Han
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200233, China
| |
Collapse
|
12
|
McKibben MTW, Finch G, Barker MS. Species-tree topology impacts the inference of ancient whole-genome duplications across the angiosperm phylogeny. AMERICAN JOURNAL OF BOTANY 2024; 111:e16378. [PMID: 39039654 DOI: 10.1002/ajb2.16378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/24/2024]
Abstract
PREMISE The history of angiosperms is marked by repeated rounds of ancient whole-genome duplications (WGDs). Here we used state-of-the-art methods to provide an up-to-date view of the distribution of WGDs in the history of angiosperms that considers both uncertainty introduced by different WGD inference methods and different underlying species-tree hypotheses. METHODS We used the distribution synonymous divergences (Ks) of paralogs and orthologs from transcriptomic and genomic data to infer and place WGDs across two hypothesized angiosperm phylogenies. We further tested these WGD hypotheses with syntenic inferences and Bayesian models of duplicate gene gain and loss. RESULTS The predicted number of WGDs in the history of angiosperms (~170) based on the current taxon sampling is largely similar across different inference methods, but varies in the precise placement of WGDs on the phylogeny. Ks-based methods often yield alternative hypothesized WGD placements due to variation in substitution rates among lineages. Phylogenetic models of duplicate gene gain and loss are more robust to topological variation. However, errors in species-tree inference can still produce spurious WGD hypotheses, regardless of method used. CONCLUSIONS Here we showed that different WGD inference methods largely agree on an average of 3.5 WGD in the history of individual angiosperm species. However, the precise placement of WGDs on the phylogeny is subject to the WGD inference method and tree topology. As researchers continue to test hypotheses regarding the impacts ancient WGDs have on angiosperm evolution, it is important to consider the uncertainty of the phylogeny as well as WGD inference methods.
Collapse
Affiliation(s)
- Michael T W McKibben
- Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Geoffrey Finch
- Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Michael S Barker
- Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
13
|
Unneberg P, Larsson M, Olsson A, Wallerman O, Petri A, Bunikis I, Vinnere Pettersson O, Papetti C, Gislason A, Glenner H, Cartes JE, Blanco-Bercial L, Eriksen E, Meyer B, Wallberg A. Ecological genomics in the Northern krill uncovers loci for local adaptation across ocean basins. Nat Commun 2024; 15:6297. [PMID: 39090106 PMCID: PMC11294593 DOI: 10.1038/s41467-024-50239-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/15/2024] [Indexed: 08/04/2024] Open
Abstract
Krill are vital as food for many marine animals but also impacted by global warming. To learn how they and other zooplankton may adapt to a warmer world we studied local adaptation in the widespread Northern krill (Meganyctiphanes norvegica). We assemble and characterize its large genome and compare genome-scale variation among 74 specimens from the colder Atlantic Ocean and warmer Mediterranean Sea. The 19 Gb genome likely evolved through proliferation of retrotransposons, now targeted for inactivation by extensive DNA methylation, and contains many duplicated genes associated with molting and vision. Analysis of 760 million SNPs indicates extensive homogenizing gene-flow among populations. Nevertheless, we detect signatures of adaptive divergence across hundreds of genes, implicated in photoreception, circadian regulation, reproduction and thermal tolerance, indicating polygenic adaptation to light and temperature. The top gene candidate for ecological adaptation was nrf-6, a lipid transporter with a Mediterranean variant that may contribute to early spring reproduction. Such variation could become increasingly important for fitness in Atlantic stocks. Our study underscores the widespread but uneven distribution of adaptive variation, necessitating characterization of genetic variation among natural zooplankton populations to understand their adaptive potential, predict risks and support ocean conservation in the face of climate change.
Collapse
Affiliation(s)
- Per Unneberg
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Mårten Larsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, 751 23, Uppsala, Sweden
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Anna Olsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, 751 23, Uppsala, Sweden
| | - Ola Wallerman
- Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, 751 23, Uppsala, Sweden
| | - Anna Petri
- Uppsala Genome Center, Department of Immunology, Genetics and Pathology, Uppsala University, National Genomics Infrastructure hosted by SciLifeLab, Uppsala, Sweden
| | - Ignas Bunikis
- Uppsala Genome Center, Department of Immunology, Genetics and Pathology, Uppsala University, National Genomics Infrastructure hosted by SciLifeLab, Uppsala, Sweden
| | - Olga Vinnere Pettersson
- Uppsala Genome Center, Department of Immunology, Genetics and Pathology, Uppsala University, National Genomics Infrastructure hosted by SciLifeLab, Uppsala, Sweden
| | | | - Astthor Gislason
- Marine and Freshwater Research Institute, Pelagic Division, Reykjavik, Iceland
| | - Henrik Glenner
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Center for Macroecology, Evolution and Climate Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Joan E Cartes
- Instituto de Ciencias del Mar (ICM-CSIC), Barcelona, Spain
| | | | | | - Bettina Meyer
- Section Polar Biological Oceanography, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Institute for Chemistry and Biology of the Marine Environment, Carlvon Ossietzky University of Oldenburg, Oldenburg, Germany
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB), University of Oldenburg, Oldenburg, Germany
| | - Andreas Wallberg
- Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, 751 23, Uppsala, Sweden.
| |
Collapse
|
14
|
Li Q, Dai Y, Huang XC, Sun L, Wang K, Guo X, Xu D, Wan D, An L, Wang Z, Tang H, Qi Q, Zeng H, Qin M, Xue JY, Zhao Y. The chromosome-scale assembly of the Notopterygium incisum genome provides insight into the structural diversity of coumarins. Acta Pharm Sin B 2024; 14:3760-3773. [PMID: 39220882 PMCID: PMC11365381 DOI: 10.1016/j.apsb.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/17/2024] [Accepted: 04/03/2024] [Indexed: 09/04/2024] Open
Abstract
Coumarins, derived from the phenylpropanoid pathway, represent one of the primary metabolites found in angiosperms. The alignment of the tetrahydropyran (THP) and tetrahydrofuran (THF) rings with the lactone structure results in the formation of at least four types of complex coumarins. However, the mechanisms underlying the structural diversity of coumarin remain poorly understood. Here, we report the chromosome-level genome assembly of Notopterygium incisum, spanning 1.64 Gb, with a contig N50 value of 22.7 Mb and 60,021 annotated protein-coding genes. Additionally, we identified the key enzymes responsible for shaping the structural diversity of coumarins, including two p-coumaroyl CoA 2'-hydroxylases crucial for simple coumarins basic skeleton architecture, two UbiA prenyltransferases responsible for angular or linear coumarins biosynthesis, and five CYP736 cyclases involved in THP and THF ring formation. Notably, two bifunctional enzymes capable of catalyzing both demethylsuberosin and osthenol were identified for the first time. Evolutionary analysis implies that tandem and ectopic duplications of the CYP736 subfamily, specifically arising in the Apiaceae, contributed to the structural diversity of coumarins in N. incisum. Conclusively, this study proposes a parallel evolution scenario for the complex coumarin biosynthetic pathway among different angiosperms and provides essential synthetic biology elements for the heterologous industrial production of coumarins.
Collapse
Affiliation(s)
- Qien Li
- Tibetan Medicine Research Center of Qinghai University, Tibetan Medical College, Qinghai University, Xining 810016, China
| | - Yiqun Dai
- School of Pharmacy, Bengbu Medical University, Bengbu 233030, China
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xin-Cheng Huang
- College of Horticulture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Lanlan Sun
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Kaixuan Wang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao Guo
- Tibetan Medicine Research Center of Qinghai University, Tibetan Medical College, Qinghai University, Xining 810016, China
| | - Dingqiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Digao Wan
- Tibetan Medicine Research Center of Qinghai University, Tibetan Medical College, Qinghai University, Xining 810016, China
| | - Latai An
- Tibetan Medicine Research Center of Qinghai University, Tibetan Medical College, Qinghai University, Xining 810016, China
| | - Zixuan Wang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Huanying Tang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qi Qi
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Huihui Zeng
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Minjian Qin
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jia-Yu Xue
- College of Horticulture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Yucheng Zhao
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
15
|
Liu Z, Zheng J, Li H, Fang K, Wang S, He J, Zhou D, Weng S, Chi M, Gu Z, He J, Li F, Wang M. Genome assembly of redclaw crayfish (Cherax quadricarinatus) provides insights into its immune adaptation and hypoxia tolerance. BMC Genomics 2024; 25:746. [PMID: 39080519 PMCID: PMC11290268 DOI: 10.1186/s12864-024-10673-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/29/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND The introduction of non-native species is a primary driver of biodiversity loss in freshwater ecosystems. The redclaw crayfish (Cherax quadricarinatus) is a freshwater species that exhibits tolerance to hypoxic stresses, fluctuating temperatures, high ammonia concentration. These hardy physiological characteristics make C. quadricarinatus a popular aquaculture species and a potential invasive species that can negatively impact tropical and subtropical ecosystems. Investigating the genomic basis of environmental tolerances and immune adaptation in C. quadricarinatus will facilitate the development of management strategies of this potential invasive species. RESULTS We constructed a chromosome-level genome of C. quadricarinatus by integrating Nanopore and PacBio techniques. Comparative genomic analysis suggested that transposable elements and tandem repeats drove genome size evolution in decapod crustaceans. The expansion of nine immune-related gene families contributed to the disease resistance of C. quadricarinatus. Three hypoxia-related genes (KDM3A, KDM5A, HMOX2) were identified as being subjected to positive selection in C. quadricarinatus. Additionally, in vivo analysis revealed that upregulating KDM5A was crucial for hypoxic response in C. quadricarinatus. Knockdown of KDM5A impaired hypoxia tolerance in this species. CONCLUSIONS Our results provide the genomic basis for hypoxic tolerance and immune adaptation in C. quadricarinatus, facilitating the management of this potential invasive species. Additionally, in vivo analysis in C. quadricarinatus suggests that the role of KDM5A in the hypoxic response of animals is complex.
Collapse
Affiliation(s)
- Ziwei Liu
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Jianbo Zheng
- Key Laboratory of Genetics and Breeding, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
| | - Haoyang Li
- China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Ke Fang
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Sheng Wang
- China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jian He
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519000, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Dandan Zhou
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Shaoping Weng
- China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Meili Chi
- Key Laboratory of Genetics and Breeding, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
| | - Zhimin Gu
- Key Laboratory of Genetics and Breeding, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jianguo He
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519000, China.
- China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| | - Fei Li
- Key Laboratory of Genetics and Breeding, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China.
| | - Muhua Wang
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519000, China.
- China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| |
Collapse
|
16
|
Dougan KE, Bellantuono AJ, Kahlke T, Abbriano RM, Chen Y, Shah S, Granados-Cifuentes C, van Oppen MJH, Bhattacharya D, Suggett DJ, Rodriguez-Lanetty M, Chan CX. Whole-genome duplication in an algal symbiont bolsters coral heat tolerance. SCIENCE ADVANCES 2024; 10:eadn2218. [PMID: 39028812 PMCID: PMC11259175 DOI: 10.1126/sciadv.adn2218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/14/2024] [Indexed: 07/21/2024]
Abstract
The algal endosymbiont Durusdinium trenchii enhances the resilience of coral reefs under thermal stress. D. trenchii can live freely or in endosymbiosis, and the analysis of genetic markers suggests that this species has undergone whole-genome duplication (WGD). However, the evolutionary mechanisms that underpin the thermotolerance of this species are largely unknown. Here, we present genome assemblies for two D. trenchii isolates, confirm WGD in these taxa, and examine how selection has shaped the duplicated genome regions using gene expression data. We assess how the free-living versus endosymbiotic lifestyles have contributed to the retention and divergence of duplicated genes, and how these processes have enhanced the thermotolerance of D. trenchii. Our combined results suggest that lifestyle is the driver of post-WGD evolution in D. trenchii, with the free-living phase being the most important, followed by endosymbiosis. Adaptations to both lifestyles likely enabled D. trenchii to provide enhanced thermal stress protection to the host coral.
Collapse
Affiliation(s)
- Katherine E. Dougan
- School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD 4072, Australia
- Department of Biological Sciences, Biomolecular Science Institute, Florida International University, Miami, FL 33099, USA
| | - Anthony J. Bellantuono
- Department of Biological Sciences, Biomolecular Science Institute, Florida International University, Miami, FL 33099, USA
| | - Tim Kahlke
- Climate Change Cluster, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Raffaela M. Abbriano
- Climate Change Cluster, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Yibi Chen
- School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sarah Shah
- School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Camila Granados-Cifuentes
- Department of Biological Sciences, Biomolecular Science Institute, Florida International University, Miami, FL 33099, USA
| | - Madeleine J. H. van Oppen
- School of Biosciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Australian Institute of Marine Science, Townsville, QLD 4810, Australia
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - David J. Suggett
- Climate Change Cluster, University of Technology Sydney, Sydney, NSW 2007, Australia
- KAUST Reefscape Restoration Initiative (KRRI) and Red Sea Research Center (RSRC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Mauricio Rodriguez-Lanetty
- Department of Biological Sciences, Biomolecular Science Institute, Florida International University, Miami, FL 33099, USA
| | - Cheong Xin Chan
- School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
17
|
Yang FS, Liu M, Guo X, Xu C, Jiang J, Mu W, Fang D, Xu YC, Zhang FM, Wang YH, Yang T, Chen H, Sahu SK, Li R, Wang G, Wang Q, Xu X, Ge S, Liu H, Guo YL. Signatures of Adaptation and Purifying Selection in Highland Populations of Dasiphora fruticosa. Mol Biol Evol 2024; 41:msae099. [PMID: 38768215 PMCID: PMC11156201 DOI: 10.1093/molbev/msae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024] Open
Abstract
High mountains harbor a considerable proportion of biodiversity, but we know little about how diverse plants adapt to the harsh environment. Here we finished a high-quality genome assembly for Dasiphora fruticosa, an ecologically important plant distributed in the Qinghai-Tibetan Plateau and lowland of the Northern Hemisphere, and resequenced 592 natural individuals to address how this horticulture plant adapts to highland. Demographic analysis revealed D. fruticosa underwent a bottleneck after Naynayxungla Glaciation. Selective sweep analysis of two pairs of lowland and highland populations identified 63 shared genes related to cell wall organization or biogenesis, cellular component organization, and dwarfism, suggesting parallel adaptation to highland habitats. Most importantly, we found that stronger purging of estimated genetic load due to inbreeding in highland populations apparently contributed to their adaptation to the highest mountain. Our results revealed how plants could tolerate the extreme plateau, which could provide potential insights for species conservation and crop breeding.
Collapse
Affiliation(s)
- Fu-Sheng Yang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Liu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China
- BGI Research, Wuhan 430074, China
| | - Xing Guo
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China
- BGI Research, Wuhan 430074, China
| | - Chao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Juan Jiang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weixue Mu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China
| | - Dongming Fang
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China
| | - Yong-Chao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Fu-Min Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying-Hui Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Yang
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China
| | - Hongyun Chen
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China
- BGI Research, Wuhan 430074, China
| | - Ruirui Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China
| | - Guanlong Wang
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China
| | - Qiang Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xun Xu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China
| | - Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China
| | - Ya-Long Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Jiang J, Zhang Z, Bai Y, Wang X, Dou Y, Geng R, Wu C, Zhang H, Lu C, Gu L, Gao J. Chromosomal-level genome and metabolome analyses of highly heterozygous allohexaploid Dendrocalamus brandisii elucidate shoot quality and developmental characteristics. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1087-1105. [PMID: 38051011 DOI: 10.1111/jipb.13592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/17/2023] [Accepted: 12/04/2023] [Indexed: 12/07/2023]
Abstract
Dendrocalamus brandisii (Munro) Kurz is a sympodial bamboo species with inimitable taste and flavorful shoots. Its rapid growth and use as high-quality material make this bamboo species highly valued for both food processing and wood applications. However, genome information for D. brandisii is lacking, primarily due to its polyploidy and large genome size. Here, we assembled a high-quality genome for hexaploid D. brandisii, which comprises 70 chromosomes with a total size of 2,756 Mb, using long-read HiFi sequencing. Furthermore, we accurately separated the genome into its three constituent subgenomes. We used Oxford Nanopore Technologies long reads to construct a transcriptomic dataset covering 15 tissues for gene annotation to complement our genome assembly, revealing differential gene expression and post-transcriptional regulation. By integrating metabolome analysis, we unveiled that well-balanced lignin formation, as well as abundant flavonoid and fructose contents, contribute to the superior quality of D. brandisii shoots. Integrating genomic, transcriptomic, and metabolomic datasets provided a solid foundation for enhancing bamboo shoot quality and developing efficient gene-editing techniques. This study should facilitate research on D. brandisii and enhance its use as a food source and wood material by providing crucial genomic resources.
Collapse
Affiliation(s)
- Jutang Jiang
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Zeyu Zhang
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yucong Bai
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Xiaojing Wang
- School of Life Science, Peking University, Beijing, 100871, China
| | - Yuping Dou
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Ruiman Geng
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Chongyang Wu
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Hangxiao Zhang
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Cunfu Lu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Lianfeng Gu
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jian Gao
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| |
Collapse
|
19
|
Dong Y, Wang X, Ahmad N, Sun Y, Wang Y, Liu X, Yao N, Jing Y, Du L, Li X, Wang N, Liu W, Wang F, Li X, Li H. The Carthamus tinctorius L. genome sequence provides insights into synthesis of unsaturated fatty acids. BMC Genomics 2024; 25:510. [PMID: 38783193 PMCID: PMC11112859 DOI: 10.1186/s12864-024-10405-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Domesticated safflower (Carthamus tinctorius L.) is a widely cultivated edible oil crop. However, despite its economic importance, the genetic basis underlying key traits such as oil content, resistance to biotic and abiotic stresses, and flowering time remains poorly understood. Here, we present the genome assembly for C. tinctorius variety Jihong01, which was obtained by integrating Oxford Nanopore Technologies (ONT) and BGI-SEQ500 sequencing results. The assembled genome was 1,061.1 Mb, and consisted of 32,379 protein-coding genes, 97.71% of which were functionally annotated. Safflower had a recent whole genome duplication (WGD) event in evolution history and diverged from sunflower approximately 37.3 million years ago. Through comparative genomic analysis at five seed development stages, we unveiled the pivotal roles of fatty acid desaturase 2 (FAD2) and fatty acid desaturase 6 (FAD6) in linoleic acid (LA) biosynthesis. Similarly, the differential gene expression analysis further reinforced the significance of these genes in regulating LA accumulation. Moreover, our investigation of seed fatty acid composition at different seed developmental stages unveiled the crucial roles of FAD2 and FAD6 in LA biosynthesis. These findings offer important insights into enhancing breeding programs for the improvement of quality traits and provide reference resource for further research on the natural properties of safflower.
Collapse
Affiliation(s)
- Yuanyuan Dong
- Engineering Research Center of Bioreactor and Pharmaceutical Development, College of Life Sciences, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Xiaojie Wang
- School of Pharmaceutical Science, Key Laboratory of Biotechnology and Pharmaceutical Engineering of Zhejiang Province, Wenzhou Medical University, Wenzhou, 325035, China
| | - Naveed Ahmad
- Engineering Research Center of Bioreactor and Pharmaceutical Development, College of Life Sciences, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Yepeng Sun
- Engineering Research Center of Bioreactor and Pharmaceutical Development, College of Life Sciences, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Yuanxin Wang
- Engineering Research Center of Bioreactor and Pharmaceutical Development, College of Life Sciences, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Xiuming Liu
- Engineering Research Center of Bioreactor and Pharmaceutical Development, College of Life Sciences, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Na Yao
- Engineering Research Center of Bioreactor and Pharmaceutical Development, College of Life Sciences, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Yang Jing
- Engineering Research Center of Bioreactor and Pharmaceutical Development, College of Life Sciences, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Linna Du
- Engineering Research Center of Bioreactor and Pharmaceutical Development, College of Life Sciences, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Xiaowei Li
- Engineering Research Center of Bioreactor and Pharmaceutical Development, College of Life Sciences, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Nan Wang
- Engineering Research Center of Bioreactor and Pharmaceutical Development, College of Life Sciences, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Weican Liu
- Engineering Research Center of Bioreactor and Pharmaceutical Development, College of Life Sciences, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Fawei Wang
- Engineering Research Center of Bioreactor and Pharmaceutical Development, College of Life Sciences, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Xiaokun Li
- School of Pharmaceutical Science, Key Laboratory of Biotechnology and Pharmaceutical Engineering of Zhejiang Province, Wenzhou Medical University, Wenzhou, 325035, China
| | - Haiyan Li
- Sanya Nanfan Research Institute of Hainan University, Sanya, 572025, China.
| |
Collapse
|
20
|
Yang J, Zhang J, Yan H, Yi X, Pan Q, Liu Y, Zhang M, Li J, Xiao Q. The chromosome-level genome and functional database accelerate research about biosynthesis of secondary metabolites in Rosa roxburghii. BMC PLANT BIOLOGY 2024; 24:410. [PMID: 38760710 PMCID: PMC11100184 DOI: 10.1186/s12870-024-05109-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/05/2024] [Indexed: 05/19/2024]
Abstract
Rosa roxburghii Tratt, a valuable plant in China with long history, is famous for its fruit. It possesses various secondary metabolites, such as L-ascorbic acid (vitamin C), alkaloids and poly saccharides, which make it a high nutritional and medicinal value. Here we characterized the chromosome-level genome sequence of R. roxburghii, comprising seven pseudo-chromosomes with a total size of 531 Mb and a heterozygosity of 0.25%. We also annotated 45,226 coding gene loci after masking repeat elements. Orthologs for 90.1% of the Complete Single-Copy BUSCOs were found in the R. roxburghii annotation. By aligning with protein sequences from public platform, we annotated 85.89% genes from R. roxburghii. Comparative genomic analysis revealed that R. roxburghii diverged from Rosa chinensis approximately 5.58 to 13.17 million years ago, and no whole-genome duplication event occurred after the divergence from eudicots. To fully utilize this genomic resource, we constructed a genomic database RroFGD with various analysis tools. Otherwise, 69 enzyme genes involved in L-ascorbate biosynthesis were identified and a key enzyme in the biosynthesis of vitamin C, GDH (L-Gal-1-dehydrogenase), is used as an example to introduce the functions of the database. This genome and database will facilitate the future investigations into gene function and molecular breeding in R. roxburghii.
Collapse
Affiliation(s)
- Jiaotong Yang
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guizhou, 550025, China.
| | - Jingjie Zhang
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guizhou, 550025, China
| | - Hengyu Yan
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xin Yi
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Qi Pan
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guizhou, 550025, China
| | - Yahua Liu
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guizhou, 550025, China
| | - Mian Zhang
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guizhou, 550025, China
| | - Jun Li
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guizhou, 550025, China
| | - Qiaoqiao Xiao
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guizhou, 550025, China.
| |
Collapse
|
21
|
Chen H, Sahu SK, Wang S, Liu J, Yang J, Cheng L, Chiu TY, Liu H. Chromosome-level Alstonia scholaris genome unveils evolutionary insights into biosynthesis of monoterpenoid indole alkaloids. iScience 2024; 27:109599. [PMID: 38646178 PMCID: PMC11033161 DOI: 10.1016/j.isci.2024.109599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/25/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Alstonia scholaris of the Apocynaceae family is a medicinal plant with a rich source of bioactive monoterpenoid indole alkaloids (MIAs), which possess anti-cancer activity like vinca alkaloids. To gain genomic insights into MIA biosynthesis, we assembled a high-quality chromosome-level genome for A. scholaris using nanopore and Hi-C data. The 444.95 Mb genome contained 35,488 protein-coding genes. A total of 20 chromosomes were assembled with a scaffold N50 of 21.75 Mb. The genome contained a cluster of strictosidine synthases and tryptophan decarboxylases with synteny to other species and a saccharide-terpene cluster involved in the monoterpenoid biosynthesis pathway of the MIA upstream pathway. The multi-omics data of A. scholaris provide a valuable resource for understanding the evolutionary origins of MIAs and for discovering biosynthetic pathways and synthetic biology efforts for producing pharmaceutically useful alkaloids.
Collapse
Affiliation(s)
- Haixia Chen
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China
- BGI Research, Wuhan 430074, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China
- BGI Research, Wuhan 430074, China
| | - Shujie Wang
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China
| | - Jia Liu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Jinlong Yang
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China
| | - Le Cheng
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China
| | - Tsan-Yu Chiu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China
| |
Collapse
|
22
|
Wen J, Wang Y, Lu X, Pan H, Jin D, Wen J, Jin C, Sahu SK, Su J, Luo X, Jin X, Zhao J, Wu H, Liu EH, Liu H. An integrated multi-omics approach reveals polymethoxylated flavonoid biosynthesis in Citrus reticulata cv. Chachiensis. Nat Commun 2024; 15:3991. [PMID: 38734724 PMCID: PMC11088696 DOI: 10.1038/s41467-024-48235-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Citrus reticulata cv. Chachiensis (CRC) is an important medicinal plant, its dried mature peels named "Guangchenpi", has been used as a traditional Chinese medicine to treat cough, indigestion, and lung diseases for several hundred years. However, the biosynthesis of the crucial natural products polymethoxylated flavonoids (PMFs) in CRC remains unclear. Here, we report a chromosome-scale genome assembly of CRC with the size of 314.96 Mb and a contig N50 of 16.22 Mb. Using multi-omics resources, we discover a putative caffeic acid O-methyltransferase (CcOMT1) that can transfer a methyl group to the 3-hydroxyl of natsudaidain to form 3,5,6,7,8,3',4'-heptamethoxyflavone (HPMF). Based on transient overexpression and virus-induced gene silencing experiments, we propose that CcOMT1 is a candidate enzyme in HPMF biosynthesis. In addition, a potential gene regulatory network associated with PMF biosynthesis is identified. This study provides insights into PMF biosynthesis and may assist future research on mining genes for the biosynthesis of plant-based medicines.
Collapse
Affiliation(s)
- Jiawen Wen
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yayu Wang
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Xu Lu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China
| | - Huimin Pan
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Dian Jin
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China
| | - Jialing Wen
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Canzhi Jin
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jianmu Su
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xinyue Luo
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiaohuan Jin
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Jiao Zhao
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Hong Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - E-Hu Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China.
| |
Collapse
|
23
|
Wang B, Wu B, Liu X, Hu Y, Ming Y, Bai M, Liu J, Xiao K, Zeng Q, Yang J, Wang H, Guo B, Tan C, Hu Z, Zhao X, Li Y, Yue Z, Mei J, Jiang W, Yang Y, Li Z, Gao Y, Chen L, Jian J, Du H. Whole-genome Sequencing Reveals Autooctoploidy in Chinese Sturgeon and Its Evolutionary Trajectories. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzad002. [PMID: 38862424 PMCID: PMC11425059 DOI: 10.1093/gpbjnl/qzad002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 06/13/2024]
Abstract
The order Acipenseriformes, which includes sturgeons and paddlefishes, represents "living fossils" with complex genomes that are good models for understanding whole-genome duplication (WGD) and ploidy evolution in fishes. Here, we sequenced and assembled the first high-quality chromosome-level genome for the complex octoploid Acipenser sinensis (Chinese sturgeon), a critically endangered species that also represents a poorly understood ploidy group in Acipenseriformes. Our results show that A. sinensis is a complex autooctoploid species containing four kinds of octovalents (8n), a hexavalent (6n), two tetravalents (4n), and a divalent (2n). An analysis taking into account delayed rediploidization reveals that the octoploid genome composition of Chinese sturgeon results from two rounds of homologous WGDs, and further provides insights into the timing of its ploidy evolution. This study provides the first octoploid genome resource of Acipenseriformes for understanding ploidy compositions and evolutionary trajectories of polyploid fishes.
Collapse
Affiliation(s)
- Binzhong Wang
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang 443100, China
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang 443100, China
- Yangtze River Biodiversity Research Center, China Three Gorges Corporation, Wuhan 430014, China
| | - Bin Wu
- BGI-Shenzhen, Shenzhen 518083, China
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Xueqing Liu
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang 443100, China
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang 443100, China
- Yangtze River Biodiversity Research Center, China Three Gorges Corporation, Wuhan 430014, China
| | - Yacheng Hu
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang 443100, China
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang 443100, China
- Yangtze River Biodiversity Research Center, China Three Gorges Corporation, Wuhan 430014, China
| | - Yao Ming
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Mingzhou Bai
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby 2800, Denmark
| | - Juanjuan Liu
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang 443100, China
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang 443100, China
- Yangtze River Biodiversity Research Center, China Three Gorges Corporation, Wuhan 430014, China
| | - Kan Xiao
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang 443100, China
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang 443100, China
- Yangtze River Biodiversity Research Center, China Three Gorges Corporation, Wuhan 430014, China
| | - Qingkai Zeng
- River Basin Complex Administration Center, China Three Gorges Corporation, Yichang 443100, China
| | - Jing Yang
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang 443100, China
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang 443100, China
- Yangtze River Biodiversity Research Center, China Three Gorges Corporation, Wuhan 430014, China
| | - Hongqi Wang
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Baifu Guo
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang 443100, China
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang 443100, China
- Yangtze River Biodiversity Research Center, China Three Gorges Corporation, Wuhan 430014, China
| | - Chun Tan
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang 443100, China
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang 443100, China
- Yangtze River Biodiversity Research Center, China Three Gorges Corporation, Wuhan 430014, China
| | - Zixuan Hu
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang 443100, China
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang 443100, China
- Yangtze River Biodiversity Research Center, China Three Gorges Corporation, Wuhan 430014, China
| | - Xun Zhao
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang 443100, China
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang 443100, China
- Yangtze River Biodiversity Research Center, China Three Gorges Corporation, Wuhan 430014, China
| | - Yanhong Li
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Zhen Yue
- BGI-Sanya, BGI-Shenzhen, Sanya 572025, China
| | - Junpu Mei
- BGI-Shenzhen, Shenzhen 518083, China
- BGI-Sanya, BGI-Shenzhen, Sanya 572025, China
| | - Wei Jiang
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang 443100, China
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang 443100, China
- Yangtze River Biodiversity Research Center, China Three Gorges Corporation, Wuhan 430014, China
| | - Yuanjin Yang
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang 443100, China
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang 443100, China
- Yangtze River Biodiversity Research Center, China Three Gorges Corporation, Wuhan 430014, China
| | - Zhiyuan Li
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang 443100, China
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang 443100, China
- Yangtze River Biodiversity Research Center, China Three Gorges Corporation, Wuhan 430014, China
| | - Yong Gao
- Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100038, China
| | - Lei Chen
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang 443100, China
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang 443100, China
- River Basin Complex Administration Center, China Three Gorges Corporation, Yichang 443100, China
| | - Jianbo Jian
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby 2800, Denmark
| | - Hejun Du
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang 443100, China
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang 443100, China
- Yangtze River Biodiversity Research Center, China Three Gorges Corporation, Wuhan 430014, China
| |
Collapse
|
24
|
Yang L, Deng H, Wang M, Li S, Wang W, Yang H, Pang C, Zhong Q, Sun Y, Hong L. A high-quality chromosome-scale genome assembly of blood orange, an important pigmented sweet orange variety. Sci Data 2024; 11:460. [PMID: 38710725 DOI: 10.1038/s41597-024-03313-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 04/25/2024] [Indexed: 05/08/2024] Open
Abstract
Blood orange (BO) is a rare red-fleshed sweet orange (SWO) with a high anthocyanin content and is associated with numerous health-related benefits. Here, we reported a high-quality chromosome-scale genome assembly for Neixiu (NX) BO, reaching 336.63 Mb in length with contig and scaffold N50 values of 30.6 Mb. Furthermore, 96% of the assembled sequences were successfully anchored to 9 pseudo-chromosomes. The genome assembly also revealed the presence of 37.87% transposon elements and 7.64% tandem repeats, and the annotation of 30,395 protein-coding genes. A high level of genome synteny was observed between BO and SWO, further supporting their genetic similarity. The speciation event that gave rise to the Citrus species predated the duplication event found within them. The genome-wide variation between NX and SWO was also compared. This first high-quality BO genome will serve as a fundamental basis for future studies on functional genomics and genome evolution.
Collapse
Affiliation(s)
- Lei Yang
- Fruit Tree Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, 401329, China
| | - Honghong Deng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Min Wang
- Fruit Tree Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, 401329, China
| | - Shuang Li
- Fruit Tree Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, 401329, China
| | - Wu Wang
- Fruit Tree Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, 401329, China
| | - Haijian Yang
- Fruit Tree Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, 401329, China
| | - Changqing Pang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qi Zhong
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yue Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lin Hong
- Fruit Tree Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, 401329, China.
| |
Collapse
|
25
|
Chen H, Zwaenepoel A, Van de Peer Y. wgd v2: a suite of tools to uncover and date ancient polyploidy and whole-genome duplication. Bioinformatics 2024; 40:btae272. [PMID: 38632086 PMCID: PMC11078771 DOI: 10.1093/bioinformatics/btae272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/10/2024] [Accepted: 04/16/2024] [Indexed: 04/19/2024] Open
Abstract
MOTIVATION Major improvements in sequencing technologies and genome sequence assembly have led to a huge increase in the number of available genome sequences. In turn, these genome sequences form an invaluable source for evolutionary, ecological, and comparative studies. One kind of analysis that has become routine is the search for traces of ancient polyploidy, particularly for plant genomes, where whole-genome duplication (WGD) is rampant. RESULTS Here, we present a major update of a previously developed tool wgd, namely wgd v2, to look for remnants of ancient polyploidy, or WGD. We implemented novel and improved previously developed tools to (a) construct KS age distributions for the whole-paranome (collection of all duplicated genes in a genome), (b) unravel intragenomic and intergenomic collinearity resulting from WGDs, (c) fit mixture models to age distributions of gene duplicates, (d) correct substitution rate variation for phylogenetic placement of WGDs, and (e) date ancient WGDs via phylogenetic dating of WGD-retained gene duplicates. The applicability and feasibility of wgd v2 for the identification and the relative and absolute dating of ancient WGDs is demonstrated using different plant genomes. AVAILABILITY AND IMPLEMENTATION wgd v2 is open source and available at https://github.com/heche-psb/wgd.
Collapse
Affiliation(s)
- Hengchi Chen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, VIB, Ghent 9052, Belgium
| | - Arthur Zwaenepoel
- UMR 8198, Evo-Eco-Paleo, University of Lille, CNRS, Lille, F-59000, France
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, VIB, Ghent 9052, Belgium
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
26
|
Zhang ZY, Xia HX, Yuan MJ, Gao F, Bao WH, Jin L, Li M, Li Y. Multi-omics analyses provide insights into the evolutionary history and the synthesis of medicinal components of the Chinese wingnut. PLANT DIVERSITY 2024; 46:309-320. [PMID: 38798724 PMCID: PMC11119516 DOI: 10.1016/j.pld.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/22/2024] [Accepted: 03/31/2024] [Indexed: 05/29/2024]
Abstract
Chinese wingnut (Pterocarya stenoptera) is a medicinally and economically important tree species within the family Juglandaceae. However, the lack of high-quality reference genome has hindered its in-depth research. In this study, we successfully assembled its chromosome-level genome and performed multi-omics analyses to address its evolutionary history and synthesis of medicinal components. A thorough examination of genomes has uncovered a significant expansion in the Lateral Organ Boundaries Domain gene family among the winged group in Juglandaceae. This notable increase may be attributed to their frequent exposure to flood-prone environments. After further differentiation between Chinese wingnut and Cyclocarya paliurus, significant positive selection occurred on the genes of NADH dehydrogenase related to mitochondrial aerobic respiration in Chinese wingnut, enhancing its ability to cope with waterlogging stress. Comparative genomic analysis revealed Chinese wingnut evolved more unique genes related to arginine synthesis, potentially endowing it with a higher capacity to purify nutrient-rich water bodies. Expansion of terpene synthase families enables the production of increased quantities of terpenoid volatiles, potentially serving as an evolved defense mechanism against herbivorous insects. Through combined transcriptomic and metabolomic analysis, we identified the candidate genes involved in the synthesis of terpenoid volatiles. Our study offers essential genetic resources for Chinese wingnut, unveiling its evolutionary history and identifying key genes linked to the production of terpenoid volatiles.
Collapse
Affiliation(s)
- Zi-Yan Zhang
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010020, China
- Key Laboratory of Biodiversity Conservation and Sustainable Utilization in Mongolian Plateau for College and University of Inner Mongolia Autonomous Region, Hohhot 010022, China
| | - He-Xiao Xia
- College of Landscape and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Meng-Jie Yuan
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010020, China
- Key Laboratory of Biodiversity Conservation and Sustainable Utilization in Mongolian Plateau for College and University of Inner Mongolia Autonomous Region, Hohhot 010022, China
| | - Feng Gao
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010020, China
- Key Laboratory of Biodiversity Conservation and Sustainable Utilization in Mongolian Plateau for College and University of Inner Mongolia Autonomous Region, Hohhot 010022, China
| | - Wen-Hua Bao
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010020, China
- Key Laboratory of Biodiversity Conservation and Sustainable Utilization in Mongolian Plateau for College and University of Inner Mongolia Autonomous Region, Hohhot 010022, China
| | - Lan Jin
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010020, China
- Key Laboratory of Biodiversity Conservation and Sustainable Utilization in Mongolian Plateau for College and University of Inner Mongolia Autonomous Region, Hohhot 010022, China
| | - Min Li
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010020, China
- Key Laboratory of Biodiversity Conservation and Sustainable Utilization in Mongolian Plateau for College and University of Inner Mongolia Autonomous Region, Hohhot 010022, China
| | - Yong Li
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010020, China
- Key Laboratory of Biodiversity Conservation and Sustainable Utilization in Mongolian Plateau for College and University of Inner Mongolia Autonomous Region, Hohhot 010022, China
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
27
|
Zhang S, Meng F, Pan X, Qiu X, Li C, Lu S. Chromosome-level genome assembly of Prunella vulgaris L. provides insights into pentacyclic triterpenoid biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:731-752. [PMID: 38226777 DOI: 10.1111/tpj.16629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 12/08/2023] [Accepted: 12/29/2023] [Indexed: 01/17/2024]
Abstract
Prunella vulgaris is one of the bestselling and widely used medicinal herbs. It is recorded as an ace medicine for cleansing and protecting the liver in Chinese Pharmacopoeia and has been used as the main constitutions of many herbal tea formulas in China for centuries. It is also a traditional folk medicine in Europe and other countries of Asia. Pentacyclic triterpenoids are a major class of bioactive compounds produced in P. vulgaris. However, their biosynthetic mechanism remains to be elucidated. Here, we report a chromosome-level reference genome of P. vulgaris using an approach combining Illumina, ONT, and Hi-C technologies. It is 671.95 Mb in size with a scaffold N50 of 49.10 Mb and a complete BUSCO of 98.45%. About 98.31% of the sequence was anchored into 14 pseudochromosomes. Comparative genome analysis revealed a recent WGD in P. vulgaris. Genome-wide analysis identified 35 932 protein-coding genes (PCGs), of which 59 encode enzymes involved in 2,3-oxidosqualene biosynthesis. In addition, 10 PvOSC, 358 PvCYP, and 177 PvUGT genes were identified, of which five PvOSCs, 25 PvCYPs, and 9 PvUGTs were predicted to be involved in the biosynthesis of pentacyclic triterpenoids. Biochemical activity assay of PvOSC2, PvOSC4, and PvOSC6 recombinant proteins showed that they were mixed amyrin synthase (MAS), lupeol synthase (LUS), and β-amyrin synthase (BAS), respectively. The results provide a solid foundation for further elucidating the biosynthetic mechanism of pentacyclic triterpenoids in P. vulgaris.
Collapse
Affiliation(s)
- Sixuan Zhang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Fanqi Meng
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Xian Pan
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Xiaoxiao Qiu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Caili Li
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Shanfa Lu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| |
Collapse
|
28
|
Zhang J, Dong KL, Ren MZ, Wang ZW, Li JH, Sun WJ, Zhao X, Fu XX, Ye JF, Liu B, Zhang DM, Wang MZ, Zeng G, Niu YT, Lu LM, Su JX, Liu ZJ, Soltis PS, Soltis DE, Chen ZD. Coping with alpine habitats: genomic insights into the adaptation strategies of Triplostegia glandulifera (Caprifoliaceae). HORTICULTURE RESEARCH 2024; 11:uhae077. [PMID: 38779140 PMCID: PMC11109519 DOI: 10.1093/hr/uhae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 03/08/2024] [Indexed: 05/25/2024]
Abstract
How plants find a way to thrive in alpine habitats remains largely unknown. Here we present a chromosome-level genome assembly for an alpine medicinal herb, Triplostegia glandulifera (Caprifoliaceae), and 13 transcriptomes from other species of Dipsacales. We detected a whole-genome duplication event in T. glandulifera that occurred prior to the diversification of Dipsacales. Preferential gene retention after whole-genome duplication was found to contribute to increasing cold-related genes in T. glandulifera. A series of genes putatively associated with alpine adaptation (e.g. CBFs, ERF-VIIs, and RAD51C) exhibited higher expression levels in T. glandulifera than in its low-elevation relative, Lonicera japonica. Comparative genomic analysis among five pairs of high- vs low-elevation species, including a comparison of T. glandulifera and L. japonica, indicated that the gene families related to disease resistance experienced a significantly convergent contraction in alpine plants compared with their lowland relatives. The reduction in gene repertory size was largely concentrated in clades of genes for pathogen recognition (e.g. CNLs, prRLPs, and XII RLKs), while the clades for signal transduction and development remained nearly unchanged. This finding reflects an energy-saving strategy for survival in hostile alpine areas, where there is a tradeoff with less challenge from pathogens and limited resources for growth. We also identified candidate genes for alpine adaptation (e.g. RAD1, DMC1, and MSH3) that were under convergent positive selection or that exhibited a convergent acceleration in evolutionary rate in the investigated alpine plants. Overall, our study provides novel insights into the high-elevation adaptation strategies of this and other alpine plants.
Collapse
Affiliation(s)
- Jian Zhang
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Kai-Lin Dong
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miao-Zhen Ren
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Zhi-Wen Wang
- PubBio-Tech Services Corporation, Wuhan 430070, China
| | - Jian-Hua Li
- Biology Department, Hope College, Holland, MI 49423, USA
| | - Wen-Jing Sun
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang Zhao
- PubBio-Tech Services Corporation, Wuhan 430070, China
| | - Xin-Xing Fu
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Jian-Fei Ye
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Bing Liu
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Da-Ming Zhang
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Mo-Zhu Wang
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Gang Zeng
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun 666303, China
| | - Yan-Ting Niu
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Li-Min Lu
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Jun-Xia Su
- School of Life Science, Shanxi Normal University, Taiyuan 030031, China
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
- Department of Biology, University of Florida, Gainesville, FL 32611-7800, USA
| | - Zhi-Duan Chen
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
29
|
An Z, Gao R, Chen S, Tian Y, Li Q, Tian L, Zhang W, Kong L, Zheng B, Hao L, Xin T, Yao H, Wang Y, Song W, Hua X, Liu C, Song J, Fan H, Sun W, Chen S, Xu Z. Lineage-Specific CYP80 Expansion and Benzylisoquinoline Alkaloid Diversity in Early-Diverging Eudicots. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309990. [PMID: 38477432 PMCID: PMC11109638 DOI: 10.1002/advs.202309990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/07/2024] [Indexed: 03/14/2024]
Abstract
Menispermaceae species, as early-diverging eudicots, can synthesize valuable benzylisoquinoline alkaloids (BIAs) like bisbenzylisoquinoline alkaloids (bisBIAs) and sinomenines with a wide range of structural diversity. However, the evolutionary mechanisms responsible for their chemo-diversity are not well understood. Here, a chromosome-level genome assembly of Menispermum dauricum is presented and demonstrated the occurrence of two whole genome duplication (WGD) events that are shared by Ranunculales and specific to Menispermum, providing a model for understanding chromosomal evolution in early-diverging eudicots. The biosynthetic pathway for diverse BIAs in M. dauricum is reconstructed by analyzing the transcriptome and metabolome. Additionally, five catalytic enzymes - one norcoclaurine synthase (NCS) and four cytochrome P450 monooxygenases (CYP450s) - from M. dauricum are responsible for the formation of the skeleton, hydroxylated modification, and C-O/C-C phenol coupling of BIAs. Notably, a novel leaf-specific MdCYP80G10 enzyme that catalyzes C2'-C4a phenol coupling of (S)-reticuline into sinoacutine, the enantiomer of morphinan compounds, with predictable stereospecificity is discovered. Moreover, it is found that Menispermum-specific CYP80 gene expansion, as well as tissue-specific expression, has driven BIA diversity in Menispermaceae as compared to other Ranunculales species. This study sheds light on WGD occurrences in early-diverging eudicots and the evolution of diverse BIA biosynthesis.
Collapse
Affiliation(s)
- Zhoujie An
- Key Laboratory of Saline‐alkali Vegetation Ecology Restoration (Northeast Forestry University)Ministry of EducationHarbin150040China
- College of Life ScienceNortheast Forestry UniversityHarbin150040China
| | - Ranran Gao
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese MedicineInstitute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijing100700China
| | - Shanshan Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese MedicineInstitute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijing100700China
| | - Ya Tian
- Key Laboratory of Saline‐alkali Vegetation Ecology Restoration (Northeast Forestry University)Ministry of EducationHarbin150040China
- College of Life ScienceNortheast Forestry UniversityHarbin150040China
| | - Qi Li
- Key Laboratory of Saline‐alkali Vegetation Ecology Restoration (Northeast Forestry University)Ministry of EducationHarbin150040China
- College of Life ScienceNortheast Forestry UniversityHarbin150040China
| | - Lixia Tian
- School of Pharmaceutical SciencesGuizhou UniversityGuiyang550025China
| | - Wanran Zhang
- Key Laboratory of Saline‐alkali Vegetation Ecology Restoration (Northeast Forestry University)Ministry of EducationHarbin150040China
- College of Life ScienceNortheast Forestry UniversityHarbin150040China
| | - Lingzhe Kong
- Key Laboratory of Saline‐alkali Vegetation Ecology Restoration (Northeast Forestry University)Ministry of EducationHarbin150040China
- College of Life ScienceNortheast Forestry UniversityHarbin150040China
| | - Baojiang Zheng
- Key Laboratory of Saline‐alkali Vegetation Ecology Restoration (Northeast Forestry University)Ministry of EducationHarbin150040China
- College of Life ScienceNortheast Forestry UniversityHarbin150040China
| | - Lijun Hao
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100193China
| | - Tianyi Xin
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100193China
| | - Hui Yao
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100193China
| | - Yu Wang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100193China
| | - Wei Song
- Key Laboratory of Saline‐alkali Vegetation Ecology Restoration (Northeast Forestry University)Ministry of EducationHarbin150040China
- College of Life ScienceNortheast Forestry UniversityHarbin150040China
| | - Xin Hua
- Key Laboratory of Saline‐alkali Vegetation Ecology Restoration (Northeast Forestry University)Ministry of EducationHarbin150040China
- College of Life ScienceNortheast Forestry UniversityHarbin150040China
| | - Chengwei Liu
- Key Laboratory of Saline‐alkali Vegetation Ecology Restoration (Northeast Forestry University)Ministry of EducationHarbin150040China
- College of Life ScienceNortheast Forestry UniversityHarbin150040China
| | - Jingyuan Song
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100193China
| | - Huahao Fan
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029China
| | - Wei Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese MedicineInstitute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijing100700China
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese MedicineInstitute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijing100700China
- Institute of HerbgenomicsChengdu University of Traditional Chinese MedicineChengdu611137China
| | - Zhichao Xu
- Key Laboratory of Saline‐alkali Vegetation Ecology Restoration (Northeast Forestry University)Ministry of EducationHarbin150040China
- College of Life ScienceNortheast Forestry UniversityHarbin150040China
| |
Collapse
|
30
|
Ma Q, Liu HS, Li HJ, Bai WP, Gao QF, Wu SD, Yin XX, Chen QQ, Shi YQ, Gao TG, Bao AK, Yin HJ, Li L, Rowland O, Hepworth SR, Luan S, Wang SM. Genomic analysis reveals phylogeny of Zygophyllales and mechanism for water retention of a succulent xerophyte. PLANT PHYSIOLOGY 2024; 195:617-639. [PMID: 38285060 DOI: 10.1093/plphys/kiae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/30/2023] [Accepted: 12/21/2023] [Indexed: 01/30/2024]
Abstract
Revealing the genetic basis for stress-resistant traits in extremophile plants will yield important information for crop improvement. Zygophyllum xanthoxylum, an extant species of the ancient Mediterranean, is a succulent xerophyte that can maintain a favorable water status under desert habitats; however, the genetic basis of this adaptive trait is poorly understood. Furthermore, the phylogenetic position of Zygophyllales, to which Z. xanthoxylum belongs, remains controversial. In this study, we sequenced and assembled the chromosome-level genome of Z. xanthoxylum. Phylogenetic analysis showed that Zygophyllales and Myrtales form a separated taxon as a sister to the clade comprising fabids and malvids, clarifying the phylogenetic position of Zygophyllales at whole-genome scale. Analysis of genomic and transcriptomic data revealed multiple critical mechanisms underlying the efficient osmotic adjustment using Na+ and K+ as "cheap" osmolytes that Z. xanthoxylum has evolved through the expansion and synchronized expression of genes encoding key transporters/channels and their regulators involved in Na+/K+ uptake, transport, and compartmentation. It is worth noting that ZxCNGC1;1 (cyclic nucleotide-gated channels) and ZxCNGC1;2 constituted a previously undiscovered energy-saving pathway for Na+ uptake. Meanwhile, the core genes involved in biosynthesis of cuticular wax also featured an expansion and upregulated expression, contributing to the water retention capacity of Z. xanthoxylum under desert environments. Overall, these findings boost the understanding of evolutionary relationships of eudicots, illustrate the unique water retention mechanism in the succulent xerophyte that is distinct from glycophyte, and thus provide valuable genetic resources for the improvement of stress tolerance in crops and insights into the remediation of sodic lands.
Collapse
Affiliation(s)
- Qing Ma
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Hai-Shuang Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Hu-Jun Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Wan-Peng Bai
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Qi-Fei Gao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Sheng-Dan Wu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Xiu-Xia Yin
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Qin-Qin Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Ya-Qi Shi
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Tian-Ge Gao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Ai-Ke Bao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Hong-Ju Yin
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Li Li
- Institute of Grassland, Xinjiang Academy of Animal Science, Urumqi 830000, China
| | - Owen Rowland
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Shelley R Hepworth
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Suo-Min Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| |
Collapse
|
31
|
Jia H, Lin J, Lin Z, Wang Y, Xu L, Ding W, Ming R. Haplotype-resolved genome of Mimosa bimucronata revealed insights into leaf movement and nitrogen fixation. BMC Genomics 2024; 25:334. [PMID: 38570736 PMCID: PMC10993578 DOI: 10.1186/s12864-024-10264-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/27/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Mimosa bimucronata originates from tropical America and exhibits distinctive leaf movement characterized by a relative slow speed. Additionally, this species possesses the ability to fix nitrogen. Despite these intriguing traits, comprehensive studies have been hindered by the lack of genomic resources for M. bimucronata. RESULTS To unravel the intricacies of leaf movement and nitrogen fixation, we successfully assembled a high-quality, haplotype-resolved, reference genome at the chromosome level, spanning 648 Mb and anchored in 13 pseudochromosomes. A total of 32,146 protein-coding genes were annotated. In particular, haplotype A was annotated with 31,035 protein-coding genes, and haplotype B with 31,440 protein-coding genes. Structural variations (SVs) and allele specific expression (ASE) analyses uncovered the potential role of structural variants in leaf movement and nitrogen fixation in M. bimucronata. Two whole-genome duplication (WGD) events were detected, that occurred ~ 2.9 and ~ 73.5 million years ago. Transcriptome and co-expression network analyses revealed the involvement of aquaporins (AQPs) and Ca2+-related ion channel genes in leaf movement. Moreover, we also identified nodulation-related genes and analyzed the structure and evolution of the key gene NIN in the process of symbiotic nitrogen fixation (SNF). CONCLUSION The detailed comparative genomic and transcriptomic analyses provided insights into the mechanisms governing leaf movement and nitrogen fixation in M. bimucronata. This research yielded genomic resources and provided an important reference for functional genomic studies of M. bimucronata and other legume species.
Collapse
Affiliation(s)
- Haifeng Jia
- College of Agriculture, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jishan Lin
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 570100, China
| | - Zhicong Lin
- College of Environment and Biological Engineering, Putian University, Putian, 351100, China
| | - Yibin Wang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Liangwei Xu
- College of Agriculture, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenjie Ding
- College of Agriculture, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ray Ming
- College of Agriculture, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
32
|
Liu Y, Zhou Y, Cheng F, Zhou R, Yang Y, Wang Y, Zhang X, Soltis DE, Xiao N, Quan Z, Li J. Chromosome-level genome of putative autohexaploid Actinidia deliciosa provides insights into polyploidisation and evolution. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:73-89. [PMID: 38112590 DOI: 10.1111/tpj.16592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
Actinidia ('Mihoutao' in Chinese) includes species with complex ploidy, among which diploid Actinidia chinensis and hexaploid Actinidia deliciosa are economically and nutritionally important fruit crops. Actinidia deliciosa has been proposed to be an autohexaploid (2n = 174) with diploid A. chinensis (2n = 58) as the putative parent. A CCS-based assembly anchored to a high-resolution linkage map provided a chromosome-resolved genome for hexaploid A. deliciosa yielded a 3.91-Gb assembly of 174 pseudochromosomes comprising 29 homologous groups with 6 members each, which contain 39 854 genes with an average of 4.57 alleles per gene. Here we provide evidence that much of the hexaploid genome matches diploid A. chinensis; 95.5% of homologous gene pairs exhibited >90% similarity. However, intragenome and intergenome comparisons of synteny indicate chromosomal changes. Our data, therefore, indicate that if A. deliciosa is an autoploid, chromosomal rearrangement occurred following autohexaploidy. A highly diversified pattern of gene expression and a history of rapid population expansion after polyploidisation likely facilitated the adaptation and niche differentiation of A. deliciosa in nature. The allele-defined hexaploid genome of A. deliciosa provides new genomic resources to accelerate crop improvement and to understand polyploid genome evolution.
Collapse
Affiliation(s)
- Yongbo Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Regional Eco-process and Function Assessment, Chinese Research Academy of Environmental Sciences, 8 Dayangfang, Beijing, 100012, China
| | - Yi Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Regional Eco-process and Function Assessment, Chinese Research Academy of Environmental Sciences, 8 Dayangfang, Beijing, 100012, China
| | - Feng Cheng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, 10008, China
| | - Renchao Zhou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yinqing Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, 10008, China
| | - Yanchang Wang
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
| | - Xingtan Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
| | - Nengwen Xiao
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Regional Eco-process and Function Assessment, Chinese Research Academy of Environmental Sciences, 8 Dayangfang, Beijing, 100012, China
| | - Zhanjun Quan
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Regional Eco-process and Function Assessment, Chinese Research Academy of Environmental Sciences, 8 Dayangfang, Beijing, 100012, China
| | - Junsheng Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Regional Eco-process and Function Assessment, Chinese Research Academy of Environmental Sciences, 8 Dayangfang, Beijing, 100012, China
| |
Collapse
|
33
|
Zhou Z, Li C, Yuan Q, Chi Y, Li Y, Yan Y, Al-Farraj SA, Stover NA, Chen Z, Chen X. Single-cell transcriptomic analysis reveals genome evolution in predatory litostomatean ciliates. Eur J Protistol 2024; 93:126062. [PMID: 38368736 DOI: 10.1016/j.ejop.2024.126062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/20/2024]
Abstract
Many ciliated protists prey on other large microbial organisms, including other protists and microscopic metazoans. The ciliate class Litostomatea unites both predatory and endosymbiotic species. The evolution of predation ability in ciliates remains poorly understood, in part, due to a lack of genomic data. To fill this gap, we acquired the transcriptome profiles of six predatory litostomateans using single-cell sequencing technology and investigated their transcriptomic features. Our results show that: (1) in contrast to non-predatory ciliates, the predatory litostomateans have expanded gene families associated with transmembrane activity and reactive oxidative stress response pathways, potentially as a result of cellular behaviors such as fast contraction and extension; (2) the expansion of the calcium-activated BK potassium channel gene family, which hypothetically regulates cell contractility, is an ancient evolutionary event for the class Litostomatea, suggesting a rewired metabolism associated with the hunting behavior of predatory ciliates; and (3) three whole genome duplication (WGD) events have been detected in litostomateans, with genes associated with biosynthetic processes, transmembrane activity, and calcium-activated potassium channel activity being retained during the WGD events. In addition, we explored the evolutionary relationships among 17 ciliate species, including eight litostomateans, and provided a rich foundational dataset for future in-depth phylogenomic studies of Litostomatea. Our comprehensive analyses suggest that the rewired cellular metabolism via expanded gene families and WGD events might be the potential genetic basis for the predation ability of raptorial ciliates.
Collapse
Affiliation(s)
- Zhaorui Zhou
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Chao Li
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Qingxiang Yuan
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Yong Chi
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Yuqing Li
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Ying Yan
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Saleh A Al-Farraj
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Naomi A Stover
- Department of Biology, Bradley University, Peoria 61625, USA.
| | - Zigui Chen
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| | - Xiao Chen
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai 264209, China; Suzhou Research Institute, Shandong University, Suzhou 215123, China.
| |
Collapse
|
34
|
Wu W, Feng X, Wang N, Shao S, Liu M, Si F, Chen L, Jin C, Xu S, Guo Z, Zhong C, Shi S, He Z. Genomic analysis of Nypa fruticans elucidates its intertidal adaptations and early palm evolution. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:824-843. [PMID: 38372488 DOI: 10.1111/jipb.13625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/28/2024] [Indexed: 02/20/2024]
Abstract
Nypa fruticans (Wurmb), a mangrove palm species with origins dating back to the Late Cretaceous period, is a unique species for investigating long-term adaptation strategies to intertidal environments and the early evolution of palms. Here, we present a chromosome-level genome sequence and assembly for N. fruticans. We integrated the genomes of N. fruticans and other palm family members for a comparative genomic analysis, which confirmed that the common ancestor of all palms experienced a whole-genome duplication event around 89 million years ago, shaping the distinctive characteristics observed in this clade. We also inferred a low mutation rate for the N. fruticans genome, which underwent strong purifying selection and evolved slowly, thus contributing to its stability over a long evolutionary period. Moreover, ancient duplicates were preferentially retained, with critical genes having experienced positive selection, enhancing waterlogging tolerance in N. fruticans. Furthermore, we discovered that the pseudogenization of Early Methionine-labelled 1 (EM1) and EM6 in N. fruticans underly its crypto-vivipary characteristics, reflecting its intertidal adaptation. Our study provides valuable genomic insights into the evolutionary history, genome stability, and adaptive evolution of the mangrove palm. Our results also shed light on the long-term adaptation of this species and contribute to our understanding of the evolutionary dynamics in the palm family.
Collapse
Affiliation(s)
- Weihong Wu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiao Feng
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- Greater Bay Area Institute of Precision Medicine, School of Life Sciences, Fudan University, Guangzhou, 511462, China
| | - Nan Wang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shao Shao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Min Liu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Fa Si
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Linhao Chen
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chuanfeng Jin
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shaohua Xu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zixiao Guo
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Cairong Zhong
- Hainan Academy of Forestry (Hainan Academy of Mangrove), Haikou, 571100, China
| | - Suhua Shi
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ziwen He
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
35
|
Zhao W, Wu J, Tian M, Xu S, Hu S, Wei Z, Lin G, Tang L, Wang R, Feng B, Wang B, Lyu H, Paetz C, Feng X, Xue JY, Li P, Chen Y. Characterization of O-methyltransferases in the biosynthesis of phenylphenalenone phytoalexins based on the telomere-to-telomere gapless genome of Musella lasiocarpa. HORTICULTURE RESEARCH 2024; 11:uhae042. [PMID: 39493361 PMCID: PMC11528125 DOI: 10.1093/hr/uhae042] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/02/2024] [Indexed: 11/05/2024]
Abstract
Phenylphenalenones (PhPNs), phytoalexins in wild bananas (Musaceae), are known to act against various pathogens. However, the abundance of PhPNs in many Musaceae plants of economic importance is low. Knowledge of the biosynthesis of PhPNs and the application of biosynthetic approaches to improve their yield is vital for fighting banana diseases. However, the processes of PhPN biosynthesis, especially those involved in methylation modification, remain unclear. Musella lasiocarpa is a herbaceous plant belonging to Musaceae, and due to the abundant PhPNs, their biosynthesis in M. lasiocarpa has been the subject of much attention. In this study, we assembled a telomere-to-telomere gapless genome of M. lasiocarpa as the reference, and further integrated transcriptomic and metabolomic data to mine the candidate genes involved in PhPN biosynthesis. To elucidate the diversity of PhPNs in M. lasiocarpa, three screened O-methyltransferases (Ml01G0494, Ml04G2958, and Ml08G0855) by phylogenetic and expressional clues were subjected to in vitro enzymatic assays. The results show that the three were all novel O-methyltransferases involved in the biosynthesis of PhPN phytoalexins, among which Ml08G0855 was proved to function as a multifunctional enzyme targeting multiple hydroxyl groups in PhPN structure. Moreover, we tested the antifungal activity of PhPNs against Fusarium oxysporum and found that the methylated modification of PhPNs enhanced their antifungal activity. These findings provide valuable genetic resources in banana breeding and lay a foundation for improving disease resistance through molecular breeding.
Collapse
Affiliation(s)
- Wanli Zhao
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), 210014 Nanjing, China
| | - Junzhi Wu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), 210014 Nanjing, China
- Nanjing University of Chinese Medicine, 210023 Nanjing, China
| | - Mei Tian
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), 210014 Nanjing, China
| | - Shu Xu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), 210014 Nanjing, China
| | - Shuaiya Hu
- College of Horticulture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, 210095 Nanjing, China
| | - Zhiyan Wei
- College of Horticulture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, 210095 Nanjing, China
| | - Guyin Lin
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), 210014 Nanjing, China
| | - Liang Tang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), 210014 Nanjing, China
| | - Ruiyang Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), 210014 Nanjing, China
| | - Boya Feng
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), 210014 Nanjing, China
| | - Bi Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), 210014 Nanjing, China
| | - Hui Lyu
- NMR/Biosynthesis Group, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Christian Paetz
- NMR/Biosynthesis Group, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Xu Feng
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), 210014 Nanjing, China
| | - Jia-Yu Xue
- College of Horticulture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, 210095 Nanjing, China
| | - Pirui Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), 210014 Nanjing, China
| | - Yu Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), 210014 Nanjing, China
| |
Collapse
|
36
|
Jin J, Zhan Z, Wei X, Pan Z, Zhao Y, Yu D, Zhang F. Genomic insights into the chromosomal elongation in a family of Collembola. Proc Biol Sci 2024; 291:20232937. [PMID: 38471545 PMCID: PMC10932724 DOI: 10.1098/rspb.2023.2937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
Collembola is a highly diverse and abundant group of soil arthropods with chromosome numbers ranging from 5 to 11. Previous karyotype studies indicated that the Tomoceridae family possesses an exceptionally long chromosome. To better understand chromosome size evolution in Collembola, we obtained a chromosome-level genome of Yoshiicerus persimilis with a size of 334.44 Mb and BUSCO completeness of 97.0% (n = 1013). Both genomes of Y. persimilis and Tomocerus qinae (recently published) have an exceptionally large chromosome (ElChr greater than 100 Mb), accounting for nearly one-third of the genome. Comparative genomic analyses suggest that chromosomal elongation occurred independently in the two species approximately 10 million years ago, rather than in the ancestor of the Tomoceridae family. The ElChr elongation was caused by large tandem and segmental duplications, as well as transposon proliferation, with genes in these regions experiencing weaker purifying selection (higher dN/dS) than conserved regions. Moreover, inter-genomic synteny analyses indicated that chromosomal fission/fusion events played a crucial role in the evolution of chromosome numbers (ranging from 5 to 7) within Entomobryomorpha. This study provides a valuable resource for investigating the chromosome evolution of Collembola.
Collapse
Affiliation(s)
- Jianfeng Jin
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Zhihong Zhan
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Xiping Wei
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Zhixiang Pan
- School of Life Sciences, Taizhou University, Taizhou 318000, People's Republic of China
| | - Yuxin Zhao
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Daoyuan Yu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Feng Zhang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| |
Collapse
|
37
|
Deng Y, Yang P, Zhang Q, Wu Q, Feng L, Shi W, Peng Q, Ding L, Tan X, Zhan R, Ma D. Genomic insights into the evolution of flavonoid biosynthesis and O-methyltransferase and glucosyltransferase in Chrysanthemum indicum. Cell Rep 2024; 43:113725. [PMID: 38300800 DOI: 10.1016/j.celrep.2024.113725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 11/17/2023] [Accepted: 01/16/2024] [Indexed: 02/03/2024] Open
Abstract
Flavonoids are a class of secondary metabolites widely distributed in plants. Regiospecific modification by methylation and glycosylation determines flavonoid diversity. A rare flavone glycoside, diosmin (luteolin-4'-methoxyl-7-O-glucosyl-rhamnoside), occurs in Chrysanthemum indicum. How Chrysanthemum plants evolve new biosynthetic capacities remains elusive. Here, we assemble a 3.11-Gb high-quality C. indicum genome with a contig N50 value of 4.39 Mb and annotate 50,606 protein-coding genes. One (CiCOMT10) of the tandemly repeated O-methyltransferase genes undergoes neofunctionalization, preferentially transferring the methyl group to the 4'-hydroxyl group of luteolin with ortho-substituents to form diosmetin. In addition, CiUGT11 (UGT88B3) specifically glucosylates 7-OH group of diosmetin. Next, we construct a one-pot cascade biocatalyst system by combining CiCOMT10, CiUGT11, and our previously identified rhamnosyltransferase, effectively producing diosmin with over 80% conversion from luteolin. This study clarifies the role of transferases in flavonoid diversity and provides important gene elements essential for producing rare flavone.
Collapse
Affiliation(s)
- Yinai Deng
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Peng Yang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Qianle Zhang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Qingwen Wu
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Lingfang Feng
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Wenjing Shi
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Qian Peng
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Li Ding
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xukai Tan
- Grandomics Biosciences, Beijing 102200, China
| | - Ruoting Zhan
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Dongming Ma
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
38
|
Li T, Zheng J, Nousias O, Yan Y, Meinhardt LW, Goenaga R, Zhang D, Yin Y. The American Cherimoya Genome Reveals Insights into the Intra-Specific Divergence, the Evolution of Magnoliales, and a Putative Gene Cluster for Acetogenin Biosynthesis. PLANTS (BASEL, SWITZERLAND) 2024; 13:636. [PMID: 38475482 DOI: 10.3390/plants13050636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024]
Abstract
Annona cherimola (cherimoya) is a species renowned for its delectable fruit and medicinal properties. In this study, we developed a chromosome-level genome assembly for the cherimoya 'Booth' cultivar from the United States. The genome assembly has a size of 794 Mb with a N50 = 97.59 Mb. The seven longest scaffolds account for 87.6% of the total genome length, which corresponds to the seven pseudo-chromosomes. A total of 45,272 protein-coding genes (≥30 aa) were predicted with 92.9% gene content completeness. No recent whole genome duplications were identified by an intra-genome collinearity analysis. Phylogenetic analysis supports that eudicots and magnoliids are more closely related to each other than to monocots. Moreover, the Magnoliales was found to be more closely related to the Laurales than the Piperales. Genome comparison revealed that the 'Booth' cultivar has 200 Mb less repeats than the Spanish cultivar 'Fino de Jete', despite their highly similar (>99%) genome sequence identity and collinearity. These two cultivars were diverged during the early Pleistocene (1.93 Mya), which suggests a different origin and domestication of the cherimoya. Terpene/terpenoid metabolism functions were found to be enriched in Magnoliales, while TNL (Toll/Interleukin-1-NBS-LRR) disease resistance gene has been lost in Magnoliales during evolution. We have also identified a gene cluster that is potentially responsible for the biosynthesis of acetogenins, a class of natural products found exclusively in Annonaceae. The cherimoya genome provides an invaluable resource for supporting characterization, conservation, and utilization of Annona genetic resources.
Collapse
Affiliation(s)
- Tang Li
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska, Lincoln, NE 68588, USA
| | - Jinfang Zheng
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska, Lincoln, NE 68588, USA
| | - Orestis Nousias
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska, Lincoln, NE 68588, USA
| | - Yuchen Yan
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska, Lincoln, NE 68588, USA
| | - Lyndel W Meinhardt
- Sustainable Perennial Crops Laboratory, United States Department of Agriculture, Agriculture Research Service, Beltsville, MD 20705, USA
| | - Ricardo Goenaga
- Tropical Agriculture Research Station, United States Department of Agriculture, Agriculture Research Service, Mayaguez 00680, Puerto Rico
| | - Dapeng Zhang
- Sustainable Perennial Crops Laboratory, United States Department of Agriculture, Agriculture Research Service, Beltsville, MD 20705, USA
| | - Yanbin Yin
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska, Lincoln, NE 68588, USA
| |
Collapse
|
39
|
Han H, Zhao R, Li S, Zhang L, Wang F, Zhang N, Wang X. A chromosome-scale genome sequence of Aeonium(Aeonium arboreum 'Velour') provides novel insights into the evolution of anthocyanin synthesis. Gene 2024; 896:148031. [PMID: 38008272 DOI: 10.1016/j.gene.2023.148031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/11/2023] [Accepted: 11/22/2023] [Indexed: 11/28/2023]
Abstract
Anthocyanin glycoside is a water-soluble flavonoid compound that colors plants and aids in stress resistance. The mechanism driving the evolution of the anthocyanin synthesis pathway in plants remains unclear. Aeonium plants are highly regarded as model organisms for studying adaptive evolution. These plants can be categorized into various types, each distinguished by the content and distribution of anthocyanins in their leaves. The categories include red leaves, green leaves, black leaves, yellow leaves, and a classification known as the 'spot brocade series. In this study, we successfully assembled and annotated the genome of cultivar 'Aeonium arboreum 'Velour'' at chromosomal level. The genome size is 1,334.85 Mb containing 18 chromosomes in a single set, with a contig N50 of 23.47 Mb and a Scaffold N50 of 25.07 Mb. Through homology prediction, de novo prediction, and transcriptome prediction, we identified 166,228 coding genes, 161,656 of which were successfully annotated in the database. Comparative genomic analysis revealed that Aeonium arboreum 'Velour' underwent an independent genome-wide replication event after differentiating from Sedum album, Kalanchoe laxiflora, and Kalanchoe fedtschenkoi. It also shared a genome-wide replication event with Sedum album and Kalanchoe laxiflora. Aeonium arboreum 'Velour' exhibits a higher number of multi-copy gene families compared to other species. A total of 5,129 gene families unique to Aeonium arboreum 'Velour' were identified, primarily enriched in various metabolic pathways, including monoterpenoid biosynthesis, sesquiterpene and triterpene biosynthesis, cyanamide acid metabolism, flavonoid and flavonol biosynthesis, phosphonate and phosphinate metabolism, fatty acid degradation, biosynthesis of unsaturated fatty acid, ether lipid metabolism, tyrosine metabolism, and isoflavone biosynthesis according to the KEGG pathway analysis. Aeonium arboreum 'Velour' and Sedum album diversion dates back to approximately 43.11 million years ago during the Paleogene period, marked by the expansion of 2,807 gene families. In contrast, the divergence from Kalanchoe laxiflora and Kalanchoe fedtschenkoi began around 57.28 million years ago, with 219 gene families expanding. GO analysis highlighted that most of the expansion or contraction gene families were predominantly enriched in flower organs, leaf organ development, anthocyanin metabolism regulation, and light energy absorption and utilization. Remarkably, anthocyanin metabolism regulation is enriched to 80 expanded genes, including 36 bHLH transcription factors, possibly functioning as photosensitive pigment interaction factors (PIFs). We speculate that flavonoids play a pivotal role in the adaptation of Aeonium arboreum 'Velour' to environmental stress. Moreover, the evolution of the anthocyanin synthesis pathway is potentially driven by the plant's capability to absorb and utilize light energy, especially in high CO2 and high-temperature settings characteristic of the early Paleogene.
Collapse
Affiliation(s)
- Haozhang Han
- School of Architectural Engineering, Suqian University, Suqian, Jiangsu 223800, China.
| | - Rong Zhao
- School of Architectural Engineering, Suqian University, Suqian, Jiangsu 223800, China
| | - Suhua Li
- School of Architectural Engineering, Suqian University, Suqian, Jiangsu 223800, China
| | - Lihua Zhang
- School of Architectural Engineering, Suqian University, Suqian, Jiangsu 223800, China
| | - Fang Wang
- School of Architectural Engineering, Suqian University, Suqian, Jiangsu 223800, China
| | - Nan Zhang
- School of Architectural Engineering, Suqian University, Suqian, Jiangsu 223800, China
| | - Xiaoli Wang
- School of Architectural Engineering, Suqian University, Suqian, Jiangsu 223800, China
| |
Collapse
|
40
|
Wang M, Zhang R, Shu JP, Zheng XL, Wu XY, Chen JB, Wang MN, Shen H, Yan YH. Whole Genome Duplication Events Likely Contributed to the Aquatic Adaptive Evolution of Parkerioideae. PLANTS (BASEL, SWITZERLAND) 2024; 13:521. [PMID: 38498522 PMCID: PMC10893450 DOI: 10.3390/plants13040521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 03/20/2024]
Abstract
As the only aquatic lineage of Pteridaceae, Parkerioideae is distinct from many xeric-adapted species of the family and consists of the freshwater Ceratopteris species and the only mangrove ferns from the genus Acrostichum. Previous studies have shown that whole genome duplication (WGD) has occurred in Parkerioideae at least once and may have played a role in their adaptive evolution; however, more in-depth research regarding this is still required. In this study, comparative and evolutionary transcriptomics analyses were carried out to identify WGDs and explore their roles in the environmental adaptation of Parkerioideae. Three putative WGD events were identified within Parkerioideae, two of which were specific to Ceratopteris and Acrostichum, respectively. The functional enrichment analysis indicated that the lineage-specific WGD events have played a role in the adaptation of Parkerioideae to the low oxygen concentrations of aquatic habitats, as well as different aquatic environments of Ceratopteris and Acrostichum, such as the adaptation of Ceratopteris to reduced light levels and the adaptation of Acrostichum to high salinity. Positive selection analysis further provided evidence that the putative WGD events may have facilitated the adaptation of Parkerioideae to changes in habitat. Moreover, the gene family analysis indicated that the plasma membrane H+-ATPase (AHA), vacuolar H+-ATPase (VHA), and suppressor of K+ transport growth defect 1 (SKD1) may have been involved in the high salinity adaptation of Acrostichum. Our study provides new insights into the evolution and adaptations of Parkerioideae in different aquatic environments.
Collapse
Affiliation(s)
- Meng Wang
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation and Research Center of Shenzhen, Shenzhen 518114, China; (M.W.); (J.-P.S.); (X.-Y.W.); (J.-B.C.); (M.-N.W.)
| | - Rui Zhang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; (R.Z.); (H.S.)
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Jiang-Ping Shu
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation and Research Center of Shenzhen, Shenzhen 518114, China; (M.W.); (J.-P.S.); (X.-Y.W.); (J.-B.C.); (M.-N.W.)
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Xi-Long Zheng
- School of Traditional Medicine Materials Resource, Guangdong Pharmaceutical University, Yunfu 527322, China;
| | - Xin-Yi Wu
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation and Research Center of Shenzhen, Shenzhen 518114, China; (M.W.); (J.-P.S.); (X.-Y.W.); (J.-B.C.); (M.-N.W.)
| | - Jian-Bing Chen
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation and Research Center of Shenzhen, Shenzhen 518114, China; (M.W.); (J.-P.S.); (X.-Y.W.); (J.-B.C.); (M.-N.W.)
| | - Mei-Na Wang
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation and Research Center of Shenzhen, Shenzhen 518114, China; (M.W.); (J.-P.S.); (X.-Y.W.); (J.-B.C.); (M.-N.W.)
| | - Hui Shen
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; (R.Z.); (H.S.)
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Yue-Hong Yan
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation and Research Center of Shenzhen, Shenzhen 518114, China; (M.W.); (J.-P.S.); (X.-Y.W.); (J.-B.C.); (M.-N.W.)
| |
Collapse
|
41
|
Yang Z, Yang Q, Liu Q, Li X, Wang L, Zhang Y, Ke Z, Lu Z, Shen H, Li J, Zhou W. A chromosome-level genome assembly of Agave hybrid NO.11648 provides insights into the CAM photosynthesis. HORTICULTURE RESEARCH 2024; 11:uhad269. [PMID: 38333731 PMCID: PMC10848310 DOI: 10.1093/hr/uhad269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 12/06/2023] [Indexed: 02/10/2024]
Abstract
The subfamily Agavoideae comprises crassulacean acid metabolism (CAM), C3, and C4 plants with a young age of speciation and slower mutation accumulation, making it a model crop for studying CAM evolution. However, the genetic mechanism underlying CAM evolution remains unclear because of lacking genomic information. This study assembled the genome of Agave hybrid NO.11648, a constitutive CAM plant belonging to subfamily Agavoideae, at the chromosome level using data generated from high-throughput chromosome conformation capture, Nanopore, and Illumina techniques, resulting in 30 pseudo-chromosomes with a size of 4.87 Gb and scaffold N50 of 186.42 Mb. The genome annotation revealed 58 841 protein-coding genes and 76.91% repetitive sequences, with the dominant repetitive sequences being the I-type repeats (Copia and Gypsy accounting for 18.34% and 13.5% of the genome, respectively). Our findings also provide support for a whole genome duplication event in the lineage leading to A. hybrid, which occurred after its divergence from subfamily Asparagoideae. Moreover, we identified a gene duplication event in the phosphoenolpyruvate carboxylase kinase (PEPCK) gene family and revealed that three PEPCK genes (PEPCK3, PEPCK5, and PEPCK12) were involved in the CAM pathway. More importantly, we identified transcription factors enriched in the circadian rhythm, MAPK signaling, and plant hormone signal pathway that regulate the PEPCK3 expression by analysing the transcriptome and using yeast one-hybrid assays. Our results shed light on CAM evolution and offer an essential resource for the molecular breeding program of Agave spp.
Collapse
Affiliation(s)
- Ziping Yang
- Zhanjiang Key Laboratory of Tropical Crop Genetic Improvement, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, 524091 Zhanjiang, Guangdong, China
| | - Qian Yang
- Zhanjiang Key Laboratory of Tropical Crop Genetic Improvement, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, 524091 Zhanjiang, Guangdong, China
| | - Qi Liu
- Wuhan Onemore-tech Co., Ltd, 430076 Wuhan, Hubei, China
| | - Xiaolong Li
- Biomarker Technologies Corporation, 101300 Beijing, China
| | - Luli Wang
- Zhanjiang Key Laboratory of Tropical Crop Genetic Improvement, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, 524091 Zhanjiang, Guangdong, China
| | - Yanmei Zhang
- Zhanjiang Key Laboratory of Tropical Crop Genetic Improvement, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, 524091 Zhanjiang, Guangdong, China
| | - Zhi Ke
- Zhanjiang Key Laboratory of Tropical Crop Genetic Improvement, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, 524091 Zhanjiang, Guangdong, China
| | - Zhiwei Lu
- Zhanjiang Key Laboratory of Tropical Crop Genetic Improvement, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, 524091 Zhanjiang, Guangdong, China
| | - Huibang Shen
- Zhanjiang Key Laboratory of Tropical Crop Genetic Improvement, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, 524091 Zhanjiang, Guangdong, China
| | - Junfeng Li
- Zhanjiang Key Laboratory of Tropical Crop Genetic Improvement, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, 524091 Zhanjiang, Guangdong, China
| | - Wenzhao Zhou
- Zhanjiang Key Laboratory of Tropical Crop Genetic Improvement, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, 524091 Zhanjiang, Guangdong, China
| |
Collapse
|
42
|
Wang ZF, Fu L, Yu EP, Zhu WG, Zeng SJ, Cao HL. Chromosome-level genome assembly and demographic history of Euryodendron excelsum in monotypic genus endemic to China. DNA Res 2024; 31:dsad028. [PMID: 38147541 PMCID: PMC10781514 DOI: 10.1093/dnares/dsad028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/04/2023] [Accepted: 12/22/2023] [Indexed: 12/28/2023] Open
Abstract
Euryodendron excelsum is in a monotypic genus Euryodendron, endemic to China. It has intermediate morphisms in the Pentaphylacaceae or Theaceae families, which make it distinct. Due to anthropogenic disturbance, E. excelsum is currently found in very restricted and fragmented areas with extremely small populations. Although much research and effort has been applied towards its conservation, its long-term survival mechanisms and evolutionary history remain elusive, especially from a genomic aspect. Therefore, using a combination of long/short whole genome sequencing, RNA sequencing reads, and Hi-C data, we assembled and annotated a high-quality genome for E. excelsum. The genome assembly of E. excelsum comprised 1,059,895,887 bp with 99.66% anchored into 23 pseudo-chromosomes and a 99.0% BUSCO completeness. Comparative genomic analysis revealed the expansion of terpenoid and flavonoid secondary metabolite genes, and displayed a tandem and/or proximal duplication framework of these genes. E. excelsum also displayed genes associated with growth, development, and defence adaptation from whole genome duplication. Demographic analysis indicated that its fluctuations in population size and its recent population decline were related to cold climate changes. The E. excelsum genome assembly provides a highly valuable resource for evolutionary and ecological research in the future, aiding its conservation, management, and restoration.
Collapse
Affiliation(s)
- Zheng-Feng Wang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou, Guangdong 510650, China
| | - Lin Fu
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou, Guangdong 510650, China
| | - En-Ping Yu
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou, Guangdong 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Guang Zhu
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou, Guangdong 510650, China
| | - Song-Jun Zeng
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou, Guangdong 510650, China
| | - Hong-Lin Cao
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou, Guangdong 510650, China
| |
Collapse
|
43
|
Ma X, Vanneste S, Chang J, Ambrosino L, Barry K, Bayer T, Bobrov AA, Boston L, Campbell JE, Chen H, Chiusano ML, Dattolo E, Grimwood J, He G, Jenkins J, Khachaturyan M, Marín-Guirao L, Mesterházy A, Muhd DD, Pazzaglia J, Plott C, Rajasekar S, Rombauts S, Ruocco M, Scott A, Tan MP, Van de Velde J, Vanholme B, Webber J, Wong LL, Yan M, Sung YY, Novikova P, Schmutz J, Reusch TBH, Procaccini G, Olsen JL, Van de Peer Y. Seagrass genomes reveal ancient polyploidy and adaptations to the marine environment. NATURE PLANTS 2024; 10:240-255. [PMID: 38278954 PMCID: PMC7615686 DOI: 10.1038/s41477-023-01608-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 12/05/2023] [Indexed: 01/28/2024]
Abstract
We present chromosome-level genome assemblies from representative species of three independently evolved seagrass lineages: Posidonia oceanica, Cymodocea nodosa, Thalassia testudinum and Zostera marina. We also include a draft genome of Potamogeton acutifolius, belonging to a freshwater sister lineage to Zosteraceae. All seagrass species share an ancient whole-genome triplication, while additional whole-genome duplications were uncovered for C. nodosa, Z. marina and P. acutifolius. Comparative analysis of selected gene families suggests that the transition from submerged-freshwater to submerged-marine environments mainly involved fine-tuning of multiple processes (such as osmoregulation, salinity, light capture, carbon acquisition and temperature) that all had to happen in parallel, probably explaining why adaptation to a marine lifestyle has been exceedingly rare. Major gene losses related to stomata, volatiles, defence and lignification are probably a consequence of the return to the sea rather than the cause of it. These new genomes will accelerate functional studies and solutions, as continuing losses of the 'savannahs of the sea' are of major concern in times of climate change and loss of biodiversity.
Collapse
Affiliation(s)
- Xiao Ma
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Steffen Vanneste
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jiyang Chang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Luca Ambrosino
- Department of Research Infrastructure for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Kerrie Barry
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Till Bayer
- Marine Evolutionary Ecology, GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Kiel, Germany
| | | | - LoriBeth Boston
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Justin E Campbell
- Coastlines and Oceans Division, Institute of Environment, Florida International University-Biscayne Bay Campus, Miami, FL, USA
| | - Hengchi Chen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Maria Luisa Chiusano
- Department of Research Infrastructure for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Naples, Italy
- Department of Agricultural Sciences, University Federico II of Naples, Naples, Italy
| | - Emanuela Dattolo
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
- National Biodiversity Future Centre, Palermo, Italy
| | - Jane Grimwood
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Guifen He
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jerry Jenkins
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Marina Khachaturyan
- Marine Evolutionary Ecology, GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Kiel, Germany
- Institute of General Microbiology, University of Kiel, Kiel, Germany
| | - Lázaro Marín-Guirao
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
- Seagrass Ecology Group, Oceanographic Center of Murcia, Spanish Institute of Oceanography (IEO-CSIC), Murcia, Spain
| | - Attila Mesterházy
- Centre for Ecological Research, Wetland Ecology Research Group, Debrecen, Hungary
| | - Danish-Daniel Muhd
- Institute of Climate Adaptation and Marine Biotechnology, Universiti Malaysia Terengganu, Terengganu, Malaysia
| | - Jessica Pazzaglia
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
- National Biodiversity Future Centre, Palermo, Italy
| | - Chris Plott
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | | | - Stephane Rombauts
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Miriam Ruocco
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
- Fano Marine Center, Fano, Italy
| | - Alison Scott
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Min Pau Tan
- Institute of Climate Adaptation and Marine Biotechnology, Universiti Malaysia Terengganu, Terengganu, Malaysia
| | - Jozefien Van de Velde
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Bartel Vanholme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Jenell Webber
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Li Lian Wong
- Institute of Climate Adaptation and Marine Biotechnology, Universiti Malaysia Terengganu, Terengganu, Malaysia
| | - Mi Yan
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yeong Yik Sung
- Institute of Climate Adaptation and Marine Biotechnology, Universiti Malaysia Terengganu, Terengganu, Malaysia
| | - Polina Novikova
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Jeremy Schmutz
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Thorsten B H Reusch
- Marine Evolutionary Ecology, GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Kiel, Germany.
| | - Gabriele Procaccini
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy.
- National Biodiversity Future Centre, Palermo, Italy.
| | - Jeanine L Olsen
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands.
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- Center for Plant Systems Biology, VIB, Ghent, Belgium.
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
44
|
Li C, Wickell D, Kuo LY, Chen X, Nie B, Liao X, Peng D, Ji J, Jenkins J, Williams M, Shu S, Plott C, Barry K, Rajasekar S, Grimwood J, Han X, Sun S, Hou Z, He W, Dai G, Sun C, Schmutz J, Leebens-Mack JH, Li FW, Wang L. Extraordinary preservation of gene collinearity over three hundred million years revealed in homosporous lycophytes. Proc Natl Acad Sci U S A 2024; 121:e2312607121. [PMID: 38236735 PMCID: PMC10823260 DOI: 10.1073/pnas.2312607121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
Homosporous lycophytes (Lycopodiaceae) are a deeply diverged lineage in the plant tree of life, having split from heterosporous lycophytes (Selaginella and Isoetes) ~400 Mya. Compared to the heterosporous lineage, Lycopodiaceae has markedly larger genome sizes and remains the last major plant clade for which no chromosome-level assembly has been available. Here, we present chromosomal genome assemblies for two homosporous lycophyte species, the allotetraploid Huperzia asiatica and the diploid Diphasiastrum complanatum. Remarkably, despite that the two species diverged ~350 Mya, around 30% of the genes are still in syntenic blocks. Furthermore, both genomes had undergone independent whole genome duplications, and the resulting intragenomic syntenies have likewise been preserved relatively well. Such slow genome evolution over deep time is in stark contrast to heterosporous lycophytes and is correlated with a decelerated rate of nucleotide substitution. Together, the genomes of H. asiatica and D. complanatum not only fill a crucial gap in the plant genomic landscape but also highlight a potentially meaningful genomic contrast between homosporous and heterosporous species.
Collapse
Affiliation(s)
- Cheng Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518000, China
| | - David Wickell
- Boyce Thompson Institute, Ithaca, NY14853
- Plant Biology Section, Cornell University, Ithaca, NY14853
| | - Li-Yaung Kuo
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu300044, Taiwan
| | - Xueqing Chen
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518000, China
| | - Bao Nie
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518000, China
| | - Xuezhu Liao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518000, China
| | - Dan Peng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518000, China
| | - Jiaojiao Ji
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518000, China
| | - Jerry Jenkins
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL35806
| | - Mellissa Williams
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL35806
| | - Shengqiang Shu
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Christopher Plott
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL35806
| | - Kerrie Barry
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Shanmugam Rajasekar
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ85721
| | - Jane Grimwood
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL35806
| | - Xiaoxu Han
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518000, China
| | - Shichao Sun
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518000, China
| | - Zhuangwei Hou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518000, China
| | - Weijun He
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518000, China
| | - Guanhua Dai
- Research Station of Changbai Mountain Forest Ecosystems, Chinese Academy of Sciences, Yanji133000, China
| | - Cheng Sun
- College of Life Sciences, Capital Normal University, Beijing100048, China
| | - Jeremy Schmutz
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL35806
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | | | - Fay-Wei Li
- Boyce Thompson Institute, Ithaca, NY14853
- Plant Biology Section, Cornell University, Ithaca, NY14853
| | - Li Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518000, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing100700, China
| |
Collapse
|
45
|
Ahmad A, von Dohlen C, Ren Z. A chromosome-level genome assembly of the Rhus gall aphid Schlechtendalia chinensis provides insight into the endogenization of Parvovirus-like DNA sequences. BMC Genomics 2024; 25:16. [PMID: 38166596 PMCID: PMC10759679 DOI: 10.1186/s12864-023-09916-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024] Open
Abstract
The Rhus gall aphid, Schlechtendalia chinensis, feeds on its primary host plant Rhus chinensis to induce galls, which have economic importance in medicines and the food industry. Rhus gall aphids have a unique life cycle and are economically beneficial but there is huge gap in genomic information about this group of aphids. Schlechtendalia chinensis induces rich-tannin galls on its host plant and is emerging as a model organism for both commercial applications and applied research in the context of gall production by insects. Here, we generated a high-quality chromosome-level assembly for the S. chinensis genome, enabling the comparison between S. chinensis and non-galling aphids. The final genome assembly is 344.59 Mb with 91.71% of the assembled sequences anchored into 13 chromosomes. We predicted 15,013 genes, of which 14,582 (97.13%) coding genes were annotated, and 99% of the predicted genes were anchored to the 13 chromosomes. This assembly reveals the endogenization of parvovirus-related DNA sequences (PRDs) in the S. chinensis genome, which could play a role in environmental adaptations. We demonstrated the characterization and classification of cytochrome P450s in the genome assembly, which are functionally crucial for sap-feeding insects and have roles in detoxification and insecticide resistance. This genome assembly also revealed the whole genome duplication events in S. chinensis, which can be considered in comparative evolutionary analysis. Our work represents a reference genome for gall-forming aphids that could be used for comparative genomic studies between galling and non-galling aphids and provides the first insight into the endogenization of PRDs in the genome of galling aphids. It also provides novel genetic information for future research on gall-formation and insect-plant interactions.
Collapse
Affiliation(s)
- Aftab Ahmad
- School of Life Science, Shanxi University, Taiyuan, Shanxi, China
| | - Carol von Dohlen
- Department of Biology, Utah State University, Logan, Utah, United States of America
| | - Zhumei Ren
- School of Life Science, Shanxi University, Taiyuan, Shanxi, China.
| |
Collapse
|
46
|
Schelkunov MI, Shtratnikova VY, Klepikova AV, Makarenko MS, Omelchenko DO, Novikova LA, Obukhova EN, Bogdanov VP, Penin AA, Logacheva MD. The genome of the toxic invasive species Heracleum sosnowskyi carries an increased number of genes despite absence of recent whole-genome duplications. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:449-463. [PMID: 37846604 DOI: 10.1111/tpj.16500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023]
Abstract
Heracleum sosnowskyi, belonging to a group of giant hogweeds, is a plant with large effects on ecosystems and human health. It is an invasive species that contributes to the deterioration of grassland ecosystems. The ability of H. sosnowskyi to produce linear furanocoumarins (FCs), photosensitizing compounds, makes it very dangerous. At the same time, linear FCs are compounds with high pharmaceutical value used in skin disease therapies. Despite this high importance, it has not been the focus of genetic and genomic studies. Here, we report a chromosome-scale assembly of Sosnowsky's hogweed genome. Genomic analysis revealed an unusually high number of genes (55106) in the hogweed genome, in contrast to the 25-35 thousand found in most plants. However, we did not find any traces of recent whole-genome duplications not shared with its confamiliar, Daucus carota (carrot), which has approximately thirty thousand genes. The analysis of the genomic proximity of duplicated genes indicates on tandem duplications as a main reason for this increase. We performed a genome-wide search of the genes of the FC biosynthesis pathway and surveyed their expression in aboveground plant parts. Using a combination of expression data and phylogenetic analysis, we found candidate genes for psoralen synthase and experimentally showed the activity of one of them using a heterologous yeast expression system. These findings expand our knowledge on the evolution of gene space in plants and lay a foundation for further analysis of hogweed as an invasive plant and as a source of FCs.
Collapse
Affiliation(s)
- Mikhail I Schelkunov
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Viktoria Yu Shtratnikova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Anna V Klepikova
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Maksim S Makarenko
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Denis O Omelchenko
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Lyudmila A Novikova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | - Viktor P Bogdanov
- Life Sciences Research Center, Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
| | - Aleksey A Penin
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Maria D Logacheva
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia
- Skolkovo Institute of Science and Technology, Moscow, Russia
| |
Collapse
|
47
|
Chang E, Guo W, Chen J, Zhang J, Jia Z, Tschaplinski TJ, Yang X, Jiang Z, Liu J. Chromosome-level genome assembly of Quercus variabilis provides insights into the molecular mechanism of cork thickness. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 337:111874. [PMID: 37742724 DOI: 10.1016/j.plantsci.2023.111874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/03/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023]
Abstract
Quercus variabilis is a deciduous woody species with high ecological and economic value, and is a major source of cork in East Asia. Cork from thick softwood sheets have higher commercial value than those from thin sheets. It is extremely difficult to genetically improve Q. variabilis to produce high quality softwood due to the lack of genomic information. Here, we present a high-quality chromosomal genome assembly for Q. variabilis with length of 791,89 Mb and 54,606 predicted genes. Comparative analysis of protein sequences of Q. variabilis with 11 other species revealed that specific and expanded gene families were significantly enriched in the "fatty acid biosynthesis" pathway in Q. variabilis, which may contribute to the formation of its unique cork. Based on weighted correlation network analysis of time-course (i.e., five important developmental ages) gene expression data in thick-cork versus thin-cork genotypes of Q. variabilis, we identified one co-expression gene module associated with the thick-cork trait. Within this co-expression gene module, 10 hub genes were associated with suberin biosynthesis. Furthermore, we identified a total of 198 suberin biosynthesis-related new candidate genes that were up-regulated in trees with a thick cork layer relative to those with a thin cork layer. Also, we found that some genes related to cell expansion and cell division were highly expressed in trees with a thick cork layer. Collectively, our results revealed that two metabolic pathways (i.e., suberin biosynthesis, fatty acid biosynthesis), along with other genes involved in cell expansion, cell division, and transcriptional regulation, were associated with the thick-cork trait in Q. variabilis, providing insights into the molecular basis of cork development and knowledge for informing genetic improvement of cork thickness in Q. variabilis and closely related species.
Collapse
Affiliation(s)
- Ermei Chang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 10091, China
| | - Wei Guo
- Taishan Academy of Forestry Sciences, Taian, Shandong 271000, China
| | - Jiahui Chen
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jin Zhang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Zirui Jia
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 10091, China
| | - Timothy J Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Zeping Jiang
- Key Laboratory of Forest Ecology of National Forestry and Grassland Administration, Environment and Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China.
| | - Jianfeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 10091, China.
| |
Collapse
|
48
|
Chen YL, Wang ZF, Jian SG, Liao HM, Liu DM. Genome Assembly of Cordia subcordata, a Coastal Protection Species in Tropical Coral Islands. Int J Mol Sci 2023; 24:16273. [PMID: 38003462 PMCID: PMC10671804 DOI: 10.3390/ijms242216273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Cordia subcordata trees or shrubs, belonging to the Boraginaceae family, have strong resistance and have adapted to their habitat on a tropical coral island in China, but the lack of genome information regarding its genetic background is unclear. In this study, the genome was assembled using both short/long whole genome sequencing reads and Hi-C reads. The assembled genome was 475.3 Mb, with 468.7 Mb (99.22%) of the sequences assembled into 16 chromosomes. Repeat sequences accounted for 54.41% of the assembled genome. A total of 26,615 genes were predicted, and 25,730 genes were functionally annotated using different annotation databases. Based on its genome and the other 17 species, phylogenetic analysis using 336 single-copy genes obtained from ortholog analysis showed that C. subcordata was a sister to Coffea eugenioides, and the divergence time was estimated to be 77 MYA between the two species. Gene family evolution analysis indicated that the significantly expanded gene families were functionally related to chemical defenses against diseases. These results can provide a reference to a deeper understanding of the genetic background of C. subcordata and can be helpful in exploring its adaptation mechanism on tropical coral islands in the future.
Collapse
Affiliation(s)
- Yi-Lan Chen
- Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
- Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering, College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Zheng-Feng Wang
- Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Key Laboratory of Carbon Sequestration in Terrestrial Ecosystem, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Shu-Guang Jian
- Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Hai-Min Liao
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Key Laboratory of Carbon Sequestration in Terrestrial Ecosystem, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Dong-Ming Liu
- Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
49
|
Hao F, Liu X, Zhou B, Tian Z, Zhou L, Zong H, Qi J, He J, Zhang Y, Zeng P, Li Q, Wang K, Xia K, Guo X, Li L, Shao W, Zhang B, Li S, Yang H, Hui L, Chen W, Peng L, Liu F, Rong ZQ, Peng Y, Zhu W, McCallum JA, Li Z, Xu X, Yang H, Macknight RC, Wang W, Cai J. Chromosome-level genomes of three key Allium crops and their trait evolution. Nat Genet 2023; 55:1976-1986. [PMID: 37932434 DOI: 10.1038/s41588-023-01546-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 09/20/2023] [Indexed: 11/08/2023]
Abstract
Allium crop breeding remains severely hindered due to the lack of high-quality reference genomes. Here we report high-quality chromosome-level genome assemblies for three key Allium crops (Welsh onion, garlic and onion), which are 11.17 Gb, 15.52 Gb and 15.78 Gb in size with the highest recorded contig N50 of 507.27 Mb, 109.82 Mb and 81.66 Mb, respectively. Beyond revealing the genome evolutionary process of Allium species, our pathogen infection experiments and comparative metabolomic and genomic analyses showed that genes encoding enzymes involved in the metabolic pathway of Allium-specific flavor compounds may have evolved from an ancient uncharacterized plant defense system widely existing in many plant lineages but extensively boosted in alliums. Using in situ hybridization and spatial RNA sequencing, we obtained an overview of cell-type categorization and gene expression changes associated with spongy mesophyll cell expansion during onion bulb formation, thus indicating the functional roles of bulb formation genes.
Collapse
Affiliation(s)
- Fei Hao
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
- Center of Special Environmental Biomechanics & Biomedical Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Xue Liu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Botong Zhou
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Zunzhe Tian
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Lina Zhou
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Hang Zong
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Jiyan Qi
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Juan He
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Yongting Zhang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Peng Zeng
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Qiong Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Kai Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Keke Xia
- State Key Laboratory of Agricultural Genomics, BGI, Shenzhen, China
| | - Xing Guo
- State Key Laboratory of Agricultural Genomics, BGI, Shenzhen, China
- BGI Research, Wuhan, China
| | - Li Li
- State Key Laboratory of Agricultural Genomics, BGI, Shenzhen, China
| | - Wenwen Shao
- State Key Laboratory of Agricultural Genomics, BGI, Shenzhen, China
| | | | - Shengkang Li
- State Key Laboratory of Agricultural Genomics, BGI, Shenzhen, China
| | - Haifeng Yang
- Lianyungang Academy of Agricultural Sciences, Lianyungang, China
| | - Linchong Hui
- Lianyungang Academy of Agricultural Sciences, Lianyungang, China
| | - Wei Chen
- Lianyungang Academy of Agricultural Sciences, Lianyungang, China
| | - Lixin Peng
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, China
| | - Feipeng Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University, Xi'an, China
| | - Zi-Qiang Rong
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University, Xi'an, China
| | - Yingmei Peng
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Wenbo Zhu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - John A McCallum
- The New Zealand Institute for Plant and Food Research, Christchurch, New Zealand
| | - Zhen Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University and VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Xun Xu
- State Key Laboratory of Agricultural Genomics, BGI, Shenzhen, China.
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, China.
| | - Hui Yang
- Center of Special Environmental Biomechanics & Biomedical Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.
| | | | - Wen Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China.
| | - Jing Cai
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China.
| |
Collapse
|
50
|
He Z, Chao H, Zhou X, Ni Q, Hu Y, Yu R, Wang M, Li C, Chen J, Chen Y, Chen Y, Cui C, Zhang L, Chen M, Chen D. A chromosome-level genome assembly provides insights into Cornus wilsoniana evolution, oil biosynthesis, and floral bud development. HORTICULTURE RESEARCH 2023; 10:uhad196. [PMID: 38023476 PMCID: PMC10673659 DOI: 10.1093/hr/uhad196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023]
Abstract
Cornus wilsoniana W. is a woody oil plant with high oil content and strong hypolipidemic effects, making it a valuable species for medicinal, landscaping, and ecological purposes in China. To advance genetic research on this species, we employed PacBio together with Hi-C data to create a draft genome assembly for C. wilsoniana. Based on an 11-chromosome anchored chromosome-level assembly, the estimated genome size was determined to be 843.51 Mb. The N50 contig size and N50 scaffold size were calculated to be 4.49 and 78.00 Mb, respectively. Furthermore, 30 474 protein-coding genes were annotated. Comparative genomics analysis revealed that C. wilsoniana diverged from its closest species ~12.46 million years ago (Mya). Furthermore, the divergence between Cornaceae and Nyssaceae occurred >62.22 Mya. We also found evidence of whole-genome duplication events and whole-genome triplication γ, occurring at ~44.90 and 115.86 Mya. We further inferred the origins of chromosomes, which sheds light on the complex evolutionary history of the karyotype of C. wilsoniana. Through transcriptional and metabolic analysis, we identified two FAD2 homologous genes that may play a crucial role in controlling the oleic to linoleic acid ratio. We further investigated the correlation between metabolites and genes and identified 33 MADS-TF homologous genes that may affect flower morphology in C. wilsoniana. Overall, this study lays the groundwork for future research aimed at identifying the genetic basis of crucial traits in C. wilsoniana.
Collapse
Affiliation(s)
- Zhenxiang He
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Haoyu Chao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinkai Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Qingyang Ni
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yueming Hu
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ranran Yu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Minghuai Wang
- Forest Protection Department, Guangdong Academy of Forestry, Guangzhou 510520, China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, China
| | - Jingzhen Chen
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, China
| | - Yunzhu Chen
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, China
| | - Yong Chen
- Xishan Forest Farm, Dazu District, Chongqing 402360, China
| | - Chunyi Cui
- Longshan Forest Farm, Lechang 512221, China
| | - Liangbo Zhang
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, China
- Hunan Horticultural Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Ming Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dijun Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|