1
|
Xia Y, Xue M, Sun Y, Wang Y, Huang Z, Huang C. Electroacupuncture inhibits TLR4/NF-κB signaling in the dorsal root ganglion of rats with spared nerve injury. Acupunct Med 2024; 42:275-284. [PMID: 39340148 DOI: 10.1177/09645284241279874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
OBJECTIVE Neuropathic pain can be provoked by high mobility group box 1 (HMGB1) activation of toll-like receptor (TLR)4/nuclear factor (NF)-κB signaling in the dorsal root ganglion (DRG). Electroacupuncture (EA) has been reported to effectively alleviate neuropathic pain with few side effects, but its precise mechanism of action remains unknown. The aim of this study was to explore whether 2 Hz EA stimulation suppresses TLR4/NF-κB signaling in the DRG following spared nerve injury (SNI) in a rat model. METHODS In this experiment, SNI rats were given 2 Hz EA once every other day for a total of 21 days. Paw withdrawal threshold (PWT) was measured to assess SNI-induced mechanical hypersensitivity, and western blotting and immunofluorescence staining were used to determine the levels of pain-related signaling molecules and pro-inflammatory mediators in the DRG. RESULTS SNI up-regulated HMGB1, TLR4, myeloid differentiation factor-88 adaptor protein (MyD88) and NF-κB p65 protein expression in the DRG. In addition, immunofluorescence staining demonstrated that SNI induced higher levels of TLR4 and MyD88 in the DRG. We also demonstrated co-localization of TLR4 and MyD88 with both calcitonin gene-related peptide (CGRP) and isolectin GS-IB4 in the DRG of SNI rats, respectively. Meanwhile, 2 Hz EA stimulation effectively reversed the elevations of HMGB1, TLR4, MyD88 and NF-κB p65 induced by SNI in the DRG, which was coupled with amelioration of SNI-induced mechanical hypersensitivity. CONCLUSIONS The results of this study suggested that inhibition of the TLR4/NF-κB signaling pathway in the DRG by 2 Hz EA might be exploited as a therapeutic option for neuropathic pain.
Collapse
Affiliation(s)
- Yangyang Xia
- Department of Physiology, School of Basic Medicine Sciences, Gannan Medical University, Ganzhou, P.R. China
| | - Meng Xue
- Department of Physiology, School of Basic Medicine Sciences, Gannan Medical University, Ganzhou, P.R. China
| | - Yalan Sun
- Department of Physiology, School of Basic Medicine Sciences, Gannan Medical University, Ganzhou, P.R. China
| | - Ying Wang
- Department of Physiology, School of Basic Medicine Sciences, Gannan Medical University, Ganzhou, P.R. China
| | - Zhihua Huang
- Department of Physiology, School of Basic Medicine Sciences, Gannan Medical University, Ganzhou, P.R. China
- Pain Medicine Research Institute, Gannan Medical University, Ganzhou, P.R. China
| | - Cheng Huang
- Department of Physiology, School of Basic Medicine Sciences, Gannan Medical University, Ganzhou, P.R. China
- Pain Medicine Research Institute, Gannan Medical University, Ganzhou, P.R. China
| |
Collapse
|
2
|
Chi H, Hu Q, Li X, Kang Y, Zheng Y, Jiang M, Xu X, Wang X, He X. Electroacupuncture alleviates diabetes-induced mechanical allodynia and downregulates bradykinin B1 receptor expression in spinal cord dorsal horn. Neuroreport 2024; 35:692-701. [PMID: 38874969 DOI: 10.1097/wnr.0000000000002059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
OBJECTIVE Diabetic neuropathic pain (DNP) is one of the most prevalent symptoms of diabetes. The alteration of proteins in the spinal cord dorsal horn (SCDH) plays a significant role in the genesis and the development of DNP. Our previous study has shown electroacupuncture could effectively relieve DNP. However, the potential mechanism inducing DNP's genesis and development remains unclear and needs further research. METHODS This study established DNP model rats by intraperitoneally injecting a single high-dose streptozotocin; 2 Hz electroacupuncture was used to stimulate Zusanli (ST36) and Kunlun (BL60) of DNP rats daily from day 15 to day 21 after streptozotocin injection. Behavioral assay, quantitative PCR, immunofluorescence staining, and western blotting were used to study the analgesic mechanism of electroacupuncture. RESULTS The bradykinin B1 receptor (B1R) mRNA, nuclear factor-κB p65 (p65), substance P, and calcitonin gene-related peptide (CGRP) protein expression were significantly enhanced in SCDH of DNP rats. The paw withdrawal threshold was increased while body weight and fasting blood glucose did not change in DNP rats after the electroacupuncture treatment. The expression of B1R, p65, substance P, and CGRP in SCDH of DNP rats was also inhibited after the electroacupuncture treatment. CONCLUSION This work suggests that the potential mechanisms inducing the allodynia of DNP rats were possibly related to the increased expression of B1R, p65, substance P, and CGRP in SCDH. Downregulating B1R, p65, substance P, and CGRP expression levels in SCDH may achieve the analgesic effect of 2 Hz electroacupuncture treatment.
Collapse
Affiliation(s)
- Hengyu Chi
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Kovanur Sampath K, Belcher S, Hales J, Thomson OP, Farrell G, Gisselman AS, Katare R, Tumilty S. The role of micro-RNAs in neuropathic pain-a scoping review. Pain Rep 2023; 8:e1108. [PMID: 37928202 PMCID: PMC10624461 DOI: 10.1097/pr9.0000000000001108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 09/08/2023] [Accepted: 09/23/2023] [Indexed: 11/07/2023] Open
Abstract
Neuropathic pain can be caused by a lesion or disease of the somatosensory system characterised by pathological neuro-immune alterations. At a molecular level, microRNAs (miRNAs) act as regulators of gene expression orchestrating both immune and neuronal processes. Thus, miRNAs may act as essential modulators of processes for the establishment and maintenance of neuropathic pain. The objective/aims of this scoping review was to explore and chart the literature to identify miRNAs that are dysregulated in neuropathic pain. The following databases were searched from inception to March 2023: PubMed, EBSCO, CINAHL, Cochrane Library, and SCOPUS. Two independent reviewers screened, extracted data, and independently assessed the risk of bias in included studies. The JBI critical appraisal checklist was used for critical appraisal. A narrative synthesis was used to summarise the evidence. Seven studies (total of 384 participants) that met our eligibility criteria were included in this scoping review. Our review has identified different miRNAs that are commonly involved in the chronic neuropathic pain conditions including miR-132, miR-101, and miR-199a. Our review findings further suggest that expression of miRNAs to be significantly associated with increased diabetic disease duration, HbA1C levels, and fibrinogen levels. Our review findings suggest that there is clear association between miRNA expression and chronic neuropathic pain conditions. Therefore, increasing the specificity by selecting a candidate miRNA and identifying its target mRNA is an area of future research.
Collapse
Affiliation(s)
- Kesava Kovanur Sampath
- Centre for Health and Social Practice, Waikato Institute of Technology, Hamilton, New Zealand
| | - Suzie Belcher
- Centre for Health and Social Practice, Waikato Institute of Technology, Hamilton, New Zealand
| | - James Hales
- Centre for Health and Social Practice, Waikato Institute of Technology, Hamilton, New Zealand
| | - Oliver P. Thomson
- Research Centre, University College of Osteopathy, London, United Kingdom
| | - Gerard Farrell
- Centre for Health Activity and Rehabilitation Research, School of Physiotherapy, Otago University, Dunedin, New Zealand
| | - Angela Spontelli Gisselman
- Doctor of Physical Therapy Program, Department of Public Health and Community Medicine, School of Medicine, Tufts University, Phoenix, AZ, USA
| | - Rajesh Katare
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Steve Tumilty
- Centre for Health Activity and Rehabilitation Research, School of Physiotherapy, Otago University, Dunedin, New Zealand
| |
Collapse
|
4
|
DUSP8/TAK1 signaling mediates neuropathic pain through regulating neuroinflammation and neuron death in a spinal nerve ligation (SNL) rat model. Int Immunopharmacol 2022; 113:109284. [DOI: 10.1016/j.intimp.2022.109284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 09/01/2022] [Accepted: 09/22/2022] [Indexed: 11/05/2022]
|
5
|
Tan B, Wu X, Yu J, Chen Z. The Role of Saponins in the Treatment of Neuropathic Pain. Molecules 2022; 27:molecules27123956. [PMID: 35745079 PMCID: PMC9227328 DOI: 10.3390/molecules27123956] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
Neuropathic pain is a chronic pain caused by tissue injury or disease involving the somatosensory nervous system, which seriously affects the patient's body function and quality of life. At present, most clinical medications for the treatment of neuropathic pain, including antidepressants, antiepileptic drugs, or analgesics, often have limited efficacy and non-negligible side effects. As a bioactive and therapeutic component extracted from Chinese herbal medicine, the role of the effective compounds in the prevention and treatment of neuropathic pain have gradually become a research focus to explore new analgesics. Notably, saponins have shown analgesic effects in a large number of animal models. In this review, we summarized the most updated information of saponins, related to their analgesic effects in neuropathic pain, and the recent progress on the research of therapeutic targets and the potential mechanisms. Furthermore, we put up with some perspectives on future investigation to reveal the precise role of saponins in neuropathic pain.
Collapse
Affiliation(s)
- Bei Tan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (B.T.); (X.W.); (J.Y.)
| | - Xueqing Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (B.T.); (X.W.); (J.Y.)
| | - Jie Yu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (B.T.); (X.W.); (J.Y.)
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (B.T.); (X.W.); (J.Y.)
- Correspondence: ; Tel.: +86-571-88208228
| |
Collapse
|
6
|
Zhao W, Song S, Chu W, Li Y, Chen S, Ji Y, Chen Q, Jin X, Ji F. Disruption of hippocampal P2RX2/CaMKII/NF-κB signaling contributes to learning and memory impairment in C57BL/6 mice induced by surgery plus anesthesia in neonatal period. Biomed Pharmacother 2022; 149:112897. [PMID: 35378503 DOI: 10.1016/j.biopha.2022.112897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 11/16/2022] Open
Abstract
A great number of pediatric patients undergoing varied procedures make neonatal surgery plus anesthesia become a matter of great concern owing to underlying neurotoxicity in developing brain. The authors set out to assess long-term effects of surgery plus anesthesia in mouse model. Six-day-old C57BL/6 mice were randomized to receive either anesthesia with 3% sevoflurane, abdominal surgery under the same anesthesia, or the control condition. These mice were examined of learning and memory at juvenile age in Morris water maze test. The brain tissues of mice were harvested for Western blot analysis, including purinergic receptors P2X family, CaMKII and NF-κB. Another battery of mice were administered with inhibitors of P2RX2/3 (e.g., A317491) into hippocampal dentate gyrus before behavioral testing. We found that neonatal surgery plus anesthesia, but not sevoflurane anesthesia alone, impaired the learning and memory of juvenile mice, as evidenced by delayed escape latency and reduced platform-crossing times. Immunoblotting analysis showed that behavioral abnormalities were associated with increased levels of P2RX2, phosphorylated-CaMKIIβ and activated NF-κB in mouse hippocampus. Injection of A317491 ameliorated the impaired learning and memory of juvenile mice undergoing neonatal surgery plus anesthesia, and it also mitigated the neonatal surgery-induced signaling enhancement of P2RX2/CaMKII/NF-κB. Together, these results indicate that neonatal surgery plus anesthesia may cause long-term cognitive dysfunction, with potential mechanism of increasing P2RX2 and downstream signaling of phosphorylated-CaMKII and NF-κB. Our findings will promote more studies to assess detrimental effects of surgery and accompanying inflammation, diverse anesthetics and even sleeping deprivation on mouse neurodevelopment and neurobehavioral performance.
Collapse
Affiliation(s)
- Weiming Zhao
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou 215006, PR China; Institute of Anesthesiology, Soochow University, Suzhou 215006, PR China
| | - Shaoyong Song
- Institute of Anesthesiology, Soochow University, Suzhou 215006, PR China; Department of Pain Medicine, Dushu Lake Hospital Affiliated to Soochow University, Suzhou 215124, PR China
| | - Wei Chu
- Suzhou Medical College of Soochow University, Suzhou 215123, PR China
| | - Yixuan Li
- Suzhou Medical College of Soochow University, Suzhou 215123, PR China
| | - Shiwen Chen
- Suzhou Medical College of Soochow University, Suzhou 215123, PR China
| | - Yumeng Ji
- Suzhou Medical College of Soochow University, Suzhou 215123, PR China
| | - Qingcai Chen
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou 215006, PR China; Institute of Anesthesiology, Soochow University, Suzhou 215006, PR China
| | - Xin Jin
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou 215006, PR China; Institute of Anesthesiology, Soochow University, Suzhou 215006, PR China.
| | - Fuhai Ji
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou 215006, PR China; Institute of Anesthesiology, Soochow University, Suzhou 215006, PR China.
| |
Collapse
|
7
|
Santos Passos FR, Pereira EWM, Heimfarth L, Monteiro BS, Barbosa Gomes de Carvalho YM, Siqueira-Lima PS, Melo Coutinho HD, Antunes de Souza Araújo A, Guedes da Silva Almeida JR, Barreto RSS, Picot L, Quintans-Júnior LJ, Quintans JSS. Role of peripheral and central sensitization in the anti-hyperalgesic effect of hecogenin acetate, an acetylated sapogenin, complexed with β-cyclodextrin: Involvement of NFκB and p38 MAPK pathways. Neuropharmacology 2021; 186:108395. [PMID: 33516738 DOI: 10.1016/j.neuropharm.2020.108395] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/29/2020] [Accepted: 11/05/2020] [Indexed: 12/30/2022]
Abstract
Neuropathic pain develops due to injury to the somatosensory system, affecting the patient's quality of life. In view of the ineffectiveness of the current pharmacotherapy, substances obtained from natural products (NPs) are a promising alternative. One NP that has been discussed in the literature is hecogenin acetate (HA), a steroidal sapogenin with anti-inflammatory and antinociceptive activity. However, HA has low water solubility, which affects its bioavailability. Thus, the objective of this study was to evaluate the anti-hyperalgesic activity of pure and complexed hecogenin acetate (HA/βCD) in an animal model of chronic neuropathic and inflammatory pain. The inclusion complex was prepared at a molar ratio of 1:2 (HA:βCD) by the lyophilization method. For the induction of chronic inflammatory pain, the mice received an intraplantar injection of CFA (complete Freund's adjuvant), and were evaluated for mechanical hyperalgesia and for the levels of myeloperoxidase (MPO) in the skin of the paw after eight days of treatment. HA and HA/βCD reduced mechanical hyperalgesia in relation to the vehicle group until the fourth and fifth hours, respectively, in the acute evaluation, with a superior effect of the complexed form over the pure form in the second and third hour after treatment (p < 0.001). In the chronic evaluation, HA and HA/βCD reduced hyperalgesia in relation to the vehicle in the eight days of treatment (p < 0.001). Both pure (p < 0.01) and complexed (p < 0.001) forms reduced myeloperoxidase activity in the skin of the animals' paw. Groups of animals subjected to the same pharmacological protocol were submitted to the partial sciatic nerve ligation (PSNL) model and evaluated for mechanical and thermal hyperalgesia, and cold allodynia. HA and HA/βCD reduced mechanical hyperalgesia until the fourth and sixth hours, respectively, and both reduced hyperalgesia in relation to the vehicle in the chronic evaluation (p < 0.001). HA and HA/βCD also reduced thermal hyperalgesia and cold allodynia (p < 0.05 and p < 0.001, respectively). The analysis of the spinal cord of these animals showed a decrease in the levels of the pro-inflammatory cytokines TNF-α, IL-1β and IL-6 and a reduction in the phosphorylation of NFκB and p38MAPK, as well as a decrease in microglioses compared to the vehicle group. In addition, HA/βCD reduced the nociception induced by intraplantar injection of agonist TRPA1 (p < 0.01) and TRPM8 (p < 0.05). Treatment for eight days with HA and HA/βCD showed no signs of gastric or liver damage. HA and HA/βCD were, therefore, shown to have antinociceptive effects in chronic pain models. Based on our exploration of the mechanisms of the action of HA, these effects are likely to be related to inhibited leukocyte migration, interaction with the TRPA1 and TRPM8 receptors, reduced pro-inflammatory cytokines levels, microglial expression and suppression of NF-κB p65 and p38 MAPK pathway signaling. Therefore, HA/βCD has great potential for use in the treatment of chronic pain.
Collapse
Affiliation(s)
- Fabiolla Rocha Santos Passos
- Laboratory of Neurosciences and Pharmacological Assays (LANEF- Laboratório de Neurociências e Ensaios Farmacológicos), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil; Health Sciences Graduate Program, Brazil
| | - Erik W M Pereira
- Laboratory of Neurosciences and Pharmacological Assays (LANEF- Laboratório de Neurociências e Ensaios Farmacológicos), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil; Health Sciences Graduate Program, Brazil
| | - Luana Heimfarth
- Laboratory of Neurosciences and Pharmacological Assays (LANEF- Laboratório de Neurociências e Ensaios Farmacológicos), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | - Brenda S Monteiro
- Laboratory of Neurosciences and Pharmacological Assays (LANEF- Laboratório de Neurociências e Ensaios Farmacológicos), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | - Yasmim Maria Barbosa Gomes de Carvalho
- Laboratory of Neurosciences and Pharmacological Assays (LANEF- Laboratório de Neurociências e Ensaios Farmacológicos), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | | | | | | | | | - Rosana S S Barreto
- Laboratory of Neurosciences and Pharmacological Assays (LANEF- Laboratório de Neurociências e Ensaios Farmacológicos), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | - Laurent Picot
- La Rochelle Université, UMRi CNRS 7266 LIENSs, 17042, La Rochelle, France
| | - Lucindo J Quintans-Júnior
- Laboratory of Neurosciences and Pharmacological Assays (LANEF- Laboratório de Neurociências e Ensaios Farmacológicos), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil; Health Sciences Graduate Program, Brazil
| | - Jullyana S S Quintans
- Laboratory of Neurosciences and Pharmacological Assays (LANEF- Laboratório de Neurociências e Ensaios Farmacológicos), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil; Health Sciences Graduate Program, Brazil.
| |
Collapse
|
8
|
Khalilzadeh M, Hassanzadeh F, Aghamiri H, Dehpour AR, Shafaroodi H. Aripiprazole prevents from development of vincristine-induced neuropathic nociception by limiting neural NOS overexpression and NF-kB hyperactivation. Cancer Chemother Pharmacol 2020; 86:393-404. [PMID: 32803467 DOI: 10.1007/s00280-020-04127-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/10/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE Increased nitric oxide (NO) synthesis and NF-kB activation have been shown as critical players in the pathophysiology of vincristine-induced peripheral neuropathy. Consistently, neural nitric oxide synthase (nNOS) inhibitors alleviated the neuropathic pain. Previous studies demonstrated that aripiprazole is capable of modulating NO synthesis and also has been reported its modulatory effect on NF-kB activity. METHODS Aripiprazole was administered daily to the male Wistar rats at the same time with establishing neuropathic model by I.P. injection of vincristine every 2 days, over 2 weeks. Efficacy of aripiprazole in suppressing the development of neuropathy was evaluated by assessing changes in body weight, mechanical threshold, withdrawal latency, sciatic nerve conduction velocity (SNCV), and compound motor action potential (CMAP) characteristics. Expression of nNOS and NF-kB activation were evaluated by western blotting RESULTS: Rats receiving aripiprazole during neuropathy establishment period demonstrated a normal weight gain pattern, a significantly higher mechanical withdrawal threshold, and SNCV compared to vincristine-treated group. Furthermore, the amplitude and area of CMAP were significantly higher in aripiprazole group. Western blotting demonstrated a significantly reduced expression of nNOS and NF-kB activation in dorsal root ganglia of aripiprazole co-treated rats. CONCLUSION In conclusion, aripiprazole effectively prevents from vincristine-induced neuropathy by limiting nNOS overexpression and NF-kB hyperactivation.
Collapse
Affiliation(s)
- Mina Khalilzadeh
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute Tehran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Hassanzadeh
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute Tehran University of Medical Sciences, Tehran, Iran
| | - Helia Aghamiri
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | - Hamed Shafaroodi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran. .,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran.
| |
Collapse
|
9
|
Zhang W, Yu T, Cui X, Yu H, Li X. Analgesic effect of dexmedetomidine in rats after chronic constriction injury by mediating microRNA‐101 expression and the E2F2–TLR4–NF‐κB axis. Exp Physiol 2020; 105:1588-1597. [PMID: 32706450 DOI: 10.1113/ep088596] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Wenwen Zhang
- Department of Anesthesiologythe First Hospital of Jilin University Changchun Jilin 130021 P.R. China
| | - Tingting Yu
- Department of OtolaryngologyHead and Neck Surgerythe First Hospital of Jilin University Changchun Jilin 130021 P.R. China
| | - Xiangyan Cui
- Department of OtolaryngologyHead and Neck Surgerythe First Hospital of Jilin University Changchun Jilin 130021 P.R. China
| | - Hong Yu
- Department of OtolaryngologyHead and Neck Surgerythe First Hospital of Jilin University Changchun Jilin 130021 P.R. China
| | - Xinbai Li
- Department of Anesthesiologythe First Hospital of Jilin University Changchun Jilin 130021 P.R. China
| |
Collapse
|
10
|
Abstract
Injury typically results in the development of neuropathic pain, but the pain normally decreases and disappears in paralleled with wound healing. The pain results from cells resident at, and recruited to, the injury site releasing pro-inflammatory cytokines and other mediators leading to the development of pro-inflammatory environment and causing nociceptive neurons to develop chronic ectopic electrical activity, which underlies neuropathic pain. The pain decreases as some of the cells that induce pro-inflammation, changing their phenotype leading to the blocking the release of pro-inflammatory mediators while releasing anti-inflammatory mediators, and blocking nociceptive neuron chronic spontaneous electrical activity. Often, despite apparent wound healing, the neuropathic pain becomes chronic. This raises the question of how chronic pain can be eliminated. While many of the cells and mediators contributing to the development and maintenance of neuropathic pain are known, a better understanding is required of how the injury site environment can be controlled to permanently eliminate the pro-inflammatory environment and silence the chronically electrically active nociceptive neurons. This paper examines how methods that can promote the transition of the pro-inflammatory injury site to an anti-inflammatory state, by changing the composition of local cell types, modifying the activity of pro- and anti-inflammatory receptors, inducing the release of anti-inflammatory mediators, and silencing the chronically electrically active nociceptive neurons. It also examines the hypothesis that factors released from platelet-rich plasma applied to chronic pain sites can permanently eliminate chronic inflammation and its associated chronic pain.
Collapse
Affiliation(s)
- Damien P Kuffler
- Institute of Neurobiology, Medical Sciences Campus, University of Puerto Rico, 201 Blvd. del Valle, San Juan, PR, 00901, USA.
| |
Collapse
|
11
|
Kuffler DP. Injury-Induced Effectors of Neuropathic Pain. Mol Neurobiol 2019; 57:51-66. [PMID: 31701439 DOI: 10.1007/s12035-019-01756-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 08/29/2019] [Indexed: 02/07/2023]
Abstract
Injuries typically result in the development of neuropathic pain, which decreases in parallel with wound healing. However, the pain may remain after the injury appears to have healed, which is generally associated with an ongoing underlying pro-inflammatory state. Injury induces many cells to release factors that contribute to the development of a pro-inflammatory state, which is considered an essential first step towards wound healing. However, pain elimination requires a transition of the injury site from pro- to anti-inflammatory. Therefore, developing techniques that eliminate chronic pain require an understanding of the cells resident at and recruited to injury sites, the factors they release, that promote a pro-inflammatory state, and promote the subsequent transition of that site to be anti-inflammatory. Although a relatively large number of cells, factors, and gene expression changes are involved in these processes, it may be possible to control a relatively small number of them leading to the reduction and elimination of chronic neuropathic pain. This first of two papers examines the roles of the most salient cells and mediators associated with the development and maintenance of chronic neuropathic pain. The following paper examines the cells and mediators involved in reducing and eliminating chronic neuropathic pain.
Collapse
Affiliation(s)
- Damien P Kuffler
- Institute of Neurobiology, Medical Sciences Campus, University of Puerto Rico, 201 Blvd. del Valle, San Juan, PR, 00901, USA.
| |
Collapse
|
12
|
Xia YY, Xue M, Wang Y, Huang ZH, Huang C. Electroacupuncture Alleviates Spared Nerve Injury-Induced Neuropathic Pain And Modulates HMGB1/NF-κB Signaling Pathway In The Spinal Cord. J Pain Res 2019; 12:2851-2863. [PMID: 31695479 PMCID: PMC6805246 DOI: 10.2147/jpr.s220201] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/12/2019] [Indexed: 01/03/2023] Open
Abstract
Background Neuropathic pain with complications greatly affects patients worldwide. High mobility group box 1 (HMGB1) has been shown to contribute to the pathogenesis of neuropathic pain; thus, suppression of HMGB1 may provide a novel therapeutic option for neuropathic pain. Electroacupuncture (EA) has been indicated to be effective in attenuating neuropathic pain, but the underlying mechanism remains to be fully clarified. We aim to explore whether 2Hz EA stimulation regulates the spinal HMGB1/NF-κB signaling in neuropathic pain induced by spared nerve injury (SNI). Materials and methods Paw withdrawal threshold and CatWalk gait analysis were used to assess the effect of 2Hz EA on pain-related behaviors in SNI rats. Administration of 2Hz EA to SNI rats once every other day lasting for 21 days. Expression of spinal protein molecules were detected using Western blot and immunofluorescence staining. Results It was found that SNI significantly induced mechanical hypersensitivity and decrease of gait parameters, and subsequently increased the levels of HMGB1, TLR4, MyD88, and NF-κB p65 protein expression. 2Hz EA stimulation led to remarkable attenuation of mechanical hypersensitivity, upregulation of spinal HMGB1, TLR4, MyD88, and NF-κB p65 protein expressions induced by SNI, and significant improvement in gait parameters. Furthermore, immunofluorescence staining also confirmed that 2Hz EA obviously suppressed the co-expression of microglia activation marker CD11b and TLR4 or MyD88, as well as the activation of NF-κB p65 in SNI rats. Conclusion This study suggested that blockade of HMGB1/NF-κB signaling in the spinal cord may be a promising therapeutic approach for 2Hz EA management of SNI-induced neuropathic pain.
Collapse
Affiliation(s)
- Yang-Yang Xia
- Department of Physiology, Gannan Medical University, Ganzhou 341000, People's Republic of China
| | - Meng Xue
- Department of Physiology, Gannan Medical University, Ganzhou 341000, People's Republic of China
| | - Ying Wang
- Department of Physiology, Gannan Medical University, Ganzhou 341000, People's Republic of China
| | - Zhi-Hua Huang
- Department of Physiology, Gannan Medical University, Ganzhou 341000, People's Republic of China.,Pain Medicine Research Institute, Gannan Medical University, Ganzhou 341000, People's Republic of China
| | - Cheng Huang
- Department of Physiology, Gannan Medical University, Ganzhou 341000, People's Republic of China.,Pain Medicine Research Institute, Gannan Medical University, Ganzhou 341000, People's Republic of China
| |
Collapse
|
13
|
Sophocarpine Attenuates Chronic Constriction Sciatic Nerve Injury-induced Neuropathic Pain in Mice by Inhibiting the HMGB1/TLR4/NF-κB Signaling Pathway. IRANIAN RED CRESCENT MEDICAL JOURNAL 2019. [DOI: 10.5812/ircmj.94716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Liu JC, Xue DF, Wang XQ, Ai DB, Qin PJ. MiR-101 relates to chronic peripheral neuropathic pain through targeting KPNB1 and regulating NF-κB signaling. Kaohsiung J Med Sci 2019; 35:139-145. [PMID: 30887716 DOI: 10.1002/kjm2.12025] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 01/02/2019] [Indexed: 12/19/2022] Open
Abstract
Accumulating evidences indicates that chronic neuropathic pain is a kind of neuro-immune disorder with enhanced activation of the immune system. Although the prevalence is very high, neuropathic pain remains extremely difficult to cure. miRNAs are a group of short nonprotein coding RNAs, regulating target genes expression via targeting 3'-untranslated region. More and more research indicates that altered miRNAs expression profile relates to the pathogenesis of neuropathic pain. In this study, we firstly detected the expression of six candidate miRNAs in the plasma samples from 23 patients with neuropathic pain and 10 healthy controls. Subsequently, the level of miR-132 and miR-101 was detected in the sural nerve biopsies. We found miR-101 level was significantly repressed in both the plasma samples and sural nerve biopsies from neuropathic pain patients. Predicted by bioinformatics tools and confirmed by dual luciferase assay and immunoblotting, we identified that KPNB1 is a direct target of miR-101. The negative correlation between miR-101 and KPNB1 was also confirmed in the sural nerve biopsies, and miR-101 reduction relates to the activation of NF-κB signaling in vivo and in vitro which contributes to the pathogenesis of neuropathic pain.
Collapse
Affiliation(s)
- Jun-Chao Liu
- Department of Anesthesia and Surgery, Qingdao Municipal Hospital, Qingdao Clinical Anesthesia Research Center, Qingdao clinical pain research center, Qingdao, Puerto Rico, China
| | - Dong-Fang Xue
- Department of Anesthesia and Surgery, Qingdao Municipal Hospital, Qingdao Clinical Anesthesia Research Center, Qingdao clinical pain research center, Qingdao, Puerto Rico, China
| | - Xiao-Qian Wang
- Department of Surgery, Qingdao University Affiliated Hospital, Qingdao, Puerto Rico, China
| | - Deng-Bin Ai
- Department of Anesthesia and Surgery, Qingdao Municipal Hospital, Qingdao Clinical Anesthesia Research Center, Qingdao clinical pain research center, Qingdao, Puerto Rico, China
| | - Pei-Juan Qin
- Department of Anesthesia and Surgery, Qingdao Municipal Hospital, Qingdao Clinical Anesthesia Research Center, Qingdao clinical pain research center, Qingdao, Puerto Rico, China
| |
Collapse
|
15
|
de la Peña JBI, Song JJ, Campbell ZT. RNA control in pain: Blame it on the messenger. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1546. [PMID: 31090211 DOI: 10.1002/wrna.1546] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/17/2019] [Accepted: 04/22/2019] [Indexed: 12/12/2022]
Abstract
mRNA function is meticulously controlled. We provide an overview of the integral role that posttranscriptional controls play in the perception of painful stimuli by sensory neurons. These specialized cells, termed nociceptors, precisely regulate mRNA polarity, translation, and stability. A growing body of evidence has revealed that targeted disruption of mRNAs and RNA-binding proteins robustly diminishes pain-associated behaviors. We propose that the use of multiple independent regulatory paradigms facilitates robust temporal and spatial precision of protein expression in response to a range of pain-promoting stimuli. This article is categorized under: RNA in Disease and Development > RNA in Disease Translation > Translation Regulation RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
- June Bryan I de la Peña
- Department of Biological Sciences and the Center for Advanced Pain Studies, University of Texas, Dallas, Richardson, Texas
| | - Jane J Song
- Department of Biological Sciences and the Center for Advanced Pain Studies, University of Texas, Dallas, Richardson, Texas
| | - Zachary T Campbell
- Department of Biological Sciences and the Center for Advanced Pain Studies, University of Texas, Dallas, Richardson, Texas
| |
Collapse
|
16
|
Antisense oligonucleotides selectively suppress target RNA in nociceptive neurons of the pain system and can ameliorate mechanical pain. Pain 2019; 159:139-149. [PMID: 28976422 DOI: 10.1097/j.pain.0000000000001074] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is an urgent need for better treatments for chronic pain, which affects more than 1 billion people worldwide. Antisense oligonucleotides (ASOs) have proven successful in treating children with spinal muscular atrophy, a severe infantile neurological disorder, and several ASOs are currently being tested in clinical trials for various neurological disorders. Here, we characterize the pharmacodynamic activity of ASOs in spinal cord and dorsal root ganglia (DRG), key tissues for pain signaling. We demonstrate that activity of ASOs lasts up to 2 months after a single intrathecal bolus dose. Interestingly, comparison of subcutaneous, intracerebroventricular, and intrathecal administration shows that DRGs are targetable by systemic and central delivery of ASOs, while target reduction in the spinal cord is achieved only after direct central delivery. Upon detailed characterization of ASO activity in individual cell populations in DRG, we observe robust target suppression in all neuronal populations, thereby establishing that ASOs are effective in the cell populations involved in pain propagation. Furthermore, we confirm that ASOs are selective and do not modulate basal pain sensation. We also demonstrate that ASOs targeting the sodium channel Nav1.7 induce sustained analgesia up to 4 weeks. Taken together, our findings support the idea that ASOs possess the required pharmacodynamic properties, along with a long duration of action beneficial for treating pain.
Collapse
|
17
|
Nahm FS, Nahm SS, Han WK, Gil HY, Choi E, Lee PB. Increased cerebral nuclear factor kappa B in a complex regional pain syndrome rat model: possible relationship between peripheral injury and the brain. J Pain Res 2019; 12:909-914. [PMID: 30881100 PMCID: PMC6408925 DOI: 10.2147/jpr.s166270] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose Complex regional pain syndrome (CRPS) is a rare but refractory pain disorder. Recent advanced information retrieval studies using text-mining and network analysis have suggested nuclear factor kappa B (NFκB) as a possible central mediator of CRPS. The brain is also known to play important roles in CRPS. The aim of this study was to evaluate changes in cerebral NFκB in rats with CRPS. Materials and methods The chronic post-ischemia perfusion (CPIP) model was used as the CRPS animal model. O-rings were applied to the left hind paws of the rats. The rats were categorized into three groups according to the results of behavioral tests: the CPIP-positive (A) group, the CPIP-negative (B) group, and the control (C) group. Three weeks after the CPIP procedure, the right cerebrums of the animals were harvested to measure NFκB levels using an ELISA. Results Animals in group A had significantly decreased mechanical pain thresholds (P<0.01) and significantly increased cerebral NFκB when compared to those in groups B and C (P=0.024). Conclusion This finding indicates that peripheral injury increases cerebral NFκB levels and implies that minor peripheral injury can lead to the activation of pain-related cerebral processes in CRPS.
Collapse
Affiliation(s)
- Francis Sahngun Nahm
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea, .,College of Medicine, Seoul National University, Seoul, South Korea,
| | - Sang-Soep Nahm
- Laboratory of Veterinary Anatomy, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Woong Ki Han
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea,
| | - Ho Young Gil
- Department of Anesthesiology and Pain Medicine, Ajou University Hospital, Suwon, South Korea
| | - Eunjoo Choi
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea,
| | - Pyung Bok Lee
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea, .,College of Medicine, Seoul National University, Seoul, South Korea,
| |
Collapse
|
18
|
Gao J, Tang C, Tai LW, Ouyang Y, Li N, Hu Z, Chen X. Pro-resolving mediator maresin 1 ameliorates pain hypersensitivity in a rat spinal nerve ligation model of neuropathic pain. J Pain Res 2018; 11:1511-1519. [PMID: 30127635 PMCID: PMC6089120 DOI: 10.2147/jpr.s160779] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background Pro-resolving mediators (PRMs) are considered as emerging analgesics for chronic pain. Maresin 1 (MaR1) is a newly identified member of PRMs, and recent studies implicate its potential role in some pain conditions. As the function of MaR1 in neuropathic pain remains unclear, we investigated the effects of MaR1 on pain hypersensitivity and the underlying mechanism using a rat spinal nerve ligation (SNL) model of neuropathic pain. Materials and methods MaR1 (100 ng/10 μL) or commensurable artificial cerebrospinal fluid was delivered via intrathecal catheter from days 3 to 5 post-SNL followed by assessment of mechanical allodynia and thermal hyperalgesia. Ipsilateral L4–L5 spinal cord tissue was collected on day 7 post-SNL and assessed by Western blotting, enzyme-linked immunosorbent assay or immunohistochemistry. Results Intrathecal MaR1 significantly attenuated mechanical allodynia and thermal hyperalgesia from day 5 to day 7 post-SNL, which was associated with decreased spinal levels of glial markers, GFAP and IBA1. It was also found that intrathecal MaR1 downregulated phosphorylation levels of NF-κB p65 and its nuclear translocation, as well as decreased protein levels of pro-inflammatory cytokines, TNF-α, IL-1β and IL-6. Further, MaR1 treatment restored PSD95 and synapsin II levels, suggesting that MarR1 also protected synaptic integrity. Conclusion Our results indicate that MaR1 ameliorates the SNL-induced neuropathic pain by regulating glial activities and pro-inflammatory cytokines release. The present study offers insight into the potential of MaR1 as a novel intervention to ameliorate neuropathic pain.
Collapse
Affiliation(s)
- Jie Gao
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Provence, China.,Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China,
| | - Chaoliang Tang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China.,Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui Provence, China
| | - Lydia Wai Tai
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong SAR, China
| | - Yeling Ouyang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China, .,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China,
| | - Na Li
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China, .,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China,
| | - Zhiqiang Hu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China, .,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China,
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China, .,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China,
| |
Collapse
|
19
|
Overexpression of SIRT2 Alleviates Neuropathic Pain and Neuroinflammation Through Deacetylation of Transcription Factor Nuclear Factor-Kappa B. Inflammation 2017; 41:569-578. [DOI: 10.1007/s10753-017-0713-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Zhang Y, Mou J, Cao L, Zhen S, Huang H, Bao H. MicroRNA-142-3p relieves neuropathic pain by targeting high mobility group box 1. Int J Mol Med 2017; 41:501-510. [PMID: 29115575 DOI: 10.3892/ijmm.2017.3222] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 10/06/2017] [Indexed: 11/06/2022] Open
Abstract
MicroRNA (miRNA) are emerging as critical regulators of neuropathic pain development. Neuroinflammation contributes to the development of neuropathic pain. miR‑142‑3p has been characterized as an inflammation‑related miRNA in various pathological processes. However, little is known about the role of miR‑142‑3p in neuroinflammation and neuropathic pain. The present study aimed to investigate the function of miR‑142‑3p in neuropathic pain by creating a murine model using spinal nerve ligation (SNL). A significant reduction in miR‑142‑3p expression was observed in the dorsal root ganglion of mice with SNL (P<0.05) compared with control mice. Overexpression of miR‑142‑3p significantly inhibited neuropathic pain and neuroinflammation in mice with SNL (P<0.05). High mobility group box 1 (HMGB1) was identified as a direct target gene of miR‑142‑3p by bioinformatic analysis and dual‑luciferase reporter assays. Overexpression of miR‑142‑3p significantly reduced the mRNA and protein expression levels of HMGB1 in vitro and in vivo (P<0.05). In addition, HMGB1 mRNA expression and miR‑142‑3p expression were inversely correlated in mice with SNL. Furthermore, overexpression of HMGB1 significantly reversed the inhibitory effect of miR‑142‑3p on neuroinflammation and neuropathic pain development (P<0.05). Overall, these results suggest that miR‑142‑3p functions as a negative regulator of neuropathic pain development through the downregulation of HMGB1, indicating that miR‑142‑3p may serve as a potential therapeutic target for neuropathic pain.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Anesthesiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Junying Mou
- Department of Anesthesiology, The Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi, Hubei 445000, P.R. China
| | - Li Cao
- Department of Internal Medicine, Suizhou Zengdu Hospital, Suizhou, Hubei 441300, P.R. China
| | - Su Zhen
- Department of Anesthesiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Hongjuan Huang
- Department of Neurology, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu 223002, P.R. China
| | - Hongguang Bao
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| |
Collapse
|
21
|
Zhao WX, Wang PF, Song HG, Sun N. Diosgenin attenuates neuropathic pain in a rat model of chronic constriction injury. Mol Med Rep 2017; 16:1559-1564. [DOI: 10.3892/mmr.2017.6723] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 03/13/2017] [Indexed: 11/05/2022] Open
|
22
|
Dexmedetomidine attenuates neuropathic pain in chronic constriction injury by suppressing NR2B, NF-κB, and iNOS activation. Saudi Pharm J 2017; 25:649-654. [PMID: 28579906 PMCID: PMC5447440 DOI: 10.1016/j.jsps.2017.04.039] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The effective treatment of patients suffering from neuropathic pain remains challenging. Dexmedetomidine (DEX) possesses anti-inflammatory activity. However, the role of DEX in neuropathic pain is still unclear. The aim of the present study was to examine DEX an α2-adrenoceptor agonist could improve pain hypersensitivity and reduce inflammatory in a chronic constriction injury (CCI) model of the sciatic nerve in Sprague-Dawley rats. Dex was intrathecally administrated 1-h after operation. The paw mechanical withdrawal threshold (MWT) and paw withdrawal thermal latency (PWTL) were measured on day 1 before operation and on days 1, 7, 14 and 21 after operation, respectively. On day 21, all the rats were decapitated to collect the L4-6 segments of the spinal cord to examine IL-1, TNF-α, IL-6, NR2B, NF-κB, and iNOS mRNA levels using RT-PCR. The postoperative MWT and PWTL were significantly decreased in CCI, and DEX groups as compared to those before surgery and Sham group (P < 0.05). And DEX reversed this trend (P < 0.05). Interleukin 1 (IL-1), tumor necrosis factor α (TNF-α), IL-6 mRNA expression significantly increased postsurgery in CCI group as compared to that of Sham group (P < 0.05); DEX blocked increased IL-1, TNF-α, IL-6, N-methyl-D-aspartate (NMDA) receptor 2B (NR2B), nuclear factor κB (NF-κB), and inducible isoform of nitric oxide synthase (iNOS) mRNA levels (P < 0.05). DEX may alleviate neuropathic hypersensitivity and inflammation partially by inhibiting NR2B, NF-κB, and iNOS expression in the spinal cord of rats with neuropathic pain resulting from CCI of the sciatic nerve.
Collapse
|
23
|
Zhou J, Wang J, Li W, Wang C, Wu L, Zhang J. Paeoniflorin attenuates the neuroinflammatory response in a rat model of chronic constriction injury. Mol Med Rep 2017; 15:3179-3185. [DOI: 10.3892/mmr.2017.6371] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 12/19/2016] [Indexed: 11/05/2022] Open
|
24
|
Yang Y, Zhang Z, Guan J, Liu J, Ma P, Gu K, Zhao J, Yang G, Song T. Administrations of thalidomide into the rostral ventromedial medulla alleviates painful diabetic neuropathy in Zucker diabetic fatty rats. Brain Res Bull 2016; 125:144-51. [DOI: 10.1016/j.brainresbull.2016.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/20/2016] [Accepted: 06/22/2016] [Indexed: 01/08/2023]
|
25
|
Yan H, Zhang E, Feng C, Zhao X. Role of A3 adenosine receptor in diabetic neuropathy. J Neurosci Res 2016; 94:936-46. [PMID: 27319979 DOI: 10.1002/jnr.23774] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/02/2016] [Accepted: 05/02/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Heng Yan
- Department of Anesthesiology; The Second Hospital of Shandong University; Jinan Shandong China
| | - Enshui Zhang
- Department of Orthopedics; Jinan Central Hospital Affiliated to Shandong University; Jinan Shandong China
| | - Chang Feng
- Department of Anesthesiology; The Second Hospital of Shandong University; Jinan Shandong China
| | - Xin Zhao
- Department of Anesthesiology; The Second Hospital of Shandong University; Jinan Shandong China
| |
Collapse
|
26
|
Resolvin D1 Inhibits Mechanical Hypersensitivity in Sciatica by Modulating the Expression of Nuclear Factor-κB, Phospho-extracellular Signal–regulated Kinase, and Pro- and Antiinflammatory Cytokines in the Spinal Cord and Dorsal Root Ganglion. Anesthesiology 2016; 124:934-44. [PMID: 26808633 DOI: 10.1097/aln.0000000000001010] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
Background
Accumulating evidence indicates that spinal inflammatory and immune responses play an important role in the process of radicular pain caused by intervertebral disk herniation. Resolvin D1 (RvD1) has been shown to have potent antiinflammatory and antinociceptive effects. The current study was undertaken to investigate the analgesic effect of RvD1 and its underlying mechanism in rat models of noncompressive lumbar disk herniation.
Methods
Rat models of noncompressive lumber disk herniation were established, and mechanical thresholds were evaluated using the von Frey test during an observation period of 21 days (n = 8/group). Intrathecal injection of vehicle or RvD1 (10 or 100 ng) was performed for three successive postoperative days. On day 7, the ipsilateral spinal dorsal horns and L5 dorsal root ganglions (DRGs) were removed to assess the expressions of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-10, and transforming growth factor-β1 (TGF-β1) and the activation of nuclear factor-κB (NF-κB)/p65 and phospho-extracellular signal–regulated kinase (p-ERK) signaling (n = 30/group).
Results
The application of nucleus pulposus to L5 DRG induced prolonged mechanical allodynia, inhibited the production of IL-10 and TGF-β1, and up-regulated the expression of TNF-α, IL-1β, NF-κB/p65, and p-ERK in the spinal dorsal horns and DRGs. Intrathecal injection of RvD1 showed a potent analgesic effect, inhibited the up-regulation of TNF-α and IL-1β, increased the release of IL-10 and TGF-β1, and attenuated the expression of NF-κB/p65 and p-ERK in a dose-dependent manner.
Conclusions
The current study showed that RvD1 might alleviate neuropathic pain via regulating inflammatory mediators and NF-κB/p65 and p-ERK pathways. Its antiinflammatory and proresolution properties may offer novel therapeutic approaches for the management of neuropathic pain.
Collapse
|
27
|
Komirishetty P, Areti A, Yerra VG, Ruby PK, Sharma SS, Gogoi R, Sistla R, Kumar A. PARP inhibition attenuates neuroinflammation and oxidative stress in chronic constriction injury induced peripheral neuropathy. Life Sci 2016; 150:50-60. [PMID: 26921631 DOI: 10.1016/j.lfs.2016.02.085] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 02/12/2016] [Accepted: 02/23/2016] [Indexed: 12/20/2022]
Abstract
AIM Peripheral nerve degeneration after nerve injury is accompanied with oxidative stress that may activate poly ADP-ribose polymerase (PARP, DNA repair enzyme). PARP overactivation amplifies the neuronal damage either due to energy crisis or through inflammatory process by facilitating nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Hence investigated the role of PARP inhibitors, 3-Aminobenzamide (3-AB) and 1,5-isoquinolinediol (ISO) in the attenuation of chronic constriction injury (CCI) induced peripheral neuropathy in rats. METHODS 3-AB and ISO (at doses 30 and 3mg/kg i.p., respectively) were tested in rats subjected to standard tests for evaluating hyperalgesia and allodynia. Sciatic functional index (SFI) was assessed by performing walking track analysis. Oxidative stress and inflammation induced biochemical alterations were estimated after 14 days in sciatic nerve and lumbar spinal cord. Molecular changes were explored by immunohistochemistry and DNA fragmentation by TUNEL assay. KEY FINDINGS Treatment significantly improved sensorimotor responses (p<0.001), SFI (p<0.001) and foot posture. PARP inhibition significantly (p<0.01 and p<0.001) reduced the elevated levels of nitrite, inflammatory markers and also normalized the depleted NAD(total) levels. The protein expression of poly (ADP-ribose) (PAR), NF-κB, cyclooxygenase-2 (COX-2) and nitrotyrosine were significantly (p<0.01 and p<0.001) decreased in both sciatic nerve and lumbar spinal cord, evident through immunohistochemistry. SIGNIFICANCE Present study outcomes fortify the pathological role of PARP overactivation in CCI induced neuropathy and PARP inhibition ameliorated oxidative stress and neuroinflammation associated with CCI induced nerve injury. Therefore, the current study suggests the PARP inhibitors can further be evaluated for designing futuristic strategies for the management of trauma induced neuropathy.
Collapse
Affiliation(s)
- Prashanth Komirishetty
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, India
| | - Aparna Areti
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, India
| | - Veera Ganesh Yerra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, India
| | - P K Ruby
- Molecular Neuropharmacology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Punjab, India
| | - Shyam S Sharma
- Molecular Neuropharmacology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Punjab, India
| | - Ranadeep Gogoi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | - Ramakrishna Sistla
- Medicinal Chemistry and Pharmacology Division, Indian Institute of Chemical Technology (IICT), Hyderabad, India
| | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, India.
| |
Collapse
|
28
|
Chang X, He H, Zhu L, Gao J, Wei T, Ma Z, Yan T. Protective effect of apigenin on Freund's complete adjuvant-induced arthritis in rats via inhibiting P2X7/NF-κB pathway. Chem Biol Interact 2015; 236:41-6. [PMID: 25935278 DOI: 10.1016/j.cbi.2015.04.021] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 03/26/2015] [Accepted: 04/22/2015] [Indexed: 10/23/2022]
Abstract
To evaluate the effect of apigenin (AP) on arthritis in rats stimulated by Freund's complete adjuvant (FCA) was the main purpose of the investigation. Arthritis model was established by the administration of 0.1 ml FCA in the palmar surface. AP and diclofenac sodium (DS) were administered to explore and evidence the protective effects against adjuvant-induced arthritis (AA). Cytokines tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β) and interleukin-6 (IL-6) were detected to assess the anti-inflammatory effect of AP. Besides, pathological conditions were examined in rat paws. Related-proteins of nuclear factor kappa B (NF-κB) signal pathway activated by P2X7 were investigated to determine the molecular mechanism of AP and their expressions were measured by western blot. The data showed that AP significantly suppressed the expressions of P2X7/NF-κB signal-related proteins and alleviated inflammatory reactions. Therefore, it was assumed that AP might be a potential therapeutic candidate to treat arthritis.
Collapse
Affiliation(s)
- Xiayun Chang
- Department of Physiology and Pharmacology, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, China
| | - He He
- Department of Physiology and Pharmacology, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, China
| | - Lingpeng Zhu
- Department of Physiology and Pharmacology, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, China
| | - Jin Gao
- Department of Physiology and Pharmacology, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, China
| | - Tingting Wei
- Department of Physiology and Pharmacology, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, China
| | - Zhanqian Ma
- Department of Physiology and Pharmacology, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, China
| | - Tianhua Yan
- Department of Physiology and Pharmacology, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, China.
| |
Collapse
|
29
|
Álvarez-Pérez B, Homs J, Bosch-Mola M, Puig T, Reina F, Verdú E, Boadas-Vaello P. Epigallocatechin-3-gallate treatment reduces thermal hyperalgesia after spinal cord injury by down-regulating RhoA expression in mice. Eur J Pain 2015; 20:341-52. [DOI: 10.1002/ejp.722] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2015] [Indexed: 12/30/2022]
Affiliation(s)
- B. Álvarez-Pérez
- Research Group of Clinical Anatomy; Embryology; Neuroscience and Molecular Oncology (NEOMA); Department of Medical Sciences; Universitat de Girona; Spain
| | - J. Homs
- Research Group of Clinical Anatomy; Embryology; Neuroscience and Molecular Oncology (NEOMA); Department of Medical Sciences; Universitat de Girona; Spain
- Department of Physical Therapy; EUSES - Universitat de Girona; Spain
| | - M. Bosch-Mola
- Research Group of Clinical Anatomy; Embryology; Neuroscience and Molecular Oncology (NEOMA); Department of Medical Sciences; Universitat de Girona; Spain
| | - T. Puig
- Research Group of Clinical Anatomy; Embryology; Neuroscience and Molecular Oncology (NEOMA); Department of Medical Sciences; Universitat de Girona; Spain
| | - F. Reina
- Research Group of Clinical Anatomy; Embryology; Neuroscience and Molecular Oncology (NEOMA); Department of Medical Sciences; Universitat de Girona; Spain
| | - E. Verdú
- Research Group of Clinical Anatomy; Embryology; Neuroscience and Molecular Oncology (NEOMA); Department of Medical Sciences; Universitat de Girona; Spain
| | - P. Boadas-Vaello
- Research Group of Clinical Anatomy; Embryology; Neuroscience and Molecular Oncology (NEOMA); Department of Medical Sciences; Universitat de Girona; Spain
| |
Collapse
|
30
|
Xifró X, Vidal-Sancho L, Boadas-Vaello P, Turrado C, Alberch J, Puig T, Verdú E. Novel epigallocatechin-3-gallate (EGCG) derivative as a new therapeutic strategy for reducing neuropathic pain after chronic constriction nerve injury in mice. PLoS One 2015; 10:e0123122. [PMID: 25855977 PMCID: PMC4391943 DOI: 10.1371/journal.pone.0123122] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 02/18/2015] [Indexed: 02/07/2023] Open
Abstract
Neuropathic pain is common in peripheral nerve injury and often fails to respond to ordinary medication. Here, we investigated whether the two novel epigallocatechin-3-gallate (EGCG) polyphenolic derivatives, compound 23 and 30, reduce the neuropathic pain in mice chronic constriction nerve injury (CCI). First, we performed a dose-response study to evaluate nociceptive sensation after administration of EGCG and its derivatives 23 and 30, using the Hargreaves test at 7 and 21 days after injury (dpi). We daily administered EGCG, 23 and 30 (10 to 100 mg/Kg; i.p.) during the first week post-CCI. None of the doses of compound 23 caused significant pain diminution, whereas 50mg/kg was optimal for both EGCG and 30 to delay the latency of paw withdrawal. With 50 mg/Kg, we showed that EGCC prevented the thermal hyperalgesia from 7 to 21 dpi and compound 30 from 14 to 56 dpi. To evaluate the molecular mechanisms underpinning why EGCG and compound 30 differentially prevented the thermal hyperalgesia, we studied several biochemical parameters in the dorsal horn of the spinal cord at 14 and 56 dpi. We showed that the effect observed with EGCG and compound 30 was related to the inhibition of fatty acid synthase (FASN), a known target of these polyphenolic compounds. Additionally, we observed that EGCG and compound 30 reduced the expression of CCI-mediated inflammatory proteins and the nuclear localization of nuclear factor-kappa B at 14 dpi, but not at 56 dpi. We also strongly detected a decrease of synaptic plasma membrane levels of N-methyl-D-asparte receptor 2B in CCI-mice treated with compound 30 at 56 dpi. Altogether, compound 30 reduced the chronic thermal hyperalgesia induced by CCI better than the natural compound EGCG. Thus, our findings provide a rationale for the preclinical development of compound 30 as an agent to treat neuropathic pain.
Collapse
Affiliation(s)
- Xavier Xifró
- Grupo de Investigación de Anatomía Clínica, Embriología, Neurociencia y Oncología Molecular (NEOMA), Departamento de Ciencias Médicas, Facultad de Medicina, Universitat de Girona (UdG), Girona, Spain
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Laura Vidal-Sancho
- Grupo de Investigación de Anatomía Clínica, Embriología, Neurociencia y Oncología Molecular (NEOMA), Departamento de Ciencias Médicas, Facultad de Medicina, Universitat de Girona (UdG), Girona, Spain
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Pere Boadas-Vaello
- Grupo de Investigación de Anatomía Clínica, Embriología, Neurociencia y Oncología Molecular (NEOMA), Departamento de Ciencias Médicas, Facultad de Medicina, Universitat de Girona (UdG), Girona, Spain
| | - Carlos Turrado
- Laboratorio de Química Médica, Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Jordi Alberch
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Teresa Puig
- Grupo de Investigación de Anatomía Clínica, Embriología, Neurociencia y Oncología Molecular (NEOMA), Departamento de Ciencias Médicas, Facultad de Medicina, Universitat de Girona (UdG), Girona, Spain
- * E-mail: (TP); (EV)
| | - Enrique Verdú
- Grupo de Investigación de Anatomía Clínica, Embriología, Neurociencia y Oncología Molecular (NEOMA), Departamento de Ciencias Médicas, Facultad de Medicina, Universitat de Girona (UdG), Girona, Spain
- * E-mail: (TP); (EV)
| |
Collapse
|
31
|
Spinal NF-κB and chemokine ligand 5 expression during spinal glial cell activation in a neuropathic pain model. PLoS One 2015; 10:e0115120. [PMID: 25635831 PMCID: PMC4312098 DOI: 10.1371/journal.pone.0115120] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 11/18/2014] [Indexed: 12/30/2022] Open
Abstract
Background The NF-κB pathway and chemokine (C-C motif) ligand 5 (CCL5) are involved in pain modulation; however, the precise mechanisms of their interactions in chronic neuropathic pain have yet to be established. Methods The present study examined the roles of spinal NF-κB and CCL5 in a neuropathic pain model after chronic constriction injury (CCI) surgery. CCI-induced pain facilitation was evaluated using the Plantar and von Frey tests. The changes in NF-κB and CCL5 expression were analyzed by immunohistochemistry and Western blot analyses. Results Spinal NF-κB and CCL5 expression increased after CCI surgery. Repeated intrathecal infusions of pyrrolidine dithiocarbamate (PDTC, a NF-κB inhibitor) decreased CCL5 expression, inhibited the activation of microglia and astrocytes, and attenuated CCI-induced allodynia and hyperalgesia. Intrathecal injection of a CCL5-neutralizing antibody attenuated CCI-induced pain facilitation and also suppressed spinal glial cell activation after CCI surgery. However, the CCL5-neutralizing antibody did not affect NF-κB expression. Furthermore, selective glial inhibitors, minocycline and fluorocitrate, attenuated the hyperalgesia induced by intrathecal CCL5. Conclusions The inhibition of spinal CCL5 expression may provide a new method to prevent and treat nerve injury-induced neuropathic pain.
Collapse
|
32
|
Tan Y, Yang J, Xiang K, Tan Q, Guo Q. Suppression of microRNA-155 attenuates neuropathic pain by regulating SOCS1 signalling pathway. Neurochem Res 2014; 40:550-60. [PMID: 25488154 DOI: 10.1007/s11064-014-1500-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/25/2014] [Accepted: 12/03/2014] [Indexed: 12/21/2022]
Abstract
Chronic neuropathic pain is an unfavourable pathological pain characterised by allodynia and hyperalgesia which has brought considerable trouble to people's physical and mental health, but effective therapeutics are still lacking. MicroRNAs (miRNAs) have been widely studied in the development of neuropathic pain and neuronal inflammation. Among various miRNAs, miR-155 has been widely studied. It is intensively involved in regulating inflammation-associated diseases. However, the role of miR-155 in regulating neuropathic pain development is poorly understood. In the present study, we aimed to investigate whether miR-155 is associated with neuropathic pain and delineate the underlying mechanism. Using a neuropathic pain model of chronic constriction injury (CCI), miR-155 expression levels were markedly increased in the spinal cord. Inhibition of miR-155 significantly attenuated mechanical allodynia, thermal hyperalgesia and proinflammatory cytokine expression. We also demonstrated that miR-155 directly bound with the 3'-untranslated region of the suppressor of cytokine signalling 1 (SOCS1). The expression of SOCS1 significantly decreased in the CCI rat model, but this effect could be reversed by miR-155 inhibition. Furthermore, knockdown of SOCS1 abrogated the inhibitory effects of miR-155 inhibition on neuropathic development and neuronal inflammation. Finally, we demonstrated that inhibition of miR-155 resulted in the suppression of nuclear factor-κB and p38 mitogen-activated protein kinase activation by mediating SOCS1. Our data demonstrate the critical role of miR-155 in regulating neuropathic pain through SOCS1, and suggest that miR-155 may be an important and potential target in preventing neuropathic pain development.
Collapse
Affiliation(s)
- Yi Tan
- Department of Anesthesiology, Xiangya Hospital of Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | | | | | | | | |
Collapse
|
33
|
Yuan B, Liu D, Liu X. Spinal cord stimulation exerts analgesia effects in chronic constriction injury rats via suppression of the TLR4/NF-κB pathway. Neurosci Lett 2014; 581:63-8. [DOI: 10.1016/j.neulet.2014.08.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 08/10/2014] [Accepted: 08/12/2014] [Indexed: 12/27/2022]
|
34
|
The role of TNF-alpha/NF-kappa B pathway on the up-regulation of voltage-gated sodium channel Nav1.7 in DRG neurons of rats with diabetic neuropathy. Neurochem Int 2014; 75:112-9. [DOI: 10.1016/j.neuint.2014.05.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/21/2014] [Accepted: 05/26/2014] [Indexed: 12/24/2022]
|
35
|
Garraway SM, Woller SA, Huie JR, Hartman JJ, Hook MA, Miranda RC, Huang YJ, Ferguson AR, Grau JW. Peripheral noxious stimulation reduces withdrawal threshold to mechanical stimuli after spinal cord injury: role of tumor necrosis factor alpha and apoptosis. Pain 2014; 155:2344-59. [PMID: 25180012 DOI: 10.1016/j.pain.2014.08.034] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 08/12/2014] [Accepted: 08/26/2014] [Indexed: 01/23/2023]
Abstract
We previously showed that peripheral noxious input after spinal cord injury (SCI) inhibits beneficial spinal plasticity and impairs recovery of locomotor and bladder functions. These observations suggest that noxious input may similarly affect the development and maintenance of chronic neuropathic pain, an important consequence of SCI. In adult rats with a moderate contusion SCI, we investigated the effect of noxious tail stimulation, administered 1 day after SCI on mechanical withdrawal responses to von Frey stimuli from 1 to 28 days after treatment. In addition, because the proinflammatory cytokine tumor necrosis factor alpha (TNFα) is implicated in numerous injury-induced processes including pain hypersensitivity, we assessed the temporal and spatial expression of TNFα, TNF receptors, and several downstream signaling targets after stimulation. Our results showed that unlike sham surgery or SCI only, nociceptive stimulation after SCI induced mechanical sensitivity by 24h. These behavioral changes were accompanied by increased expression of TNFα. Cellular assessments of downstream targets of TNFα revealed that nociceptive stimulation increased the expression of caspase 8 and the active subunit (12 kDa) of caspase 3, indicative of active apoptosis at a time point consistent with the onset of mechanical allodynia. In addition, immunohistochemical analysis revealed distinct morphological signs of apoptosis in neurons and microglia at 24h after stimulation. Interestingly, expression of the inflammatory mediator NFκB was unaltered by nociceptive stimulation. These results suggest that noxious input caudal to the level of SCI can increase the onset and expression of behavioral responses indicative of pain, potentially involving TNFα signaling.
Collapse
Affiliation(s)
- Sandra M Garraway
- Department of Psychology, Texas A&M University, College Station, TX 77843, USA.
| | - Sarah A Woller
- Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - J Russell Huie
- Department of Neurological Surgery, Brain and Spinal Injury Center (BASIC), University of California, San Francisco, 1001 Potrero Ave, Bldg 1, Room 101, San Francisco, CA 94110, USA
| | - John J Hartman
- Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - Michelle A Hook
- Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - Rajesh C Miranda
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College of Medicine, Medical Research and Education Bldg, 8447 State Highway 47, Bryan, TX 77807-3260, USA
| | - Yung-Jen Huang
- Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - Adam R Ferguson
- Department of Neurological Surgery, Brain and Spinal Injury Center (BASIC), University of California, San Francisco, 1001 Potrero Ave, Bldg 1, Room 101, San Francisco, CA 94110, USA
| | - James W Grau
- Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
36
|
Zhou X, Cheng H, Xu D, Yin Q, Cheng L, Wang L, Song S, Zhang M. Attenuation of neuropathic pain by saikosaponin a in a rat model of chronic constriction injury. Neurochem Res 2014; 39:2136-42. [PMID: 25107300 DOI: 10.1007/s11064-014-1407-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 07/29/2014] [Accepted: 07/31/2014] [Indexed: 10/24/2022]
Abstract
Despite immense advances in the treatment strategies, the effective treatment of patients suffering from neuropathic pain remains challenging. Saikosaponin a possesses anti-inflammatory activity. However, the role of saikosaponin a in neuropathic pain is still unclear. Therefore, the objective of this study was to investigate the effects of saikosaponin a on neuropathic pain. Neuropathic pain was induced by chronic constriction injury (CCI) of the sciatic nerve in rats. After CCI, rats were administered saikosaponin a (6.25, 12.50 and 25.00 mg/kg intraperitoneal, once daily) for 14 days. Mechanical withdrawal threshold and thermal withdrawal latency were assessed before surgery and on days 1, 3, 7, and 14 after CCI. Our results showed that CCI significantly decreased mechanical withdrawal threshold and thermal withdrawal latency on days 1, 3, 7 and 14, as compared with sham groups, however, saikosaponin a reversed this effects. In addition, saikosaponin a inhibited CCI-induced the levels of TNF-α, IL-1β, IL-2 in spinal cord. Western blot analysis demonstrated that saikosaponin a reduced the elevated expression of p-p38 mitogen-activated protein kinase (MAPK) and NF-κB in the spinal cord induced by CCI. These results suggest that saikosaponin a could effectively attenuate neuropathic pain in CCI rats by inhibiting the activation of p38 MAPK and NF-κB signaling pathways in spinal cord.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Anesthesiology, Shandong Provincial Hospital, Shandong University, 324#, Jing Wu Wei Qi Road, Jinan, 250021, Shandong, China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Zhou C, Shi X, Huang H, Zhu Y, Wu Y. Montelukast attenuates neuropathic pain through inhibiting p38 mitogen-activated protein kinase and nuclear factor-kappa B in a rat model of chronic constriction injury. Anesth Analg 2014; 118:1090-6. [PMID: 24686047 DOI: 10.1213/ane.0000000000000174] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cysteinyl leukotrienes and their receptors have been shown to be involved in the generation of neuropathic pain. We performed this study to determine the antagonistic effect of montelukast, a cysteinyl leukotrienes receptor antagonist, on neuropathic pain and its underlying mechanism. METHODS Neuropathic pain was induced by chronic constriction injury (CCI) of the sciatic nerve in rats. After CCI, rats were repeatedly administered montelukast (0.5, 1.0, and 2.0 mg/kg intraperitoneal, once daily) for a period of 14 days. Mechanical withdrawal threshold and thermal withdrawal latency were assessed before surgery and on days 1, 3, 5, 7, and 14 after CCI. The levels of interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α in the spinal cord were determined by enzyme-linked immunosorbent assay. The phosphorylation of p38 mitogen-activated protein kinase (MAPK) and activation of nuclear factor-kappaB (NF-κB) were assessed by Western blot. The expression of astrocyte marker glial fibrillary acidic protein and microglia marker Iba-1 and the coexpression of p-p38MAPK and Iba-1 or NF-κB and Iba-1 were observed by immunofluorescent staining. RESULTS The CCI group displayed significantly decreased mechanical withdrawal threshold and thermal withdrawal latency on days 1, 3, 5, 7 and 14 compared with sham groups (P <0.05, P < 0.0001), which were markedly increased by montelukast (P < 0.05, P < 0.01, P <0.0001). After administration with montelukast for 14 days, as biological markers of inflammation, the levels of IL-1β (P < 0.0001), IL-6 (P = 0.001 for low dosage, P < 0.0001 for middle and high dosages), and TNF-α (P =0.002, 0.001, < 0.0001 for low, middle, and high dosage, respectively) in the spinal cord were lower than those in the CCI group. Western blot analysis demonstrated that montelukast reduced the elevated expression of p-p38 MAPK (P =0.006, 0.015, < 0.0001 for low, middle, and high dosage, respectively) and NF-κB (P < 0.0001) in the spinal cord induced by CCI. Immunofluorescent staining showed that montelukast could inhibit CCI-induced activation of microglia but not astrocytes in the spinal cord. In addition, montelukast (2.0 mg/kg) significantly decreased the number of p38MAPK and Iba-1 or NF-κBp65 and Iba-1 double-positive cells. CONCLUSIONS These results suggest that montelukast could effectively attenuate neuropathic pain in CCI rats by inhibiting the activation of p38MAPK and NF-κB signaling pathways in spinal microglia.
Collapse
Affiliation(s)
- Chenghua Zhou
- From the *Department of Pharmacology, School of Pharmacy, Xuzhou Medical College, Xuzhou, P R. China; †Department of Clinical Pharmacy, The Sixth People's Hospital of Xuzhou city, Xuzhou, P R. China; and ‡Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou, P R. China
| | | | | | | | | |
Collapse
|
38
|
Luo JG, Zhao XL, Xu WC, Zhao XJ, Wang JN, Lin XW, Sun T, Fu ZJ. Activation of spinal NF-κB/p65 contributes to peripheral inflammation and hyperalgesia in rat adjuvant-induced arthritis. Arthritis Rheumatol 2014; 66:896-906. [PMID: 24757142 DOI: 10.1002/art.38328] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 12/17/2013] [Indexed: 12/27/2022]
Abstract
OBJECTIVE It is known that noxious stimuli from inflamed tissue may increase the excitability of spinal dorsal horn neurons (a process known as central sensitization), which can signal back and contribute to peripheral inflammation. However, the underlying mechanisms have yet to be fully defined. A number of recent studies have indicated that spinal NF-κB/p65 is involved in central sensitization, as well as pain-related behavior. Thus, the aim of this study was to determine whether NF-κB/p65 can facilitate a peripheral inflammatory response in rat adjuvant-induced arthritis (AIA). METHODS Lentiviral vectors encoding short hairpin RNAs that target NF-κB/p65 (LV-shNF-κB/p65) were constructed for gene silencing. The spines of rats with AIA were injected with LV-shNF-κB/p65 on day 3 or day 10 after treatment with Freund's complete adjuvant (CFA). During an observation period of 20 days, pain-related behavior, paw swelling, and joint histopathologic changes were evaluated. Moreover, the expression levels of spinal tumor necrosis factor α (TNFα), interleukin-1β (IL-1β), and cyclooxygenase 2 (COX-2) were assessed on day 14 after CFA treatment. RESULTS The presence of peripheral inflammation in rats with AIA induced an increase in NF-κB/p65 expression in the spinal cord, mainly in the dorsal horn neurons and astrocytes. Delivery of LV-shNF-κB/p65 to the spinal cord knocked down the expression of NF-κB/p65 and significantly attenuated hyperalgesia, paw edema, and joint destruction. In addition, spinal delivery of LV-shNF-κB/p65 reduced the overexpression of spinal TNFα, IL-1β, and COX-2. CONCLUSION These findings indicate that spinal NF-κB/p65 plays an important role in the initiation and development of both peripheral inflammation and hyperalgesia. Thus, inhibition of spinal NF-κB/p65 expression may provide a potential treatment to manage painful inflammatory disorders.
Collapse
Affiliation(s)
- Jian-Gang Luo
- Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Metelev VG, Kubareva EA, Oretskaya TS. Regulation of activity of transcription factor NF-κB by synthetic oligonucleotides. BIOCHEMISTRY (MOSCOW) 2014; 78:867-78. [PMID: 24228874 DOI: 10.1134/s0006297913080026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Eukaryotic dimeric nuclear factor-κB (NF-κB) is one of the main transcription factors that activate expression of genes, products of which play the key role in development of cardiovascular pathologies, carcinogenesis, and inflammatory and viral diseases. In this review, the main attention is given to modulation of the transcription factor NF-κB activity by antisense oligonucleotides and oligonucleotide decoys. Also, current concepts about interactions between NF-κB dimers and DNA and general problems that arise in experimental use of synthetic oligonucleotides in vivo are discussed.
Collapse
Affiliation(s)
- V G Metelev
- Faculty of Chemistry, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninsky Gory 1, Moscow, 119991, Russia.
| | | | | |
Collapse
|
40
|
Glycemia-dependent nuclear factor κB activation contributes to mechanical allodynia in rats with chronic postischemia pain. Anesthesiology 2013; 119:687-97. [PMID: 23695173 DOI: 10.1097/aln.0b013e318299980c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Ischemia-reperfusion injury causes chronic postischemia pain (CPIP), and rats with higher glycemia during ischemia-reperfusion injury exhibit increased allodynia. Glycemia-induced elevation of nuclear factor κB (NFκB) may contribute to increased allodynia. METHODS Glycemia during a 3-h ischemia-reperfusion injury was manipulated by: normal feeding; or normal feeding with administration of insulin; dextrose; or insulin/dextrose. In these groups, NFκB was measured in ipsilateral hind paw muscle and spinal dorsal horn by enzyme-linked immunosorbent assay (ELISA), and SN50, an NFκB inhibitor, was administered to determine its differential antiallodynic effects depending on glycemia. RESULTS CPIP fed/insulin rats (12.03 ± 4.9 g, N = 6) had less allodynia than fed, fed/insulin/dextrose, and fed/dextrose rats (6.29 ± 3.37 g, N = 7; 4.57 ± 3.03 g, N = 6; 2.95 ± 1.10 g, N = 9), respectively. Compared with fed rats (0.209 ± 0.022 AU, N = 7), NFκB in ipsilateral plantar muscles was significantly lower for fed/insulin rats, and significantly higher for fed/dextrose rats (0.152 ± 0.053 AU, N = 6; 0.240 ± 0.057 AU, N = 7, respectively). Furthermore, NFκB in the dorsal horn of fed, fed/insulin/dextrose, and fed/dextrose rats (0.293 ± 0.049 AU; 0.267 ± 0.037 AU; 0.315 ± 0.015 AU, respectively, N = 6 for each) was significantly higher than in fed/insulin animals (0.267 ± 0.037 AU, N = 6). The antiallodynic SN50 dose-response curves of CPIP rats in the fed/insulin/dextrose, fed/dextrose, and fed conditions exhibited a rightward shift compared with the fed/insulin group. The threshold SN50 dose of CPIP fed/dextrose, fed/insulin/dextrose, and fed rats (328.94 ± 92.4 ng, 77.80 ± 44.50 ng, and 24.89 ± 17.20 ng, respectively) was higher than that for fed/insulin rats (4.06 ± 7.04 ng). CONCLUSIONS NFκB was activated in a glycemia-dependent manner in CPIP rats. Hypoglycemic rats were more sensitive to SN50 than rats with higher glycemia. The finding that SN50 reduces mechanical allodynia suggests that NFκB inhibitors might be useful for treating postischemia pain.
Collapse
|
41
|
Vincenzi F, Targa M, Corciulo C, Tabrizi MA, Merighi S, Gessi S, Saponaro G, Baraldi PG, Borea PA, Varani K. Antinociceptive effects of the selective CB2 agonist MT178 in inflammatory and chronic rodent pain models. Pain 2013; 154:864-73. [DOI: 10.1016/j.pain.2013.02.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/07/2013] [Accepted: 02/19/2013] [Indexed: 11/25/2022]
|
42
|
Mika J, Zychowska M, Popiolek-Barczyk K, Rojewska E, Przewlocka B. Importance of glial activation in neuropathic pain. Eur J Pharmacol 2013; 716:106-19. [PMID: 23500198 DOI: 10.1016/j.ejphar.2013.01.072] [Citation(s) in RCA: 334] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 12/17/2012] [Accepted: 01/09/2013] [Indexed: 12/13/2022]
Abstract
Glia plays a crucial role in the maintenance of neuronal homeostasis in the central nervous system. The microglial production of immune factors is believed to play an important role in nociceptive transmission. Pain may now be considered a neuro-immune disorder, since it is known that the activation of immune and immune-like glial cells in the dorsal root ganglia and spinal cord results in the release of both pro- and anti-inflammatory cytokines, as well as algesic and analgesic mediators. In this review we presented an important role of cytokines (IL-1alfa, IL-1beta, IL-2, IL-4, IL-6, IL-10, IL-15, IL-18, TNFalpha, IFNgamma, TGF-beta 1, fractalkine and CCL2); complement components (C1q, C3, C5); metaloproteinases (MMP-2,-9) and many other factors, which become activated on spinal cord and DRG level under neuropathic pain. We discussed the role of the immune system in modulating chronic pain. At present, unsatisfactory treatment of neuropathic pain will seek alternative targets for new drugs and it is possible that anti-inflammatory factors like IL-10, IL-4, IL-1alpha, TGF-beta 1 would fulfill this role. Another novel approach for controlling neuropathic pain can be pharmacological attenuation of glial and immune cell activation. It has been found that propentofylline, pentoxifylline, minocycline and fluorocitrate suppress the development of neuropathic pain. The other way of pain control can be the decrease of pro-nociceptive agents like transcription factor synthesis (NF-kappaB, AP-1); kinase synthesis (MEK, p38MAPK, JNK) and protease activation (cathepsin S, MMP9, MMP2). Additionally, since it is known that the opioid-induced glial activation opposes opioid analgesia, some glial inhibitors, which are safe and clinically well tolerated, are proposed as potential useful ko-analgesic agents for opioid treatment of neuropathic pain. This review pointed to some important mechanisms underlying the development of neuropathic pain, which led to identify some possible new approaches to the treatment of neuropathic pain, based on the more comprehensive knowledge of the interaction between the nervous system and glial and immune cells.
Collapse
Affiliation(s)
- Joanna Mika
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland.
| | | | | | | | | |
Collapse
|
43
|
Shi L, Zhang HH, Xiao Y, Hu J, Xu GY. Electroacupuncture suppresses mechanical allodynia and nuclear factor κ B signaling in streptozotocin-induced diabetic rats. CNS Neurosci Ther 2012; 19:83-90. [PMID: 23230847 DOI: 10.1111/cns.12035] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 10/21/2012] [Accepted: 10/22/2012] [Indexed: 11/27/2022] Open
Abstract
AIMS To investigate whether electroacupuncture (EA) produced analgesic effect and whether nuclear factor kappa B (NF-κB) and cystathionine β synthase (CBS) involved in EA-mediated analgesia in painful diabetic neuropathy in rats. METHODS Diabetes was induced by an intraperitoneal injection of streptozotocin (STZ) in adult female rats. Mechanical pain threshold was measured by von Frey filaments. EA was applied at acupoint Zu-San-Li (ST-36) in both hindlimbs. Western blot analysis was employed to detect changes in protein levels of NF-κB and CBS in spinal dorsal root ganglion (DRGs). RESULTS Mechanical allodynia was developed 2 weeks after STZ injection and lasted for another 4 weeks. STZ injection significantly enhanced expression of p65 and CBS in lumbar L4-6 DRGs when compared with age-matched controls. EA markedly attenuated mechanical allodynia. Importantly, EA treatment remarkably inhibited p65 and CBS expression in DRGs. Additionally, intrathecal injection of the p65 antagonist pyrrolidine dithiocarbamate attenuated mechanical allodynia and markedly inhibited CBS expression in DRGs in STZ rats. CONCLUSIONS These data indicate that EA produced an analgesic effect, which might be mediated at least in a part by inhibition of NF-κB signaling pathway in primary sensory neurons in rats with diabetes.
Collapse
Affiliation(s)
- Lei Shi
- Department of Endocrinology, the Second Affiliated Hospital, Soochow University, Suzhou, China
| | | | | | | | | |
Collapse
|
44
|
Li YH, Jin H, Xu JS, Guo GQ, Chen DAL, Bo Y. Complement factor C5a and C5a receptor contribute to morphine tolerance and withdrawal-induced hyperalgesia in rats. Exp Ther Med 2012; 4:723-727. [PMID: 23170133 PMCID: PMC3501444 DOI: 10.3892/etm.2012.636] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 06/13/2012] [Indexed: 01/03/2023] Open
Abstract
Morphine is a potent opioid analgesic. However, the repeated use of morphine causes tolerance and hyperalgesia. Neuroinflammation has been reported to be involved in morphine tolerance and withdrawal-induced hyperalgesia. The complement system is a crucial effector mechanism of immune responses. The present study investigated the roles of complement factor C5a and C5a receptor (C5aR) in the development of morphine tolerance and withdrawal-induced hyperalgesia. In the present study, the levels of C5a and C5aR were increased in the L5 lumbar spinal cords of morphine-tolerant rats. The administration of C5a promoted the development of hyperalgesia and the expression of spinal antinociceptive tolerance to intrathecal morphine in both mechanical and thermal test. However, these phenomena caused by morphine were significantly attenuated by the C5aR antagonist PMX53. These results suggest that complement activation within the spinal cord is involved in morphine tolerance and withdrawal-induced hyperalgesia. C5a and C5aR may serve as novel targets for the control of morphine tolerance and withdrawal-induced hyperalgesia.
Collapse
|
45
|
LipoxinA(4) induced antinociception and decreased expression of NF-κB and pro-inflammatory cytokines after chronic dorsal root ganglia compression in rats. Eur J Pain 2012; 16:18-27. [PMID: 21658981 DOI: 10.1016/j.ejpain.2011.05.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Inflammatory and immune responses following nerve injury have been shown to play an important role in neuropathic pain. Lipoxins are endogenous lipoxygenase-derived eicosanoids performing protective roles in a range of pathophysiologic processes. Here, we examined the effects of intrathecal lipoxinA4 (LXA4) on NF-κB activation and pro-inflammatory cytokine (TNF-α, IL-1β and IL-6) expression in dorsal root ganglia (DRG) following chronic compression of DRG (CCD), a model of neuropathic pain. Daily intrathecal injection of vehicle or LXA4 (10 ng or 100 ng) was performed for three successive days post-CCD. CCD induced both mechanical allodynia and thermal hyperalgesia, and increased the expression of TNF-α, IL-1β, IL-6 and NF-κB. Intrathecal injection of LXA4 prevented the development of neuropathic pain and inhibited NF-κB activation and pro-inflammatory cytokine upregulation in a dose-dependent manner. In this study, we have shown the strong protective effect of intrathecal LXA4 on the development of nociceptive behaviors induced by CCD and that these effects might be associated with its anti-inflammatory and pro-resolution properties.
Collapse
|
46
|
Jin H, Li YH, Xu JS, Guo GQ, Chen DL, Bo Y. Lipoxin A4 analog attenuates morphine antinociceptive tolerance, withdrawal-induced hyperalgesia, and glial reaction and cytokine expression in the spinal cord of rat. Neuroscience 2012; 208:1-10. [DOI: 10.1016/j.neuroscience.2012.02.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 01/31/2012] [Accepted: 02/05/2012] [Indexed: 01/03/2023]
|
47
|
Small interfering RNA-mediated knockdown of NF-κBp65 attenuates neuropathic pain following peripheral nerve injury in rats. Eur J Pharmacol 2012; 682:79-85. [PMID: 22381070 DOI: 10.1016/j.ejphar.2012.02.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 01/27/2012] [Accepted: 02/09/2012] [Indexed: 11/20/2022]
Abstract
Recent reports show that the nuclear factor-κB (NF-κB) can control numerous genes encoding inflammatory and nociceptive mediators and play an important role in the development of central pain sensitization. The aim of the present study is to assess the role of NF-κB signal pathway and its downstream pro-inflammatory cytokines in the modulation of neuropathic pain, by using small interfering RNAs (siRNAs) technique, which has been shown to result in potent, long-lasting post-transcriptional silencing of specific genes. We developed a highly efficient method of lentivirus-mediated delivery of short-hairpin RNA (shRNA) targeting NF-κBp65 for gene silencing. This method successfully transduced LV-shNF-κBp65 into cultured spinal cord neurons in vitro and spinal cord cells in vivo, inhibited the expression of NF-κBp65 and pro-inflammatory factors (TNF-α, IL-1β and IL-6) and alleviated mechanical allodynia and thermal hyperalgesia for more than 4weeks in chronic constriction injury (CCI) model of rats. Taken together, our results suggest that siRNA against NF-κBp65 is a potential strategy for analgesia. Furthermore, the lentiviral vector derived shRNA approach shows a great promise for the management of neuropathic pain and the study of functional NF-κBp65 gene expression.
Collapse
|
48
|
Wang C, Ning LP, Wang YH, Zhang Y, Ding XL, Ge HY, Arendt-Nielsen L, Yue SW. Nuclear factor-kappa B mediates TRPV4-NO pathway involved in thermal hyperalgesia following chronic compression of the dorsal root ganglion in rats. Behav Brain Res 2011; 221:19-24. [PMID: 21356247 DOI: 10.1016/j.bbr.2011.02.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 02/21/2011] [Indexed: 11/26/2022]
Abstract
The aim of this study was to test the hypothesis that nuclear factor-kappa B (NF-κB) is involved in TRPV4-NO pathway in thermal hyperalgesia following chronic compression of the dorsal root ganglion (DRG) (the procedure hereafter termed CCD) in rat. Intrathecal administration of two NF-κB inhibitors, pyrrolidine dithiocarbamate (PDTC; 10(-1) to 10(-2)M) and BAY (100-50 μM), both induced significantly dose-dependent increase in the paw withdrawal latency (PWL) and decrease in nitric oxide (NO) content in DRG when compared with control rats. Pretreatment with 4α-phorbol 12,13-didecanoate (4α-PDD, transient receptor potential vanilloid 4 (TRPV4) synthetic activator, 1 nm) attenuated the suppressive effects of PDTC (10(-1)M) and BAY (100 μM) on CCD-induced thermal hyperalgesia and NO production. In addition, Western blot analysis indicated that CCD rats exhibited nuclear NF-κB protein expression and low levels of cytoplasmic inhibitory-kappa B (I-κB) expression; the increase in NF-κB expression and decrease in I-κB expression were reversed after intrathecal injection of PDTC. In conclusion, our data suggested that NF-κB could be involved in TRPV4-NO pathway in CCD-induced thermal hyperalgesia.
Collapse
Affiliation(s)
- Chao Wang
- Department of Physical Medicine & Rehabilitation, Qilu Hospital, Medical School of Shandong University, Jinan 250012, China
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Zang Y, He XH, Xin WJ, Pang RP, Wei XH, Zhou LJ, Li YY, Liu XG. Inhibition of NF-kappaB prevents mechanical allodynia induced by spinal ventral root transection and suppresses the re-expression of Nav1.3 in DRG neurons in vivo and in vitro. Brain Res 2010; 1363:151-8. [PMID: 20858468 DOI: 10.1016/j.brainres.2010.09.048] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Revised: 09/13/2010] [Accepted: 09/14/2010] [Indexed: 10/19/2022]
Abstract
Activation of nucleus factor-kappaB (NF-κB) in the dorsal root ganglia (DRG) is critical for development of neuropathic pain. The underlying mechanisms, however, are largely unknown. In the present work we tested if the activation of NF-κB is required for re-expression of Nav1.3, which is important for development of neuropathic pain, in uninjured DRG neurons. We found that intrathecal injection of pyrrolidine dithiocarbamate (PDTC), a NF-κB inhibitor, completely blocked the mechanical allodynia induced by L5 ventral root transection (L5-VRT), when applied 30 min before or 8h after operation, but at 7d after L5-VRT the same manipulation had no effect on established allodynia. Pre-treatment with PDTC also prevented the re-expression of Nav1.3 induced by L5-VRT. As our previous work has shown that up-regulation of tumor necrosis factor-alpha (TNF-α) in DRG is responsible for the re-expression of Nav1.3 in uninjured DRG neurons following L5 ventral root injury, we investigated whether activation of NF-κB is essential for the up-regulation of Nav1.3 by TNF-α. Results showed that application of rat recombinant TNF-α (rrTNF) into the cultured normal adult rat DRG neurons increased the immunoreactive (IR) of Nav1.3 localized mainly around the cell membrane and pre-treatment with PDTC blocked the change dose-dependently. The data suggested that injury to ventral root might lead to neuropathic pain and the re-expression of Nav1.3 in primary sensory neurons by activation of NF-κB.
Collapse
Affiliation(s)
- Ying Zang
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, 74 Zhongshan Rd 2, Guangzhou 510080, PR China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Chen KH, Yang CH, Cheng JT, Wu CH, Sy WD, Lin CR. Altered neuronatin expression in the rat dorsal root ganglion after sciatic nerve transection. J Biomed Sci 2010; 17:41. [PMID: 20509861 PMCID: PMC2894761 DOI: 10.1186/1423-0127-17-41] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 05/28/2010] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Several molecular changes occur following axotomy, such as gene up-regulation and down-regulation. In our previous study using Affymetrix arrays, it was found that after the axotomy of sciatic nerve, there were many novel genes with significant expression changes. Among them, neuronatin (Nnat) was the one which expression was significantly up-regulated. Nnat was identified as a gene selectively expressed in neonatal brains and markedly reduced in adult brains. The present study investigated whether the expression of Nnat correlates with symptoms of neuropathic pain in adult rats with transected sciatic nerve. METHODS Western blotting, immunohistochemistry, and the Randall and Selitto test were used to study the protein content, and subcellular localization of Nnat in correlation with pain-related animal behavior. RESULTS It was found that after nerve injury, the expression of Nnat was increased in total protein extracts. Unmyelinated C-fiber and thinly myelinated A-delta fiber in adult dorsal root ganglions (DRGs) were the principal sub-population of primary afferent neurons with distributed Nnat. The increased expression of Nnat and its subcellular localization were related to mechanical hyperalgesia. CONCLUSIONS The results indicated that there was significant correlation between mechanical hyperalgesia in axotomy of sciatic nerve and the increased expression of Nnat in C-fiber and A-delta fiber of adult DRG neurons.
Collapse
Affiliation(s)
- Kuan-Hung Chen
- Department of Anesthesiology, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chien-Hui Yang
- Department of Anesthesiology, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jiin-Tsuey Cheng
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chih-Hsien Wu
- Department of Anesthesiology, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Wei-Dih Sy
- Department of Anesthesiology, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chung-Ren Lin
- Department of Anesthesiology, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Department of Anesthesiology, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|