1
|
Csecsei P, Acs P, Gottschal M, Imre P, Miklos E, Simon D, Erdo-Bonyar S, Berki T, Zavori L, Varnai R. The relevance of combined testing of cerebrospinal fluid glial fibrillary acidic protein and ubiquitin C-terminal hydrolase L1 in multiple sclerosis and peripheral neuropathy. Neurol Sci 2025; 46:1301-1312. [PMID: 39565457 PMCID: PMC11828760 DOI: 10.1007/s10072-024-07790-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/30/2024] [Indexed: 11/21/2024]
Abstract
INTRODUCTION This study investigates the significance of glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase L1 (UCHL-1) in cerebrospinal fluid (CSF) of patients with multiple sclerosis (MS) and peripheral neuropathy (PN). METHODS We included 41 MS patients, 35 PN patients, and 36 controls across 5 sites. MS patient data included lesion counts, disease activity, albumin quotient, and Expanded Disability Status Scale (EDSS) scores. PN patients included those with acute and chronic inflammatory demyelinating polyneuropathy and sensorimotor neuropathy based on nerve conduction studies. CSF concentrations of GFAP and UCHL-1 were measured using the MILLIPLEX Map Human Neuroscience Magnetic Bead Panel 1. RESULTS Both GFAP and UCHL-1 levels were significantly higher in the two patient groups compared to controls. In the MS group, GFAP showed a strong correlation with disease duration, EDSS score, non-enhancing lesions, and the CSF/blood albumin quotient. UCHL-1 levels were significantly higher in patients with active disease (gadolinium-enhancing lesions). The combination of UCHL-1 and GFAP improved diagnostic accuracy (AUC 0.895, 95% CI 0.780-1.000) compared to the independent measurement of either marker for indicating Gd-negative lesions. In the PN group, CSF GFAP levels were significantly lower in patients with purely demyelinating neuropathy compared to those with axonal or mixed neuropathy. CONCLUSION GFAP serves as a sensitive marker for axonal damage in PN, while UCHL-1 closely correlates with disease activity in MS patients.
Collapse
Affiliation(s)
- Peter Csecsei
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
| | - Peter Acs
- Department of Neurology, Medical School, University of Pecs, Pecs, Hungary
| | - Marianna Gottschal
- Department of Neurology, Kanizsai Dorottya Hospital, Nagykanizsa, Hungary
| | - Piroska Imre
- Department of Neurology, Veszprém County Csolnoky Ferenc Hospital, Veszprém, Hungary
| | - Egon Miklos
- Department of Neurology, Vas County Markusovszky University Teaching Hospital, Szombathely, Hungary
| | - Diana Simon
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Szigeti str. 12, Pecs, 7624, Hungary.
| | - Szabina Erdo-Bonyar
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Szigeti str. 12, Pecs, 7624, Hungary
| | - Timea Berki
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Szigeti str. 12, Pecs, 7624, Hungary
| | - Laszlo Zavori
- Emergency Department, Saudi German Hospital, Dubai, United Arab Emirates
| | - Reka Varnai
- Department of Primary Health Care, Medical School University of Pecs, Pecs, Hungary
| |
Collapse
|
2
|
Cottrill R, Ekanayake A, Grove C, Peiris S, Corbett N, Ahmed B, Jens W, Brearly T, Kanekar S, Eslinger P, Yang Q, Karunanayaka P. Alzheimer's disease (AD) in multiple sclerosis (MS): A systematic review of published cases, mechanistic links between AD and MS, and possible clinical evaluation of AD in MS. J Alzheimers Dis Rep 2025; 9:25424823251316134. [PMID: 40034519 PMCID: PMC11864252 DOI: 10.1177/25424823251316134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 12/30/2024] [Indexed: 03/05/2025] Open
Abstract
Background: Alzheimer's disease (AD) and multiple sclerosis (MS) are two neurological disorders that can pose enormous burden to a person's quality of life. Due to new therapeutic advancements that significantly extend the lifespan, there may be an increased prevalence of AD in elderly MS patients. Objective: Building on a previous review on MS-AD coexistence, this review not only aimed to broaden the pool of literature searched, but also investigated possible mechanistic links between clinical markers for MS and AD. Methods: We searched for newly reported cases of coexisting MS and AD in PubMed, Clinical Key, BioMed Central, and Europe PubMed Central databases; and identified 101 new cases in addition to the previously reported 24 cases by Luczynski et al. (2019). The resulting 125 comorbid cases necessitated an evaluation of literature on the pathogenesis of MS and AD. Results: This review highlights many overlaps between AD and MS (for instance, the immune cell dysfunction, glymphatic dysfunction, genetics, environmental factors, and others). We critically evaluated clinical and laboratory metrics used to identify AD in MS patients (e.g., MRI, amyloid-β and tau protein identification, miRNA biomarker evaluation, cerebrospinal fluid analysis, vitamin levels, gut microbiota etc.). Conclusions: Future research should refine these diagnostic criteria and focus on enhancing screening and detection methods for AD in MS patients. Furthermore, one should also investigate the primary causes of the increased comorbidity between AD and MS.
Collapse
Affiliation(s)
- Ross Cottrill
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, USA
| | - Anupa Ekanayake
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, USA
| | - Cooper Grove
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, USA
| | - Senal Peiris
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, USA
| | - Nicholas Corbett
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, USA
| | - Biyar Ahmed
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, USA
| | - Will Jens
- Department of Neurology, Penn State University College of Medicine, Hershey, PA, USA
| | - Tim Brearly
- Department of Neurology, Penn State University College of Medicine, Hershey, PA, USA
| | - Sangam Kanekar
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, USA
| | - Paul Eslinger
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, USA
- Department of Neurology, Penn State University College of Medicine, Hershey, PA, USA
| | - Qing Yang
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, USA
- Department of Neurosurgery, Penn State University College of Medicine, Hershey, PA, USA
| | - Prasanna Karunanayaka
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
3
|
Shaygannejad A, Rafiei N, Vaheb S, Yazdan Panah M, Shaygannejad V, Mirmosayyeb O. The Role of Glial Fibrillary Acidic Protein as a Biomarker in Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorder: A Systematic Review and Meta-Analysis. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1050. [PMID: 39064479 PMCID: PMC11279275 DOI: 10.3390/medicina60071050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/04/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024]
Abstract
There is debate on the role of glial fibrillary acidic protein (GFAP) as a reliable biomarker in multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD), and its potential to reflect disease progression. This review aimed to investigate the role of GFAP in MS and NMOSD. A systematic search of electronic databases, including PubMed, Embase, Scopus, and Web of Sciences, was conducted up to 20 December 2023 to identify studies that measured GFAP levels in people with MS (PwMS) and people with NMOSD (PwNMOSD). R software version 4.3.3. with the random-effect model was used to pool the effect size with its 95% confidence interval (CI). Of 4109 studies, 49 studies met our inclusion criteria encompassing 3491 PwMS, 849 PwNMOSD, and 1046 healthy controls (HCs). The analyses indicated that the cerebrospinal fluid level of GFAP (cGFAP) and serum level of GFAP (sGFAP) were significantly higher in PwMS than HCs (SMD = 0.7, 95% CI: 0.54 to 0.86, p < 0.001, I2 = 29%, and SMD = 0.54, 95% CI: 0.1 to 0.99, p = 0.02, I2 = 90%, respectively). The sGFAP was significantly higher in PwNMOSD than in HCs (SMD = 0.9, 95% CI: 0.73 to 1.07, p < 0.001, I2 = 10%). Among PwMS, the Expanded Disability Status Scale (EDSS) exhibited significant correlations with cGFAP (r = 0.43, 95% CI: 0.26 to 0.59, p < 0.001, I2 = 91%) and sGFAP (r = 0.36, 95% CI: 0.23 to 0.49, p < 0.001, I2 = 78%). Regarding that GFAP is increased in MS and NMOSD and has correlations with disease features, it can be a potential biomarker in MS and NMOSD and indicate the disease progression and disability in these disorders.
Collapse
Affiliation(s)
- Aysa Shaygannejad
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan 81839-83434, Iran; (A.S.); (S.V.); (V.S.)
| | - Nazanin Rafiei
- School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran;
| | - Saeed Vaheb
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan 81839-83434, Iran; (A.S.); (S.V.); (V.S.)
| | - Mohammad Yazdan Panah
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord 88157-13471, Iran;
| | - Vahid Shaygannejad
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan 81839-83434, Iran; (A.S.); (S.V.); (V.S.)
- Department of Neurology, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Omid Mirmosayyeb
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan 81839-83434, Iran; (A.S.); (S.V.); (V.S.)
- Department of Neurology, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| |
Collapse
|
4
|
Jahanbazi Jahan-Abad A, Salapa HE, Libner CD, Thibault PA, Levin MC. hnRNP A1 dysfunction in oligodendrocytes contributes to the pathogenesis of multiple sclerosis. Glia 2023; 71:633-647. [PMID: 36382566 DOI: 10.1002/glia.24300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/17/2022]
Abstract
Oligodendrocyte (OL) damage and death are prominent features of multiple sclerosis (MS) pathology, yet mechanisms contributing to OL loss are incompletely understood. Dysfunctional RNA binding proteins (RBPs), hallmarked by nucleocytoplasmic mislocalization and altered expression, have been shown to result in cell loss in neurologic diseases, including in MS. Since we previously observed that the RBP heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) was dysfunctional in neurons in MS, we hypothesized that it might also contribute to OL pathology in MS and relevant models. We discovered that hnRNP A1 dysfunction is characteristic of OLs in MS brains. These findings were recapitulated in the experimental autoimmune encephalomyelitis (EAE) mouse model of MS, where hnRNP A1 dysfunction was characteristic of OLs, including oligodendrocyte precursor cells and mature OLs in which hnRNP A1 dysfunction correlated with demyelination. We also found that hnRNP A1 dysfunction was induced by IFNγ, indicating that inflammation influences hnRNP A1 function. To fully understand the effects of hnRNP A1 dysfunction on OLs, we performed siRNA knockdown of hnRNP A1, followed by RNA sequencing. RNA sequencing detected over 4000 differentially expressed transcripts revealing alterations to RNA metabolism, cell morphology, and programmed cell death pathways. We confirmed that hnRNP A1 knockdown was detrimental to OLs and induced apoptosis and necroptosis. Together, these data demonstrate a critical role for hnRNP A1 in proper OL functioning and survival and suggest a potential mechanism of OL damage and death in MS that involves hnRNP A1 dysfunction.
Collapse
Affiliation(s)
- Ali Jahanbazi Jahan-Abad
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,Neurology Division, Department of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Hannah E Salapa
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,Neurology Division, Department of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Cole D Libner
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,Department of Health Sciences, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Patricia A Thibault
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,Neurology Division, Department of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Michael C Levin
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,Neurology Division, Department of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
5
|
Novel CSF Biomarkers Tracking Autoimmune Inflammatory and Neurodegenerative Aspects of CNS Diseases. Diagnostics (Basel) 2022; 13:diagnostics13010073. [PMID: 36611365 PMCID: PMC9818715 DOI: 10.3390/diagnostics13010073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
The accurate diagnosis of neuroinflammatory (NIDs) and neurodegenerative (NDDs) diseases and the stratification of patients into disease subgroups with distinct disease-related characteristics that reflect the underlying pathology represents an unmet clinical need that is of particular interest in the era of emerging disease-modifying therapies (DMT). Proper patient selection for clinical trials and identifying those in the prodromal stages of the diseases or those at high risk will pave the way for precision medicine approaches and halt neuroinflammation and/or neurodegeneration in early stages where this is possible. Towards this direction, novel cerebrospinal fluid (CSF) biomarker candidates were developed to reflect the diseased organ's pathology better. Μisfolded protein accumulation, microglial activation, synaptic dysfunction, and finally, neuronal death are some of the pathophysiological aspects captured by these biomarkers to support proper diagnosis and screening. We also describe advances in the field of molecular biomarkers, including miRNAs and extracellular nucleic acids known as cell-free DNA and mitochondrial DNA molecules. Here we review the most important of these novel CSF biomarkers of NIDs and NDDs, focusing on their involvement in disease development and emphasizing their ability to define homogeneous disease phenotypes and track potential treatment outcomes that can be mirrored in the CSF compartment.
Collapse
|
6
|
Biswas DD, Martin RK, Brown LN, Mockenhaupt K, Gupta AS, Surace MJ, Tharakan A, Yester JW, Bhardwaj R, Conrad DH, Kordula T. Cellular inhibitor of apoptosis 2 (cIAP2) restricts neuroinflammation during experimental autoimmune encephalomyelitis. J Neuroinflammation 2022; 19:158. [PMID: 35718775 PMCID: PMC9208101 DOI: 10.1186/s12974-022-02527-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/11/2022] [Indexed: 11/10/2022] Open
Abstract
Background Immune activation, neuroinflammation, and cell death are the hallmarks of multiple sclerosis (MS), which is an autoimmune demyelinating disease of the central nervous system (CNS). It is well-documented that the cellular inhibitor of apoptosis 2 (cIAP2) is induced by inflammatory stimuli and regulates adaptive and innate immune responses, cell death, and the production of inflammatory mediators. However, the impact of cIAP2 on neuroinflammation associated with MS and disease severity remains unknown.
Methods We used experimental autoimmune encephalomyelitis (EAE), a widely used mouse model of MS, to assess the effect of cIAP2 deletion on disease outcomes. We performed a detailed analysis on the histological, cellular, and molecular levels. We generated and examined bone-marrow chimeras to identify the cIAP2-deficient cells that are critical to the disease outcomes. Results cIAP2−/− mice exhibited increased EAE severity, increased CD4+ T cell infiltration, enhanced proinflammatory cytokine/chemokine expression, and augmented demyelination. This phenotype was driven by cIAP2-deficient non-hematopoietic cells. cIAP2 protected oligodendrocytes from cell death during EAE by limiting proliferation and activation of brain microglia. This protective role was likely exerted by cIAP2-mediated inhibition of the non-canonical NLRP3/caspase-8-dependent myeloid cell activation during EAE. Conclusions Our findings suggest that cIAP2 is needed to modulate neuroinflammation, cell death, and survival during EAE. Significantly, our data demonstrate the critical role of cIAP2 in limiting the activation of microglia during EAE, which could be explored for developing MS therapeutics in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02527-6.
Collapse
Affiliation(s)
- Debolina D Biswas
- Department of Biochemistry and Molecular Biology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Rebecca K Martin
- Department of Microbiology and Immunology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - LaShardai N Brown
- Department of Biochemistry and Molecular Biology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Karli Mockenhaupt
- Department of Biochemistry and Molecular Biology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Angela S Gupta
- Department of Biochemistry and Molecular Biology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Michael J Surace
- Department of Biochemistry and Molecular Biology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Anuj Tharakan
- Department of Biochemistry and Molecular Biology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Jessie W Yester
- Department of Biochemistry and Molecular Biology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Reetika Bhardwaj
- Department of Biochemistry and Molecular Biology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Daniel H Conrad
- Department of Microbiology and Immunology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Tomasz Kordula
- Department of Biochemistry and Molecular Biology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
7
|
Yang J, Hamade M, Wu Q, Wang Q, Axtell R, Giri S, Mao-Draayer Y. Current and Future Biomarkers in Multiple Sclerosis. Int J Mol Sci 2022; 23:ijms23115877. [PMID: 35682558 PMCID: PMC9180348 DOI: 10.3390/ijms23115877] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/06/2022] [Accepted: 05/08/2022] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) is a debilitating autoimmune disorder. Currently, there is a lack of effective treatment for the progressive form of MS, partly due to insensitive readout for neurodegeneration. The recent development of sensitive assays for neurofilament light chain (NfL) has made it a potential new biomarker in predicting MS disease activity and progression, providing an additional readout in clinical trials. However, NfL is elevated in other neurodegenerative disorders besides MS, and, furthermore, it is also confounded by age, body mass index (BMI), and blood volume. Additionally, there is considerable overlap in the range of serum NfL (sNfL) levels compared to healthy controls. These confounders demonstrate the limitations of using solely NfL as a marker to monitor disease activity in MS patients. Other blood and cerebrospinal fluid (CSF) biomarkers of axonal damage, neuronal damage, glial dysfunction, demyelination, and inflammation have been studied as actionable biomarkers for MS and have provided insight into the pathology underlying the disease process of MS. However, these other biomarkers may be plagued with similar issues as NfL. Using biomarkers of a bioinformatic approach that includes cellular studies, micro-RNAs (miRNAs), extracellular vesicles (EVs), metabolomics, metabolites and the microbiome may prove to be useful in developing a more comprehensive panel that addresses the limitations of using a single biomarker. Therefore, more research with recent technological and statistical approaches is needed to identify novel and useful diagnostic and prognostic biomarker tools in MS.
Collapse
Affiliation(s)
- Jennifer Yang
- Department of Neurology, Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (J.Y.); (M.H.); (Q.W.); (Q.W.)
| | - Maysa Hamade
- Department of Neurology, Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (J.Y.); (M.H.); (Q.W.); (Q.W.)
| | - Qi Wu
- Department of Neurology, Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (J.Y.); (M.H.); (Q.W.); (Q.W.)
| | - Qin Wang
- Department of Neurology, Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (J.Y.); (M.H.); (Q.W.); (Q.W.)
| | - Robert Axtell
- Department of Arthritis and Clinical Immunology Research, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA;
| | - Shailendra Giri
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA;
| | - Yang Mao-Draayer
- Department of Neurology, Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (J.Y.); (M.H.); (Q.W.); (Q.W.)
- Graduate Program in Immunology, Program in Biomedical Sciences, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Correspondence: ; Tel.: +1-734-615-5635
| |
Collapse
|
8
|
Sobel RA, Albertelli M, Hinojoza JR, Eaton MJ, Grimes KV, Rubenstein E. Azetidine-2-Carboxylic Acid-Induced Oligodendrogliopathy: Relevance to the Pathogenesis of Multiple Sclerosis. J Neuropathol Exp Neurol 2022; 81:414-433. [PMID: 35521963 PMCID: PMC9123080 DOI: 10.1093/jnen/nlac028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The naturally occurring imino acid azetidine-2-carboxylic acid (Aze) is consumed by humans and can be misincorporated in place of proline in myelin basic protein (MBP) in vitro. To determine Aze effects on the mammalian CNS in vivo, adult CD1 mice were given Aze orally or intraperitoneally. Clinical signs reminiscent of MBP-mutant mice occurred with 600 mg/kg Aze exposure. Aze induced oligodendrocyte (OL) nucleomegaly and nucleoplasm clearing, dilated endoplasmic reticulum, cytoplasmic vacuolation, abnormal mitochondria, and Aze dose-dependent apoptosis. Immunohistochemistry demonstrated myelin blistering and nuclear translocation of unfolded protein response (UPR)/proinflammatory molecules (ATF3, ATF4, ATF6, eIF2α, GADD153, NFκB, PERK, XBP1), MHC I expression, and MBP cytoplasmic aggregation in OL. There were scattered microglial nodules in CNS white matter (WM); other CNS cells appeared unaffected. Mice given Aze in utero and postnatally showed more marked effects than their dams. These OL, myelin, and microglial alterations are found in normal-appearing WM (NAWM) in multiple sclerosis (MS) patients. Thus, Aze induces a distinct oligodendrogliopathy in mice that recapitulates MS NAWM pathology without leukocyte infiltration. Because myelin proteins are relatively stable throughout life, we hypothesize that Aze misincorporation in myelin proteins during myelinogenesis in humans results in a progressive UPR that may be a primary process in MS pathogenesis.
Collapse
Affiliation(s)
- Raymond A Sobel
- From the Laboratory Service, Veterans Affairs Health Care System, Palo Alto, California, USA.,Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Megan Albertelli
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Julian R Hinojoza
- From the Laboratory Service, Veterans Affairs Health Care System, Palo Alto, California, USA.,Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Mary Jane Eaton
- From the Laboratory Service, Veterans Affairs Health Care System, Palo Alto, California, USA.,Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Kevin V Grimes
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Edward Rubenstein
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
9
|
Correale J, Ysrraelit MC. Multiple Sclerosis and Aging: The Dynamics of Demyelination and Remyelination. ASN Neuro 2022; 14:17590914221118502. [PMID: 35938615 PMCID: PMC9364177 DOI: 10.1177/17590914221118502] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system
(CNS) leading to demyelination and neurodegeneration. Life expectancy and age of onset in
MS patients have been rising over the last decades, and previous studies have shown that
age affects disease progression. Therefore, age appears as one of the most important
factors in accumulating disability in MS patients. Indeed, the degeneration of
oligodendrocytes (OGDs) and OGD precursors (OPCs) increases with age, in association with
increased inflammatory activity of astrocytes and microglia. Similarly, age-related
neuronal changes such as mitochondrial alterations, an increase in oxidative stress, and
disrupted paranodal junctions can impact myelin integrity. Conversely, once myelination is
complete, the long-term integrity of axons depends on OGD supply of energy. These
alterations determine pathological myelin changes consisting of myelin outfolding,
splitting, and accumulation of multilamellar fragments. Overall, these data demonstrate
that old mature OGDs lose their ability to produce and maintain healthy myelin over time,
to induce de novo myelination, and to remodel pre-existing myelinated
axons that contribute to neural plasticity in the CNS. Furthermore, as observed in other
tissues, aging induces a general decline in regenerative processes and, not surprisingly,
progressively hinders remyelination in MS. In this context, this review will provide an
overview of the current knowledge of age-related changes occurring in cells of the
oligodendroglial lineage and how they impact myelin synthesis, axonal degeneration, and
remyelination efficiency.
Collapse
Affiliation(s)
- Jorge Correale
- Departamento de Neurología, 58782Fleni, Buenos Aires, Argentina
| | | |
Collapse
|
10
|
Häusler D, Akgün K, Stork L, Lassmann H, Ziemssen T, Brück W, Metz I. CNS inflammation after natalizumab therapy for multiple sclerosis: A retrospective histopathological and CSF cohort study. Brain Pathol 2021; 31:e12969. [PMID: 33955606 PMCID: PMC8549024 DOI: 10.1111/bpa.12969] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/29/2021] [Accepted: 04/12/2021] [Indexed: 11/30/2022] Open
Abstract
Natalizumab, a recombinant humanized monoclonal antibody directed against the α4 subunit of the integrins α4ß1 and α4ß7, has been approved for the treatment of active relapsing-remitting MS. Although natalizumab is a highly beneficial drug that effectively reduces the risk of sustained disability progression and the rate of clinical relapses, some patients do not respond to it, and some are at higher risk of developing progressive multifocal leukoencephalopathy (PML). The histopathological effects after natalizumab therapy are still unknown. We, therefore, performed a detailed histological characterization of the CNS inflammatory cell infiltrate of 24 brain specimens from natalizumab treated patients, consisting of 20 biopsies and 4 autopsies and 21 MS controls. To complement the analysis, immune cells in blood and cerebrospinal fluid (CSF) of 30 natalizumab-treated patients and 42 MS controls were quantified by flow cytometry. Inflammatory infiltrates within lesions were mainly composed of T cells and macrophages, some B cells, plasma cells, and dendritic cells. There was no significant difference in the numbers of T cells or macrophages and microglial cells in lesions of natalizumab-treated patients as compared to controls. A shift towards cytotoxic T cells of a memory phenotype was observed in the CSF. Plasma cells were significantly increased in active demyelinating lesions of natalizumab-treated patients, but no correlation to clinical disability was observed. Dendritic cells within lesions were found to be reduced with longer ongoing therapy duration. Our findings suggest that natalizumab does not completely prevent immune cells from entering the CNS and is associated with an accumulation of plasma cells, the pathogenic and clinical significance of which is not known. As B cells are considered to serve as a reservoir of the JC virus, the observed plasma cell accumulation and reduction in dendritic cells in the CNS of natalizumab-treated patients may potentially play a role in PML development.
Collapse
Affiliation(s)
- Darius Häusler
- Institute of NeuropathologyUniversity Medical CenterGöttingenGermany
| | - Katja Akgün
- Department of NeurologyCenter of Clinical NeuroscienceCarl Gustav Carus University ClinicUniversity Hospital of DresdenDresdenGermany
| | - Lidia Stork
- Institute of NeuropathologyUniversity Medical CenterGöttingenGermany
| | - Hans Lassmann
- Center for Brain ResearchMedical University of ViennaViennaAustria
| | - Tjalf Ziemssen
- Department of NeurologyCenter of Clinical NeuroscienceCarl Gustav Carus University ClinicUniversity Hospital of DresdenDresdenGermany
| | - Wolfgang Brück
- Institute of NeuropathologyUniversity Medical CenterGöttingenGermany
| | - Imke Metz
- Institute of NeuropathologyUniversity Medical CenterGöttingenGermany
| |
Collapse
|
11
|
Quantification of normal-appearing white matter damage in early relapse-onset multiple sclerosis through neurite orientation dispersion and density imaging. Mult Scler Relat Disord 2021; 58:103396. [DOI: 10.1016/j.msard.2021.103396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 11/23/2022]
|
12
|
Prineas JW, Parratt JDE. Multiple Sclerosis: Microglia, Monocytes, and Macrophage-Mediated Demyelination. J Neuropathol Exp Neurol 2021; 80:975-996. [PMID: 34553215 PMCID: PMC8557350 DOI: 10.1093/jnen/nlab083] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
This study examined the roles of microglia and monocytes in myelin destruction in patients with early multiple sclerosis (MS). Twenty-two cases were studied; the clinical duration was <9 weeks in 10 cases. Twenty myeloid cell subtypes or categories were identified including 2 cell types not known previously to occur in demyelinating diseases. Commencing myelin breakdown in plaques and in perivascular and subpial tissues occurred in the immediate presence of infiltrating monocytes and was effected by a homogeneous population of IgG-positive Fc receptor-bearing early phagocytes interacting with abnormal myelin. Oligodendrocyte apoptosis was observed in intact myelinated tissue bordering areas of active demyelination. Capillaries in the cerebral cortex plugged by large numbers of monocytes were common in acute cases of MS and in a patient with a neuromyelitis optica variant and extreme systemic recruitment of monocytes. In an MS patient with progressive disease, microglial nodules centered on MHC-II-positive capillaries plugged by monocytes were present in the cerebral cortex. This constitutes a new gray matter lesion in MS.
Collapse
Affiliation(s)
- John W Prineas
- From the Department of Medicine, University of Sydney, Camperdown, NSW, Australia
| | - John D E Parratt
- Department of Neurology, Royal North Shore Hospital, St. Leonards, NSW, Australia
| |
Collapse
|
13
|
Potential Biomarkers Associated with Multiple Sclerosis Pathology. Int J Mol Sci 2021; 22:ijms221910323. [PMID: 34638664 PMCID: PMC8508638 DOI: 10.3390/ijms221910323] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022] Open
Abstract
Multiple sclerosis (MS) is a complex disease of the central nervous system (CNS) that involves an intricate and aberrant interaction of immune cells leading to inflammation, demyelination, and neurodegeneration. Due to the heterogeneity of clinical subtypes, their diagnosis becomes challenging and the best treatment cannot be easily provided to patients. Biomarkers have been used to simplify the diagnosis and prognosis of MS, as well as to evaluate the results of clinical treatments. In recent years, research on biomarkers has advanced rapidly due to their ability to be easily and promptly measured, their specificity, and their reproducibility. Biomarkers are classified into several categories depending on whether they address personal or predictive susceptibility, diagnosis, prognosis, disease activity, or response to treatment in different clinical courses of MS. The identified members indicate a variety of pathological processes of MS, such as neuroaxonal damage, gliosis, demyelination, progression of disability, and remyelination, among others. The present review analyzes biomarkers in cerebrospinal fluid (CSF) and blood serum, the most promising imaging biomarkers used in clinical practice. Furthermore, it aims to shed light on the criteria and challenges that a biomarker must face to be considered as a standard in daily clinical practice.
Collapse
|
14
|
Kalafatakis I, Karagogeos D. Oligodendrocytes and Microglia: Key Players in Myelin Development, Damage and Repair. Biomolecules 2021; 11:1058. [PMID: 34356682 PMCID: PMC8301746 DOI: 10.3390/biom11071058] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 12/13/2022] Open
Abstract
Oligodendrocytes, the myelin-making cells of the CNS, regulate the complex process of myelination under physiological and pathological conditions, significantly aided by other glial cell types such as microglia, the brain-resident, macrophage-like innate immune cells. In this review, we summarize how oligodendrocytes orchestrate myelination, and especially myelin repair after damage, and present novel aspects of oligodendroglial functions. We emphasize the contribution of microglia in the generation and regeneration of myelin by discussing their beneficial and detrimental roles, especially in remyelination, underlining the cellular and molecular components involved. Finally, we present recent findings towards human stem cell-derived preclinical models for the study of microglia in human pathologies and on the role of microbiome on glial cell functions.
Collapse
Affiliation(s)
- Ilias Kalafatakis
- Laboratory of Neuroscience, Department of Basic Science, University of Crete Medical School, 70013 Heraklion, Greece;
- IMBB FORTH, Nikolaou Plastira 100, Vassilika Vouton, 70013 Heraklion, Greece
| | - Domna Karagogeos
- Laboratory of Neuroscience, Department of Basic Science, University of Crete Medical School, 70013 Heraklion, Greece;
- IMBB FORTH, Nikolaou Plastira 100, Vassilika Vouton, 70013 Heraklion, Greece
| |
Collapse
|
15
|
Rahmanzadeh R, Lu PJ, Barakovic M, Weigel M, Maggi P, Nguyen TD, Schiavi S, Daducci A, La Rosa F, Schaedelin S, Absinta M, Reich DS, Sati P, Wang Y, Bach Cuadra M, Radue EW, Kuhle J, Kappos L, Granziera C. Myelin and axon pathology in multiple sclerosis assessed by myelin water and multi-shell diffusion imaging. Brain 2021; 144:1684-1696. [PMID: 33693571 PMCID: PMC8374972 DOI: 10.1093/brain/awab088] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 12/29/2020] [Accepted: 01/03/2021] [Indexed: 12/25/2022] Open
Abstract
Damage to the myelin sheath and the neuroaxonal unit is a cardinal feature of multiple sclerosis; however, a detailed characterization of the interaction between myelin and axon damage in vivo remains challenging. We applied myelin water and multi-shell diffusion imaging to quantify the relative damage to myelin and axons (i) among different lesion types; (ii) in normal-appearing tissue; and (iii) across multiple sclerosis clinical subtypes and healthy controls. We also assessed the relation of focal myelin/axon damage with disability and serum neurofilament light chain as a global biological measure of neuroaxonal damage. Ninety-one multiple sclerosis patients (62 relapsing-remitting, 29 progressive) and 72 healthy controls were enrolled in the study. Differences in myelin water fraction and neurite density index were substantial when lesions were compared to healthy control subjects and normal-appearing multiple sclerosis tissue: both white matter and cortical lesions exhibited a decreased myelin water fraction and neurite density index compared with healthy (P < 0.0001) and peri-plaque white matter (P < 0.0001). Periventricular lesions showed decreased myelin water fraction and neurite density index compared with lesions in the juxtacortical region (P < 0.0001 and P < 0.05). Similarly, lesions with paramagnetic rims showed decreased myelin water fraction and neurite density index relative to lesions without a rim (P < 0.0001). Also, in 75% of white matter lesions, the reduction in neurite density index was higher than the reduction in the myelin water fraction. Besides, normal-appearing white and grey matter revealed diffuse reduction of myelin water fraction and neurite density index in multiple sclerosis compared to healthy controls (P < 0.01). Further, a more extensive reduction in myelin water fraction and neurite density index in normal-appearing cortex was observed in progressive versus relapsing-remitting participants. Neurite density index in white matter lesions correlated with disability in patients with clinical deficits (P < 0.01, beta = -10.00); and neurite density index and myelin water fraction in white matter lesions were associated to serum neurofilament light chain in the entire patient cohort (P < 0.01, beta = -3.60 and P < 0.01, beta = 0.13, respectively). These findings suggest that (i) myelin and axon pathology in multiple sclerosis is extensive in both lesions and normal-appearing tissue; (ii) particular types of lesions exhibit more damage to myelin and axons than others; (iii) progressive patients differ from relapsing-remitting patients because of more extensive axon/myelin damage in the cortex; and (iv) myelin and axon pathology in lesions is related to disability in patients with clinical deficits and global measures of neuroaxonal damage.
Collapse
Affiliation(s)
- Reza Rahmanzadeh
- Department of Medicine and Biomedical Engineering, Translational Imaging in Neurology Basel, University Hospital Basel and University of Basel, Basel, Switzerland.,Departments of Medicine, Clinical Research and Biomedical Engineering Neurologic Clinic and Policlinic, Switzerland, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Po-Jui Lu
- Department of Medicine and Biomedical Engineering, Translational Imaging in Neurology Basel, University Hospital Basel and University of Basel, Basel, Switzerland.,Departments of Medicine, Clinical Research and Biomedical Engineering Neurologic Clinic and Policlinic, Switzerland, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Muhamed Barakovic
- Department of Medicine and Biomedical Engineering, Translational Imaging in Neurology Basel, University Hospital Basel and University of Basel, Basel, Switzerland.,Departments of Medicine, Clinical Research and Biomedical Engineering Neurologic Clinic and Policlinic, Switzerland, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Matthias Weigel
- Department of Medicine and Biomedical Engineering, Translational Imaging in Neurology Basel, University Hospital Basel and University of Basel, Basel, Switzerland.,Departments of Medicine, Clinical Research and Biomedical Engineering Neurologic Clinic and Policlinic, Switzerland, University Hospital Basel and University of Basel, Basel, Switzerland.,Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland
| | - Pietro Maggi
- Department of Neurology, Lausanne University Hospital, Lausanne, Switzerland.,Cliniques universitaires Saint Luc, Université catholique de Louvain, Brussel, Belgium
| | - Thanh D Nguyen
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| | - Simona Schiavi
- Department of Computer Science, University of Verona, Verona, Italy
| | | | - Francesco La Rosa
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Radiology Department, Center for Biomedical Imaging (CIBM), Lausanne University and University Hospital, Lausanne, Switzerland
| | - Sabine Schaedelin
- Department of Medicine and Biomedical Engineering, Translational Imaging in Neurology Basel, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Martina Absinta
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA.,Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Pascal Sati
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA.,Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yi Wang
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| | - Meritxell Bach Cuadra
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Radiology Department, Center for Biomedical Imaging (CIBM), Lausanne University and University Hospital, Lausanne, Switzerland
| | - Ernst-Wilhelm Radue
- Department of Medicine and Biomedical Engineering, Translational Imaging in Neurology Basel, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Departments of Medicine, Clinical Research and Biomedical Engineering Neurologic Clinic and Policlinic, Switzerland, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Ludwig Kappos
- Departments of Medicine, Clinical Research and Biomedical Engineering Neurologic Clinic and Policlinic, Switzerland, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Cristina Granziera
- Department of Medicine and Biomedical Engineering, Translational Imaging in Neurology Basel, University Hospital Basel and University of Basel, Basel, Switzerland.,Departments of Medicine, Clinical Research and Biomedical Engineering Neurologic Clinic and Policlinic, Switzerland, University Hospital Basel and University of Basel, Basel, Switzerland
| |
Collapse
|
16
|
Zhou X, He C, Ren J, Dai C, Stevens SR, Wang Q, Zamler D, Shingu T, Yuan L, Chandregowda CR, Wang Y, Ravikumar V, Rao AU, Zhou F, Zheng H, Rasband MN, Chen Y, Lan F, Heimberger AB, Segal BM, Hu J. Mature myelin maintenance requires Qki to coactivate PPARβ-RXRα-mediated lipid metabolism. J Clin Invest 2021; 130:2220-2236. [PMID: 32202512 DOI: 10.1172/jci131800] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 01/17/2020] [Indexed: 12/25/2022] Open
Abstract
Lipid-rich myelin forms electrically insulating, axon-wrapping multilayers that are essential for neural function, and mature myelin is traditionally considered metabolically inert. Surprisingly, we discovered that mature myelin lipids undergo rapid turnover, and quaking (Qki) is a major regulator of myelin lipid homeostasis. Oligodendrocyte-specific Qki depletion, without affecting oligodendrocyte survival, resulted in rapid demyelination, within 1 week, and gradually neurological deficits in adult mice. Myelin lipids, especially the monounsaturated fatty acids and very-long-chain fatty acids, were dramatically reduced by Qki depletion, whereas the major myelin proteins remained intact, and the demyelinating phenotypes of Qki-depleted mice were alleviated by a high-fat diet. Mechanistically, Qki serves as a coactivator of the PPARβ-RXRα complex, which controls the transcription of lipid-metabolism genes, particularly those involved in fatty acid desaturation and elongation. Treatment of Qki-depleted mice with PPARβ/RXR agonists significantly alleviated neurological disability and extended survival durations. Furthermore, a subset of lesions from patients with primary progressive multiple sclerosis were characterized by preferential reductions in myelin lipid contents, activities of various lipid metabolism pathways, and expression level of QKI-5 in human oligodendrocytes. Together, our results demonstrate that continuous lipid synthesis is indispensable for mature myelin maintenance and highlight an underappreciated role of lipid metabolism in demyelinating diseases.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Chenxi He
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, and Key Laboratory of Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jiangong Ren
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Congxin Dai
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Sharon R Stevens
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Qianghu Wang
- Department of Bioinformatics, and Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Daniel Zamler
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Takashi Shingu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Liang Yuan
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
| | - Chythra R Chandregowda
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yunfei Wang
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Visweswaran Ravikumar
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Arvind Uk Rao
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA.,Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Feng Zhou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, and Institutes of Biomedical Sciences, Shanghai, China
| | - Hongwu Zheng
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, USA
| | - Matthew N Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Yiwen Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Fei Lan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, and Key Laboratory of Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Amy B Heimberger
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Benjamin M Segal
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,The Neurological Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Jian Hu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
17
|
Sen MK, Almuslehi MSM, Shortland PJ, Coorssen JR, Mahns DA. Revisiting the Pathoetiology of Multiple Sclerosis: Has the Tail Been Wagging the Mouse? Front Immunol 2020; 11:572186. [PMID: 33117365 PMCID: PMC7553052 DOI: 10.3389/fimmu.2020.572186] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/27/2020] [Indexed: 12/18/2022] Open
Abstract
Multiple Sclerosis (MS) is traditionally considered an autoimmune-mediated demyelinating disease, the pathoetiology of which is unknown. However, the key question remains whether autoimmunity is the initiator of the disease (outside-in) or the consequence of a slow and as yet uncharacterized cytodegeneration (oligodendrocytosis), which leads to a subsequent immune response (inside-out). Experimental autoimmune encephalomyelitis has been used to model the later stages of MS during which the autoimmune involvement predominates. In contrast, the cuprizone (CPZ) model is used to model early stages of the disease during which oligodendrocytosis and demyelination predominate and are hypothesized to precede subsequent immune involvement in MS. Recent studies combining a boost, or protection, to the immune system with disruption of the blood brain barrier have shown CPZ-induced oligodendrocytosis with a subsequent immune response. In this Perspective, we review these recent advances and discuss the likelihood of an inside-out vs. an outside-in pathoetiology of MS.
Collapse
Affiliation(s)
- Monokesh K Sen
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Mohammed S M Almuslehi
- School of Medicine, Western Sydney University, Penrith, NSW, Australia.,Department of Physiology, College of Veterinary Medicine, University of Diyala, Baqubah, Iraq
| | - Peter J Shortland
- School of Science, Western Sydney University, Penrith, NSW, Australia
| | - Jens R Coorssen
- Departments of Health Sciences and Biological Sciences, Faculties of Applied Health Sciences and Mathematics & Science, Brock University, St. Catharines, ON, Canada
| | - David A Mahns
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
18
|
Powerful Homeostatic Control of Oligodendroglial Lineage by PDGFRα in Adult Brain. Cell Rep 2020; 27:1073-1089.e5. [PMID: 31018125 DOI: 10.1016/j.celrep.2019.03.084] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 09/09/2018] [Accepted: 03/21/2019] [Indexed: 01/20/2023] Open
Abstract
Oligodendrocyte progenitor cells (OPCs) are widely distributed cells of ramified morphology in adult brain that express PDGFRα and NG2. They retain mitotic activities in adulthood and contribute to oligodendrogenesis and myelin turnover; however, the regulatory mechanisms of their cell dynamics in adult brain largely remain unknown. Here, we found that global Pdgfra inactivation in adult mice rapidly led to elimination of OPCs due to synchronous maturation toward oligodendrocytes. Surprisingly, OPC densities were robustly reconstituted by the active expansion of Nestin+ immature cells activated in meninges and brain parenchyma, as well as a few OPCs that escaped from Pdgfra inactivation. The multipotent immature cells were induced in the meninges of Pdgfra-inactivated mice, but not of control mice. Our findings revealed powerful homeostatic control of adult OPCs, engaging dual cellular sources of adult OPC formation. These properties of the adult oligodendrocyte lineage and the alternative OPC source may be exploited in regenerative medicine.
Collapse
|
19
|
Stadelmann C, Timmler S, Barrantes-Freer A, Simons M. Myelin in the Central Nervous System: Structure, Function, and Pathology. Physiol Rev 2019; 99:1381-1431. [PMID: 31066630 DOI: 10.1152/physrev.00031.2018] [Citation(s) in RCA: 374] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Oligodendrocytes generate multiple layers of myelin membrane around axons of the central nervous system to enable fast and efficient nerve conduction. Until recently, saltatory nerve conduction was considered the only purpose of myelin, but it is now clear that myelin has more functions. In fact, myelinating oligodendrocytes are embedded in a vast network of interconnected glial and neuronal cells, and increasing evidence supports an active role of oligodendrocytes within this assembly, for example, by providing metabolic support to neurons, by regulating ion and water homeostasis, and by adapting to activity-dependent neuronal signals. The molecular complexity governing these interactions requires an in-depth molecular understanding of how oligodendrocytes and axons interact and how they generate, maintain, and remodel their myelin sheaths. This review deals with the biology of myelin, the expanded relationship of myelin with its underlying axons and the neighboring cells, and its disturbances in various diseases such as multiple sclerosis, acute disseminated encephalomyelitis, and neuromyelitis optica spectrum disorders. Furthermore, we will highlight how specific interactions between astrocytes, oligodendrocytes, and microglia contribute to demyelination in hereditary white matter pathologies.
Collapse
Affiliation(s)
- Christine Stadelmann
- Institute of Neuropathology, University Medical Center Göttingen , Göttingen , Germany ; Institute of Neuronal Cell Biology, Technical University Munich , Munich , Germany ; German Center for Neurodegenerative Diseases (DZNE), Munich , Germany ; Department of Neuropathology, University Medical Center Leipzig , Leipzig , Germany ; Munich Cluster of Systems Neurology (SyNergy), Munich , Germany ; and Max Planck Institute of Experimental Medicine, Göttingen , Germany
| | - Sebastian Timmler
- Institute of Neuropathology, University Medical Center Göttingen , Göttingen , Germany ; Institute of Neuronal Cell Biology, Technical University Munich , Munich , Germany ; German Center for Neurodegenerative Diseases (DZNE), Munich , Germany ; Department of Neuropathology, University Medical Center Leipzig , Leipzig , Germany ; Munich Cluster of Systems Neurology (SyNergy), Munich , Germany ; and Max Planck Institute of Experimental Medicine, Göttingen , Germany
| | - Alonso Barrantes-Freer
- Institute of Neuropathology, University Medical Center Göttingen , Göttingen , Germany ; Institute of Neuronal Cell Biology, Technical University Munich , Munich , Germany ; German Center for Neurodegenerative Diseases (DZNE), Munich , Germany ; Department of Neuropathology, University Medical Center Leipzig , Leipzig , Germany ; Munich Cluster of Systems Neurology (SyNergy), Munich , Germany ; and Max Planck Institute of Experimental Medicine, Göttingen , Germany
| | - Mikael Simons
- Institute of Neuropathology, University Medical Center Göttingen , Göttingen , Germany ; Institute of Neuronal Cell Biology, Technical University Munich , Munich , Germany ; German Center for Neurodegenerative Diseases (DZNE), Munich , Germany ; Department of Neuropathology, University Medical Center Leipzig , Leipzig , Germany ; Munich Cluster of Systems Neurology (SyNergy), Munich , Germany ; and Max Planck Institute of Experimental Medicine, Göttingen , Germany
| |
Collapse
|
20
|
Huss A, Mojib-Yezdani F, Bachhuber F, Fangerau T, Lewerenz J, Otto M, Tumani H, Senel M. Association of cerebrospinal fluid kappa free light chains with the intrathecal polyspecific antiviral immune response in multiple sclerosis. Clin Chim Acta 2019; 498:148-153. [PMID: 31437445 DOI: 10.1016/j.cca.2019.08.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 08/15/2019] [Accepted: 08/18/2019] [Indexed: 11/20/2022]
Abstract
The polyspecific B-lymphocyte response to neurotropic viruses such as measles (M), rubella (R) and varicella zoster (Z), known as MRZ reaction, is to-date the most specific neurochemical marker for multiple sclerosis (MS). The aim of this study was to investigate a possible association of immunoglobulin (Ig) kappa (κ-) and lambda (λ-) free light chains (FLC) with the presence of the MRZ reaction in multiple sclerosis. Immunoglobulin κ- and λ-FLC, MRZ reaction, oligoclonal IgG bands (OCB), and cerebrospinal fluid (CSF) routine parameters were measured in 65 MS patients. OCB were detected in 97% of MS patients, intrathecal IgG synthesis according to Reiber was detectable in 57%, an elevated IgG index (>0.7) in 66% and the MRZR was positive in 45%. All investigated κ-values (CSF κFLC, CSF-serum ratio of κFLCs (QκFLC), and κFLC index (κFLC/QAlbumin)) were significantly higher in patients with positive MRZ reaction as compared to MRZ negative MS patients. In contrast, λ-values showed no significant differences. Additionally to the putative diagnostic sensitivity and prognostic value of κFLC, the association of κFLC with a highly specific neurochemical marker for MS - the MRZ reaction, especially the determination of κFLCs is an informative tool to assess the B-cell response and determine its extent in MS patients.
Collapse
Affiliation(s)
- André Huss
- Department of Neurology, University of Ulm, Ulm, Germany
| | | | | | - Tanja Fangerau
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Jan Lewerenz
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Hayrettin Tumani
- Department of Neurology, University of Ulm, Ulm, Germany; Specialty Hospital of Neurology Dietenbronn, Schwendi, Germany
| | - Makbule Senel
- Department of Neurology, University of Ulm, Ulm, Germany.
| |
Collapse
|
21
|
Yazdi A, Ghasemi‐Kasman M, Javan M. Possible regenerative effects of fingolimod (FTY720) in multiple sclerosis disease: An overview on remyelination process. J Neurosci Res 2019; 98:524-536. [DOI: 10.1002/jnr.24509] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Azadeh Yazdi
- Department of Physiology, School of Medicine Isfahan University of Medical Sciences Isfahan Iran
| | - Maryam Ghasemi‐Kasman
- Cellular and Molecular Biology Research Center Health Research Institute, Babol University of Medical Sciences Babol Iran
- Neuroscience Research Center Health Research Institute, Babol University of Medical Sciences Babol Iran
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences Tarbiat Modares University Tehran Iran
- Department of Brain and Cognitive Sciences, Cell Science Research Center Royan Institute for Stem Cell Biology and Technology, ACECR Tehran Iran
| |
Collapse
|
22
|
Unal DB, Caliari SR, Lampe KJ. Engineering biomaterial microenvironments to promote myelination in the central nervous system. Brain Res Bull 2019; 152:159-174. [PMID: 31306690 DOI: 10.1016/j.brainresbull.2019.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 06/09/2019] [Accepted: 07/08/2019] [Indexed: 01/01/2023]
Abstract
Promoting remyelination and/or minimizing demyelination are key therapeutic strategies under investigation for diseases and injuries like multiple sclerosis (MS), spinal cord injury, stroke, and virus-induced encephalopathy. Myelination is essential for efficacious neuronal signaling. This myelination process is originated by oligodendrocyte progenitor cells (OPCs) in the central nervous system (CNS). Resident OPCs are capable of both proliferation and differentiation, and also migration to demyelinated injury sites. OPCs can then engage with these unmyelinated or demyelinated axons and differentiate into myelin-forming oligodendrocytes (OLs). However this process is frequently incomplete and often does not occur at all. Biomaterial strategies can now be used to guide OPC and OL development with the goal of regenerating healthy myelin sheaths in formerly damaged CNS tissue. Growth and neurotrophic factors delivered from such materials can promote proliferation of OPCs or differentiation into OLs. While cell transplantation techniques have been used to replace damaged cells in wound sites, they have also resulted in poor transplant cell viability, uncontrollable differentiation, and poor integration into the host. Biomaterial scaffolds made from extracellular matrix (ECM) mimics that are naturally or synthetically derived can improve transplanted cell survival, support both transplanted and endogenous cell populations, and direct their fate. In particular, stiffness and degradability of these scaffolds are two parameters that can influence the fate of OPCs and OLs. The future outlook for biomaterials research includes 3D in vitro models of myelination / remyelination / demyelination to better mimic and study these processes. These models should provide simple relationships of myelination to microenvironmental biophysical and biochemical properties to inform improved therapeutic approaches.
Collapse
Affiliation(s)
- Deniz B Unal
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22903, United States
| | - Steven R Caliari
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22903, United States; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22903, United States
| | - Kyle J Lampe
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22903, United States.
| |
Collapse
|
23
|
Prineas JW, Lee S. Multiple Sclerosis: Destruction and Regeneration of Astrocytes in Acute Lesions. J Neuropathol Exp Neurol 2019; 78:140-156. [PMID: 30605525 PMCID: PMC6330170 DOI: 10.1093/jnen/nly121] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
There are reports that astrocyte perivascular endfeet are damaged in some cases of multiple sclerosis (MS). This study was designed to determine the origin and outcome of astrocyte damage in acute, resolving, and inactive plaques. Ten acute plaques from 10 early MS cases and 14 plaques of differing histological age from 9 subacute and chronic cases were examined immunohistochemically. Also examined were nonnecrotic early lesions in 3 patients with neuromyelitis optica (NMO). Plaques from 3 MS cases were examined electron microscopically. The edge zones in each of the 10 acute MS lesions revealed a complete loss of astrocyte cell bodies and their pericapillary, perineuronal, and perivascular foot processes. Dendrophagocytosis of degenerate astrocytes was observed. Astrocyte precursors, similar to those that replace destroyed astrocytes in nonnecrotic NMO lesions, were present in areas depleted of astrocytes. Resolving plaques were repopulated initially by stellate astrocytes that stained negatively for the water channel molecule aquaporin4 (AQP4). In older lesions, astrocytes were predominantly AQP4-positive. Loss and recovery of astrocytes in new MS lesions may be as important as myelin loss as a cause of conduction block responsible for symptoms in patients with relapsing and remitting and secondary progressive MS.
Collapse
Affiliation(s)
- John W Prineas
- Department of Medicine, The University of Sydney, Camperdown, NSW, Australia
| | - Sandra Lee
- Department of Medicine, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
24
|
Abstract
Endogenous remyelination of the CNS can be robust and restore function, yet in multiple sclerosis it becomes less complete with time. Promoting remyelination is a major therapeutic goal, both to restore function and to protect axons from degeneration. Remyelination is thought to depend on oligodendrocyte progenitor cells, giving rise to nascent remyelinating oligodendrocytes. Surviving, mature oligodendrocytes are largely regarded as being uninvolved. We have examined this question using two large animal models. In the first model, there is extensive demyelination and remyelination of the CNS, yet oligodendrocytes survive, and in recovered animals there is a mix of remyelinated axons interspersed between mature, thick myelin sheaths. Using 2D and 3D light and electron microscopy, we show that many oligodendrocytes are connected to mature and remyelinated myelin sheaths, which we conclude are cells that have reextended processes to contact demyelinated axons while maintaining mature myelin internodes. In the second model in vitamin B12-deficient nonhuman primates, we demonstrate that surviving mature oligodendrocytes extend processes and ensheath demyelinated axons. These data indicate that mature oligodendrocytes can participate in remyelination.
Collapse
|
25
|
Molecular Mechanisms of Oligodendrocyte Regeneration in White Matter-Related Diseases. Int J Mol Sci 2018; 19:ijms19061743. [PMID: 29895784 PMCID: PMC6032201 DOI: 10.3390/ijms19061743] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/25/2018] [Accepted: 06/06/2018] [Indexed: 12/13/2022] Open
Abstract
Even in adult brains, restorative mechanisms are still retained to maintain the microenvironment. Under the pathological conditions of central nervous system (CNS) diseases, several immature cells in the brain would be activated as a compensative response. As the concept of the neurovascular unit emphasizes, cell-cell interactions play important roles in this restorative process. White matter damage and oligodendrocyte loss are representative characteristics for many neurodegenerative diseases. In response to oligodendrocyte damage, residual oligodendrocyte precursor cells (OPCs) initiate their proliferation and differentiation for the purpose of remyelination. Although mechanisms of oligodendrogenesis and remyelination in CNS diseases are still mostly unknown and understudied, accumulated evidence now suggests that support from neighboring cells is necessary for OPC proliferation and differentiation. In this review, we first overview basic mechanisms of interaction between oligodendrocyte lineage cells and neighboring cells, and then introduce how oligodendrogenesis occurs under the conditions of neurodegenerative diseases, focusing on vascular cognitive impairment syndrome, Alzheimer’s disease, and multiple sclerosis.
Collapse
|
26
|
Valentin-Torres A, Savarin C, Barnett J, Bergmann CC. Blockade of sustained tumor necrosis factor in a transgenic model of progressive autoimmune encephalomyelitis limits oligodendrocyte apoptosis and promotes oligodendrocyte maturation. J Neuroinflammation 2018; 15:121. [PMID: 29690885 PMCID: PMC5916830 DOI: 10.1186/s12974-018-1164-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/18/2018] [Indexed: 01/02/2023] Open
Abstract
Background Tumor necrosis factor (TNF) is associated with several neurodegenerative disorders including multiple sclerosis (MS). Although TNF-targeted therapies have been largely unsuccessful in MS, recent preclinical data suggests selective soluble TNF inhibition can promote remyelination. This has renewed interest in regulation of TNF signaling in demyelinating disease, especially given the limited treatment options for progressive MS. Using a mouse model of progressive MS, this study evaluates the effects of sustained TNF on oligodendrocyte (OLG) apoptosis and OLG precursor cell (OPC) differentiation. Methods Induction of experimental autoimmune encephalomyelitis (EAE) in transgenic mice expressing a dominant-negative interferon-γ receptor under the human glial fibrillary acidic protein promoter (GFAPγR1Δ) causes severe non-remitting disease associated with sustained TNF. Therapeutic effects in GFAPγR1Δ mice treated with anti-TNF compared to control antibody during acute EAE were evaluated by assessing demyelinating lesion size, remyelination, OLG apoptosis, and OPC differentiation. Results More severe and enlarged demyelinating lesions in GFAPγR1Δ compared to wild-type (WT) mice were associated with increased OLG apoptosis and reduced differentiated CC1+Olig2+ OLG within lesions, as well as impaired upregulation of TNF receptor-2, suggesting impaired OPC differentiation. TNF blockade during acute EAE in GFAPγR1Δ both limited OLG apoptosis and enhanced OPC differentiation consistent with reduced lesion size and clinical recovery. TNF neutralization further limited increasing endothelin-1 (ET-1) expression in astrocytes and myeloid cells noted in lesions during disease progression in GFAPγR1Δ mice, supporting inhibitory effects of ET-1 on OPC maturation. Conclusion Our data implicate that IFNγ signaling to astrocytes is essential to limit a detrimental positive feedback loop of TNF and ET-1 production, which increases OLG apoptosis and impairs OPC differentiation. Interference of this cycle by TNF blockade promotes repair independent of TNFR2 and supports selective TNF targeting to mitigate progressive forms of MS. Electronic supplementary material The online version of this article (10.1186/s12974-018-1164-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alice Valentin-Torres
- Department of Neurosciences NC-30, Lerner Research Institute, The Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, 44195, USA.,Department of Regenerative Medicine, Athersys, Inc., 3201 Carnegie Ave., Cleveland, OH, 44115-2634, USA
| | - Carine Savarin
- Department of Neurosciences NC-30, Lerner Research Institute, The Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, 44195, USA
| | - Joslyn Barnett
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06520, USA
| | - Cornelia C Bergmann
- Department of Neurosciences NC-30, Lerner Research Institute, The Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, 44195, USA.
| |
Collapse
|
27
|
The extracellular matrix: Focus on oligodendrocyte biology and targeting CSPGs for remyelination therapies. Glia 2018; 66:1809-1825. [DOI: 10.1002/glia.23333] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 03/06/2018] [Accepted: 03/06/2018] [Indexed: 12/31/2022]
|
28
|
Zhang Q, Li Z, Wu S, Li X, Sang Y, Li J, Niu Y, Ding H. Myricetin alleviates cuprizone-induced behavioral dysfunction and demyelination in mice by Nrf2 pathway. Food Funct 2018; 7:4332-4342. [PMID: 27713953 DOI: 10.1039/c6fo00825a] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Multiple sclerosis (MS) is a demyelinating disease occurring in the central nervous system. In the present study, we evaluated the function of myricetin on the alleviation of behavioral dysfunction and myelin protection in the cuprizone-induced demyelination model. Mice were daily fed with fodder including 0.2% cuprizone and were administrated myricetin (100 mg kg-1) by gavage administration for 5 weeks. The treatment of myricetin ameliorated hyper-locomotion and behavior impairment induced by cuprizone toxicity. With the administration of myricetin, the demyelinating lesion was lessened via increasing the LFB staining area and myelin phosphatide protein (MBP) expression. In addition, myricetin evidently promoted Nrf2 translocation in the nuclear fraction and enhanced the HO-1 and NQO1 expression levels. Our data revealed that myricetin may be a potential candidate for mitigating motor defects and demyelination in a cuprizone-induced mouse model via activating the Nrf2 pathway.
Collapse
Affiliation(s)
- Qianying Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, P. R. China.
| | - Zhike Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, P. R. China.
| | - Shuangchan Wu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, P. R. China.
| | - Xiaofei Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, P. R. China.
| | - Ying Sang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, P. R. China.
| | - Jian Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, P. R. China.
| | - Yunhui Niu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, P. R. China.
| | - Hong Ding
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, P. R. China.
| |
Collapse
|
29
|
Pollok K, Mothes R, Ulbricht C, Liebheit A, Gerken JD, Uhlmann S, Paul F, Niesner R, Radbruch H, Hauser AE. The chronically inflamed central nervous system provides niches for long-lived plasma cells. Acta Neuropathol Commun 2017; 5:88. [PMID: 29178933 PMCID: PMC5702095 DOI: 10.1186/s40478-017-0487-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 10/30/2017] [Indexed: 11/11/2022] Open
Abstract
Although oligoclonal bands in the cerebrospinal fluid have been a hallmark of multiple sclerosis diagnosis for over three decades, the role of antibody-secreting cells in multiple sclerosis remains unclear. T and B cells are critical for multiple sclerosis pathogenesis, but increasing evidence suggests that plasma cells also contribute, through secretion of autoantibodies. Long-lived plasma cells are known to drive various chronic inflammatory conditions as e.g. systemic lupus erythematosus, however, to what extent they are present in autoimmune central nervous system inflammation has not yet been investigated. In brain biopsies from multiple sclerosis patients and other neurological diseases, we could detect non-proliferating plasma cells (CD138+Ki67−) in the parenchyma. Based on this finding, we hypothesized that long-lived plasma cells can persist in the central nervous system (CNS). In order to test this hypothesis, we adapted the multiple sclerosis mouse model experimental autoimmune encephalomyelitis to generate a B cell memory response. Plasma cells were found in the meninges and the parenchyma of the inflamed spinal cord, surrounded by tissue areas resembling survival niches for these cells, characterized by an up-regulation of chemokines (CXCL12), adhesion molecules (VCAM-1) and survival factors (APRIL and BAFF). In order to determine the lifetime of plasma cells in the chronically inflamed CNS, we labeled the DNA of proliferating cells with 5-ethynyl-2′-deoxyuridine (EdU). Up to five weeks later, we could detect EdU+ long-lived plasma cells in the murine CNS. To our knowledge, this is the first study describing non-proliferating plasma cells directly in the target tissue of a chronic inflammation in humans, as well as the first evidence demonstrating the ability of plasma cells to persist in the CNS, and the ability of the chronically inflamed CNS tissue to promote this persistence. Hence, our results suggest that the CNS provides survival niches for long-lived plasma cells, similar to the niches found in other organs. Targeting these cells in the CNS offers new perspectives for treatment of chronic autoimmune neuroinflammatory diseases, especially in patients who do not respond to conventional therapies.
Collapse
|
30
|
Timing of Future Remyelination Therapies and Their Potential to Stop Multiple Sclerosis Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 958:161-170. [PMID: 28093713 DOI: 10.1007/978-3-319-47861-6_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Prior to the onset of demyelination in multiple sclerosis (MS), early oligodendrocyte injury, axonal degeneration and astroglial scarring occur. The irreversible progressive phase of MS begins when the axonal loss threshold is reached. Progressive disease onset has the highest impact on a poor prognosis in MS. Conversion to progressive disease is essentially an age-dependent process independent of disease duration and initial disease course. Although prevention of relapses has been the primary approach in the disease management, incomplete recovery from even the first relapse correlates with the long-term neurodegenerative phenotype of progressive MS onset. Therefore, the provider should review each patient's potential for relapse-related disability and start DMDs with the goal of preventing relapses. Existing immunomodulatory medications used to prevent MS relapses do not prevent long-term disability, which requires agents focused on remyelination and axonal repair. If applied immediately after a relapse rather than during the progressive phase of MS, remyelination-stimulating strategies may result in full recovery and prevention of long-term neurodegeneration and progressive disease course.
Collapse
|
31
|
Hashimoto M, Yamamoto S, Iwasa K, Yamashina K, Ishikawa M, Maruyama K, Bosetti F, Yoshikawa K. The flavonoid Baicalein attenuates cuprizone-induced demyelination via suppression of neuroinflammation. Brain Res Bull 2017; 135:47-52. [PMID: 28923306 DOI: 10.1016/j.brainresbull.2017.09.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 08/24/2017] [Accepted: 09/13/2017] [Indexed: 10/18/2022]
Abstract
Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system characterized by recurrent and progressive demyelination/remyelination cycles, neuroinflammation, oligodendrocyte loss, and axonal pathology. Baicalein isolated from the roots of Scutellaria baicalensis has been shown to exert anti-inflammatory and antioxidant effects. The cuprizone model is an established mouse model of MS and causes demyelination and motor dysfunction and induces neuroinflammation, such as glial activation and pro-inflammatory cytokine production. To determine whether Baicalein attenuates cuprizone-induced demyelination, we administrated Baicalein to cuprizone-exposed mice. Baicalein attenuated weight loss (P<0.05) and motor dysfunction (P<0.05) in the cuprizone model mice. Baicalein treatment effectively suppressed the demyelination (P<0.01) and gene expressions of CNP (P<0.05) and MBP (P<0.05). Baicalein treatment also inhibited the cuprizone-induced increase in Iba1-positive microglia (P<0.001), GFAP-positive astrocytes (P<0.001), and the gene expressions of CD11b (P<0.01), GFAP (P<0.05), TNFα (P<0.05), IL-1β (P<0.05), and iNOS (p<0.01). We found that Baicalein treatment attenuated cuprizone-induced demyelination, glial activation, pro-inflammatory cytokine expression, and motor dysfunction. Our results suggest that Baicalein may be a useful therapeutic agent in demyelinating diseases to suppress neuroinflammation.
Collapse
Affiliation(s)
- Miho Hashimoto
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Morohongo Moroyama-machi, Iruma-gun, Saitama, Japan
| | - Shinji Yamamoto
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Morohongo Moroyama-machi, Iruma-gun, Saitama, Japan
| | - Kensuke Iwasa
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Morohongo Moroyama-machi, Iruma-gun, Saitama, Japan
| | - Kota Yamashina
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Morohongo Moroyama-machi, Iruma-gun, Saitama, Japan
| | - Masaki Ishikawa
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Morohongo Moroyama-machi, Iruma-gun, Saitama, Japan
| | - Kei Maruyama
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Morohongo Moroyama-machi, Iruma-gun, Saitama, Japan
| | - Francesca Bosetti
- Molecular Neuroscience Unit, Brain Physiology and Metabolism Section, National Institute on Aging, National Institute of Health, Bethesda, MD, USA
| | - Keisuke Yoshikawa
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Morohongo Moroyama-machi, Iruma-gun, Saitama, Japan; Molecular Neuroscience Unit, Brain Physiology and Metabolism Section, National Institute on Aging, National Institute of Health, Bethesda, MD, USA.
| |
Collapse
|
32
|
Yamamoto S, Yamashina K, Ishikawa M, Gotoh M, Yagishita S, Iwasa K, Maruyama K, Murakami-Murofushi K, Yoshikawa K. Protective and therapeutic role of 2-carba-cyclic phosphatidic acid in demyelinating disease. J Neuroinflammation 2017; 14:142. [PMID: 28732510 PMCID: PMC5521126 DOI: 10.1186/s12974-017-0923-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 07/14/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Multiple sclerosis is a neuroinflammatory demyelinating and neurodegenerative disease of the central nervous system characterized by recurrent and progressive demyelination/remyelination cycles, neuroinflammation, oligodendrocyte loss, demyelination, and axonal degeneration. Cyclic phosphatidic acid (cPA) is a natural phospholipid mediator with a unique cyclic phosphate ring structure at the sn-2 and sn-3 positions of the glycerol backbone. We reported earlier that cPA elicits a neurotrophin-like action and protects hippocampal neurons from ischemia-induced delayed neuronal death. We designed, chemically synthesized, and metabolically stabilized derivatives of cPA: 2-carba-cPA (2ccPA), a synthesized compound in which one of the phosphate oxygen molecules is replaced with a methylene group at the sn-2 position. In the present study, we investigated whether 2ccPA exerts protective effects in oligodendrocytes and suppresses pathology in the two most common mouse models of multiple sclerosis. METHODS To evaluate whether 2ccPA has potential beneficial effects on the pathology of multiple sclerosis, we investigated the effects of 2ccPA on oligodendrocyte cell death in vitro and administrated 2ccPA to mouse models of experimental autoimmune encephalomyelitis (EAE) and cuprizone-induced demyelination. RESULTS We demonstrated that 2ccPA suppressed the CoCl2-induced increase in the Bax/Bcl-2 protein expression ratio and phosphorylation levels of p38MAPK and JNK protein. 2ccPA treatment reduced cuprizone-induced demyelination, microglial activation, NLRP3 inflammasome, and motor dysfunction. Furthermore, 2ccPA treatment reduced autoreactive T cells and macrophages, spinal cord injury, and pathological scores in EAE, the autoimmune multiple sclerosis mouse model. CONCLUSIONS We demonstrated that 2ccPA protected oligodendrocytes via suppression of the mitochondrial apoptosis pathway. Also, we found beneficial effects of 2ccPA in the multiperiod of cuprizone-induced demyelination and the pathology of EAE. These data indicate that 2ccPA may be a promising compound for the development of new drugs to treat demyelinating disease and ameliorate the symptoms of multiple sclerosis.
Collapse
Affiliation(s)
- Shinji Yamamoto
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
| | - Kota Yamashina
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
| | - Masaki Ishikawa
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
| | - Mari Gotoh
- Endowed Research Division of Human Welfare Sciences, Ochanomizu University, 2-1-1 Ohtsuka, Bunkyo-ku, Tokyo, 112-8610, Japan
| | - Sosuke Yagishita
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
| | - Kensuke Iwasa
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
| | - Kei Maruyama
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
| | - Kimiko Murakami-Murofushi
- Endowed Research Division of Human Welfare Sciences, Ochanomizu University, 2-1-1 Ohtsuka, Bunkyo-ku, Tokyo, 112-8610, Japan
| | - Keisuke Yoshikawa
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan.
| |
Collapse
|
33
|
Brierley CMH, Crang AJ, Iwashita Y, Gilson JM, Scolding NJ, Compston DAS, Blakemore WF. Remyelination of Demyelinated CNS Axons by Transplanted Human Schwann Cells: The Deleterious Effect of Contaminating Fibroblasts. Cell Transplant 2017; 10:305-315. [DOI: 10.3727/000000001783986774] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Areas of demyelination can be remyelinated by transplanting myelin-forming cells. Schwann cells are the naturally remyelinating cells of the peripheral nervous system and have a number of features that may make them attractive for cell implantation therapies in multiple sclerosis, in which spontaneous but limited Schwann cell remyelination has been well documented. Schwann cells can be expanded in vitro, potentially affording the opportunity of autologous transplantation; and they might also be spared the demyelinating process in multiple sclerosis. Although rat, cat, and monkey Schwann cells have been transplanted into rodent demyelinating lesions, the behavior of transplanted human Schwann cells has not been evaluated. In this study we examined the consequences of injecting human Schwann cells into areas of acute demyelination in the spinal cords of adult rats. We found that transplants containing significant fibroblast contamination resulted in deposition of large amounts of collagen and extensive axonal degeneration. However, Schwann cell preparations that had been purified by positive immunoselection using antibodies to human low-affinity nerve growth factor receptor containing less than 10% fibroblasts were associated with remyelination. This result indicates that fibroblast contamination of human Schwann cells represents a greater problem than would have been appreciated from previous studies.
Collapse
Affiliation(s)
- C. M. H. Brierley
- Department of Neurology and Cambridge Centre for Brain Repair, Forvie Site, Robinson Way, Cambridge CB2 2PY, UK
| | - A. J. Crang
- Department of Clinical Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 OES, UK
| | - Y. Iwashita
- Department of Clinical Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 OES, UK
| | - J. M. Gilson
- Department of Clinical Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 OES, UK
| | - N. J. Scolding
- Department of Clinical Neurosciences, Frenchay Hospital, Bristol BS16 1LE, UK
| | - D. A. S. Compston
- Department of Neurology and Cambridge Centre for Brain Repair, Forvie Site, Robinson Way, Cambridge CB2 2PY, UK
| | - W. F. Blakemore
- Department of Clinical Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 OES, UK
| |
Collapse
|
34
|
Cole KLH, Early JJ, Lyons DA. Drug discovery for remyelination and treatment of MS. Glia 2017; 65:1565-1589. [PMID: 28618073 DOI: 10.1002/glia.23166] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/20/2017] [Accepted: 04/24/2017] [Indexed: 12/19/2022]
Abstract
Glia constitute the majority of the cells in our nervous system, yet there are currently no drugs that target glia for the treatment of disease. Given ongoing discoveries of the many roles of glia in numerous diseases of the nervous system, this is likely to change in years to come. Here we focus on the possibility that targeting the oligodendrocyte lineage to promote regeneration of myelin (remyelination) represents a therapeutic strategy for the treatment of the demyelinating disease multiple sclerosis, MS. We discuss how hypothesis driven studies have identified multiple targets and pathways that can be manipulated to promote remyelination in vivo, and how this work has led to the first ever remyelination clinical trials. We also highlight how recent chemical discovery screens have identified a host of small molecule compounds that promote oligodendrocyte differentiation in vitro. Some of these compounds have also been shown to promote myelin regeneration in vivo, with one already being trialled in humans. Promoting oligodendrocyte differentiation and remyelination represents just one potential strategy for the treatment of MS. The pathology of MS is complex, and its complete amelioration may require targeting multiple biological processes in parallel. Therefore, we present an overview of new technologies and models for phenotypic analyses and screening that can be exploited to study complex cell-cell interactions in in vitro and in vivo systems. Such technological platforms will provide insight into fundamental mechanisms and increase capacities for drug-discovery of relevance to glia and currently intractable disorders of the CNS.
Collapse
Affiliation(s)
- Katy L H Cole
- Centre for Neuroregeneration, MS Society Centre for Translational Research, Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, EH16 4SB, United Kingdom
| | - Jason J Early
- Centre for Neuroregeneration, MS Society Centre for Translational Research, Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, EH16 4SB, United Kingdom
| | - David A Lyons
- Centre for Neuroregeneration, MS Society Centre for Translational Research, Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, EH16 4SB, United Kingdom
| |
Collapse
|
35
|
Cui QL, Khan D, Rone M, T.S. Rao V, Johnson RM, Lin YH, Bilodeau PA, Hall JA, Rodriguez M, Kennedy TE, Ludwin SK, Antel JP. Sublethal oligodendrocyte injury: A reversible condition in multiple sclerosis? Ann Neurol 2017; 81:811-824. [DOI: 10.1002/ana.24944] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/27/2017] [Accepted: 04/27/2017] [Indexed: 01/13/2023]
Affiliation(s)
- Qiao-Ling Cui
- Department of Neurology and Neurosurgery; Montreal Neurological Institute and Hospital, McGill University; Montreal Quebec Canada
| | - Damla Khan
- Department of Neurology and Neurosurgery; Montreal Neurological Institute and Hospital, McGill University; Montreal Quebec Canada
| | - Malena Rone
- Department of Neurology and Neurosurgery; Montreal Neurological Institute and Hospital, McGill University; Montreal Quebec Canada
| | - Vijayaraghava T.S. Rao
- Department of Neurology and Neurosurgery; Montreal Neurological Institute and Hospital, McGill University; Montreal Quebec Canada
| | | | - Yun Hsuan Lin
- Department of Neurology and Neurosurgery; Montreal Neurological Institute and Hospital, McGill University; Montreal Quebec Canada
| | - Philippe-Antoine Bilodeau
- Department of Neurology and Neurosurgery; Montreal Neurological Institute and Hospital, McGill University; Montreal Quebec Canada
| | - Jeffery A. Hall
- Department of Neurology and Neurosurgery; Montreal Neurological Institute and Hospital, McGill University; Montreal Quebec Canada
| | | | - Timothy E. Kennedy
- Department of Neurology and Neurosurgery; Montreal Neurological Institute and Hospital, McGill University; Montreal Quebec Canada
| | - Samuel K. Ludwin
- Department of Neurology and Neurosurgery; Montreal Neurological Institute and Hospital, McGill University; Montreal Quebec Canada
- Department of Pathology and Molecular Medicine; Queens University; Kingston Ontario Canada
| | - Jack P. Antel
- Department of Neurology and Neurosurgery; Montreal Neurological Institute and Hospital, McGill University; Montreal Quebec Canada
| |
Collapse
|
36
|
Karttunen MJ, Czopka T, Goedhart M, Early JJ, Lyons DA. Regeneration of myelin sheaths of normal length and thickness in the zebrafish CNS correlates with growth of axons in caliber. PLoS One 2017; 12:e0178058. [PMID: 28542521 PMCID: PMC5444792 DOI: 10.1371/journal.pone.0178058] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/08/2017] [Indexed: 01/17/2023] Open
Abstract
Demyelination is observed in numerous diseases of the central nervous system, including multiple sclerosis (MS). However, the endogenous regenerative process of remyelination can replace myelin lost in disease, and in various animal models. Unfortunately, the process of remyelination often fails, particularly with ageing. Even when remyelination occurs, it is characterised by the regeneration of myelin sheaths that are abnormally thin and short. This imperfect remyelination is likely to have implications for the restoration of normal circuit function and possibly the optimal metabolic support of axons. Here we describe a larval zebrafish model of demyelination and remyelination. We employ a drug-inducible cell ablation system with which we can consistently ablate 2/3rds of oligodendrocytes in the larval zebrafish spinal cord. This leads to a concomitant demyelination of 2/3rds of axons in the spinal cord, and an innate immune response over the same time period. We find restoration of the normal number of oligodendrocytes and robust remyelination approximately two weeks after induction of cell ablation, whereby myelinated axon number is restored to control levels. Remarkably, we find that myelin sheaths of normal length and thickness are regenerated during this time. Interestingly, we find that axons grow significantly in caliber during this period of remyelination. This suggests the possibility that the active growth of axons may stimulate the regeneration of myelin sheaths of normal dimensions.
Collapse
Affiliation(s)
- Marja J. Karttunen
- Centre for Neuroregeneration, MS Society Centre for Translational Research, Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Tim Czopka
- Centre for Neuroregeneration, MS Society Centre for Translational Research, Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom
- Institute of Neuronal Cell Biology, Technische Universität München, München, Germany
| | - Marieke Goedhart
- Centre for Neuroregeneration, MS Society Centre for Translational Research, Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Jason J. Early
- Centre for Neuroregeneration, MS Society Centre for Translational Research, Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom
| | - David A. Lyons
- Centre for Neuroregeneration, MS Society Centre for Translational Research, Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
37
|
Akcali A, Bal B, Erbagci B. Circulating IGF-1, IGFB-3, GH and TSH levels in multiple sclerosis and their relationship with treatment. Neurol Res 2017; 39:606-611. [DOI: 10.1080/01616412.2017.1321711] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Aylin Akcali
- Faculty of Medicine, Department of Neurology, Gaziantep University, Gaziantep, Turkey
| | - Berrin Bal
- Merkezefendi State Hospital, Neurology Clinic, Manisa, Turkey
| | - Binnur Erbagci
- Faculty of Medicine, Department of Biochemistry, Gaziantep University, Gaziantep, Turkey
| |
Collapse
|
38
|
Lecca D, Marangon D, Coppolino GT, Méndez AM, Finardi A, Costa GD, Martinelli V, Furlan R, Abbracchio MP. MiR-125a-3p timely inhibits oligodendroglial maturation and is pathologically up-regulated in human multiple sclerosis. Sci Rep 2016; 6:34503. [PMID: 27698367 PMCID: PMC5048305 DOI: 10.1038/srep34503] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 09/09/2016] [Indexed: 12/31/2022] Open
Abstract
In the mature central nervous system (CNS), oligodendrocytes provide support and insulation to axons thanks to the production of a myelin sheath. During their maturation to myelinating cells, oligodendroglial precursors (OPCs) follow a very precise differentiation program, which is finely orchestrated by transcription factors, epigenetic factors and microRNAs (miRNAs), a class of small non-coding RNAs involved in post-transcriptional regulation. Any alterations in this program can potentially contribute to dysregulated myelination, impaired remyelination and neurodegenerative conditions, as it happens in multiple sclerosis (MS). Here, we identify miR-125a-3p, a developmentally regulated miRNA, as a new actor of oligodendroglial maturation, that, in the mammalian CNS regulates the expression of myelin genes by simultaneously acting on several of its already validated targets. In cultured OPCs, over-expression of miR-125a-3p by mimic treatment impairs while its inhibition with an antago-miR stimulates oligodendroglial maturation. Moreover, we show that miR-125a-3p levels are abnormally high in the cerebrospinal fluid of MS patients bearing active demyelinating lesions, suggesting that its pathological upregulation may contribute to MS development, at least in part by blockade of OPC differentiation leading to impaired repair of demyelinated lesions.
Collapse
Affiliation(s)
- Davide Lecca
- Laboratory of Molecular and Cellular Pharmacology of the Purinergic Transmission, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, 20133, Italy
| | - Davide Marangon
- Laboratory of Molecular and Cellular Pharmacology of the Purinergic Transmission, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, 20133, Italy
| | - Giusy T Coppolino
- Laboratory of Molecular and Cellular Pharmacology of the Purinergic Transmission, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, 20133, Italy
| | - Aida Menéndez Méndez
- Departamento de Bioquímica y Biología Molecular IV, Universidad Complutense de Madrid, 28040, Spain
| | - Annamaria Finardi
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Gloria Dalla Costa
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Vittorio Martinelli
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Roberto Furlan
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Maria P Abbracchio
- Laboratory of Molecular and Cellular Pharmacology of the Purinergic Transmission, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, 20133, Italy
| |
Collapse
|
39
|
Lim JL, van der Pol SMA, Baron W, McCord JM, de Vries HE, van Horssen J. Protandim Protects Oligodendrocytes against an Oxidative Insult. Antioxidants (Basel) 2016; 5:antiox5030030. [PMID: 27618111 PMCID: PMC5039579 DOI: 10.3390/antiox5030030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/02/2016] [Indexed: 01/23/2023] Open
Abstract
Oligodendrocyte damage and loss are key features of multiple sclerosis (MS) pathology. Oligodendrocytes appear to be particularly vulnerable to reactive oxygen species (ROS) and cytokines, such as tumor necrosis factor-α (TNF), which induce cell death and prevent the differentiation of oligodendrocyte progenitor cells (OPCs). Here, we investigated the efficacy of sulforaphane (SFN), monomethyl fumarate (MMF) and Protandim to induce Nrf2-regulated antioxidant enzyme expression, and protect oligodendrocytes against ROS-induced cell death and ROS-and TNF-mediated inhibition of OPC differentiation. OLN-93 cells and primary rat oligodendrocytes were treated with SFN, MMF or Protandim resulting in significant induction of Nrf2-driven (antioxidant) proteins heme oygenase-1, nicotinamide adenine dinucleotide phosphate (NADPH): quinone oxidoreductase-1 and p62/SQSTM1, as analysed by Western blotting. After incubation with the compounds, oligodendrocytes were exposed to hydrogen peroxide. Protandim most potently promoted oligodendrocyte cell survival as measured by live/death viability assay. Moreover, OPCs were treated with Protandim or vehicle control prior to exposing them to TNF or hydrogen peroxide for five days, which inhibited OPC differentiation. Protandim significantly promoted OPC differentiation under influence of ROS, but not TNF. Protandim, a combination of five herbal ingredients, potently induces antioxidants in oligodendrocytes and is able to protect oligodendrocytes against oxidative stress by preventing ROS-induced cell death and promoting OPC differentiation.
Collapse
Affiliation(s)
- Jamie L Lim
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Neuroscience Campus Amsterdam, 1081 HZ Amsterdam, the Netherlands.
| | - Susanne M A van der Pol
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Neuroscience Campus Amsterdam, 1081 HZ Amsterdam, the Netherlands.
| | - Wia Baron
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, the Netherlands.
| | - Joe M McCord
- Department of Medicine, Division of Pulmonary Science and Critical Care Medicine, University of Colorado at Denver, Aurora, CO 80045, USA.
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Neuroscience Campus Amsterdam, 1081 HZ Amsterdam, the Netherlands.
| | - Jack van Horssen
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Neuroscience Campus Amsterdam, 1081 HZ Amsterdam, the Netherlands.
| |
Collapse
|
40
|
Tse KH, Herrup K. DNA damage in the oligodendrocyte lineage and its role in brain aging. Mech Ageing Dev 2016; 161:37-50. [PMID: 27235538 DOI: 10.1016/j.mad.2016.05.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/23/2016] [Accepted: 05/25/2016] [Indexed: 11/25/2022]
Abstract
Myelination is a recent evolutionary addition that significantly enhances the speed of transmission in the neural network. Even slight defects in myelin integrity impair performance and enhance the risk of neurological disorders. Indeed, myelin degeneration is an early and well-recognized neuropathology that is age associated, but appears before cognitive decline. Myelin is only formed by fully differentiated oligodendrocytes, but the entire oligodendrocyte lineage are clear targets of the altered chemistry of the aging brain. As in neurons, unrepaired DNA damage accumulates in the postmitotic oligodendrocyte genome during normal aging, and indeed may be one of the upstream causes of cellular aging - a fact well illustrated by myelin co-morbidity in premature aging syndromes arising from deficits in DNA repair enzymes. The clinical and experimental evidence from Alzheimer's disease, progeroid syndromes, ataxia-telangiectasia and other conditions strongly suggest that oligodendrocytes may in fact be uniquely vulnerable to oxidative DNA damage. If this damage remains unrepaired, as is increasingly true in the aging brain, myelin gene transcription and oligodendrocyte differentiation is impaired. Delineating the relationships between early myelin loss and DNA damage in brain aging will offer an additional dimension outside the neurocentric view of neurodegenerative disease.
Collapse
Affiliation(s)
- Kai-Hei Tse
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | - Karl Herrup
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
41
|
Detection of intrathecal immunoglobulin G synthesis by capillary isoelectric focusing immunoassay in oligoclonal band negative multiple sclerosis. J Neurol 2016; 263:954-960. [DOI: 10.1007/s00415-016-8094-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 01/24/2023]
|
42
|
Kallaur AP, Reiche EMV, Oliveira SR, Simão ANC, Pereira WLDCJ, Alfieri DF, Flauzino T, Proença CDM, Lozovoy MAB, Kaimen-Maciel DR, Maes M. Genetic, Immune-Inflammatory, and Oxidative Stress Biomarkers as Predictors for Disability and Disease Progression in Multiple Sclerosis. Mol Neurobiol 2016; 54:31-44. [PMID: 26732588 DOI: 10.1007/s12035-015-9648-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/17/2015] [Indexed: 12/17/2022]
Abstract
The aim of this study was to evaluate the TNFβ NcoI polymorphism (rs909253) and immune-inflammatory, oxidative, and nitrosative stress (IO&NS) biomarkers as predictors of disease progression in multiple sclerosis (MS). We included 212 MS patients (150 female, 62 male, mean (±standard deviation (SD)) age = 42.7 ± 13.8 years) and 249 healthy controls (177 female, 72 male, 36.8 ± 11 years). The disability was measured the Expanded Disability Status Scale (EDSS) in 2006 and 2011. We determined the TNFβ NcoI polymorphism and serum levels of interleukin (IL)-6, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, IL-4, IL-10, and IL-17, albumin, ferritin, and plasma levels of lipid hydroperoxides (CL-LOOH), carbonyl protein, advanced oxidation protein products (AOPPs), nitric oxide metabolites (NOx), and total radical-trapping antioxidant parameter (TRAP). The mean EDSS (±SD) in 2006 was 1.62 ± 2.01 and in 2011 3.16 ± 2.29, and disease duration was 7.34 ± 7.0 years. IL-10, TNF-α, IFN-γ, AOPP, and NOx levels were significantly higher and IL-4 lower in MS patients with a higher 2011 EDSS scores (≥3) as compared with those with EDSS < 3. The actual increases in EDSS from 2006 to 2011 were positively associated with TNF-α and IFN-γ. Increased IFN-γ values were associated with higher pyramidal symptoms and increased IL-6 with sensitive symptoms. Increased carbonyl protein and IL-10 but lowered albumin levels predicted cerebellar symptoms. The TNFB1/B2 genotype decreased risk towards progression of pyramidal symptoms. Treatments with IFN-β and glatiramer acetate significantly reduced TNF-α but did not affect the other IO&NS biomarkers or disease progression. Taken together, IO&NS biomarkers and NcoI TNFβ genotypes predict high disability in MS and are associated with different aspects of disease progression. New drugs to treat MS should also target oxidative stress pathways.
Collapse
Affiliation(s)
- Ana Paula Kallaur
- Health Sciences Postgraduate Program, Health Sciences Center, State University of Londrina, Londrina, Paraná, 86.038-440, Brazil
| | - Edna Maria Vissoci Reiche
- Department of Pathology, Clinical Analysis and Toxicology, Health Sciences Center, State University of Londrina, Av. Robert Koch, 60, Londrina, Paraná, CEP 86.038-440, Brazil.
| | - Sayonara Rangel Oliveira
- Health Sciences Postgraduate Program, Health Sciences Center, State University of Londrina, Londrina, Paraná, 86.038-440, Brazil
| | - Andrea Name Colado Simão
- Department of Pathology, Clinical Analysis and Toxicology, Health Sciences Center, State University of Londrina, Av. Robert Koch, 60, Londrina, Paraná, CEP 86.038-440, Brazil
| | - Wildea Lice de Carvalho Jennings Pereira
- Health Sciences Postgraduate Program, Health Sciences Center, State University of Londrina, Londrina, Paraná, 86.038-440, Brazil.,Outpatient Clinic for Demyelinating Diseases, University Hospital, State University of Londrina, Londrina, Paraná, 86061-335, Brazil
| | - Daniela Frizon Alfieri
- Health Sciences Postgraduate Program, Health Sciences Center, State University of Londrina, Londrina, Paraná, 86.038-440, Brazil
| | - Tamires Flauzino
- Health Sciences Postgraduate Program, Health Sciences Center, State University of Londrina, Londrina, Paraná, 86.038-440, Brazil
| | - Caio de Meleck Proença
- Outpatient Clinic for Demyelinating Diseases, University Hospital, State University of Londrina, Londrina, Paraná, 86061-335, Brazil
| | - Marcell Alysson Batisti Lozovoy
- Department of Pathology, Clinical Analysis and Toxicology, Health Sciences Center, State University of Londrina, Av. Robert Koch, 60, Londrina, Paraná, CEP 86.038-440, Brazil
| | - Damacio Ramón Kaimen-Maciel
- Outpatient Clinic for Demyelinating Diseases, University Hospital, State University of Londrina, Londrina, Paraná, 86061-335, Brazil.,Department of Clinical Medicine, Health Sciences Center, State University of Londrina, Londrina, Paraná, 86.038-440, Brazil
| | - Michael Maes
- Impact Strategic Research Centre, School of Medicine, Deakin University, Geelong, Victoria, Australia.,Department of Psychiatry, King Chulalongkorn Memorial Hospital, Chulalongkorn, Bangkok, Thailand
| |
Collapse
|
43
|
Alexopoulos H, Biba A, Dalakas MC. Anti-B-Cell Therapies in Autoimmune Neurological Diseases: Rationale and Efficacy Trials. Neurotherapeutics 2016; 13:20-33. [PMID: 26566961 PMCID: PMC4720683 DOI: 10.1007/s13311-015-0402-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
B cells have an ever-increasing role in the etiopathology of a number of autoimmune neurological disorders, acting as antibody-producing cells and, most importantly, as sensors, coordinators, and regulators of the immune response. B cells, among other functions, regulate the T-cell activation process through their participation in antigen presentation and production of cytokines. The availability of monoclonal antibodies or fusion proteins against B-cell surface molecules or B-cell trophic factors bestows a rational approach for treating autoimmune neurological disorders, even when T cells are the main effector cells. This review summarizes basic aspects of B-cell biology, discusses the role(s) of B cells in neurological autoimmunity, and presents anti-B-cell drugs that are either currently on the market or are expected to be available in the near future for treating neurological autoimmune disorders.
Collapse
Affiliation(s)
- Harry Alexopoulos
- Neuroimmunology Unit, Department of Pathophysiology, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Angie Biba
- Neuroimmunology Unit, Department of Pathophysiology, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Marinos C Dalakas
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
44
|
Veber D, Scalabrino G. Are PrPCs involved in some human myelin diseases? Relating experimental studies to human pathology. J Neurol Sci 2015; 359:396-403. [DOI: 10.1016/j.jns.2015.09.365] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/04/2015] [Accepted: 09/23/2015] [Indexed: 11/29/2022]
|
45
|
Khorooshi R, Asgari N, Mørch MT, Berg CT, Owens T. Hypersensitivity Responses in the Central Nervous System. Front Immunol 2015; 6:517. [PMID: 26500654 PMCID: PMC4595775 DOI: 10.3389/fimmu.2015.00517] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/22/2015] [Indexed: 12/29/2022] Open
Abstract
Immune-mediated tissue damage or hypersensitivity can be mediated by autospecific IgG antibodies. Pathology results from activation of complement, and antibody-dependent cellular cytotoxicity, mediated by inflammatory effector leukocytes include macrophages, natural killer cells, and granulocytes. Antibodies and complement have been associated to demyelinating pathology in multiple sclerosis (MS) lesions, where macrophages predominate among infiltrating myeloid cells. Serum-derived autoantibodies with predominant specificity for the astrocyte water channel aquaporin-4 (AQP4) are implicated as inducers of pathology in neuromyelitis optica (NMO), a central nervous system (CNS) demyelinating disease where activated neutrophils infiltrate, unlike in MS. The most widely used model for MS, experimental autoimmune encephalomyelitis, is an autoantigen-immunized disease that can be transferred to naive animals with CD4+ T cells, but not with antibodies. By contrast, NMO-like astrocyte and myelin pathology can be transferred to mice with AQP4–IgG from NMO patients. This is dependent on complement, and does not require T cells. Consistent with clinical observations that interferon-beta is ineffective as a therapy for NMO, NMO-like pathology is significantly reduced in mice lacking the Type I IFN receptor. In MS, there is evidence for intrathecal synthesis of antibodies as well as blood–brain barrier (BBB) breakdown, whereas in NMO, IgG accesses the CNS from blood. Transfer models involve either direct injection of antibody and complement to the CNS, or experimental manipulations to induce BBB breakdown. We here review studies in MS and NMO that elucidate roles for IgG and complement in the induction of BBB breakdown, astrocytopathy, and demyelinating pathology. These studies point to significance of T-independent effector mechanisms in neuroinflammation.
Collapse
Affiliation(s)
- Reza Khorooshi
- Department of Neurobiology Research, Institute for Molecular Medicine, University of Southern Denmark , Odense , Denmark
| | - Nasrin Asgari
- Department of Neurobiology Research, Institute for Molecular Medicine, University of Southern Denmark , Odense , Denmark ; Department of Neurology, Vejle Hospital , Vejle , Denmark
| | - Marlene Thorsen Mørch
- Department of Neurobiology Research, Institute for Molecular Medicine, University of Southern Denmark , Odense , Denmark
| | - Carsten Tue Berg
- Department of Neurobiology Research, Institute for Molecular Medicine, University of Southern Denmark , Odense , Denmark
| | - Trevor Owens
- Department of Neurobiology Research, Institute for Molecular Medicine, University of Southern Denmark , Odense , Denmark
| |
Collapse
|
46
|
Lee DH, Steinacker P, Seubert S, Turnescu T, Melms A, Manzel A, Otto M, Linker RA. Role of glial 14-3-3 gamma protein in autoimmune demyelination. J Neuroinflammation 2015; 12:187. [PMID: 26438180 PMCID: PMC4595275 DOI: 10.1186/s12974-015-0381-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 08/18/2015] [Indexed: 02/06/2023] Open
Abstract
Background The family of 14-3-3 proteins plays an important role in the regulation of cell survival and death. Here, we investigate the role of the 14-3-3 gamma (14-3-3 γ) subunit for glial responses in autoimmune demyelination. Methods Expression of 14-3-3 γ in glial cell culture was investigated by reverse transcription polymerase chain reaction (RT-PCR) and immunocytochemistry. 14-3-3 γ knockout mice were subjected to murine myelin oligodendrocyte-induced experimental autoimmune encephalomyelitis (MOG-EAE), an animal model mimicking inflammatory features and neurodegenerative aspects of multiple sclerosis (MS). Results Expression studies in cell culture confined expression of 14-3-3 γ to both, oligodendrocytes (OL) and astrocytes. RT-PCR analysis revealed an increased expression of 14-3-3 γ mRNA in the spinal cord during the late chronic phase of MOG-EAE. At that stage, EAE was more severe in 14-3-3 γ knockout mice as compared to age- and gender-matched controls. Histopathological analyses on day 56 post immunization (p.i.) revealed significantly enhanced myelin damage as well as OL injury and secondary, an increase in axonal injury and gliosis in 14-3-3 γ −/− mice. At the same time, deficiency in 14-3-3 γ protein did not influence the immune response. Further histological studies revealed an increased susceptibility towards apoptosis in 14-3-3 γ-deficient OL in the inflamed spinal cord. Conclusion These data argue for a pivotal role of 14-3-3 γ-mediated signalling pathways for OL protection in neuroinflammation. Electronic supplementary material The online version of this article (doi:10.1186/s12974-015-0381-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- De-Hyung Lee
- Department of Neurology, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, D-91054, Erlangen, Germany
| | - Petra Steinacker
- Department of Neurology, Universitäts- und Rehabilitationskliniken Ulm (RKU), Oberer Eselsberg 45, D-89081, Ulm, Germany
| | - Silvia Seubert
- Department of Neurology, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, D-91054, Erlangen, Germany
| | - Tanja Turnescu
- Department of Neurology, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, D-91054, Erlangen, Germany
| | - Arthur Melms
- Neurological Rehabilitation, Department of Neurology, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, D-91054, Erlangen, Germany
| | - Arndt Manzel
- Department of Neurology, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, D-91054, Erlangen, Germany
| | - Markus Otto
- Department of Neurology, Universitäts- und Rehabilitationskliniken Ulm (RKU), Oberer Eselsberg 45, D-89081, Ulm, Germany
| | - Ralf A Linker
- Department of Neurology, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, D-91054, Erlangen, Germany.
| |
Collapse
|
47
|
Grigoriadis N, van Pesch V. A basic overview of multiple sclerosis immunopathology. Eur J Neurol 2015; 22 Suppl 2:3-13. [DOI: 10.1111/ene.12798] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 06/05/2015] [Indexed: 12/12/2022]
Affiliation(s)
- N. Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology; Second Department of Neurology; AHEPA University Hospital; Aristotle University of Thessaloniki; Macedonia Greece
| | - V. van Pesch
- Neurology Department; Cliniques Universitaires St-Luc; Brussels Belgium
| | | |
Collapse
|
48
|
Planas R, Metz I, Ortiz Y, Vilarrasa N, Jelčić I, Salinas-Riester G, Heesen C, Brück W, Martin R, Sospedra M. Central role of Th2/Tc2 lymphocytes in pattern II multiple sclerosis lesions. Ann Clin Transl Neurol 2015; 2:875-93. [PMID: 26401510 PMCID: PMC4574806 DOI: 10.1002/acn3.218] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 03/26/2015] [Accepted: 05/05/2015] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Multiple sclerosis (MS) is a disease of the central nervous system with marked heterogeneity in several aspects including pathological processes. Based on infiltrating immune cells, deposition of humoral factors and loss of oligodendrocytes and/or myelin proteins, four lesion patterns have been described. Pattern II is characterized by antibody and complement deposition in addition to T-cell infiltration. MS is considered a T-cell-mediated disease, but until now the study of pathogenic T cells has encountered major challenges, most importantly the limited access of brain-infiltrating T cells. Our objective was to identify, isolate, and characterize brain-infiltrating clonally expanded T cells in pattern II MS lesions. METHODS We used next-generation sequencing to identify clonally expanded T cells in demyelinating pattern II brain autopsy lesions, subsequently isolated these as T-cell clones from autologous cerebrospinal fluid and functionally characterized them. RESULTS We identified clonally expanded CD8(+) but also CD4(+) T cells in demyelinating pattern II lesions and for the first time were able to isolate these as live T-cell clones. The functional characterization shows that T cells releasing Th2 cytokines and able to provide B cell help dominate the T-cell infiltrate in pattern II brain lesions. INTERPRETATION Our data provide the first functional evidence for a putative role of Th2/Tc2 cells in pattern II MS supporting the existence of this pathogenic phenotype and questioning the protective role that is generally ascribed to Th2 cells. Our observations are important to consider for future treatments of pattern II MS patients.
Collapse
Affiliation(s)
- Raquel Planas
- Neuroimmunology and MS Research (nims), Department of Neurology, University ZurichFrauenklinikstrasse 26, 8091, Zürich, Switzerland
| | - Imke Metz
- Institute of Neuropathology, University Medical Center GöttingenGöttingen, Germany
| | - Yaneth Ortiz
- Neuroimmunology and MS Research (nims), Department of Neurology, University ZurichFrauenklinikstrasse 26, 8091, Zürich, Switzerland
| | - Nuria Vilarrasa
- Neuroimmunology and MS Research (nims), Department of Neurology, University ZurichFrauenklinikstrasse 26, 8091, Zürich, Switzerland
| | - Ilijas Jelčić
- Neuroimmunology and MS Research (nims), Department of Neurology, University ZurichFrauenklinikstrasse 26, 8091, Zürich, Switzerland
| | - Gabriela Salinas-Riester
- Department of Developmental Biochemistry, DNA Microarray and Deep-Sequencing Facility, Faculty of Medicine, University Medical Center GöttingenGöttingen, Germany
| | - Christoph Heesen
- Institute for Neuroimmunology and Clinical MS Research (inims), Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-EppendorfFalkenried 94, 20251, Hamburg, Germany
| | - Wolfgang Brück
- Institute of Neuropathology, University Medical Center GöttingenGöttingen, Germany
| | - Roland Martin
- Neuroimmunology and MS Research (nims), Department of Neurology, University ZurichFrauenklinikstrasse 26, 8091, Zürich, Switzerland
| | - Mireia Sospedra
- Neuroimmunology and MS Research (nims), Department of Neurology, University ZurichFrauenklinikstrasse 26, 8091, Zürich, Switzerland
| |
Collapse
|
49
|
DeFrancesco-Lisowitz A, Lindborg JA, Niemi JP, Zigmond RE. The neuroimmunology of degeneration and regeneration in the peripheral nervous system. Neuroscience 2015; 302:174-203. [PMID: 25242643 PMCID: PMC4366367 DOI: 10.1016/j.neuroscience.2014.09.027] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/08/2014] [Accepted: 09/10/2014] [Indexed: 12/25/2022]
Abstract
Peripheral nerves regenerate following injury due to the effective activation of the intrinsic growth capacity of the neurons and the formation of a permissive pathway for outgrowth due to Wallerian degeneration (WD). WD and subsequent regeneration are significantly influenced by various immune cells and the cytokines they secrete. Although macrophages have long been known to play a vital role in the degenerative process, recent work has pointed to their importance in influencing the regenerative capacity of peripheral neurons. In this review, we focus on the various immune cells, cytokines, and chemokines that make regeneration possible in the peripheral nervous system, with specific attention placed on the role macrophages play in this process.
Collapse
Affiliation(s)
| | - J A Lindborg
- Department of Neurosciences, Case Western Reserve University, Cleveland OH 44106-4975
| | - J P Niemi
- Department of Neurosciences, Case Western Reserve University, Cleveland OH 44106-4975
| | - R E Zigmond
- Department of Neurosciences, Case Western Reserve University, Cleveland OH 44106-4975
| |
Collapse
|
50
|
Intrathecal BCR transcriptome in multiple sclerosis versus other neuroinflammation: Equally diverse and compartmentalized, but more mutated, biased and overlapping with the proteome. Clin Immunol 2015; 160:211-25. [PMID: 26055752 DOI: 10.1016/j.clim.2015.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 05/28/2015] [Accepted: 06/01/2015] [Indexed: 12/22/2022]
Abstract
The mechanisms driving the intrathecal synthesis of IgG in multiple sclerosis (MS) are unknown. We combined high-throughput sequencing of transcribed immunoglobulin heavy-chain variable (IGHV) genes and mass spectrometry to chart the diversity and compartmentalization of IgG-producing B cells in the cerebrospinal fluid (CSF) of MS patients and controls with other neuroinflammatory diseases. In both groups, a few clones dominated the intrathecal IGHV transcriptome. In most MS patients and some controls, dominant transcripts matched the CSF IgG. The IGHV transcripts in CSF of MS patients frequently carried IGHV4 genes and had more replacement mutations compared to controls. In both groups, dominant IGHV transcripts were identified within clusters of clonally related B cells that had identical or related IGHV transcripts in the blood. These findings suggest more pronounced affinity maturation, but an equal degree of diversity and compartmentalization of the intrathecal B-cell response in MS compared to other neuroinflammatory diseases.
Collapse
|