1
|
Leporace M, Calabria FF, Siciliano R, Capalbo C, Filippiadis DK, Iezzi R. The Thermal Ablation with MRgFUS: From Physics to Oncological Applications. Cancers (Basel) 2024; 17:36. [PMID: 39796667 PMCID: PMC11718996 DOI: 10.3390/cancers17010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
The growing interest in minimal and non-invasive therapies, especially in the field of cancer treatment, highlights a significant shift toward safer and more effective options. Ablative therapies are well-established tools in cancer treatment, with known effects including locoregional control, while their role as modulators of the systemic immune response against cancer is emerging. The HIFU developed with magnetic resonance imaging (MRI) guidance enables treatment precision, improves real-time procedural control, and ensures accurate outcome assessment. Magnetic Resonance-guided Focused Ultrasound (MRgFUS) induces deep coagulation necrosis within an elliptical focal area, effectively encompassing the entire tumor site and allowing for highly targeted radical ablation. The applications of MRgFUS in oncology are rapidly expanding, offering pain relief and curative treatment options for bone metastatic lesions. Additionally, the MRgFUS plays an effective role in targeted optional therapies for early prostate and breast cancers. Emerging research also focuses on the potential uses in treating abdominal cancers and harnessing capabilities to stimulate immune responses against tumors or to facilitate the delivery of anticancer drugs. This evolving landscape presents exciting opportunities for improving patient outcomes and advancing cancer treatment methodologies. In neuro-oncology, MRgFUS utilizes low-intensity focused ultrasound (LIFU) along with intravenous microbubbles to open the blood-brain barrier (BBB) and enhance the intra-tumoral delivery of chemotherapy drugs.
Collapse
Affiliation(s)
- Mario Leporace
- Department of Nuclear Medicine and Theragnostics, “Mariano Santo” Cosenza Hospital, 87100 Cosenza, Italy;
| | - Ferdinando F. Calabria
- Department of Nuclear Medicine and Theragnostics, “Mariano Santo” Cosenza Hospital, 87100 Cosenza, Italy;
| | - Roberto Siciliano
- Operative Medical Physics Unit, Cosenza Hospital, 87100 Cosenza, Italy
| | - Carlo Capalbo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
- Complex Operative Oncology Unit, Annunziata Hospital Cosenza, 87100 Cosenza, Italy
| | - Dimitrios K. Filippiadis
- 2nd Department of Radiology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Roberto Iezzi
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00100 Rome, Italy
- Facoltà Di Medicina E Chirurgia, Università Cattolica del Sacro Cuore, 00100 Roma, Italy
| |
Collapse
|
2
|
Kim M, Yoon K, Lee S, Shin MS, Kim KG. Development of an Artificial Soft Solid Gel Using Gelatin Material for High-Quality Ultrasound Diagnosis. Diagnostics (Basel) 2024; 14:335. [PMID: 38337851 PMCID: PMC10855452 DOI: 10.3390/diagnostics14030335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/12/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
For ultrasound diagnosis, a gel is applied to the skin. Ultrasound gel serves to block air exposure and match impedance between the skin and the probe, enhancing imaging efficiency. However, if use of the ultrasound gel exceeds a certain period of time, it may dry out and be exposed to air, causing impedance mismatch and reducing imaging resolution. In such cases, the use of a soft, solid gel proves advantageous, as it can be employed for an extended period without succumbing to the drying phenomenon and can be reused after disinfection. Its soft consistency ensures excellent skin adhesion. Our soft solid gel demonstrated approximately 1.2 times better performance than water, silicone, and traditional ultrasound gels. When comparing the dimensions of grayscale, dead zone, vertical, and horizontal regions, the measurements for the traditional ultrasound gel were 93.79 mm, 45.32 mm, 103.13 mm, 83.86 mm, and 83.86 mm, respectively. In contrast, the proposed soft solid gel exhibited dimensions of 105.64 mm, 34.48 mm, 141.1 mm, and 102.8 mm.
Collapse
Affiliation(s)
- Minchan Kim
- Medical Devices R&D Center, Gachon University Gil Medical Center, 21, 774 Beon-gil, Namdong-daero, Namdong-gu, Incheon 21565, Republic of Korea; (M.K.); (K.Y.); (S.L.)
| | - Kicheol Yoon
- Medical Devices R&D Center, Gachon University Gil Medical Center, 21, 774 Beon-gil, Namdong-daero, Namdong-gu, Incheon 21565, Republic of Korea; (M.K.); (K.Y.); (S.L.)
- Premedicine Course, College of Medicine, Gachon University, 38-13, 3 Beon-gil, Dokjom-ro 3, Namdong-gu, Incheon 21565, Republic of Korea
| | - Sangyun Lee
- Medical Devices R&D Center, Gachon University Gil Medical Center, 21, 774 Beon-gil, Namdong-daero, Namdong-gu, Incheon 21565, Republic of Korea; (M.K.); (K.Y.); (S.L.)
- Department of Health and Safety Convergence Sciences & Health and Environmental Convergence Sciences, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Mi-Seung Shin
- Division of Cardiology, Department of Internal Medicine, Gil Medical Center, Gachon University College of Medicine, 21 Namdong-daero 774 Beon-gil, Namdong-gu, Incheon 21565, Republic of Korea
| | - Kwang Gi Kim
- Medical Devices R&D Center, Gachon University Gil Medical Center, 21, 774 Beon-gil, Namdong-daero, Namdong-gu, Incheon 21565, Republic of Korea; (M.K.); (K.Y.); (S.L.)
- Department of Biomedical Engineering, College of Health Science, Gachon University, 191 Hambak-moero, Yeonsu-gu, Incheon 21936, Republic of Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, 38-13, 3 Beon-gil, Dokjom-ro, Namdong-gu, Incheon 21565, Republic of Korea
| |
Collapse
|
3
|
Yang Y, Shi X, Chen G, Qian L. Risk factors for unresectable pancreatic cancer following high-intensity focused ultrasound treatment. Cancer Med 2023; 12:19537-19547. [PMID: 37792639 PMCID: PMC10587952 DOI: 10.1002/cam4.6568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/09/2023] [Accepted: 09/11/2023] [Indexed: 10/06/2023] Open
Abstract
PURPOSE Pancreatic cancer is one of the most aggressive malignant tumors with poor prognosis. High-intensity focused ultrasound (HIFU) is an effective and safe treatment option for advanced pancreatic cancer, however, the survival time of patients after the treatment was different. So, the purpose of this study was to evaluate the relationship between the high-risk characteristics and prognosis of unresectable pancreatic cancer after HIFU treatment. PATIENTS AND METHODS This prospective study included 30 patients with unresectable pancreatic cancer who received HIFU at Beijing Friendship Hospital. Data on patients' tumor size, pain scores, peripheral blood lymphocyte subsets, CA19-9 and contrast enhanced ultrasound (CEUS) features were collected to assess the relationship with overall survival (OS) after HIFU. RESULTS The median OS from the start of HIFU treatment was 159 days, 95% confidence interval (95% CI): 108-210. The levels of pain were determined by visual analogue scale (VAS) score, and the quartile of the score decreased from 6 (2, 7) to 4 (2, 5) immediately after one session of the treatment (p = 0.001). The diagnostic model showed that high post VAS score and decreasing of peripheral CD4+ T cells were significantly correlated with poor prognosis (p < 0.05), and showed good discrimination ability (AUC = 0.848, 95% CI = 0.709-0.987). CONCLUSION HIFU can effectively relieve pain in patients with unresectable pancreatic cancer. Post treatment VAS and change of peripheral CD4+ T cells are independent risk factors affecting the prognosis in patients with unresectable pancreatic cancer after HIFU treatment.
Collapse
Affiliation(s)
- Yu Yang
- Department of Ultrasound, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Xian‐quan Shi
- Department of Ultrasound, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Guang Chen
- Department of Interventional Radiology, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Lin‐xue Qian
- Department of Ultrasound, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
4
|
Qian C, Wan L, Wu Y. Analysis of the results of high-intensity focused ultrasound for patients with advanced pancreatic cancer. Int J Hyperthermia 2023; 40:2250586. [PMID: 37641497 DOI: 10.1080/02656736.2023.2250586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/18/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023] Open
Abstract
OBJECTIVE To investigate the safety, local ablation efficacy, analgesic effects, and factors influencing the survival of patients with advanced pancreatic cancer treated with high-intensity focused ultrasound (HIFU). MATERIALS AND METHODS Patients with advanced pancreatic cancer who underwent HIFU for the first time at the Suining Central Hospital between January 2018 and September 2022 were enrolled. The efficacy of tumor ablation was assessed using enhanced computed tomography (CT) and magnetic resonance imaging (MRI), pain relief was assessed using the visual analog scale (VAS), and complications and survival rates were investigated. The Kaplan-Meier method and a Cox regression model were used to analyze the independent risk factors that may have affected prognosis. RESULTS Intraoperative ultrasonography showed varying degrees of grayscale changes in all cases. One month after surgery, enhanced computed tomography or magnetic resonance imaging examinations showed complete or partial responses in 85.22% of the patients. Pain relief was achieved in 98.21% of the patients. No postoperative complications of SIR-C grade or higher were observed. The overall median survival time (MST) was 12.1 months. Cox multifactorial analysis showed that the main factors affecting overall survival (OS) were clinical stage, preoperative liver function, and combination chemotherapy. CONCLUSION HIFU is safe and effective for pancreatic cancer treatment, and has the potential to become an important supplement for the treatment of advanced pancreatic cancer. This approach needs to be further verified by multi-center and large-sample studies.
Collapse
Affiliation(s)
- Chuan Qian
- Graduate School, Zunyi Medical University, Zunyi, Guizou, China
- Department of Surgery, Suining Central Hospital, Suining, Sichuan, China
| | - LiIi Wan
- Department of Surgery, Suining Central Hospital, Suining, Sichuan, China
| | - Yakun Wu
- Graduate School, Zunyi Medical University, Zunyi, Guizou, China
- Department of Surgery, Suining Central Hospital, Suining, Sichuan, China
| |
Collapse
|
5
|
deSouza NM, Gedroyc W, Rivens I, ter Haar G. Tissue specific considerations in implementing high intensity focussed ultrasound under magnetic resonance imaging guidance. Front Oncol 2022; 12:1037959. [PMID: 36387108 PMCID: PMC9663991 DOI: 10.3389/fonc.2022.1037959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/17/2022] [Indexed: 11/29/2022] Open
Abstract
High-intensity focused ultrasound can ablate a target permanently, leaving tissues through which it passes thermally unaffected. When delivered under magnetic resonance (MR) imaging guidance, the change in tissue relaxivity on heating is used to monitor the temperatures achieved. Different tissue types in the pre-focal beam path result in energy loss defined by their individual attenuation coefficients. Furthermore, at interfaces with different acoustic impedances the beam will be both reflected and refracted, changing the position of the focus. For complex interfaces this effect is exacerbated. Moreover, blood vessels proximal to the focal region can dissipate heat, altering the expected region of damage. In the target volume, the temperature distribution depends on the thermal conductivity (or diffusivity) of the tissue and its heat capacity. These are different for vascular tissues, water and fat containing tissues and bone. Therefore, documenting the characteristics of the pre-focal and target tissues is critical for effective delivery of HIFU. MR imaging provides excellent anatomic detail and characterization of soft tissue components. It is an ideal modality for real-time planning and monitoring of HIFU ablation, and provides non-invasive temperature maps. Clinical applications involve soft-tissue (abdomino-pelvic applications) or bone (brain applications) pre-focally and at the target (soft-tissue tumors and bone metastases respectively). This article addresses the technical difficulties of delivering HIFU effectively when vascular tissues, densely cellular tissues, fat or bone are traversed pre-focally, and the clinical applications that target these tissues. The strengths and limitations of MR techniques used for monitoring ablation in these tissues are also discussed.
Collapse
Affiliation(s)
- Nandita M. deSouza
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Wladyslaw Gedroyc
- Faculty of Medicine, St. Mary’s Hospital, Imperial College, London, United Kingdom
| | - Ian Rivens
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Gail ter Haar
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
6
|
Pérez-Neri I, González-Aguilar A, Sandoval H, Pineda C, Ríos C. Potential Goals, Challenges, and Safety of Focused Ultrasound Application for Central Nervous System Disorders. Curr Neuropharmacol 2022; 20:1807-1810. [PMID: 35105289 PMCID: PMC9886811 DOI: 10.2174/1570159x20666220201092908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 01/02/2022] [Accepted: 01/26/2022] [Indexed: 11/22/2022] Open
Affiliation(s)
| | | | | | | | - Camilo Ríos
- Address correspondence to this author at the Department of Neurochemistry of the National Institute of Neurology and Neurosurgery. Insurgentes Sur 3877, La Fama, Tlalpan, Mexico City, 14269. Mexico; E-mail:
| |
Collapse
|
7
|
Isagulyan ED, Makashova ES, Myasnikova LK, Sergeenko EV, Aslakhanova KS, Tomskiy AA, Voloshin AG, Kashcheev AA. Psychogenic (nociplastic) pain: Current state of diagnosis, treatment options, and potentials of neurosurgical management. PROGRESS IN BRAIN RESEARCH 2022; 272:105-123. [PMID: 35667797 DOI: 10.1016/bs.pbr.2022.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Classification of pain syndromes is quite multifaceted. However, pathogenetic classification by which chronic pain syndromes are usually divided into nociceptive, neuropathic and psychogenic, is crucial in choosing treatment tactics. In modern classifications, psychogenic pain is distinguished from nociceptive pain (associated with direct tissue injury or damage) and neuropathic pain (in which lesion can only be determined morphologically). Mental disorders play a leading role in psychogenic pain. Here, somatic/neurological disorders, if any, are of no pathogenetic significance in the dynamics of pain syndrome. There are certain algorithms (though not yet fully developed) and even guidelines for diagnosing and treating nociceptive and neuropathic pain, whereas psychogenic pain has been and still is almost out of sight for a long time. Despite its considerable prevalence, attitude towards it is still uncertain. Until now, it has no single classification, nor any strategy with regards to diagnosis, treatment and prevention.
Collapse
Affiliation(s)
- Emil D Isagulyan
- Department of Functional Neurosurgery, Burdenko National Medical Research Center of Neurosurgery, Moscow, Russian Federation.
| | - Elizaveta S Makashova
- Department of Functional Neurosurgery, Burdenko National Medical Research Center of Neurosurgery, Moscow, Russian Federation
| | | | - Elizaveta V Sergeenko
- Department of Functional Neurosurgery, Burdenko National Medical Research Center of Neurosurgery, Moscow, Russian Federation
| | - Karina S Aslakhanova
- Department of Functional Neurosurgery, Burdenko National Medical Research Center of Neurosurgery, Moscow, Russian Federation
| | - Alexey A Tomskiy
- Department of Functional Neurosurgery, Burdenko National Medical Research Center of Neurosurgery, Moscow, Russian Federation
| | - Alexey G Voloshin
- Pain Clinic, Center of Endosurgery and Lithotripsy, Moscow, Russian Federation
| | - Alexey A Kashcheev
- Department of Neurosurgery, Research Center of Neurology, Moscow, Russian Federation
| |
Collapse
|
8
|
Wang X, Kim G, Chu JL, Song T, Yang Z, Guo W, Shao X, Oelze ML, Li KC, Lu Y. Noninvasive and Spatiotemporal Control of DNAzyme-Based Imaging of Metal Ions In Vivo Using High-Intensity Focused Ultrasound. J Am Chem Soc 2022; 144:5812-5819. [PMID: 35302361 PMCID: PMC9133526 DOI: 10.1021/jacs.1c11543] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Detecting metal ions in vivo with a high spatiotemporal resolution is critical to understanding the roles of the metal ions in both healthy and disease states. Although spatiotemporal controls of metal-ion sensors using light have been demonstrated, the lack of penetration depth in tissue and in vivo has limited their application. To overcome this limitation, we herein report the use of high-intensity focused ultrasound (HIFU) to remotely deliver on-demand, spatiotemporally resolved thermal energy to activate the DNAzyme sensors at the targeted region both in vitro and in vivo. A Zn2+-selective DNAzyme probe is inactivated by a protector strand to block the formation of catalytic enzyme structure, which can then be activated by an HIFU-induced increase in the local temperature. With this design, Zn2+-specific fluorescent resonance energy transfer (FRET) imaging has been demonstrated by the new DNAzyme-HIFU probes in both HeLa cells and mice. The current method can be applied to monitor many other metal ions for in vivo imaging and medical diagnosis using metal-specific DNAzymes that have either been obtained or can be selected using in vitro selection.
Collapse
Affiliation(s)
- Xiaojing Wang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Gun Kim
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - James L Chu
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Tingjie Song
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Zhenglin Yang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Weijie Guo
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Xiangli Shao
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Michael L Oelze
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - King C Li
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
9
|
Díaz-Alejo JF, González Gómez I, Earl J. Ultrasounds in cancer therapy: A summary of their use and unexplored potential. Oncol Rev 2022; 16:531. [PMID: 35340884 PMCID: PMC8941342 DOI: 10.4081/oncol.2022.531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 09/17/2021] [Indexed: 11/26/2022] Open
Abstract
Ultrasounds (US) are a non-ionizing mechanical wave, with less adverse effects than conventional pharmacological or surgical treatments. Different biological effects are induced in tissues and cells by ultrasound actuation depending on acoustic parameters, such as the wave intensity, frequency and treatment dose. This non-ionizing radiation has considerable applications in biomedicine including surgery, medical imaging, physical therapy and cancer therapy. Depending on the wave intensity, US are applied as high-intensity ultrasounds (HIUS) and low-intensity pulsed ultrasounds (LIPUS), with different effects on cells and tissues. HIUS produce thermal and mechanical effects, resulting in a large localized temperature increase, leading to tissue ablation and even tumor necrosis. This can be achieved by focusing low intensity waves emitted from different electrically shifted transducers, known as high-intensity focused ultrasounds (HIFU). LIPUS have been used extensively as a therapeutic, surgical and diagnostic tool, with diverse biological effects observed in tissues and cultured cells. US represent a non-invasive treatment strategy that can be applied to selected areas of the body, with limited adverse effects. In fact, tumor ablation using HIFU has been used as a curative treatment in patients with an early-stage pancreatic tumor and is an effective palliative treatment in patients with advanced stage disease. However, the biological effects, dose standardization, benefit-risk ratio and safety are not fully understood. Thus, it is an emerging field that requires further research in order to reach its full potential.
Collapse
Affiliation(s)
- Jesús Frutos Díaz-Alejo
- Molecular Epidemiology and Predictive Tumor Markers Group, Ramón y Cajal Health Research Institute (IRYCIS), Madrid
- Faculty of Medicine and Health Sciences, University of Alcalá de Henares (UAH), Madrid
| | | | - Julie Earl
- Molecular Epidemiology and Predictive Tumor Markers Group, Ramón y Cajal Health Research Institute (IRYCIS), Madrid
- Biomedical Research Network in Cancer (CIBERONC), Madrid, Spain
| |
Collapse
|
10
|
Lee YK, Gold MS, Fuehrlein BS. Looking beyond the opioid receptor: A desperate need for new treatments for opioid use disorder. J Neurol Sci 2022; 432:120094. [PMID: 34933249 DOI: 10.1016/j.jns.2021.120094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 10/19/2022]
Abstract
The mainstay of treatment for opioid use disorder (OUD) is opioid agonist therapy (OAT), which modulates opioid receptors to reduce substance craving and use. OAT maintains dependence on opioids but helps reduce overdose and negative sequelae of substance abuse. Despite increasing availability of OAT, its effectiveness is limited by difficulty in initiating and maintaining patients on treatment. With the worsening opioid epidemic in the United States and rising overdose deaths, a more durable and effective treatment for OUD is necessary. This paper reviews novel treatments being investigated for OUD, including neuromodulatory interventions, psychedelic drugs, and other novel approaches. Neuromodulatory interventions can stimulate the addiction neural circuitry involving the dorsolateral prefrontal cortex and deeper mesolimbic structures to curb craving and reduce use, and multiple clinical trials for interventional treatment for OUD are currently conducted. Similarly, psychedelic agents are being investigated for efficacy in OUD specifically. There is a resurgence of interest in psychedelic agents' therapeutic potential, with evidence of improving mood symptoms and decreased substance use even after just one dose. Exact mechanism of their anti-addictive effect is not fully elucidated, but psychedelic agents do not maintain opioid dependence and some may even be helpful in abating symptoms of withdrawal. Other potential approaches for OUD include targeting different parts of the dopamine-dependent addiction pathway, identifying susceptible genes and modulating gene products, as well as utilizing vaccines as immunotherapy to blunt the addictive effects of substances. Much more clinical data are needed to support efficacy and safety of these therapies in OUD, but these proposed novel treatments look beyond the opioid receptor to offer hope for a more durably effective OUD treatment.
Collapse
Affiliation(s)
- Yu Kyung Lee
- School of Medicine, Yale University, 333 Cedar St, New Haven, CT 06510, USA.
| | - Mark S Gold
- Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA.
| | - Brian S Fuehrlein
- Department of Psychiatry, Yale University, 300 George Street, New Haven, CT 06511, USA.
| |
Collapse
|
11
|
Daood U, Aati S, Akram Z, Yee J, Yong C, Parolia A, Lin Seow L, Fawzy AS. Characterization of multiscale interactions between high intensity focused ultrasound (HIFU) and tooth dentin: the effect on matrix-metalloproteinases, bacterial biofilms and biological properties. Biomater Sci 2021; 9:5344-5358. [PMID: 34190236 DOI: 10.1039/d1bm00555c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aim of this study was to characterize multiscale interactions between high intensity focused ultrasound (HIFU) and dentin collagen and associated matrix-metalloproteinases, in addition to the analysis of the effect of HIFU on bacterial biofilms and biological properties. Dentin specimens were subjected to 5, 10 or 20 s HIFU. XPS spectra were acquired and TEM was performed on dentin slabs. Collagen orientation was performed using Raman spectroscopy. Calcium measurements in human dental pulpal cells (hDPCs) were carried out after 7 and 14 days. For macrophages, CD36+ and CD163+ were analysed. Biofilms were analyzed using CLSM. Tandem mass spectroscopy was performed for the detection of hydroxyproline sequences along with human MMP-2 quantification. Phosphorus, calcium, and nitrogen were detected in HIFU specimens. TEM images demonstrated the collagen network appearing to be fused together in the HIFU 10 and 20 s specimens. The band associated with 960 cm-1 corresponds to the stretching ν1 PO43-. The control specimens showed intensive calcium staining followed by HIFU 20 s > HIFU 10 s > HIFU 5 s specimens. Macrophages in the HIFU specimens co-expressed CD80+ and CD163+ cells. CLSM images showed the HIFU treatment inhibiting bacterial growth. SiteScore propensity determined the effect of HIFU on the binding site with a higher DScore representing better site exposure on MMPs. Multiscale mapping of dentin collagen after HIFU treatment showed no deleterious alterations on the organic structure of dentin.
Collapse
Affiliation(s)
- Umer Daood
- Clinical Dentistry, Restorative Division, Faculty of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Bukit Jalil, Kuala Lumpur, Wilayah Persekutuan, Malaysia.
| | - Sultan Aati
- UWA Dental School, University of Western Australia, Nedlands, WA 6009, Australia.
| | - Zohaib Akram
- UWA Dental School, University of Western Australia, Nedlands, WA 6009, Australia.
| | - Joyce Yee
- Clinical Dentistry, Restorative Division, Faculty of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Bukit Jalil, Kuala Lumpur, Wilayah Persekutuan, Malaysia.
| | - Celine Yong
- Clinical Dentistry, Restorative Division, Faculty of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Bukit Jalil, Kuala Lumpur, Wilayah Persekutuan, Malaysia.
| | - Abhishek Parolia
- Clinical Dentistry, Restorative Division, Faculty of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Bukit Jalil, Kuala Lumpur, Wilayah Persekutuan, Malaysia.
| | - Liang Lin Seow
- Clinical Dentistry, Restorative Division, Faculty of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Bukit Jalil, Kuala Lumpur, Wilayah Persekutuan, Malaysia.
| | - Amr S Fawzy
- UWA Dental School, University of Western Australia, Nedlands, WA 6009, Australia.
| |
Collapse
|
12
|
Lin X, Chen W, Wei F. Technique Success, Technique Efficacy and Complications of HIFU Ablation for Palliation of Pain in Patients With Bone Lesions: A Meta-Analysis of 28 Feasibility Studies. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:1182-1191. [PMID: 33583637 DOI: 10.1016/j.ultrasmedbio.2021.01.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
Several feasibility studies have reported that high-intensity focused ultrasound (HIFU) ablation can be applied to ease patients' bone pain. However, the effect of HIFU ablation to palliate bone pain remains unclear. To evaluate the technique's success, efficacy, minor complication and major complication on patients suffering from bone pain, we searched the PubMed, MEDLINE, EMBASE and Cochrane Library databases from January 1998 to March 2019. Clinical studies that have assessed the association between bone pain and HIFU ablation were involved. We filtered out 28 feasibility studies, which reported the association between HIFU ablation and bone pain, including a total of 717 patients and 736 bone lesions. Overall, our results indicate that the rate of technique success of HIFU ablation was 93% (95% confidence interval [CI] 89%-96%) for patients with bone lesions. The technique efficacy rate of HIFU ablation for palliation of pain from bone lesions was 80% (95% CI 74%-87%) in all the patients, 96% (91%-100%) in the subgroup of retrospective studies and 77% (69%-85%) in the subgroup of prospective studies. In regard to HIFU ablation treatment safety, the hazard ratio for minor complication was 12% (95% CI 7%-17%), and the hazard ratio for major complication was 2% (95% CI 1%-3%). In conclusion, the summary rates for various considerations of using HIFU ablation for the palliation of bone pain are as follows: technique success is 93%, technique efficacy is 77%, minor complication is 12% and major complication is 2%. Our results suggest that extracorporeal HIFU ablation is a promising method for palliation of pain in bone lesions, with high technique success and efficacy, but low adverse events.
Collapse
Affiliation(s)
- Xiaoti Lin
- Department of Breast, Fujian Provincial Maternity and Children's Hospital, Fujian Medical University, Fuzhou, China; Department of Breast Oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Weiyu Chen
- Department of Physiology, Zhongshan Medical School, Sun Yat-sen University, Guangzhou, China
| | - Fengqin Wei
- Department of Emergency, Fujian Provincial 2nd People's Hospital, Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
13
|
Pérez-Neri I, González-Aguilar A, Sandoval H, Pineda C, Ríos C. Therapeutic Potential of Ultrasound Neuromodulation in Decreasing Neuropathic Pain: Clinical and Experimental Evidence. Curr Neuropharmacol 2021; 19:334-348. [PMID: 32691714 PMCID: PMC8033967 DOI: 10.2174/1570159x18666200720175253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/23/2020] [Accepted: 07/07/2020] [Indexed: 01/01/2023] Open
Abstract
Background For more than seven decades, ultrasound has been used as an imaging and diagnostic tool. Today, new technologies, such as focused ultrasound (FUS) neuromodulation, have revealed some innovative, potential applications. However, those applications have been barely studied to deal with neuropathic pain (NP), a cluster of chronic pain syndromes with a restricted response to conventional pharmaceuticals. Objective To analyze the therapeutic potential of low-intensity (LIFUS) and high-intensity (HIFUS) FUS for managing NP. Methods We performed a narrative review, including clinical and experimental ultrasound neuromodulation studies published in three main database repositories. Discussion Evidence shows that FUS may influence several mechanisms relevant for neuropathic pain management such as modulation of ion channels, glutamatergic neurotransmission, cerebral blood flow, inflammation and neurotoxicity, neuronal morphology and survival, nerve regeneration, and remyelination. Some experimental models have shown that LIFUS may reduce allodynia after peripheral nerve damage. At the same time, a few clinical studies support its beneficial effect on reducing pain in nerve compression syndromes. In turn, Thalamic HIFUS ablation can reduce NP from several etiologies with minor side-effects, but some neurological sequelae might be permanent. HIFUS is also useful in lowering non-neuropathic pain in several disorders. Conclusion Although an emerging set of studies brings new evidence on the therapeutic potential of both LIFUS and HIFUS for managing NP with minor side-effects, we need more controlled clinical trials to conclude about its safety and efficacy.
Collapse
Affiliation(s)
- Iván Pérez-Neri
- Department of Neurochemistry, National Institute of Neurology and Neurosurgery, Insurgentes Sur 3877, La Fama, Tlalpan, Mexico City, 14269, Mexico
| | - Alberto González-Aguilar
- Neuro-oncology Unit, Instituto Nacional de Neurología y Neurocirugia Manuel Velasco Suarez, Insurgentes Sur 3877, La Fama, Tlalpan, Mexico City, 14269, Mexico
| | - Hugo Sandoval
- Sociomedical Research Unit, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Calzada México-Xochimilco 289, Col, Arenal de Guadalupe, Alcaldia Tlalpan, C.P. 14389, Mexico City, Mexico
| | - Carlos Pineda
- Division of Musculoskeletal and Rheumatic Disorders, Instituto Nacional de Rehabilitacion Luis Guillermo Ibarra Ibarra, Calzada Mexico-Xochimilco 289, Col, Arenal de Guadalupe, Alcaldia Tlalpan, C.P.14389, Mexico City, Mexico
| | - Camilo Ríos
- Department of Neurochemistry, National Institute of Neurology and Neurosurgery, Insurgentes Sur 3877, La Fama, Tlalpan, Mexico City, 14269, Mexico
| |
Collapse
|
14
|
Aginsky R, LeBlang S, Hananel A, Chen J, Gofeld M, Perez J, Shir Y, Aubry JF. Tolerability and Feasibility of X-ray Guided Non-Invasive Ablation of the Medial Branch Nerve with Focused Ultrasound: Preliminary Proof of Concept in a Pre-clinical Model. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:640-650. [PMID: 33261908 DOI: 10.1016/j.ultrasmedbio.2020.10.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 10/02/2020] [Accepted: 10/28/2020] [Indexed: 06/12/2023]
Abstract
Four to six million patients a year in the United States suffer from chronic pain caused by facet joint degeneration. Thermal ablation of the affected facet joint's sensory nerve using radiofrequency electrodes is the therapeutic standard of care. High-intensity focused ultrasound (HIFU) is a novel technology enabling image-guided non-invasive thermal ablation of tissue. Six pigs underwent fluoroscopy-guided HIFU of the medial branch nerve and were followed up for 1 wk (two pigs), 1 mo (two pigs) and 3 mo (two pigs). At the end of each follow-up period, the animals were sacrificed, and targeted tissue was excised and evaluated with computed tomography scans as well as by macro- and micropathology. No significant adverse events were recorded during the procedure or follow-up period. All targets were successfully ablated. X-Ray-guided HIFU is a feasible and promising alternative to radiofrequency ablation of the lumbar facet joint sensory nerve.
Collapse
Affiliation(s)
| | - Suzanne LeBlang
- Focused Ultrasound Foundation, Charlottesville, Virginia, USA.
| | | | | | | | | | | | - Jean-Francois Aubry
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, Paris France
| |
Collapse
|
15
|
Chou AK, Chiu CC, Liu CC, Wang JJ, Chen YW, Hung CH. Pulsed Ultrasound Remedies Post-thoracotomy Hypersensitivity and Increases Spinal Anti-inflammatory Cytokine in Rats. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:3296-3304. [PMID: 32891426 DOI: 10.1016/j.ultrasmedbio.2020.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/20/2020] [Accepted: 08/02/2020] [Indexed: 02/07/2023]
Abstract
The purpose of the experiment was to study the effect of pulsed ultrasound (PUS) on post-thoracotomy pain and local tissue temperature and to correlate the findings with the alteration in spinal anti-inflammatory and pro-inflammatory cytokines. Mechanical sensitivity, subcutaneous temperature and spinal interleukin-10 (IL-10), IL-6 or tumor necrosis factor-alpha (TNF-α) expression were examined in a rat model of experimental post-thoracotomy pain. Group 1 received a sham surgery where thoracotomy was performed except for rib retraction. Group 2 underwent thoracotomy with rib retraction (TRR). Group 3 received the TRR procedure followed by PUS. Group 4 underwent the TRR procedure followed by only the massage with the ultrasound turned off. Compared with group 1 (sham), groups 2-4 showed a decrease in mechanical withdrawal thresholds on postoperative days (PODs) 10 and 11. On PODs 16, 23 and 30, group 3 (TRR+PUS-1) displayed an increase in mechanical withdrawal thresholds compared with groups 2 and 4. Subcutaneous and body temperatures in group 3 were not prominently different from group 1, group 2 (TRR only) or group 4 (TRR+PUS-0). Compared with group 2, group 3 had an increase in spinal IL-10 level on POD 30 and a decrease in spinal IL-6 or TNF-α expression on PODs 16 and 30. We concluded that mechanical hypersensitivity after TRR is postponed by PUS, and its effect continues for 3 wk. A PUS dose not increase local tissue temperature. The beneficial effect of PUS appears related to upregulation of spinal anti-inflammatory cytokine and downregulation of spinal pro-inflammatory cytokines.
Collapse
Affiliation(s)
- An-Kuo Chou
- Department of Anesthesiology, China Medical University Hospital, Taichung, Taiwan; School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Chong-Chi Chiu
- Department of General Surgery, E-Da Cancer Hospital, I-Shou University, Kaohsiung, Taiwan; Department of Electrical Engineering, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Chen-Chih Liu
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jhi-Joung Wang
- Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan; Allied AI Biomed Center, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Yu-Wen Chen
- Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan; Department of Physical Therapy, College of Health Care, China Medical University, Taichung, Taiwan
| | - Ching-Hsia Hung
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
16
|
Mahoney JJ, Hanlon CA, Marshalek PJ, Rezai AR, Krinke L. Transcranial magnetic stimulation, deep brain stimulation, and other forms of neuromodulation for substance use disorders: Review of modalities and implications for treatment. J Neurol Sci 2020; 418:117149. [PMID: 33002757 PMCID: PMC7702181 DOI: 10.1016/j.jns.2020.117149] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/07/2020] [Accepted: 09/18/2020] [Indexed: 12/13/2022]
Abstract
Given the high prevalence of individuals diagnosed with substance use disorder, along with the elevated rate of relapse following treatment initiation, investigating novel approaches and new modalities for substance use disorder treatment is of vital importance. One such approach involves neuromodulation which has been used therapeutically for neurological and psychiatric disorders and has demonstrated positive preliminary findings for the treatment of substance use disorder. The following article provides a review of several forms of neuromodulation which warrant consideration as potential treatments for substance use disorder. PubMed, PsycINFO, Ovid MEDLINE, and Web of Science were used to identify published articles and clinicaltrials.gov was used to identify currently ongoing or planned studies. Search criteria for Brain Stimulation included the following terminology: transcranial direct current stimulation, transcranial magnetic stimulation, theta burst stimulation, deep brain stimulation, vagus nerve stimulation, trigeminal nerve stimulation, percutaneous nerve field stimulation, auricular nerve stimulation, and low intensity focused ultrasound. Search criteria for Addiction included the following terminology: addiction, substance use disorder, substance-related disorder, cocaine, methamphetamine, amphetamine, alcohol, nicotine, tobacco, smoking, marijuana, cannabis, heroin, opiates, opioids, and hallucinogens. Results revealed that there are currently several forms of neuromodulation, both invasive and non-invasive, which are being investigated for the treatment of substance use disorder. Preliminary findings have demonstrated the potential of these various neuromodulation techniques in improving substance treatment outcomes by reducing those risk factors (e.g. substance craving) associated with relapse. Specifically, transcranial magnetic stimulation has shown the most promise with several well-designed studies supporting the potential for reducing substance craving. Deep brain stimulation has also shown promise, though lacks well-controlled clinical trials to support its efficacy. Transcranial direct current stimulation has also demonstrated promising results though consistently designed, randomized trials are also needed. There are several other forms of neuromodulation which have not yet been investigated clinically but warrant further investigation given their mechanisms and potential efficacy based on findings from other studied indications. In summary, given promising findings in reducing substance use and craving, neuromodulation may provide a non-pharmacological option as a potential treatment and/or treatment augmentation for substance use disorder. Further research investigating neuromodulation, both alone and in combination with already established substance use disorder treatment (e.g. medication treatment), warrants consideration.
Collapse
Affiliation(s)
- James J Mahoney
- West Virginia University School of Medicine, Rockefeller Neuroscience Institute, 33 Medical Center Drive, Morgantown, WV 26505, United States of America; WVU Department of Behavioral Medicine and Psychiatry, 930 Chestnut Ridge Road, Morgantown, WV 26505, United States of America; WVU Department of Neuroscience, 64 Medical Center Drive, Morgantown, WV 26505, United States of America.
| | - Colleen A Hanlon
- Wake Forest School of Medicine, Cancer Biology and Center for Substance Use and Addiction, 475 Vine Street, Winston-Salem, NC 27101, United States of America
| | - Patrick J Marshalek
- West Virginia University School of Medicine, Rockefeller Neuroscience Institute, 33 Medical Center Drive, Morgantown, WV 26505, United States of America; WVU Department of Behavioral Medicine and Psychiatry, 930 Chestnut Ridge Road, Morgantown, WV 26505, United States of America; WVU Department of Neuroscience, 64 Medical Center Drive, Morgantown, WV 26505, United States of America
| | - Ali R Rezai
- West Virginia University School of Medicine, Rockefeller Neuroscience Institute, 33 Medical Center Drive, Morgantown, WV 26505, United States of America; WVU Department of Neuroscience, 64 Medical Center Drive, Morgantown, WV 26505, United States of America; WVU Department of Neurosurgery, 64 Medical Center Drive, Morgantown, WV 26505, United States of America
| | - Lothar Krinke
- West Virginia University School of Medicine, Rockefeller Neuroscience Institute, 33 Medical Center Drive, Morgantown, WV 26505, United States of America; WVU Department of Neuroscience, 64 Medical Center Drive, Morgantown, WV 26505, United States of America; Magstim Inc., 9855 West 78 Street, Suite 12, Eden Prairie, MN 55344, United States of America
| |
Collapse
|
17
|
Chen J, LeBlang S, Hananel A, Aginsky R, Perez J, Gofeld M, Shir Y, Aubry JF. An incoherent HIFU transducer for treatment of the medial branch nerve: Numerical study and in vivo validation. Int J Hyperthermia 2020; 37:1219-1228. [PMID: 33106054 DOI: 10.1080/02656736.2020.1828628] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Chronic back pain due to facet related degenerative changes affects 4-6 million patients a year in the United States. Patients refractory to conservative therapy may warrant targeted injections of steroids into the joint or percutaneous medial branch nerve denervation with radiofrequency ablation. We numerically tested a novel noninvasive high intensity focused ultrasound transducer to optimize nerve ablation near a bone-soft tissue interface. METHODS A transducer with 4 elements operating in an incoherent mode was modeled numerically and tested pre-clinically under fluoroscopic guidance. After 6 lumbar medial branch nerve ablations were performed in 2 pigs, they were followed clinically for 1 week and then sacrificed for pathological evaluation. RESULTS Simulations show that the acoustic spot size in water at 6 dB was 14mm axial x 1.6mm lateral and 52mm axial x 1.6mm lateral for coherent and incoherent modes, respectively. We measured the size of N = 6 lesions induced in vivo in a pig model and compared them to the size of the simulated thermal dose. The best match between the simulated and measured lesion size was found with a maximum absorption coefficient in the cortical bone adjusted to 30 dB/cm/MHz. This absorption was used to simulate clinical scenarios in humans to generate lesions with no potential side effects at 1000 and 1500 J. CONCLUSION The elongated spot obtained with the incoherent mode facilitates the targeting during fluoroscopic-guided medial branch nerve ablation.
Collapse
Affiliation(s)
- J Chen
- FUSMobile, Alpharetta, GA, USA
| | - S LeBlang
- Focused Ultrasound Foundation, Charlottesville, VA, USA
| | | | | | - J Perez
- McGill University, Montreal, Canada
| | - M Gofeld
- Silver Medical Group, North York, Canada
| | - Y Shir
- McGill University, Montreal, Canada
| | - J F Aubry
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, Paris, France
| |
Collapse
|
18
|
Zou C, Harne RL. Deployable tessellated transducer array for ultrasound focusing and bio-heat generation in a multilayer environment. ULTRASONICS 2020; 104:106108. [PMID: 32145443 DOI: 10.1016/j.ultras.2020.106108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 12/14/2019] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
High intensity focused ultrasound (HIFU) has great potential to thermally ablate diseased tissues with minimal invasion. Yet, HIFU practice has limited cancer treatment potential since the absorption, diffusion, and reflection of ultrasound prevent HIFU from penetrating the body to deep and concealed diseased tissue. To explore a vision of deployable HIFU transducers, this research introduces an origami-inspired concept wherein a deployable tessellated acoustic array is employed to reduce the distance between the HIFU transducer and diseased tissues. A flat-foldable HIFU transducer array is considered, such that the compact shape is used to pass through the human body and then deployed into the operational form for treatment. Here a theoretical framework is developed to study the focusing and thermal heating capabilities of the tessellated array in a multilayer environment. It is observed that the wavefield and thermal elevation realized by the foldable array are functionally similar to those of an ideal arc-shaped transducer. Folding patterns that permit adequate curvature and high quality factor, and that balance slenderness and conformability are found to be beneficial for an ultrasound focusing practice. The efficacy of the analytical predictions are verified through direct numerical simulations. All together, the results encourage attention to foldable array concepts as potential means to advance in-vivo HIFU-based procedures.
Collapse
Affiliation(s)
- Chengzhe Zou
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Ryan L Harne
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
19
|
Filippiadis DK, Tselikas L, Bazzocchi A, Efthymiou E, Kelekis A, Yevich S. Percutaneous Management of Cancer Pain. Curr Oncol Rep 2020; 22:43. [DOI: 10.1007/s11912-020-00906-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
20
|
Improved Treatment Response Following Magnetic Resonance Imaging-Guided Focused Ultrasound for Lumbar Facet Joint Pain. Mayo Clin Proc Innov Qual Outcomes 2020; 4:109-113. [PMID: 32055777 PMCID: PMC7010965 DOI: 10.1016/j.mayocpiqo.2019.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Magnetic resonance imaging–guided focused ultrasound (MRgFUS) is a noninvasive modality that allows for precise tissue ablation with sparing of surrounding structures. Early reports of the use of MRgFUS for the treatment of facet joint osteoarthritis are promising. We present a case of facet joint pain treated successfully by MRgFUS at our institution. Magnetic resonance imaging–guided focused ultrasonography may be a useful modality for patients with facet joint–mediated low back pain, particularly in the setting of limited or refractory response to conventional treatments.
Collapse
|
21
|
Xu T, Zhao K, Guo X, Tu J, Zhang D, Sun W, Kong X. Low-intensity pulsed ultrasound inhibits adipogenic differentiation via HDAC1 signalling in rat visceral preadipocytes. Adipocyte 2019; 8:292-303. [PMID: 31322450 PMCID: PMC6768184 DOI: 10.1080/21623945.2019.1643188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Non-drug strategy targeting adipocyte differentiation is critical for alleviating visceral obesity and its related diseases. However, whether and how low intensity pulsed ultrasound (LIPUS) could be used for inhibiting visceral adipocyte differentiation is not fully understood. In this study, we aim to investigate the effect and associated mechanism of LIPUS on primary visceral preadipocyte differentiation and explore its potential role for clinical visceral obesity management. The preadipocytes were daily exposed to LIPUS (0.5 MHz, 1.2 MPa) for 10 min. Adipogenic differentiation was estimated by the formation of lipid droplets and the levels of adipogenic transcriptional factors and representative markers. Mitogen-activated protein kinase (MAPK) member proteins and histone acetylation-related molecules were measured by western blotting. LIPUS stimulation with an average acoustic pressure of 1.2 MPa led to a prominent inhibition of adipogenic differentiation and expression of adipogenic markers. As a mechanism, LIPUS treatment increased the nuclear levels of histone deacetylase 1 (HDAC1) and decreased the acetylation of histone 3 and histone 4. Meanwhile, the inhibition of the HDAC1 could block the inhibitory effect of LIPUS on adipogenic differentiation via increasing AcH3 and AcH4 levels. Our study may provide an ultrasound-based promising strategy for clinical visceral obesity control.
Collapse
Affiliation(s)
- Tianhua Xu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kun Zhao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiasheng Guo
- Key Laboratory of Modern Acoustics, Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing, Jiangsu, China
| | - Juan Tu
- Key Laboratory of Modern Acoustics, Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing, Jiangsu, China
| | - Dong Zhang
- Key Laboratory of Modern Acoustics, Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing, Jiangsu, China
| | - Wei Sun
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiangqing Kong
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
22
|
Qiao S, Elbes D, Boubriak O, Urban JPG, Coussios CC, Cleveland RO. Delivering Focused Ultrasound to Intervertebral Discs Using Time-Reversal. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:2405-2416. [PMID: 31155405 DOI: 10.1016/j.ultrasmedbio.2019.04.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 04/18/2019] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
Chronic low back pain causes more disability worldwide than any other condition and is thought to arise in part through loss of biomechanical function of degenerate intervertebral discs (IVDs). Current treatments can involve replacing part or all of the degenerate IVDs by invasive surgery. Our vision is to develop a minimally invasive approach in which high intensity focused ultrasound (HIFU) is used to mechanically fractionate degenerate tissue in an IVD; a fine needle is then used to first remove the fractionated tissue and then inject a biomaterial able to restore normal physiologic function. The goal of this manuscript is to demonstrate the feasibility of trans-spinal HIFU delivery using simulations of 3-D ultrasound propagation in models derived from patient computed tomography (CT) scans. The CT data were segmented into bone, fat and other soft tissue for three patients. Ultrasound arrays were placed around the waist of each patient model, and time-reversal was used to determine the source signals necessary to create a focus in the center of the disc. The simulations showed that for 0.5 MHz ultrasound, a focus could be created in most of the lumbar IVDs, with the pressure focal gain ranging from 3.2-13.7. In conclusion, it is shown that with patient-specific planning, focusing ultrasound into an IVD is possible in the majority of patients despite the complex acoustic path introduced by the bony structures of the spine.
Collapse
Affiliation(s)
- S Qiao
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, UK
| | - D Elbes
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, UK
| | - O Boubriak
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, UK
| | - J P G Urban
- Department of Physiology, Anatomy & Genetics, University of Oxford, UK
| | - C-C Coussios
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, UK
| | - R O Cleveland
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, UK.
| |
Collapse
|
23
|
Giles SL, Brown MRD, Rivens I, Deppe M, Huisman M, Kim YS, Farquhar-Smith P, Williams JE, Ter Haar GR, deSouza NM. Comparison of Imaging Changes and Pain Responses in Patients with Intra- or Extraosseous Bone Metastases Treated Palliatively with Magnetic Resonance-Guided High-Intensity-Focused Ultrasound. J Vasc Interv Radiol 2019; 30:1351-1360.e1. [PMID: 31101417 PMCID: PMC6715806 DOI: 10.1016/j.jvir.2019.02.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/07/2019] [Accepted: 02/21/2019] [Indexed: 12/21/2022] Open
Abstract
PURPOSE This study compared changes in imaging and in pain relief between patients with intraosseous, as opposed to extraosseous bone metastases. Both groups were treated palliatively with magnetic resonance-guided high-intensity-focused ultrasound (MRgHIFU). MATERIALS AND METHODS A total of 21 patients were treated prospectively with MRgHIFU at 3 centers. Intraprocedural thermal changes measured using proton resonance frequency shift (PRFS) thermometry and gadolinium-enhanced T1-weighted (Gd-T1W) image appearances after treatment were compared for intra- and extraosseous metastases. Pain scores and use of analgesic therapy documented before and up to 90 days after treatment were used to classify responses and were compared between the intra- and extraosseous groups. Gd-T1W changes were compared between responders and nonresponders in each group. RESULTS Thermal dose volumes were significantly larger in the extraosseous group (P = 0.039). Tumor diameter did not change after treatment in either group. At day 30, Gd-T1W images showed focal nonenhancement in 7 of 9 patients with intraosseous tumors; in patients with extraosseous tumors, changes were heterogeneous. Cohort reductions in worst-pain scores were seen for both groups, but differences from baseline at days 14, 30, 60, and 90 were only significant for the intraosseous group (P = 0.027, P = 0.013, P = 0.012, and P = 0.027, respectively). By day 30, 67% of patients (6 of 9) with intraosseous tumors were classified as responders, and the rate was 33% (4 of 12) for patients with extraosseous tumors. In neither group was pain response indicated by nonenhancement on Gd-T1W. CONCLUSIONS Intraosseous tumors showed focal nonenhancement by day 30, and patients had better pain response to MRgHIFU than those with extraosseous tumors. In this small cohort, post-treatment imaging was not informative of treatment efficacy.
Collapse
Affiliation(s)
- Sharon L Giles
- Cancer Research UK Cancer Imaging Centre, Magnetic Resonance Imaging Unit, The Royal Marsden Hospital, Sutton, Surrey SM2 5PT, United Kingdom.
| | - Matthew R D Brown
- Pain Medicine Department, The Royal Marsden Hospital, Sutton, Surrey SM2 5PT, United Kingdom; Targeted Approaches to Cancer Pain, The Institute of Cancer Research, London, United Kingdom
| | - Ian Rivens
- Therapeutic Ultrasound, The Institute of Cancer Research, London, United Kingdom
| | | | - Merel Huisman
- Image Sciences Institute/Imaging Division, University Medical Center Utrecht, The Netherlands
| | - Young-Sun Kim
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Seoul, Korea; Department of Radiology, Mint Hospital, Seoul, Korea
| | - Paul Farquhar-Smith
- Pain Medicine Department, The Royal Marsden Hospital, Sutton, Surrey SM2 5PT, United Kingdom
| | - John E Williams
- Pain Medicine Department, The Royal Marsden Hospital, Sutton, Surrey SM2 5PT, United Kingdom
| | - Gail R Ter Haar
- Therapeutic Ultrasound, The Institute of Cancer Research, London, United Kingdom
| | - Nandita M deSouza
- Cancer Research UK Cancer Imaging Centre, Magnetic Resonance Imaging Unit, The Royal Marsden Hospital, Sutton, Surrey SM2 5PT, United Kingdom
| |
Collapse
|
24
|
Fawzy A, Daood U, Matinlinna J. Potential of high-intensity focused ultrasound in resin-dentine bonding. Dent Mater 2019; 35:979-989. [DOI: 10.1016/j.dental.2019.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 12/28/2022]
|
25
|
Kim G, Lau VM, Halmes AJ, Oelze ML, Moore JS, Li KC. High-intensity focused ultrasound-induced mechanochemical transduction in synthetic elastomers. Proc Natl Acad Sci U S A 2019; 116:10214-10222. [PMID: 31076556 PMCID: PMC6534979 DOI: 10.1073/pnas.1901047116] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
While study in the field of polymer mechanochemistry has yielded mechanophores that perform various chemical reactions in response to mechanical stimuli, there is not yet a triggering method compatible with biological systems. Applications such as using mechanoluminescence to generate localized photon flux in vivo for optogenetics would greatly benefit from such an approach. Here we introduce a method of triggering mechanophores by using high-intensity focused ultrasound (HIFU) as a remote energy source to drive the spatially and temporally resolved mechanical-to-chemical transduction of mechanoresponsive polymers. A HIFU setup capable of controlling the excitation pressure, spatial location, and duration of exposure is employed to activate mechanochemical reactions in a cross-linked elastomeric polymer in a noninvasive fashion. One reaction is the chromogenic isomerization of a naphthopyran mechanophore embedded in a polydimethylsiloxane (PDMS) network. Under HIFU irradiation evidence of the mechanochemical transduction is the observation of a reversible color change as expected for the isomerization. The elastomer exhibits this distinguishable color change at the focal spot, depending on ultrasonic exposure conditions. A second reaction is the demonstration that HIFU irradiation successfully triggers a luminescent dioxetane, resulting in localized generation of visible blue light at the focal spot. In contrast to conventional stimuli such as UV light, heat, and uniaxial compression/tension testing, HIFU irradiation provides spatiotemporal control of the mechanochemical activation through targeted but noninvasive ultrasonic energy deposition. Targeted, remote light generation is potentially useful in biomedical applications such as optogenetics where a light source is used to trigger a cellular response.
Collapse
Affiliation(s)
- Gun Kim
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Carle Illinois College of Medicine, University of Illinois at Urbana, Urbana-Champaign, Urbana, IL 61820
| | - Vivian M Lau
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Abigail J Halmes
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Michael L Oelze
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Carle Illinois College of Medicine, University of Illinois at Urbana, Urbana-Champaign, Urbana, IL 61820
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Jeffrey S Moore
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801;
- Carle Illinois College of Medicine, University of Illinois at Urbana, Urbana-Champaign, Urbana, IL 61820
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - King C Li
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801;
- Carle Illinois College of Medicine, University of Illinois at Urbana, Urbana-Champaign, Urbana, IL 61820
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
26
|
Su Z, Xu T, Wang Y, Guo X, Tu J, Zhang D, Kong X, Sheng Y, Sun W. Low‑intensity pulsed ultrasound promotes apoptosis and inhibits angiogenesis via p38 signaling‑mediated endoplasmic reticulum stress in human endothelial cells. Mol Med Rep 2019; 19:4645-4654. [PMID: 30957188 PMCID: PMC6522835 DOI: 10.3892/mmr.2019.10136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 03/26/2019] [Indexed: 12/20/2022] Open
Abstract
Aberrant increase in angiogenesis contributes to the progression of malignant solid tumors. An alternative anti-angiogenesis therapy is critical for cancer, since the current anti-angiogenesis drugs lack specificity for tumor cells. In the present study, the effects and mechanisms of low-intensity pulsed ultrasound (LIPUS) on human umbilical vein endothelial cells (HUVECs) and human microvascular endothelial cells (HMECs) were investigated, and the therapeutic potential of this technology was assessed. HUVECs and HMECs were treated with LIPUS (0.5 MHz; 210 mW/cm2) for 1 min and cultured for 24 h. Flow cytometry and Cell Counting Kit-8 assays demonstrated that LIPUS treatment at a dose of 210 mW/cm2 promoted apoptosis and decreased the viability in HUVECs and HMECs. Real-time cell analysis also revealed that LIPUS did not affect the proliferation or migration of HUVECs. An endothelial cell tube formation assay indicated that LIPUS treatment inhibited the angiogenic ability of HUVECs and HMECs. Furthermore, LIPUS increased the protein levels of the apoptosis-associated cleaved Caspase-3 and decreased the B-cell lymphoma-2 levels. LIPUS increased the phosphorylation of p38 mitogen-activated protein kinase (MAPK), and the levels of endoplasmic reticulum (ER) stress-associated markers, including activating transcription factor-4 (ATF-4) and phosphorylated eukaryotic initiation factor 2α (eIF2α). The p38 inhibitor SB203580 reversed the pro-apoptotic and anti-angiogenic effects of LIPUS in cells. Finally, inhibition of p38 decreased the LIPUS-induced elevation of p-eIF2α and ATF-4 levels. Taken together, these results suggested that LIPUS promoted apoptosis and inhibited angiogenesis in human endothelial cells via the activation of p38 MAPK-mediated ER stress signaling.
Collapse
Affiliation(s)
- Zhongping Su
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Tianhua Xu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yaqing Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xiasheng Guo
- Key Laboratory of Modern Acoustics, Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Juan Tu
- Key Laboratory of Modern Acoustics, Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Dong Zhang
- Key Laboratory of Modern Acoustics, Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Xiangqing Kong
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yanhui Sheng
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wei Sun
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
27
|
Farris M, Bastianelli C, Rosato E, Brosens I, Benagiano G. Uterine fibroids: an update on current and emerging medical treatment options. Ther Clin Risk Manag 2019; 15:157-178. [PMID: 30774352 PMCID: PMC6350833 DOI: 10.2147/tcrm.s147318] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Uterine fibroids are the most common gynecological disorder, classically requiring surgery when symptomatic. Although attempts at finding a nonsurgical cure date back to centuries, it is only around the middle of the last century that serious attempts at a medical treatment were carried out. Initially, both progestins and estrogen–progestin combinations have been utilized, although proof of their usefulness is lacking. A major step forward was achieved when peptide analogs of the GnRH were introduced, first those with superagonist properties and subsequently those acting as antagonists. Initially, the latter produced side effects preventing their routine utilization; eventually, this problem was overcome following the synthesis of cetrorelix. Because both types of analogs produce hypoestrogenism, their use is limited to a maximum of 6 months and, for this reason, today they are utilized as an adjuvant treatment before surgery with overall good results. Over the last decade, new, nonpeptidic, orally active GnRH-receptor blockers have also been synthesized. One of them, Elagolix, is in the early stages of testing in women with fibroids. Another fundamental development has been the utilization of the so-called selective progesterone receptor modulators, sometimes referred to as “antiprogestins”. The first such compound to be applied to the long-term treatment of fibroids was Mifepristone; today, this compound is mostly used outside of Western Countries, where the substance of choice is Ulipristal acetate. Large clinical trials have proven the effectiveness of Ulipristal in the long-term medical therapy of fibroids, although some caution must be exercised because of the rare occurrence of liver complications. All selective progesterone receptor modulators produce unique endometrial changes that are today considered benign, reversible, and without negative consequences. In conclusion, long-term medical treatment of fibroids seems possible today, especially in premenopausal women.
Collapse
Affiliation(s)
- Manuela Farris
- Department of Gynecology, Obstetrics and Urology, Sapienza, University of Rome, Rome, Italy, .,The Italian Association for Demographic Education, Rome, Italy,
| | - Carlo Bastianelli
- Department of Gynecology, Obstetrics and Urology, Sapienza, University of Rome, Rome, Italy,
| | - Elena Rosato
- Department of Gynecology, Obstetrics and Urology, Sapienza, University of Rome, Rome, Italy,
| | - Ivo Brosens
- Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Giuseppe Benagiano
- Department of Gynecology, Obstetrics and Urology, Sapienza, University of Rome, Rome, Italy,
| |
Collapse
|
28
|
Abstract
Increasing numbers of those living with and beyond cancer presents a clinical challenge for pain specialists. A large proportion of these patients experience pain secondary to their disease or its treatment, impeding rehabilitation and significantly impacting upon their quality of life. The successful management of this pain presents a considerable challenge. This review aims to outline current concepts and treatment options, while considering nuances within pain assessment and the use of large-scale data to help guide further advances.
Collapse
Affiliation(s)
- David Magee
- Department of Pain Medicine, The Royal Marsden Hospital, Fulham Road, London, SW3 6JJ, UK
| | - Sabina Bachtold
- Department of Pain Medicine, The Royal Marsden Hospital, Fulham Road, London, SW3 6JJ, UK
| | - Matthew Brown
- Department of Pain Medicine, The Royal Marsden Hospital, Fulham Road, London, SW3 6JJ, UK.,Targeted Approaches to Cancer Pain Group, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK
| | - Paul Farquhar-Smith
- Department of Pain Medicine, The Royal Marsden Hospital, Fulham Road, London, SW3 6JJ, UK
| |
Collapse
|
29
|
Adams C, Carpenter TM, Cowell D, Freear S, McLaughlan JR. HIFU Drive System Miniaturization Using Harmonic Reduced Pulsewidth Modulation. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:2407-2417. [PMID: 30371363 PMCID: PMC6305628 DOI: 10.1109/tuffc.2018.2878464] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/24/2018] [Indexed: 05/30/2023]
Abstract
Switched excitation has the potential to improve on the cost, efficiency, and size of the linear amplifier circuitry currently used in high-intensity focused ultrasound (HIFU) systems. Existing switching schemes are impaired by high harmonic distortion or lack array apodisation capability, so require adjustable supplies and/or large power filters to be useful. A multilevel pulsewidth modulation (PWM) topology could address both of these issues but the switching-speed limitations of transistors mean that there are a limited number of pulses available in each waveform cycle. In this study, harmonic reduction PWM (HRPWM) is proposed as an algorithmic solution to the design of switched waveforms. Its appropriateness for HIFU was assessed by design of a high power five-level unfiltered amplifier and subsequent thermal-only lesioning of ex vivo chicken breast. Three switched waveforms of different electrical powers (16, 26, 35 W) were generated using the HRPWM algorithm. Lesion sizes were measured and compared with those made at the same electrical power using a linear amplifier and bi-level excitation. HRPWM produced symmetric, thermal-only lesions that were the same size as their linear amplifier equivalents ( ). At 16 W, bi-level excitation produced smaller lesions but at higher power levels large transients in the acoustic waveform nucleated undesired cavitation. These results demonstrate that HRPWM can minimize HIFU drive circuity size without the need for filters to remove harmonics or adjustable power supplies to achieve array apodisation.
Collapse
|
30
|
Hazlewood D, Feng Y, Lu Q, Wang J, Yang X. Treatment of post-traumatic joint contracture in a rabbit model using pulsed, high intensity laser and ultrasound. Phys Med Biol 2018; 63:205009. [PMID: 30196275 DOI: 10.1088/1361-6560/aadff0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Post-traumatic joint contracture induced by scar tissues following a surgery or injury can leave patients in a permanent state of pain and disability, which is difficult to resolve by current treatments. This randomized controlled trial examines the therapeutic effect of pulsed high-intensity laser (PHIL) and pulsed high-intensity focused ultrasound (PHIFU) for post-traumatic joint contracture due to arthrofibrosis. The peak power levels of both PHIL and PHIFU are much higher than that of laser or ultrasound currently used in physical therapy, while short pulses are utilized to prevent damage. To test the effectiveness of these treatments, a rabbit knee model for joint contracture was established. Twenty-one rabbits were split into four groups: untreated control (n = 5), PHIL (n = 5), PHIFU (n = 5), and a PHIL + PHIFU group (n = 6). Maximum extension of the surgically modified rabbit knee was compared to that of the contralateral control knee over the course of 16 weeks. The rabbits in the untreated control group maintained a relatively consistent level of joint contracture, while every rabbit in each of the treatment groups had improved range of motion, eventually leading to a restoration of normal joint extension. Average recovery time was 7.6 ± 1.5 weeks for the PHIL treatment group, 9.8 ± 3.7 weeks for the PHIFU group, and 8.0 ± 2.2 weeks for the combined treatment group. Histopathology demonstrated reduced density and accelerated resorption of scar tissues in the treated knee joints. This study provides evidence that both PHIL and PHIFU are effective in treating post-traumatic joint contracture in rabbits and warrant further investigation into the underlying mechanisms to optimize PHIL and PHIFU based treatments in a larger number of animals.
Collapse
Affiliation(s)
- David Hazlewood
- Bioengineering Program and Institute for Bioengineering Research, University of Kansas, Lawrence, KS, United States of America
| | | | | | | | | |
Collapse
|
31
|
Elhelf IS, Albahar H, Shah U, Oto A, Cressman E, Almekkawy M. High intensity focused ultrasound: The fundamentals, clinical applications and research trends. Diagn Interv Imaging 2018; 99:349-359. [DOI: 10.1016/j.diii.2018.03.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 02/22/2018] [Accepted: 03/06/2018] [Indexed: 02/06/2023]
|
32
|
High-Intensity Ultrasound Treatment for Vincristine-Induced Neuropathic Pain. Neurosurgery 2018; 83:1068-1075. [DOI: 10.1093/neuros/nyx488] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 02/07/2018] [Indexed: 11/14/2022] Open
Abstract
Abstract
BACKGROUND
Vincristine is a commonly used chemotherapeutic agent that results in debilitating untreatable peripheral neuropathy.
OBJECTIVE
To determine the effects of pulsed high-intensity focused ultrasound (HIFU) on sensory thresholds in a validated vincristine-induced neuropathy (VIN) rodent model.
METHODS
VIN was induced and mechanical allodynia was confirmed by nociceptive testing. von Frey fibers and Randall-Sellito test were used as measures of innocuous and noxious mechanical thresholds, respectively, and the hot plate test for thermal thresholds. Tests were performed before VIN, after 2 wk of vincristine, at 24, 48, 72, and 120 h after HIFU applied to the left L5 dorsal root ganglia at 3 Watts for 3 min. Comparisons were made between a VIN cohort who underwent HIFU, a VIN cohort who underwent sham HIFU, and naïve rodents who underwent HIFU.
RESULTS
VIN HIFU rats had significantly increased mechanical thresholds at 24 h (P < .001), 48 h (P = .008), 72 h (P = .003), and 120 h (P = .03) after treatment, when compared to pre-HIFU thresholds. Furthermore, at 24 and 48 h following treatment, VIN HIFU rats had significantly higher innocuous and noxious mechanical thresholds and thermal thresholds than VIN sham HIFU rats (P < .001). Thresholds were not altered in naïve rodents who underwent HIFU. Histological data of L5 dorsal root ganglia of VIN HIFU rats suggest that transient cellular edema resolves by 48 h.
CONCLUSION
Our data suggest that HIFU increases mechanical and thermal thresholds in VIN rodents. Whether HIFU can preclude the development of reduced thresholds in the VIN model warrants further study.
Collapse
|
33
|
Dababou S, Marrocchio C, Scipione R, Erasmus HP, Ghanouni P, Anzidei M, Catalano C, Napoli A. High-Intensity Focused Ultrasound for Pain Management in Patients with Cancer. Radiographics 2018; 38:603-623. [PMID: 29394144 DOI: 10.1148/rg.2018170129] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cancer-related pain affects up to 80% of patients with malignancies. Pain is an important distressing symptom that diminishes the quality of life and negatively affects the survival of patients. Opioid analgesics are generally the primary therapy for cancer-related pain, with surgery, radiation therapy, chemotherapy, and other interventions used in cases of treatment-resistant pain. These treatments, which can be associated with substantial side effects and systemic toxicity, may not be effective. High-intensity focused ultrasound is an entirely noninvasive technique that is approved for treatment of uterine fibroids, bone metastases, and essential tremors. With magnetic resonance imaging or ultrasonographic guidance, high-intensity ultrasound waves are focused on a small well-demarcated region to result in precise localized ablation. This treatment may represent a multimodality approach to treating patients with malignant diseases-facilitating pain palliation, enhanced local drug delivery and radiation therapy effects, and stimulation of anticancer specific immune responses, and potentially facilitating local tumor control. Focused ultrasound can be used to achieve pain palliation by producing several effects, including tissue denervation, tumor mass reduction, and neuromodulation, that can influence different pathways at the origin of the pain. This technology has several key advantages compared with other analgesic therapies: It is completely noninvasive, might be used to achieve rapid pain control, can be safely repeated, and can be used in combination with chemotherapy and radiation therapy to enhance their effects. Online supplemental material is available for this article. ©RSNA, 2018.
Collapse
Affiliation(s)
- Susan Dababou
- From the Department of Radiological Sciences, Sapienza University of Rome, School of Medicine, V.le Regina Elena 324, 00180 Rome, Italy (S.D., C.M., R.S., H.P.E., M.A., C.C., A.N.); and Department of Radiology, Stanford University School of Medicine, Stanford, Calif (P.G.)
| | - Cristina Marrocchio
- From the Department of Radiological Sciences, Sapienza University of Rome, School of Medicine, V.le Regina Elena 324, 00180 Rome, Italy (S.D., C.M., R.S., H.P.E., M.A., C.C., A.N.); and Department of Radiology, Stanford University School of Medicine, Stanford, Calif (P.G.)
| | - Roberto Scipione
- From the Department of Radiological Sciences, Sapienza University of Rome, School of Medicine, V.le Regina Elena 324, 00180 Rome, Italy (S.D., C.M., R.S., H.P.E., M.A., C.C., A.N.); and Department of Radiology, Stanford University School of Medicine, Stanford, Calif (P.G.)
| | - Hans-Peter Erasmus
- From the Department of Radiological Sciences, Sapienza University of Rome, School of Medicine, V.le Regina Elena 324, 00180 Rome, Italy (S.D., C.M., R.S., H.P.E., M.A., C.C., A.N.); and Department of Radiology, Stanford University School of Medicine, Stanford, Calif (P.G.)
| | - Pejman Ghanouni
- From the Department of Radiological Sciences, Sapienza University of Rome, School of Medicine, V.le Regina Elena 324, 00180 Rome, Italy (S.D., C.M., R.S., H.P.E., M.A., C.C., A.N.); and Department of Radiology, Stanford University School of Medicine, Stanford, Calif (P.G.)
| | - Michele Anzidei
- From the Department of Radiological Sciences, Sapienza University of Rome, School of Medicine, V.le Regina Elena 324, 00180 Rome, Italy (S.D., C.M., R.S., H.P.E., M.A., C.C., A.N.); and Department of Radiology, Stanford University School of Medicine, Stanford, Calif (P.G.)
| | - Carlo Catalano
- From the Department of Radiological Sciences, Sapienza University of Rome, School of Medicine, V.le Regina Elena 324, 00180 Rome, Italy (S.D., C.M., R.S., H.P.E., M.A., C.C., A.N.); and Department of Radiology, Stanford University School of Medicine, Stanford, Calif (P.G.)
| | - Alessandro Napoli
- From the Department of Radiological Sciences, Sapienza University of Rome, School of Medicine, V.le Regina Elena 324, 00180 Rome, Italy (S.D., C.M., R.S., H.P.E., M.A., C.C., A.N.); and Department of Radiology, Stanford University School of Medicine, Stanford, Calif (P.G.)
| |
Collapse
|
34
|
McLaughlan JR, Cowell DMJ, Freear S. Gold nanoparticle nucleated cavitation for enhanced high intensity focused ultrasound therapy. Phys Med Biol 2017; 63:015004. [PMID: 29098986 DOI: 10.1088/1361-6560/aa97e9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
High intensity focused ultrasound (HIFU) or focused ultrasound surgery is a non-invasive technique for the treatment of cancerous tissue, which is limited by difficulties in getting real-time feedback on treatment progress and long treatment durations. The formation and activity of acoustic cavitation, specifically inertial cavitation, during HIFU exposures has been demonstrated to enhance heating rates. However, without the introduction of external nuclei its formation an activity can be unpredictable, and potentially counter-productive. In this study, a combination of pulse laser illumination (839 nm), HIFU exposures (3.3 MHz) and plasmonic gold nanorods (AuNR) was demonstrated as a new approach for the guidance and enhancement of HIFU treatments. For imaging, short duration HIFU pulses (10 μs) demonstrated broadband acoustic emissions from AuNR nucleated cavitation with a signal-to-noise ranging from 5-35 dB for peak negative pressures between 1.19-3.19 ± 0.01 MPa. In the absence of either AuNR or laser illumination these emissions were either not present or lower in magnitude (e.g. 5 dB for 3.19 MPa). Continuous wave (CW) HIFU exposures for 15 s, were then used to generate thermal lesions for peak negative pressures from 0.2-2.71 ± 0.01 MPa at a fluence of 3.4 mJ [Formula: see text]. Inertial cavitation dose (ICD) was monitored during all CW exposures, where exposures combined with both laser illumination and AuNRs resulted in the highest level of detectable emissions. This parameter was integrated over the entire exposure to give a metric to compare with measured thermal lesion area, where it was found that a minimum total ICD of [Formula: see text] a.u. was correlated with the formation of thermal lesions in gel phantoms. Furthermore, lesion area (mm2) was increased for equivalent exposures without either AuNRs or laser illumination. Once combined with cancer targeting AuNRs this approach could allow for the future theranostic use of HIFU, such as providing the ability to identify and treat small multi-focal cancerous regions with minimal damage to surrounding healthy tissue.
Collapse
Affiliation(s)
- J R McLaughlan
- School of Electronic and Electrical Engineering, University of Leeds, Leeds, LS2 9JT, United Kingdom. Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, LS9 7TF, United Kingdom
| | | | | |
Collapse
|
35
|
High-intensity focused ultrasound (HIFU) treatment for uterine fibroids: a meta-analysis. Arch Gynecol Obstet 2017; 296:1181-1188. [DOI: 10.1007/s00404-017-4548-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 09/20/2017] [Indexed: 12/18/2022]
|
36
|
Brown M, Farquhar-Smith P. Pain in cancer survivors; filling in the gaps. Br J Anaesth 2017; 119:723-736. [DOI: 10.1093/bja/aex202] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
37
|
Zhang X, Xu Y, Zhou J, Pu S, Lv Y, Chen Y, Du D. Ultrasound-guided alcohol neurolysis and radiofrequency ablation of painful stump neuroma: effective treatments for post-amputation pain. J Pain Res 2017; 10:295-302. [PMID: 28223839 PMCID: PMC5305268 DOI: 10.2147/jpr.s127157] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Post-amputation pain (PAP) is highly prevalent after limb amputation, and stump neuromas play a key role in the generation of the pain. Presently, PAP refractory to medical management is frequently treated with minimally invasive procedures guided by ultrasound, such as alcohol neurolysis and radiofrequency ablation (RFA). OBJECTIVE To record the immediate and long-term efficacy of alcohol neurolysis and RFA. We first used alcohol neurolysis and then, when necessary, we performed RFA on PAP patients. STUDY DESIGN Prospective case series. SETTING Pain management center. METHODS Thirteen subjects were treated with ultrasound-guided procedures. RESULTS All patients were treated with neurolysis using alcohol solutions guided by ultrasound. Seven (54%) of 13 subjects achieved pain relief after 1-3 alcohol injection treatments. The remaining 6 subjects obtained pain relief after receiving 2 administrations of ultrasound-guided RFA. After a 6-month follow-up evaluation period, pain quantities were also assessed. Both stump pain (including intermittent sharp pain and continuous burning pain) and phantom pain were relieved. The frequency of intermittent sharp pain was decreased, and no complications were noted during the observation. CONCLUSION The use of ultrasound guidance for alcohol injection and RFA of painful stump neuromas is a simple, radiation-free, safe, and effective procedure that provides sustained pain relief in PAP patients. In this case series, RFA was found to be an effective alternative to alcohol injection.
Collapse
Affiliation(s)
- Xin Zhang
- Pain Management Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Yongming Xu
- Pain Management Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Jin Zhou
- Pain Management Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Shaofeng Pu
- Pain Management Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Yingying Lv
- Pain Management Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Yueping Chen
- Pain Management Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Dongping Du
- Pain Management Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| |
Collapse
|
38
|
Rosnitskiy PB, Yuldashev PV, Sapozhnikov OA, Maxwell AD, Kreider W, Bailey MR, Khokhlova VA. Design of HIFU Transducers for Generating Specified Nonlinear Ultrasound Fields. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:374-390. [PMID: 27775904 PMCID: PMC5300962 DOI: 10.1109/tuffc.2016.2619913] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Various clinical applications of high-intensity focused ultrasound have different requirements for the pressure levels and degree of nonlinear waveform distortion at the focus. The goal of this paper is to determine transducer design parameters that produce either a specified shock amplitude in the focal waveform or specified peak pressures while still maintaining quasi-linear conditions at the focus. Multiparametric nonlinear modeling based on the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation with an equivalent source boundary condition was employed. Peak pressures, shock amplitudes at the focus, and corresponding source outputs were determined for different transducer geometries and levels of nonlinear distortion. The results are presented in terms of the parameters of an equivalent single-element spherically shaped transducer. The accuracy of the method and its applicability to cases of strongly focused transducers were validated by comparing the KZK modeling data with measurements and nonlinear full diffraction simulations for a single-element source and arrays with 7 and 256 elements. The results provide look-up data for evaluating nonlinear distortions at the focus of existing therapeutic systems as well as for guiding the design of new transducers that generate specified nonlinear fields.
Collapse
|
39
|
Shim J, Staruch R, Koral K, Xie XJ, Chopra R, Laetsch TW. Pediatric Sarcomas Are Targetable by MR-Guided High Intensity Focused Ultrasound (MR-HIFU): Anatomical Distribution and Radiological Characteristics. Pediatr Blood Cancer 2016; 63:1753-60. [PMID: 27199087 PMCID: PMC6016837 DOI: 10.1002/pbc.26079] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 05/01/2016] [Accepted: 05/03/2016] [Indexed: 12/28/2022]
Abstract
BACKGROUND Despite intensive therapy, children with metastatic and recurrent sarcoma or neuroblastoma have a poor prognosis. Magnetic resonance guided high intensity focused ultrasound (MR-HIFU) is a noninvasive technique allowing the delivery of targeted ultrasound energy under MR imaging guidance. MR-HIFU may be used to ablate tumors without ionizing radiation or target chemotherapy using hyperthermia. Here, we evaluated the anatomic locations of tumors to assess the technical feasibility of MR-HIFU therapy for children with solid tumors. PROCEDURE Patients with sarcoma or neuroblastoma with available cross-sectional imaging were studied. Tumors were classified based on the location and surrounding structures within the ultrasound beam path as (i) not targetable, (ii) completely or partially targetable with the currently available MR-HIFU system, and (iii) potentially targetable if a respiratory motion compensation technique was used. RESULTS Of the 121 patients with sarcoma and 61 patients with neuroblastoma, 64% and 25% of primary tumors were targetable at diagnosis, respectively. Less than 20% of metastases at diagnosis or relapse were targetable for both sarcoma and neuroblastoma. Most targetable lesions were located in extremities or in the pelvis. Respiratory motion compensation may increase the percentage of targetable tumors by 4% for sarcomas and 10% for neuroblastoma. CONCLUSIONS Many pediatric sarcomas are localized at diagnosis and are targetable by current MR-HIFU technology. Some children with neuroblastoma have bony tumors targetable by MR-HIFU at relapse, but few newly diagnosed children with neuroblastoma have tumors amenable to MR-HIFU therapy. Clinical trials of MR-HIFU should focus on patients with anatomically targetable tumors.
Collapse
Affiliation(s)
- Jenny Shim
- Department of Pediatrics, Children’s Health, Dallas, Texas, USA
| | - Robert Staruch
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA,Philips Research North America, Cambridge, Massachusetts, USA
| | - Korgun Koral
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Xian-Jin Xie
- Department of Clinical Sciences, Simmons Comprehensive Cancer Center, Dallas, Texas, USA
| | - Rajiv Chopra
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA,Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Texas, USA
| | - Theodore W. Laetsch
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA,Pauline Allen Gill Center for Cancer and Blood Disorders, Children’s Health, Dallas, Texas, USA
| |
Collapse
|
40
|
Chen QW, Teng WJ, Chen Q. Chest wall hernia induced by high intensity focused ultrasound treatment of unresectable massive hepatocellular carcinoma: A case report. Oncol Lett 2016; 12:627-630. [PMID: 27347191 DOI: 10.3892/ol.2016.4618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 02/11/2016] [Indexed: 12/20/2022] Open
Abstract
In the present study, a case of unresectable massive hepatocellular carcinoma (HCC) treated with high intensity focused ultrasound (HIFU) alone is reported. Although the treatment induced chest wall hernia, its efficacy in treating the HCC was demonstrated. The medical records of a patient with an unresectable massive tumor that was effectively treated with serial HIFU ablation were retrospectively studied. Chest wall hernia was detected as a complication of the HIFU treatment, which has not been reported thus far in the literature. The patient has survived for 44 months since the first diagnosis in September 2010. Treatment resulted in partial remission of the tumor, pain relief, decreased levels of alpha-fetoprotein and chest wall hernia, as a complication. Therefore, HIFU may be an effective approach for the treatment of unresectable HCC, although it may occasionally cause complications.
Collapse
Affiliation(s)
- Qi-Wen Chen
- Department of Integrated Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Wen-Jing Teng
- Cancer Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai 200041, P.R. China
| | - Qian Chen
- Department of Obstetrics of Chongqing Haifu Hospital, Non-Invasive and Minimally Invasive Therapeutic Research Center for Uterine Benign Diseases of Chongqing, Chongqing 401121, P.R. China
| |
Collapse
|
41
|
Kennedy S, Hu J, Kearney C, Skaat H, Gu L, Gentili M, Vandenburgh H, Mooney D. Sequential release of nanoparticle payloads from ultrasonically burstable capsules. Biomaterials 2015; 75:91-101. [PMID: 26496382 DOI: 10.1016/j.biomaterials.2015.10.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/01/2015] [Accepted: 10/05/2015] [Indexed: 12/22/2022]
Abstract
In many biomedical contexts ranging from chemotherapy to tissue engineering, it is beneficial to sequentially present bioactive payloads. Explicit control over the timing and dose of these presentations is highly desirable. Here, we present a capsule-based delivery system capable of rapidly releasing multiple payloads in response to ultrasonic signals. In vitro, these alginate capsules exhibited excellent payload retention for up to 1 week when unstimulated and delivered their entire payloads when ultrasonically stimulated for 10-100 s. Shorter exposures (10 s) were required to trigger delivery from capsules embedded in hydrogels placed in a tissue model and did not result in tissue heating or death of encapsulated cells. Different types of capsules were tuned to rupture in response to different ultrasonic stimuli, thus permitting the sequential, on-demand delivery of nanoparticle payloads. As a proof of concept, gold nanoparticles were decorated with bone morphogenetic protein-2 to demonstrate the potential bioactivity of nanoparticle payloads. These nanoparticles were not cytotoxic and induced an osteogenic response in mouse mesenchymal stem cells. This system may enable researchers and physicians to remotely regulate the timing, dose, and sequence of drug delivery on-demand, with a wide range of clinical applications ranging from tissue engineering to cancer treatment.
Collapse
Affiliation(s)
- Stephen Kennedy
- Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, RI 02881, USA; Department of Chemical Engineering, University of Rhode Island, Kingston, RI 02881, USA
| | - Jennifer Hu
- Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Cathal Kearney
- Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Department of Anatomy, Tissue Engineering Research Group and Advanced Materials and Bioengineering Research Center, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Hadas Skaat
- Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Luo Gu
- Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Marco Gentili
- Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Herman Vandenburgh
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI 02912, USA; Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02912, USA
| | - David Mooney
- Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|