1
|
Visagie CM, Magistà D, Ferrara M, Balocchi F, Duong TA, Eichmeier A, Gramaje D, Aylward J, Baker SE, Barnes I, Calhoun S, De Angelis M, Frisvad JC, Hakalova E, Hayes RD, Houbraken J, Grigoriev IV, LaButti K, Leal C, Lipzen A, Ng V, Pangilinan J, Pecenka J, Perrone G, Piso A, Savage E, Spetik M, Wingfield MJ, Zhang Y, Wingfield BD. IMA genome-F18 : The re-identification of Penicillium genomes available in NCBI and draft genomes for Penicillium species from dry cured meat, Penicillium biforme, P. brevicompactum, P. solitum, and P. cvjetkovicii, Pewenomyces kutranfy, Pew. lalenivora, Pew. tapulicola, Pew. kalosus, Teratosphaeria carnegiei, and Trichoderma atroviride SC1. IMA Fungus 2023; 14:21. [PMID: 37803441 PMCID: PMC10559472 DOI: 10.1186/s43008-023-00121-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 10/08/2023] Open
Affiliation(s)
- Cobus M Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Donato Magistà
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via G. Amendola 122/O, 70126, Bari, Italy
| | - Massimo Ferrara
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via G. Amendola 122/O, 70126, Bari, Italy
| | - Felipe Balocchi
- Department of Plant and Soil Sciences, FABI, University of Pretoria, Pretoria, South Africa
| | - Tuan A Duong
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Ales Eichmeier
- Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas - Universidad de la Rioja - Gobierno de La Rioja, Ctra. LO-20 Salida 13, Finca La Grajera, 26071, Logroño, Spain
| | - David Gramaje
- Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas - Universidad de la Rioja - Gobierno de La Rioja, Ctra. LO-20 Salida 13, Finca La Grajera, 26071, Logroño, Spain
| | - Janneke Aylward
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Department of Conservation Ecology and Entomology, Stellenbosch University, Matieland, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Scott E Baker
- Functional and Systems Biology Group, Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- DOE Joint Bioenergy Institute, Emeryville, CA, 94608, USA
| | - Irene Barnes
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Sara Calhoun
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari "Aldo Moro", Via G. Amendola 165/a, 70126, Bari, Italy
| | - Jens C Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs, Lyngby, Denmark
| | - Eliska Hakalova
- Mendeleum - Institute of Genetics, Mendel University in Brno, Valticka 334, 691 44, Lednice, Czech Republic
| | - Richard D Hayes
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Jos Houbraken
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, 110 Koshland Hall, Berkeley, CA, 94720, USA
| | - Kurt LaButti
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Catarina Leal
- Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas - Universidad de la Rioja - Gobierno de La Rioja, Ctra. LO-20 Salida 13, Finca La Grajera, 26071, Logroño, Spain
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Vivian Ng
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Jasmyn Pangilinan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Jakub Pecenka
- Mendeleum - Institute of Genetics, Mendel University in Brno, Valticka 334, 691 44, Lednice, Czech Republic
| | - Giancarlo Perrone
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via G. Amendola 122/O, 70126, Bari, Italy
| | - Anja Piso
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Emily Savage
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Milan Spetik
- Mendeleum - Institute of Genetics, Mendel University in Brno, Valticka 334, 691 44, Lednice, Czech Republic
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Yu Zhang
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Brenda D Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
2
|
Solís M, Hammerbacher A, Wingfield MJ, Naidoo S. A Robust Disease Scoring Method to Screen Eucalyptus for Resistance Against the Aggressive Leaf Pathogen Teratosphaeria destructans. PLANT DISEASE 2023; 107:PDIS06221347RE. [PMID: 36256741 DOI: 10.1094/pdis-06-22-1347-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Shoot and leaf blight caused by Teratosphaeria destructans is one of the most devastating foliar diseases on Eucalyptus. Therefore, breeding for resistance to this disease is considered urgent. Differences in susceptibility to T. destructans have been observed in the field but a robust inoculation protocol has, until recently, been unavailable and a disease scoring method for precise phenotyping has not been established. A first objective of this study was to determine the optimal conidial concentration for T. destructans inoculations on a susceptible Eucalyptus host. This concentration was then used to determine differences in susceptibility of six genotypes of Eucalyptus grandis × E. urophylla to the pathogen by assessing the percentage of infected stomata using electron microscopy and the percentage of leaf area covered by lesions (PLACL) using image processing. In addition, we developed a disease susceptibility index (SI) of six categories ranging from highly resistant (SI = 0) to highly susceptible (SI = 1.5 to 2). The more resistant genotypes were moderately resistant, with an SI value of 0.49 to 0.54 and a PLACL of 6.5 to 9%. In contrast, the more susceptible genotype scored an SI of 1.52 and PLACL of 48%. Host susceptibility was also assessed relative to the sporulation of the pathogen. This showed that the percentage of sporulation was not significantly correlated with host resistance. Overall, the results provide the basis for rigorous screening and selection of resistant genotypes to the disease caused by T. destructans using artificial inoculation.
Collapse
Affiliation(s)
- Myriam Solís
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0028, South Africa
| | - Almuth Hammerbacher
- Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0028, South Africa
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0028, South Africa
| | - Sanushka Naidoo
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0028, South Africa
| |
Collapse
|
3
|
Hulbert JM, Hallett RA, Roy HE, Cleary M. Citizen science can enhance strategies to detect and manage invasive forest pests and pathogens. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1113978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Incorporating a citizen science approach into biological invasion management strategies can enhance biosecurity. Many citizen science projects exist to strengthen the management of forest pest and pathogen invasions within both pre- and post-border scenarios. Besides the value of citizen science initiatives for early detection and monitoring, they also contribute widely to raising awareness, informing decisions about eradication and containment efforts to minimize pest and pathogen spread, and even finding resistant plant material for restoration of landscapes degraded by disease. Overall, many projects actively engage citizens in the different stages of forest pest and pathogen invasions, but it is unclear how they work together across all stages of the entire biological invasion process to enhance biosecurity. Here we provide examples of citizen science projects for each stage of the biological invasion process, discuss options for developing a citizen science program to enhance biosecurity, and suggest approaches for integrating citizen science into biosecurity measures to help safeguard forest resources in the future.
Collapse
|
4
|
Solís M, Wingfield MJ, Hammerbacher A, Naidoo S. Comparison of the Infection Biology of Teratosphaeria destructans and Teratosphaeria epicoccoides on Eucalyptus. PLANT DISEASE 2022; 106:1944-1951. [PMID: 34874178 DOI: 10.1094/pdis-09-21-1877-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Leaf blight caused by Teratosphaeria destructans is one of the most important diseases of Eucalyptus planted in the subtropics and tropics. In contrast, the better-known T. epicoccoides, though also a primary pathogen of Eucalyptus, causes less damage to trees in these areas. Although T. destructans is an aggressive pathogen, nothing is known about its infection biology. In this study, the conditions for infection and disease development caused by T. destructans and T. epicoccoides were evaluated and compared on a Eucalyptus grandis × E. urophylla hybrid clone. The optimal temperature for germination ranged from 25 to 30°C for T. destructans and 15 to 20°C for T. epicoccoides. The germination of these pathogens was favored under conditions of light and high levels of RH. Penetration by T. destructans and T. epicoccoides occurred via stomata, and the hyphae colonized the intercellular spaces of infected leaves. Symptoms were clearly visible 3 weeks after inoculation by both pathogens, and reproductive structures started to develop in substomatal cavities at 4 weeks after inoculation. The results of this study will facilitate the establishment of rapid screening trials based on artificial inoculations aimed at reducing the impact of disease caused by T. destructans.
Collapse
Affiliation(s)
- Myriam Solís
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0028, South Africa
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0028, South Africa
| | - Almuth Hammerbacher
- Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0028, South Africa
| | - Sanushka Naidoo
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0028, South Africa
| |
Collapse
|
5
|
Li J, Wingfield MJ, Barnes I, Chen S. Calonectria in the age of genes and genomes: Towards understanding an important but relatively unknown group of pathogens. MOLECULAR PLANT PATHOLOGY 2022; 23:1060-1072. [PMID: 35338559 PMCID: PMC9190971 DOI: 10.1111/mpp.13209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 02/26/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
The genus Calonectria includes many aggressive plant pathogens causing diseases on various agricultural crops as well as forestry and ornamental tree species. Some species have been accidentally introduced into new environments via international trade of putatively asymptomatic plant germplasm or contaminated soil, resulting in significant economic losses. This review provides an overview of the taxonomy, population biology, and pathology of Calonectria species, specifically emerging from contemporary studies that have relied on DNA-based technologies. The growing importance of genomics in future research is highlighted. A life cycle is proposed for Calonectria species, aimed at improving our ability to manage diseases caused by these pathogens.
Collapse
Affiliation(s)
- JieQiong Li
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology InstituteUniversity of PretoriaPretoriaSouth Africa
- Research Institute of Fast‐growing Trees/China Eucalypt Research Centre, Chinese Academy of ForestryZhanjiangChina
| | - Michael J. Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology InstituteUniversity of PretoriaPretoriaSouth Africa
| | - Irene Barnes
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology InstituteUniversity of PretoriaPretoriaSouth Africa
| | - ShuaiFei Chen
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology InstituteUniversity of PretoriaPretoriaSouth Africa
- Research Institute of Fast‐growing Trees/China Eucalypt Research Centre, Chinese Academy of ForestryZhanjiangChina
| |
Collapse
|
6
|
Phytophthora podocarpi sp. nov. from Diseased Needles and Shoots of Podocarpus in New Zealand. FORESTS 2022. [DOI: 10.3390/f13020214] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Foliage samples from Podocarpus totara with severe needle browning and needle loss in the lower part of the crown were observed in 2011 in the Gisborne region of New Zealand. A Phytophthora genus-specific test applied directly to the needles gave a strong positive result, and subsequent isolations yielded colonies of a slow-growing oomycete. Morphological examination in vitro revealed a Phytophthora species. Preliminary comparisons of the rDNA (ITS), and ras-related protein (Ypt) gene regions with international DNA sequence revealed low sequence similarity to species from the downy mildew genus Peronospora, as well as clade 3 Phytophthora species. Other studies have also demonstrated the close relationship with Peronospora. The species was given the interim designation Phytophthora taxon tōtara pending further examination. Here, we formally describe Phytophthora podocarpi sp. Nov. and its associated disease, tōtara needle blight.
Collapse
|
7
|
Duong TA, Aylward J, Ametrano CG, Poudel B, Santana QC, Wilken PM, Martin A, Arun-Chinnappa KS, de Vos L, DiStefano I, Grewe F, Huhndorf S, Lumbsch HT, Rakoma JR, Poudel B, Steenkamp ET, Sun Y, van der Nest MA, Wingfield MJ, Yilmaz N, Wingfield BD. IMA Genome - F15 : Draft genome assembly of Fusarium pilosicola, Meredithiella fracta, Niebla homalea, Pyrenophora teres hybrid WAC10721, and Teratosphaeria viscida. IMA Fungus 2021; 12:30. [PMID: 34645521 PMCID: PMC8513234 DOI: 10.1186/s43008-021-00077-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2021] [Indexed: 12/01/2022] Open
Affiliation(s)
- Tuan Anh Duong
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | - Janneke Aylward
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
- Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Claudio Gennaro Ametrano
- Field Museum, Department of Science and Education, Grainger Bioinformatics Center, 1400 S Lake Shore Drive, Chicago, IL 60605, USA
| | - Barsha Poudel
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
| | - Quentin Carlo Santana
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | - Pieter Markus Wilken
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | - Anke Martin
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
| | - Kiruba Shankari Arun-Chinnappa
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
- PerkinElmer Pty LTD., Level 2, Building 5, Brandon Business Park 530-540, Springvale Road, Glen Waverley, VIC, 3150, Australia
| | - Lieschen de Vos
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | - Isabel DiStefano
- Field Museum, Department of Science and Education, Grainger Bioinformatics Center, 1400 S Lake Shore Drive, Chicago, IL 60605, USA
| | - Felix Grewe
- Field Museum, Department of Science and Education, Grainger Bioinformatics Center, 1400 S Lake Shore Drive, Chicago, IL 60605, USA
| | - Sabine Huhndorf
- Field Museum, Department of Science and Education, Grainger Bioinformatics Center, 1400 S Lake Shore Drive, Chicago, IL 60605, USA
| | - Helge Thorsten Lumbsch
- Field Museum, Department of Science and Education, Grainger Bioinformatics Center, 1400 S Lake Shore Drive, Chicago, IL 60605, USA
| | - Jostina Raesetsa Rakoma
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | - Barsha Poudel
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
| | - Emma Theodora Steenkamp
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | - Yukun Sun
- Field Museum, Department of Science and Education, Grainger Bioinformatics Center, 1400 S Lake Shore Drive, Chicago, IL 60605, USA
| | - Magriet A van der Nest
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
- Biotechnology Platform, Agricultural Research Council, Onderstepoort, Pretoria, 0110, South Africa
| | - Michael John Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | - Neriman Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | - Brenda Diana Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa.
| |
Collapse
|
8
|
New and Emerging Insect Pest and Disease Threats to Forest Plantations in Vietnam. FORESTS 2021. [DOI: 10.3390/f12101301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The planted forest area in Vietnam increased from 3.0 to 4.4 million hectares in the period 2010–2020, but the loss of productivity from pests and diseases continues to be a problem. During this period, frequent and systematic plantation forest health surveys were conducted on 12 native and 4 exotic genera of trees as well as bamboo across eight forest geographic regions of Vietnam. Damage caused by insects and pathogens was quantified in the field and laboratory in Hanoi. The threats of greatest concern were from folivores (Antheraea frithi, Arthroschista hilaralis, Atteva fabriciella, Hieroglyphus tonkinensis, Lycaria westermanni,Krananda semihyalina, and Moduza procris), wood borers (Batocera lineolata, Euwallacea fornicatus, Tapinolachnus lacordairei, Xyleborus perforans, and Xystrocera festiva), sap-sucking insects (Aulacaspis tubercularis and Helopeltis theivora) and pathogens (Ceratocystis manginecans, Fusarium solani, and Phytophthora acaciivora). The number of new and emerging pests and pathogens increased over time from 2 in 2011 to 17 in 2020, as the damage became more widespread. To manage these pests and diseases, it is necessary to further invest in the selection and breeding of resistant genotypes, improve nursery hygiene and silvicultural operations, and adopt integrated pest management schemes. Consideration should be given to developing forest health monitoring protocols for forest reserves and other special-purpose forests.
Collapse
|
9
|
Population Diversity and Genetic Structure Reveal Patterns of Host Association and Anthropogenic Impact for the Globally Important Fungal Tree Pathogen Ceratocystis manginecans. J Fungi (Basel) 2021; 7:jof7090759. [PMID: 34575797 PMCID: PMC8470894 DOI: 10.3390/jof7090759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 11/17/2022] Open
Abstract
Species in the Ceratocystis manginecans complex are important fungal pathogens of plantation trees globally. The most important hosts include species of Eucalyptus, Acacia, Mangifera, and Punica. Despite their relevance and widespread occurrence, little is known regarding their population genetics and how this might relate to their host associations or geographic regions in which they occur. A global collection of 491 isolates representing the C. manginecans complex, from four different plant hosts and nine countries, were genotyped using microsatellite markers. Population genetic analyses using numerous tools were conducted to interrogate how their genetic diversity and structure might be affected by host or areas of occurrence. Results of genetic diversity studies showed that when grouping isolates into populations based on their host associations, the population on Eucalyptus was most diverse, and it also has a broad global distribution. When considering countries of origin as a basis for defining populations, the gene and genotypic diversity were highest in populations from China, Indonesia, and Brazil. In contrast, populations from Oman and Pakistan collected from Mangifera had the lowest genetic diversity and were clonal. Molecular variance, population differentiation, and network and structure analyses showed that the genetic structure of isolates in the C. manginecans complex is influenced by both host association as well as geographical isolation. Furthermore, the results reflected the movement of genotypes between plant hosts and geographic regions that have implications regarding the broad global distribution of this pathogen.
Collapse
|
10
|
Shakya SK, Grünwald NJ, Fieland VJ, Knaus BJ, Weiland JE, Maia C, Drenth A, Guest DI, Liew ECY, Crane C, Chang TT, Fu CH, Minh Chi N, Quang Thu P, Scanu B, von Stowasser ES, Durán Á, Horta Jung M, Jung T. Phylogeography of the wide-host range panglobal plant pathogen Phytophthora cinnamomi. Mol Ecol 2021; 30:5164-5178. [PMID: 34398981 DOI: 10.1111/mec.16109] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/09/2021] [Accepted: 07/28/2021] [Indexed: 12/27/2022]
Abstract
Various hypotheses have been proposed regarding the origin of the plant pathogen Phytophthora cinnamomi. P. cinnamomi is a devastating, highly invasive soilborne pathogen associated with epidemics of agricultural, horticultural and forest plantations and native ecosystems worldwide. We conducted a phylogeographic analysis of populations of this pathogen sampled in Asia, Australia, Europe, southern and northern Africa, South America, and North America. Based on genotyping-by-sequencing, we observed the highest genotypic diversity in Taiwan and Vietnam, followed by Australia and South Africa. Mating type ratios were in equal proportions in Asia as expected for a sexual population. Simulations based on the index of association suggest a partially sexual, semi-clonal mode of reproduction for the Taiwanese and Vietnamese populations while populations outside of Asia are clonal. Ancestral area reconstruction provides new evidence supporting Taiwan as the ancestral area, given our sample, indicating that this region might be near or at the centre of origin for this pathogen as speculated previously. The Australian and South African populations appear to be a secondary centre of diversity following migration from Taiwan or Vietnam. Our work also identified two panglobal, clonal lineages PcG1-A2 and PcG2-A2 of A2 mating type found on all continents. Further surveys of natural forests across Southeast Asia are needed to definitively locate the actual centre of origin of this important plant pathogen.
Collapse
Affiliation(s)
- Shankar K Shakya
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Niklaus J Grünwald
- Horticultural Crop Research Unit, United States Department of Agriculture, Agricultural Research Service, Corvallis, Oregon, USA
| | - Valerie J Fieland
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Brian J Knaus
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Jerry E Weiland
- Horticultural Crop Research Unit, United States Department of Agriculture, Agricultural Research Service, Corvallis, Oregon, USA
| | - Cristiana Maia
- Centre of Marine Sciences (CCMAR), Faculty of Sciences and Technology, University of Algarve, Faro, Portugal
| | - André Drenth
- Centre for Horticultural Science, The University of Queensland, Ecosciences Precinct, Brisbane, Queensland, Australia
| | - David I Guest
- Sydney Institute of Agriculture, School of Life and Environmental Sciences, The University of Sydney, NSW, Australia
| | - Edward C Y Liew
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, The Royal Botanic Gardens and Domain Trust, Sydney, NSW, Australia
| | - Colin Crane
- Vegetation Health Service, Kensington, Washington, Australia
| | - Tun-Tschu Chang
- Forest Protection Division, Taiwan Forestry Research Institute, Taipei, Taiwan
| | - Chuen-Hsu Fu
- Forest Protection Division, Taiwan Forestry Research Institute, Taipei, Taiwan
| | - Nguyen Minh Chi
- Forest Protection Research Centre, Vietnamese Academy of Forest Sciences, Hanoi, Vietnam
| | - Pham Quang Thu
- Forest Protection Research Centre, Vietnamese Academy of Forest Sciences, Hanoi, Vietnam
| | - Bruno Scanu
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| | - Eugenio Sanfuentes von Stowasser
- Laboratorio de Patología Forestal, Facultad Ciencias Forestales y Centro de Biotecnología, Universidad de Concepción, Concepción, Chile
| | - Álvaro Durán
- Bioforest S.A., Casilla 70-C, Concepción, Chile.,Research and Development, Asia Pacific Resources International Limited, Pangkalan Kerinci, Indonesia
| | - Marilia Horta Jung
- Phytophthora Research Centre, Department of Forest Protection and Wildlife Management, Mendel University in Brno, Brno, Czech Republic
| | - Thomas Jung
- Phytophthora Research Centre, Department of Forest Protection and Wildlife Management, Mendel University in Brno, Brno, Czech Republic
| |
Collapse
|
11
|
Li J, Barnes I, Liu F, Wingfield MJ, Chen S. Global Genetic Diversity and Mating Type Distribution of Calonectria pauciramosa: An Important Wide-Host-Range Plant Pathogen. PLANT DISEASE 2021; 105:1648-1656. [PMID: 33200973 DOI: 10.1094/pdis-05-20-1050-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The fungal pathogen, Calonectria pauciramosa, has caused serious diseases of many important plants worldwide. Understanding the genetic diversity and mating type distribution of this pathogen provides an essential step toward the development of disease control measures. In this study, we designed 15 polymorphic microsatellite markers by using genome sequences of two Ca. pauciramosa isolates having opposite mating type and from different countries. These markers were used to determine the genetic diversity of 145 isolates representing 13 different hosts (12 plant hosts residing in 12 genera, and soil) from 10 countries. In addition, mating type genes were amplified to investigate the reproduction mode of the pathogens in these populations by using mating type primers designed for Calonectria spp. Results revealed that a single dominant genotype, isolated from 11 plant genera residing in eight families, was present in seven countries across five continents. Only mating type MAT1-1 or MAT1-2 was amplified in each of the isolates, confirming that Ca. pauciramosa is heterothallic. Both mating types were detected in isolates from Eucalyptus in South Africa and Uruguay. The MAT1-2 phenotype was widely distributed in isolates from 12 different hosts (11 plant hosts and soil) collected in 10 countries. Overall, the results suggest that there has been substantial global movement of Ca. pauciramosa and that this has shaped its current population structure.
Collapse
Affiliation(s)
- JieQiong Li
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0028, South Africa
- China Eucalypt Research Centre, Chinese Academy of Forestry, ZhanJiang 524022, GuangDong Province, China
| | - Irene Barnes
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0028, South Africa
| | - FeiFei Liu
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0028, South Africa
- China Eucalypt Research Centre, Chinese Academy of Forestry, ZhanJiang 524022, GuangDong Province, China
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0028, South Africa
| | - ShuaiFei Chen
- China Eucalypt Research Centre, Chinese Academy of Forestry, ZhanJiang 524022, GuangDong Province, China
| |
Collapse
|
12
|
van der Nest MA, Chávez R, De Vos L, Duong TA, Gil-Durán C, Ferreira MA, Lane FA, Levicán G, Santana QC, Steenkamp ET, Suzuki H, Tello M, Rakoma JR, Vaca I, Valdés N, Wilken PM, Wingfield MJ, Wingfield BD. IMA genome - F14 : Draft genome sequences of Penicillium roqueforti, Fusarium sororula, Chrysoporthe puriensis, and Chalaropsis populi. IMA Fungus 2021; 12:5. [PMID: 33673862 PMCID: PMC7934431 DOI: 10.1186/s43008-021-00055-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Draft genomes of Penicillium roqueforti, Fusarium sororula, Chalaropsis populi, and Chrysoporthe puriensis are presented. Penicillium roqueforti is a model fungus for genetics, physiological and metabolic studies, as well as for biotechnological applications. Fusarium sororula and Chrysoporthe puriensis are important tree pathogens, and Chalaropsis populi is a soil-borne root-pathogen. The genome sequences presented here thus contribute towards a better understanding of both the pathogenicity and biotechnological potential of these species.
Collapse
Affiliation(s)
- Magriet A van der Nest
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
- Biotechnology Platform, Agricultural Research Council, Onderstepoort, Pretoria, 0110, South Africa
| | - Renato Chávez
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Alameda 3363, Estación Central, 9170022, Santiago, Chile.
| | - Lieschen De Vos
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria, 0028, South Africa.
| | - Tuan A Duong
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria, 0028, South Africa.
| | - Carlos Gil-Durán
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Alameda 3363, Estación Central, 9170022, Santiago, Chile
| | - Maria Alves Ferreira
- Department of Plant Pathology, Universidade Federal de Lavras/UFLA, Lavras, MG, 37200-000, Brazil
| | - Frances A Lane
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| | - Gloria Levicán
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Alameda 3363, Estación Central, 9170022, Santiago, Chile
| | - Quentin C Santana
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| | - Emma T Steenkamp
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| | - Hiroyuki Suzuki
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| | - Mario Tello
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Alameda 3363, Estación Central, 9170022, Santiago, Chile
| | - Jostina R Rakoma
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| | - Inmaculada Vaca
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
| | - Natalia Valdés
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Alameda 3363, Estación Central, 9170022, Santiago, Chile
| | - P Markus Wilken
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria, 0028, South Africa.
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| | - Brenda D Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| |
Collapse
|
13
|
Cornejo C, Hauser A, Beenken L, Cech T, Rigling D. Cryphonectria carpinicola sp. nov. Associated with hornbeam decline in Europe. Fungal Biol 2020; 125:347-356. [PMID: 33910676 DOI: 10.1016/j.funbio.2020.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/30/2020] [Accepted: 11/30/2020] [Indexed: 01/09/2023]
Abstract
Since the early 2000s, reports on declining hornbeam trees (Carpinus betulus) are spreading in Europe. Two fungi are involved in the decline phenomenon: One is Anthostoma decipiens, but the other etiological agent has not been identified yet. We examined the morphology, phylogenetic position, and pathogenicity of yellow fungal isolates obtained from hornbeam trees from Austria, Georgia and Switzerland, and compared data with disease reports from northern Italy documented since the early 2000s. Results demonstrate distinctive morphology and monophyletic status of Cryphonectria carpinicola sp. nov. as etiological agent of the European hornbeam decline. Interestingly, the genus Cryphonectria splits into two major clades. One includes Cry. carpinicola together with Cry. radicalis, Cry. decipiens and Cry. naterciae from Europe, while the other comprises species known from Asia-suggesting that the genus Cryphonectria has developed at two evolutionary centres, one in Europe and Asia Minor, the other in East Asia. Pathogenicity studies confirm that Car. betulus is a major host species of Cry. carpinicola. This clearly distinguished Cry. carpinicola from other Cryphonectria species, which mainly occur on Castanea and Quercus.
Collapse
Affiliation(s)
- Carolina Cornejo
- Swiss Federal Research Institute WSL, Zuercherstrasse 111, 8903, Birmensdorf, Switzerland.
| | - Andrea Hauser
- Swiss Federal Research Institute WSL, Zuercherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Ludwig Beenken
- Swiss Federal Research Institute WSL, Zuercherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Thomas Cech
- Bundesforschungszentrum für Wald, Institut für Waldschutz, Seckendorff-Gudent-Weg 8, 1131, Wien, Austria
| | - Daniel Rigling
- Swiss Federal Research Institute WSL, Zuercherstrasse 111, 8903, Birmensdorf, Switzerland
| |
Collapse
|
14
|
Wingfield MJ, Hurley B, Wingfield B, Slippers B. Tree health in South Africa: Retrospect and prospect. S AFR J SCI 2020. [DOI: 10.17159/sajs.2020/8038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
South Africa is a country with very limited natural forest cover. Consequently, the timber and fibre needs of the country cannot be provided for from indigenous forest. It is largely for this reason that South Africa initially developed a highly productive plantation forest industry, which today makes a substantial contribution to the local economy. These plantations are based on non-native species of Eucalyptus, Pinus and Australian Acacia. In the early years of establishment, South African plantations were relatively free of pest and pathogen problems. But, over time, an increasing number of insects, fungi and bacteria have emerged as serious threats to the sustainability of the forestry industry. Numerous native pests and pathogens, especially insects, have adapted to these introduced tree species to cause damage or disease. The problem is compounded by the accidental introduction of non-native pests and pathogens, and this has been at a rapidly increasing rate over the past three decades. Some of these introduced pests and pathogens also threaten the fitness and even the survival of many indigenous South African tree species. Fortunately, South Africa has developed an impressive knowledge base and range of integrated management options to deal with these problems. This development was first driven by government programmes, and in more recent years by public–private partnerships between industry, universities and government. It is clear from the pattern of emergence of pests and pathogens in recent years that South Africa will deal with an increasing number of these problems and a continuously changing tree health environment. This requires robust investment in both quarantine and mitigation mechanisms to protect the country’s biodiversity as well as to ensure the sustainability of its wood and fibre industries.
Collapse
Affiliation(s)
- Michael J. Wingfield
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Brett Hurley
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Brenda Wingfield
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Bernard Slippers
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
15
|
Paap T, Wingfield MJ, Burgess TI, Hulbert JM, Santini A. Harmonising the fields of invasion science and forest pathology. NEOBIOTA 2020. [DOI: 10.3897/neobiota.62.52991] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Invasive alien species are widely recognised as significant drivers of global environmental change, with far reaching ecological and socio-economic impacts. The trend of continuous increases in first records, with no apparent sign of saturation, is consistent across all taxonomic groups. However, taxonomic biases exist in the extent to which invasion processes have been studied. Invasive forest pathogens have caused, and they continue to result in dramatic damage to natural forests and woody ecosystems, yet their impacts are substantially underrepresented in the invasion science literature. Conversely, most studies of forest pathogens have been undertaken in the absence of a connection to the frameworks developed and used to study biological invasions. We believe this is, in part, a consequence of the mechanistic approach of the discipline of forest pathology; one that has been inherited from the broader discipline of plant pathology. Rather than investigating the origins of, and the processes driving the arrival of invasive microorganisms, the focus of pathologists is generally to investigate specific interactions between hosts and pathogens, with an emphasis on controlling the resulting disease problems. In contrast, central to the field of invasion science, which finds its roots in ecology, is the development and testing of general concepts and frameworks. The lack of knowledge of microbial biodiversity and ecology, speciation and geographic origin present challenges in understanding invasive forest pathogens under existing frameworks, and there is a need to address this shortfall. Advances in molecular technologies such as gene and genome sequencing and metagenomics studies have increased the “visibility” of microorganisms. We consider whether these technologies are being adequately applied to address the gaps between forest pathology and invasion science. We also interrogate the extent to which the two fields stand to gain by becoming more closely linked.
Collapse
|
16
|
Wilken PM, Aylward J, Chand R, Grewe F, Lane FA, Sinha S, Ametrano C, Distefano I, Divakar PK, Duong TA, Huhndorf S, Kharwar RN, Lumbsch HT, Navathe S, Pérez CA, Ramírez-Berrutti N, Sharma R, Sun Y, Wingfield BD, Wingfield MJ. IMA Genome - F13: Draft genome sequences of Ambrosiella cleistominuta, Cercospora brassicicola, C. citrullina, Physcia stellaris, and Teratosphaeria pseudoeucalypti. IMA Fungus 2020; 11:19. [PMID: 33014691 PMCID: PMC7513301 DOI: 10.1186/s43008-020-00039-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Draft genomes of the fungal species Ambrosiella cleistominuta, Cercospora brassicicola, C. citrullina, Physcia stellaris, and Teratosphaeria pseudoeucalypti are presented. Physcia stellaris is an important lichen forming fungus and Ambrosiella cleistominuta is an ambrosia beetle symbiont. Cercospora brassicicola and C. citrullina are agriculturally relevant plant pathogens that cause leaf-spots in brassicaceous vegetables and cucurbits respectively. Teratosphaeria pseudoeucalypti causes severe leaf blight and defoliation of Eucalyptus trees. These genomes provide a valuable resource for understanding the molecular processes in these economically important fungi.
Collapse
Affiliation(s)
- P. Markus Wilken
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028 South Africa
| | - Janneke Aylward
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028 South Africa
- Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland, 7602 South Africa
| | - Ramesh Chand
- Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005 India
| | - Felix Grewe
- Field Museum, Department of Science and Education, Grainger Bioinformatics Center, Chicago, IL USA
| | - Frances A. Lane
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028 South Africa
| | - Shagun Sinha
- Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005 India
- Center of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Claudio Ametrano
- Field Museum, Department of Science and Education, Grainger Bioinformatics Center, Chicago, IL USA
| | - Isabel Distefano
- Field Museum, Department of Science and Education, Grainger Bioinformatics Center, Chicago, IL USA
| | - Pradeep K. Divakar
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Tuan A. Duong
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028 South Africa
| | - Sabine Huhndorf
- Field Museum, Department of Science and Education, Grainger Bioinformatics Center, Chicago, IL USA
| | - Ravindra N. Kharwar
- Center of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - H. Thorsten Lumbsch
- Field Museum, Department of Science and Education, Grainger Bioinformatics Center, Chicago, IL USA
| | - Sudhir Navathe
- Agharkar Research Institute, G.G. Agharkar Road, Pune, 411004 India
| | - Carlos A. Pérez
- Department of Plant Protection, EEMAC, Facultad de Agronomía, UdelaR, Paysandú, Uruguay
| | | | - Rohit Sharma
- National Centre for Microbial Resource, National Centre for Cell Science, S.P, Pune University, Pune, 411 007 India
| | - Yukun Sun
- Field Museum, Department of Science and Education, Grainger Bioinformatics Center, Chicago, IL USA
| | - Brenda D. Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028 South Africa
| | - Michael J. Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028 South Africa
| |
Collapse
|
17
|
Goss EM, Kendig AE, Adhikari A, Lane B, Kortessis N, Holt RD, Clay K, Harmon PF, Flory SL. Disease in Invasive Plant Populations. ANNUAL REVIEW OF PHYTOPATHOLOGY 2020; 58:97-117. [PMID: 32516034 DOI: 10.1146/annurev-phyto-010820-012757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Non-native invasive plants can establish in natural areas, where they can be ecologically damaging and costly to manage. Like cultivated plants, invasive plants can experience a relatively disease-free period upon introduction and accumulate pathogens over time. Diseases of invasive plant populations are infrequently studied compared to diseases of agriculture, forestry, and even native plant populations. We evaluated similarities and differences in the processes that are likely to affect pathogen accumulation and disease in invasive plants compared to cultivated plants, which are the dominant focus of the field of plant pathology. Invasive plants experience more genetic, biotic, and abiotic variation across space and over time than cultivated plants, which is expected to stabilize the ecological and evolutionary dynamics of interactions with pathogens and possibly weaken the efficacy of infectious disease in their control. Although disease is expected to be context dependent, the widespread distribution of invasive plants makes them important pathogen reservoirs. Research on invasive plant diseases can both protect crops and help manage invasive plant populations.
Collapse
Affiliation(s)
- Erica M Goss
- Department of Plant Pathology and Emerging Pathogens Institute, University of Florida, Gainesville, Florida 32611, USA;
| | - Amy E Kendig
- Agronomy Department, University of Florida, Gainesville, Florida 32611, USA
| | - Ashish Adhikari
- Department of Plant Pathology, University of Florida, Gainesville, Florida 32611, USA
| | - Brett Lane
- Department of Plant Pathology, University of Florida, Gainesville, Florida 32611, USA
| | - Nicholas Kortessis
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA
| | - Robert D Holt
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA
| | - Keith Clay
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, Louisiana 70118, USA
| | - Philip F Harmon
- Department of Plant Pathology, University of Florida, Gainesville, Florida 32611, USA
| | - S Luke Flory
- Agronomy Department, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
18
|
Jactel H, Desprez-Loustau ML, Battisti A, Brockerhoff E, Santini A, Stenlid J, Björkman C, Branco M, Dehnen-Schmutz K, Douma JC, Drakulic J, Drizou F, Eschen R, Franco JC, Gossner MM, Green S, Kenis M, Klapwijk MJ, Liebhold AM, Orazio C, Prospero S, Robinet C, Schroeder M, Slippers B, Stoev P, Sun J, van den Dool R, Wingfield MJ, Zalucki MP. Pathologists and entomologists must join forces against forest pest and pathogen invasions. NEOBIOTA 2020. [DOI: 10.3897/neobiota.58.54389] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The world’s forests have never been more threatened by invasions of exotic pests and pathogens, whose causes and impacts are reinforced by global change. However, forest entomologists and pathologists have, for too long, worked independently, used different concepts and proposed specific management methods without recognising parallels and synergies between their respective fields. Instead, we advocate increased collaboration between these two scientific communities to improve the long-term health of forests.
Our arguments are that the pathways of entry of exotic pests and pathogens are often the same and that insects and fungi often coexist in the same affected trees. Innovative methods for preventing invasions, early detection and identification of non-native species, modelling of their impact and spread and prevention of damage by increasing the resistance of ecosystems can be shared for the management of both pests and diseases.
We, therefore, make recommendations to foster this convergence, proposing in particular the development of interdisciplinary research programmes, the development of generic tools or methods for pest and pathogen management and capacity building for the education and training of students, managers, decision-makers and citizens concerned with forest health.
Collapse
|
19
|
Havenga M, Wingfield BD, Wingfield MJ, Roets F, Dreyer LL, Tatham CT, Duong TA, Wilken PM, Chen S, Aylward J. Mating strategy and mating type distribution in six global populations of the Eucalyptus foliar pathogen Teratosphaeria destructans. Fungal Genet Biol 2020; 137:103350. [DOI: 10.1016/j.fgb.2020.103350] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/21/2020] [Accepted: 01/29/2020] [Indexed: 12/18/2022]
|
20
|
Abstract
Fusarium circinatum (Nirenberg and O’ Donnell) is the causal agent of pine pitch canker (PPC) disease, one of the most devastating forest diseases worldwide. Long-distance spread occurs mainly through the movement of infected seeds whereas at regional level, the movement of seedlings, substrates, or containers may play an important role in fungal dispersal. Invasion of nurseries takes place via infected seeds and further spread can occur by planting contaminated seedlings, especially due to the possibility of infected plants remaining symptomless. Once established, F. circinatum spreads by rain, wind, and insects. The natural spread of the pathogen is limited due to the short dispersal distances of the spores and the fairly short flight distances of disseminating insects. In this review, we summarize the currently known dispersal pathways of the pathogen, discussing both natural and human-assisted processes. With the purpose of understanding how to best intervene in the disease’s development in nurseries and forests, we outline the epidemiology of the pathogen describing the key factors influencing its spread. Preventive measures to control the spread of F. circinatum locally and globally are described with special emphasis on the challenges in implementing them.
Collapse
|
21
|
Simler-Williamson AB, Rizzo DM, Cobb RC. Interacting Effects of Global Change on Forest Pest and Pathogen Dynamics. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2019. [DOI: 10.1146/annurev-ecolsys-110218-024934] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pathogens and insect pests are important drivers of tree mortality and forest dynamics, but global change has rapidly altered or intensified their impacts. Predictive understanding of changing disease and outbreak occurrence has been limited by two factors: ( a) tree mortality and morbidity are emergent phenomena determined by interactions between plant hosts, biotic agents (insects or pathogens), and the environment; and ( b) disparate global change drivers co-occur, obscuring net impacts on each of these components. To expand our understanding of changing forest diseases, declines, and outbreaks, we adopt a framework that identifies and organizes observed impacts of diverse global change drivers on the primary mechanisms underlying agent virulence and host susceptibility. We then discuss insights from ecological theory that may advance prediction of forest epidemics and outbreaks. This approach highlights key drivers of changing pest and pathogen dynamics, which may inform forest management aimed at mitigating accelerating rates of tree mortality globally.
Collapse
Affiliation(s)
| | - David M. Rizzo
- Department of Plant Pathology, University of California, Davis, California 95616, USA;,
| | - Richard C. Cobb
- Department of Natural Resources Management and Environmental Science, California Polytechnic State University, San Luis Obispo, California 93407, USA
| |
Collapse
|
22
|
Botryosphaeriaceae associated with Acacia heterophylla (La Réunion) and Acacia koa (Hawaii). Fungal Biol 2019; 123:783-790. [PMID: 31627854 DOI: 10.1016/j.funbio.2019.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 06/28/2019] [Accepted: 07/16/2019] [Indexed: 11/22/2022]
Abstract
Acacia koa and A. heterophylla are commonly occurring native trees on the Hawaiian Islands and La Réunion, respectively. A recent phylogenetic study suggested that A. heterophylla renders A. koa paraphyletic, and that the former likely arose from the Hawaiian Islands around 1.4 million years ago. An intriguing question is whether their microbiota is similar, although they occur naturally in two very distant geographical locations. In this study, we compared the fungi in the Botryosphaeriaceae isolated from natural populations of A. koa and A. heterophylla. These fungi were chosen because they commonly occur on woody plants and some are important pathogens. They are also known to have been moved globally on asymptomatic plant materials. Isolates were identified based on comparisons of DNA sequence data for the rDNA-ITS, TEF1-α and β-tubulin loci. Ten Botryosphaeriaceae species were identified, of which four species were specific to A. koa from the Hawaiian Islands and five to A. heterophylla in La Réunion. Only one species, Neofusicoccumparvum, which is known to have a wide global distribution, was common to both hosts. The overall results of this study suggest that although A. koa and A.heterophylla share a recent evolutionary history, they have established independent microbiota, at least in terms of the Botryosphaeriaceae.
Collapse
|
23
|
Crous P, Wingfield M, Cheewangkoon R, Carnegie A, Burgess T, Summerell B, Edwards J, Taylor P, Groenewald J. Foliar pathogens of eucalypts. Stud Mycol 2019; 94:125-298. [PMID: 31636729 PMCID: PMC6797021 DOI: 10.1016/j.simyco.2019.08.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Species of eucalypts are commonly cultivated for solid wood and pulp products. The expansion of commercially managed eucalypt plantations has chiefly been driven by their rapid growth and suitability for propagation across a very wide variety of sites and climatic conditions. Infection of foliar fungal pathogens of eucalypts is resulting in increasingly negative impacts on commercial forest industries globally. To assist in evaluating this threat, the present study provides a global perspective on foliar pathogens of eucalypts. We treat 110 different genera including species associated with foliar disease symptoms of these hosts. The vast majority of these fungi have been grown in axenic culture, and subjected to DNA sequence analysis, resolving their phylogeny. During the course of this study several new genera and species were encountered, and these are described. New genera include: Lembosiniella (L. eucalyptorum on E. dunnii, Australia), Neosonderhenia (N. eucalypti on E. costata, Australia), Neothyriopsis (N. sphaerospora on E. camaldulensis, South Africa), Neotrichosphaeria (N. eucalypticola on E. deglupta, Australia), Nothotrimmatostroma (N. bifarium on E. dalrympleana, Australia), Nowamyces (incl. Nowamycetaceae fam. nov., N. globulus on E. globulus, Australia), and Walkaminomyces (W. medusae on E. alba, Australia). New species include (all from Australia): Disculoides fraxinoides on E. fraxinoides, Elsinoe piperitae on E. piperita, Fusculina regnans on E. regnans, Marthamyces johnstonii on E. dunnii, Neofusicoccum corticosae on E. corticosa, Neotrimmatostroma dalrympleanae on E. dalrympleana, Nowamyces piperitae on E. piperita, Phaeothyriolum dunnii on E. dunnii, Pseudophloeospora eucalyptigena on E. obliqua, Pseudophloeospora jollyi on Eucalyptus sp., Quambalaria tasmaniae on Eucalyptus sp., Q. rugosae on E. rugosa, Sonderhenia radiata on E. radiata, Teratosphaeria pseudonubilosa on E. globulus and Thyrinula dunnii on E. dunnii. A new name is also proposed for Heteroconium eucalypti as Thyrinula uruguayensis on E. dunnii, Uruguay. Although many of these genera and species are commonly associated with disease problems, several appear to be opportunists developing on stressed or dying tissues. For the majority of these fungi, pathogenicity remains to be determined. This represents an important goal for forest pathologists and biologists in the future. Consequently, this study will promote renewed interest in foliar pathogens of eucalypts, leading to investigations that will provide an improved understanding of the biology of these fungi.
Collapse
Affiliation(s)
- P.W. Crous
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD, Utrecht, The Netherlands
- Department of Genetics, Biochemistry and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - M.J. Wingfield
- Department of Genetics, Biochemistry and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - R. Cheewangkoon
- Department of Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - A.J. Carnegie
- Forest Health & Biosecurity, Forest Science, NSW Department of Primary Industries – Forestry, Level 12, 10 Valentine Ave, Parramatta, NSW, 2150, Australia
- School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW, 2480, Australia
| | - T.I. Burgess
- Department of Genetics, Biochemistry and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
- Environmental and Conservation Sciences, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
| | - B.A. Summerell
- Royal Botanic Gardens and Domain Trust, Mrs Macquaries Rd, Sydney, NSW, 2000, Australia
| | - J. Edwards
- Agriculture Victoria Research, Department of Jobs, Precincts and Regions, AgriBio Centre, 5 Ring Road, LaTrobe University, Bundoora, Victoria, 3083, Australia
- School of Applied Systems Biology, LaTrobe University, Bundoora, Victoria, 3083, Australia
| | - P.W.J. Taylor
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD, Utrecht, The Netherlands
| |
Collapse
|
24
|
Mansfield S, McNeill MR, Aalders LT, Bell NL, Kean JM, Barratt BI, Boyd-Wilson K, Teulon DA. The value of sentinel plants for risk assessment and surveillance to support biosecurity. NEOBIOTA 2019. [DOI: 10.3897/neobiota.48.34205] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Effective surveillance for early detection of invasive alien species in natural ecosystems, or on valued plants found in modified areas, could prevent potentially devastating and costly impacts (whether environmental, economic or cultural) of new invasions on the invaded country. Surveillance technologies are often constrained by a range of factors. Determining which species present a significant risk before they reach the border is an effective strategy to minimize the possibility of invasion and/or the impact of invasion. Surveillance of sentinel plants provides an important tool to strengthen biosecurity programs assisting with i) detecting and identifying insect pests, nematodes and plant diseases that could potentially invade uncolonized countries, and ii) developing pest risk analysis profiles to eliminate or mitigate the risk of arrival. This review examines some of the challenges and opportunities provided by sentinel plant research and discusses the factors that could affect the success of their use for biosecurity risk assessment and surveillance in the New Zealand context.
Collapse
|
25
|
Sillo F, Gonthier P, Lockman B, Kasuga T, Garbelotto M. Molecular analyses identify hybridization-mediated nuclear evolution in newly discovered fungal hybrids. Ecol Evol 2019; 9:6588-6605. [PMID: 31236246 PMCID: PMC6580273 DOI: 10.1002/ece3.5238] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/14/2019] [Accepted: 04/23/2019] [Indexed: 12/14/2022] Open
Abstract
Hybridization may be a major driver in the evolution of plant pathogens. In a high elevation Alpine larch stand in Montana, a novel hybrid fungal pathogen of trees originating from the mating of Heterobasidion irregulare with H. occidentale has been recently discovered. In this study, sequence analyses of one mitochondrial and four nuclear loci from 11 Heterobasidion genotypes collected in the same Alpine larch stand indicated that hybridization has increased allelic diversity by generating novel polymorphisms unreported in either parental species. Sequence data and ploidy analysis through flow cytometry confirmed that heterokaryotic (n + n) genotypes were not first-generation hybrids, but were the result of multiple backcrosses, indicating hybrids are fertile. Additionally, all admixed genotypes possessed the H. occidentale mitochondrion, indicating that the hybrid progeny may have been backcrossing mostly with H. occidentale. Based on reticulate phylogenetic network analysis by PhyloNet, Bayesian assignment, and ordination tests, alleles can be defined as H. irregulare-like or H. occidentale-like. H. irregulare-like alleles are clearly distinct from all known H. irregulare alleles and are derived from the admixing of both Heterobasidion species. Instead, all but one H. occidentale alleles found in hybrids, although novel, were not clearly distinct from alleles found in the parental H. occidentale population. This discovery demonstrates that Alpine larch can be a universal host favouring the interspecific hybridization between H. irregulare and H. occidentale and the hybridization-mediated evolution of a nucleus, derived from H. irregulare parental species but clearly distinct from it.
Collapse
Affiliation(s)
- Fabiano Sillo
- Department of Agricultural, Forest and Food Sciences (DISAFA)University of TorinoGrugliasco (TO)Italy
| | - Paolo Gonthier
- Department of Agricultural, Forest and Food Sciences (DISAFA)University of TorinoGrugliasco (TO)Italy
| | - Blakey Lockman
- Pacific Northwest Region, State and Private ForestryUSDA Forest ServicePortlandOregon
| | - Takao Kasuga
- Crops Pathology and Genetics Research UnitUSDA Agricultural Research ServiceDavisCalifornia
| | - Matteo Garbelotto
- Department of Agricultural, Forest and Food Sciences (DISAFA)University of TorinoGrugliasco (TO)Italy
- Department of Environmental Science, Policy and Management, Forest Pathology and Mycology LaboratoryUniversity of California, BerkeleyBerkeleyCalifornia
| |
Collapse
|
26
|
Rocca GD, Danti R, Williams N, Eyre C, Garbelotto M. Molecular analyses indicate that both native and exotic pathogen populations serve as sources of novel outbreaks of Cypress Canker Disease. Biol Invasions 2019. [DOI: 10.1007/s10530-019-02022-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
27
|
Pham NQ, Barnes I, Chen S, Liu F, Dang QN, Pham TQ, Lombard L, Crous PW, Wingfield MJ. Ten new species of Calonectria from Indonesia and Vietnam. Mycologia 2019; 111:78-102. [PMID: 30657437 DOI: 10.1080/00275514.2018.1522179] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Vietnam and Indonesia have rapidly growing and extensive plantation forestry programs, especially of Acacia spp. and Eucalyptus spp. As these plantations expand, the threat from pests and diseases also increases. Calonectria species are among those pathogens causing diseases of trees in plantations and nurseries in these countries. Extensive surveys were conducted across plantations and nurseries of Vietnam and parts of Indonesia, where a large number of Calonectria isolates were retrieved from diseased leaves and soils associated with symptomatic trees. The aim of this study was to identify and resolve the phylogenetic relationships among these isolates using DNA sequence comparisons of four gene regions as well as morphological characters. From a collection of 165 isolates, the study revealed five known and 10 undescribed species. The relatively high diversity of Calonectria species found in this study supports the view that many more species in this genus remain to be discovered in other areas of Southeast Asia.
Collapse
Affiliation(s)
- Nam Q Pham
- a Department of Plant and Soil Sciences , Forestry and Agricultural Biotechnology Institute, University of Pretoria , Pretoria 0028 , South Africa
| | - Irene Barnes
- b Department of Biochemistry, Genetics and Microbiology , Forestry and Agricultural Biotechnology Institute, University of Pretoria , Pretoria 0028 , South Africa
| | - ShuaiFei Chen
- c China Eucalypt Research Centre, Chinese Academy of Forestry , Zhanjiang 524022 , Guangdong Province , China
| | - FeiFei Liu
- b Department of Biochemistry, Genetics and Microbiology , Forestry and Agricultural Biotechnology Institute, University of Pretoria , Pretoria 0028 , South Africa
| | - Quynh N Dang
- d Forest Protection Research Centre, Vietnamese Academy of Forest Sciences , 46 Duc Thang Road, Duc Thang Ward, Northern Tu Liem District, Hanoi 100000 , Vietnam
| | - Thu Q Pham
- d Forest Protection Research Centre, Vietnamese Academy of Forest Sciences , 46 Duc Thang Road, Duc Thang Ward, Northern Tu Liem District, Hanoi 100000 , Vietnam
| | - Lorenzo Lombard
- e Westerdijk Fungal Biodiversity Institute , Uppsalalaan 8 , 3584 CT Utrecht , The Netherlands
| | - Pedro W Crous
- b Department of Biochemistry, Genetics and Microbiology , Forestry and Agricultural Biotechnology Institute, University of Pretoria , Pretoria 0028 , South Africa.,e Westerdijk Fungal Biodiversity Institute , Uppsalalaan 8 , 3584 CT Utrecht , The Netherlands
| | - Michael J Wingfield
- a Department of Plant and Soil Sciences , Forestry and Agricultural Biotechnology Institute, University of Pretoria , Pretoria 0028 , South Africa
| |
Collapse
|
28
|
Herbivore accumulation on invasive alien plants increases the distribution range of generalist herbivorous insects and supports proliferation of non-native insect pests. Biol Invasions 2019. [DOI: 10.1007/s10530-019-01913-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
29
|
Aylward J, Roets F, Dreyer LL, Wingfield MJ. Teratosphaeria stem canker of Eucalyptus: two pathogens, one devastating disease. MOLECULAR PLANT PATHOLOGY 2019; 20:8-19. [PMID: 30311749 PMCID: PMC6430483 DOI: 10.1111/mpp.12758] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
BACKGROUND Teratosphaeria gauchensis and T. zuluensis are closely related fungi that cause Teratosphaeria (previously Coniothyrium) stem canker disease on Eucalyptus species propagated in plantations for commercial purposes. This disease is present in many countries in which Eucalyptus trees are planted, and continues to spread with the international trade of infected plant germplasm. TAXONOMY Fungi, Ascomycota, Pezizomycotina, Dothideomycetes, Dothideomycetidae, Capnodiales, Teratosphaeriaceae, Teratosphaeria. IDENTIFICATION The causal agents form dark masses of pycnidia that are visible on the surface of distinct stem cankers that typically form on young green stem tissues. Accurate diagnosis of the causal agents requires DNA sequence data. HOST RANGE Nine species of Eucalyptus are known to be affected. Of these, E. grandis and its hybrids, which include some of the most important planting stock globally, appear to be particularly vulnerable. DISEASE SYMPTOMS Small necrotic lesions develop on young green stem tissue. These lesions coalesce to form large cankers that exude gum. Epicormic shoots develop below the girdling canker and, in severe cases, trees die. USEFUL WEBSITES Mycobank, https://www.mycobank.org; Publications of the Forestry and Agricultural Biotechnology Institute (FABI), https://www.fabinet.up.ac.za/index.php/journals.
Collapse
Affiliation(s)
- Janneke Aylward
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoria0002South Africa
- Department of Conservation Ecology and EntomologyStellenbosch University, Private Bag X1Matieland7602South Africa
| | - Francois Roets
- Department of Conservation Ecology and EntomologyStellenbosch University, Private Bag X1Matieland7602South Africa
| | - Leánne L. Dreyer
- Department of Botany and ZoologyStellenbosch University, Private Bag X1Matieland7602South Africa
| | - Michael J. Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoria0002South Africa
| |
Collapse
|
30
|
Wang W, Liu Q, Li G, Liu F, Chen S. Phylogeny and Pathogenicity of Celoporthe Species from Plantation Eucalyptus in Southern China. PLANT DISEASE 2018; 102:1915-1927. [PMID: 30265219 DOI: 10.1094/pdis-12-17-2002-re] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The family of Cryphonectriaceae (Diaporthales) includes many important tree pathogens, such as those that cause severe cankers on Eucalyptus trees. Recently, stem canker and cracked bark were observed on 8-year-old Eucalyptus grandis × E. urophylla trees in a plantation in southern China. Fruiting structures typical of Cryphonectriaceae fungi were observed on the surface of the diseased tissues. In this study, the isolated fungi were identified based on DNA sequence analyses and morphological characteristics, and their pathogenicity was tested on three Eucalyptus clones. DNA sequence comparisons of the internal transcribed spacer (ITS) regions (including the intervening 5.8S nrRNA gene), two regions of β-tubulin (BT2/BT1), and partial translation elongation factor1-α (TEF-1α), indicated that these isolates represent Celoporthe syzygii and one previously undescribed species. The undescribed species was also morphologically distinct from the other species of Celoporthe. The new species was described and named C. cerciana sp. nov. The results of this study based on the ITS, BT2/BT1, and TEF-1α sequences indicated that more than one haplotype was isolated from the same Eucalyptus tree. The findings of a previous study, whereby C. eucalypti was isolated from the same plantation as that of this study, revealed the high species diversity of Celoporthe within a single plantation, which is associated with a single Eucalyptus sp. in southern China. The results further suggested that hybridization may occur between C. syzygii and C. eucalypti. In addition to the Eucalyptus trees, C. syzygii was also isolated from native Melastoma candidum in the same Eucalyptus plantation. The inoculation results showed that these fungi isolated from E. grandis × E. urophylla and M. candidum are pathogenic to all three tested E. grandis hybrid clones. Significant differences in tolerance were observed between the tested Eucalyptus clones, suggesting that disease-tolerant Eucalyptus genotypes can be selected for disease management.
Collapse
Affiliation(s)
- Wen Wang
- China Eucalypt Research Centre (CERC), Chinese Academy of Forestry (CAF), ZhanJiang 524022, GuangDong Province, China
| | - QianLi Liu
- China Eucalypt Research Centre (CERC), Chinese Academy of Forestry (CAF), ZhanJiang 524022, GuangDong Province, China
| | - GuoQing Li
- China Eucalypt Research Centre (CERC), Chinese Academy of Forestry (CAF), ZhanJiang 524022, GuangDong Province, China
| | - FeiFei Liu
- China Eucalypt Research Centre (CERC), Chinese Academy of Forestry (CAF), ZhanJiang 524022, GuangDong Province, China
| | - ShuaiFei Chen
- China Eucalypt Research Centre (CERC), Chinese Academy of Forestry (CAF), ZhanJiang 524022, GuangDong Province, China
| |
Collapse
|
31
|
Simler AB, Williamson MA, Schwartz MW, Rizzo DM. Amplifying plant disease risk through assisted migration. Conserv Lett 2018. [DOI: 10.1111/conl.12605] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Allison B. Simler
- Department of Plant Pathology University of California Davis, Davis CA 95616 USA
| | - Matthew A. Williamson
- Department of Environmental Science and Policy University of California Davis, Davis CA 95616 USA
- John Muir Institute of the Environment University of California Davis, Davis CA 95616 USA
| | - Mark W. Schwartz
- Department of Environmental Science and Policy University of California Davis, Davis CA 95616 USA
- John Muir Institute of the Environment University of California Davis, Davis CA 95616 USA
| | - David M. Rizzo
- Department of Plant Pathology University of California Davis, Davis CA 95616 USA
| |
Collapse
|
32
|
Wingfield BD, Liu M, Nguyen HDT, Lane FA, Morgan SW, De Vos L, Wilken PM, Duong TA, Aylward J, Coetzee MPA, Dadej K, De Beer ZW, Findlay W, Havenga M, Kolařík M, Menzies JG, Naidoo K, Pochopski O, Shoukouhi P, Santana QC, Seifert KA, Soal N, Steenkamp ET, Tatham CT, van der Nest MA, Wingfield MJ. Nine draft genome sequences of Claviceps purpurea s.lat., including C. arundinis, C. humidiphila, and C. cf. spartinae, pseudomolecules for the pitch canker pathogen Fusarium circinatum, draft genome of Davidsoniella eucalypti, Grosmannia galeiformis, Quambalaria eucalypti, and Teratosphaeria destructans. IMA Fungus 2018; 9:401-418. [PMID: 30622889 PMCID: PMC6317589 DOI: 10.5598/imafungus.2018.09.02.10] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 11/26/2018] [Indexed: 12/14/2022] Open
Abstract
This genome announcement includes draft genomes from Claviceps purpurea s.lat., including C. arundinis, C. humidiphila and C. cf. spartinae. The draft genomes of Davidsoniella eucalypti, Quambalaria eucalypti and Teratosphaeria destructans, all three important eucalyptus pathogens, are presented. The insect associate Grosmannia galeiformis is also described. The pine pathogen genome of Fusarium circinatum has been assembled into pseudomolecules, based on additional sequence data and by harnessing the known synteny within the Fusarium fujikuroi species complex. This new assembly of the F. circinatum genome provides 12 pseudomolecules that correspond to the haploid chromosome number of F. circinatum. These are comparable to other chromosomal assemblies within the FFSC and will enable more robust genomic comparisons within this species complex.
Collapse
Affiliation(s)
- Brenda D Wingfield
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028, South Africa
| | - Miao Liu
- Ottawa Research & Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave. Ottawa, Ontario K1A 0C6, Canada
| | - Hai D T Nguyen
- Ottawa Research & Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave. Ottawa, Ontario K1A 0C6, Canada
| | - Frances A Lane
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028, South Africa
| | - Seamus W Morgan
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028, South Africa
| | - Lieschen De Vos
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028, South Africa
| | - P Markus Wilken
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028, South Africa
| | - Tuan A Duong
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028, South Africa
| | - Janneke Aylward
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028, South Africa
- Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Martin P A Coetzee
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028, South Africa
| | - Kasia Dadej
- Ottawa Research & Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave. Ottawa, Ontario K1A 0C6, Canada
| | - Z Wilhelm De Beer
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028, South Africa
| | - Wendy Findlay
- Ottawa Research & Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave. Ottawa, Ontario K1A 0C6, Canada
| | - Minette Havenga
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028, South Africa
- Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Miroslav Kolařík
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Academy of Sciences of Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Jim G Menzies
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, Manitoba R6M 1Y5, Canada
| | - Kershney Naidoo
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028, South Africa
| | - Olivia Pochopski
- Ottawa Research & Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave. Ottawa, Ontario K1A 0C6, Canada
| | - Parivash Shoukouhi
- Ottawa Research & Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave. Ottawa, Ontario K1A 0C6, Canada
| | - Quentin C Santana
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028, South Africa
| | - Keith A Seifert
- Ottawa Research & Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave. Ottawa, Ontario K1A 0C6, Canada
| | - Nicole Soal
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028, South Africa
| | - Emma T Steenkamp
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028, South Africa
| | - Catherine T Tatham
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028, South Africa
| | - Margriet A van der Nest
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028, South Africa
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028, South Africa
| |
Collapse
|
33
|
Novel Cryphonectriaceae from La Réunion and South Africa, and their pathogenicity on Eucalyptus. Mycol Prog 2018. [DOI: 10.1007/s11557-018-1408-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
34
|
Piotrowska MJ, Riddell C, Hoebe PN, Ennos RA. Planting exotic relatives has increased the threat posed by Dothistroma septosporum to the Caledonian pine populations of Scotland. Evol Appl 2018; 11:350-363. [PMID: 29632553 PMCID: PMC5881121 DOI: 10.1111/eva.12562] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/08/2017] [Indexed: 12/27/2022] Open
Abstract
To manage emerging forest diseases and prevent their occurrence in the future, it is essential to determine the origin(s) of the pathogens involved and identify the management practices that have ultimately caused disease problems. One such practice is the widespread planting of exotic tree species within the range of related native taxa. This can lead to emerging forest disease both by facilitating introduction of exotic pathogens and by providing susceptible hosts on which epidemics of native pathogens can develop. We used microsatellite markers to determine the origins of the pathogen Dothistroma septosporum responsible for the current outbreak of Dothistroma needle blight (DNB) on native Caledonian Scots pine (Pinus sylvestris) populations in Scotland and evaluated the role played by widespread planting of two exotic pine species in the development of the disease outbreak. We distinguished three races of D. septosporum in Scotland, one of low genetic diversity associated with introduced lodgepole pine (Pinus contorta), one of high diversity probably derived from the DNB epidemic on introduced Corsican pine (Pinus nigra subsp. laricio) in England and a third of intermediate diversity apparently endemic on Caledonian Scots pine. These races differed for both growth rate and exudate production in culture. Planting of exotic pine stands in the UK appears to have facilitated the introduction of two exotic races of D. septosporum into Scotland which now pose a threat to native Caledonian pines both directly and through potential hybridization and introgression with the endemic race. Our results indicate that both removal of exotic species from the vicinity of Caledonian pine populations and restriction of movement of planting material are required to minimize the impact of the current DNB outbreak. They also demonstrate that planting exotic species that are related to native species reduces rather than enhances the resilience of forests to pathogens.
Collapse
Affiliation(s)
- Marta J. Piotrowska
- Crop and Soil Systems Research GroupScotland's Rural CollegeEdinburghUK
- The Institute of Biological Chemistry, Biophysics and BioengineeringHeriot‐Watt UniversityEdinburghUK
| | - Carolyn Riddell
- Institute of Evolutionary BiologyAshworth LaboratoriesUniversity of EdinburghEdinburghUK
- Forest ResearchNorthern Research StationRoslinUK
| | - Peter N. Hoebe
- Crop and Soil Systems Research GroupScotland's Rural CollegeEdinburghUK
| | - Richard A. Ennos
- Institute of Evolutionary BiologyAshworth LaboratoriesUniversity of EdinburghEdinburghUK
| |
Collapse
|
35
|
Adamson K, Mullett MS, Solheim H, Barnes I, Müller MM, Hantula J, Vuorinen M, Kačergius A, Markovskaja S, Musolin DL, Davydenko K, Keča N, Ligi K, Priedite RD, Millberg H, Drenkhan R. Looking for relationships between the populations of Dothistroma septosporum in northern Europe and Asia. Fungal Genet Biol 2017; 110:15-25. [PMID: 29223582 DOI: 10.1016/j.fgb.2017.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 11/06/2017] [Accepted: 12/05/2017] [Indexed: 01/29/2023]
Abstract
Dothistroma septosporum, a notorious pine needle pathogen with an unknown historical geographic origin and poorly known distribution pathways, is nowadays found almost in all areas inhabited by pines (Pinus spp.). The main aim of this study was to determine the relationship between North European and East Asian populations. In total, 238 Eurasian D. septosporum isolates from 11 countries, including 211 isolates from northern Europe, 16 isolates from Russian Far East and 11 isolates from Bhutan were analysed using 11 species-specific microsatellite and mating type markers. The most diverse populations were found in northern Europe, including the Baltic countries, Finland and European Russia. Notably, D. septosporum has not caused heavy damage to P. sylvestris in northern Europe, which may suggest a long co-existence of the host and the pathogen. No indication was obtained that the Russian Far East or Bhutan could be the indigenous area of D. septosporum, as the genetic diversity of the fungus there was low and evidence suggests gene flow from northern Europe to Russian Far East. On the western coast of Norway, a unique genetic pattern was observed, which differed from haplotypes dominating other Fennoscandian populations. As an agent of dothistroma needle blight, only D. septosporum was documented in northern Europe and Asia, while D. pini was found in Ukraine and Serbia.
Collapse
Affiliation(s)
- Kalev Adamson
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Tartu, Estonia.
| | | | | | - Irene Barnes
- Department of Genetics, FABI, University of Pretoria, Pretoria, South Africa
| | | | - Jarkko Hantula
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Martti Vuorinen
- Natural Resources Institute Finland (Luke), Suonenjoki, Finland
| | - Audrius Kačergius
- Vokė Branch of Lithuanian Research Centre for Agriculture and Forestry, Vilnius, Lithuania
| | | | - Dmitry L Musolin
- Saint Petersburg State Forest Technical University, Saint Petersburg, Russia
| | - Kateryna Davydenko
- Department of Biotechnology and Environment, Kharkiv Zooveterinary Academy, Kharkiv, Ukraine; Department Forest Mycology and Plant Pathology, Swedish Universiy of Agriculture Science, Uppsala, Sweden
| | - Nenad Keča
- Faculty of Forestry-University of Belgrade, Belgrade, Serbia
| | - Karli Ligi
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | | | - Hanna Millberg
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Rein Drenkhan
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Tartu, Estonia
| |
Collapse
|
36
|
|
37
|
Liebhold AM, Brockerhoff EG, Kalisz S, Nuñez MA, Wardle DA, Wingfield MJ. Biological invasions in forest ecosystems. Biol Invasions 2017. [DOI: 10.1007/s10530-017-1458-5] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
38
|
|
39
|
Crous PW, Slippers B, Groenewald JZ, Wingfield MJ. Botryosphaeriaceae: Systematics, pathology, and genetics. Fungal Biol 2017; 121:305-306. [PMID: 28317536 DOI: 10.1016/j.funbio.2017.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Pedro W Crous
- Department of Microbiology & Plant Pathology, Forestry & Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa; Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands.
| | - Bernard Slippers
- Department of Genetics, Forestry & Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa.
| | - Johannes Z Groenewald
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands.
| | - Michael J Wingfield
- Department of Genetics, Forestry & Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|