1
|
Jovović L, Bedek J, Malard F, Bilandžija H. De novo transcriptomes of cave and surface isopod crustaceans: insights from 11 species across three suborders. Sci Data 2024; 11:595. [PMID: 38844536 PMCID: PMC11156966 DOI: 10.1038/s41597-024-03393-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/20/2024] [Indexed: 06/09/2024] Open
Abstract
Isopods are a diverse group of crustaceans, that inhabit various environments, including terrestrial, freshwater, and marine, both on the surface and in the underground. The biological mechanisms underlying their wide range of adaptations to diverse ecological niches remain elusive. In order to unravel the molecular basis of their adaptability, we generated a comprehensive RNAseq dataset comprising 11 isopod species belonging to the three different suborders: freshwater Asellota, marine, brackish and freshwater Sphaeromatidea, and terrestrial Oniscidea, with representatives from families Asellidae, Sphaeromatidae, and Trichoniscidae, respectively. Representatives of each family were collected from both cave and surface environments, representing at least three independent cave colonization events. Three biological replicates were sequenced from each species to ensure data robustness. The 11 high-quality RNAseq datasets will serve as a valuable resource for understanding cave-specific adaptations, comparative and functional genomics, ecological annotation as well as aid in conservation efforts of these non-model organisms. Importantly, transcriptomes of eight featured species have been made publicly accessible for the first time.
Collapse
Affiliation(s)
- Lada Jovović
- Ruđer Bošković Institute, 54 Bijenička cesta, Zagreb, 10000, Croatia
| | - Jana Bedek
- Ruđer Bošković Institute, 54 Bijenička cesta, Zagreb, 10000, Croatia
| | - Florian Malard
- Université Claude Bernard Lyon 1, LEHNA UMR 5023, CNRS, ENTPE, F-69622, Villeurbanne, France
| | - Helena Bilandžija
- Ruđer Bošković Institute, 54 Bijenička cesta, Zagreb, 10000, Croatia.
| |
Collapse
|
2
|
Frank T, Sickles J, DeLeo D, Blackwelder P, Bracken-Grissom H. Putative photosensitivity in internal light organs (organs of Pesta) of deep-sea sergestid shrimps. Sci Rep 2023; 13:16113. [PMID: 37752240 PMCID: PMC10522685 DOI: 10.1038/s41598-023-43327-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/22/2023] [Indexed: 09/28/2023] Open
Abstract
Many marine species can regulate the intensity of bioluminescence from their ventral photophores in order to counterilluminate, a camouflage technique whereby animals closely match the intensity of the downwelling illumination blocked by their bodies, thereby hiding their silhouettes. Recent studies on autogenic cuticular photophores in deep-sea shrimps indicate that the photophores themselves are light sensitive. Here, our results suggest photosensitivity in a second type of autogenic photophore, the internal organs of Pesta, found in deep-sea sergestid shrimps. Experiments were conducted onboard ship on live specimens, exposing the animals to bright light, which resulted in ultrastructural changes that matched those seen in crustacean eyes during the photoreceptor membrane turnover, a process that is crucial for the proper functioning of photosensitive components. In addition, RNA-seq studies demonstrated the expression of visual opsins and phototransduction genes in photophore tissue that are known to play a role in light detection, and electrophysiological measurements indicated that the light organs are responding to light received by the eyes. The long sought after mechanism of counterillumination remains unknown, but evidence of photosensitivity in photophores may indicate a dual functionality of light detection and emission.
Collapse
Affiliation(s)
- Tamara Frank
- Halmos College of Arts and Sciences, Nova Southeastern University, Dania Beach, FL, 33004, USA.
| | - Jamie Sickles
- Halmos College of Arts and Sciences, Nova Southeastern University, Dania Beach, FL, 33004, USA
| | - Danielle DeLeo
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013, USA
- Institute of Environment and Department of Biology, Florida International University, North Miami, FL, 33181, USA
| | - Patricia Blackwelder
- Halmos College of Arts and Sciences, Nova Southeastern University, Dania Beach, FL, 33004, USA
| | - Heather Bracken-Grissom
- Institute of Environment and Department of Biology, Florida International University, North Miami, FL, 33181, USA
| |
Collapse
|
3
|
Razak MR, Aris AZ, Md Yusoff F, Yusof ZNB, Kim SD, Kim KW. Assessment of RNA extraction protocols from cladocerans. PLoS One 2022; 17:e0264989. [PMID: 35472091 PMCID: PMC9041806 DOI: 10.1371/journal.pone.0264989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/18/2022] [Indexed: 11/18/2022] Open
Abstract
The usage of cladocerans as non-model organisms in ecotoxicological and risk assessment studies has intensified in recent years due to their ecological importance in aquatic ecosystems. The molecular assessment such as gene expression analysis has been introduced in ecotoxicological and risk assessment to link the expression of specific genes to a biological process in the cladocerans. The validity and accuracy of gene expression analysis depends on the quantity, quality and integrity of extracted ribonucleic acid (RNA) of the sample. However, the standard methods of RNA extraction from the cladocerans are still lacking. This study evaluates the extraction of RNA from tropical freshwater cladocerans Moina micrura using two methods: the phenol-chloroform extraction method (QIAzol) and a column-based kit (Qiagen Micro Kit). Glycogen was introduced in both approaches to enhance the recovery of extracted RNA and the extracted RNA was characterised using spectrophotometric analysis (NanoDrop), capillary electrophoresis (Bioanalyzer). Then, the extracted RNA was analysed with reverse transcription polymerase chain reaction (RT-PCR) to validate the RNA extraction method towards downstream gene expression analysis. The results indicate that the column-based kit is most suitable for the extraction of RNA from M. micrura, with the quantity (RNA concentration = 26.90 ± 6.89 ng/μl), quality (A260:230 = 1.95 ± 0.15, A280:230 = 1.85 ± 0.09) and integrity (RNA integrity number, RIN = 7.20 ± 0.16). The RT-PCR analysis shows that the method successfully amplified both alpha tubulin and actin gene at 33-35 cycles (i.e. Ct = 32.64 to 33.48). The results demonstrate that the addition of glycogen is only suitable for the phenol-chloroform extraction method. RNA extraction with high and comprehensive quality control assessment will increase the accuracy and reliability of downstream gene expression, thus providing more ecotoxicological data at the molecular biological level on other freshwater zooplankton species.
Collapse
Affiliation(s)
- Muhammad Raznisyafiq Razak
- Faculty of Forestry and Environment, Department of Environment, Universiti Putra Malaysia, Selangor, Malaysia
| | - Ahmad Zaharin Aris
- Faculty of Forestry and Environment, Department of Environment, Universiti Putra Malaysia, Selangor, Malaysia
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, Negeri Sembilan, Malaysia
| | - Fatimah Md Yusoff
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, Negeri Sembilan, Malaysia
- Faculty of Agriculture, Department of Aquaculture, Universiti Putra Malaysia, Selangor, Malaysia
| | - Zetty Norhana Balia Yusof
- Faculty of Biotechnology and Biomolecular Science, Department of Biochemistry, Universiti Putra Malaysia, Selangor, Malaysia
- Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Sang Don Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Buk-gu, Gwangju, Republic of Korea
| | - Kyoung Woong Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Buk-gu, Gwangju, Republic of Korea
| |
Collapse
|
4
|
Payton L, Noirot C, Last KS, Grigor J, Hüppe L, Conway DVP, Dannemeyer M, Suin A, Meyer B. Annual transcriptome of a key zooplankton species, the copepod Calanus finmarchicus. Ecol Evol 2022; 12:e8605. [PMID: 35228860 PMCID: PMC8861585 DOI: 10.1002/ece3.8605] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/20/2021] [Accepted: 01/10/2022] [Indexed: 12/13/2022] Open
Abstract
The copepod Calanus finmarchicus (Crustacea, Copepoda) is a key zooplanktonic species with a crucial position in the North Atlantic food web and significant contributor to ocean carbon flux. Like many other high latitude animals, it has evolved a programmed arrested development called diapause to cope with long periods of limited food supply, while growth and reproduction are timed to take advantage of seasonal peaks in primary production. However, anthropogenic warming is inducing changes in the expected timing of phytoplankton blooms, suggesting phenological mismatches with negative consequences for the N. Atlantic ecosystem. While diapause mechanisms are mainly studied in terrestrial arthropods, specifically on laboratory model species, such as the fruit fly Drosophila, the molecular investigations of annual rhythms in wild marine species remain fragmentary. Here we performed a rigorous year-long monthly sampling campaign of C. finmarchicus in a Scottish Loch (UK; 56.45°N, 5.18°W) to generate an annual transcriptome. The mRNA of 36 samples (monthly triplicate of 25 individuals) have been deeply sequenced with an average depth of 137 ± 4 million reads (mean ± SE) per sample, aligned to the reference transcriptome, and filtered. We detail the quality assessment of the datasets and provide a high-quality resource for the investigation of wild annual transcriptomic rhythms (35,357 components) in a key diapausing zooplanktonic species.
Collapse
Affiliation(s)
- Laura Payton
- Institute for Chemistry and Biology of the Marine EnvironmentCarl von Ossietzky University of OldenburgOldenburgGermany
- Section Polar Biological OceanographyAlfred Wegener Institute Helmholtz Centre for Polar and Marine ResearchBremerhavenGermany
| | - Céline Noirot
- Plateforme bio‐informatique GenoToulMIATINRAEUR875 Mathématiques et Informatique Appliquées ToulouseCastanet‐TolosanFrance
| | - Kim S. Last
- Scottish Association for Marine ScienceObanUK
| | | | - Lukas Hüppe
- Institute for Chemistry and Biology of the Marine EnvironmentCarl von Ossietzky University of OldenburgOldenburgGermany
- Section Polar Biological OceanographyAlfred Wegener Institute Helmholtz Centre for Polar and Marine ResearchBremerhavenGermany
- Neurobiology and GeneticsTheodor‐Boveri InstituteBiocentreUniversity of WürzburgWürzburgGermany
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB)University of OldenburgOldenburgGermany
| | | | - Mona Dannemeyer
- Section Polar Biological OceanographyAlfred Wegener Institute Helmholtz Centre for Polar and Marine ResearchBremerhavenGermany
| | - Amandine Suin
- Plateforme GénomiqueINRAE US 1426 GeT‐PlaGeCentre INRAE de Toulouse OccitanieCastanet‐TolosanFrance
| | - Bettina Meyer
- Institute for Chemistry and Biology of the Marine EnvironmentCarl von Ossietzky University of OldenburgOldenburgGermany
- Section Polar Biological OceanographyAlfred Wegener Institute Helmholtz Centre for Polar and Marine ResearchBremerhavenGermany
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB)University of OldenburgOldenburgGermany
| |
Collapse
|
5
|
Andersen Ø, Johnsen H, Wittmann AC, Harms L, Thesslund T, Berg RS, Siikavuopio S, Mykles DL. De novo transcriptome assemblies of red king crab (Paralithodes camtschaticus) and snow crab (Chionoecetes opilio) molting gland and eyestalk ganglia - Temperature effects on expression of molting and growth regulatory genes in adult red king crab. Comp Biochem Physiol B Biochem Mol Biol 2021; 257:110678. [PMID: 34655763 DOI: 10.1016/j.cbpb.2021.110678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/16/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022]
Abstract
Red king crab (Paralithodes camtschaticus) and snow crab (Chionoecetes opilio) are deep-sea crustaceans widely distributed in the North Pacific and Northwest Atlantic Oceans. These giant predators have invaded the Barents Sea over the past decades, and climate-driven temperature changes may influence their distribution and abundance in the sub-Arctic region. Molting and growth in crustaceans are strongly affected by temperature, but the underlying molecular mechanisms are little known, particularly in cold-water species. Here, we describe multiple regulatory factors in the two high-latitude crabs by developing de novo transcriptomes from the molting gland (Y-organ or YO) and eye stalk ganglia (ESG), in addition to the hepatopancreas and claw muscle of red king crab. The Halloween genes encoding the ecdysteroidogenic enzymes were expressed in YO, and the ESG contained multiple neuropeptides, including molt-inhibiting hormone (MIH), crustacean hyperglycemic hormone (CHH), and ion-transport peptide (ITP). Both crabs expressed a diversity of growth-related factors, such as mTOR, AKT, Rheb and AMPKα, and stress-responsive factors, including multiple heat shock proteins (HSPs). Temperature effects on the expression of key regulatory genes were quantified by qPCR in adult red king crab males kept at 4 °C or 10 °C for two weeks during intermolt. The Halloween genes tended to be upregulated in YO at high temperature, while the ecdysteroid receptor and several growth regulators showed tissue-specific responses to elevated temperature. Constitutive and heat-inducible HSPs were expressed in an inverse temperature-dependent manner, suggesting that adult red king crabs can acclimate to increased water temperatures.
Collapse
Affiliation(s)
- Øivind Andersen
- Nofima, Tromsø NO-9291, Norway; Department of Animal and Aquacultural Sciences (IHA), Faculty of Life Sciences (BIOVIT), Norwegian University of Life Sciences (NMBU), PO Box 5003, 1433 Ås, Norway.
| | - Hanne Johnsen
- Nofima, Tromsø NO-9291, Norway; Norwegian Polar Institute, 9296 Tromsø, Norway
| | - Astrid C Wittmann
- MARUM - Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany; Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
| | - Lars Harms
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
| | | | | | | | - Donald L Mykles
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA; Bodega Marine Laboratory, University of California, Davis, Bodega Bay, CA 94923, USA
| |
Collapse
|
6
|
Miller CD, Forthman M, Miller CW, Kimball RT. Extracting ‘legacy loci’ from an invertebrate sequence capture data set. ZOOL SCR 2021. [DOI: 10.1111/zsc.12513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Caroline D. Miller
- Department of Entomology & Nematology University of Florida Gainesville FL USA
| | - Michael Forthman
- Department of Entomology & Nematology University of Florida Gainesville FL USA
- California State Collection of Arthropods Plant Pest Diagnostics Branch California Department of Food & Agriculture Sacramento CA USA
| | - Christine W. Miller
- Department of Entomology & Nematology University of Florida Gainesville FL USA
| | | |
Collapse
|
7
|
Payton L, Noirot C, Hoede C, Hüppe L, Last K, Wilcockson D, Ershova EA, Valière S, Meyer B. Daily transcriptomes of the copepod Calanus finmarchicus during the summer solstice at high Arctic latitudes. Sci Data 2020; 7:415. [PMID: 33235200 PMCID: PMC7686379 DOI: 10.1038/s41597-020-00751-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/29/2020] [Indexed: 11/09/2022] Open
Abstract
The zooplankter Calanus finmarchicus is a member of the so-called "Calanus Complex", a group of copepods that constitutes a key element of the Arctic polar marine ecosystem, providing a crucial link between primary production and higher trophic levels. Climate change induces the shift of C. finmarchicus to higher latitudes with currently unknown impacts on its endogenous timing. Here we generated a daily transcriptome of C. finmarchicus at two high Arctic stations, during the more extreme time of Midnight Sun, the summer solstice. While the southern station (74.5 °N) was sea ice-free, the northern one (82.5 °N) was sea ice-covered. The mRNAs of the 42 samples have been sequenced with an average of 126 ± 5 million reads (mean ± SE) per sample, and aligned to the reference transcriptome. We detail the quality assessment of the datasets and the complete annotation procedure, providing the possibility to investigate daily gene expression of this ecologically important species at high Arctic latitudes, and to compare gene expression according to latitude and sea ice-coverage.
Collapse
Affiliation(s)
- Laura Payton
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, 26111, Germany.
- Section Polar Biological Oceanography, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, 27570, Germany.
| | - Céline Noirot
- Plateforme bio-informatique GenoToul, MIAT, INRAE, UR875 Mathématiques et Informatique Appliquées Toulouse, F-31326, Castanet-Tolosan, France
| | - Claire Hoede
- Plateforme bio-informatique GenoToul, MIAT, INRAE, UR875 Mathématiques et Informatique Appliquées Toulouse, F-31326, Castanet-Tolosan, France
| | - Lukas Hüppe
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, 26111, Germany
- Section Polar Biological Oceanography, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, 27570, Germany
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB) at the University of Oldenburg, Oldenburg, 26111, Germany
| | - Kim Last
- Scottish Association for Marine Science, Oban, Argyll, PA37 1QA, UK
| | - David Wilcockson
- Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | - Elizaveta A Ershova
- Department for Arctic and Marine Biology, Faculty for Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, N-9037, Norway
- Shirshov Institute of Oceanology, Russian Academy of Sciences, 36 Nakhimova Avenue, Moscow, Russian Federation, 117997, Russia
| | - Sophie Valière
- Plateforme Génomique, INRAE US 1426 GeT-PlaGe, Centre INRAE de Toulouse Occitanie, 24 Chemin de Borde Rouge, Auzeville, 31326, Castanet-Tolosan cedex, France
| | - Bettina Meyer
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, 26111, Germany
- Section Polar Biological Oceanography, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, 27570, Germany
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB) at the University of Oldenburg, Oldenburg, 26111, Germany
| |
Collapse
|
8
|
DeLeo DM, Bracken-Grissom HD. Illuminating the impact of diel vertical migration on visual gene expression in deep-sea shrimp. Mol Ecol 2020; 29:3494-3510. [PMID: 32748474 DOI: 10.1111/mec.15570] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/19/2022]
Abstract
Diel vertical migration (DVM) of marine animals represents one of the largest migrations on our planet. Migrating fauna are subjected to a variety of light fields and environmental conditions that can have notable impacts on sensory mechanisms, including an organism's visual capabilities. Among deep-sea migrators are oplophorid shrimp that vertically migrate hundreds of metres to feed in shallow waters at night. These species also have bioluminescent light organs that emit light during migrations to aid in camouflage. The organs have recently been shown to contain visual proteins (opsins) and genes that infer light sensitivity. Knowledge regarding the impacts of vertical migratory behaviour, and fluctuating environmental conditions, on sensory system evolution is unknown. In this study, the oplophorid Systellaspis debilis was either collected during the day from deep waters or at night from relatively shallow waters to ensure sampling across the vertical distributional range. De novo transcriptomes of light-sensitive tissues (eyes/photophores) from the day/night specimens were sequenced and analysed to characterize opsin diversity and visual/light interaction genes. Gene expression analyses were also conducted to quantify expression differences associated with DVM. Our results revealed an expanded opsin repertoire among the shrimp and differential opsin expression that may be linked to spectral tuning during the migratory process. This study sheds light on the sensory systems of a bioluminescent invertebrate and provides additional evidence for extraocular light sensitivity. Our findings further suggest opsin co-expression and subsequent fluctuations in opsin expression may play an important role in diversifying the visual responses of vertical migrators.
Collapse
Affiliation(s)
- Danielle M DeLeo
- Institute of Environment, Department of Biology, Florida International University, North Miami, FL, USA.,Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Heather D Bracken-Grissom
- Institute of Environment, Department of Biology, Florida International University, North Miami, FL, USA
| |
Collapse
|
9
|
Bracken-Grissom HD, DeLeo DM, Porter ML, Iwanicki T, Sickles J, Frank TM. Light organ photosensitivity in deep-sea shrimp may suggest a novel role in counterillumination. Sci Rep 2020; 10:4485. [PMID: 32161283 PMCID: PMC7066151 DOI: 10.1038/s41598-020-61284-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/30/2020] [Indexed: 12/31/2022] Open
Abstract
Extraocular photoreception, the ability to detect and respond to light outside of the eye, has not been previously described in deep-sea invertebrates. Here, we investigate photosensitivity in the bioluminescent light organs (photophores) of deep-sea shrimp, an autogenic system in which the organism possesses the substrates and enzymes to produce light. Through the integration of transcriptomics, in situ hybridization and immunohistochemistry we find evidence for the expression of opsins and phototransduction genes known to play a role in light detection in most animals. Subsequent shipboard light exposure experiments showed ultrastructural changes in the photophore similar to those seen in crustacean eyes, providing further evidence that photophores are light sensitive. In many deep-sea species, it has long been documented that photophores emit light to aid in counterillumination - a dynamic form of camouflage that requires adjusting the organ's light intensity to "hide" their silhouettes from predators below. However, it remains a mystery how animals fine-tune their photophore luminescence to match the intensity of downwelling light. Photophore photosensitivity allows us to reconsider the organ's role in counterillumination - not only in light emission but also light detection and regulation.
Collapse
Affiliation(s)
| | - Danielle M DeLeo
- Department of Biology, Florida International University, North Miami, FL, 33181, USA
| | - Megan L Porter
- Department of Biology, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Tom Iwanicki
- Department of Biology, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Jamie Sickles
- Department of Biology, Nova Southeastern University, Fort Lauderdale, FL, 33314, USA
| | - Tamara M Frank
- Department of Biology, Nova Southeastern University, Fort Lauderdale, FL, 33314, USA
| |
Collapse
|
10
|
Natsidis P, Schiffer PH, Salvador-Martínez I, Telford MJ. Computational discovery of hidden breaks in 28S ribosomal RNAs across eukaryotes and consequences for RNA Integrity Numbers. Sci Rep 2019; 9:19477. [PMID: 31863008 PMCID: PMC6925239 DOI: 10.1038/s41598-019-55573-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/27/2019] [Indexed: 11/09/2022] Open
Abstract
In some eukaryotes, a 'hidden break' has been described in which the 28S ribosomal RNA molecule is cleaved into two subparts. The break is common in protostome animals (arthropods, molluscs, annelids etc.), but a break has also been reported in some vertebrates and non-metazoan eukaryotes. We present a new computational approach to determine the presence of the hidden break in 28S rRNAs using mapping of RNA-Seq data. We find a homologous break is present across protostomes although it has been lost in a small number of taxa. We show that rare breaks in vertebrate 28S rRNAs are not homologous to the protostome break. A break is found in just 4 out of 331 species of non-animal eukaryotes studied and, in three of these, the break is located in the same position as the protostome break suggesting a striking instance of convergent evolution. RNA Integrity Numbers (RIN) rely on intact 28S rRNA and will be consistently underestimated in the great majority of animal species with a break.
Collapse
Affiliation(s)
- Paschalis Natsidis
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | - Philipp H Schiffer
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | - Irepan Salvador-Martínez
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | - Maximilian J Telford
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
11
|
Hiki K, Nakajima F, Tobino T, Watanabe H, Yamamoto H. Whole transcriptome analysis of an estuarine amphipod exposed to highway road dust. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 675:141-150. [PMID: 31026638 DOI: 10.1016/j.scitotenv.2019.04.201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/12/2019] [Accepted: 04/12/2019] [Indexed: 06/09/2023]
Abstract
Urban road dust can potentially have adverse effects on aquatic and benthic ecosystems if discharged into receiving waters; however, little is known about the mode of action of road dust toxicity within aquatic organisms. With an aim to reveal the biological effects of road dust on benthic crustacean species, we performed a de novo transcriptome analysis of the estuarine amphipod Grandidierella japonica exposed to road dust collected from highways around Tokyo. A transcriptome analysis by Illumina HiSeq 2500 identified differentially expressed genes related to the gamma-aminobutyric acid (GABA) signaling pathway, oxidative damage, and cuticle metabolism. Among these, a GABAB receptor subunit showed down-regulation in the road dust treatment, but a constant expression in the treatment of road dust with a carbonaceous resin XAD-4, which can reduce the acute toxicity of road dust to G. japonica. These results and the time course expressions of the related genes were partially confirmed by quantitative PCR (qPCR) experiments. Although the linkage between acute lethal toxicity and the molecular initiating events induced by road dust was still unclear, our findings provide lines of evidence to identify the causative toxicants in urban road dust.
Collapse
Affiliation(s)
- Kyoshiro Hiki
- Center for Environmental Risk Research, National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, Ibaraki 305-8506, Japan; Department of Urban Engineering, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Fumiyuki Nakajima
- Environmental Science Center, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomohiro Tobino
- Department of Urban Engineering, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Haruna Watanabe
- Center for Environmental Risk Research, National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, Ibaraki 305-8506, Japan
| | - Hiroshi Yamamoto
- Center for Environmental Risk Research, National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, Ibaraki 305-8506, Japan
| |
Collapse
|