1
|
Ou S, Jiao X, Li Y, Pan P, Li R, Huang J, Sun X, Wang W, Zhang Q, Cao C, Wei L. Comparison of chromatin accessibility remodeling of granulosa cells in patients with endometrioma or pelvic/tubal infertility. J Assist Reprod Genet 2024:10.1007/s10815-024-03302-7. [PMID: 39485574 DOI: 10.1007/s10815-024-03302-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/18/2024] [Indexed: 11/03/2024] Open
Abstract
PURPOSE To elucidatethe epigenetic alteration associated with impaired oogenesis in endometrioma using multi-omic approaches. METHODS ATAC-seq was performed on the granulosa cells (GCs) of 6 patients (3 with endometrioma and 3 without). Follicular samples from another 20 patients (10 with endometrioma and 10 without) were collected for mRNA-seq analysis of GCs and extracellular vesicles (EVs) of follicular fluid. qRT-PCR validated candidate genes in GCs from 44 newly enrolled patients (19 with endometrioma and 25 without). mRNA abundance was compared with the Mann-Whitney test. Pearson's correlation analyzed relationships between candidate genes and oocyte parameters. RESULTS Chromatin accessibility and gene expression profiles of GCs from endometrioma patients differed significantly from the pelvic/tubal infertility group. RNA-seq revealed most differentially expressed genes were downregulated (6216/7325) and enriched in the cellular localization pathway. Multi-omics analyses identified 22 significantly downregulated genes in the GCs of endometrioma patients, including PPIF (P < 0.0001) and VEGFA (P = 0.0148). Both genes were further confirmed by qRT-PCR. PPIF (r = 0.46, p = 0.043) and VEGFA (r = 0.45, p = 0.048) correlated with the total number of retrieved oocytes. CONCLUSIONS GC chromatin remodeling may disrupt GC and EV transcriptomes, interfering with somatic cell-oocyte communication and leading to compromised oogenesis in endometrioma patients.
Collapse
Affiliation(s)
- Songbang Ou
- Reproductive Medicine Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang Xi Ave, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xuedan Jiao
- Reproductive Medicine Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang Xi Ave, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yi Li
- Reproductive Medicine Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang Xi Ave, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ping Pan
- Reproductive Medicine Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang Xi Ave, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ruiqi Li
- Reproductive Medicine Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang Xi Ave, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jia Huang
- Reproductive Medicine Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang Xi Ave, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoyue Sun
- Reproductive Medicine Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang Xi Ave, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wenjun Wang
- Reproductive Medicine Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang Xi Ave, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qingxue Zhang
- Reproductive Medicine Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang Xi Ave, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Chunwei Cao
- Reproductive Medicine Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang Xi Ave, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Lina Wei
- Division of Histology and Embryology, International Joint Laboratory for Embryonic, Development and Prenatal Medicine, Medical College, Jinan University, Guangzhou, China.
- Reproductive Medicine Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang Xi Ave, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
2
|
S Y, I I, D Z, E A, D A. The possible role of epigenetics in the etiology of hypospadias. J Pediatr Urol 2024; 20:877-883. [PMID: 39033034 DOI: 10.1016/j.jpurol.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/12/2024] [Accepted: 07/02/2024] [Indexed: 07/23/2024]
Abstract
INTRODUCTION Hypospadias is a common malformation of the genitourinary system and is thought with a complex interplay between genetics and environmental factors likely contributing to its pathogenesis. This study aimed to investigate the receptor gene expressions of sex hormones, FGFR2, FGF8 and BMP7 and DNA methylations in these genes as an epigenetic mark, which may play a role in the etiology of hypospadias. MATERIAL AND METHODS The samples from the foreskin of 20 patients with hypospadias and 20 healthy children who underwent circumcision operations were collected. AR, ESR1, FGF8, FGFR2 and BMP7 gene expressions and DNA methylation rates of these genes were investigated in tissues. RESULTS While ESR1, FGFR2 and BMP7 gene expressions were found to be significantly higher in the hypospadias group, AR gene expression was found to be lower. In the hypospadias group, DNA methylation rates were found to be significantly higher in the ESR1, FGF8 and FGFR2 genes, but lower in the AR gene (Table). DISCUSSION Recent clinical studies suggest that epigenetic modifications may play a significant role in genital development, potentially contributing to the etiology of hypospadias. Our recent study demonstrated significant differences in foreskin AR, ESR1, and FGFR2 gene expression between patients with hypospadias and controls. To address this, the present study investigated DNA methylation levels of these same genes in hypospadias patients, hypothesizing that epigenetic modifications might be responsible for the observed gene expression changes. We again observed abnormalities in AR, ESR1, and FGFR2 gene expression in hypospadias patients. Furthermore, we found that DNA methylation patterns associated with these genes differed significantly between hypospadias and control groups. CONCLUSIONS Our study demonstrates significant alterations in DNA methylation of sex hormone receptor genes (ESR1 and AR), FGFR2, and FGF8, which correlate with abnormal expression of these genes in hypospadias cases. These findings suggest a potential role for epigenetic modifications in hypospadias etiology.
Collapse
Affiliation(s)
- Yıldız S
- Department of Pediatric Surgery, Trakya University Faculty of Medicine, 22030, Edirne, Turkey.
| | - Inanç I
- Department of Pediatric Surgery, Trakya University Faculty of Medicine, 22030, Edirne, Turkey.
| | - Zhuri D
- Trakya University, Faculty of Medicine, Department of Medical Genetics, 22030, Edirne, Turkey.
| | - Atlı E
- Trakya University, Faculty of Medicine, Department of Medical Genetics, 22030, Edirne, Turkey.
| | - Avlan D
- Department of Pediatric Surgery, Division of Pediatric Urology, Trakya University Faculty of Medicine, 22030, Edirne, Turkey.
| |
Collapse
|
3
|
Kankanam Gamage SU, Hashimoto S, Miyamoto Y, Nakano T, Yamanaka M, Kitaji H, Takada Y, Matsumoto H, Koike A, Satoh M, Ichishi M, Watanabe M, Morimoto Y. Supplementation with autologous adipose stem cell-derived mitochondria can be a safe and promising strategy for improving oocyte quality. J Assist Reprod Genet 2024; 41:2065-2077. [PMID: 38777961 PMCID: PMC11339003 DOI: 10.1007/s10815-024-03137-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
PURPOSE In our previous study, we confirmed that the supplementation of vitrified-warmed murine oocytes with autologous adipose stem cell (ASC)-derived mitochondria during intracytoplasmic sperm injection enhances post-fertilization developmental competence in mice. To ensure the safety of this technology, we conducted a thorough study in mice to investigate the potential presence of specific malformations in offspring developed from this approach. METHODS A transgenerational comparative analysis was conducted on founder mice from embryos that developed after mitochondrial supplementation, and two subsequent generations. Reproductive performance, body growth rate, histopathological parameters, hematological parameters, daily activity patterns, and daily body temperature changes in male and female mice across these three generations were assessed in comparison to wild-type mice of the same age. RESULTS Both male and female animals in all three generations showed comparable reproductive performance to the control group. Additionally, body growth rate by the age of 8 weeks were found to be comparable to controls across all three generations. Notably, no significant histopathological abnormalities were detected in vital organs, including the brain, heart, liver, kidneys, lungs, ovaries, and testes, in any individuals from the studied cohorts. The blood parameters were consistent with the control data. The continuous monitoring of activity and body temperature changes (both day and night) over a 1-week period revealed a pattern closely resembling that observed in the control animals. CONCLUSION Injection of ASC-mitochondria into oocytes may be a promising technique to support developmental potential without causing adverse epigenetic events in the offspring in mice. However, before considering clinical application, additional safety screening using larger animals or non-human primates is essential.
Collapse
Affiliation(s)
| | - Shu Hashimoto
- Reproductive Science Institute, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | | | | | | | - Hideki Kitaji
- Reproductive Science Institute, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yuki Takada
- Reproductive Science Institute, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | | | - Akiko Koike
- HORAC Grand Front Osaka Clinic, Osaka, Japan
| | | | - Masako Ichishi
- Department of Oncologic Pathology, Graduate School of Medicine, Mie University, Mie, Japan
| | - Masatoshi Watanabe
- Department of Oncologic Pathology, Graduate School of Medicine, Mie University, Mie, Japan
| | | |
Collapse
|
4
|
Riyahi J, Taslimi Z, Gelfo F, Petrosini L, Haghparast A. Trans-generational effects of parental exposure to drugs of abuse on offspring memory functions. Neurosci Biobehav Rev 2024; 160:105644. [PMID: 38548003 DOI: 10.1016/j.neubiorev.2024.105644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/10/2024] [Accepted: 03/22/2024] [Indexed: 04/01/2024]
Abstract
Recent evidence reported that parental-derived phenotypes can be passed on to the next generations. Within the inheritance of epigenetic characteristics allowing the transmission of information related to the ancestral environment to the offspring, the specific case of the trans-generational effects of parental drug addiction has been extensively studied. Drug addiction is a chronic disorder resulting from complex interactions among environmental, genetic, and drug-related factors. Repeated exposures to drugs induce epigenetic changes in the reward circuitry that in turn mediate enduring changes in brain function. Addictive drugs can exert their effects trans-generally and influence the offspring of addicted parents. Although there is growing evidence that shows a wide range of behavioral, physiological, and molecular phenotypes in inter-, multi-, and trans-generational studies, transmitted phenotypes often vary widely even within similar protocols. Given the breadth of literature findings, in the present review, we restricted our investigation to learning and memory performances, as examples of the offspring's complex behavioral outcomes following parental exposure to drugs of abuse, including morphine, cocaine, cannabinoids, nicotine, heroin, and alcohol.
Collapse
Affiliation(s)
- Javad Riyahi
- Department of Cognitive and Behavioral Science and Technology in Sport, Faculty of Sport Sciences and Health, Shahid Beheshti University, Tehran, Iran
| | - Zahra Taslimi
- Behavioral Disorders and Substance Abuse Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Fertility and Infertility Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Francesca Gelfo
- IRCCS Santa Lucia Foundation, Rome, Italy; Department of Human Sciences, Guglielmo Marconi University, Rome, Italy
| | | | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran; Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Torday JS. The synchronic, diachronic cell as the holism of consciousness. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 188:19-23. [PMID: 38408617 DOI: 10.1016/j.pbiomolbio.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/02/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
The cell is both synchronic and diachronic, based on ontogeny and phylogeny, respectively. As experimental evidence for this holism, absent gravitational force, differentiated lung and bone cells devolve, losing their phenotypes, losing their evolutionary status, reverting to their nonlocal status. Thus, when evolution is seen as serial homeostasis, it is homologous with Quantum Entanglement as the nonlocal means of maintaining homeostatic balance between particles. This monadic perspective on consciousness is one-hundred and eighty degrees out of synch with the conventional way of thinking about consciousness as a diad, or mind and brain. There have been many attempts to explain consciousness, virtually all of them based on the brain as mind. The working hypothesis is that consciousness is a holism constituted by the unicell, the lipid cell membrane forming a barrier between inside and outside of the cell's environment as a topology. Conceptually, both the unicell and 'two hands clapping' are holisms, but because the cell is constituted by the ambiguity of negative entropy, and 'one hand clapping' requires two hands, they are both pseudo-holisms, constantly striving to be whole again. In the case of the cell, it is incomplete in the sense that there are factors in the ever-changing environment that can homeostatically complete it. That process results in biochemical modification of specific DNA codes in the egg or sperm so that the offspring is able to adapt in subsequent generations epigenetically. The opportunity to trace the evolution of the breath from humans to fish opens up to the further revelation of the interplay between evolution and geological change, tracing it back to invertebrates, sponges, and ultimately to unicellular organisms. And therein is evidence that the Cosmos itself 'breathes', providing the ultimate celestial fundament for this trail of holisms.
Collapse
Affiliation(s)
- John S Torday
- University of California- Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Torday JS. The holism of evolution as consciousness. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 187:5-8. [PMID: 38296164 DOI: 10.1016/j.pbiomolbio.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/15/2024]
Abstract
Quantum Entanglement has been hypothesized to mediate non-local consciousness, underlying which, empirically, is the force of gravity. Upon further reflection, the case can be made for 'the breath' as the physiologic trait that binds all of these properties together, offering further opportunity for hypothesis testing experimentation. Humans have inexplicably made extraordinary intellectual and technical advances within a relatively very short period of time, referred to as the 'great leap forward'. It would be of great value if we could identify how and why we have evolved so rapidly. There is a holotropism that begins with the Big Bang that is centered on the homeostatic control of energy, perpetually referencing the First Principles of Physiology. "The Breath" is how and why our physiology has managed to perpetuate our species, and perhaps why the lung has been 'over-engineered' in order to facilitate the role of breathing in consciousness.
Collapse
Affiliation(s)
- John S Torday
- Pediatrics, University of California, Los Angeles, USA.
| |
Collapse
|
7
|
Rice RC, Gil DV, Baratta AM, Frawley RR, Hill SY, Farris SP, Homanics GE. Inter- and transgenerational heritability of preconception chronic stress or alcohol exposure: Translational outcomes in brain and behavior. Neurobiol Stress 2024; 29:100603. [PMID: 38234394 PMCID: PMC10792982 DOI: 10.1016/j.ynstr.2023.100603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/19/2024] Open
Abstract
Chronic stress and alcohol (ethanol) use are highly interrelated and can change an individual's behavior through molecular adaptations that do not change the DNA sequence, but instead change gene expression. A recent wealth of research has found that these nongenomic changes can be transmitted across generations, which could partially account for the "missing heritability" observed in genome-wide association studies of alcohol use disorder and other stress-related neuropsychiatric disorders. In this review, we summarize the molecular and behavioral outcomes of nongenomic inheritance of chronic stress and ethanol exposure and the germline mechanisms that could give rise to this heritability. In doing so, we outline the need for further research to: (1) Investigate individual germline mechanisms of paternal, maternal, and biparental nongenomic chronic stress- and ethanol-related inheritance; (2) Synthesize and dissect cross-generational chronic stress and ethanol exposure; (3) Determine cross-generational molecular outcomes of preconception ethanol exposure that contribute to alcohol-related disease risk, using cancer as an example. A detailed understanding of the cross-generational nongenomic effects of stress and/or ethanol will yield novel insight into the impact of ancestral perturbations on disease risk across generations and uncover actionable targets to improve human health.
Collapse
Affiliation(s)
- Rachel C. Rice
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniela V. Gil
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
| | - Annalisa M. Baratta
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
| | - Remy R. Frawley
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shirley Y. Hill
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sean P. Farris
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gregg E. Homanics
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
8
|
Li L, Li X, Chen Y, Yang Y, Wang N, Xu W. Identification and Functional Analysis of Cynoglossus semilaevis Z-Linked E3 Ubiquitin Ligase rnf34. Animals (Basel) 2024; 14:311. [PMID: 38275772 PMCID: PMC10812492 DOI: 10.3390/ani14020311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
The high proportion of males in C. semilaevis hinders their industrial development. The genetic ZW individual can become a pseudomale by sex reversal. And the pseudomale can produce Z-sperm (with epigenetic information to cause sex reversal) while W-sperm is absent, which leads to an even higher male proportion in offspring. Recently, with the development of transcriptomic technologies, research on spermatogenesis in C. semilaevis has been focused on the ubiquitination pathway. In this study, we analyzed the function of the ubiquitin ligase rnf34 gene on the Z chromosome. A qPCR experiment showed that its expression level in the gonad was the highest among different tissues. In the ovary, the expression gradually increased with development from 40 days post-hatching (dph) to 1.5 years post-hatching (yph). In the testis, rnf34 showed increased expression from 40 dph to 6 months post-hatching (mpf) and stabilized up until 1.5 ypf. In situ hybridization showed that the mRNA of rnf34 was mainly distributed in the germ cells of the testis and the ovary. In vivo siRNA-mediated knockdown of the rnf34 gene in male fish affected the expression of a series of genes related to sex differentiation and spermatogenesis. These results provide genetic data on the molecular mechanisms of gonadal development and spermatogenesis in C. semilaevis.
Collapse
Affiliation(s)
- Lu Li
- School of Fishery, Zhejiang Ocean University, Zhoushan 316022, China
- Function Laboratory for Marine Science and Food Production Process, Laoshan Laboratory, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao 266071, China
| | - Xihong Li
- Function Laboratory for Marine Science and Food Production Process, Laoshan Laboratory, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao 266071, China
| | - Yadong Chen
- Function Laboratory for Marine Science and Food Production Process, Laoshan Laboratory, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao 266071, China
| | - Yingming Yang
- Function Laboratory for Marine Science and Food Production Process, Laoshan Laboratory, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao 266071, China
| | - Na Wang
- Function Laboratory for Marine Science and Food Production Process, Laoshan Laboratory, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao 266071, China
| | - Wenteng Xu
- Function Laboratory for Marine Science and Food Production Process, Laoshan Laboratory, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao 266071, China
| |
Collapse
|
9
|
Torday JS, Klein M, Maimon O. The mobius strip, the cell, and soft logic mathematics. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 186:65-70. [PMID: 38160943 DOI: 10.1016/j.pbiomolbio.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
The cell-cell signaling mechanisms that are the basis for all of physiology have been used to trace evolution back to the unicellular state, and beyond, to the "First Principles of Physiology". And since our physiology derives from the Cosmos based on Symbiogenesis, it has been hypothesized that the cell behaves like a functional Mobius Strip, having no 'inside or outside' cell membrane surface - it is continuous with the Cosmos, its history being codified from Quantum Entanglement to Newtonian Mechanics, affording the cell consciousness and unconsciousness/subconsciousness as a continuum for the first time. Similarly, Klein and Maimon have concluded that their 'Soft Logic' mathematics also constitutes a Mobius Strip, using both a real number axis, combined with a zero axis, numerically representing cognition. This is congruent with the cell as 'two-tiered' consciousness, the first tier being the real-time interface between the cell membrane and its environment; the second tier constituting integrated physiology, referencing the consciousness of the Cosmos. Thus, there is coherence between physiology, consciousness and mathematics for the first time.
Collapse
Affiliation(s)
- John S Torday
- University of California, Los Angeles, United States.
| | - Moshe Klein
- TAU Laboratory for Consciousness and Soft Logic Research, Tel- Aviv University and Tel Hai College, Israel.
| | - Oded Maimon
- TAU Laboratory for Consciousness and Soft Logic Research, Tel-Aviv University, Israel.
| |
Collapse
|
10
|
Nilsson EE, McBirney M, De Santos S, King SE, Beck D, Greeley C, Holder LB, Skinner MK. Multiple generation distinct toxicant exposures induce epigenetic transgenerational inheritance of enhanced pathology and obesity. ENVIRONMENTAL EPIGENETICS 2023; 9:dvad006. [PMID: 38162685 PMCID: PMC10756336 DOI: 10.1093/eep/dvad006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/12/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
Three successive multiple generations of rats were exposed to different toxicants and then bred to the transgenerational F5 generation to assess the impacts of multiple generation different exposures. The current study examines the actions of the agricultural fungicide vinclozolin on the F0 generation, followed by jet fuel hydrocarbon mixture exposure of the F1 generation, and then pesticide dichlorodiphenyltrichloroethane on the F2 generation gestating females. The subsequent F3 and F4 generations and F5 transgenerational generation were obtained and F1-F5 generations examined for male sperm epigenetic alterations and pathology in males and females. Significant impacts on the male sperm differential DNA methylation regions were observed. The F3-F5 generations were similar in ∼50% of the DNA methylation regions. The pathology of each generation was assessed in the testis, ovary, kidney, and prostate, as well as the presence of obesity and tumors. The pathology used a newly developed Deep Learning, artificial intelligence-based histopathology analysis. Observations demonstrated compounded disease impacts in obesity and metabolic parameters, but other pathologies plateaued with smaller increases at the F5 transgenerational generation. Observations demonstrate that multiple generational exposures, which occur in human populations, appear to increase epigenetic impacts and disease susceptibility.
Collapse
Affiliation(s)
- Eric E Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Margaux McBirney
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Sarah De Santos
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Stephanie E King
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Daniel Beck
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Colin Greeley
- School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA 99164, USA
| | - Lawrence B Holder
- School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA 99164, USA
| | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| |
Collapse
|
11
|
de Almeida BRR, Farias Souza L, Alves TA, Cardoso AL, de Oliveira JA, Augusto Ribas TF, Dos Santos CEV, do Nascimento LAS, Sousa LM, da Cunha Sampaio MI, Martins C, Nagamachi CY, Pieczarka JC, Noronha RCR. Chromosomal organization of multigene families and meiotic analysis in species of Loricariidae (Siluriformes) from Brazilian Amazon, with description of a new cytotype for genus Spatuloricaria. Biol Open 2023; 12:bio060029. [PMID: 37819723 PMCID: PMC10651099 DOI: 10.1242/bio.060029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023] Open
Abstract
In the Amazon, some species of Loricariidae are at risk of extinction due to habitat loss and overexploitation by the ornamental fish market. Cytogenetic data related to the karyotype and meiotic cycle can contribute to understanding the reproductive biology and help management and conservation programs of these fish. Additionally, chromosomal mapping of repetitive DNA in Loricariidae may aid comparative genomic studies in this family. However, cytogenetics analysis is limited in Amazonian locariids. In this study, chromosomal mapping of multigenic families was performed in Scobinancistrus aureatus, Scobinancistrus pariolispos and Spatuloricaria sp. Meiotic analyzes were performed in Hypancistrus zebra and Hypancistrus sp. "pão". Results showed new karyotype for Spatuloricaria sp. (2n=66, NF=82, 50m-10sm-6m). Distinct patterns of chromosomal organization of histone H1, histone H3 and snDNA U2 genes were registered in the karyotypes of the studied species, proving to be an excellent cytotaxonomic tool. Hypotheses to explain the evolutionary dynamics of these sequences in studied Loricariidae were proposed. Regarding H. zebra and H. sp. "pão", we describe the events related to synapse and transcriptional activity during the meiotic cycle, which in both species showed 26 fully synapsed bivalents, with high gene expression only during zygotene and pachytene. Both Hypancistrus species could be used may be models for evaluating changes in spermatogenesis of Loricariidae.
Collapse
Affiliation(s)
- Bruno Rafael Ribeiro de Almeida
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará. Belém 66075-750, Pará, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia do Pará. Campus Itaituba. Itaituba, 68183-300, Pará, Brazil
| | - Luciano Farias Souza
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará. Belém 66075-750, Pará, Brazil
| | - Thyana Ayres Alves
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará. Belém 66075-750, Pará, Brazil
| | - Adauto Lima Cardoso
- Laboratório Genômica Integrativa, Instituto de Biociências, Universidade Estadual Paulista. Botucatu, CEP 18618-970, São Paulo, Brazil
| | - Juliana Amorim de Oliveira
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará. Belém 66075-750, Pará, Brazil
| | - Talita Fernanda Augusto Ribas
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará. Belém 66075-750, Pará, Brazil
| | - Carlos Eduardo Vasconcelos Dos Santos
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará. Belém 66075-750, Pará, Brazil
| | | | - Leandro Melo Sousa
- Faculdade de Ciências Biológicas, Universidade Federal do Pará, Campus de Altamira. Altamira, CEP 68372-040, Pará, Brazil
| | - Maria Iracilda da Cunha Sampaio
- Instituto de Estudos Costeiros, Universidade Federal do Pará, Campus Universitário de Bragança.. Bragança, CEP 68600-000, Pará, Brazil
| | - Cesar Martins
- Laboratório Genômica Integrativa, Instituto de Biociências, Universidade Estadual Paulista. Botucatu, CEP 18618-970, São Paulo, Brazil
| | - Cleusa Yoshiko Nagamachi
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará. Belém 66075-750, Pará, Brazil
| | - Julio Cesar Pieczarka
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará. Belém 66075-750, Pará, Brazil
| | - Renata Coelho Rodrigues Noronha
- Laboratório de Genética e Biologia Celular, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará. Belém 66075-750, Pará, Brazil
| |
Collapse
|
12
|
Kaufman J, Khan M, Shepard Payne J, Mancini J, Summers White Y. Transgenerational Inheritance and Systemic Racism in America. PSYCHIATRIC RESEARCH AND CLINICAL PRACTICE 2023. [DOI: 10.1176/appi.prcp.20220043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Affiliation(s)
- Joan Kaufman
- Center for Child and Family Traumatic Stress, Kennedy Krieger Institute and Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD (J. Kaufman, M. Khan, J. Shepard Payne, J. Mancini, Y. Summers White)
| | - Maria Khan
- Center for Child and Family Traumatic Stress, Kennedy Krieger Institute and Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD (J. Kaufman, M. Khan, J. Shepard Payne, J. Mancini, Y. Summers White)
| | - Jennifer Shepard Payne
- Center for Child and Family Traumatic Stress, Kennedy Krieger Institute and Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD (J. Kaufman, M. Khan, J. Shepard Payne, J. Mancini, Y. Summers White)
| | - Julia Mancini
- Center for Child and Family Traumatic Stress, Kennedy Krieger Institute and Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD (J. Kaufman, M. Khan, J. Shepard Payne, J. Mancini, Y. Summers White)
| | - Yvonne Summers White
- Center for Child and Family Traumatic Stress, Kennedy Krieger Institute and Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD (J. Kaufman, M. Khan, J. Shepard Payne, J. Mancini, Y. Summers White)
| |
Collapse
|
13
|
Svanes C, Holloway JW, Krauss-Etschmann S. Preconception origins of asthma, allergies and lung function: The influence of previous generations on the respiratory health of our children. J Intern Med 2023; 293:531-549. [PMID: 36861185 DOI: 10.1111/joim.13611] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Emerging research suggests that exposures occurring years before conception are important determinants of the health of future offspring and subsequent generations. Environmental exposures of both the father and mother, or exposure to disease processes such as obesity or infections, may influence germline cells and thereby cause a cascade of health outcomes in multiple subsequent generations. There is now increasing evidence that respiratory health is influenced by parental exposures that occur long before conception. The strongest evidence relates adolescent tobacco smoking and overweight in future fathers to increased asthma and lower lung function in their offspring, supported by evidence on parental preconception occupational exposures and air pollution. Although this literature is still sparse, the epidemiological analyses reveal strong effects that are consistent across studies with different designs and methodologies. The results are strengthened by mechanistic research from animal models and (scarce) human studies that have identified molecular mechanisms that can explain the epidemiological findings, suggesting transfer of epigenetic signals through germline cells, with susceptibility windows in utero (both male and female line) and prepuberty (male line). The concept that our lifestyles and behaviours may influence the health of our future children represents a new paradigm. This raises concerns for future health in decades to come with respect to harmful exposures but may also open for radical rethinking of preventive strategies that may improve health in multiple generations, reverse the imprint of our parents and forefathers, and underpin strategies that can break the vicious circle of propagation of health inequalities across generations.
Collapse
Affiliation(s)
- Cecilie Svanes
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
| | - John W Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Susanne Krauss-Etschmann
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany.,Institute of Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
14
|
Odroniec A, Olszewska M, Kurpisz M. Epigenetic markers in the embryonal germ cell development and spermatogenesis. Basic Clin Androl 2023; 33:6. [PMID: 36814207 PMCID: PMC9948345 DOI: 10.1186/s12610-022-00179-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/25/2022] [Indexed: 02/24/2023] Open
Abstract
Spermatogenesis is the process of generation of male reproductive cells from spermatogonial stem cells in the seminiferous epithelium of the testis. During spermatogenesis, key spermatogenic events such as stem cell self-renewal and commitment to meiosis, meiotic recombination, meiotic sex chromosome inactivation, followed by cellular and chromatin remodeling of elongating spermatids occur, leading to sperm cell production. All the mentioned events are at least partially controlled by the epigenetic modifications of DNA and histones. Additionally, during embryonal development in primordial germ cells, global epigenetic reprogramming of DNA occurs. In this review, we summarized the most important epigenetic modifications in the particular stages of germ cell development, in DNA and histone proteins, starting from primordial germ cells, during embryonal development, and ending with histone-to-protamine transition during spermiogenesis.
Collapse
Affiliation(s)
- Amadeusz Odroniec
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60–479 Poznan, Poland
| | - Marta Olszewska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60–479 Poznan, Poland
| | - Maciej Kurpisz
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60–479 Poznan, Poland
| |
Collapse
|
15
|
Garretson A, Dumont BL, Handel MA. Reproductive genomics of the mouse: implications for human fertility and infertility. Development 2023; 150:dev201313. [PMID: 36779988 PMCID: PMC10836652 DOI: 10.1242/dev.201313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Genetic analyses of mammalian gametogenesis and fertility have the potential to inform about two important and interrelated clinical areas: infertility and contraception. Here, we address the genetics and genomics underlying gamete formation, productivity and function in the context of reproductive success in mammalian systems, primarily mouse and human. Although much is known about the specific genes and proteins required for meiotic processes and sperm function, we know relatively little about other gametic determinants of overall fertility, such as regulation of gamete numbers, duration of gamete production, and gamete selection and function in fertilization. As fertility is not a binary trait, attention is now appropriately focused on the oligogenic, quantitative aspects of reproduction. Multiparent mouse populations, created by complex crossing strategies, exhibit genetic diversity similar to human populations and will be valuable resources for genetic discovery, helping to overcome current limitations to our knowledge of mammalian reproductive genetics. Finally, we discuss how what we know about the genomics of reproduction can ultimately be brought to the clinic, informing our concepts of human fertility and infertility, and improving assisted reproductive technologies.
Collapse
Affiliation(s)
- Alexis Garretson
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Tufts University, Graduate School of Biomedical Sciences, 136 Harrison Ave, Boston, MA 02111, USA
| | - Beth L. Dumont
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Tufts University, Graduate School of Biomedical Sciences, 136 Harrison Ave, Boston, MA 02111, USA
| | - Mary Ann Handel
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Tufts University, Graduate School of Biomedical Sciences, 136 Harrison Ave, Boston, MA 02111, USA
| |
Collapse
|
16
|
Kaefer M, Rink R, Misseri R, Winchester P, Proctor C, Ben Maamar M, Beck D, Nilsson E, Skinner MK. Role of epigenetics in the etiology of hypospadias through penile foreskin DNA methylation alterations. Sci Rep 2023; 13:555. [PMID: 36631595 PMCID: PMC9834259 DOI: 10.1038/s41598-023-27763-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
Abnormal penile foreskin development in hypospadias is the most frequent genital malformation in male children, which has increased dramatically in recent decades. A number of environmental factors have been shown to be associated with hypospadias development. The current study investigated the role of epigenetics in the etiology of hypospadias and compared mild (distal), moderate (mid shaft), and severe (proximal) hypospadias. Penile foreskin samples were collected from hypospadias and non-hypospadias individuals to identify alterations in DNA methylation associated with hypospadias. Dramatic numbers of differential DNA methylation regions (DMRs) were observed in the mild hypospadias, with reduced numbers in moderate and low numbers in severe hypospadias. Atresia (cell loss) of the principal foreskin fibroblast is suspected to be a component of the disease etiology. A genome-wide (> 95%) epigenetic analysis was used and the genomic features of the DMRs identified. The DMR associated genes identified a number of novel hypospadias associated genes and pathways, as well as genes and networks known to be involved in hypospadias etiology. Observations demonstrate altered DNA methylation sites in penile foreskin is a component of hypospadias etiology. In addition, a potential role of environmental epigenetics and epigenetic inheritance in hypospadias disease etiology is suggested.
Collapse
Affiliation(s)
- Martin Kaefer
- grid.257413.60000 0001 2287 3919Department of Pediatric Urology, Riley Hospital for Children, Indiana University School of Medicine, Indiana University, Indianapolis, IN 46202-5201 USA
| | - Richard Rink
- grid.257413.60000 0001 2287 3919Department of Pediatric Urology, Riley Hospital for Children, Indiana University School of Medicine, Indiana University, Indianapolis, IN 46202-5201 USA
| | - Rosalia Misseri
- grid.257413.60000 0001 2287 3919Department of Pediatric Urology, Riley Hospital for Children, Indiana University School of Medicine, Indiana University, Indianapolis, IN 46202-5201 USA
| | - Paul Winchester
- grid.257413.60000 0001 2287 3919Department of Pediatrics, St. Franciscan Hospital, School of Medicine, Indiana University, Indianapolis, IN 46202-5201 USA
| | - Cathy Proctor
- grid.257413.60000 0001 2287 3919Department of Pediatrics, St. Franciscan Hospital, School of Medicine, Indiana University, Indianapolis, IN 46202-5201 USA
| | - Millissia Ben Maamar
- grid.30064.310000 0001 2157 6568Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236 USA
| | - Daniel Beck
- grid.30064.310000 0001 2157 6568Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236 USA
| | - Eric Nilsson
- grid.30064.310000 0001 2157 6568Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236 USA
| | - Michael K. Skinner
- grid.30064.310000 0001 2157 6568Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236 USA
| |
Collapse
|
17
|
Teefy BB, Adler A, Xu A, Hsu K, Singh PP, Benayoun BA. Dynamic regulation of gonadal transposon control across the lifespan of the naturally short-lived African turquoise killifish. Genome Res 2023; 33:141-153. [PMID: 36577520 PMCID: PMC9977155 DOI: 10.1101/gr.277301.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022]
Abstract
Although germline cells are considered to be functionally "immortal," both the germline and supporting somatic cells in the gonad within an organism experience aging. With increased age at parenthood, the age-related decline in reproductive success has become an important biological issue for an aging population. However, molecular mechanisms underlying reproductive aging across sexes in vertebrates remain poorly understood. To decipher molecular drivers of vertebrate gonadal aging across sexes, we perform longitudinal characterization of the gonadal transcriptome throughout the lifespan in the naturally short-lived African turquoise killifish (Nothobranchius furzeri). By combining mRNA-seq and small RNA-seq from 26 individuals, we characterize the aging gonads of young-adult, middle-aged, and old female and male fish. We analyze changes in transcriptional patterns of genes, transposable elements (TEs), and piRNAs. We find that testes seem to undergo only marginal changes during aging. In contrast, in middle-aged ovaries, the time point associated with peak female fertility in this strain, PIWI pathway components are transiently down-regulated, TE transcription is elevated, and piRNA levels generally decrease, suggesting that egg quality may already be declining at middle-age. Furthermore, we show that piRNA ping-pong biogenesis declines steadily with age in ovaries, whereas it is maintained in aging testes. To our knowledge, this data set represents the most comprehensive transcriptomic data set for vertebrate gonadal aging. This resource also highlights important pathways that are regulated during reproductive aging in either ovaries or testes, which could ultimately be leveraged to help restore aspects of youthful reproductive function.
Collapse
Affiliation(s)
- Bryan B Teefy
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California 90089, USA
| | - Ari Adler
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California 90089, USA
| | - Alan Xu
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California 90089, USA.,Molecular and Computational Biology Department, USC Dornsife College of Letters, Arts and Sciences, Los Angeles, California 90089, USA
| | - Katelyn Hsu
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California 90089, USA.,Molecular and Computational Biology Department, USC Dornsife College of Letters, Arts and Sciences, Los Angeles, California 90089, USA
| | - Param Priya Singh
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Bérénice A Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California 90089, USA.,Molecular and Computational Biology Department, USC Dornsife College of Letters, Arts and Sciences, Los Angeles, California 90089, USA.,Biochemistry and Molecular Medicine Department, USC Keck School of Medicine, Los Angeles, California 90089, USA.,USC Norris Comprehensive Cancer Center, Epigenetics and Gene Regulation, Los Angeles, California 90089, USA.,USC Stem Cell Initiative, Los Angeles, California 90089, USA
| |
Collapse
|
18
|
Rajaprakash M, Dean LT, Palmore M, Johnson SB, Kaufman J, Fallin DM, Ladd-Acosta C. DNA methylation signatures as biomarkers of socioeconomic position. ENVIRONMENTAL EPIGENETICS 2022; 9:dvac027. [PMID: 36694711 PMCID: PMC9869656 DOI: 10.1093/eep/dvac027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 11/22/2022] [Accepted: 12/13/2022] [Indexed: 06/12/2023]
Abstract
This review article provides a framework for the use of deoxyribonucleic acid (DNA) methylation (DNAm) biomarkers to study the biological embedding of socioeconomic position (SEP) and summarizes the latest developments in the area. It presents the emerging literature showing associations between individual- and neighborhood-level SEP exposures and DNAm across the life course. In contrast to questionnaire-based methods of assessing SEP, we suggest that DNAm biomarkers may offer an accessible metric to study questions about SEP and health outcomes, acting as a personal dosimeter of exposure. However, further work remains in standardizing SEP measures across studies and evaluating consistency across domains, tissue types, and time periods. Meta-analyses of epigenetic associations with SEP are offered as one approach to confirm the replication of DNAm loci across studies. The development of DNAm biomarkers of SEP would provide a method for examining its impact on health outcomes in a more robust way, increasing the rigor of epidemiological studies.
Collapse
Affiliation(s)
- Meghna Rajaprakash
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD 21205, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Lorraine T Dean
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Meredith Palmore
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sara B Johnson
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Joan Kaufman
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Daniele M Fallin
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Christine Ladd-Acosta
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
19
|
Solovova OA, Chernykh VB. Genetics of Oocyte Maturation Defects and Early Embryo Development Arrest. Genes (Basel) 2022; 13:1920. [PMID: 36360157 PMCID: PMC9689903 DOI: 10.3390/genes13111920] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 08/08/2023] Open
Abstract
Various pathogenic factors can lead to oogenesis failure and seriously affect both female reproductive health and fertility. Genetic factors play an important role in folliculogenesis and oocyte maturation but still need to be clarified. Oocyte maturation is a well-organized complex process, regulated by a large number of genes. Pathogenic variants in these genes as well as aneuploidy, defects in mitochondrial genome, and other genetic and epigenetic factors can result in unexplained infertility, early pregnancy loss, and recurrent failures of IVF/ICSI programs due to poor ovarian response to stimulation, oocyte maturation arrest, poor gamete quality, fertilization failure, or early embryonic developmental arrest. In this paper, we review the main genes, as well as provide a description of the defects in the mitochondrial genome, associated with female infertility.
Collapse
|
20
|
Guzman DM, Chakka K, Shi T, Marron A, Fiorito AE, Rahman NS, Ro S, Sucich DG, Pierce JT. Transgenerational effects of alcohol on behavioral sensitivity to alcohol in Caenorhabditis elegans. PLoS One 2022; 17:e0271849. [PMID: 36256641 PMCID: PMC9578632 DOI: 10.1371/journal.pone.0271849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
Alcohol abuse and dependence have a substantial heritable component. Although the genome has been considered the sole vehicle of heritable phenotypes, recent studies suggest that drug or alcohol exposure may induce alterations in gene expression that are transmitted across generations. Still, the transgenerational impact of alcohol use (and abuse) remains largely unexplored in part because multigenerational studies using rodent models present challenges for time, sample size, and genetic heterogeneity. Here, we took advantage of the extremely short generation time, large broods, and clonal form of reproduction of the nematode Caenorhabditis elegans. We developed a model of pre-fertilization parental alcohol exposure to test alterations in behavioral responses to acute alcohol treatment (referred to in short as intoxication) in subsequent F1, F2 and F3 generations. We found that chronic and intermittent alcohol-treatment paradigms resulted in opposite changes to intoxication sensitivity of F3 progeny that were only apparent when controlling for yoked trials. Chronic alcohol-treatment paradigm in the parental generation resulted in alcohol-naïve F3 progeny displaying moderate resistance to intoxication. Intermittent treatment resulted in alcohol-naïve F3 progeny displaying moderate hypersensitivity to intoxication. Further study of these phenomena using this new C. elegans model may yield mechanistic insights into how transgenerational effects may occur in other animals.
Collapse
Affiliation(s)
- Dawn M. Guzman
- Department of Neuroscience, Waggoner Center for Alcohol and Addiction Research, Center for Learning and Memory, University of Texas at Austin, Austin, Texas, United States of America
| | - Keerthana Chakka
- Department of Neuroscience, Waggoner Center for Alcohol and Addiction Research, Center for Learning and Memory, University of Texas at Austin, Austin, Texas, United States of America
| | - Ted Shi
- Department of Neuroscience, Waggoner Center for Alcohol and Addiction Research, Center for Learning and Memory, University of Texas at Austin, Austin, Texas, United States of America
| | - Alyssa Marron
- Department of Neuroscience, Waggoner Center for Alcohol and Addiction Research, Center for Learning and Memory, University of Texas at Austin, Austin, Texas, United States of America
| | - Ansley E. Fiorito
- Department of Neuroscience, Waggoner Center for Alcohol and Addiction Research, Center for Learning and Memory, University of Texas at Austin, Austin, Texas, United States of America
| | - Nima S. Rahman
- Department of Neuroscience, Waggoner Center for Alcohol and Addiction Research, Center for Learning and Memory, University of Texas at Austin, Austin, Texas, United States of America
| | - Stephanie Ro
- Department of Neuroscience, Waggoner Center for Alcohol and Addiction Research, Center for Learning and Memory, University of Texas at Austin, Austin, Texas, United States of America
| | - Dylan G. Sucich
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jonathan T. Pierce
- Department of Neuroscience, Waggoner Center for Alcohol and Addiction Research, Center for Learning and Memory, University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
21
|
Liu J, Zhu Y, Zhu D, Shi Y, Lu L, Li W, Li L, Zhou X, Zhang P, Yang H, Li M, Wang B, Sun M. GDF15 negatively regulates RGS16 to impair hepatic lipid metabolism in male mice offspring conceived by in vitro fertilization. Am J Transl Res 2022; 14:7535-7551. [PMID: 36398249 PMCID: PMC9641458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVES We generated an in vitro fertilization and embryo transfer (IVF-ET) mouse model to investigate the molecular mechanism underlying the abnormal lipid metabolism found in IVF-ET offspring. METHODS The glucose metabolism levels of offspring were assessed by glucose tolerance test (GTT), insulin tolerance test (ITT), and pyruvate tolerance test (PTT). The lipid metabolism levels were assessed by triglycerides (TG), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C). RNA-seq was performed on liver tissues. mRNA and protein expression of relevant genes was verified by the quantitative real-time PCR and protein immunoblotting. HepG2 cells were transfected with either interfering RNA or overexpression plasmids to investigate the gene functions. RESULTS Compared to the control, male IVF-ET offspring showed: 1) higher body, liver, and epididymal white adipose tissue weight; 2) disrupted glucolipid metabolism with abnormal GTT, ITT, and PTT; 3) significantly decreased GDF15 along with increased RGS16. Furthermore, phosphorylation of ERK1/2 and AKT was significantly reduced. In HepG2 cells, knockdown of GDF15 caused an abnormally increased RGS16 and decreased phosphorylation of ERK1/2 and AKT, accompanied by increased lipid deposition. In contrast, overexpression of GDF15 reduced expression of RGS16. Simultaneous knockdown of both GDF15 and RGS16 reversed lipid deposition. CONCLUSIONS Down-regulation of GDF15 results in elevated RGS16, which causes the weakening of the downstream ERK1/2 and AKT phosphorylation, leading to abnormal lipid metabolism in the livers of IVF-ET male offspring. This suggests that the GDF15-RGS16-p-ERK1/2/p-AKT pathway plays a crucial role in liver lipid deposition in IVF-ET male offspring and could be a therapeutic target.
Collapse
Affiliation(s)
- Jingliu Liu
- Institute for Fetology, The First Affiliated Hospital of Soochow UniversitySuzhou, Jiangsu, China
| | - Yichen Zhu
- Cambridge-Suda Genomic Resource Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, Suzhou Medical College of Soochow UniversitySuzhou, Jiangsu, China
| | - Dan Zhu
- Institute for Fetology, The First Affiliated Hospital of Soochow UniversitySuzhou, Jiangsu, China
| | - Yajun Shi
- Institute for Fetology, The First Affiliated Hospital of Soochow UniversitySuzhou, Jiangsu, China
| | - Likui Lu
- Institute for Fetology, The First Affiliated Hospital of Soochow UniversitySuzhou, Jiangsu, China
| | - Weisheng Li
- Institute for Fetology, The First Affiliated Hospital of Soochow UniversitySuzhou, Jiangsu, China
| | - Lingjun Li
- Institute for Fetology, The First Affiliated Hospital of Soochow UniversitySuzhou, Jiangsu, China
| | - Xiuwen Zhou
- Institute for Fetology, The First Affiliated Hospital of Soochow UniversitySuzhou, Jiangsu, China
| | - Pengjie Zhang
- Institute for Fetology, The First Affiliated Hospital of Soochow UniversitySuzhou, Jiangsu, China
| | - Hao Yang
- Institute for Fetology, The First Affiliated Hospital of Soochow UniversitySuzhou, Jiangsu, China
| | - Min Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow UniversitySuzhou, Jiangsu, China
| | - Bin Wang
- Institute for Fetology, The First Affiliated Hospital of Soochow UniversitySuzhou, Jiangsu, China
| | - Miao Sun
- Institute for Fetology, The First Affiliated Hospital of Soochow UniversitySuzhou, Jiangsu, China
| |
Collapse
|
22
|
Balasubramanian S, Perumal E. A systematic review on fluoride-induced epigenetic toxicity in mammals. Crit Rev Toxicol 2022; 52:449-468. [PMID: 36422650 DOI: 10.1080/10408444.2022.2122771] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Fluoride, one of the global groundwater contaminants, is ubiquitous in our day-to-day life from various natural and anthropogenic sources. Numerous in vitro, in vivo, and epidemiological studies are conducted to understand the effect of fluoride on biological systems. A low concentration of fluoride is reported to increase oral health, whereas chronic exposure to higher concentrations causes fluoride toxicity (fluorosis). It includes dental fluorosis, skeletal fluorosis, and fluoride toxicity in soft tissues. The mechanism of fluoride toxicity has been reviewed extensively. However, epigenetic regulation in fluoride toxicity has not been reviewed. This systematic review summarizes the current knowledge regarding fluoride-induced epigenetic toxicity in the in vitro, in vivo, and epidemiological studies in mammalian systems. We examined four databases for the association between epigenetics and fluoride exposure. Out of 932 articles (as of 31 March 2022), 39 met our inclusion criteria. Most of the studies focused on different genes, and overall, preliminary evidence for epigenetic regulation of fluoride toxicity was identified. We further highlight the need for epigenome studies rather than candidate genes and provide recommendations for future research. Our results indicate a correlation between fluoride exposure and epigenetic processes. Further studies are warranted to elucidate and confirm the mechanism of epigenetic alterations mediated fluoride toxicity.
Collapse
Affiliation(s)
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| |
Collapse
|
23
|
Braz CU, Taylor T, Namous H, Townsend J, Crenshaw T, Khatib H. Paternal diet induces transgenerational epigenetic inheritance of DNA methylation signatures and phenotypes in sheep model. PNAS NEXUS 2022; 1:pgac040. [PMID: 36713326 PMCID: PMC9802161 DOI: 10.1093/pnasnexus/pgac040] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/05/2022] [Accepted: 04/02/2022] [Indexed: 06/18/2023]
Abstract
Transgenerational epigenetic inheritance (TEI) requires transmission of environmentally induced epigenetic changes and associated phenotypes to subsequent generations without continued exposure to the environmental factor that originated the change. TEI is well-established in plants and Caenorhabditis elegans; however, occurrence in mammals is debated and poorly understood. Here, we examined whether paternal diet from weaning to puberty-induced changes in sperm DNA methylation that were transmitted to subsequent generations. Over 100 methylated cytosines, environmentally altered in the F0 generation, were inherited by the F1 and F2 generations. Furthermore, the F0 paternal diet was associated with growth and male fertility phenotypes in subsequent generations. Differentially methylated cytosines were correlated with gene expression. Our results demonstrate that some sperm methylation sites may escape DNA methylation erasure and are transmitted to subsequent generations despite the 2 waves of epigenetic programming: in primordial germ cells and in embryos after fertilization. These results advance our understanding of the complex relationships between nature and nurture.
Collapse
Affiliation(s)
- Camila U Braz
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Todd Taylor
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Hadjer Namous
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jessica Townsend
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Thomas Crenshaw
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
24
|
Chen H, Scott-Boyer MP, Droit A, Robert C, Belleannée C. Sperm Heterogeneity Accounts for Sperm DNA Methylation Variations Observed in the Caput Epididymis, Independently From DNMT/TET Activities. Front Cell Dev Biol 2022; 10:834519. [PMID: 35392175 PMCID: PMC8981467 DOI: 10.3389/fcell.2022.834519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/04/2022] [Indexed: 11/15/2022] Open
Abstract
Following their production in the testis, spermatozoa enter the epididymis where they gain their motility and fertilizing abilities. This post-testicular maturation coincides with sperm epigenetic profile changes that influence progeny outcome. While recent studies highlighted the dynamics of small non-coding RNAs in maturing spermatozoa, little is known regarding sperm methylation changes and their impact at the post-fertilization level. Fluorescence-activated cell sorting (FACS) was used to purify spermatozoa from the testis and different epididymal segments (i.e., caput, corpus and cauda) of CAG/su9-DsRed2; Acr3-EGFP transgenic mice in order to map out sperm methylome dynamics. Reduced representation bisulfite sequencing (RRBS-Seq) performed on DNA from these respective sperm populations indicated that high methylation changes were observed between spermatozoa from the caput vs. testis with 5,546 entries meeting our threshold values (q value <0.01, methylation difference above 25%). Most of these changes were transitory during epididymal sperm maturation according to the low number of entries identified between spermatozoa from cauda vs. testis. According to enzymatic and sperm/epididymal fluid co-incubation assays, (de)methylases were not found responsible for these sperm methylation changes. Instead, we identified that a subpopulation of caput spermatozoa displayed distinct methylation marks that were susceptible to sperm DNAse treatment and accounted for the DNA methylation profile changes observed in the proximal epididymis. Our results support the paradigm that a fraction of caput spermatozoa has a higher propensity to bind extracellular DNA, a phenomenon responsible for the sperm methylome variations observed at the post-testicular level. Further investigating the degree of conservation of this sperm heterogeneity in human will eventually provide new considerations regarding sperm selection procedures used in fertility clinics.
Collapse
Affiliation(s)
- Hong Chen
- Faculty of Medicine, Université Laval, Quebec, QC, Canada
- Center for Research in Reproduction, Development and Intergenerational Health, Quebec, QC, Canada
| | | | - Arnaud Droit
- Faculty of Medicine, Université Laval, Quebec, QC, Canada
| | - Claude Robert
- Center for Research in Reproduction, Development and Intergenerational Health, Quebec, QC, Canada
- Faculty of Animal Sciences, Université Laval, Quebec, QC, Canada
| | - Clémence Belleannée
- Faculty of Medicine, Université Laval, Quebec, QC, Canada
- Center for Research in Reproduction, Development and Intergenerational Health, Quebec, QC, Canada
- *Correspondence: Clémence Belleannée,
| |
Collapse
|
25
|
Ben Maamar M, Beck D, Nilsson E, McCarrey JR, Skinner MK. Developmental alterations in DNA methylation during gametogenesis from primordial germ cells to sperm. iScience 2022; 25:103786. [PMID: 35146397 PMCID: PMC8819394 DOI: 10.1016/j.isci.2022.103786] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/21/2021] [Accepted: 01/14/2022] [Indexed: 02/08/2023] Open
Abstract
Because epigenetics is a critical component for gene expression, the hypothesis was tested that DNA methylation alterations are dynamic and continually change throughout gametogenesis to generate the mature sperm. Developmental alterations and stage-specific DNA methylation during gametogenesis from primordial germ cells (PGCs) to mature sperm are investigated. Individual developmental stage germ cells were isolated and analyzed for differential DNA methylation regions (DMRs). The number of DMRs was highest in the first three comparisons with mature PGCs, prospermatogonia, and spermatogonia. The most statistically significant DMRs were present at all stages of development and had variations involving both increases or decreases in DNA methylation. DMR-associated genes were identified and correlated with gene functional categories, pathways, and cellular processes. Observations identified a dynamic cascade of epigenetic changes during development that is dramatic during the early developmental stages. Complex epigenetic alterations are required to regulate genome biology and gene expression during gametogenesis. A dynamic cascade of epigenetic change throughout gametogenesis from PGC to sperm Most dramatic epigenetic alterations in PGC and spermatogenic stem cell stages Different DNA methylation regions between and within stages were identified Complex epigenetic alterations required for gene expression during gametogenesis
Collapse
Affiliation(s)
- Millissia Ben Maamar
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Daniel Beck
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Eric Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - John R McCarrey
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| |
Collapse
|
26
|
Torday JS. Morphological forms arising from the evolutionary process are topologies. Biosystems 2022; 214:104646. [DOI: 10.1016/j.biosystems.2022.104646] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 01/09/2023]
|
27
|
Folic Acid, Folinic Acid, 5 Methyl TetraHydroFolate Supplementation for Mutations That Affect Epigenesis through the Folate and One-Carbon Cycles. Biomolecules 2022; 12:biom12020197. [PMID: 35204698 PMCID: PMC8961567 DOI: 10.3390/biom12020197] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
Methylation is an essential biochemical mechanism that is central to the transmission of life, and crucially responsible for regulating gametogenesis and continued embryo development. The methylation of DNA and histones drives cell division and regulation of gene expression through epigenesis and imprinting. Brain development and its maturation also depend on correct lipid methylation, and continued neuronal function depends on biogenic amines that require methylation for their synthesis. All methylation processes are carried out via a methyltransferase enzyme and its unique co-factor S-adenosylmethionine (SAM); the transfer of a methyl group to a target molecule results in the release of SAH (SA homocysteine), and then homocysteine (Hcy). Both of these molecules are toxic, inhibiting methylation in a variety of ways, and Hcy recycling to methionine is imperative; this is achieved via the one carbon cycle, supported by the folates cycle. Folate deficiency causes hyperhomocysteinaemia, with several associated diseases; during early pregnancy, deficiency interferes with closure of the neural tube at the fourth week of gestation, and nutraceutical supplementation has been routinely prescribed to prevent neural tube defects, mainly involving B vitamins, Zn and folates. The two metabolic pathways are subject to single nucleotide polymorphisms that alter their activity/capacity, often severely, impairing specific physiological functions including fertility, brain and cardiac function. The impact of three types of nutraceutical supplements, folic acid (FA), folinic acid (FLA) and 5 Methyl THF (MTHF), will be discussed here, with their positive effects alongside potentially hazardous secondary effects. The issue surrounding FA and its association with UMFA (unmetabolized folic acid) syndrome is now a matter of concern, as UMFA is currently found in the umbilical cord of the fetus, and even in infants’ blood. We will discuss its putative role in influencing the acquisition of epigenetic marks in the germline, acquired during embryogenesis, as well as the role of FA in the management of cancerous disease.
Collapse
|
28
|
Zamora-León P. Are the Effects of DES Over? A Tragic Lesson from the Past. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:10309. [PMID: 34639609 PMCID: PMC8507770 DOI: 10.3390/ijerph181910309] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 01/08/2023]
Abstract
Diethylstilbestrol (DES), a transplacental endocrine-disrupting chemical, was prescribed to pregnant women for several decades. The number of women who took DES is hard to know precisely, but it has been estimated that over 10 million people have been exposed around the world. DES was classified in the year 2000 as carcinogenic to humans. The deleterious effects induced by DES are very extensive, such as abnormalities or cancers of the genital tract and breast, neurodevelopmental alterations, problems associated with socio-sexual behavior, and immune, pancreatic and cardiovascular disorders. Not only pregnant women but also their children and grandchildren have been affected. Epigenetic alterations have been detected, and intergenerational effects have been observed. More cohort follow-up studies are needed to establish if DES effects are transgenerational. Even though DES is not currently in use, its effects are still present, and families previously exposed and their later generations deserve the continuity of the research studies.
Collapse
Affiliation(s)
- Pilar Zamora-León
- Department of Preclinical Sciences, Faculty of Medicine, Universidad Católica del Maule, Talca 3460000, Chile
| |
Collapse
|
29
|
Skinner MK, Nilsson EE. Role of environmentally induced epigenetic transgenerational inheritance in evolutionary biology: Unified Evolution Theory. ENVIRONMENTAL EPIGENETICS 2021; 7:dvab012. [PMID: 34729214 PMCID: PMC8557805 DOI: 10.1093/eep/dvab012] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 05/15/2023]
Abstract
The current evolutionary biology theory primarily involves genetic alterations and random DNA sequence mutations to generate the phenotypic variation required for Darwinian natural selection to act. This neo-Darwinian evolution is termed the Modern Evolution Synthesis and has been the primary paradigm for nearly 100 years. Although environmental factors have a role in neo-Darwinian natural selection, Modern Evolution Synthesis does not consider environment to impact the basic molecular processes involved in evolution. An Extended Evolutionary Synthesis has recently developed that extends the modern synthesis to consider non-genetic processes. Over the past few decades, environmental epigenetics research has been demonstrated to regulate genetic processes and directly generate phenotypic variation independent of genetic sequence alterations. Therefore, the environment can on a molecular level through non-genetic (i.e. epigenetic) mechanisms directly influence phenotypic variation, genetic variation, inheritance and adaptation. This direct action of the environment to alter phenotype that is heritable is a neo-Lamarckian concept that can facilitate neo-Darwinian (i.e. Modern Synthesis) evolution. The integration of genetics, epigenetics, Darwinian theory, Lamarckian concepts, environment, and epigenetic inheritance provides a paradigm shift in evolution theory. The role of environmental-induced epigenetic transgenerational inheritance in evolution is presented to describe a more unified theory of evolutionary biology.
Collapse
Affiliation(s)
- Michael K Skinner
- **Correspondence address. Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA. Tel: +1 509-335-1524; E-mail:
| | - Eric E Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| |
Collapse
|