1
|
Biswas L, Tyc KM, Aboelenain M, Sun S, Dundović I, Vukušić K, Liu J, Guo V, Xu M, Scott RT, Tao X, Tolić IM, Xing J, Schindler K. Maternal genetic variants in kinesin motor domains prematurely increase egg aneuploidy. Proc Natl Acad Sci U S A 2024; 121:e2414963121. [PMID: 39475646 DOI: 10.1073/pnas.2414963121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/27/2024] [Indexed: 11/06/2024] Open
Abstract
The female reproductive lifespan is highly dependent on egg quality, especially the presence of a normal number of chromosomes in an egg, known as euploidy. Mistakes in meiosis leading to egg aneuploidy are frequent in humans. Yet, knowledge of the precise genetic landscape that causes egg aneuploidy in women is limited, as phenotypic data on the frequency of human egg aneuploidy are difficult to obtain and therefore absent in public genetic datasets. Here, we identify genetic determinants of reproductive aging via egg aneuploidy in women using a biobank of individual maternal exomes linked with maternal age and embryonic aneuploidy data. Using the exome data, we identified 404 genes bearing variants enriched in individuals with pathologically elevated egg aneuploidy rates. Analysis of the gene ontology and protein-protein interaction network implicated genes encoding the kinesin protein family in egg aneuploidy. We interrogate the causal relationship of the human variants within candidate kinesin genes via experimental perturbations and demonstrate that motor domain variants increase aneuploidy in mouse oocytes. Finally, using a knock-in mouse model, we validate that a specific variant in kinesin KIF18A accelerates reproductive aging and diminishes fertility. These findings reveal additional functional mechanisms of reproductive aging and shed light on how genetic variation underlies individual heterogeneity in the female reproductive lifespan, which might be leveraged to predict reproductive longevity. Together, these results lay the groundwork for the noninvasive biomarkers for egg quality, a first step toward personalized fertility medicine.
Collapse
Affiliation(s)
- Leelabati Biswas
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
- Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Katarzyna M Tyc
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Mansour Aboelenain
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Siqi Sun
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Iva Dundović
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb 1000, Croatia
| | - Kruno Vukušić
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb 1000, Croatia
| | - Jason Liu
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | | | - Min Xu
- Department of Statistics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Richard T Scott
- Foundation for Embryonic Competence, Basking Ridge, NJ 07920
| | - Xin Tao
- Juno Genetics US, Basking Ridge, NJ 07920
| | - Iva M Tolić
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb 1000, Croatia
| | - Jinchuan Xing
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Karen Schindler
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| |
Collapse
|
2
|
Mazza T, Scalise M, Console L, Galluccio M, Giangregorio N, Tonazzi A, Pochini L, Indiveri C. Carnitine traffic and human fertility. Biochem Pharmacol 2024; 230:116565. [PMID: 39368751 DOI: 10.1016/j.bcp.2024.116565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/18/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
Carnitine is a vital molecule in human metabolism, prominently involved in fatty acid β-oxidation within mitochondria. Predominantly sourced from dietary intake, carnitine also derives from endogenous synthesis. This review delves into the complex network of carnitine transport and distribution, emphasizing its pivotal role in human fertility. Together with its role in fatty acid oxidation, carnitine modulates the acety-CoA/CoA ratio, influencing carbohydrate metabolism, lipid biosynthesis, and gene expression. The intricate regulation of carnitine homeostasis involves a network of membrane transporters, notably OCTN2, which is central in its absorption, reabsorption, and distribution. OCTN2 dysfunction, results in Primary Carnitine Deficiency (PCD), characterized by systemic carnitine depletion and severe clinical manifestations, including fertility issues. In the male reproductive system, carnitine is crucial for sperm maturation and motility. In the female reproductive system, carnitine supports mitochondrial function necessary for oocyte quality, folliculogenesis, and embryonic development. Indeed, deficiencies in carnitine or its transporters have been linked to asthenozoospermia, reduced sperm quality, and suboptimal fertility outcomes in couples. Moreover, the antioxidant properties of carnitine protect spermatozoa from oxidative stress and help in managing conditions like polycystic ovary syndrome (PCOS) and endometriosis, enhancing sperm viability and fertilization potential of oocytes. This review summarizes the key role of membrane transporters in guaranteeing carnitine homeostasis with a special focus on the implications in fertility and possible treatments of infertility and other related disorders.
Collapse
Affiliation(s)
- Tiziano Mazza
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, Arcavacata di Rende 87036, Italy
| | - Mariafrancesca Scalise
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, Arcavacata di Rende 87036, Italy
| | - Lara Console
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, Arcavacata di Rende 87036, Italy
| | - Michele Galluccio
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, Arcavacata di Rende 87036, Italy
| | - Nicola Giangregorio
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), via Amendola 122/O, Bari 70126, Italy
| | - Annamaria Tonazzi
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), via Amendola 122/O, Bari 70126, Italy
| | - Lorena Pochini
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, Arcavacata di Rende 87036, Italy; CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), via Amendola 122/O, Bari 70126, Italy.
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, Arcavacata di Rende 87036, Italy; CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), via Amendola 122/O, Bari 70126, Italy.
| |
Collapse
|
3
|
Giaccari C, Cecere F, Argenziano L, Pagano A, Riccio A. New insights into oocyte cytoplasmic lattice-associated proteins. Trends Genet 2024; 40:880-890. [PMID: 38955588 DOI: 10.1016/j.tig.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 07/04/2024]
Abstract
Oocyte maturation and preimplantation embryo development are critical to successful pregnancy outcomes and the correct establishment and maintenance of genomic imprinting. Thanks to novel technologies and omics studies in human patients and mouse models, the importance of the proteins associated with the cytoplasmic lattices (CPLs), highly abundant structures found in the cytoplasm of mammalian oocytes and preimplantation embryos, in the maternal to zygotic transition is becoming increasingly evident. This review highlights the recent discoveries on the role of these proteins in protein storage and other oocyte cytoplasmic processes, epigenetic reprogramming, and zygotic genome activation (ZGA). A better comprehension of these events may significantly improve clinical diagnosis and pave the way for targeted interventions aiming to correct or mitigate female fertility issues and genomic imprinting disorders.
Collapse
Affiliation(s)
- Carlo Giaccari
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania 'Luigi Vanvitelli,' Caserta, Italy
| | - Francesco Cecere
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania 'Luigi Vanvitelli,' Caserta, Italy
| | - Lucia Argenziano
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania 'Luigi Vanvitelli,' Caserta, Italy
| | - Angela Pagano
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania 'Luigi Vanvitelli,' Caserta, Italy
| | - Andrea Riccio
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania 'Luigi Vanvitelli,' Caserta, Italy; Institute of Genetics and Biophysics (IGB) 'Adriano Buzzati-Traverso,' Consiglio Nazionale delle Ricerche (CNR), Naples, Italy.
| |
Collapse
|
4
|
Ochando I, Urbano A, Rueda J. Genetics in reproductive medicine. Arch Med Res 2024; 55:103092. [PMID: 39342776 DOI: 10.1016/j.arcmed.2024.103092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/08/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
Thanks to advances in technology, genetic testing is now available to explore the causes of infertility and to assess the risk of a given couple passing on a genetic disorder to their offspring. This allows at-risk couples to make an informed decision when opting for assisted reproduction and allows professionals to offer pre-implantation diagnosis when appropriate. Genetic screening of an infertile couple has thus become standard practice for an appropriate diagnosis, treatment, and prognostic assessment. This review aims to highlight the conditions under which genetic screening plays a role in improving reproductive outcomes for infertile couples.
Collapse
Affiliation(s)
- Isabel Ochando
- Nuuma Genetics, Hospital HLA Vistahermosa, Alicante, Spain; Departamento de Histología y Anatomía, Universidad Miguel Hernández, Alicante, Spain.
| | - Antonio Urbano
- Nuuma Genetics, Hospital HLA Vistahermosa, Alicante, Spain; Departamento de Histología y Anatomía, Universidad Miguel Hernández, Alicante, Spain
| | - Joaquín Rueda
- Departamento de Histología y Anatomía, Universidad Miguel Hernández, Alicante, Spain
| |
Collapse
|
5
|
Chatzianagnosti S, Dermitzakis I, Theotokis P, Kousta E, Mastorakos G, Manthou ME. Application of Mesenchymal Stem Cells in Female Infertility Treatment: Protocols and Preliminary Results. Life (Basel) 2024; 14:1161. [PMID: 39337944 PMCID: PMC11433628 DOI: 10.3390/life14091161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Infertility is a global phenomenon that impacts people of both the male and the female sex; it is related to multiple factors affecting an individual's overall systemic health. Recently, investigators have been using mesenchymal stem cell (MSC) therapy for female-fertility-related disorders such as polycystic ovarian syndrome (PCOS), premature ovarian failure (POF), endometriosis, preeclampsia, and Asherman syndrome (AS). Studies have shown promising results, indicating that MSCs can enhance ovarian function and restore fertility for affected individuals. Due to their regenerative effects and their participation in several paracrine pathways, MSCs can improve the fertility outcome. However, their beneficial effects are dependent on the methodologies and materials used from isolation to reimplantation. In this review, we provide an overview of the protocols and methods used in applications of MSCs. Moreover, we summarize the findings of published preclinical studies on infertility treatments and discuss the multiple properties of these studies, depending on the isolation source of the MSCs used.
Collapse
Affiliation(s)
- Sofia Chatzianagnosti
- School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Iasonas Dermitzakis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Paschalis Theotokis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Eleni Kousta
- School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - George Mastorakos
- Department of Endocrinology, Diabetes Mellitus and Metabolism, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Maria Eleni Manthou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
6
|
Zhou J, Mao R, Wang M, Long R, Gao L, Wang X, Jin L, Zhu L. A novel heterozygous missense variant of PANX1 causes human oocyte death and female infertility. J Ovarian Res 2024; 17:180. [PMID: 39232764 PMCID: PMC11373391 DOI: 10.1186/s13048-024-01462-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/18/2024] [Indexed: 09/06/2024] Open
Abstract
Pannexin1 (PANX1) is a highly glycosylated membrane channel-forming protein, which has been found to implicate in multiple physiological and pathophysiological functions. Variants in the PANX1 gene have been reported to be associated with oocyte death and recurrent in vitro fertilization failure. In this study, we identified a novel heterozygous PANX1 variant (NM_015368.4 c.410 C > T (p.Ser137Leu)) associated with the phenotype of oocyte death in a non-consanguineous family, followed by an autosomal dominant (AD) mode. We explored the molecular mechanism of the novel variant and the variant c.976_978del (p.Asn326del) that we reported previously. Both of the variants altered the PANX1 glycosylation pattern in cultured cells, led to aberrant PANX1 channel activation, affected ATP release and membrane electrophysiological properties, which resulted in mouse and human oocyte death in vitro. For the first time, we presented the direct evidence of the effect of the PANX1 variants on human oocyte development. Our findings expand the variant spectrum of PANX1 genes associated with oocyte death and provide new support for the genetic diagnosis of female infertility.
Collapse
Affiliation(s)
- Juepu Zhou
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030, China
| | - Ruolin Mao
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030, China
| | - Meng Wang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030, China
| | - Rui Long
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030, China
| | - Limin Gao
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030, China
| | - Xiangfei Wang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030, China
| | - Lei Jin
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030, China.
| | - Lixia Zhu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030, China.
| |
Collapse
|
7
|
Kanatsu-Shinohara M, Morimoto H, Liu T, Tamura M, Shinohara T. Sendai virus-mediated RNA delivery restores fertility to congenital and chemotherapy-induced infertile female mice. PNAS NEXUS 2024; 3:pgae375. [PMID: 39262851 PMCID: PMC11388103 DOI: 10.1093/pnasnexus/pgae375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/13/2024] [Indexed: 09/13/2024]
Abstract
Current infertility treatment strategies focus on mature gametes, leaving a significant proportion of cases with gamete progenitors that stopped complete differentiation. On the other hand, recent advancements in next-generation sequencing have identified many candidate genes that may promote maturation of germ cells. Although gene therapy has shown success in mice, concerns about the integration of DNA vectors into oocytes hinder clinical applications. Here, we present the restoration of fertility in female mice through Sendai virus (SeV)-mediated RNA delivery. Ovaries lacking Kitl expression exhibit only primordial follicles due to impaired signaling to oocytes expressing the KIT tyrosine kinase. Despite SeVs being immunogenic and larger than the blood-follicle barrier, the administration of Kitl-expressing SeVs reinitiated oogenesis in genetically infertile mice that have only primordial follicles, resulting in the birth of normal offspring through natural mating. This virus also effectively addressed iatrogenic infertility induced by busulfan, a widely used cancer chemotherapy agent. Offspring born through SeV administration and natural mating displayed normal genomic imprinting patterns and fertility. Since SeVs pose no genotoxicity risk, the successful restoration of fertility by SeVs represents a promising approach for treating congenital infertility with somatic cell defects and protecting fertility of cancer patients who may become infertile due to loss of oocytes during cancer therapy.
Collapse
Affiliation(s)
- Mito Kanatsu-Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
- AMED-CREST, AMED, 1-7-1 Otemachi, Chiyodaku, Tokyo 100-0004, Japan
| | - Hiroko Morimoto
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tianjiao Liu
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masaru Tamura
- Technology and Development Team for Mouse Phenotype Analysis Division, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Takashi Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
8
|
Oddsson A, Steinthorsdottir V, Oskarsson GR, Styrkarsdottir U, Moore KHS, Isberg S, Halldorsson GH, Sveinbjornsson G, Westergaard D, Nielsen HS, Fridriksdottir R, Jensson BO, Arnadottir GA, Jonsson H, Sturluson A, Snaebjarnarson AS, Andreassen OA, Walters GB, Nyegaard M, Erikstrup C, Steingrimsdottir T, Lie RT, Melsted P, Jonsdottir I, Halldorsson BV, Thorleifsson G, Saemundsdottir J, Magnusson OT, Banasik K, Sorensen E, Masson G, Pedersen OB, Tryggvadottir L, Haavik J, Ostrowski SR, Stefansson H, Holm H, Rafnar T, Gudbjartsson DF, Sulem P, Stefansson K. Homozygosity for a stop-gain variant in CCDC201 causes primary ovarian insufficiency. Nat Genet 2024; 56:1804-1810. [PMID: 39192094 PMCID: PMC11387189 DOI: 10.1038/s41588-024-01885-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
Age at menopause (AOM) has a substantial impact on fertility and disease risk. While many loci with variants that associate with AOM have been identified through genome-wide association studies (GWAS) under an additive model, other genetic models are rarely considered1. Here through GWAS meta-analysis under the recessive model of 174,329 postmenopausal women from Iceland, Denmark, the United Kingdom (UK; UK Biobank) and Norway, we study low-frequency variants with a large effect on AOM. We discovered that women homozygous for the stop-gain variant rs117316434 (A) in CCDC201 (p.(Arg162Ter), minor allele frequency ~1%) reached menopause 9 years earlier than other women (P = 1.3 × 10-15). The genotype is present in one in 10,000 northern European women and leads to primary ovarian insufficiency in close to half of them. Consequently, homozygotes have fewer children, and the age at last childbirth is 5 years earlier (P = 3.8 × 10-5). The CCDC201 gene was only found in humans in 2022 and is highly expressed in oocytes. Homozygosity for CCDC201 loss-of-function has a substantial impact on female reproductive health, and homozygotes would benefit from reproductive counseling and treatment for symptoms of early menopause.
Collapse
Affiliation(s)
| | | | | | | | - Kristjan H S Moore
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- Department of Anthropology, University of Iceland, Reykjavik, Iceland
| | | | | | | | - David Westergaard
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Methods and Analysis, Statistics Denmark, Copenhagen, Denmark
- Department of Obstetrics and Gynecology, Copenhagen University Hospital, Hvidovre, Denmark
| | - Henriette Svarre Nielsen
- Department of Obstetrics and Gynecology, Copenhagen University Hospital, Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | - Ole A Andreassen
- NORMENT Centre, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental disorders, University of Oslo, Oslo, Norway
| | | | - Mette Nyegaard
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Thora Steingrimsdottir
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Rolv T Lie
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Pall Melsted
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Ingileif Jonsdottir
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Bjarni V Halldorsson
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- School of Technology, Reykjavik University, Reykjavik, Iceland
| | | | | | | | - Karina Banasik
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Erik Sorensen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | - Ole Birger Pedersen
- Department of Clinical Medicine, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Zealand University Hospital, Roskilde, Denmark
| | - Laufey Tryggvadottir
- Icelandic Cancer Registry, Icelandic Cancer Society, Reykjavik, Iceland
- Faculty of Medicine, BMC, Laeknagardur, University of Iceland, Reykjavik, Iceland
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Bergen Center of Brain Plasticity, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Sisse Rye Ostrowski
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Hilma Holm
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
| | | | - Daniel F Gudbjartsson
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Kari Stefansson
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland.
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
9
|
Furtado CLM, Soares MR, Verruma CG, de Oliveira Gennaro FG, da Silva LECM, Ferriani RA, Dos Reis RM. BCORL1, POF1B, and USP9X copy number variation in women with idiopathic diminished ovarian reserve. J Assist Reprod Genet 2024; 41:2279-2288. [PMID: 38995507 PMCID: PMC11405560 DOI: 10.1007/s10815-024-03185-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/19/2024] [Indexed: 07/13/2024] Open
Abstract
PURPOSE To analyze the copy number variation (CNV) in the X-linked genes BCORL1, POF1B, and USP9X in idiopathic diminished ovarian reserve (DOR). METHODS This case-control study included 47 women, 26 with DOR and 21 in the control group. Age, weight, height, BMI, and FSH level were evaluated, as well as antral follicle count (AFC), oocyte retrieval after controlled ovarian stimulation, and metaphase II (MII) oocytes. The CNVs of BCORL1, USP9X, and POF1B genes were measured by quantitative real time PCR (qPCR) using two reference genes, the HPRT1 (X-linked) and MFN2 (autosomal). Protein-protein interaction network and functional enrichment analysis were performed using the STRING database. RESULTS The mean age was 36.52 ± 4.75 in DOR women and 35.38 ± 4.14 in control. Anthropometric measures did not differ between the DOR and control groups. DOR women presented higher FSH (p = 0.0025) and lower AFC (p < .0001), oocyte retrieval after COS (p = 0.0004), and MII oocytes (p < .0001) when compared to the control group. BCORL1 and POF1B did not differ in copy number between DOR and control. However, DOR women had more copies of USP9X than the control group (p = 0.028). CONCLUSION The increase in the number of copies of the USP9X gene may lead to overexpression in idiopathic DOR and contribute to altered folliculogenesis and oocyte retrieval.
Collapse
Affiliation(s)
- Cristiana Libardi Miranda Furtado
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
- Graduate Program in Medical Sciences, Experimental Biology Center, University of Fortaleza, Fortaleza, Ceará, Brazil.
| | - Murilo Racy Soares
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Carolina Gennari Verruma
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Flavia Gaona de Oliveira Gennaro
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Rui Alberto Ferriani
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rosana Maria Dos Reis
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
10
|
Lavecchia A, De Virgilio C, Mansi L, Manzari C, Mylonas CC, Picardi E, Pousis C, Cox SN, Ventriglia G, Zupa R, Pesole G, Corriero A. Comparison of ovarian mRNA expression levels in wild and hatchery-produced greater amberjack Seriola dumerili. Sci Rep 2024; 14:18034. [PMID: 39098967 PMCID: PMC11298523 DOI: 10.1038/s41598-024-69091-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024] Open
Abstract
The greater amberjack Seriola dumerili is a promising candidate for aquaculture production. This study compares the ovary transcriptome of greater amberjack sampled in the wild (WILD) with hatchery-produced breeders reared in aquaculture sea cages in the Mediterranean Sea. Among the seven sampled cultured fish, three were classified as reproductively dysfunctional (DysF group), while four showed no signs of reproductive alteration (NormalF group). The DysF fish showed 1,166 differentially expressed genes (DEGs) compared to WILD females, and 755 DEGs compared to the NormalF. According to gene ontology (GO) analysis, DysF females exhibited enrichment of genes belonging to the biological categories classified as Secreted, ECM-receptor interaction, and Focal adhesion. Protein-protein interaction analysis revealed proteins involved in the biological categories of ECM-receptor interaction, Enzyme-linked receptor protein signaling, Wnt signal transduction pathways, and Ovulation cycle. KEGG pathway analysis showed DEGs involved in 111 pathways, including Neuroactive ligand-receptor interaction, Steroid hormone biosynthesis, Cell cycle, Oocyte meiosis, Necroptosis, Ferroptosis, Apoptosis, Autophagy, Progesterone-mediated oocyte maturation, Endocytosis and Phagosome, as well as Hedgehog, Apelin, PPAR, Notch, and GnRH signalling pathways. Additionally, DysF females exhibited factors encoded by upregulated genes associated with hypogonadism and polycystic ovary syndrome in mammals. This study -which is part of a broader research effort examining the transcriptome of the entire reproductive axis in greater amberjack of both sexes-, enhances our comprehension of the mechanisms underlying the appearance of reproductive dysfunctions when fish are reared under aquaculture conditions.
Collapse
Affiliation(s)
- Anna Lavecchia
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 4, 70124, Bari, Italy
| | - Caterina De Virgilio
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 4, 70124, Bari, Italy
| | - Luigi Mansi
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 4, 70124, Bari, Italy
| | - Caterina Manzari
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 4, 70124, Bari, Italy
| | - Constantinos C Mylonas
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71003, Heraklion, Crete, Greece
| | - Ernesto Picardi
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 4, 70124, Bari, Italy
| | - Chrysovalentinos Pousis
- Department of Veterinary Medicine, University of Bari Aldo Moro, S.P. per Casamassima km.3, 70010, Valenzano, BA, Italy
| | - Sharon N Cox
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 4, 70124, Bari, Italy
| | - Gianluca Ventriglia
- Department of Veterinary Medicine, University of Bari Aldo Moro, S.P. per Casamassima km.3, 70010, Valenzano, BA, Italy
| | - Rosa Zupa
- Department of Veterinary Medicine, University of Bari Aldo Moro, S.P. per Casamassima km.3, 70010, Valenzano, BA, Italy
| | - Graziano Pesole
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 4, 70124, Bari, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Via Giovanni Amendola, 122/O, 70126, Bari, Italy
| | - Aldo Corriero
- Department of Veterinary Medicine, University of Bari Aldo Moro, S.P. per Casamassima km.3, 70010, Valenzano, BA, Italy.
| |
Collapse
|
11
|
El Fouikar S, Van Acker N, Héliès V, Frenois FX, Giton F, Gayrard V, Dauwe Y, Mselli-Lakhal L, Rousseau-Ralliard D, Fournier N, Léandri R, Gatimel N. Folliculogenesis and steroidogenesis alterations after chronic exposure to a human-relevant mixture of environmental toxicants spare the ovarian reserve in the rabbit model. J Ovarian Res 2024; 17:134. [PMID: 38943138 PMCID: PMC11214233 DOI: 10.1186/s13048-024-01457-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/16/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND Industrial progress has led to the omnipresence of chemicals in the environment of the general population, including reproductive-aged and pregnant women. The reproductive function of females is a well-known target of endocrine-disrupting chemicals. This function holds biological processes that are decisive for the fertility of women themselves and for the health of future generations. However, insufficient research has evaluated the risk of combined mixtures on this function. This study aimed to assess the direct impacts of a realistic exposure to eight combined environmental toxicants on the critical process of folliculogenesis. METHODS Female rabbits were exposed daily and orally to either a mixture of eight environmental toxicants (F group) or the solvent mixture (NE group, control) from 2 to 19 weeks of age. The doses were computed from previous toxicokinetic data to reproduce steady-state serum concentrations in rabbits in the range of those encountered in pregnant women. Ovarian function was evaluated through macroscopic and histological analysis of the ovaries, serum hormonal assays and analysis of the expression of steroidogenic enzymes. Cellular dynamics in the ovary were further investigated with Ki67 staining and TUNEL assays. RESULTS F rabbits grew similarly as NE rabbits but exhibited higher total and high-density lipoprotein (HDL) cholesterol levels in adulthood. They also presented a significantly elevated serum testosterone concentrations, while estradiol, progesterone, AMH and DHEA levels remained unaffected. The measurement of gonadotropins, androstenedione, pregnenolone and estrone levels yielded values below the limit of quantification. Among the 7 steroidogenic enzymes tested, an isolated higher expression of Cyp19a1 was measured in F rabbits ovaries. Those ovaries presented a significantly greater density/number of antral and atretic follicles and larger antral follicles without any changes in cellular proliferation or DNA fragmentation. No difference was found regarding the count of other follicle stages notably the primordial stage, the corpora lutea or AMH serum levels. CONCLUSION Folliculogenesis and steroidogenesis seem to be subtly altered by exposure to a human-like mixture of environmental toxicants. The antral follicle growth appears promoted by the mixture of chemicals both in their number and size, potentially explaining the increase in atretic antral follicles. Reassuringly, the ovarian reserve estimated through primordial follicles number/density and AMH is spared from any alteration. The consequences of these changes on fertility and progeny health have yet to be investigated.
Collapse
Affiliation(s)
- Sara El Fouikar
- ToxAlim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Nathalie Van Acker
- Plateforme Imag'IN, Service d'anatomopathologie, CHU Toulouse, Institut Universitaire du Cancer-Oncopole de Toulouse, Toulouse, France
| | - Virginie Héliès
- GenPhySE (Génétique Physiologie et Système d'Elevage), INRAE, Université de Toulouse, INPT, ENVT, Castanet-Tolosan, France
| | - François-Xavier Frenois
- Plateforme Imag'IN, Service d'anatomopathologie, CHU Toulouse, Institut Universitaire du Cancer-Oncopole de Toulouse, Toulouse, France
| | - Frank Giton
- Pôle Biologie-Pathologie Henri Mondor, AP-HP, Inserm IMRB U955, Créteil, France
| | - Véronique Gayrard
- ToxAlim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Yannick Dauwe
- ToxAlim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Laila Mselli-Lakhal
- ToxAlim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Delphine Rousseau-Ralliard
- Université Paris-Saclay, UVSQ, INRAE, Jouy-en-Josas, 78350, BREED, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, 94700, France
| | - Natalie Fournier
- Athérosclérose et macrophages: impact des phospholipides et des fonctions mitochondriales sur l'efflux du cholestérol, Lip(Sys) Université Paris Saclay, UFR de Pharmacie, Orsay, EA, 7357, 91400, France
- Laboratoire de Biochimie, AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Européen Georges Pompidou, Paris, 75015, France
| | - Roger Léandri
- ToxAlim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
- Médecine de la Reproduction, Hôpital Paule de Viguier, Centre Hospitalier Universitaire de Toulouse, Toulouse, France.
| | - Nicolas Gatimel
- Médecine de la Reproduction, Hôpital Paule de Viguier, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
- DEFE (Développement Embryonnaire, Fertilité et Environnement) UMR1203 Inserm, Universités Toulouse et Montpellier, CHU Toulouse, Toulouse, France
| |
Collapse
|
12
|
Cao G, Yu L, Fang J, Shi R, Li H, Lu F, Shen X, Zhu X, Wang S, Kong N. ZP1-Y262C mutation causes abnormal zona pellucida formation and female infertility in humans. Front Genet 2024; 15:1407202. [PMID: 38966008 PMCID: PMC11222594 DOI: 10.3389/fgene.2024.1407202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/29/2024] [Indexed: 07/06/2024] Open
Abstract
Defective oocyte maturation is a common cause of female infertility. The loss of the zona pellucida (ZP) represents a specific condition of impaired oocyte maturation. The extracellular matrix known as the ZP envelops mammalian oocytes and preimplantation embryos, exerting significant influence on oogenesis, fertilization, and embryo implantation. However, the genetic factors leading to the loss of the ZP in oocytes are not well understood. This study focused on patients who underwent oocyte retrieval surgery after ovarian stimulation and were found to have abnormal oocyte maturation without the presence of the ZP. Ultrasonography was performed during the surgical procedure to evaluate follicle development. Peripheral blood samples from the patient were subjected to exome sequencing. Here, a novel, previously unreported heterozygous mutation in the ZP1 gene was identified. Within the ZP1 gene, we discovered a novel heterozygous mutation (ZP1 NM_207341.4:c.785A>G (p.Y262C)), specifically located in the trefoil domain. Bioinformatics comparisons further revealed conservation of the ZP1-Y262C mutation across different species. Model predictions of amino acid mutations on protein structure and cell immunofluorescence/western blot experiments collectively confirmed the detrimental effects of the ZP1-Y262C mutation on the function and expression of the ZP1 protein. The ZP1-Y262C mutation represents the novel mutation in the trefoil domain of the ZP1 protein, which is associated with defective oocyte maturation in humans. Our report enhances comprehension regarding the involvement of ZP-associated genes in female infertility and offers enriched understanding for the genetic diagnosis of this condition.
Collapse
Affiliation(s)
- Guangyi Cao
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
- Key Laboratory of Reproductive Medicine of Guangdong Province, Guangzhou, China
| | - Lina Yu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Junshun Fang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Ruixin Shi
- Center for Reproductive Medicine and Obstetrics and Gynecology, Joint Institute of Nanjing Drum Tower Hospital for Life and Health, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Huijun Li
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Feifei Lu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiaoyue Shen
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiangyu Zhu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Shanshan Wang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Na Kong
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| |
Collapse
|
13
|
Li W, Huang X, Wei Y, Yin T, Diao L. Connecting the dots: the role of fatigue in female infertility. Reprod Biol Endocrinol 2024; 22:66. [PMID: 38849828 PMCID: PMC11157719 DOI: 10.1186/s12958-024-01235-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
Fatigue, an increasingly acknowledged symptom in various chronic diseases, has garnered heightened attention, during the medical era of bio-psycho-social model. Its persistence not only significantly compromises an individual's quality of life but also correlates with chronic organ damage. Surprisingly, the intricate relationship between fatigue and female reproductive health, specifically infertility, remains largely unexplored. Our exploration into the existing body of evidence establishes a compelling link between fatigue with uterine and ovarian diseases, as well as conditions associated with infertility, such as rheumatism. This observation suggests a potentially pivotal role of fatigue in influencing overall female fertility. Furthermore, we propose a hypothetical mechanism elucidating the impact of fatigue on infertility from multiple perspectives, postulating that neuroendocrine, neurotransmitter, inflammatory immune, and mitochondrial dysfunction resulting from fatigue and its co-factors may further contribute to endocrine disorders, menstrual irregularities, and sexual dysfunction, ultimately leading to infertility. In addition to providing this comprehensive theoretical framework, we summarize anti-fatigue strategies and accentuate current knowledge gaps. By doing so, our aim is to offer novel insights, stimulate further research, and advance our understanding of the crucial interplay between fatigue and female reproductive health.
Collapse
Grants
- 82371684, 82271672 General Program of the National Natural Science Foundation of China
- 82371684, 82271672 General Program of the National Natural Science Foundation of China
- 82371684, 82271672 General Program of the National Natural Science Foundation of China
- 82371684, 82271672 General Program of the National Natural Science Foundation of China
- 82371684, 82271672 General Program of the National Natural Science Foundation of China
- JCRCWL-2022-001 the Interdisciplinary Innovative Talents Foundation from Renmin Hospital of Wuhan University
- JCRCWL-2022-001 the Interdisciplinary Innovative Talents Foundation from Renmin Hospital of Wuhan University
- JCRCWL-2022-001 the Interdisciplinary Innovative Talents Foundation from Renmin Hospital of Wuhan University
- JCRCWL-2022-001 the Interdisciplinary Innovative Talents Foundation from Renmin Hospital of Wuhan University
- JCRCWL-2022-001 the Interdisciplinary Innovative Talents Foundation from Renmin Hospital of Wuhan University
- 2022A1515010650, 2023A1515011675 the General Program of the Natural Science Foundation of Guangdong Province
- 2022A1515010650, 2023A1515011675 the General Program of the Natural Science Foundation of Guangdong Province
- 2022A1515010650, 2023A1515011675 the General Program of the Natural Science Foundation of Guangdong Province
- 2022A1515010650, 2023A1515011675 the General Program of the Natural Science Foundation of Guangdong Province
- 2022A1515010650, 2023A1515011675 the General Program of the Natural Science Foundation of Guangdong Province
Collapse
Affiliation(s)
- Wenzhu Li
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, China
| | - Xiaoyan Huang
- Department of Rheumatology, The University of Hong Kong- Shenzhen Hospital, Shenzhen, 518053, China
| | - Yiqiu Wei
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, China
| | - Tailang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, China.
| | - Lianghui Diao
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, 518045, China.
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri- implantation, Shenzhen, 518045, China.
| |
Collapse
|
14
|
Stenta T, Assis M, Ayers K, Tucker EJ, Halman A, Gook D, Sinclair AH, Elliott DA, Jayasinghe Y, Conyers R. Pharmacogenomic studies of fertility outcomes in pediatric cancer survivors - A systematic review. Clin Transl Sci 2024; 17:e13827. [PMID: 38924306 PMCID: PMC11199333 DOI: 10.1111/cts.13827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 06/28/2024] Open
Abstract
For the same age, sex, and dosage, there can be significant variation in fertility outcomes in childhood cancer survivors. Genetics may explain this variation. This study aims to: (i) review the genetic contributions to infertility, (ii) search for pharmacogenomic studies looking at interactions of cancer treatment, genetic predisposition and fertility-related outcomes. Systematic searches in MEDLINE Ovid, Embase Classic+Embase, and PubMed were conducted using the following selection criteria: (i) pediatric, adolescent, and young adult cancer survivors, below 25 years old at the time of diagnosis, (ii) fertility outcome measures after cancer therapy, (iii) genetic considerations. Studies were excluded if they were (i) conducted in animal models, (ii) were not published in English, (iii) editorial letters, (iv) theses. Articles were screened in Covidence by at least two independent reviewers, followed by data extraction and a risk of bias assessment using the Quality in Prognostic Studies tool. Eight articles were reviewed with a total of 29 genes. Outcome measures included sperm concentration, azoospermia, AMH levels, assessment of premature menopause, ever being pregnant or siring a pregnancy. Three studies included replication cohorts, which attempted replication of SNP findings for NPY2R, BRSK1, FANCI, CYP2C19, CYP3A4, and CYP2B6. Six studies were rated with a high risk of bias. Differing methods may explain a lack of replication, and small cohorts may have contributed to few significant findings. Larger, prospective longitudinal studies with an unbiased genome-wide focus will be important to replicate significant results, which can be applied clinically.
Collapse
Affiliation(s)
- Tayla Stenta
- Cancer Therapies, Stem Cell MedicineMurdoch Children's Research InstituteParkvilleVictoriaAustralia
| | - Michael Assis
- Cancer Therapies, Stem Cell MedicineMurdoch Children's Research InstituteParkvilleVictoriaAustralia
- Department of Obstetrics, Gynaecology and Newborn HealthRoyal Women's Hospital, University of MelbourneParkvilleVictoriaAustralia
| | - Katie Ayers
- Department of PaediatricsUniversity of MelbourneParkvilleVictoriaAustralia
- Reproductive DevelopmentMurdoch Children's Research InstituteParkvilleVictoriaAustralia
| | - Elena J. Tucker
- Department of PaediatricsUniversity of MelbourneParkvilleVictoriaAustralia
- Reproductive DevelopmentMurdoch Children's Research InstituteParkvilleVictoriaAustralia
| | - Andreas Halman
- Cancer Therapies, Stem Cell MedicineMurdoch Children's Research InstituteParkvilleVictoriaAustralia
- Victorian Clinical Genetics ServicesMurdoch Children's Research InstituteMelbourneVictoriaAustralia
| | - Debra Gook
- Department of Obstetrics, Gynaecology and Newborn HealthRoyal Women's Hospital, University of MelbourneParkvilleVictoriaAustralia
- Gynaecology, Royal Children‘s HospitalParkvilleVictoriaAustralia
- Reproductive Services, The Royal Women's HospitalParkvilleVictoriaAustralia
| | - Andrew H. Sinclair
- Department of PaediatricsUniversity of MelbourneParkvilleVictoriaAustralia
- Reproductive DevelopmentMurdoch Children's Research InstituteParkvilleVictoriaAustralia
| | - David A. Elliott
- Cancer Therapies, Stem Cell MedicineMurdoch Children's Research InstituteParkvilleVictoriaAustralia
- Department of PaediatricsUniversity of MelbourneParkvilleVictoriaAustralia
| | - Yasmin Jayasinghe
- Department of Obstetrics, Gynaecology and Newborn HealthRoyal Women's Hospital, University of MelbourneParkvilleVictoriaAustralia
- Gynaecology, Royal Children‘s HospitalParkvilleVictoriaAustralia
| | - Rachel Conyers
- Cancer Therapies, Stem Cell MedicineMurdoch Children's Research InstituteParkvilleVictoriaAustralia
- Department of PaediatricsUniversity of MelbourneParkvilleVictoriaAustralia
- Children's Cancer Centre, The Royal Children's HospitalParkvilleVictoriaAustralia
| |
Collapse
|
15
|
Foster KL, Lee DJ, Witchel SF, Gordon CM. Ovarian Insufficiency and Fertility Preservation During and After Childhood Cancer Treatment. J Adolesc Young Adult Oncol 2024; 13:377-388. [PMID: 38265460 DOI: 10.1089/jayao.2023.0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024] Open
Abstract
Premature ovarian insufficiency (POI) is one of many potential long-term consequences of childhood cancer treatment in females. Causes of POI in this patient population can include chemotherapy, especially alkylating agents, and radiation therapy. Rarely, ovarian tumors lead to ovarian dysfunction. POI can manifest as delayed pubertal development, irregular menses or amenorrhea, and infertility. This diagnosis often negatively impacts emotional health due to the implications of impaired ovarian function after already enduring treatment for a primary malignancy. The emerging adult may be challenged by the impact on energy level, quality of life, and fertility potential. POI can also lead to low bone density and compromised skeletal strength. This review discusses the health consequences of POI in childhood cancer survivors (CCS). We also explore the role of fertility preservation for CCS, including ovarian tissue cryopreservation and other available options. Lastly, knowledge gaps are identified that will drive a future research agenda.
Collapse
Affiliation(s)
- Kayla L Foster
- Texas Children's Cancer and Hematology Center, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Danielle J Lee
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Selma F Witchel
- Division of Pediatric Endocrinology, Department of Pediatrics, UPMC Children's Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Catherine M Gordon
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
16
|
Yatsenko SA, Witchel SF, Gordon CM. Primary Amenorrhea and Premature Ovarian Insufficiency. Endocrinol Metab Clin North Am 2024; 53:293-305. [PMID: 38677871 PMCID: PMC11110077 DOI: 10.1016/j.ecl.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
This review focuses on primary amenorrhea and primary/premature ovarian insufficiency due to hypergonadotropic hypogonadism. Following a thoughtful, thorough evaluation, a diagnosis can usually be discerned. Pubertal induction and ongoing estrogen replacement therapy are often necessary. Shared decision-making involving the patient, family, and health-care team can empower the young person and family to successfully thrive with these chronic conditions.
Collapse
Affiliation(s)
- Svetlana A Yatsenko
- Department of Pathology, University of Pittsburgh, Magee-Womens Research Institute, Pittsburgh, PA, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Selma F Witchel
- Division of Pediatric Endocrinology, Department of Pediatrics, UPMC Children's Hospital, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Catherine M Gordon
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
17
|
Fakhro KA, Awwad J, Garibova S, Saraiva LR, Avella M. Conserved genes regulating human sex differentiation, gametogenesis and fertilization. J Transl Med 2024; 22:473. [PMID: 38764035 PMCID: PMC11103854 DOI: 10.1186/s12967-024-05162-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/03/2024] [Indexed: 05/21/2024] Open
Abstract
The study of the functional genome in mice and humans has been instrumental for describing the conserved molecular mechanisms regulating human reproductive biology, and for defining the etiologies of monogenic fertility disorders. Infertility is a reproductive disorder that includes various conditions affecting a couple's ability to achieve a healthy pregnancy. Recent advances in next-generation sequencing and CRISPR/Cas-mediated genome editing technologies have facilitated the identification and characterization of genes and mechanisms that, if affected, lead to infertility. We report established genes that regulate conserved functions in fundamental reproductive processes (e.g., sex determination, gametogenesis, and fertilization). We only cover genes the deletion of which yields comparable fertility phenotypes in both rodents and humans. In the case of newly-discovered genes, we report the studies demonstrating shared cellular and fertility phenotypes resulting from loss-of-function mutations in both species. Finally, we introduce new model systems for the study of human reproductive biology and highlight the importance of studying human consanguineous populations to discover novel monogenic causes of infertility. The rapid and continuous screening and identification of putative genetic defects coupled with an efficient functional characterization in animal models can reveal novel mechanisms of gene function in human reproductive tissues.
Collapse
Affiliation(s)
- Khalid A Fakhro
- Research Branch, Sidra Medicine, Doha, Qatar
- Weill Cornell Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Johnny Awwad
- Reproductive Medicine Unit, Sidra Medicine, Doha, Qatar
- Obstetrics & Gynecology, American University of Beirut Medical Center, Beirut, Lebanon
- Vincent Memorial Obstetrics & Gynecology Service, The Massachusetts General Hospital, Boston, MA, USA
| | | | - Luis R Saraiva
- Research Branch, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Matteo Avella
- Research Branch, Sidra Medicine, Doha, Qatar.
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
- Department of Biomedical Sciences, Qatar University, Doha, Qatar.
| |
Collapse
|
18
|
Olive E, Bull C, Gordon A, Davies-Tuck M, Wang R, Callander E. Economic evaluations of assisted reproductive technologies in high-income countries: a systematic review. Hum Reprod 2024; 39:981-991. [PMID: 38438132 PMCID: PMC11063548 DOI: 10.1093/humrep/deae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 01/10/2024] [Indexed: 03/06/2024] Open
Abstract
STUDY QUESTION Which assited reproductive technology (ART) interventions in high-income countries are cost-effective and which are not? SUMMARY ANSWER Among all ART interventions assessed in economic evaluations, most high-cost interventions, including preimplantation genetic testing for aneuploidy (PGT-A) for a general population and ICSI for unexplained infertility, are unlikely to be cost-effective owing to minimal or no increase in effectiveness. WHAT IS KNOWN ALREADY Approaches to reduce costs in order to increase access have been identified as a research priority for future infertility research. There has been an increasing number of ART interventions implemented in routine clinical practice globally, before robust assessments of evidence on economic evaluations. The extent of clinical effectiveness of some studied comparisons has been evaluated in high-quality research, allowing more informative decision making around cost-effectiveness. STUDY DESIGN, SIZE, DURATION We performed a systematic review and searched seven databases (MEDLINE, PUBMED, EMBASE, COCHRANE, ECONLIT, SCOPUS, and CINAHL) for studies examining ART interventions for infertility together with an economic evaluation component (cost-effectiveness, cost-benefit, cost-utility, or cost-minimization assessment), in high-income countries, published since January 2011. The last search was 22 June 2022. PARTICIPANTS/MATERIALS, SETTING, METHODS Two independent reviewers assessed publications and included those fulfilling the eligibility criteria. Studies were examined to assess the cost-effectiveness of the studied intervention, as well as the reporting quality of the study. The chosen outcome measure and payer perspective were also noted. Completeness of reporting was assessed against the Consolidated Health Economic Evaluation Reporting Standard. Results are presented and summarized based on the intervention studied. MAIN RESULTS AND THE ROLE OF CHANCE The review included 40 studies which were conducted in 11 high-income countries. Most studies (n = 34) included a cost-effectiveness analysis. ART interventions included medication or strategies for controlled ovarian stimulation (n = 15), IVF (n = 9), PGT-A (n = 7), single embryo transfer (n = 5), ICSI (n = 3), and freeze-all embryo transfer (n = 1). Live birth was the mostly commonly reported primary outcome (n = 27), and quality-adjusted life years was reported in three studies. The health funder perspective was used in 85% (n = 34) of studies. None of the included studies measured patient preference for treatment. It remains uncertain whether PGT-A improves pregnancy rates compared to IVF cycles managed without PGT-A, and therefore cost-effectiveness could not be demonstrated for this intervention. Similarly, ICSI in non-male factor infertility appears not to be clinically effective compared to standard fertilization in an IVF cycle and is therefore not cost-effective. Interventions such as use of biosimilars or HMG for ovarian stimulation are cheaper but compromise clinical effectiveness. LIMITATIONS, REASONS FOR CAUTION Lack of both preference-based and standardized outcomes limits the comparability of results across studies. The selection of efficacy evidence offered for some interventions for economic evaluations is not always based on high-quality randomized trials and systematic reviews. In addition, there is insufficient knowledge of the willingness to pay thresholds of individuals and state funders for treatment of infertility. There is variable quality of reporting scores, which might increase uncertainty around the cost-effectiveness results. WIDER IMPLICATIONS OF THE FINDINGS Investment in strategies to help infertile people who utilize ART is justifiable at both personal and population levels. This systematic review may assist ART funders decide how to best invest to maximize the likelihood of delivery of a healthy child. STUDY FUNDING/COMPETING INTEREST(S) There was no funding for this study. E.C. and R.W. receive salary support from the National Health and Medical Research Council (NHMRC) through their fellowship scheme (EC GNT1159536, RW 2021/GNT2009767). M.D.-T. reports consulting fees from King Fahad Medical School. All other authors have no competing interests to declare. REGISTRATION NUMBER Prospero CRD42021261537.
Collapse
Affiliation(s)
- Emily Olive
- Discipline of Obstetrics, Gynaecology and Neonatology, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Claudia Bull
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Adrienne Gordon
- Discipline of Obstetrics, Gynaecology and Neonatology, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Miranda Davies-Tuck
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Rui Wang
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Emily Callander
- School of Public Health, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
19
|
Abo El-Ela FI, Gamal A, El-Banna HA, Ibrahim MA, El-Banna AH, Abdel-Razik ARH, Abdel-Wahab A, Hassan WH, Abdelghany AK. Repro-protective activity of amygdalin and spirulina platensis in niosomes and conventional forms against aluminum chloride-induced testicular challenge in adult rats: role of CYP11A1, StAR, and HSD-3B expressions. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3211-3226. [PMID: 37910183 PMCID: PMC11074051 DOI: 10.1007/s00210-023-02788-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 10/12/2023] [Indexed: 11/03/2023]
Abstract
The male reproductive system is negatively influenced by Al exposure. Al represented a considerable hazard to men's reproduction capabilities. Amygdalin (AMG) and spirulina platensis (SP) have been considered to have a strong antioxidant and repro-protective activity; also, targeted drug delivery systems called niosomes improve the distribution of water-soluble medications like amygdalin and spirulina. Current study targeted to determine the effectiveness of AMG and SP against negative reproductive impact resulted by aluminum chloride (AlCl3) toxicity. Sixty adult male albino rats were separated into 6 groups, including the control group, which received distilled water; AlCl3 group, which received AlCl3; AMG+AlCl3 group, which received AlCl3+AMG; AMGLN+AlCl3 group, which received AlCl3+amygdalin-loaded niosomes; SP+AlCl3 group, which received AlCl3+SP; and SPLN+AlCl3 group, which received AlCl3+spirulina-loaded niosomes. All treatments were orally gavaged daily for 5 weeks, and rats were weighed weekly. At the termination of the experiment, some males (three from each group) were used for fertility traits via mating thirty virgin rat females (in a ratio of 1:2 and 2:3 male:female, respectively) followed by recording of birth weights and litter size (number of pups per each female) at birth to assess males' reproductive capability. Other males were euthanized for collection of serum, epididymal semen samples, and tissue samples for biochemical, sperm evaluation, gene expression, and histopathological measurements. There are a considerable number of negative impacts of AlCl3 on male fertility clarified by declined serum testosterone levels; an increased oxidative stress (MDA, TAC); deteriorated semen quality; down-regulation of CYP11A1, StAR, and HSD-3b gene expressions; and testicular tissue degenerative changes. In addition, litter size (number of pups per each female) and birth weights of pups obtained from mated females were affected. AMG and SP treatments, either in niosomal or conventional form, alleviated the AlCl3 negative effects by reducing oxidative stress; increasing testosterone levels; improving semen quality; upregulating of CYP11A1, StAR, and HSD-3b gene expressions; and reducing degenerative changes of testicular tissue. Besides, negative reproductive effect was diminished as observed by changes in the litter size (number of pups per each female) and birth weights of pups obtained from mated females. AMG and SP treatments (either in niosomal or conventional form), ameliorated the AlCl3 negative effects as they possess powerful antioxidant activity, as well as they have the ability to improve the reproductive activity of affected males.
Collapse
Affiliation(s)
- Fatma I Abo El-Ela
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt.
| | - Amr Gamal
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | | | - Marwa A Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Ahmed H El-Banna
- Michael Sayegh Faculty of Pharmacy, Aqaba University of Technology, Aqaba, Jordan
| | - Abdel-Razik H Abdel-Razik
- Department of Histology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Ahmed Abdel-Wahab
- Department of Physiology, Faculty of Veterinary Medicine, Minia University, El-Minia, Egypt
| | - Walid Hamdy Hassan
- Department of Microbiology Mycology and Immunology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Asmaa K Abdelghany
- Animal and Poultry Management and Wealth Development Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| |
Collapse
|
20
|
Zhang XY, Zhang XX, Wang L. Early embryonic failure caused by a novel mutation in the TUBB8 gene: A case report. World J Clin Cases 2024; 12:2092-2098. [PMID: 38680263 PMCID: PMC11045509 DOI: 10.12998/wjcc.v12.i12.2092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/22/2024] [Accepted: 03/21/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND This study aimed to explore the relationship between gene mutations and early embryonic development arrest and to provide more possibilities for the diagnosis and treatment of repeated implantation failure. CASE SUMMARY Here, we collected and described the clinical data of a patient with early embryonic development stagnation after repeated in vitro fertilization attempts for primary infertility at the Department Reproductive Center of Zaozhuang Maternal and Child Healthcare Hospital. We also detected the whole-exon gene of the patient's spouse and parents, and conducted bioinformatics analysis to determine the pathogenesis of the gene. CONCLUSION A novel mutant of the TUBB8 gene [c.602G>T(p.C201F)] was identified, and this mutant provided new data on the genotype-phenotype relationships of related diseases.
Collapse
Affiliation(s)
- Xiao-Yu Zhang
- Department of Reproductive Center, Zaozhuang Maternal and Child Healthcare Hospital, Zaozhuang 277000, Shandong Province, China
| | - Xing-Xing Zhang
- Department of Reproductive Center, Zaozhuang Maternal and Child Healthcare Hospital, Zaozhuang 277000, Shandong Province, China
| | - Lei Wang
- Department of Reproductive Center, Zaozhuang Maternal and Child Healthcare Hospital, Zaozhuang 277000, Shandong Province, China
| |
Collapse
|
21
|
Ansari M, Faour KNW, Shimamura A, Grimes G, Kao EM, Denhoff ER, Blatnik A, Ben-Isvy D, Wang L, Helm BM, Firth H, Breman AM, Bijlsma EK, Iwata-Otsubo A, de Ravel TJL, Fusaro V, Fryer A, Nykamp K, Stühn LG, Haack TB, Korenke GC, Constantinou P, Bujakowska KM, Low KJ, Place E, Humberson J, Napier MP, Hoffman J, Juusola J, Deardorff MA, Shao W, Rockowitz S, Krantz I, Kaur M, Raible S, Dortenzio V, Kliesch S, Singer-Berk M, Groopman E, DiTroia S, Ballal S, Srivastava S, Rothfelder K, Biskup S, Rzasa J, Kerkhof J, McConkey H, Sadikovic B, Hilton S, Banka S, Tüttelmann F, Conrad DF, O'Donnell-Luria A, Talkowski ME, FitzPatrick DR, Boone PM. Heterozygous loss-of-function SMC3 variants are associated with variable growth and developmental features. HGG ADVANCES 2024; 5:100273. [PMID: 38297832 PMCID: PMC10876629 DOI: 10.1016/j.xhgg.2024.100273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/02/2024] Open
Abstract
Heterozygous missense variants and in-frame indels in SMC3 are a cause of Cornelia de Lange syndrome (CdLS), marked by intellectual disability, growth deficiency, and dysmorphism, via an apparent dominant-negative mechanism. However, the spectrum of manifestations associated with SMC3 loss-of-function variants has not been reported, leading to hypotheses of alternative phenotypes or even developmental lethality. We used matchmaking servers, patient registries, and other resources to identify individuals with heterozygous, predicted loss-of-function (pLoF) variants in SMC3, and analyzed population databases to characterize mutational intolerance in this gene. Here, we show that SMC3 behaves as an archetypal haploinsufficient gene: it is highly constrained against pLoF variants, strongly depleted for missense variants, and pLoF variants are associated with a range of developmental phenotypes. Among 14 individuals with SMC3 pLoF variants, phenotypes were variable but coalesced on low growth parameters, developmental delay/intellectual disability, and dysmorphism, reminiscent of atypical CdLS. Comparisons to individuals with SMC3 missense/in-frame indel variants demonstrated an overall milder presentation in pLoF carriers. Furthermore, several individuals harboring pLoF variants in SMC3 were nonpenetrant for growth, developmental, and/or dysmorphic features, and some had alternative symptomatologies with rational biological links to SMC3. Analyses of tumor and model system transcriptomic data and epigenetic data in a subset of cases suggest that SMC3 pLoF variants reduce SMC3 expression but do not strongly support clustering with functional genomic signatures of typical CdLS. Our finding of substantial population-scale LoF intolerance in concert with variable growth and developmental features in subjects with SMC3 pLoF variants expands the scope of cohesinopathies, informs on their allelic architecture, and suggests the existence of additional clearly LoF-constrained genes whose disease links will be confirmed only by multilayered genomic data paired with careful phenotyping.
Collapse
Affiliation(s)
- Morad Ansari
- South East Scotland Genetic Service, Western General Hospital, Edinburgh, UK; MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Kamli N W Faour
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA; Cornelia de Lange Syndrome and Related Disorders Clinic, Boston Children's Hospital, Boston, MA, USA
| | - Akiko Shimamura
- Division of Hematology and Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Graeme Grimes
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Emeline M Kao
- Institutional Centers for Clinical and Translational Research, Boston Children's Hospital, Boston, MA, USA
| | - Erica R Denhoff
- Institutional Centers for Clinical and Translational Research, Boston Children's Hospital, Boston, MA, USA
| | - Ana Blatnik
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK; Department of Clinical Cancer Genetics, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Daniel Ben-Isvy
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Division of Medical Sciences, Harvard Medical School, Boston, MA, USA
| | - Lily Wang
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Division of Medical Sciences, Harvard Medical School, Boston, MA, USA
| | - Benjamin M Helm
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Helen Firth
- Clinical Genetics, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK
| | - Amy M Breman
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Emilia K Bijlsma
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Aiko Iwata-Otsubo
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Thomy J L de Ravel
- Centre for Human Genetics, UZ Leuven/Leuven University Hospitals, Leuven, Belgium
| | | | - Alan Fryer
- Department of Clinical Genetics, Alder Hey Children's Hospital Liverpool, Liverpool, UK
| | | | - Lara G Stühn
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - G Christoph Korenke
- Department of Neuropaediatric and Metabolic Diseases, University Children's Hospital Oldenburg, Oldenburg, Germany
| | - Panayiotis Constantinou
- West of Scotland Centre for Genomic Medicine, Queen Elizabeth University Hospital, Glasgow, UK
| | | | - Karen J Low
- University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK; University of Bristol, Bristol, UK
| | - Emily Place
- Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | | | | | | | | | - Matthew A Deardorff
- Departments of Pathology and Pediatrics, Children's Hospital Los Angeles and University of Southern California, Los Angeles, CA, USA
| | - Wanqing Shao
- Research Computing, Information Technology, Boston Children's Hospital, Boston, MA, USA
| | - Shira Rockowitz
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA; Research Computing, Information Technology, Boston Children's Hospital, Boston, MA, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
| | - Ian Krantz
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Maninder Kaur
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sarah Raible
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Sabine Kliesch
- Department of Clinical and Surgical Andrology, Centre of Reproductive Medicine and Andrology, University Hospital Münster, Münster, Germany
| | - Moriel Singer-Berk
- Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Emily Groopman
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA; Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stephanie DiTroia
- Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sonia Ballal
- Cornelia de Lange Syndrome and Related Disorders Clinic, Boston Children's Hospital, Boston, MA, USA; Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA
| | - Siddharth Srivastava
- Cornelia de Lange Syndrome and Related Disorders Clinic, Boston Children's Hospital, Boston, MA, USA; Divison of Neurology, Boston Children's Hospital, Boston, MA, USA
| | | | - Saskia Biskup
- Zentrum für Humangenetik, Tübingen, Germany; Center for Genomics and Transcriptomics (CeGaT), Tübingen, Germany
| | - Jessica Rzasa
- Molecular Diagnostics Program and Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Jennifer Kerkhof
- Molecular Diagnostics Program and Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Haley McConkey
- Molecular Diagnostics Program and Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Bekim Sadikovic
- Molecular Diagnostics Program and Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Sarah Hilton
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Siddharth Banka
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK; Division of Evolution, Infection, and Genomics, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, UK
| | - Frank Tüttelmann
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Donald F Conrad
- Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Portland, OR, USA; Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR, USA
| | - Anne O'Donnell-Luria
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michael E Talkowski
- Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - David R FitzPatrick
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Philip M Boone
- Cornelia de Lange Syndrome and Related Disorders Clinic, Boston Children's Hospital, Boston, MA, USA; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
22
|
Taguchi S, Hayashi T, Watanabe N, Tada Y, Matsubara T, Calongos G, Yamamoto K, Fujishima R, Imoto S, Funabiki M, Nakamura Y. Genetic Counseling for an Infertile Couple With Premature Chromatid Separation (PCS) Syndrome: A Case Report. Cureus 2024; 16:e56921. [PMID: 38665733 PMCID: PMC11043054 DOI: 10.7759/cureus.56921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
We report the first case of successful genetic counseling for an infertile couple with premature chromatid separation (PCS) syndrome. After our careful genetic counseling, the couple decided to continue infertility treatment. As a result, they gave birth to a baby (girl: 2,930 g) by caesarean section in May 2018. To our knowledge, there have not been any published reports regarding genetic counseling for an infertile couple with PCS after PubMed, EMBASE, and Web of Science searches until March 2024.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kiko Yamamoto
- In Vitro Fertilization Center, Oak Clinic, Osaka, JPN
| | | | - Sayaka Imoto
- In Vitro Fertilization Center, Oak Clinic, Osaka, JPN
| | | | | |
Collapse
|
23
|
Dahiphale SM, Potdar J, Acharya N, Jyotsna G, Saloni, Desale R. Congenital Anomalies of the Female Genital Tract: A Comprehensive Review. Cureus 2024; 16:e56753. [PMID: 38654788 PMCID: PMC11037924 DOI: 10.7759/cureus.56753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/23/2024] [Indexed: 04/26/2024] Open
Abstract
This comprehensive review provides an in-depth examination of congenital anomalies of the female genital tract, explicitly focusing on the American Society for Reproductive Medicine (ASRM) Müllerian Anomalies Classification. The classification system is crucial for standardizing communication and guiding accurate diagnoses in clinical practice. The review explores the diverse clinical presentations, etiological factors, and diagnostic modalities associated with these anomalies. Management strategies, ranging from conservative approaches to advanced reproductive technologies, are discussed in the context of individualized treatment plans based on the ASRM classification. The psychosocial impact of female genital tract anomalies is thoroughly examined, emphasizing the importance of holistic care and patient-centered approaches. Looking toward the future, the review outlines emerging research areas, including advances in diagnosis techniques, innovative treatment modalities, and genetic studies. It ultimately underscores the need for a comprehensive understanding of physical and psychosocial dimensions, offering insights for healthcare professionals to navigate this complex landscape and improve the lives of affected individuals.
Collapse
Affiliation(s)
- Swati M Dahiphale
- Obstetrics and Gynaecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Jyotsana Potdar
- Obstetrics and Gynaecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Neema Acharya
- Obstetrics and Gynaecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Garapati Jyotsna
- Obstetrics and Gynaecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Saloni
- Obstetrics and Gynaecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Rahul Desale
- Radiodiagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| |
Collapse
|
24
|
Li P, Langer M, Vilsmaier T, Kramer M, Sciuk F, Kolbinger B, Jakob A, Rogenhofer N, Dalla-Pozza R, Thaler C, Haas NA, Oberhoffer FS. Vascular Health of Females with History of Assisted Reproductive Technology. J Cardiovasc Dev Dis 2024; 11:66. [PMID: 38392280 PMCID: PMC10889395 DOI: 10.3390/jcdd11020066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024] Open
Abstract
The use of assisted reproductive technologies (ART) for the treatment of infertility is gaining popularity. Limited data on the overall vascular health of females with history of ART are available. This pilot study aimed to investigate the overall vascular health of females with history of ART compared to individuals who conceived spontaneously. The assessment of overall vascular health included the measurement of brachial blood pressure, central blood pressure, and pulse wave velocity, as well as the evaluation of the arterial stiffness and carotid intima-media thickness (cIMT) of the common carotid arteries. Conventional blood lipids including lipoprotein a (Lp(a)) were also determined. In total, 45 females with history of ART and 52 females who conceived spontaneously were included (mean age: 47.72 ± 5.96 years vs. 46.84 ± 7.43 years, p = 0.525). An initial comparison revealed a significantly higher prevalence of elevated Lp(a) in ART females (p = 0.011). However, after multiple comparison correction, the significant result disappeared (p = 0.132). Within the cohort of ART females, no significantly higher cardiovascular risk was detected regarding vascular function. The potentially higher prevalence of elevated Lp(a) in ART females must be further investigated in future studies, as it might contribute to the impaired reproductive process in this cohort.
Collapse
Affiliation(s)
- Pengzhu Li
- Division of Pediatric Cardiology and Intensive Care, University Hospital, LMU Munich, 81377 Munich, Germany; (P.L.); (N.A.H.)
| | - Magdalena Langer
- Division of Pediatric Cardiology and Intensive Care, University Hospital, LMU Munich, 81377 Munich, Germany; (P.L.); (N.A.H.)
| | - Theresa Vilsmaier
- Division of Gynecological Endocrinology and Reproductive Medicine, Department of Gynecology and Obstetrics, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Marie Kramer
- Division of Pediatric Cardiology and Intensive Care, University Hospital, LMU Munich, 81377 Munich, Germany; (P.L.); (N.A.H.)
| | - Franziska Sciuk
- Division of Pediatric Cardiology and Intensive Care, University Hospital, LMU Munich, 81377 Munich, Germany; (P.L.); (N.A.H.)
| | - Brenda Kolbinger
- Division of Pediatric Cardiology and Intensive Care, University Hospital, LMU Munich, 81377 Munich, Germany; (P.L.); (N.A.H.)
- Division of Gynecological Endocrinology and Reproductive Medicine, Department of Gynecology and Obstetrics, University Hospital, LMU Munich, 81377 Munich, Germany
| | - André Jakob
- Division of Pediatric Cardiology and Intensive Care, University Hospital, LMU Munich, 81377 Munich, Germany; (P.L.); (N.A.H.)
| | - Nina Rogenhofer
- Division of Gynecological Endocrinology and Reproductive Medicine, Department of Gynecology and Obstetrics, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Robert Dalla-Pozza
- Division of Pediatric Cardiology and Intensive Care, University Hospital, LMU Munich, 81377 Munich, Germany; (P.L.); (N.A.H.)
| | - Christian Thaler
- Division of Gynecological Endocrinology and Reproductive Medicine, Department of Gynecology and Obstetrics, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Nikolaus Alexander Haas
- Division of Pediatric Cardiology and Intensive Care, University Hospital, LMU Munich, 81377 Munich, Germany; (P.L.); (N.A.H.)
| | - Felix Sebastian Oberhoffer
- Division of Pediatric Cardiology and Intensive Care, University Hospital, LMU Munich, 81377 Munich, Germany; (P.L.); (N.A.H.)
| |
Collapse
|
25
|
Ughade PA, Shrivastava D. Unveiling the Role of Endometrial CD-138: A Comprehensive Review on Its Significance in Infertility and Early Pregnancy. Cureus 2024; 16:e54782. [PMID: 38529432 PMCID: PMC10961243 DOI: 10.7759/cureus.54782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 02/23/2024] [Indexed: 03/27/2024] Open
Abstract
This review comprehensively examines the role of endometrial CD-138 (syndecan-1) in the context of infertility and early pregnancy. The endometrium, a dynamic tissue responsive to hormonal cues, plays a central role in fertility, and understanding the molecular intricacies governing its function is crucial. CD-138, a cell surface proteoglycan, emerges as a critical player expressed by various endometrial cell types. Our exploration encompasses a brief overview of the endometrium, introducing CD-138 as a significant molecular entity. The rationale for the review underscores the importance of elucidating endometrial factors in fertility and addresses existing knowledge gaps related to CD-138. Throughout the review, we unravel the multifaceted nature of CD-138 and its involvement in infertility, highlighting its potential as a diagnostic marker. Furthermore, insights into CD-138's role during early pregnancy, including trophoblast-endothelial interactions, are discussed. In conclusion, the findings underscore the clinical implications of CD-138, suggesting its utility in diagnostics and offering prospects for targeted therapeutic interventions. The identified knowledge gaps propel future research directions, promising to deepen our understanding of this enigmatic molecule and its transformative potential in reproductive medicine.
Collapse
Affiliation(s)
- Prachi A Ughade
- Obstetrics and Gynaecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Deepti Shrivastava
- Obstetrics and Gynaecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| |
Collapse
|
26
|
Salmanov AG, Yuzko OM, Tofan BY, Artyomenko VV, Korniyenko SM, Rud VO, Dyndar OA, Kovalyshyn OA, Nykoniuk TR, Nastradina NM. Factors associated with female infertility in Ukraine: results a multicenter study. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2024; 77:790-799. [PMID: 38865639 DOI: 10.36740/wlek202404127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
OBJECTIVE Aim: To determine the current prevalence of female infertility and characterize and identify risk factors associated with infertility in Ukraine. PATIENTS AND METHODS Materials and Methods: Multicenter prospective cohort study was conducted from January 2021 to December 2023 in twelve medical centers from nine regions of Ukraine. Definitions of infertility were adapted from the World Health Organization. According to the data collected from questionnaire, participants were divided into infertile and fertile groups and analyzed associated factors. RESULTS Results: Among all the 7,618 participants in this study, the prevalence of female infertility was 24.3%. The prevalence of primary infertility was 5.9%, and the prevalence of secondary infertility was 18.4%. In logistic multivariate regression analyses, female infertility was associated with age of women (p<0.001), age of first sexual intercourse (p<0.001), history of gynecological surgery (p<0.001), marital status (p<0.001), age of marriage (p<0.001), decreased ovarian reserve (DOR) (p=0.006), family history of infertility (p<0.001), history of cervicitis (p=0.007), history of surgical abortion (p<0.001), history of endometritis (p=0.027), bacterial vaginosis (p=0.023), and aerobic vaginitis (< 0.001). CONCLUSION Conclusions: Our data suggest a high prevalence of female infertility in Ukraine. The prevalence of secondary infertility was higher than primary infertility. Age of women, age of first sexual intercourse, history of gynecological surgery, marital status, age of marriage, DOR, family history of infertility, history of cervicitis, history of surgical abortion, history of endometritis, bacterial vaginosis, and aerobic vaginitis were associated with infertility.
Collapse
Affiliation(s)
- Aidyn G Salmanov
- SHUPYK NATIONAL HEALTHCARE UNIVERSITY OF UKRAINE, KYIV, UKRAINE; INSTITUTE OF PEDIATRICS, OBSTETRICS AND GYNECOLOGY OF THE NATIONAL ACADEMY OF MEDICAL SCIENCES OF UKRAINE, KYIV, UKRAINE
| | | | - Bohdan Yu Tofan
- SHUPYK NATIONAL HEALTHCARE UNIVERSITY OF UKRAINE, KYIV, UKRAINE
| | | | | | - Victor O Rud
- NATIONAL PIROGOV MEMORIAL MEDICAL UNIVERSITY, VINNYTSIA, UKRAINE
| | | | | | | | | |
Collapse
|
27
|
Biswas L, Schindler K. Predicting Infertility: How Genetic Variants in Oocyte Spindle Genes Affect Egg Quality. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2024; 238:1-22. [PMID: 39030352 DOI: 10.1007/978-3-031-55163-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Successful reproduction relies on the union of a single chromosomally normal egg and sperm. Chromosomally normal eggs develop from precursor cells, called oocytes, that have undergone accurate chromosome segregation. The process of chromosome segregation is governed by the oocyte spindle, a unique cytoskeletal machine that splits chromatin content of the meiotically dividing oocyte. The oocyte spindle develops and functions in an idiosyncratic process, which is vulnerable to genetic variation in spindle-associated proteins. Human genetic variants in several spindle-associated proteins are associated with poor clinical fertility outcomes, suggesting that heritable etiologies for oocyte dysfunction leading to infertility exist and that the spindle is a crux for female fertility. This chapter examines the mammalian oocyte spindle through the lens of human genetic variation, covering the genes TUBB8, TACC3, CEP120, AURKA, AURKC, AURKB, BUB1B, and CDC20. Specifically, it explores how patient-identified variants perturb spindle development and function, and it links these molecular changes in the oocyte to their cognate clinical consequences, such as oocyte maturation arrest, elevated egg aneuploidy, primary ovarian insufficiency, and recurrent pregnancy loss. This discussion demonstrates that small genetic errors in oocyte meiosis can result in remarkably far-ranging embryonic consequences, and thus reveals the importance of the oocyte's fine machinery in sustaining life.
Collapse
Affiliation(s)
- Leelabati Biswas
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
- Human Genetics Institute of New Jersey, Piscataway, NJ, USA
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Karen Schindler
- Department of Genetics, Rutgers University, Piscataway, NJ, USA.
- Human Genetics Institute of New Jersey, Piscataway, NJ, USA.
| |
Collapse
|
28
|
Philibert P, Stévant I, Déjardin S, Girard M, Sellem E, Durix Q, Messager A, Gonzalez AA, Mialhe X, Pruvost A, Poulat F, Boizet-Bonhoure B. Intergenerational effects on fertility in male and female mice after chronic exposure to environmental doses of NSAIDs and 17α-ethinylestradiol mixtures. Food Chem Toxicol 2023; 182:114085. [PMID: 37844793 DOI: 10.1016/j.fct.2023.114085] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/12/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) and 17α-ethinylestradiol (EE2) are extensively used in human and veterinary medicine. Due to their partial removal by wastewater treatment plants, they are frequent environmental contaminants, particularly in drinking water. Here, we investigated the adverse outcomes of chronic exposure to mixtures of NSAIDs (ibuprofen, 2hydroxy-ibuprofen, diclofenac) and EE2 at two environmentally relevant doses in drinking water, on the reproductive organ development and fertility in F1-exposed male and female mice and in their F2 offspring. In male and female F1 mice, which were exposed to these mixtures, reproductive organ maturation, estrous cyclicity, and spermiogenesis were altered. These defects were observed also in F2 animals, in addition to some specific sperm parameter alterations in F2 males. Transcriptomic analysis revealed significant changes in gene expression patterns and associated pathways implicated in testis and ovarian physiology. Chronic exposure of mice to NSAID and EE2 mixtures at environmental doses intergenerationally affected male and female fertility (i.e. total number of pups and time between litters). Our study provides new insights into the adverse effects of these pharmaceuticals on the reproductive health and will facilitate the implementation of a future regulatory environmental risk assessment of NSAIDs and EE2 for human health.
Collapse
Affiliation(s)
- Pascal Philibert
- Développement et Pathologie de La Gonade, Institut de Génétique Humaine, Centre National de La Recherche Scientifique, Université de Montpellier UMR9002, Montpellier, France; Laboratoire de Biochimie et Biologie Moléculaire, Hôpital Carèmeau, CHU de Nîmes, Nîmes, France.
| | - Isabelle Stévant
- Développement et Pathologie de La Gonade, Institut de Génétique Humaine, Centre National de La Recherche Scientifique, Université de Montpellier UMR9002, Montpellier, France; The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, 5290002, Israel.
| | - Stéphanie Déjardin
- Développement et Pathologie de La Gonade, Institut de Génétique Humaine, Centre National de La Recherche Scientifique, Université de Montpellier UMR9002, Montpellier, France.
| | - Mélissa Girard
- Développement et Pathologie de La Gonade, Institut de Génétique Humaine, Centre National de La Recherche Scientifique, Université de Montpellier UMR9002, Montpellier, France
| | - Eli Sellem
- Research and Development Department, Allice, Biology of Reproduction, INRA Domaine de Vilvert, Jouy en Josas, France
| | - Quentin Durix
- IExplore-RAM, Institut de Génomique Fonctionnelle, Centre National de La Recherche Scientifique, INSERM, Université de Montpellier UMR9002, Montpellier, France.
| | - Aurélie Messager
- Département Médicaments et Technologies pour La Santé (DMTS), Université Paris Saclay, CEA, INRAE, SPI, Gif-sur-Yvette, France.
| | | | - Xavier Mialhe
- MGX-Montpellier GenomiX, Univ. Montpellier, CNRS, INSERM, Montpellier, France.
| | - Alain Pruvost
- Département Médicaments et Technologies pour La Santé (DMTS), Université Paris Saclay, CEA, INRAE, SPI, Gif-sur-Yvette, France.
| | - Francis Poulat
- Développement et Pathologie de La Gonade, Institut de Génétique Humaine, Centre National de La Recherche Scientifique, Université de Montpellier UMR9002, Montpellier, France.
| | - Brigitte Boizet-Bonhoure
- Développement et Pathologie de La Gonade, Institut de Génétique Humaine, Centre National de La Recherche Scientifique, Université de Montpellier UMR9002, Montpellier, France.
| |
Collapse
|
29
|
Wang X, Zhou R, Lu X, Dai S, Liu M, Jiang C, Yang Y, Shen Y, Wang Y, Liu H. Identification of nonfunctional PABPC1L causing oocyte maturation abnormalities and early embryonic arrest in female primary infertility. Clin Genet 2023; 104:648-658. [PMID: 37723834 DOI: 10.1111/cge.14425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/10/2023] [Accepted: 09/04/2023] [Indexed: 09/20/2023]
Abstract
Oocyte maturation arrest, fertilization failure, and early embryonic arrest are important causes of female infertility, whereas the genetic events that contribute to these processes are largely unknown. Loss-of-function of PABPC1L in mice has been suggested to cause female infertility involved in the absence of mature oocytes or embryos in vivo or in vitro. However, the role of PABPC1L in human female reproduction remains largely elusive. In this study, we identified a homozygous missense mutation (c.536G>A, p.R179Q) and a compound heterozygous mutation (c.793C>T, p.R265W; c.1201C>T, p.Q401*) in PABPC1L in two unrelated infertile females characterized by recurrent oocyte maturation abnormalities and early embryonic arrest. These variants resulted in nonfunctional PABPC1L protein and were associated with impaired chromatin configuration and transcriptional silencing in GV oocytes. Moreover, the binding capacity of mutant PABPC1L to mRNAs related to oocyte maturation and early embryonic development was decreased significantly. Our findings revealed novel PABPC1L mutations causing oocyte maturation abnormalities and early embryonic arrest, confirming the essential role of PABPC1L in human female fertility.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ruixi Zhou
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xiaowei Lu
- Reproductive Medicine Centre, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Siyu Dai
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Mohan Liu
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Chuan Jiang
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yanting Yang
- Medical Genetics Department/Prenatal Diagnostic Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ying Shen
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Yan Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Hanmin Liu
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
30
|
Hu T, Li C, Qiao S, Liu W, Han W, Li W, Shi R, Xue X, Shi J, Huang G, Lin T. Novel variants in TUBB8 gene cause multiple phenotypic abnormalities in human oocytes and early embryos. J Ovarian Res 2023; 16:228. [PMID: 38007525 PMCID: PMC10675859 DOI: 10.1186/s13048-023-01274-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/03/2023] [Indexed: 11/27/2023] Open
Abstract
BACKGROUND The genotype-phenotype relationships between TUBB8 variants and female infertility are difficult to clearly define due to the complex inheritance patterns and the highly heterogeneous phenotypes. This study aims to identify novel TUBB8 variants and relevant phenotypes in more infertile females. METHODS A total of 35 females with primary infertility were recruited from two reproductive centers and investigated for identifying variants in TUBB8. Pedigree analysis, in-silico analysis and molecular remodeling were performed to assess their clinical significance. The effects of the variants on human oocytes and embryos as well as HeLa cells were analyzed by morphological observations, immunostaining and Western blot. RESULTS We totally identified five novel variants (p.G13R, p.Y50C, p.T136I, p.F265V and p.T366A) and five previously reported variants (p.I4L, p.L42V, p.Q134*, p.V255M and p.V349I) in TUBB8 from 9 unrelated females with primary infertility. These variants were rare and highly conserved among different species, and were inherited in autosomal dominant/recessive patterns, or occurred de novo. In vitro functional assays in HeLa cells revealed that exogenous expression of mutant TUBB8 proteins caused different degrees of microtubule structural disruption. The existence of these pathogenic TUBB8 variants finally induced oocyte maturation arrest or morphological abnormalities, fertilization failure, cleavage failure, embryonic development defects and implantation failure in the affected females. CONCLUSION These findings enriched the variant spectrum of TUBB8 gene and could contribute to optimize genetic counselling and clinical management of females with primary infertility.
Collapse
Affiliation(s)
- Tingwenyi Hu
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, 400010, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, 400010, China
| | - Chong Li
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, 400010, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, 400010, China
| | - Sen Qiao
- Reproductive Center, Northwest Women's and Children's Hospital, Xi'an, 710003, Shaanxi, China
| | - Weiwei Liu
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, 400010, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, 400010, China
| | - Wei Han
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, 400010, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, 400010, China
| | - Wei Li
- Reproductive Center, Northwest Women's and Children's Hospital, Xi'an, 710003, Shaanxi, China
| | - Rong Shi
- Reproductive Center, Northwest Women's and Children's Hospital, Xi'an, 710003, Shaanxi, China
| | - Xia Xue
- Reproductive Center, Northwest Women's and Children's Hospital, Xi'an, 710003, Shaanxi, China
| | - Juanzi Shi
- Reproductive Center, Northwest Women's and Children's Hospital, Xi'an, 710003, Shaanxi, China.
| | - Guoning Huang
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, 400010, China.
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, 400010, China.
| | - Tingting Lin
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, 400010, China.
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, 400010, China.
| |
Collapse
|
31
|
Zhang W, Li K, Li S, Lv R, Ma J, Yin P, Li L, Sun N, Chen Y, Lu L, Li Y, Zhang Q, Yan H. High-throughput sequencing reveals hub genes for human early embryonic development arrest in vitro fertilization: a pilot study. Front Physiol 2023; 14:1279559. [PMID: 38033342 PMCID: PMC10684309 DOI: 10.3389/fphys.2023.1279559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/13/2023] [Indexed: 12/02/2023] Open
Abstract
Many clinical studies have shown that embryos of in vitro fertilization (IVF) are often prone to developmental arrest, which leads to recurrent failure of IVF treatment. Early embryonic arrest has always been an urgent clinical problem in assisted reproduction centers. However, the molecular mechanisms underlying early embryonic development arrest remain largely unknown. The objective of this study is to investigate potential candidate hub genes and key signaling pathways involved in early stages of embryonic development. RNA-seq analysis was performed on normal and arrest embryos to study the changes of gene expression during early embryonic development. A total of 520 genes exhibiting differential expression were identified, with 174 genes being upregulated and 346 genes being downregulated. Upregulated genes show enrichment in biosynthesis, cellular proliferation and differentiation, and epigenetic regulation. While downregulated genes exhibit enrichment in transcriptional activity, epigenetic regulation, cell cycle progression, cellular proliferation and ubiquitination. The STRING (search tool for the retravel of interacting genes/proteins) database was utilized to analyze protein-protein interactions among these genes, aiming to enhance comprehension of the potential role of these differentially expressed genes (DEGs). A total of 22 hub genes (highly connected genes) were identified among the DEGs using Cytoscape software. Of these, ERBB2 and VEGFA were upregulated, while the remaining 20 genes (CCNB1, CCNA2, DICER1, NOTCH1, UBE2B, UBE2N, PRMT5, UBE2D1, MAPK3, SOX9, UBE2C, UB2D2, EGF, ACTB, UBA52, SHH, KRAS, UBE2E1, ADAM17 and BRCA2) were downregulated. These hub genes are associated with crucial biological processes such as ubiquitination, cellular senescence, cell proliferation and differentiation, and cell cycle. Among these hub genes, CCNA2 and CCNB1 may be involved in controlling cell cycle, which are critical process in early embryonic development.
Collapse
Affiliation(s)
- Wuwen Zhang
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kai Li
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shifeng Li
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Rong Lv
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Ma
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Yin
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Li
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ningyu Sun
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanyuan Chen
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lu Lu
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yun Li
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qinhua Zhang
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Yan
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
32
|
Ozcan MCH, Cruz L, Woodman MF, Gundogan F, Grive KJ. Fetal Ovarian Reserve: the Dynamic Changes in Ubiquitin C-Terminal Hydrolase L1. Reprod Sci 2023; 30:3353-3358. [PMID: 37277688 DOI: 10.1007/s43032-023-01275-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 05/21/2023] [Indexed: 06/07/2023]
Abstract
The regulation of protein turnover by the unique deubiquitinating enzyme ubiquitin C-terminal hydrolase L1 (UCHL1) is only seen in oocytes, spermatogonia, and neurons. Our objective was to investigate variation in expression of UCHL1 across fetal maturation of oocytes that result in lifelong ovarian reserve. We performed a retrospective cohort study of 25 fetal autopsy specimens from 21 to 36 weeks. This was an IRB-approved protocol with parental permission for use of tissues for research purposes. Tissues were stained for expression of the oocyte-specific protein UCHL1, and expression levels were evaluated using quantitative immunofluorescence across gestational ages after correction for the area and background absorbance. Corrected total cell fluorescence (CTCF) for expression of UCHL1 within human oocytes was compared across fetal gestational ages and oocyte size. Trends were analyzed using a locally weighted scatterplot smoothing algorithm. Local expression of UCHL1 increases in oocytes across ovarian development reaching a plateau at 27 weeks with the maintenance of elevated levels through 36 weeks gestational age. This maturation trend is also evidenced by the increase in protein expression as oocyte area increases (r = 0.5530, p ≤ 0.001) with the largest rise occurring as oocytes are enveloped into primordial follicles. The increase in expression as oocytes transition from oogonia into oocytes in primordial follicles and beyond may be part of the preparation of both oocytes and the surrounding somatic cells for the long-term maintenance of the ovarian reserve.
Collapse
Affiliation(s)
- Meghan C H Ozcan
- Women & Infant's Hospital, Warren Alpert Medical School of Brown University, 200 Chestnut St, Providence, RI, USA.
| | - Lisa Cruz
- F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Jones Bridge Rd, Bethesda, MD, 20814, USA
| | | | - Fusun Gundogan
- Women & Infant's Hospital, Warren Alpert Medical School of Brown University, 101 Dudley St, Providence, RI, USA
| | - Kathryn J Grive
- Women & Infant's Hospital, Warren Alpert Medical School of Brown University, 200 Chestnut St, Providence, RI, USA
| |
Collapse
|
33
|
Rachmawati A, Krisnadi SR, Santoso SA, Nugrahani AD. Association between follicle size, endometrial thickness, and types of ovarian stimulation (Clomiphene citrate and Letrozole) with biochemical pregnancy rate in women undergone intrauterine insemination. BMC Res Notes 2023; 16:286. [PMID: 37875998 PMCID: PMC10598886 DOI: 10.1186/s13104-023-06529-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 09/21/2023] [Indexed: 10/26/2023] Open
Abstract
OBJECTIVE There was also a lack of data regarding the effect of follicle size, endometrial thickness, and ovarian stimulation as predictors of intrauterine insemination (IUI) success rate in Indonesia, especially in the Aster Clinic and Bandung Fertility Centre. This study was performed to explore the relationship between follicle size, endometrial thickness, and types of ovarian stimulation (Clomiphene citrate/CC vs Letrozole) with biochemical pregnancy rate in women undergone IUI. We performed a case-control study in 122 women aged 20-40 years with unexplained infertility who had completed the IUI program for a maximum of three cycles. Data were extracted from medical records. Independent T-test and multivariate analyses were used to analyse the difference between variables using IBM SPSS 24.0. P-value < 0.05 was considered statistically significant. RESULT Follicle sizes of 18-22 mm in both Clomiphene citrate (CC) and Letrozole groups were shown to increase biochemical pregnancy rate (P = 0.001). There is no relationship between endometrial thickness and pregnancy rate. Biochemical pregnancy rate in women using Letrozole was 1.513 times higher than women using CC. The follicle size of 18-22 mm and using Letrozole rather than CC as ovarian stimulators are predictive factors associated with a higher pregnancy rate in women undergone IUI.
Collapse
Affiliation(s)
- Anita Rachmawati
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Padjadjaran - Dr. Hasan Sadikin General Hospital, Pasteur No. 38, Bandung, West Java, 40161, Indonesia
| | - Sofie Rifayani Krisnadi
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Padjadjaran - Dr. Hasan Sadikin General Hospital, Pasteur No. 38, Bandung, West Java, 40161, Indonesia
| | - Shasya Aniza Santoso
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Padjadjaran - Dr. Hasan Sadikin General Hospital, Pasteur No. 38, Bandung, West Java, 40161, Indonesia.
| | - Annisa Dewi Nugrahani
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Padjadjaran - Dr. Hasan Sadikin General Hospital, Pasteur No. 38, Bandung, West Java, 40161, Indonesia
| |
Collapse
|
34
|
Kouvidi E, Tsarouha H, Zachaki S, Katsidi C, Tsimela H, Pantou A, Kanavakis E, Mavrou A. The Types and Frequencies of X Chromosome Abnormalities in Women with Reproductive Problems. Cytogenet Genome Res 2023; 163:274-278. [PMID: 37788650 DOI: 10.1159/000534428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 09/29/2023] [Indexed: 10/05/2023] Open
Abstract
INTRODUCTION X chromosome architecture and integrity are essential for normal ovarian function. Both numerical and structural X chromosome abnormalities play an important role in female infertility. This study aimed to determine the types and frequency of X chromosome aberrations detected in women referred for cytogenetic investigation due to reproductive problems. METHODS 2,936 women (average age: 37.5 years) were enrolled in the present study. Peripheral blood karyotyping was performed by conventional cytogenetic techniques. For each woman, 20 G-banded metaphases were studied and in case of suspected mosaicism, analysis was extended to 100 metaphases. RESULTS 2,588/2,936 (88.15%) of women had a normal karyotype (46,XX), while 348/2,936 (11.85%) had an abnormal one. Thirty-two women (1.09%) carried autosomal chromosome abnormalities and 316 (10.76%) had X chromosome rearrangements. In 311/2,936 women (10.59%), X chromosome numerical aberrations were detected (low-level mosaicism), and in 5/2,936 cases (0.17%), X structural abnormalities (two with pericentric inversion, one with Xq deletion and two 45,X mosaics, one with an Xp deletion cell line and the other with isochromosome Xq cell line). Low-level X mosaicism was a common finding in women >35 years as compared to younger ones (92.93% vs. 7.07%), a finding consistent with loss of chromosome X with aging. Other X chromosome abnormalities were detected in younger women (32.3 ± 4.13 vs. 41.04 ± 4.5 years). The mean age of women with Turner-like phenotype was 28.75 ± 6.6 years. CONCLUSION The study confirms that the incidence of X chromosome abnormalities is increased in women with fertility problems and that karyotype is the gold standard for their identification. Genetic counseling is recommended in these cases to provide information concerning available treatment and fertility options.
Collapse
Affiliation(s)
- Elisavet Kouvidi
- Genesis Genoma Lab, Genetic Diagnosis, Clinical Genetics and Research, Athens, Greece
| | - Haralambia Tsarouha
- Genesis Genoma Lab, Genetic Diagnosis, Clinical Genetics and Research, Athens, Greece
| | - Sophia Zachaki
- Genesis Genoma Lab, Genetic Diagnosis, Clinical Genetics and Research, Athens, Greece
| | - Christina Katsidi
- Genesis Genoma Lab, Genetic Diagnosis, Clinical Genetics and Research, Athens, Greece
| | - Hara Tsimela
- Genesis Genoma Lab, Genetic Diagnosis, Clinical Genetics and Research, Athens, Greece
| | - Amelia Pantou
- Genesis Genoma Lab, Genetic Diagnosis, Clinical Genetics and Research, Athens, Greece
| | - Emmanuel Kanavakis
- Genesis Genoma Lab, Genetic Diagnosis, Clinical Genetics and Research, Athens, Greece
| | - Ariadni Mavrou
- Genesis Genoma Lab, Genetic Diagnosis, Clinical Genetics and Research, Athens, Greece
| |
Collapse
|
35
|
Ansari M, Faour KNW, Shimamura A, Grimes G, Kao EM, Denhoff ER, Blatnik A, Ben-Isvy D, Wang L, Helm BM, Firth H, Breman AM, Bijlsma EK, Iwata-Otsubo A, de Ravel TJL, Fusaro V, Fryer A, Nykamp K, Stühn LG, Haack TB, Korenke GC, Constantinou P, Bujakowska KM, Low KJ, Place E, Humberson J, Napier MP, Hoffman J, Juusola J, Deardorff MA, Shao W, Rockowitz S, Krantz I, Kaur M, Raible S, Kliesch S, Singer-Berk M, Groopman E, DiTroia S, Ballal S, Srivastava S, Rothfelder K, Biskup S, Rzasa J, Kerkhof J, McConkey H, O'Donnell-Luria A, Sadikovic B, Hilton S, Banka S, Tüttelmann F, Conrad D, Talkowski ME, FitzPatrick DR, Boone PM. Heterozygous loss-of-function SMC3 variants are associated with variable and incompletely penetrant growth and developmental features. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.27.23294269. [PMID: 37808847 PMCID: PMC10557843 DOI: 10.1101/2023.09.27.23294269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Heterozygous missense variants and in-frame indels in SMC3 are a cause of Cornelia de Lange syndrome (CdLS), marked by intellectual disability, growth deficiency, and dysmorphism, via an apparent dominant-negative mechanism. However, the spectrum of manifestations associated with SMC3 loss-of-function variants has not been reported, leading to hypotheses of alternative phenotypes or even developmental lethality. We used matchmaking servers, patient registries, and other resources to identify individuals with heterozygous, predicted loss-of-function (pLoF) variants in SMC3, and analyzed population databases to characterize mutational intolerance in this gene. Here, we show that SMC3 behaves as an archetypal haploinsufficient gene: it is highly constrained against pLoF variants, strongly depleted for missense variants, and pLoF variants are associated with a range of developmental phenotypes. Among 13 individuals with SMC3 pLoF variants, phenotypes were variable but coalesced on low growth parameters, developmental delay/intellectual disability, and dysmorphism reminiscent of atypical CdLS. Comparisons to individuals with SMC3 missense/in-frame indel variants demonstrated a milder presentation in pLoF carriers. Furthermore, several individuals harboring pLoF variants in SMC3 were nonpenetrant for growth, developmental, and/or dysmorphic features, some instead having intriguing symptomatologies with rational biological links to SMC3 including bone marrow failure, acute myeloid leukemia, and Coats retinal vasculopathy. Analyses of transcriptomic and epigenetic data suggest that SMC3 pLoF variants reduce SMC3 expression but do not result in a blood DNA methylation signature clustering with that of CdLS, and that the global transcriptional signature of SMC3 loss is model-dependent. Our finding of substantial population-scale LoF intolerance in concert with variable penetrance in subjects with SMC3 pLoF variants expands the scope of cohesinopathies, informs on their allelic architecture, and suggests the existence of additional clearly LoF-constrained genes whose disease links will be confirmed only by multi-layered genomic data paired with careful phenotyping.
Collapse
Affiliation(s)
- Morad Ansari
- South East Scotland Genetic Service, Western General Hospital, Edinburgh, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- These authors contributed equally
| | - Kamli N W Faour
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, US
- Cornelia de Lange Syndrome and Related Disorders Clinic, Boston Children's Hospital, Boston, MA, US
- These authors contributed equally
| | - Akiko Shimamura
- Division of Hematology and Oncology, Boston Children's Hospital, Boston, MA, US
| | - Graeme Grimes
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Emeline M Kao
- Institutional Centers for Clinical and Translational Research, Boston Children's Hospital, Boston, MA, US
| | - Erica R Denhoff
- Institutional Centers for Clinical and Translational Research, Boston Children's Hospital, Boston, MA, US
| | - Ana Blatnik
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Department of Clinical Cancer Genetics, Institute of Oncology Ljubljana, Ljubljana, SI
| | - Daniel Ben-Isvy
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, US
- Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, US
- Division of Medical Sciences, Harvard Medical School, Boston, MA, US
| | - Lily Wang
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, US
- Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, US
- Division of Medical Sciences, Harvard Medical School, Boston, MA, US
| | - Benjamin M Helm
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, US
| | - Helen Firth
- Clinical Genetics, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK
| | - Amy M Breman
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, US
| | - Emilia K Bijlsma
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, NL
| | - Aiko Iwata-Otsubo
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, US
| | - Thomy J L de Ravel
- Centre for Human Genetics, UZ Leuven/ Leuven University Hospitals, Leuven, BE
| | | | - Alan Fryer
- Department of Clinical Genetics, Alder Hey Children's Hospital Liverpool, Liverpool, UK
| | | | - Lara G Stühn
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, DE
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, DE
| | - G Christoph Korenke
- University Children's Hospital Oldenburg, Department of Neuropaediatric and Metabolic Diseases, University Children's Hospital Oldenburg, Oldenburg, DE
| | - Panayiotis Constantinou
- West of Scotland Centre for Genomic Medicine, Queen Elizabeth University Hospital, Glasgow, UK
| | | | - Karen J Low
- University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
- University of Bristol, Bristol, UK
| | - Emily Place
- Massachusetts Eye and Ear Infirmary, Boston, MA, US
| | | | | | | | | | - Matthew A Deardorff
- Departments of Pathology and Pediatrics, Children's Hospital Los Angeles and University of Southern California, Los Angeles, CA, US
| | - Wanqing Shao
- Research Computing, Information Technology, Boston Children's Hospital, Boston, MA, US
| | - Shira Rockowitz
- Research Computing, Information Technology, Boston Children's Hospital, Boston, MA, US
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, US
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, US
| | - Ian Krantz
- Children's Hospital of Philadelphia, Philadelphia, PA, US
| | - Maninder Kaur
- Children's Hospital of Philadelphia, Philadelphia, PA, US
| | - Sarah Raible
- Children's Hospital of Philadelphia, Philadelphia, PA, US
| | - Sabine Kliesch
- Department of Clinical and Surgical Andrology, Centre of Reproductive Medicine and Andrology, University Hospital Münster, Münster, DE
| | - Moriel Singer-Berk
- Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, US
| | - Emily Groopman
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, US
- Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, US
| | - Stephanie DiTroia
- Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, US
| | - Sonia Ballal
- Cornelia de Lange Syndrome and Related Disorders Clinic, Boston Children's Hospital, Boston, MA, US
- Division of Gastroenterology, Boston Children's Hospital, Boston, MA, US
| | - Siddharth Srivastava
- Cornelia de Lange Syndrome and Related Disorders Clinic, Boston Children's Hospital, Boston, MA, US
- Divison of Neurology, Boston Children's Hospital, Boston, MA, US
| | | | - Saskia Biskup
- Zentrum für Humangenetik, Tübingen, DE
- Center for Genomics and Transcriptomics (CeGaT), Tübingen, DE
| | - Jessica Rzasa
- Molecular Diagnostics Program and Verspeeten Clinical Genome Centre, LHSC, London, CA
| | - Jennifer Kerkhof
- Molecular Diagnostics Program and Verspeeten Clinical Genome Centre, LHSC, London, CA
| | - Haley McConkey
- Molecular Diagnostics Program and Verspeeten Clinical Genome Centre, LHSC, London, CA
| | - Anne O'Donnell-Luria
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, US
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, US
- Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, US
| | - Bekim Sadikovic
- Molecular Diagnostics Program and Verspeeten Clinical Genome Centre, LHSC, London, CA
| | | | | | - Frank Tüttelmann
- Institute of Reproductive Genetics, University of Münster, Münster, DE
| | - Donald Conrad
- Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Portland, OR, US
- Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR, US
| | - Michael E Talkowski
- Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, US
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, US
| | - David R FitzPatrick
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- These authors contributed equally
| | - Philip M Boone
- Cornelia de Lange Syndrome and Related Disorders Clinic, Boston Children's Hospital, Boston, MA, US
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, US
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, US
- Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, US
- These authors contributed equally
| |
Collapse
|
36
|
Vanderschelden RK, Rodriguez-Escriba M, Chan SH, Berman AJ, Rajkovic A, Yatsenko SA. Heterozygous TP63 pathogenic variants in isolated primary ovarian insufficiency. J Assist Reprod Genet 2023; 40:2211-2218. [PMID: 37453019 PMCID: PMC10440319 DOI: 10.1007/s10815-023-02886-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023] Open
Abstract
PURPOSE Our study aimed to identify the genetic causes of non-syndromic primary ovarian insufficiency (POI) in female patients. METHODS We performed whole exome sequencing in females suffering from isolated POI and in their available family members. Copy number variations were validated by long-range PCR and Sanger sequencing, and conservation analysis was used to evaluate the impact of sequence variants on protein composition. RESULTS We detected two pathogenic TP63 heterozygous deleterious single nucleotide variants and a novel TP63 intragenic copy number alteration in three unrelated women with isolated POI. Two of these genetic variants are predicted to result in loss of transactivation inhibition of p63, whereas the third one affects the first exon of the ΔNp63 isoforms. CONCLUSION Our results broaden the spectrum of TP63-related disorders, which now includes sporadic and familial, isolated, and syndromic POI. Genomic variants that impair the transactivation inhibitory domain of the TAp63α isoform are the cause of non-syndromic POI. Additionally, variants affecting only the ΔNp63 isoforms may result in isolated POI. In patients with isolated POI, careful evaluation of genomic variants in pleiotropic genes such as TP63 will be essential to establish a full clinical spectrum and atypical presentation of a disorder.
Collapse
Affiliation(s)
| | | | - Serena H Chan
- Division of Pediatric and Adolescent Gynecology, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andrea J Berman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aleksandar Rajkovic
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA.
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA.
- Institute of Human Genetics, University of California San Francisco, San Francisco, CA, USA.
| | - Svetlana A Yatsenko
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
- Magee-Womens Research Institute, Pittsburgh, PA, USA.
| |
Collapse
|
37
|
Abstract
In meiosis, homologous chromosome synapsis is mediated by a supramolecular protein structure, the synaptonemal complex (SC), that assembles between homologous chromosome axes. The mammalian SC comprises at least eight largely coiled-coil proteins that interact and self-assemble to generate a long, zipper-like structure that holds homologous chromosomes in close proximity and promotes the formation of genetic crossovers and accurate meiotic chromosome segregation. In recent years, numerous mutations in human SC genes have been associated with different types of male and female infertility. Here, we integrate structural information on the human SC with mouse and human genetics to describe the molecular mechanisms by which SC mutations can result in human infertility. We outline certain themes in which different SC proteins are susceptible to different types of disease mutation and how genetic variants with seemingly minor effects on SC proteins may act as dominant-negative mutations in which the heterozygous state is pathogenic.
Collapse
Affiliation(s)
- Ian R Adams
- Medical Research Council (MRC) Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom;
| | - Owen R Davies
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom;
| |
Collapse
|
38
|
Wan Y, Hong Z, Ma B, He X, Ma L, Wang M, Zhang Y. Identification of compound heterozygous variants in MSH4 as a novel genetic cause of diminished ovarian reserve. Reprod Biol Endocrinol 2023; 21:76. [PMID: 37620942 PMCID: PMC10464148 DOI: 10.1186/s12958-023-01127-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Diminished ovarian reserve (DOR) is a common cause of female infertility, with genetic factors being a significant contributor. However, due to high genetic heterogeneity, the etiology of DOR in many cases remains unknown. In this study, we analyzed the phenotype of a young woman with primary infertility and performed molecular genetic analysis to identify the genetic cause of her condition, thus providing important insights for genetic counseling and reproductive guidance. METHODS We collected the patient's basic information, clinical data, as well as diagnostic and therapeutic history and performed whole-exome sequencing on her peripheral blood. Candidate pathogenic variants were validated by Sanger sequencing in family members, and the pathogenicity of variants was analyzed using ACMG guidelines. We used bioinformatics tools to predict variant effects on splicing and protein function, and performed in vitro experiments including minigene assay and expression analysis to evaluate their functional effects on HEK293T. RESULTS We identified biallelic MSH4 variants, c.2374 A > G (p.Thr792Ala) and c.2222_2225delAAGA (p.Lys741Argfs*2) in the DOR patient. According to ACMG guidelines, the former was classified as likely pathogenic, while the latter was classified as pathogenic. The patient presented with poor oocyte quantity and quality, resulting in unsuccessful in vitro fertilization cycles. Bioinformatics and in vitro functional analysis showed that the c.2374 A > G variant altered the local conformation of the MutS_V domain without decreasing MSH4 protein expression, while the c.2222_2225delAAGA variant led to a reduction in MSH4 protein expression without impacting splicing. CONCLUSIONS In this study, we present evidence of biallelic variants in MSH4 as a potential cause of DOR. Our findings indicate a correlation between MSH4 variants and reduced oocyte quality, as well as abnormal morphology of the first polar body, thereby expanding the phenotypic spectrum associated with MSH4 variants. Furthermore, Our study emphasizes the importance of utilizing whole-exome sequencing and functional analysis in diagnosing genetic causes, as well as providing effective genetic counseling and reproductive guidance for DOR patients.
Collapse
Affiliation(s)
- Yingjing Wan
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
- Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei, P.R. China
| | - Zhidan Hong
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
- Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei, P.R. China
| | - Binyu Ma
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
- Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei, P.R. China
| | - Xuanyi He
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
- Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei, P.R. China
| | - Ling Ma
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
- Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei, P.R. China
| | - Mei Wang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China.
- Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China.
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei, P.R. China.
| | - Yuanzhen Zhang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China.
- Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China.
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei, P.R. China.
| |
Collapse
|
39
|
Bednarska-Czerwińska A, Morawiec E, Zmarzły N, Szapski M, Jendrysek J, Pecyna A, Zapletał-Pudełko K, Małysiak W, Sirek T, Ossowski P, Łach A, Boroń D, Bogdał P, Bernet A, Grabarek BO. Dynamics of Microbiome Changes in the Endometrium and Uterine Cervix during Embryo Implantation: A Comparative Analysis. Med Sci Monit 2023; 29:e941289. [PMID: 37543728 PMCID: PMC10413908 DOI: 10.12659/msm.941289] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/07/2023] [Indexed: 08/07/2023] Open
Abstract
BACKGROUND The microbiome is the collection of all micro-organisms and their genes, which naturally live in and on the body. The cervical and endometrial bacterial microbiome has previously been reported to affect fertility and influence the outcomes of assisted reproductive therapy (ART), including embryo transfer. This study aimed to evaluate the cervical and endometrial bacterial microbiome in 177 women treated for infertility before, during, and after embryo implantation, and the outcomes. MATERIAL AND METHODS Cervical and endometrial swabs were collected from 177 women diagnosed with infertility at 3 time points: (1) during the initial examination, (2) during implantation, (3) 10-14 days after implantation. Next-generation sequencing (NGS) was used to analyze the bacterial microbiome. Taxonomic identification was performed with the Usearch algorithm. RESULTS There was a significant change in the number of patients with Escherichia coli depending on the collection time. For the first swab collection, there were significant negative relationships between the percentage of Gardnerella vaginalis and Lactobacillus spp. For the second collection, there was a negative relationship between Lactobacillus helveticus and Lactobacillus jensenii. For the third collection, negative relationships were found between Escherichia coli and Lactobacillus spp. A similar distribution of the bacterial microbiome was observed in all 3 swab collections. CONCLUSIONS Lactobacillus spp. were the main bacteria identified in the cervix and endometrium, present before, during, and after successful embryo transfer. E. coli and G. vaginalis reduced the protective effect of Lactobacilli before, during, and after embryo transfer.
Collapse
Affiliation(s)
- Anna Bednarska-Czerwińska
- Gyncentrum, Laboratory of Molecular Biology and Virology, Katowice, Poland
- American Medical Clinic, Katowice, Poland
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, Academy of Silesia, Katowice, Poland
| | - Emilia Morawiec
- Gyncentrum, Laboratory of Molecular Biology and Virology, Katowice, Poland
- Department of Microbiology, Faculty of Medicine, Academy of Silesia, Zabrze, Poland
| | - Nikola Zmarzły
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, Academy of Silesia, Katowice, Poland
| | - Michał Szapski
- Gyncentrum, Laboratory of Molecular Biology and Virology, Katowice, Poland
| | - Justyna Jendrysek
- Gyncentrum, Laboratory of Molecular Biology and Virology, Katowice, Poland
| | - Anika Pecyna
- Gyncentrum, Laboratory of Molecular Biology and Virology, Katowice, Poland
| | | | - Weronika Małysiak
- Gyncentrum, Laboratory of Molecular Biology and Virology, Katowice, Poland
| | - Tomasz Sirek
- Department of Plastic Surgery, Faculty of Medicine, Academy of Silesia, Zabrze, Poland
- Department of Plastic and Reconstructive Surgery, Hospital for Minimally Invasive and Reconstructive Surgery in Bielsko-Biała, Bielsko-Biała, Poland
| | - Piotr Ossowski
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, Academy of Silesia, Katowice, Poland
| | - Aleksandra Łach
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, Academy of Silesia, Katowice, Poland
| | - Dariusz Boroń
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, Academy of Silesia, Katowice, Poland
- Department of Gynaecology and Obstetrics, Faculty of Medicine, Academy of Silesia, Zabrze, Poland
- Department of Gynecology and Obstetrics, TOMMED Specjaliści od Zdrowia, Katowice, Poland
- The Higher School of Strategic Planning in Dąbrowa Górnicza, Dąbrowa Górnicza, Poland
| | - Paweł Bogdał
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, Academy of Silesia, Katowice, Poland
| | - Adam Bernet
- The Higher School of Strategic Planning in Dąbrowa Górnicza, Dąbrowa Górnicza, Poland
| | - Beniamin Oskar Grabarek
- Gyncentrum, Laboratory of Molecular Biology and Virology, Katowice, Poland
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, Academy of Silesia, Katowice, Poland
- Department of Gynaecology and Obstetrics, Faculty of Medicine, Academy of Silesia, Zabrze, Poland
- Department of Gynecology and Obstetrics, TOMMED Specjaliści od Zdrowia, Katowice, Poland
- The Higher School of Strategic Planning in Dąbrowa Górnicza, Dąbrowa Górnicza, Poland
| |
Collapse
|
40
|
Marrella MA, Biase FH. A multi-omics analysis identifies molecular features associated with fertility in heifers (Bos taurus). Sci Rep 2023; 13:12664. [PMID: 37542054 PMCID: PMC10403585 DOI: 10.1038/s41598-023-39858-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023] Open
Abstract
Infertility or subfertility is a critical barrier to sustainable cattle production, including in heifers. The development of heifers that do not produce a calf within an optimum window of time is a critical factor for the profitability and sustainability of the cattle industry. In parallel, heifers are an excellent biomedical model for understanding the underlying etiology of infertility because well-nourished heifers can still be infertile, mostly because of inherent physiological and genetic causes. Using a high-density single nucleotide polymorphism (SNP) chip, we collected genotypic data, which were analyzed using an association analysis in PLINK with Fisher's exact test. We also produced quantitative transcriptome data and proteome data. Transcriptome data were analyzed using the quasi-likelihood test followed by the Wald's test, and the likelihood test and proteome data were analyzed using a generalized mixed model and Student's t-test. We identified two SNPs significantly associated with heifer fertility (rs110918927, chr12: 85648422, P = 6.7 × 10-7; and rs109366560, chr11:37666527, P = 2.6 × 10-5). We identified two genes with differential transcript abundance (eFDR ≤ 0.002) between the two groups (Fertile and Sub-Fertile): Adipocyte Plasma Membrane Associated Protein (APMAP, 1.16 greater abundance in the Fertile group) and Dynein Axonemal Intermediate Chain 7 (DNAI7, 1.23 greater abundance in the Sub-Fertile group). Our analysis revealed that the protein Alpha-ketoglutarate-dependent dioxygenase FTO was more abundant in the plasma collected from Fertile heifers relative to their Sub-Fertile counterparts (FDR < 0.05). Lastly, an integrative analysis of the three datasets identified a series of molecular features (SNPs, gene transcripts, and proteins) that discriminated 21 out of 22 heifers correctly based on their fertility category. Our multi-omics analyses confirm the complex nature of female fertility. Very importantly, our results also highlight differences in the molecular profile of heifers associated with fertility that transcend the constraints of breed-specific genetic background.
Collapse
Affiliation(s)
- Mackenzie A Marrella
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Fernando H Biase
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
41
|
Tang F, Gao Y, Li K, Tang D, Hao Y, Lv M, Wu H, Cheng H, Fei J, Jin Z, Wang C, Xu Y, Wei Z, Zhou P, Zhang Z, He X, Cao Y. Novel deleterious splicing variant in HFM1 causes gametogenesis defect and recurrent implantation failure: concerning the risk of chromosomal abnormalities in embryos. J Assist Reprod Genet 2023; 40:1689-1702. [PMID: 36864181 PMCID: PMC10352197 DOI: 10.1007/s10815-023-02761-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/21/2023] [Indexed: 03/04/2023] Open
Abstract
PURPOSE Poor ovarian response (POR) affects approximately 9% to 24% of women undergoing in vitro fertilization (IVF) cycles, resulting in fewer eggs obtained and increasing clinical cycle cancellation rates. The pathogenesis of POR is related to gene variations. Our study included a Chinese family comprising two siblings with infertility born to consanguineous parents. Poor ovarian response (POR) was identified in the female patient who had multiple embryo implantation failures occurring in subsequent assisted reproductive technology cycles. Meanwhile, the male patient was diagnosed with non-obstructive azoospermia (NOA). METHODS Whole-exome sequencing and rigorous bioinformatics analyses were conducted to identify the underlying genetic causes. Moreover, the pathogenicity of the identified splicing variant was assessed using a minigene assay in vitro. The remaining poor-quality blastocyst and abortion tissues from the female patient were detected for copy number variations. RESULTS We identified a novel homozygous splicing variant in HFM1 (NM_001017975.6: c.1730-1G > T) in two siblings. Apart from NOA and POI, biallelic variants in HFM1 were also associated with recurrent implantation failure (RIF). Additionally, we demonstrated that splicing variants caused abnormal alternative splicing of HFM1. Using copy number variation sequencing, we found that the embryos of the female patients had either euploidy or aneuploidy; however, both harbored chromosomal microduplications of maternal origin. CONCLUSION Our results reveal the different effects of HFM1 on reproductive injury in males and females, extend the phenotypic and mutational spectrum of HFM1, and show the potential risk of chromosomal abnormalities under the RIF phenotype. Moreover, our study provides new diagnostic markers for the genetic counseling of POR patients.
Collapse
Affiliation(s)
- Fei Tang
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Ministry of Education of the People's Republic of China, Anhui Medical University, Hefei, Anhui, China
| | - Yang Gao
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Ministry of Education of the People's Republic of China, Anhui Medical University, Hefei, Anhui, China
| | - KuoKuo Li
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
| | - DongDong Tang
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
| | - Yan Hao
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, Hefei, Anhui, China
| | - Mingrong Lv
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Ministry of Education of the People's Republic of China, Anhui Medical University, Hefei, Anhui, China
| | - Huan Wu
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
| | - Huiru Cheng
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, Hefei, Anhui, China
| | - Jia Fei
- Peking Jabrehoo Med Tech Co., Ltd., Beijing, China
| | - Zhiping Jin
- Peking Jabrehoo Med Tech Co., Ltd., Beijing, China
| | - Chao Wang
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Ministry of Education of the People's Republic of China, Anhui Medical University, Hefei, Anhui, China
| | - Yuping Xu
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
| | - Zhaolian Wei
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Ministry of Education of the People's Republic of China, Anhui Medical University, Hefei, Anhui, China
| | - Ping Zhou
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Ministry of Education of the People's Republic of China, Anhui Medical University, Hefei, Anhui, China
| | - Zhiguo Zhang
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle, Ministry of Education of the People's Republic of China, Anhui Medical University, Hefei, Anhui, China.
| | - Xiaojin He
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle, Ministry of Education of the People's Republic of China, Anhui Medical University, Hefei, Anhui, China.
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle, Ministry of Education of the People's Republic of China, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
42
|
Alshammary AF, Alsobaie SF, Alageel AA, Aldakheel FM, Ansar S, Alrashoudi R, Farzan R, Alturki NA, Alhaizan MA, Al-Mutawa J, Ali Khan I. Molecular Role of Asn680Ser and Asp37Glu Missense Variants in Saudi Women with Female Infertility and Polycystic Ovarian Syndrome. Curr Issues Mol Biol 2023; 45:5494-5514. [PMID: 37504264 PMCID: PMC10378235 DOI: 10.3390/cimb45070348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023] Open
Abstract
Female infertility (FI) is a global health issue. Polycystic ovary syndrome (PCOS) is a common cause of FI. The renalase gene (RNLS) is associated with FI and other human diseases. Based on the documented missense variants, rs6166 and rs2296545 single-nucleotide polymorphisms (SNPs) were not identified in Saudi women with FI and PCOS. This study aimed to investigate the molecular role of the two SNPs in Saudi women with FI and PCOS. In this cross-sectional study, 96 healthy controls, 96 women with FI, and 96 women with PCOS were recruited. DNA was isolated, and polymerase chain reactions and Sanger sequencing analysis were performed using rs6166 and rs2296545 SNPs. The data obtained from the three groups were used to perform statistical analyses based on genotype, allele frequencies, regression models, and ANOVA analysis. Both rs6166 and rs2296545 had no role in FI or PCOS in Saudi women. A predicted reason for non-association in Saudi women could be the role of elderly women in the controls compared with women with FI and PCOS. Moreover, age, weight, and body mass index were higher in the control group than the FI and PCOS groups. In conclusion, rs6166 and rs2296545 SNPs were not associated with FI or PCOS in Saudi women.
Collapse
Affiliation(s)
- Amal F Alshammary
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Sarah F Alsobaie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Arwa A Alageel
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Fahad M Aldakheel
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Sabah Ansar
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Reem Alrashoudi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Raed Farzan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Norah A Alturki
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Maysoon Abdulhadi Alhaizan
- Department of Obstetrics and Gynecology, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| | - Johara Al-Mutawa
- Department of Obstetrics and Gynecology, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| | - Imran Ali Khan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| |
Collapse
|
43
|
Abdullah AA, Ahmed M, Oladokun A. Characterization and risk factors for unexplained female infertility in Sudan: A case-control study. World J Methodol 2023; 13:98-117. [PMID: 37456975 PMCID: PMC10348085 DOI: 10.5662/wjm.v13.i3.98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/08/2023] [Accepted: 03/15/2023] [Indexed: 06/20/2023] Open
Abstract
BACKGROUND Female infertility with unknown causes (unexplained) remains one of the mysteries in the reproductive health field, where the diagnostic evidence is still weak and the proposed treatments still work with unknown methods. However, several studies have proposed some possible causes and risk factors for unexplained female infertility.
AIM To characterize and identify factors associated with unexplained infertility in Sudanese women.
METHODS A matched (age and body mass index) case-control study was conducted from March 2021 to February 2022. The study samples were 210 women with unexplained infertility (UI) and 190 fertile women of reproductive age who were attending the maternity hospitals and fertility clinics in Khartoum, Sudan. The risk factors of unexplained infertility were identified using a structured, pre-tested questionnaire containing information on socio-demographic variables, anthropometrics, clinical diagnosis of infertility, behavioral factors, physical activity assessment, diversity, and consumption of different food groups by the study participants.
RESULTS The results showed a higher proportion of women diagnosed with UI were residents of rural areas than controls (21.4% vs 11.1%, P < 0.05), and previous miscarriages and/or abortions were more common in fertile women compared with infertile women (13.16% vs 5.71%, P < 0.05). Additionally, infertile women had a significantly (P < 0.05) higher proportion of family history of infertility (explained and unexplained) compared with controls. Finally, after controlling for the effects of potentially confounding variables using multivariable logistic regression analysis, only marital status, family history of infertility, use of modern contraceptives, smoking, caffeine consumption, physical activity level, meals consumed, other vitamin-A-rich fruits and vegetables, and other vegetables were found to be significant (P < 0.05) factors associated with unexplained infertility among Sudanese women.
CONCLUSION Married women with a family history of infertility who smoke and consume a high amount of caffeine, who live a sedentary lifestyle, and who consume more than two meals free of vitamin-A-rich fruits and/or vegetables and/or other vegetables per day are at the highest risk of developing unexplained infertility.
Collapse
Affiliation(s)
- Abdullah Abdulslam Abdullah
- Reproductive Health Sciences Program, Pan African University Life and Earth Sciences Institute, University of Ibadan, Ibadan 119, Oyo state, Nigeria
- Department of Obstetrics and Gynecology, College of Medicine, University of Ibadan, Ibadan 119, Oyo state, Nigeria
- Department of Biomedical Sciences, Faculty of Veterinary Sciences, University of Gadarif, Al-Gadarif 32211, Sudan
| | - Musa Ahmed
- Reproductive Health Sciences Program, Pan African University Life and Earth Sciences Institute, University of Ibadan, Ibadan 119, Oyo state, Nigeria
- Department of Obstetrics and Gynecology, College of Medicine, University of Ibadan, Ibadan 119, Oyo state, Nigeria
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, AL-Salam University, Al-fula 120, West Kordofan, Sudan
| | - Adesina Oladokun
- Department of Obstetrics and Gynecology, College of Medicine, University of Ibadan, Ibadan 119, Oyo state, Nigeria
| |
Collapse
|
44
|
Jourdain J, Barasc H, Faraut T, Calgaro A, Bonnet N, Marcuzzo C, Suin A, Barbat A, Hozé C, Besnard F, Taussat S, Grohs C, Kuchly C, Iampietro C, Donnadieu C, Pinton A, Boichard D, Capitan A. Large-scale detection and characterization of interchromosomal rearrangements in normozoospermic bulls using massive genotype and phenotype data sets. Genome Res 2023; 33:957-971. [PMID: 37414574 PMCID: PMC10519396 DOI: 10.1101/gr.277787.123] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/19/2023] [Indexed: 07/08/2023]
Abstract
In this paper, we developed a highly sensitive approach to detect interchromosomal rearrangements in cattle by searching for abnormal linkage disequilibrium patterns between markers located on different chromosomes in large paternal half-sib families genotyped as part of routine genomic evaluations. We screened 5571 families of artificial insemination sires from 15 breeds and revealed 13 putative interchromosomal rearrangements, 12 of which were validated by cytogenetic analysis and long-read sequencing. These consisted of one Robertsonian fusion, 10 reciprocal translocations, and the first case of insertional translocation reported in cattle. Taking advantage of the wealth of data available in cattle, we performed a series of complementary analyses to define the exact nature of these rearrangements, investigate their origins, and search for factors that may have favored their occurrence. We also evaluated the risks to the livestock industry and showed significant negative effects on several traits in the sires and in their balanced or aneuploid progeny compared with wild-type controls. Thus, we present the most comprehensive and thorough screen for interchromosomal rearrangements compatible with normal spermatogenesis in livestock species. This approach is readily applicable to any population that benefits from large genotype data sets, and will have direct applications in animal breeding. Finally, it also offers interesting prospects for basic research by allowing the detection of smaller and rarer types of chromosomal rearrangements than GTG banding, which are interesting models for studying gene regulation and the organization of genome structure.
Collapse
Affiliation(s)
- Jeanlin Jourdain
- Eliance, 75012 Paris, France;
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, G2B, 78350 Jouy-en-Josas, France
| | - Harmonie Barasc
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31320 Castanet-Tolosan, France
| | - Thomas Faraut
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31320 Castanet-Tolosan, France
| | - Anne Calgaro
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31320 Castanet-Tolosan, France
| | - Nathalie Bonnet
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31320 Castanet-Tolosan, France
| | - Camille Marcuzzo
- INRAE, US 1426, GeT-PlaGe, Genotoul, France Génomique, Université Fédérale de Toulouse, 31320 Castanet-Tolosan, France
| | - Amandine Suin
- INRAE, US 1426, GeT-PlaGe, Genotoul, France Génomique, Université Fédérale de Toulouse, 31320 Castanet-Tolosan, France
| | - Anne Barbat
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, G2B, 78350 Jouy-en-Josas, France
| | - Chris Hozé
- Eliance, 75012 Paris, France
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, G2B, 78350 Jouy-en-Josas, France
| | - Florian Besnard
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, G2B, 78350 Jouy-en-Josas, France
- Idele, 75012 Paris, France
| | - Sébastien Taussat
- Eliance, 75012 Paris, France
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, G2B, 78350 Jouy-en-Josas, France
| | - Cécile Grohs
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, G2B, 78350 Jouy-en-Josas, France
| | - Claire Kuchly
- INRAE, US 1426, GeT-PlaGe, Genotoul, France Génomique, Université Fédérale de Toulouse, 31320 Castanet-Tolosan, France
| | - Carole Iampietro
- INRAE, US 1426, GeT-PlaGe, Genotoul, France Génomique, Université Fédérale de Toulouse, 31320 Castanet-Tolosan, France
| | - Cécile Donnadieu
- INRAE, US 1426, GeT-PlaGe, Genotoul, France Génomique, Université Fédérale de Toulouse, 31320 Castanet-Tolosan, France
| | - Alain Pinton
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31320 Castanet-Tolosan, France
| | - Didier Boichard
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, G2B, 78350 Jouy-en-Josas, France
| | - Aurélien Capitan
- Eliance, 75012 Paris, France;
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, G2B, 78350 Jouy-en-Josas, France
| |
Collapse
|
45
|
Zhang X, Xie XF, Li A, Song W, Li C, Li F, Li XZ, Fan XY, Zhou CY, Wang G, Sun QY, Ou XH. USP7 reduction leads to developmental failure of mouse early embryos. Exp Cell Res 2023; 427:113605. [PMID: 37080417 DOI: 10.1016/j.yexcr.2023.113605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/11/2023] [Accepted: 04/16/2023] [Indexed: 04/22/2023]
Abstract
As a member of Ubiquitin-specific protease subfamily, ubiquitin specific protease 7 (USP7) has been reported to participate in a variety of cellular processes, including cell cycle, apoptosis, DNA damage response, and epigenetic modification. However, its function in preimplantation embryos is still obscure. To investigate the functions of USP7 during preimplantation embryo development, we used siRNA to degrade endogenous USP7 messenger RNA. We found that USP7 knockdown significantly decreased the development rate of mouse early embryos. Moreover, depletion of USP7 induced the accumulation of the DNA lesions and apoptotic blastomeres in early embryos. In addition, USP7 knockdown caused an abnormal H3K27me3 modification in 2-cell embryos. Overall, our results indicate that USP7 maintains genome stability perhaps via regulating H3K27me3 and DNA damage, consequently controlling the embryo quality.
Collapse
Affiliation(s)
- Xue Zhang
- Guangdong Second Provincial General Hospital, Postdoctoral Research Station of Basic Medicine, School of Medicine, Jinan University, China; Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Medical College, Jinan University, Guangzhou, China
| | - Xue-Feng Xie
- Guangdong Second Provincial General Hospital, Postdoctoral Research Station of Basic Medicine, School of Medicine, Jinan University, China; Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Medical College, Jinan University, Guangzhou, China
| | - Ang Li
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Medical College, Jinan University, Guangzhou, China
| | - Wei Song
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Medical College, Jinan University, Guangzhou, China
| | - Chao Li
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Medical College, Jinan University, Guangzhou, China
| | - Fei Li
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Medical College, Jinan University, Guangzhou, China
| | - Xiao-Zhen Li
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Medical College, Jinan University, Guangzhou, China
| | - Xiao-Yan Fan
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Medical College, Jinan University, Guangzhou, China
| | - Chang-Yin Zhou
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Medical College, Jinan University, Guangzhou, China
| | - Guang Wang
- Guangdong Second Provincial General Hospital, Postdoctoral Research Station of Basic Medicine, School of Medicine, Jinan University, China; Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Medical College, Jinan University, Guangzhou, China; International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, China
| | - Qing-Yuan Sun
- Guangdong Second Provincial General Hospital, Postdoctoral Research Station of Basic Medicine, School of Medicine, Jinan University, China; Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Medical College, Jinan University, Guangzhou, China
| | - Xiang-Hong Ou
- Guangdong Second Provincial General Hospital, Postdoctoral Research Station of Basic Medicine, School of Medicine, Jinan University, China; Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Medical College, Jinan University, Guangzhou, China.
| |
Collapse
|
46
|
Rodríguez-Escribà M, Rodríguez-Alonso B, Belur S, Rajkovic A. Sohlh1 loss of function male and female infertility model impacts overall health beyond gonadal dysfunction in mice†. Biol Reprod 2023; 108:619-628. [PMID: 36723967 PMCID: PMC10106844 DOI: 10.1093/biolre/ioad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/02/2023] [Accepted: 01/10/2023] [Indexed: 02/02/2023] Open
Abstract
Reproductive longevity is associated with health outcomes. Early menopause, loss of ovarian function, and male infertility are linked to shorter lifespan and increased adverse health outcomes. Here we examined the extragonadal effects of whole animal loss of spermatogenesis and oogenesis specific basic helix-loop-helix 1 (Sohlh1) gene in mice, a well-described mouse model of female and male infertility. Sohlh1 encodes a transcription factor that is primarily expressed in the male and female germline and regulates germline differentiation. The Sohlh1 knockout mouse model, just like human individuals with SOHLH1 loss of function, presents with hypergonadotropic hypogonadism and loss of ovarian function in females and impaired spermatogenesis in males, with a seemingly gonad restricted phenotype in both sexes. However, extragonadal phenotyping revealed that Sohlh1 deficiency leads to abnormal immune profiles in the blood and ovarian tissues of female animals, sex-specific alterations of metabolites, and behavior and cognition changes. Altogether, these results show that Sohlh1 deficiency impacts overall health in both male and female mice.
Collapse
Affiliation(s)
| | | | - Shweta Belur
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Aleksandar Rajkovic
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- Institute of Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
47
|
Krajnik K, Mietkiewska K, Skowronska A, Kordowitzki P, Skowronski MT. Oogenesis in Women: From Molecular Regulatory Pathways and Maternal Age to Stem Cells. Int J Mol Sci 2023; 24:ijms24076837. [PMID: 37047809 PMCID: PMC10095116 DOI: 10.3390/ijms24076837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
It is a well-known fact that the reproductive organs in women, especially oocytes, are exposed to numerous regulatory pathways and environmental stimuli. The maternal age is one cornerstone that influences the process of oocyte fertilization. More precisely, the longer a given oocyte is in the waiting-line to be ovulated from menarche to menopause, the longer the duration from oogenesis to fertilization, and therefore, the lower the chances of success to form a viable embryo. The age of menarche in girls ranges from 10 to 16 years, and the age of menopause in women ranges from approximately 45 to 55 years. Researchers are paying attention to the regulatory pathways that are impacting the oocyte at the very beginning during oogenesis in fetal life to discover genes and proteins that could be crucial for the oocyte’s lifespan. Due to the general trend in industrialized countries in the last three decades, women are giving birth to their first child in their thirties. Therefore, maternal age has become an important factor impacting oocytes developmental competence, since the higher a woman’s age, the higher the chances of miscarriage due to several causes, such as aneuploidy. Meiotic failures during oogenesis, such as, for instance, chromosome segregation failures or chromosomal non-disjunction, are influencing the latter-mentioned aging-related phenomenon too. These errors early in life of women can lead to sub- or infertility. It cannot be neglected that oogenesis is a precisely orchestrated process, during which the oogonia and primary oocytes are formed, and RNA synthesis takes place. These RNAs are crucial for oocyte growth and maturation. In this review, we intend to describe the relevance of regulatory pathways during the oogenesis in women. Furthermore, we focus on molecular pathways of oocyte developmental competence with regard to maternal effects during embryogenesis. On the background of transcriptional mechanisms that enable the transition from a silenced oocyte to a transcriptionally active embryo, we will briefly discuss the potential of induced pluripotent stem cells.
Collapse
Affiliation(s)
- Kornelia Krajnik
- Department of Basic and Preclinical Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Klaudia Mietkiewska
- Department of Basic and Preclinical Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Agnieszka Skowronska
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-719 Olsztyn, Poland
| | - Pawel Kordowitzki
- Department of Basic and Preclinical Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Mariusz T. Skowronski
- Department of Basic and Preclinical Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland
| |
Collapse
|
48
|
Karcz A, Van Soom A, Smits K, Van Vlierberghe S, Verplancke R, Pascottini OB, Van den Abbeel E, Vanfleteren J. Development of a Microfluidic Chip Powered by EWOD for In Vitro Manipulation of Bovine Embryos. BIOSENSORS 2023; 13:bios13040419. [PMID: 37185494 PMCID: PMC10136516 DOI: 10.3390/bios13040419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/16/2023] [Accepted: 03/23/2023] [Indexed: 05/17/2023]
Abstract
Digital microfluidics (DMF) holds great potential for the alleviation of laboratory procedures in assisted reproductive technologies (ARTs). The electrowetting on dielectric (EWOD) technology provides dynamic culture conditions in vitro that may better mimic the natural embryo microenvironment. Thus far, EWOD microdevices have been proposed for in vitro gamete and embryo handling in mice and for analyzing the human embryo secretome. This article presents the development of the first microfluidic chip utilizing EWOD technology designed for the manipulation of bovine embryos in vitro. The prototype sustains the cell cycles of embryos manipulated individually on the chips during in vitro culture (IVC). Challenges related to the chip fabrication as well as to its application during bovine embryo IVC in accordance with the adapted on-chip protocol are thoroughly discussed, and future directions for DMF in ARTs are indicated.
Collapse
Affiliation(s)
- Adriana Karcz
- Centre for Microsystems Technology (CMST), Imec and Ghent University, Technologiepark Zwijnaarde 126, 9052 Zwijnaarde, Belgium
- Reproductive Biology Unit (RBU), Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133 D4, 9820 Merelbeke, Belgium
| | - Ann Van Soom
- Reproductive Biology Unit (RBU), Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133 D4, 9820 Merelbeke, Belgium
| | - Katrien Smits
- Reproductive Biology Unit (RBU), Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133 D4, 9820 Merelbeke, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Campus Sterre, Building S4, Krijgslaan 281, 9000 Ghent, Belgium
| | - Rik Verplancke
- Centre for Microsystems Technology (CMST), Imec and Ghent University, Technologiepark Zwijnaarde 126, 9052 Zwijnaarde, Belgium
| | - Osvaldo Bogado Pascottini
- Reproductive Biology Unit (RBU), Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133 D4, 9820 Merelbeke, Belgium
| | - Etienne Van den Abbeel
- Department of Human Structure and Repair, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Jan Vanfleteren
- Centre for Microsystems Technology (CMST), Imec and Ghent University, Technologiepark Zwijnaarde 126, 9052 Zwijnaarde, Belgium
| |
Collapse
|
49
|
Van Der Kelen A, Okutman Ö, Javey E, Serdarogullari M, Janssens C, Ghosh MS, Dequeker BJH, Perold F, Kastner C, Kieffer E, Segers I, Gheldof A, Hes FJ, Sermon K, Verpoest W, Viville S. A systematic review and evidence assessment of monogenic gene-disease relationships in human female infertility and differences in sex development. Hum Reprod Update 2023; 29:218-232. [PMID: 36571510 DOI: 10.1093/humupd/dmac044] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/05/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND As in other domains of medicine, high-throughput sequencing methods have led to the identification of an ever-increasing number of gene variants in the fields of both male and female infertility. The increasing number of recently identified genes allows an accurate diagnosis for previously idiopathic cases of female infertility and more appropriate patient care. However, robust evidence of the gene-disease relationships (GDR) allowing the proper translation to clinical application is still missing in many cases. OBJECTIVE AND RATIONALE An evidence-based curation of currently identified genes involved in female infertility and differences in sex development (DSD) would significantly improve both diagnostic performance and genetic research. We therefore performed a systematic review to summarize current knowledge and assess the available GDR. SEARCH METHODS PRISMA guidelines were applied to curate all available information from PubMed and Web of Science on genetics of human female infertility and DSD leading to infertility, from 1 January 1988 to 1 November 2021. The reviewed pathologies include non-syndromic as well as syndromic female infertility, and endocrine and reproductive system disorders. The evidence that an identified phenotype is caused by pathogenic variants in a specific gene was assessed according to a standardized scoring system. A final score (no evidence, limited, moderate, strong, or definitive) was assigned to every GDR. OUTCOMES A total of 45 271 publications were identified and screened for inclusion of which 1078 were selected for gene and variant extraction. We have identified 395 genes and validated 466 GDRs covering all reported monogenic causes of female infertility and DSD. Furthermore, we present a genetic diagnostic flowchart including 105 genes with at least moderate evidence for female infertility and suggest recommendations for future research. The study did not take into account associated genetic risk factor(s) or oligogenic/polygenic causes of female infertility. WIDER IMPLICATIONS We have comprehensively reviewed the existing research on the genetics of female infertility and DSD, which will enable the development of diagnostic panels using validated genes. Whole genome analysis is shifting from predominantly research to clinical application, increasing its diagnostic potential. These new diagnostic possibilities will not only decrease the number of idiopathic cases but will also render genetic counselling more effective for infertile patients and their families.
Collapse
Affiliation(s)
- Annelore Van Der Kelen
- Clinical Sciences, Research Group Reproduction and Genetics, Centre for Medical Genetics, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Özlem Okutman
- Laboratoire de Génétique Médicale LGM, Institut de Génétique Médicale d'Alsace IGMA, INSERM UMR 1112, Université de Strasbourg, Strasbourg, France.,Laboratoire de Diagnostic Génétique, Unité de Génétique de l'infertilité (UF3472), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Elodie Javey
- Laboratoires de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Münevver Serdarogullari
- Department of Histology and Embryology, Faculty of Medicine, Cyprus International University, Northern Cyprus via Mersin 10, Turkey
| | - Charlotte Janssens
- Research Group Reproduction and Genetics, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Manjusha S Ghosh
- Research Group Reproduction and Genetics, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Bart J H Dequeker
- Clinical Sciences, Research Group Reproduction and Genetics, Centre for Medical Genetics, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Florence Perold
- Research Group Reproduction and Genetics, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Claire Kastner
- Institut de Génétique Médicale d'Alsace IGMA, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Emmanuelle Kieffer
- Service de Génétique Médicale, Laboratoires de Diagnostic Génétique, Unité de Diagnostic Préimplantatoire (UF9327), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Ingrid Segers
- Clinical Sciences, Research Group Reproduction and Genetics, Brussels IVF Centre for Reproductive Medicine, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium.,Research Group Follicle Biology Laboratory (FOBI), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Alexander Gheldof
- Clinical Sciences, Research Group Reproduction and Genetics, Centre for Medical Genetics, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Frederik J Hes
- Clinical Sciences, Research Group Reproduction and Genetics, Centre for Medical Genetics, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Karen Sermon
- Research Group Reproduction and Genetics, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Willem Verpoest
- Clinical Sciences, Research Group Reproduction and Genetics, Brussels IVF Centre for Reproductive Medicine, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Stéphane Viville
- Laboratoire de Génétique Médicale LGM, Institut de Génétique Médicale d'Alsace IGMA, INSERM UMR 1112, Université de Strasbourg, Strasbourg, France.,Laboratoire de Diagnostic Génétique, Unité de Génétique de l'infertilité (UF3472), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
50
|
Chen M, Jiang H, Zhang C. Selected Genetic Factors Associated with Primary Ovarian Insufficiency. Int J Mol Sci 2023; 24:ijms24054423. [PMID: 36901862 PMCID: PMC10002966 DOI: 10.3390/ijms24054423] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 03/12/2023] Open
Abstract
Primary ovarian insufficiency (POI) is a heterogeneous disease resulting from non-functional ovaries in women before the age of 40. It is characterized by primary amenorrhea or secondary amenorrhea. As regards its etiology, although many POI cases are idiopathic, menopausal age is a heritable trait and genetic factors play an important role in all POI cases with known causes, accounting for approximately 20% to 25% of cases. This paper reviews the selected genetic causes implicated in POI and examines their pathogenic mechanisms to show the crucial role of genetic effects on POI. The genetic factors that can be found in POI cases include chromosomal abnormalities (e.g., X chromosomal aneuploidies, structural X chromosomal abnormalities, X-autosome translocations, and autosomal variations), single gene mutations (e.g., newborn ovary homeobox gene (NOBOX), folliculogenesis specific bHLH transcription factor (FIGLA), follicle-stimulating hormone receptor (FSHR), forkhead box L2 (FOXL2), bone morphogenetic protein 15 (BMP15), etc., as well as defects in mitochondrial functions and non-coding RNAs (small ncRNAs and long ncRNAs). These findings are beneficial for doctors to diagnose idiopathic POI cases and predict the risk of POI in women.
Collapse
Affiliation(s)
- Mengchi Chen
- Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Haotian Jiang
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Chunping Zhang
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang 330006, China
- Correspondence:
| |
Collapse
|