1
|
Anand T, Patterson K, Rowe JB, Cope TE. Drawing from name in semantic dementia reveals graded object knowledge representations in anterior temporal lobe. Mem Cognit 2024:10.3758/s13421-024-01578-9. [PMID: 38777996 DOI: 10.3758/s13421-024-01578-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
Semantic dementia (SD) is characterized by progressive impairment in conceptual knowledge due to anterior temporal lobe (ATL) neurodegeneration. Extended neuropsychological assessments can quantitatively demonstrate the semantic impairment, but this graded loss of knowledge can also be readily observed in the qualitative observation of patients' recall of single concepts. Here, we present the results of a simple task of object drawing-from-name, by patients with SD (N = 19), who have isolated atrophy of the ATL bilaterally. Both cross-sectionally and longitudinally, patient drawings demonstrated a pattern of degradation in which rare and distinctive features (such as the hump on a camel) were lost earliest in disease course, and there was an increase in the intrusion of prototypical features (such as the typical small ears of most mammals on an elephant) with more advanced disease. Crucially, patient drawings showed a continuum of conceptual knowledge loss rather than a binary 'present' or 'absent' state. Overall, we demonstrate that qualitative evaluation of line drawings of animals and objects provides fascinating insights into the transmodal semantic deficit in SD. Our results are consistent with a distributed-plus-hub model of semantic memory. The graded nature of the deficit in semantic performance observed in our subset of longitudinally observed patients suggests that the temporal lobe binds feature-based semantic attributes in its central convergence zone.
Collapse
Affiliation(s)
- Tanmay Anand
- Cambridge University Hospitals NHS Trust, Cambridge, CB2 0QQ, UK
| | - Karalyn Patterson
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - James B Rowe
- Cambridge University Hospitals NHS Trust, Cambridge, CB2 0QQ, UK
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Thomas E Cope
- Cambridge University Hospitals NHS Trust, Cambridge, CB2 0QQ, UK.
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK.
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0SZ, UK.
| |
Collapse
|
2
|
Cai CQ, Lavan N, Chen SHY, Wang CZX, Ozturk OC, Chiu RMY, Gilbert SJ, White SJ, Scott SK. Mapping the differential impact of spontaneous and conversational laughter on brain and mind: an fMRI study in autism. Cereb Cortex 2024; 34:bhae199. [PMID: 38752979 PMCID: PMC11097909 DOI: 10.1093/cercor/bhae199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/18/2024] Open
Abstract
Spontaneous and conversational laughter are important socio-emotional communicative signals. Neuroimaging findings suggest that non-autistic people engage in mentalizing to understand the meaning behind conversational laughter. Autistic people may thus face specific challenges in processing conversational laughter, due to their mentalizing difficulties. Using fMRI, we explored neural differences during implicit processing of these two types of laughter. Autistic and non-autistic adults passively listened to funny words, followed by spontaneous laughter, conversational laughter, or noise-vocoded vocalizations. Behaviourally, words plus spontaneous laughter were rated as funnier than words plus conversational laughter, and the groups did not differ. However, neuroimaging results showed that non-autistic adults exhibited greater medial prefrontal cortex activation while listening to words plus conversational laughter, than words plus genuine laughter, while autistic adults showed no difference in medial prefrontal cortex activity between these two laughter types. Our findings suggest a crucial role for the medial prefrontal cortex in understanding socio-emotionally ambiguous laughter via mentalizing. Our study also highlights the possibility that autistic people may face challenges in understanding the essence of the laughter we frequently encounter in everyday life, especially in processing conversational laughter that carries complex meaning and social ambiguity, potentially leading to social vulnerability. Therefore, we advocate for clearer communication with autistic people.
Collapse
Affiliation(s)
- Ceci Qing Cai
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, United Kingdom
| | - Nadine Lavan
- Department of Biological and Experimental Psychology, School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Sinead H Y Chen
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, United Kingdom
| | - Claire Z X Wang
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, United Kingdom
| | - Ozan Cem Ozturk
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, United Kingdom
| | - Roni Man Ying Chiu
- Department of Social and Behavioural Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR
| | - Sam J Gilbert
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, United Kingdom
| | - Sarah J White
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, United Kingdom
| | - Sophie K Scott
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, United Kingdom
| |
Collapse
|
3
|
Carlos AF, Weigand SD, Duffy JR, Clark HM, Utianski RL, Machulda MM, Botha H, Thu Pham NT, Lowe VJ, Schwarz CG, Whitwell JL, Josephs KA. Volumetric analysis of hippocampal subregions and subfields in left and right semantic dementia. Brain Commun 2024; 6:fcae097. [PMID: 38572268 PMCID: PMC10988847 DOI: 10.1093/braincomms/fcae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/20/2023] [Accepted: 03/21/2024] [Indexed: 04/05/2024] Open
Abstract
Two variants of semantic dementia are recognized based on the laterality of temporal lobe involvement: a left-predominant variant associated with verbal knowledge impairment and a right-predominant variant associated with behavioural changes and non-verbal knowledge loss. This cross-sectional clinicoradiologic study aimed to assess whole hippocampal, subregion, and/or subfield volume loss in semantic dementia versus controls and across its variants. Thirty-five semantic dementia participants and 15 controls from the Neurodegenerative Research Group at Mayo Clinic who had completed 3.0-T volumetric magnetic resonance imaging and 18F-fluorodeoxyglucose-positron emission tomography were included. Classification as left-predominant (n = 25) or right-predominant (n = 10) variant was based on temporal lobe hypometabolism. Volumes of hippocampal subregions (head, body, and tail) and subfields (parasubiculum, presubiculum, subiculum, cornu ammonis 1, cornu ammonis 3, cornu ammonis 4, dentate gyrus, molecular layer, hippocampal-amygdaloid transition area, and fimbria) were obtained using FreeSurfer 7. Subfield volumes were measured separately from head and body subregions. We fit linear mixed-effects models using log-transformed whole hippocampal/subregion/subfield volumes as dependent variables; age, sex, total intracranial volume, hemisphere and a group-by-hemisphere interaction as fixed effects; and subregion/subfield nested within hemisphere as a random effect. Significant results (P < 0.05) are hereby reported. At the whole hippocampal level, the dominant (predominantly involved) hemisphere of both variants showed 23-27% smaller volumes than controls. The non-dominant (less involved) hemisphere of the right-predominant variant also showed volume loss versus controls and the left-predominant variant. At the subregional level, both variants showed 17-28% smaller dominant hemisphere head, body, and tail than controls, with the right-predominant variant also showing 8-12% smaller non-dominant hemisphere head than controls and left-predominant variant. At the subfield level, the left-predominant variant showed 12-36% smaller volumes across all dominant hemisphere subfields and 14-15% smaller non-dominant hemisphere parasubiculum, presubiculum (head and body), subiculum (head) and hippocampal-amygdaloid transition area than controls. The right-predominant variant showed 16-49% smaller volumes across all dominant hemisphere subfields and 14-22% smaller parasubiculum, presubiculum, subiculum, cornu ammonis 3, hippocampal-amygdaloid transition area (all from the head) and fimbria of non-dominant hemisphere versus controls. Comparison of dominant hemispheres showed 16-29% smaller volumes of the parasubiculum, presubiculum (head) and fimbria in the right-predominant than left-predominant variant; comparison of non-dominant hemispheres showed 12-15% smaller cornu ammonis 3, cornu ammonis 4, dentate gyrus, hippocampal-amygdaloid transition area (all from the head) and cornu ammonis 1, cornu ammonis 3 and cornu ammonis 4 (all from the body) in the right-predominant variant. All hippocampal subregion/subfield volumes are affected in semantic dementia, although some are more affected in both dominant and non-dominant hemispheres of the right-predominant than the left-predominant variant by the time of presentation. Involvement of hippocampal structures is apparently more subregion dependent than subfield dependent, indicating possible superiority of subregion volumes as disease biomarkers.
Collapse
Affiliation(s)
- Arenn F Carlos
- Department of Neurology, Mayo Clinic, Rochester, MN 55905 USA
| | - Stephen D Weigand
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905 USA
| | - Joseph R Duffy
- Department of Neurology, Mayo Clinic, Rochester, MN 55905 USA
| | - Heather M Clark
- Department of Neurology, Mayo Clinic, Rochester, MN 55905 USA
| | - Rene L Utianski
- Department of Neurology, Mayo Clinic, Rochester, MN 55905 USA
| | - Mary M Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905 USA
| | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN 55905 USA
| | | | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN 55905 USA
| | | | | | - Keith A Josephs
- Department of Neurology, Mayo Clinic, Rochester, MN 55905 USA
| |
Collapse
|
4
|
Li C, Solinsky J, Cohen T, Pakhomov S. A curious case of retrogenesis in language: Automated analysis of language patterns observed in dementia patients and young children. NEUROSCIENCE INFORMATICS 2024; 4:100155. [PMID: 38433986 PMCID: PMC10907010 DOI: 10.1016/j.neuri.2023.100155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Introduction While linguistic retrogenesis has been extensively investigated in the neuroscientific and behavioral literature, there has been little work on retrogenesis using computerized approaches to language analysis. Methods We bridge this gap by introducing a method based on comparing output of a pre-trained neural language model (NLM) with an artificially degraded version of itself to examine the transcripts of speech produced by seniors with and without dementia and healthy children during spontaneous language tasks. We compare a range of linguistic characteristics including language model perplexity, syntactic complexity, lexical frequency and part-of-speech use across these groups. Results Our results indicate that healthy seniors and children older than 8 years share similar linguistic characteristics, as do dementia patients and children who are younger than 8 years. Discussion Our study aligns with the growing evidence that language deterioration in dementia mirrors language acquisition in development using computational linguistic methods based on NLMs. This insight underscores the importance of further research to refine its application in guiding developmentally appropriate patient care, particularly in early stages.
Collapse
Affiliation(s)
- Changye Li
- Institute of Health Informatics, University of Minnesota, Minneapolis, 55455, MN, USA
| | - Jacob Solinsky
- College of Pharmacy, University of Minnesota, Minneapolis, 55455, MN, USA
| | - Trevor Cohen
- Division of Biomedical Informatics and Medical Education, University of Washington, Seattle, 98195, WA, USA
| | - Serguei Pakhomov
- College of Pharmacy, University of Minnesota, Minneapolis, 55455, MN, USA
| |
Collapse
|
5
|
von Seth J, Nicholls VI, Tyler LK, Clarke A. Recurrent connectivity supports higher-level visual and semantic object representations in the brain. Commun Biol 2023; 6:1207. [PMID: 38012301 PMCID: PMC10682037 DOI: 10.1038/s42003-023-05565-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023] Open
Abstract
Visual object recognition has been traditionally conceptualised as a predominantly feedforward process through the ventral visual pathway. While feedforward artificial neural networks (ANNs) can achieve human-level classification on some image-labelling tasks, it's unclear whether computational models of vision alone can accurately capture the evolving spatiotemporal neural dynamics. Here, we probe these dynamics using a combination of representational similarity and connectivity analyses of fMRI and MEG data recorded during the recognition of familiar, unambiguous objects. Modelling the visual and semantic properties of our stimuli using an artificial neural network as well as a semantic feature model, we find that unique aspects of the neural architecture and connectivity dynamics relate to visual and semantic object properties. Critically, we show that recurrent processing between the anterior and posterior ventral temporal cortex relates to higher-level visual properties prior to semantic object properties, in addition to semantic-related feedback from the frontal lobe to the ventral temporal lobe between 250 and 500 ms after stimulus onset. These results demonstrate the distinct contributions made by semantic object properties in explaining neural activity and connectivity, highlighting it as a core part of object recognition not fully accounted for by current biologically inspired neural networks.
Collapse
Affiliation(s)
- Jacqueline von Seth
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | | | - Lorraine K Tyler
- Department of Psychology, University of Cambridge, Cambridge, UK
- Cambridge Centre for Ageing and Neuroscience (Cam-CAN), University of Cambridge and MRC Cognition and Brain Sciences Unit, Cambridge, UK
| | - Alex Clarke
- Department of Psychology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
6
|
Shtyrov Y, Efremov A, Kuptsova A, Wennekers T, Gutkin B, Garagnani M. Breakdown of category-specific word representations in a brain-constrained neurocomputational model of semantic dementia. Sci Rep 2023; 13:19572. [PMID: 37949997 PMCID: PMC10638411 DOI: 10.1038/s41598-023-41922-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/04/2023] [Indexed: 11/12/2023] Open
Abstract
The neurobiological nature of semantic knowledge, i.e., the encoding and storage of conceptual information in the human brain, remains a poorly understood and hotly debated subject. Clinical data on semantic deficits and neuroimaging evidence from healthy individuals have suggested multiple cortical regions to be involved in the processing of meaning. These include semantic hubs (most notably, anterior temporal lobe, ATL) that take part in semantic processing in general as well as sensorimotor areas that process specific aspects/categories according to their modality. Biologically inspired neurocomputational models can help elucidate the exact roles of these regions in the functioning of the semantic system and, importantly, in its breakdown in neurological deficits. We used a neuroanatomically constrained computational model of frontotemporal cortices implicated in word acquisition and processing, and adapted it to simulate and explain the effects of semantic dementia (SD) on word processing abilities. SD is a devastating, yet insufficiently understood progressive neurodegenerative disease, characterised by semantic knowledge deterioration that is hypothesised to be specifically related to neural damage in the ATL. The behaviour of our brain-based model is in full accordance with clinical data-namely, word comprehension performance decreases as SD lesions in ATL progress, whereas word repetition abilities remain less affected. Furthermore, our model makes predictions about lesion- and category-specific effects of SD: our simulation results indicate that word processing should be more impaired for object- than for action-related words, and that degradation of white matter should produce more severe consequences than the same proportion of grey matter decay. In sum, the present results provide a neuromechanistic explanatory account of cortical-level language impairments observed during the onset and progress of semantic dementia.
Collapse
Affiliation(s)
- Yury Shtyrov
- Center of Functionally Integrative Neuroscience (CFIN), Institute for Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Aleksei Efremov
- Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, HSE University, Moscow, Russia
- Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Anastasia Kuptsova
- Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, HSE University, Moscow, Russia
| | - Thomas Wennekers
- School of Engineering, Computing and Mathematics, University of Plymouth, Plymouth, UK
| | - Boris Gutkin
- Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, HSE University, Moscow, Russia
- Département d'Etudes Cognitives, École Normale Supérieure, Paris, France
| | - Max Garagnani
- Department of Computing, Goldsmiths - University of London, London, UK.
- Brain Language Laboratory, Department of Philosophy and Humanities, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
7
|
Wang Z, Ficek BN, Webster KT, Herrmann O, Frangakis CE, Desmond JE, Onyike CU, Caffo B, Hillis AE, Tsapkini K. Specificity in Generalization Effects of Transcranial Direct Current Stimulation Over the Left Inferior Frontal Gyrus in Primary Progressive Aphasia. Neuromodulation 2023; 26:850-860. [PMID: 37287321 PMCID: PMC10250817 DOI: 10.1016/j.neurom.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVES Generalization (or near-transfer) effects of an intervention to tasks not explicitly trained are the most desirable intervention outcomes. However, they are rarely reported and even more rarely explained. One hypothesis for generalization effects is that the tasks improved share the same brain function/computation with the intervention task. We tested this hypothesis in this study of transcranial direct current stimulation (tDCS) over the left inferior frontal gyrus (IFG) that is claimed to be involved in selective semantic retrieval of information from the temporal lobes. MATERIALS AND METHODS In this study, we examined whether tDCS over the left IFG in a group of patients with primary progressive aphasia (PPA), paired with a lexical/semantic retrieval intervention (oral and written naming), may specifically improve semantic fluency, a nontrained near-transfer task that relies on selective semantic retrieval, in patients with PPA. RESULTS Semantic fluency improved significantly more in the active tDCS than in the sham tDCS condition immediately after and two weeks after treatment. This improvement was marginally significant two months after treatment. We also found that the active tDCS effect was specific to tasks that require this IFG computation (selective semantic retrieval) but not to other tasks that may require different computations of the frontal lobes. CONCLUSIONS We provided interventional evidence that the left IFG is critical for selective semantic retrieval, and tDCS over the left IFG may have a near-transfer effect on tasks that depend on the same computation, even if they are not specifically trained. CLINICAL TRIAL REGISTRATION The Clinicaltrials.gov registration number for the study is NCT02606422.
Collapse
Affiliation(s)
- Zeyi Wang
- Department of Biostatistics, Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - Bronte N Ficek
- Department of Neurology, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Kimberly T Webster
- Department of Neurology, Johns Hopkins Medicine, Baltimore, MD, USA; Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Olivia Herrmann
- Department of Neurology, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Constantine E Frangakis
- Department of Biostatistics, Johns Hopkins School of Public Health, Baltimore, MD, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medicine, Baltimore, MD, USA; Department of Radiology, Johns Hopkins Medicine, Baltimore, MD, USA
| | - John E Desmond
- Department of Biostatistics, Johns Hopkins School of Public Health, Baltimore, MD, USA; Neuroscience Program, Johns Hopkins University, Baltimore, MD, USA
| | - Chiadi U Onyike
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Brian Caffo
- Department of Biostatistics, Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - Argye E Hillis
- Department of Biostatistics, Johns Hopkins School of Public Health, Baltimore, MD, USA; Department of Cognitive Science, Johns Hopkins Medicine, Baltimore, MD, USA; Department of Physical Medicine & Rehabilitation, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Kyrana Tsapkini
- Department of Biostatistics, Johns Hopkins School of Public Health, Baltimore, MD, USA; Department of Cognitive Science, Johns Hopkins Medicine, Baltimore, MD, USA.
| |
Collapse
|
8
|
Park S, Hong CH, Lee DG, Park K, Shin H. Prospective classification of Alzheimer's disease conversion from mild cognitive impairment. Neural Netw 2023; 164:335-344. [PMID: 37163849 DOI: 10.1016/j.neunet.2023.04.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/26/2023] [Accepted: 04/12/2023] [Indexed: 05/12/2023]
Abstract
Alzheimer's disease (AD) is emerging as a serious problem with the rapid aging of the population, but due to the unclear cause of the disease and the absence of therapy, appropriate preventive measures are the next best thing. For this reason, it is important to early detect whether the disease converts from mild cognitive impairment (MCI) which is a prodromal phase of AD. With the advance in brain imaging techniques, various machine learning algorithms have become able to predict the conversion from MCI to AD by learning brain atrophy patterns. However, at the time of diagnosis, it is difficult to distinguish between the conversion group and the non-conversion group of subjects because the difference between groups is small, but the within-group variability is large in brain images. After a certain period of time, the subjects of conversion group show significant brain atrophy, whereas subjects of non-conversion group show only subtle changes due to the normal aging effect. This difference on brain atrophy makes the brain images more discriminative for learning. Motivated by this, we propose a method to perform classification by projecting brain images into the future, namely prospective classification. The experiments on the Alzheimer's Disease Neuroimaging Initiative dataset show that the prospective classification outperforms ordinary classification. Moreover, the features of prospective classification indicate the brain regions that significantly influence the conversion from MCI to AD.
Collapse
Affiliation(s)
- Sunghong Park
- Department of Psychiatry, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Chang Hyung Hong
- Department of Psychiatry, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Dong-Gi Lee
- Department of Biostatistics, Epidemiology & Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kanghee Park
- Korea Institute of Science and Technology Information, Seoul, 02456, Republic of Korea
| | - Hyunjung Shin
- Department of Artificial Intelligence, Ajou University, Suwon, 16499, Republic of Korea; Department of Industrial Engineering, Ajou University, Suwon, 16499, Republic of Korea.
| |
Collapse
|
9
|
Zhang G, Ye X, Wang X, Lin Y, Zhu C, Pan J, Yin X, Ye M, Lv W, Tang W, Liu J, Yang X, Hui L, Zheng K. Serum total cholesterol levels associated with immediate memory performance in patients with chronic schizophrenia. Schizophr Res 2023; 255:256-260. [PMID: 37060796 DOI: 10.1016/j.schres.2023.03.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/13/2023] [Accepted: 03/26/2023] [Indexed: 04/17/2023]
Abstract
Cognitive impairments are common in patients with schizophrenia. Changes in total cholesterol (TC) may be involved in the development of schizophrenia and associated with cognitive function. This study aimed to investigate differences in serum TC level and cognitive function between schizophrenia patients and healthy controls and explore the relationship between serum TC level and cognitive function in patients with schizophrenia. A total of 105 schizophrenia patients and 105 healthy controls were recruited. Results showed that patients with schizophrenia had significantly lower scores on the overall RBANS scale and subscales (i.e., immediate memory, language, attention, and delayed memory) than those of healthy controls. Pearson's correlation analyses showed that in patients with schizophrenia, serum TC levels were positively associated with RBANS subscale scores of immediate memory and language. Furthermore, multivariate regression analyses showed that serum TC level was positively associated with the immediate memory index in patients with schizophrenia. However, no significant association was found between serum TC level and RBANS score in the healthy control group. Our results suggest that elevated serum TC level may be related to improved cognitive function in patients with schizophrenia, especially that of immediate memory.
Collapse
Affiliation(s)
- Guohua Zhang
- School of Mental Health, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou 325035, PR China.
| | - Xiaodan Ye
- The affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou 325000, PR China
| | - Xin Wang
- Center for Health Behaviours Research, JC School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| | - Yixuan Lin
- School of Psychology and Cognitive Science, East China Normal University, Shanghai, PR China
| | - Cheng Zhu
- The affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou 325000, PR China
| | - Jianshe Pan
- The affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou 325000, PR China
| | - Xiaoli Yin
- The affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou 325000, PR China
| | - Minjie Ye
- The affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou 325000, PR China
| | - Wei Lv
- The affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou 325000, PR China
| | - Wei Tang
- The affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou 325000, PR China
| | - Jiahong Liu
- The affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou 325000, PR China
| | - Xue Yang
- Center for Health Behaviours Research, JC School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| | - Li Hui
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, PR China.
| | - Ke Zheng
- The affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou 325000, PR China.
| |
Collapse
|
10
|
Dial HR, Europa E, Grasso SM, Mandelli ML, Schaffer KM, Hubbard HI, Wauters LD, Wineholt L, Wilson SM, Gorno-Tempini ML, Henry ML. Baseline structural imaging correlates of treatment outcomes in semantic variant primary progressive aphasia. Cortex 2023; 158:158-175. [PMID: 36577212 PMCID: PMC9904210 DOI: 10.1016/j.cortex.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/25/2022] [Accepted: 10/12/2022] [Indexed: 12/03/2022]
Abstract
Semantic variant primary progressive aphasia (svPPA) is a neurodegenerative disorder characterized by a loss of semantic knowledge in the context of anterior temporal lobe atrophy (left > right). Core features of svPPA include anomia and single-word comprehension impairment. Despite growing evidence supporting treatment for anomia in svPPA, there is a paucity of research investigating neural mechanisms supporting treatment-induced gains and generalization to untrained items. In the current study, we examined the relation between the structural integrity of brain parenchyma (tissue inclusive of gray and white matter) at pre-treatment and treatment outcomes for trained and untrained items in a group of 19 individuals with svPPA who completed lexical retrieval treatment. Two structural neuroimaging approaches were used: an exploratory, whole-brain, voxel-wise approach and an a priori region of interest (ROI) approach. Based on previous research, bilateral temporal (inferior, middle, and superior temporal gyri), parietal (supramarginal and angular gyri), frontal (inferior and middle frontal gyri) and medial temporal (hippocampus and parahippocampal gyri) ROIs were selected from the Automated Anatomical Labeling (AAL) atlas. Analyses revealed improved naming of trained items and generalization to untrained items following treatment, providing converging evidence that individuals with svPPA can benefit from treatment for anomia. Better post-treatment naming accuracy was associated with the structural integrity of inferior parietal cortex and the hippocampus. Specifically, improved naming of trained items was related to the left supramarginal (phonological processing) and angular gyri (phonological and semantic processing), and improved naming of trained and untrained items was related to the left hippocampus (episodic, context-based memory). Future research should examine treatment outcomes in relation to pre-treatment functional and structural connectivity as well as changes in network dynamics following speech-language intervention to further elucidate the neural mechanisms underlying treatment response in svPPA and related disorders.
Collapse
Affiliation(s)
- Heather R Dial
- Department of Communication Sciences and Disorders, University of Houston, 3871 Holman St, Houston, TX, USA; Department of Speech, Language and Hearing Sciences, University of Texas at Austin, 2504A Whitis Avenue (A1100), Austin, TX USA.
| | - Eduardo Europa
- Connie L. Lurie College of Education, San Jose State University, One Washington Square, San Jose, CA, USA
| | - Stephanie M Grasso
- Department of Speech, Language and Hearing Sciences, University of Texas at Austin, 2504A Whitis Avenue (A1100), Austin, TX USA
| | - Maria Luisa Mandelli
- Memory and Aging Center, University of California, San Francisco. 675 Nelson Rising Lane (Suite 190), San Francisco, CA USA
| | - Kristin M Schaffer
- Department of Speech, Language and Hearing Sciences, University of Texas at Austin, 2504A Whitis Avenue (A1100), Austin, TX USA
| | - H Isabel Hubbard
- College of Health Sciences, University of Kentucky, 900 S. Limestone, Lexington, KY, USA
| | - Lisa D Wauters
- Department of Speech, Language and Hearing Sciences, University of Texas at Austin, 2504A Whitis Avenue (A1100), Austin, TX USA
| | - Lindsey Wineholt
- Department of Speech, Language and Hearing Sciences, University of Texas at Austin, 2504A Whitis Avenue (A1100), Austin, TX USA
| | - Stephen M Wilson
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, 1215 21st Ave S, Nashville, TN, USA
| | - Maria Luisa Gorno-Tempini
- Memory and Aging Center, University of California, San Francisco. 675 Nelson Rising Lane (Suite 190), San Francisco, CA USA
| | - Maya L Henry
- Department of Speech, Language and Hearing Sciences, University of Texas at Austin, 2504A Whitis Avenue (A1100), Austin, TX USA; Department of Neurology, Dell Medical School, University of Texas at Austin, 1601 Trinity St., Bldg. B, Stop Z0700, Austin, TX USA
| |
Collapse
|
11
|
Ding B, Dragonu I, Rua C, Carlin JD, Halai AD, Liebig P, Heidemann R, Correia MM, Rodgers CT. Parallel transmit (pTx) with online pulse design for task-based fMRI at 7 T. Magn Reson Imaging 2022; 93:163-174. [PMID: 35863691 DOI: 10.1016/j.mri.2022.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 06/17/2022] [Accepted: 07/11/2022] [Indexed: 10/31/2022]
Abstract
PURPOSE Parallel transmission (pTx) is an approach to improve image uniformity for ultra-high field imaging. In this study, we modified an echo planar imaging (EPI) sequence to design subject-specific pTx pulses online. We compared its performance against EPI with conventional circularly polarised (CP) pulses. METHODS We compared the pTx-EPI and CP-EPI sequences in a short EPI acquisition protocol and for two different functional paradigms in six healthy volunteers (2 female, aged 23-36 years, mean age 29.2 years). We chose two paradigms that are typically affected by signal dropout at 7 T: a visual objects localiser to determine face/scene selective brain regions and a semantic-processing task. RESULTS Across all subjects, pTx-EPI improved whole-brain mean temporal signal-to-noise ratio (tSNR) by 11.0% compared to CP-EPI. We also compared the ability of pTx-EPI and CP-EPI to detect functional activation for three contrasts over the two paradigms: face > object and scene > object for the visual objects localiser and semantic association > pattern matching for the semantic-processing paradigm. Across all three contrasts, pTx-EPI showed higher median z-scores and detected more active voxels in relevant areas, as determined from previous 3 T studies. CONCLUSION We have demonstrated a workflow for EPI acquisitions with online per-subject pulse calculations. We saw improved performance in both tSNR and functional acquisitions from pTx-EPI. Thus, we believe that online calculation pTx-EPI is robust enough for future fMRI studies, especially where activation is expected in brain areas liable to significant signal dropout.
Collapse
Affiliation(s)
- Belinda Ding
- Wolfson Brain Imaging Centre, University of Cambridge, UK.
| | | | - Catarina Rua
- Wolfson Brain Imaging Centre, University of Cambridge, UK; Department of Clinical Neurosciences, University of Cambridge, UK; Invicro, Invicro London, UK
| | | | - Ajay D Halai
- MRC Cognition and Brain Science Unit, Cambridge, UK
| | | | | | | | | |
Collapse
|
12
|
Matchin W, den Ouden DB, Hickok G, Hillis AE, Bonilha L, Fridriksson J. The Wernicke conundrum revisited: evidence from connectome-based lesion-symptom mapping. Brain 2022; 145:3916-3930. [PMID: 35727949 DOI: 10.1093/brain/awac219] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 05/25/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Wernicke's area has been assumed since the 1800s to be the primary region supporting word and sentence comprehension. However, in 2015 and 2019, Mesulam and colleagues raised what they termed the 'Wernicke conundrum', noting widespread variability in the anatomical definition of this area and presenting data from primary progressive aphasia that challenged this classical assumption. To resolve the conundrum, they posited a 'double disconnection' hypothesis: that word and sentence comprehension deficits in stroke-based aphasia result from disconnection of anterior temporal and inferior frontal regions from other parts of the brain due to white matter damage, rather than dysfunction of Wernicke's area itself. To test this hypothesis, we performed lesion-deficit correlations, including connectome-based lesion-symptom mapping, in four large, partially overlapping groups of English-speaking chronic left hemisphere stroke survivors. After removing variance due to object recognition and associative semantic processing, the same middle and posterior temporal lobe regions were implicated in both word comprehension deficits and complex noncanonical sentence comprehension deficits. Connectome lesion-symptom mapping revealed similar temporal-occipital white matter disconnections for impaired word and noncanonical sentence comprehension, including the temporal pole. We found an additional significant temporal-parietal disconnection for noncanonical sentence comprehension deficits, which may indicate a role for phonological working memory in processing complex syntax, but no significant frontal disconnections. Moreover, damage to these middle-posterior temporal lobe regions was associated with both word and noncanonical sentence comprehension deficits even when accounting for variance due to the strongest anterior temporal and inferior frontal white matter disconnections, respectively. Our results largely agree with the classical notion that Wernicke's area, defined here as middle superior temporal gyrus and middle-posterior superior temporal sulcus, supports both word and sentence comprehension, suggest a supporting role for temporal pole in both word and sentence comprehension, and speak against the hypothesis that comprehension deficits in Wernicke's aphasia result from double disconnection.
Collapse
Affiliation(s)
- William Matchin
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| | - Dirk Bart den Ouden
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| | - Gregory Hickok
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA 92697, USA.,Department of Language Science, University of California, Irvine, Irvine, CA 92697, USA
| | - Argye E Hillis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA.,Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA.,Department of Cognitive Science, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Leonardo Bonilha
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
13
|
Borghesani V, DeLeon J, Gorno-Tempini ML. Frontotemporal dementia: A unique window on the functional role of the temporal lobes. HANDBOOK OF CLINICAL NEUROLOGY 2022; 187:429-448. [PMID: 35964986 PMCID: PMC9793689 DOI: 10.1016/b978-0-12-823493-8.00011-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Frontotemporal dementia (FTD) is an umbrella term covering a plethora of progressive changes in executive functions, motor abilities, behavior, and/or language. Different clinical syndromes have been described in relation to localized atrophy, informing on the functional networks that underlie these specific cognitive, emotional, and behavioral processes. These functional declines are linked with the underlying neurodegeneration of frontal and/or temporal lobes due to diverse molecular pathologies. Initially, the accumulation of misfolded proteins targets specifically susceptible cell assemblies, leading to relatively focal neurodegeneration that later spreads throughout large-scale cortical networks. Here, we discuss the most recent clinical, neuropathological, imaging, and genetics findings in FTD-spectrum syndromes affecting the temporal lobe. We focus on the semantic variant of primary progressive aphasia and its mirror image, the right temporal variant of FTD. Incipient focal atrophy of the left anterior temporal lobe (ATL) manifests with predominant naming, word comprehension, reading, and object semantic deficits, while cases of predominantly right ATL atrophy present with impairments of socioemotional, nonverbal semantic, and person-specific knowledge. Overall, the observations in FTD allow for crucial clinical-anatomic inferences, shedding light on the role of the temporal lobes in both cognition and complex behaviors. The concerted activity of both ATLs is critical to ensure that percepts are translated into concepts, yet important hemispheric differences should be acknowledged. On one hand, the left ATL attributes meaning to linguistic, external stimuli, thus supporting goal-oriented, action-related behaviors (e.g., integrating sounds and letters into words). On the other hand, the right ATL assigns meaning to emotional, visceral stimuli, thus guiding socially relevant behaviors (e.g., integrating body sensations into feelings of familiarity).
Collapse
Affiliation(s)
- Valentina Borghesani
- Centre de recherche de l'Institut universitaire de gériatrie de Montréal, Montréal, QC, Canada; Department of Psychology, Université de Montréal, Montréal, QC, Canada.
| | - Jessica DeLeon
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, United States; Department of Neurology, Dyslexia Center, University of California, San Francisco, CA, United States
| | - Maria Luisa Gorno-Tempini
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, United States; Department of Neurology, Dyslexia Center, University of California, San Francisco, CA, United States
| |
Collapse
|
14
|
Henderson SK, Dev SI, Ezzo R, Quimby M, Wong B, Brickhouse M, Hochberg D, Touroutoglou A, Dickerson BC, Cordella C, Collins JA. A category-selective semantic memory deficit for animate objects in semantic variant primary progressive aphasia. Brain Commun 2021; 3:fcab210. [PMID: 34622208 PMCID: PMC8493104 DOI: 10.1093/braincomms/fcab210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/16/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Data are mixed on whether patients with semantic variant primary progressive aphasia exhibit a category-selective semantic deficit for animate objects. Moreover, there is little consensus regarding the neural substrates of this category-selective semantic deficit, though prior literature has suggested that the perirhinal cortex and the lateral posterior fusiform gyrus may support semantic memory functions important for processing animate objects. In this study, we investigated whether patients with semantic variant primary progressive aphasia exhibited a category-selective semantic deficit for animate objects in a word-picture matching task, controlling for psycholinguistic features of the stimuli, including frequency, familiarity, typicality and age of acquisition. We investigated the neural bases of this category selectivity by examining its relationship with cortical atrophy in two primary regions of interest: bilateral perirhinal cortex and lateral posterior fusiform gyri. We analysed data from 20 patients with semantic variant primary progressive aphasia (mean age = 64 years, S.D. = 6.94). For each participant, we calculated an animacy index score to denote the magnitude of the category-selective semantic deficit for animate objects. Multivariate regression analysis revealed a main effect of animacy (β = 0.52, t = 4.03, P < 0.001) even after including all psycholinguistic variables in the model, such that animate objects were less likely to be identified correctly relative to inanimate objects. Inspection of each individual patient's data indicated the presence of a disproportionate impairment in animate objects in most patients. A linear regression analysis revealed a relationship between the right perirhinal cortex thickness and animacy index scores (β = -0.57, t = -2.74, P = 0.015) such that patients who were more disproportionally impaired for animate relative to inanimate objects exhibited thinner right perirhinal cortex. A vertex-wise general linear model analysis restricted to the temporal lobes revealed additional associations between positive animacy index scores (i.e. a disproportionately poorer performance on animate objects) and cortical atrophy in the right perirhinal and entorhinal cortex, superior, middle, and inferior temporal gyri, and the anterior fusiform gyrus, as well as the left anterior fusiform gyrus. Taken together, our results indicate that a category-selective semantic deficit for animate objects is a characteristic feature of semantic variant primary progressive aphasia that is detectable in most individuals. Our imaging findings provide further support for the role of the right perirhinal cortex and other temporal lobe regions in the semantic processing of animate objects.
Collapse
Affiliation(s)
- Shalom K Henderson
- Frontotemporal Disorders Unit and Alzheimer’s Disease Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sheena I Dev
- Frontotemporal Disorders Unit and Alzheimer’s Disease Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Rania Ezzo
- Frontotemporal Disorders Unit and Alzheimer’s Disease Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Megan Quimby
- Frontotemporal Disorders Unit and Alzheimer’s Disease Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Bonnie Wong
- Frontotemporal Disorders Unit and Alzheimer’s Disease Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael Brickhouse
- Frontotemporal Disorders Unit and Alzheimer’s Disease Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Daisy Hochberg
- Frontotemporal Disorders Unit and Alzheimer’s Disease Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Alexandra Touroutoglou
- Frontotemporal Disorders Unit and Alzheimer’s Disease Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Bradford C Dickerson
- Frontotemporal Disorders Unit and Alzheimer’s Disease Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Claire Cordella
- Frontotemporal Disorders Unit and Alzheimer’s Disease Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jessica A Collins
- Frontotemporal Disorders Unit and Alzheimer’s Disease Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Borghesani V, Dale CL, Lukic S, Hinkley LBN, Lauricella M, Shwe W, Mizuiri D, Honma S, Miller Z, Miller B, Houde JF, Gorno-Tempini ML, Nagarajan SS. Neural dynamics of semantic categorization in semantic variant of primary progressive aphasia. eLife 2021; 10:e63905. [PMID: 34155973 PMCID: PMC8241439 DOI: 10.7554/elife.63905] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 06/21/2021] [Indexed: 12/28/2022] Open
Abstract
Semantic representations are processed along a posterior-to-anterior gradient reflecting a shift from perceptual (e.g., it has eight legs) to conceptual (e.g., venomous spiders are rare) information. One critical region is the anterior temporal lobe (ATL): patients with semantic variant primary progressive aphasia (svPPA), a clinical syndrome associated with ATL neurodegeneration, manifest a deep loss of semantic knowledge. We test the hypothesis that svPPA patients perform semantic tasks by over-recruiting areas implicated in perceptual processing. We compared MEG recordings of svPPA patients and healthy controls during a categorization task. While behavioral performance did not differ, svPPA patients showed indications of greater activation over bilateral occipital cortices and superior temporal gyrus, and inconsistent engagement of frontal regions. These findings suggest a pervasive reorganization of brain networks in response to ATL neurodegeneration: the loss of this critical hub leads to a dysregulated (semantic) control system, and defective semantic representations are seemingly compensated via enhanced perceptual processing.
Collapse
Affiliation(s)
- V Borghesani
- Memory and Aging Center, Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
| | - CL Dale
- Department of Radiology and Biomedical Imaging, University of California, San FranciscoSan FranciscoUnited States
| | - S Lukic
- Memory and Aging Center, Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
| | - LBN Hinkley
- Department of Radiology and Biomedical Imaging, University of California, San FranciscoSan FranciscoUnited States
| | - M Lauricella
- Memory and Aging Center, Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
| | - W Shwe
- Memory and Aging Center, Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
| | - D Mizuiri
- Department of Radiology and Biomedical Imaging, University of California, San FranciscoSan FranciscoUnited States
| | - S Honma
- Department of Radiology and Biomedical Imaging, University of California, San FranciscoSan FranciscoUnited States
| | - Z Miller
- Memory and Aging Center, Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
| | - B Miller
- Memory and Aging Center, Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
| | - JF Houde
- Department of Otolaryngology, University of California, San FranciscoSan FranciscoUnited States
| | - ML Gorno-Tempini
- Memory and Aging Center, Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
- Department of Neurology, Dyslexia Center University of California, San FranciscoSan FranciscoUnited States
| | - SS Nagarajan
- Department of Radiology and Biomedical Imaging, University of California, San FranciscoSan FranciscoUnited States
- Department of Otolaryngology, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
16
|
Manouvelou S, Koutoulidis V, Tsougos I, Tolia M, Kyrgias G, Anyfantakis G, Moulopoulos LA, Gouliamos A, Papageorgiou S. Differential Diagnosis of Behavioral Variant and Semantic Variant of Frontotemporal Dementia Using Visual Rating Scales. Curr Med Imaging 2021; 16:444-451. [PMID: 32410545 DOI: 10.2174/1573405615666190225154834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 01/17/2019] [Accepted: 01/26/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Frontotemporal dementia (FTD) represents the second most frequent early onset of dementia in people younger than 65 years. The main syndromes encompassed by the term FTD are behavioral variant of Frontotemporal dementia (bvFTD), non-fluent variant primary progressive aphasia (nfvPPA) and semantic variant (SD). AIMS To assess the bvFTD and SD, which represent the most common subtypes of FTD, using visual rating scales. METHODS Brain MRI exams of 77 patients either with bvFTD (n=43) or SD (n=34) were evaluated. The rating scales used were: Global cortical atrophy (GCA), Fazekas Scale: periventricular (PV) and white matter (WM) changes, Koedam rating scale and visual scales regarding specific cortical regions: dorsofrontal (DF), orbitofrontal (OF), anterior cingulate (AC), basal ganglia (BG), anterior- temporal (AT), insula, lateral-temporal (LT), entorhinal (ERC), perirhinal (PRC), anterior fusiform( AF), anterior hippocampus (AHIP) and posterior hippocampus (PHIP). Both Left (L) and Right (R) hemispheres were evaluated. RESULTS R-OF (p=0.059), L-OF (p<0.0005), L-AT (p=0.047) and L-AHIP (p=0.007) have a statistically significant effect on the variable occurrence of SD compared to bvFTD. The indicators with the highest value of the area under the curve (AUC) were R-AC (0.829), L-OF (0.808), L-AC (0.791) and L-AF (0.778). Highest sensitivity was achieved by R-OF (97%) and L-AF (75%). Highest specificity was achieved by L-OF (95%), L-AT (91%) followed by R-AC (84%). Best combination of sensitivity and specificity was achieved by L-AF (74%-79%), L-OF (56%-95%) and R-OF (97%-42%). Best combination of PPV and NPV was achieved by L-OF (90%-73%), LAT (83%-72%) and R-AC (77%-77%). CONCLUSION Visual rating scales can be a practical diagnostic tool in the characterization of patterns of atrophy in FTLD and may be used as an alternative to highly technical methods of quantification.
Collapse
Affiliation(s)
- Stamo Manouvelou
- 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, 72- 74 Vasilissis Sofias, 11528, Athens, Greece
| | - Vasilios Koutoulidis
- 1st Department of Radiology, University of Athens Medical School, Aretaieion University Hospital, Vassilissis Sofias 76, 115 28 Athens, Greece
| | - Ioannis Tsougos
- Medical Physics Department, Faculty of Medicine, University of Thessaly, Biopolis, Larissa 41110, Greece
| | - Maria Tolia
- Department of Radiotherapy/Radiation Oncology, Faculty of Medicine, School of Health Sciences, University of Thessaly, University Hospital of Larissa, Biopolis, 41110 Larisa, Greece
| | - George Kyrgias
- Department of Radiotherapy/Radiation Oncology, Faculty of Medicine, School of Health Sciences, University of Thessaly, University Hospital of Larissa, Biopolis, 41110 Larisa, Greece
| | - Georgios Anyfantakis
- 1st Department of Radiology, University of Athens Medical School, Aretaieion University Hospital, Vassilissis Sofias 76, 115 28 Athens, Greece
| | - Lia-Angela Moulopoulos
- 1st Department of Radiology, University of Athens Medical School, Aretaieion University Hospital, Vassilissis Sofias 76, 115 28 Athens, Greece
| | - Athanasios Gouliamos
- 1st Department of Radiology, University of Athens Medical School, Aretaieion University Hospital, Vassilissis Sofias 76, 115 28 Athens, Greece
| | - Sokratis Papageorgiou
- 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, 72- 74 Vasilissis Sofias, 11528, Athens, Greece
| |
Collapse
|
17
|
Martin RC, Ding J, Hamilton AC, Schnur TT. Working Memory Capacities Neurally Dissociate: Evidence from Acute Stroke. Cereb Cortex Commun 2021; 2:tgab005. [PMID: 33870195 PMCID: PMC8030664 DOI: 10.1093/texcom/tgab005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 12/19/2022] Open
Abstract
Substantial behavioral evidence implies the existence of separable working memory (WM) components for maintaining phonological and semantic information. In contrast, only a few studies have addressed the neural basis of phonological versus semantic WM using functional neuroimaging and none has used a lesion-symptom mapping (LSM) approach. Here, we address this gap, reporting a multivariate LSM study of phonological and semantic WM for 94 individuals at the acute stage of left hemisphere stroke. Testing at the acute stage avoids issues of brain reorganization and the adoption of patient strategies for task performance. The LSM analyses for each WM component controlled for the other WM component and semantic and phonological knowledge at the single word level. For phonological WM, the regions uncovered included the supramarginal gyrus, argued to be the site of phonological storage, and several cortical and subcortical regions plausibly related to inner rehearsal. For semantic WM, inferior frontal regions and the angular gyrus were uncovered. The findings thus provide converging evidence for separable systems for phonological and semantic WM that are distinguished from the systems supporting long-term knowledge representations in those domains.
Collapse
Affiliation(s)
- Randi C Martin
- Department of Psychological Sciences, Rice University, Houston, TX 77251, USA
| | - Junhua Ding
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - A Cris Hamilton
- Department of Institution Reporting, Research and Information Systems, University of Texas at Austin, Austin 78701, TX, USA
| | - Tatiana T Schnur
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
18
|
Poch C, Toledano R, García-Morales I, Alemán-Gómez Y, Gil-Nagel A, Campo P. Contributions of left and right anterior temporal lobes to semantic cognition: Evidence from patients with small temporopolar lesions. Neuropsychologia 2020; 152:107738. [PMID: 33383038 DOI: 10.1016/j.neuropsychologia.2020.107738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 12/04/2020] [Accepted: 12/24/2020] [Indexed: 11/18/2022]
Abstract
Decades of research have increased the understanding of the contribution of the anterior temporal lobes (ATLs) to semantic cognition. Nonetheless, whether semantic processing of different types of information show a selective relationship with left and right ATLs, or whether semantic processing in the ATLs is independent of the modality of the input is currently unknown. There exists evidence supporting each of these alternatives. A fundamental objection to these findings is that they were obtained from studies with patients with brain damage affecting extensive regions, sometimes bilaterally. In the current study, we assessed a group of 38 temporal lobe epilepsy (TLE) patients with either left or right small epileptogenic lesions with a battery of commonly used semantic tasks that tested verbal and non-verbal semantic processing. We found that left TLE patients exhibited worse performance than controls on the verbal semantic tasks, as expected, but also on the non-verbal semantic task. On the other hand, performance of the right TLE group did not differ from controls on the non-verbal task, but was worse on a semantic fluency task. When performance between patient groups was compared, we found that left TLE not only did worse than right TLE on the naming task, but also on the non-verbal associative memory task. When considered together, current data do not support a strong view of input modality differences between left and right ATLs. Additionally, they provide evidence indicating that the left and right ATLs do not make similar contributions to a singular functional system for semantic representation.
Collapse
Affiliation(s)
- Claudia Poch
- Facultad de Lenguas y Educación, Universidad Nebrija, Spain
| | - Rafael Toledano
- Hospital Ruber Internacional, Epilepsy Unit, Neurology Department, Madrid, Spain; University Hospital of Ramón y Cajal, Epilepsy Unit, Neurology Department, Madrid, Spain
| | - Irene García-Morales
- Hospital Ruber Internacional, Epilepsy Unit, Neurology Department, Madrid, Spain; University Hospital of San Carlos, Epilepsy Unit, Neurology Department, Madrid, Spain
| | - Yasser Alemán-Gómez
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland; Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland; Medical Image Analysis Laboratory (MIAL), Centre D'Imagerie BioMédicale (CIBM), Lausanne, Switzerland
| | - Antonio Gil-Nagel
- Hospital Ruber Internacional, Epilepsy Unit, Neurology Department, Madrid, Spain
| | - Pablo Campo
- Department of Basic Psychology, Autonoma University of Madrid, Madrid, Spain.
| |
Collapse
|
19
|
Early functional MRI changes in a prodromal semantic variant of primary progressive aphasia: a longitudinal case report. J Neurol 2020; 267:3100-3104. [PMID: 32651673 DOI: 10.1007/s00415-020-10053-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To assess longitudinal patterns of brain functional MRI (fMRI) activity in a case of prodromal semantic variant of a primary progressive aphasia (svPPA). METHODS Clinical, cognitive and neuroimaging data (T1-weighted and task-based fMRI during silent naming [SN] and object knowledge [OK]) were obtained at baseline, month 8 and month 16 from a 49-year-old lady presenting with anomias and evolving to overt svPPA in 8 months. RESULTS At baseline, the patient showed isolated anomias and mild left anterior temporal pole atrophy. During SN-fMRI, she showed bilateral temporal and left inferior frontal gyri (iFG) activations. During OK-fMRI, we observed normal performance and the recruitment of bilateral posterior hippocampi, iFG and left middle orbitofrontal gyrus (mOFG). At month 8, the patient received a diagnosis of svPPA and showed isolated right iFG activity during SN-fMRI, and a borderline performance during OK-fMRI together with a disappearance of mOFG recruitment. At the last visit (after 7-month language therapy), the patient showed a stabilization of naming disturbances, and, compared to previous visits, an increased left iFG recruitment during SN-fMRI. During OK-fMRI, she performed abnormally and did not show the activity of mOFG and iFG. Across all visits, brain atrophy remained stable. CONCLUSIONS This case report showed longitudinal fMRI patterns during semantic-related tasks from prodromal to overt svPPA. Frontal brain recruitment may represent a compensatory mechanism in patients with early svPPA, which is likely to be reinforced by language-therapy. Brain fMRI is more sensitive compared with structural MRI to detect progressive brain changes associated with disease and treatment.
Collapse
|
20
|
Battistella G, Borghesani V, Henry M, Shwe W, Lauricella M, Miller Z, Deleon J, Miller BL, Dronkers N, Brambati SM, Seeley WW, Mandelli ML, Gorno-Tempini ML. Task-Free Functional Language Networks: Reproducibility and Clinical Application. J Neurosci 2020; 40:1311-1320. [PMID: 31852732 PMCID: PMC7002153 DOI: 10.1523/jneurosci.1485-19.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/06/2019] [Accepted: 12/01/2019] [Indexed: 01/17/2023] Open
Abstract
Intrinsic connectivity networks (ICNs) identified through task-free fMRI (tf-fMRI) offer the opportunity to investigate human brain circuits involved in language processes without requiring participants to perform challenging cognitive tasks. In this study, we assessed the ability of tf-fMRI to isolate reproducible networks critical for specific language functions and often damaged in primary progressive aphasia (PPA). First, we performed whole-brain seed-based correlation analyses on tf-fMRI data to identify ICNs anchored in regions known for articulatory, phonological, and semantic processes in healthy male and female controls (HCs). We then evaluated the reproducibility of these ICNs in an independent cohort of HCs, and recapitulated their functional relevance with a post hoc meta-analysis on task-based fMRI. Last, we investigated whether atrophy in these ICNs could inform the differential diagnosis of nonfluent/agrammatic, semantic, and logopenic PPA variants. The identified ICNs included a dorsal articulatory-phonological network involving inferior frontal and supramarginal regions; a ventral semantic network involving anterior middle temporal and angular gyri; a speech perception network involving superior temporal and sensorimotor regions; and a network between posterior inferior temporal and intraparietal regions likely linking visual, phonological, and attentional processes for written language. These ICNs were highly reproducible across independent groups and revealed areas consistent with those emerging from task-based meta-analysis. By comparing ICNs' spatial distribution in HCs with patients' atrophy patterns, we identified ICNs associated with each PPA variant. Our findings demonstrate the potential use of tf-fMRI to investigate the functional status of language networks in patients for whom activation studies can be methodologically challenging.SIGNIFICANCE STATEMENT We showed that a single, short, task-free fMRI acquisition is able to identify four reproducible and relatively segregated intrinsic left-dominant networks associated with articulatory, phonological, semantic, and multimodal orthography-to-phonology processes, in HCs. We also showed that these intrinsic networks relate to syndrome-specific atrophy patterns in primary progressive aphasia. Collectively, our results support the application of task-free fMRI in future research to study functionality of language circuits in patients for whom tasked-based activation studies might be methodologically challenging.
Collapse
Affiliation(s)
- Giovanni Battistella
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, California 94158,
| | - Valentina Borghesani
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, California 94158
| | - Maya Henry
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, California 94158
- Department of Communication Sciences and Disorders, University of Texas, Austin, Texas 78712
| | - Wendy Shwe
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, California 94158
| | - Michael Lauricella
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, California 94158
| | - Zachary Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, California 94158
| | - Jessica Deleon
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, California 94158
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, California 94158
| | - Nina Dronkers
- Department of Psychology, University of California, Berkeley, California 94720, and
| | - Simona M Brambati
- Département de Psychologie, Université de Montréal, Quebec H3T 1J4, Canada
| | - William W Seeley
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, California 94158
| | - Maria Luisa Mandelli
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, California 94158
| | - Maria Luisa Gorno-Tempini
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, California 94158
| |
Collapse
|
21
|
Bruffaerts R, Schaeverbeke J, De Weer AS, Nelissen N, Dries E, Van Bouwel K, Sieben A, Bergmans B, Swinnen C, Pijnenburg Y, Sunaert S, Vandenbulcke M, Vandenberghe R. Multivariate analysis reveals anatomical correlates of naming errors in primary progressive aphasia. Neurobiol Aging 2019; 88:71-82. [PMID: 31955981 DOI: 10.1016/j.neurobiolaging.2019.12.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/10/2019] [Accepted: 12/15/2019] [Indexed: 12/30/2022]
Abstract
Primary progressive aphasia (PPA) is an overarching term for a heterogeneous group of neurodegenerative diseases which affect language processing. Impaired picture naming has been linked to atrophy of the anterior temporal lobe in the semantic variant of PPA. Although atrophy of the anterior temporal lobe proposedly impairs picture naming by undermining access to semantic knowledge, picture naming also entails object recognition and lexical retrieval. Using multivariate analysis, we investigated whether cortical atrophy relates to different types of naming errors generated during picture naming in 43 PPA patients (13 semantic, 9 logopenic, 11 nonfluent, and 10 mixed variant). Omissions were associated with atrophy of the anterior temporal lobes. Semantic errors, for example, mistaking a rhinoceros for a hippopotamus, were associated with atrophy of the left mid and posterior fusiform cortex and the posterior middle and inferior temporal gyrus. Semantic errors and atrophy in these regions occurred in each PPA subtype, without major between-subtype differences. We propose that pathological changes to neural mechanisms associated with semantic errors occur across the PPA spectrum.
Collapse
Affiliation(s)
- Rose Bruffaerts
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium; Neurology Department, University Hospitals Leuven, Leuven, Belgium.
| | - Jolien Schaeverbeke
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - An-Sofie De Weer
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Natalie Nelissen
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Eva Dries
- Neurology Department, University Hospitals Leuven, Leuven, Belgium
| | - Karen Van Bouwel
- Neurology Department, University Hospitals Leuven, Leuven, Belgium
| | - Anne Sieben
- Neurology Department, University Hospital Ghent, Ghent, Belgium
| | - Bruno Bergmans
- Neurology Department, University Hospital Ghent, Ghent, Belgium; Neurology Department, AZ Sint-Jan Brugge-Oostende AV, Bruges, Belgium
| | | | - Yolande Pijnenburg
- Neurology Department, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Stefan Sunaert
- Radiology Department, University Hospitals Leuven, Leuven, Belgium
| | | | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium; Neurology Department, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
22
|
Semantic and perceptual priming activate partially overlapping brain networks as revealed by direct cortical recordings in humans. Neuroimage 2019; 203:116204. [DOI: 10.1016/j.neuroimage.2019.116204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 08/19/2019] [Accepted: 09/17/2019] [Indexed: 01/20/2023] Open
|
23
|
Frank LE, Bowman CR, Zeithamova D. Differential Functional Connectivity along the Long Axis of the Hippocampus Aligns with Differential Role in Memory Specificity and Generalization. J Cogn Neurosci 2019; 31:1958-1975. [PMID: 31397613 PMCID: PMC8080992 DOI: 10.1162/jocn_a_01457] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The hippocampus contributes to both remembering specific events and generalization across events. Recent work suggests that information may be represented along the longitudinal axis of the hippocampus at varied levels of specificity: detailed representations in the posterior hippocampus and generalized representations in the anterior hippocampus. Similar distinctions are thought to exist within neocortex, with lateral prefrontal and lateral parietal regions supporting memory specificity and ventromedial prefrontal and lateral temporal cortices supporting generalized memory. Here, we tested whether functional connectivity of anterior and posterior hippocampus with cortical memory regions is consistent with these proposed dissociations. We predicted greater connectivity of anterior hippocampus with putative generalization regions and posterior hippocampus with putative memory specificity regions. Furthermore, we tested whether differences in connectivity are stable under varying levels of task engagement. Participants learned to categorize a set of stimuli outside the scanner, followed by an fMRI session that included a rest scan, passive viewing runs, and category generalization task runs. Analyses revealed stronger connectivity of ventromedial pFC to anterior hippocampus and of angular gyrus and inferior frontal gyrus to posterior hippocampus. These differences remained relatively stable across the three phases (rest, passive viewing, category generalization). Whole-brain analyses further revealed widespread cortical connectivity with both anterior and posterior hippocampus, with relatively little overlap. These results contribute to our understanding of functional organization along the long axis of the hippocampus and suggest that distinct hippocampal-cortical connections are one mechanism by which the hippocampus represents both individual experiences and generalized knowledge.
Collapse
|
24
|
Names and their meanings: A dual-process account of proper-name encoding and retrieval. Neurosci Biobehav Rev 2019; 108:308-321. [PMID: 31734171 DOI: 10.1016/j.neubiorev.2019.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 11/24/2022]
Abstract
The ability to pick out a unique entity with a proper name is an important component of human language. It has been a primary focus of research in the philosophy of language since the nineteenth century. Brain-based evidence has shed new light on this capacity, and an extensive literature indicates the involvement of distinct fronto-temporal and temporo-occipito-parietal association cortices in proper-name retrieval. However, comparatively few efforts have sought to explain how memory encoding processes lead to the later recruitment of these distinct regions at retrieval. Here, we provide a unified account of proper-name encoding and retrieval, reviewing evidence that socio-emotional and unitized encoding subserve the retrieval of proper names via anterior-temporal-prefrontal activations. Meanwhile, non-unitized item-item and item-context encoding support subsequent retrieval, largely dependent on the temporo-occipito-parietal cortex. We contend that this well-established divergence in encoding systems can explain how proper names are later retrieved from distinct neural structures. Furthermore, we explore how evidence reviewed here can inform a century-and-a-half-old debate about proper names and the meanings they pick out.
Collapse
|
25
|
Classification of schizophrenia and normal controls using 3D convolutional neural network and outcome visualization. Schizophr Res 2019; 212:186-195. [PMID: 31395487 DOI: 10.1016/j.schres.2019.07.034] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 05/16/2019] [Accepted: 07/21/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND The recent deep learning-based studies on the classification of schizophrenia (SCZ) using MRI data rely on manual extraction of feature vector, which destroys the 3D structure of MRI data. In order to both identify SCZ and find relevant biomarkers, preserving the 3D structure in classification pipeline is critical. OBJECTIVES The present study investigated whether the proposed 3D convolutional neural network (CNN) model produces higher accuracy compared to the support vector machine (SVM) and other 3D-CNN models in distinguishing individuals with SCZ spectrum disorders (SSDs) from healthy controls. We sought to construct saliency map using class saliency visualization (CSV) method. METHODS Task-based fMRI data were obtained from 103 patients with SSDs and 41 normal controls. To preserve spatial locality, we used 3D activation map as input for the 3D convolutional autoencoder (3D-CAE)-based CNN model. Data on 62 patients with SSDs were used for unsupervised pretraining with 3D-CAE. Data on the remaining 41 patients and 41 normal controls were processed for training and testing with CNN. The performance of our model was analyzed and compared with SVM and other 3D-CNN models. The learned CNN model was visualized using CSV method. RESULTS Using task-based fMRI data, our model achieved 84.15%∼84.43% classification accuracies, outperforming SVM and other 3D-CNN models. The inferior and middle temporal lobes were identified as key regions for classification. CONCLUSIONS Our findings suggest that the proposed 3D-CAE-based CNN can classify patients with SSDs and controls with higher accuracy compared to other models. Visualization of salient regions provides important clinical information.
Collapse
|
26
|
Aversi-Ferreira TA, Tamaishi-Watanabe BH, Magri MPDF, Aversi-Ferreira RA. Neuropsychology of the temporal lobe: Luria's and contemporary conceptions. Dement Neuropsychol 2019; 13:251-258. [PMID: 31555397 PMCID: PMC6753908 DOI: 10.1590/1980-57642018dn13-030001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/25/2019] [Indexed: 11/22/2022] Open
Abstract
Brain lesion studies currently employ techniques such as computed tomography, functional magnetic resonance imaging, single photon emission tomography and positron emission tomography. Famous neuropsychologist Alexander Romanovich Luria's studies on cognition were conducted without the use of imaging technology for many years, in a large number of patients with brain lesions, and explored complex behavior and specific brain functions involving the lobes and subareas. For instance, he carried out several specific studies on memory and mental organization, reported in his books. The objective of this study is to associate recent studies in neuropsychology with Luria's work specifically on the temporal lobe. According to the data studied, Luria's epistemological foundation remains the basis for neuropsychological studies today, but new data on the temporal lobe in relation to epilepsy and hippocampus analysis have been introduced into the scope of neuropsychology. This study focuses on earlier data from Luria's studies on the neuropsychological functions of the temporal lobe, comparing these with more recent data. However, in order to improve clinical aspects, a detailed study on the neuropsychological tests used for the temporal lobe should be performed.
Collapse
Affiliation(s)
- Tales Alexandre Aversi-Ferreira
- Federal University of AlfenasInstitute of Biomedical SciencesDepartment of AnatomyAlfenasMGBrazilLaboratory of Biomathematics and Physical Anthropology, Department of Anatomy, Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, MG, Brazil.
| | - Bruno Hideki Tamaishi-Watanabe
- Federal University of AlfenasInstitute of Biomedical SciencesDepartment of AnatomyAlfenasMGBrazilLaboratory of Biomathematics and Physical Anthropology, Department of Anatomy, Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, MG, Brazil.
| | - Micheli Patrícia de Fátima Magri
- Federal University of AlfenasInstitute of Biomedical SciencesDepartment of AnatomyAlfenasMGBrazilLaboratory of Biomathematics and Physical Anthropology, Department of Anatomy, Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, MG, Brazil.
- Universidade PaulistaDepartment of HealthNursing SchoolSão José do Rio PardoSPBrazilNursing School, Department of Health, Universidade Paulista, São José do Rio Pardo, SP, Brazil.
| | - Roqueline A.G.M.F. Aversi-Ferreira
- Federal University of AlfenasInstitute of Biomedical SciencesDepartment of AnatomyAlfenasMGBrazilLaboratory of Biomathematics and Physical Anthropology, Department of Anatomy, Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, MG, Brazil.
| |
Collapse
|
27
|
Croot K, Raiser T, Taylor-Rubin C, Ruggero L, Ackl N, Wlasich E, Danek A, Scharfenberg A, Foxe D, Hodges JR, Piguet O, Kochan NA, Nickels L. Lexical retrieval treatment in primary progressive aphasia: An investigation of treatment duration in a heterogeneous case series. Cortex 2019; 115:133-158. [DOI: 10.1016/j.cortex.2019.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/21/2018] [Accepted: 01/09/2019] [Indexed: 10/27/2022]
|
28
|
Pineault J, Jolicœur P, Grimault S, Lacombe J, Brambati SM, Bier N, Chayer C, Joubert S. A MEG study of the neural substrates of semantic processing in semantic variant primary progressive aphasia. Neurocase 2019; 25:118-129. [PMID: 31256711 DOI: 10.1080/13554794.2019.1631853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Despite a well-documented pattern of semantic impairment, the patterns of brain activation during semantic processing in semantic variant primary progressive aphasia (svPPA) still remain poorly understood. In the current study, one svPPA patient (EC) and six elderly controls carried out a general-level semantic categorization task while their brain activity was recorded using magnetoencephalography (MEG). Despite similar behavioral performance, EC showed hyperactivation of the left inferior temporal gyrus (ITG) and right anterior temporal lobe (ATL) relative to controls. This suggests that periatrophic regions within the ATL region may support preserved semantic abilities in svPPA.
Collapse
Affiliation(s)
- Jessica Pineault
- a Département de psychologie , Université de Montréal , Montréal , Canada.,b Centre de Recherche, Institut Universitaire de Gériatrie de Montréal , Université de Montréal , Montréal , Canada
| | - Pierre Jolicœur
- a Département de psychologie , Université de Montréal , Montréal , Canada.,c Centre de Recherche en Neuropsychologie et Cognition , Université de Montréal , Montréal , Canada
| | - Stephan Grimault
- a Département de psychologie , Université de Montréal , Montréal , Canada.,c Centre de Recherche en Neuropsychologie et Cognition , Université de Montréal , Montréal , Canada
| | - Jacinthe Lacombe
- a Département de psychologie , Université de Montréal , Montréal , Canada.,b Centre de Recherche, Institut Universitaire de Gériatrie de Montréal , Université de Montréal , Montréal , Canada
| | - Simona Maria Brambati
- a Département de psychologie , Université de Montréal , Montréal , Canada.,b Centre de Recherche, Institut Universitaire de Gériatrie de Montréal , Université de Montréal , Montréal , Canada
| | - Nathalie Bier
- b Centre de Recherche, Institut Universitaire de Gériatrie de Montréal , Université de Montréal , Montréal , Canada.,d Faculté de médecine , Université de Montréal , Montréal , Canada
| | - Céline Chayer
- d Faculté de médecine , Université de Montréal , Montréal , Canada.,e Service de neurologie , Hôpital Maisonneuve-Rosemont , Montréal , Canada
| | - Sven Joubert
- a Département de psychologie , Université de Montréal , Montréal , Canada.,b Centre de Recherche, Institut Universitaire de Gériatrie de Montréal , Université de Montréal , Montréal , Canada
| |
Collapse
|
29
|
Fekonja L, Wang Z, Bährend I, Rosenstock T, Rösler J, Wallmeroth L, Vajkoczy P, Picht T. Manual for clinical language tractography. Acta Neurochir (Wien) 2019; 161:1125-1137. [PMID: 31004240 PMCID: PMC6525736 DOI: 10.1007/s00701-019-03899-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/28/2019] [Indexed: 11/30/2022]
Abstract
Background We introduce a user-friendly, standardized protocol for tractography of the major language fiber bundles. Method The introduced method uses dMRI images for tractography whereas the ROI definition is based on structural T1 MPRAGE MRI templates, without normalization to MNI space. ROIs for five language-relevant fiber bundles were visualized on an axial, coronal, or sagittal view of T1 MPRAGE images. The ROIs were defined based upon the tracts’ obligatory pathways, derived from literature and own experiences in peritumoral tractography. Results The resulting guideline was evaluated for each fiber bundle in ten healthy subjects and ten patients by one expert and three raters. Overall, 300 ROIs were evaluated and compared. The targeted language fiber bundles could be tracked in 88% of the ROI pairs, based on the raters’ result blinded ROI placements. The evaluation indicated that the precision of the ROIs did not relate to the varying experience of the raters. Conclusions Our guideline introduces a standardized language tractography method for routine preoperative workup and for research contexts. The ROI placement guideline based on easy-to-identify anatomical landmarks proved to be user-friendly and accurate, also in inexperienced test persons.
Collapse
Affiliation(s)
- Lucius Fekonja
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Cluster of Excellence: "Matters of Activity. Image Space Material", Humboldt University, Berlin, Germany.
| | - Ziqian Wang
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ina Bährend
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Tizian Rosenstock
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Judith Rösler
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lara Wallmeroth
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Picht
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Cluster of Excellence: "Matters of Activity. Image Space Material", Humboldt University, Berlin, Germany
| |
Collapse
|
30
|
Battistella G, Henry M, Gesierich B, Wilson SM, Borghesani V, Shwe W, Miller Z, Deleon J, Miller BL, Jovicich J, Papinutto N, Dronkers NF, Seeley WW, Mandelli ML, Gorno-Tempini ML. Differential intrinsic functional connectivity changes in semantic variant primary progressive aphasia. NEUROIMAGE-CLINICAL 2019; 22:101797. [PMID: 31146321 PMCID: PMC6465769 DOI: 10.1016/j.nicl.2019.101797] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/26/2019] [Indexed: 12/25/2022]
Abstract
The semantic variant of primary progressive aphasia (svPPA) is a clinical syndrome characterized by semantic memory deficits with relatively preserved motor speech, syntax, and phonology. There is consistent evidence linking focal neurodegeneration of the anterior temporal lobes (ATL) to the semantic deficits observed in svPPA. Less is known about large-scale functional connectivity changes in this syndrome, particularly regarding the interplay between affected and spared language networks that leads to the unique cognitive dissociations typical of svPPA. Using whole-brain, seed-based connectivity on task-free Magnetic Resonance Imaging (MRI) data, we studied connectivity of networks anchored to three left-hemisphere regions crucially involved in svPPA symptomatology: ATL just posterior to the main atrophic area, opercular inferior frontal gyrus, and posterior inferior temporal lobe. First, in 32 healthy controls, these seeds isolated three networks: a ventral semantic network involving anterior middle temporal and angular gyri, a dorsal articulatory-phonological system involving inferior frontal and supramarginal regions, and a third functional connection between posterior inferior temporal and intraparietal regions likely involved in linking visual and linguistic processes. We then compared connectivity strength of these three networks between 16 svPPA patients and the 32 controls. In svPPA, decreased functional connectivity in the ventral semantic network correlated with weak semantic skills, while connectivity of the network seeded from the posterior inferior temporal lobe, though not significantly different between the two groups, correlated with pseudoword reading skills. Increased connectivity between the inferior frontal gyrus and the superior portion of the angular gyrus suggested possible adaptive changes. Our findings have two main implications. First, they support a functional subdivision of the left IPL based on its connectivity to specific language-related regions. Second, the unique neuroanatomical and linguistic profile observed in svPPA provides a compelling model for the functional interplay of these networks, being either up- or down- regulated in response to disease.
Collapse
Affiliation(s)
- Giovanni Battistella
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94158, USA.
| | - Maya Henry
- Department of Communication Sciences and Disorders, University of Texas, Austin, USA
| | - Benno Gesierich
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Stephen M Wilson
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Valentina Borghesani
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Wendy Shwe
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Zachary Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94158, USA; Department of Neurology, Dyslexia Center, University of California, San Francisco, CA 94158, USA
| | - Jessica Deleon
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Jorge Jovicich
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy
| | - Nico Papinutto
- Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Nina F Dronkers
- Department of Psychology, University of California, Berkeley, CA 94720, USA; Department of Neurology, University of California, Davis, CA 95616, USA
| | - William W Seeley
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Maria Luisa Mandelli
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94158, USA; Department of Neurology, Dyslexia Center, University of California, San Francisco, CA 94158, USA
| | - Maria Luisa Gorno-Tempini
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94158, USA; Department of Neurology, Dyslexia Center, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
31
|
Neural dynamics of visual and semantic object processing. PSYCHOLOGY OF LEARNING AND MOTIVATION 2019. [DOI: 10.1016/bs.plm.2019.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Wang L, Kuperberg G, Jensen O. Specific lexico-semantic predictions are associated with unique spatial and temporal patterns of neural activity. eLife 2018; 7:e39061. [PMID: 30575521 PMCID: PMC6322859 DOI: 10.7554/elife.39061] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 12/20/2018] [Indexed: 11/13/2022] Open
Abstract
We used Magnetoencephalography (MEG) in combination with Representational Similarity Analysis to probe neural activity associated with distinct, item-specific lexico-semantic predictions during language comprehension. MEG activity was measured as participants read highly constraining sentences in which the final words could be predicted. Before the onset of the predicted words, both the spatial and temporal patterns of brain activity were more similar when the same words were predicted than when different words were predicted. The temporal patterns localized to the left inferior and medial temporal lobe. These findings provide evidence that unique spatial and temporal patterns of neural activity are associated with item-specific lexico-semantic predictions. We suggest that the unique spatial patterns reflected the prediction of spatially distributed semantic features associated with the predicted word, and that the left inferior/medial temporal lobe played a role in temporally 'binding' these features, giving rise to unique lexico-semantic predictions.
Collapse
Affiliation(s)
- Lin Wang
- Department of PsychiatryHarvard Medical SchoolBostonUnited States
- Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownUnited States
- Department of PsychologyTufts UniversityMedfordUnited States
| | - Gina Kuperberg
- Department of PsychiatryHarvard Medical SchoolBostonUnited States
- Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownUnited States
- Department of PsychologyTufts UniversityMedfordUnited States
| | - Ole Jensen
- School of PsychologyCentre for Human Brain Health, University of BirminghamBirminghamUnited Kingdom
| |
Collapse
|
33
|
Snowden JS, Harris JM, Thompson JC, Kobylecki C, Jones M, Richardson AM, Neary D. Semantic dementia and the left and right temporal lobes. Cortex 2018; 107:188-203. [DOI: 10.1016/j.cortex.2017.08.024] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/19/2017] [Accepted: 08/21/2017] [Indexed: 12/31/2022]
|
34
|
Chen Y, Kumfor F, Landin‐Romero R, Irish M, Hodges JR, Piguet O. Cerebellar atrophy and its contribution to cognition in frontotemporal dementias. Ann Neurol 2018; 84:98-109. [DOI: 10.1002/ana.25271] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/07/2018] [Accepted: 06/07/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Yu Chen
- School of Psychology University of Sydney
- Brain and Mind Centre University of Sydney
- Australian Research Council Centre of Excellence in Cognition and Its Disorders
| | - Fiona Kumfor
- School of Psychology University of Sydney
- Brain and Mind Centre University of Sydney
- Australian Research Council Centre of Excellence in Cognition and Its Disorders
| | - Ramon Landin‐Romero
- School of Psychology University of Sydney
- Brain and Mind Centre University of Sydney
- Australian Research Council Centre of Excellence in Cognition and Its Disorders
| | - Muireann Irish
- School of Psychology University of Sydney
- Brain and Mind Centre University of Sydney
- Australian Research Council Centre of Excellence in Cognition and Its Disorders
| | - John R. Hodges
- Brain and Mind Centre University of Sydney
- Australian Research Council Centre of Excellence in Cognition and Its Disorders
- Sydney Medical School, University of Sydney Sydney New South Wales Australia
| | - Olivier Piguet
- School of Psychology University of Sydney
- Brain and Mind Centre University of Sydney
- Australian Research Council Centre of Excellence in Cognition and Its Disorders
| |
Collapse
|
35
|
Schaeverbeke J, Gabel S, Meersmans K, Bruffaerts R, Liuzzi AG, Evenepoel C, Dries E, Van Bouwel K, Sieben A, Pijnenburg Y, Peeters R, Bormans G, Van Laere K, Koole M, Dupont P, Vandenberghe R. Single-word comprehension deficits in the nonfluent variant of primary progressive aphasia. Alzheimers Res Ther 2018; 10:68. [PMID: 30021613 PMCID: PMC6052568 DOI: 10.1186/s13195-018-0393-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/30/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND A subset of patients with the nonfluent variant of primary progressive aphasia (PPA) exhibit concomitant single-word comprehension problems, constituting a 'mixed variant' phenotype. This phenotype is rare and currently not fully characterized. The aim of this study was twofold: to assess the prevalence and nature of single-word comprehension problems in the nonfluent variant and to study multimodal imaging characteristics of atrophy, tau, and amyloid burden associated with this mixed phenotype. METHODS A consecutive memory-clinic recruited series of 20 PPA patients (12 nonfluent, five semantic, and three logopenic variants) were studied on neurolinguistic and neuropsychological domains relative to 64 cognitively intact healthy older control subjects. The neuroimaging battery included high-resolution volumetric magnetic resonance imaging processed with voxel-based morphometry, and positron emission tomography with the tau-tracer [18F]-THK5351 and amyloid-tracer [11C]-Pittsburgh Compound B. RESULTS Seven out of 12 subjects who had been classified a priori with nonfluent variant PPA showed deficits on conventional single-word comprehension tasks along with speech apraxia and agrammatism, corresponding to a mixed variant phenotype. These mixed variant cases included three females and four males, with a mean age at onset of 65 years (range 44-77 years). Object knowledge and object recognition were additionally affected, although less severely compared with the semantic variant. The mixed variant was characterized by a distributed atrophy pattern in frontal and temporoparietal regions. A more focal pattern of elevated [18F]-THK5351 binding was present in the supplementary motor area, the left premotor cortex, midbrain, and basal ganglia. This pattern was closely similar to that seen in pure nonfluent variant PPA. At the individual patient level, elevated [18F]-THK5351 binding in the supplementary motor area and premotor cortex was present in six out of seven mixed variant cases and in five and four of these cases, respectively, in the thalamus and midbrain. Amyloid biomarker positivity was present in two out of seven mixed variant cases, compared with none of the five pure nonfluent cases. CONCLUSIONS A substantial proportion of PPA patients with speech apraxia and agrammatism also have single-word comprehension deficits. At the neurobiological level, the mixed variant shows a high degree of similarity with the pure nonfluent variant of PPA. TRIAL REGISTRATION EudraCT, 2014-002976-10 . Registered on 13-01-2015.
Collapse
Affiliation(s)
- Jolien Schaeverbeke
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- Alzheimer Research Centre KU Leuven, Leuven Research Institute for Neuroscience & Disease, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Silvy Gabel
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- Alzheimer Research Centre KU Leuven, Leuven Research Institute for Neuroscience & Disease, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Karen Meersmans
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Rose Bruffaerts
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- Alzheimer Research Centre KU Leuven, Leuven Research Institute for Neuroscience & Disease, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- Neurology Department, University Hospitals Leuven, Herestraat 49 - box 7003, 3000 Leuven, Belgium
| | - Antonietta Gabriella Liuzzi
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Charlotte Evenepoel
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- Alzheimer Research Centre KU Leuven, Leuven Research Institute for Neuroscience & Disease, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Eva Dries
- Neurology Department, University Hospitals Leuven, Herestraat 49 - box 7003, 3000 Leuven, Belgium
| | - Karen Van Bouwel
- Neurology Department, University Hospitals Leuven, Herestraat 49 - box 7003, 3000 Leuven, Belgium
| | - Anne Sieben
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Universiteitsplein 1, 2610 Antwerp, Belgium
- Institute Born-Bunge, Neuropathology and Laboratory of Neurochemistry and Behavior, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
- Neurology Department, University Hospitals Ghent, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Yolande Pijnenburg
- Old Age Psychiatry Department, GGZinGeest, Van Hilligaertstraat 21, 1072 JX Amsterdam, The Netherlands
- Alzheimer Center & Department of Neurology, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Ronald Peeters
- Radiology Department, University Hospitals Leuven, Herestraat 49, Leuven, 30000 Belgium
| | - Guy Bormans
- Laboratory of Radiopharmaceutical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- Nuclear Medicine and Molecular Imaging, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Koen Van Laere
- Alzheimer Research Centre KU Leuven, Leuven Research Institute for Neuroscience & Disease, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- Nuclear Medicine and Molecular Imaging, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Michel Koole
- Nuclear Medicine and Molecular Imaging, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Patrick Dupont
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- Alzheimer Research Centre KU Leuven, Leuven Research Institute for Neuroscience & Disease, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- Alzheimer Research Centre KU Leuven, Leuven Research Institute for Neuroscience & Disease, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- Neurology Department, University Hospitals Leuven, Herestraat 49 - box 7003, 3000 Leuven, Belgium
| |
Collapse
|
36
|
Herbet G, Moritz-Gasser S, Lemaitre AL, Almairac F, Duffau H. Functional compensation of the left inferior longitudinal fasciculus for picture naming. Cogn Neuropsychol 2018; 36:140-157. [DOI: 10.1080/02643294.2018.1477749] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Guillaume Herbet
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
- Institute for Neuroscience of Montpellier, INSERM U1051 (Plasticity of Central Nervous System, Human Stem Cells and Glial Tumors research group), Montpellier, France
- Department of Medicine, University of Montpellier, Montpellier, France
| | - Sylvie Moritz-Gasser
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
- Institute for Neuroscience of Montpellier, INSERM U1051 (Plasticity of Central Nervous System, Human Stem Cells and Glial Tumors research group), Montpellier, France
- Department of Medicine, University of Montpellier, Montpellier, France
| | - Anne-Laure Lemaitre
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
- Department of Psychology, University of Lille, Lille, France
| | - Fabien Almairac
- Department of Neurosurgery, Nice University Medical Center, Nice, France
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
- Institute for Neuroscience of Montpellier, INSERM U1051 (Plasticity of Central Nervous System, Human Stem Cells and Glial Tumors research group), Montpellier, France
- Department of Medicine, University of Montpellier, Montpellier, France
| |
Collapse
|
37
|
Hurley RS, Mesulam MM, Sridhar J, Rogalski EJ, Thompson CK. A nonverbal route to conceptual knowledge involving the right anterior temporal lobe. Neuropsychologia 2018; 117:92-101. [PMID: 29802865 DOI: 10.1016/j.neuropsychologia.2018.05.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 05/18/2018] [Accepted: 05/22/2018] [Indexed: 11/19/2022]
Abstract
The semantic variant of primary progressive aphasia (PPA-S) is diagnosed based on impaired single-word comprehension, but nonverbal impairments in face and object recognition can also be present, particularly in later disease stages. PPA-S is associated with focal atrophy in the left anterior temporal lobe (ATL), often accompanied by a lesser degree of atrophy in the right ATL. According to a dual-route account, the left ATL is critical for verbal access to conceptual knowledge while nonverbal access to conceptual knowledge depends upon the integrity of right ATL. Consistent with this view, single-word comprehension deficits in PPA-S have consistently been linked to the degree of atrophy in left ATL. In the current study we examined object processing and cortical thickness in 19 patients diagnosed with PPA-S, to evaluate the hypothesis that nonverbal object impairments would instead be determined by the amount of atrophy in the right ATL. All patients demonstrated inability to access conceptual knowledge on standardized tests with word stimuli: they were unable to match spoken words with their corresponding pictures on the Peabody Picture Vocabulary Test. Only a minority of patients, however, performed abnormally on an experimental thematic verification task, which requires judgments as to whether pairs of object pictures are thematically-associated, and does not rely on auditory or visual word input. The entire PPA-S group showed cortical thinning in left ATL, but atrophy in right ATL was more prominent in the subgroup with low verification scores. Thematic verification scores were correlated with cortical thickness in the right rather than left ATL, an asymmetric mapping which persisted when controlling for the degree of atrophy in the contralateral hemisphere. These results are consistent with a dual-route account of conceptual knowledge: breakdown of the verbal left hemispheric route produces an aphasic syndrome, which is only accompanied by visual object processing impairments when the nonverbal right hemispheric route is also compromised.
Collapse
Affiliation(s)
- Robert S Hurley
- Cognitive Neurology & Alzheimer's Disease Center, Northwestern University, Chicago, IL 60611, USA; Department of Neurology, Northwestern University, Chicago, IL 60611, USA; Department of Psychology, Cleveland State University, Cleveland, OH 44115, USA.
| | - M-Marsel Mesulam
- Cognitive Neurology & Alzheimer's Disease Center, Northwestern University, Chicago, IL 60611, USA; Department of Neurology, Northwestern University, Chicago, IL 60611, USA
| | - Jaiashre Sridhar
- Cognitive Neurology & Alzheimer's Disease Center, Northwestern University, Chicago, IL 60611, USA
| | - Emily J Rogalski
- Cognitive Neurology & Alzheimer's Disease Center, Northwestern University, Chicago, IL 60611, USA
| | - Cynthia K Thompson
- Cognitive Neurology & Alzheimer's Disease Center, Northwestern University, Chicago, IL 60611, USA; Department of Neurology, Northwestern University, Chicago, IL 60611, USA; Department of Communications Sciences and Disorders, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
38
|
Composing lexical versus functional adjectives: Evidence for uniformity in the left temporal lobe. Psychon Bull Rev 2018; 25:2309-2322. [DOI: 10.3758/s13423-018-1469-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
39
|
Herbet G, Moritz-Gasser S, Boiseau M, Duvaux S, Cochereau J, Duffau H. Converging evidence for a cortico-subcortical network mediating lexical retrieval. Brain 2018; 139:3007-3021. [PMID: 27604309 DOI: 10.1093/brain/aww220] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 07/13/2016] [Indexed: 11/12/2022] Open
Affiliation(s)
- Guillaume Herbet
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, F-34295, Montpellier, France.,Institute for Neuroscience of Montpellier (INM), INSERM-1051, Team 4, Saint-Eloi Hospital, Montpellier University Medical Center, F-34091, Montpellier, France
| | - Sylvie Moritz-Gasser
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, F-34295, Montpellier, France.,Institute for Neuroscience of Montpellier (INM), INSERM-1051, Team 4, Saint-Eloi Hospital, Montpellier University Medical Center, F-34091, Montpellier, France.,Department of Neurology, Gui de Chauliac Hospital, Montpellier University Medical Center, F-34295, Montpellier, France
| | - Morgane Boiseau
- Department of Neurology, Gui de Chauliac Hospital, Montpellier University Medical Center, F-34295, Montpellier, France
| | - Sophie Duvaux
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, F-34295, Montpellier, France
| | - Jérôme Cochereau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, F-34295, Montpellier, France
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, F-34295, Montpellier, France.,Institute for Neuroscience of Montpellier (INM), INSERM-1051, Team 4, Saint-Eloi Hospital, Montpellier University Medical Center, F-34091, Montpellier, France
| |
Collapse
|
40
|
Hope TMH, Price CJ. Why the left posterior inferior temporal lobe is needed for word finding. Brain 2018; 139:2823-2826. [PMID: 29106486 DOI: 10.1093/brain/aww240] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Thomas M H Hope
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University college London, UK
| | - Cathy J Price
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University college London, UK
| |
Collapse
|
41
|
TING SKS, FOO H, CHIA PS, HAMEED S, NG KP, NG A, KANDIAH N. Dyslexic Characteristics of Chinese-Speaking Semantic Variant of Primary Progressive Aphasia. J Neuropsychiatry Clin Neurosci 2018; 30:31-37. [PMID: 29061089 PMCID: PMC5794526 DOI: 10.1176/appi.neuropsych.17040081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Reading disorder is a recognized feature in primary progressive aphasia (PPA). Surface dyslexia, characterized by regularization errors, is typically seen in the English-speaking semantic variant of PPA (svPPA). However, dyslexic characteristics of other languages, particularly logographical languages such as Chinese, remain sparse in the literature. This study aims to characterize and describe the dyslexic pattern in this group of patients by comparing an English-speaking svPPA group with a Chinese-speaking svPPA group. The authors hypothesized that Chinese-speaking individuals with svPPA would likely commit fewer surface dyslexic errors. By accessing the database of Singapore's National Neuroscience Institute and the National Alzheimer's Coordinating Center of the United States, the authors identified three Chinese-speaking and 18 English-speaking patients with svPPA, respectively, for comparison. The results suggest that, instead of surface dyslexia, svPPA in Chinese-speaking individuals is characterized by a profound deep dyslexic error. Based on current evidence suggesting the role of the temporal pole as a semantic convergence center, the authors conclude that this region also mediates and converges lexical-semantic significance in logographical languages.
Collapse
Affiliation(s)
- Simon Kang Seng TING
- Department of Neurology, Singapore General Hospital, Singapore, Singapore,Department of Neurology, National Neuroscience Institute, Singapore, Singapore,Duke-NUS Medical School, Singapore, Singapore
| | - Heidi FOO
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Pei Shi CHIA
- Department of Neurology, Singapore General Hospital, Singapore, Singapore,Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Shahul HAMEED
- Department of Neurology, Singapore General Hospital, Singapore, Singapore,Department of Neurology, National Neuroscience Institute, Singapore, Singapore,Duke-NUS Medical School, Singapore, Singapore
| | - Kok Pin NG
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Adeline NG
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Nagaendran KANDIAH
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore,Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
42
|
Abstract
Although the parietal lobe was considered by many of the earliest investigators of disordered language to be a major component of the neural systems instantiating language, most views of the anatomic substrate of language emphasize the role of temporal and frontal lobes in language processing. We review evidence from lesion studies as well as functional neuroimaging, demonstrating that the left parietal lobe is also crucial for several aspects of language. First, we argue that the parietal lobe plays a major role in semantic processing, particularly for "thematic" relationships in which information from multiple sensory and motor domains is integrated. Additionally, we review a number of accounts that emphasize the role of the left parietal lobe in phonologic processing. Although the accounts differ somewhat with respect to the nature of the linguistic computations subserved by the parietal lobe, they share the view that the parietal lobe is essential for the processes by which sound-based representations are transcoded into a format that can drive action systems. We suggest that investigations of the linguistic capacities of the parietal lobe constrained by the understanding of the parietal lobe in action and multimodal sensory integration may serve to enhance not only our understanding of language, but also the relationship between language and more basic brain functions.
Collapse
Affiliation(s)
- H Branch Coslett
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States.
| | - Myrna F Schwartz
- Moss Rehabilitation Research Institute, Elkins Park, PA, United States
| |
Collapse
|
43
|
Clinical and biological phenotypes of frontotemporal dementia: Perspectives for disease modifying therapies. Eur J Pharmacol 2017; 817:76-85. [DOI: 10.1016/j.ejphar.2017.05.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 03/28/2017] [Accepted: 05/30/2017] [Indexed: 12/12/2022]
|
44
|
Bonilha L, Hillis AE, Hickok G, den Ouden DB, Rorden C, Fridriksson J. Temporal lobe networks supporting the comprehension of spoken words. Brain 2017; 140:2370-2380. [PMID: 29050387 DOI: 10.1093/brain/awx169] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 05/29/2017] [Indexed: 11/14/2022] Open
Abstract
Auditory word comprehension is a cognitive process that involves the transformation of auditory signals into abstract concepts. Traditional lesion-based studies of stroke survivors with aphasia have suggested that neocortical regions adjacent to auditory cortex are primarily responsible for word comprehension. However, recent primary progressive aphasia and normal neurophysiological studies have challenged this concept, suggesting that the left temporal pole is crucial for word comprehension. Due to its vasculature, the temporal pole is not commonly completely lesioned in stroke survivors and this heterogeneity may have prevented its identification in lesion-based studies of auditory comprehension. We aimed to resolve this controversy using a combined voxel-based-and structural connectome-lesion symptom mapping approach, since cortical dysfunction after stroke can arise from cortical damage or from white matter disconnection. Magnetic resonance imaging (T1-weighted and diffusion tensor imaging-based structural connectome), auditory word comprehension and object recognition tests were obtained from 67 chronic left hemisphere stroke survivors. We observed that damage to the inferior temporal gyrus, to the fusiform gyrus and to a white matter network including the left posterior temporal region and its connections to the middle temporal gyrus, inferior temporal gyrus, and cingulate cortex, was associated with word comprehension difficulties after factoring out object recognition. These results suggest that the posterior lateral and inferior temporal regions are crucial for word comprehension, serving as a hub to integrate auditory and conceptual processing. Early processing linking auditory words to concepts is situated in posterior lateral temporal regions, whereas additional and deeper levels of semantic processing likely require more anterior temporal regions.10.1093/brain/awx169_video1awx169media15555638084001.
Collapse
Affiliation(s)
- Leonardo Bonilha
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
| | - Argye E Hillis
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Gregory Hickok
- Department of Cognitive Sciences, University of California. Irvine, CA, USA
| | - Dirk B den Ouden
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| | - Chris Rorden
- Department of Psychology, University of South Carolina, Columbia, SC, USA
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
45
|
Strength of Temporal White Matter Pathways Predicts Semantic Learning. J Neurosci 2017; 37:11101-11113. [PMID: 29025925 DOI: 10.1523/jneurosci.1720-17.2017] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/13/2017] [Accepted: 09/20/2017] [Indexed: 12/12/2022] Open
Abstract
Learning the associations between words and meanings is a fundamental human ability. Although the language network is cortically well defined, the role of the white matter pathways supporting novel word-to-meaning mappings remains unclear. Here, by using contextual and cross-situational word learning, we tested whether learning the meaning of a new word is related to the integrity of the language-related white matter pathways in 40 adults (18 women). The arcuate, uncinate, inferior-fronto-occipital and inferior-longitudinal fasciculi were virtually dissected using manual and automatic deterministic fiber tracking. Critically, the automatic method allowed assessing the white matter microstructure along the tract. Results demonstrate that the microstructural properties of the left inferior-longitudinal fasciculus predict contextual learning, whereas the left uncinate was associated with cross-situational learning. In addition, we identified regions of special importance within these pathways: the posterior middle temporal gyrus, thought to serve as a lexical interface and specifically related to contextual learning; the anterior temporal lobe, known to be an amodal hub for semantic processing and related to cross-situational learning; and the white matter near the hippocampus, a structure fundamental for the initial stages of new-word learning and, remarkably, related to both types of word learning. No significant associations were found for the inferior-fronto-occipital fasciculus or the arcuate. While previous results suggest that learning new phonological word forms is mediated by the arcuate fasciculus, these findings show that the temporal pathways are the crucial neural substrate supporting one of the most striking human abilities: our capacity to identify correct associations between words and meanings under referential indeterminacy.SIGNIFICANCE STATEMENT The language-processing network is cortically (i.e., gray matter) well defined. However, the role of the white matter pathways that support novel word learning within this network remains unclear. In this work, we dissected language-related (arcuate, uncinate, inferior-fronto-occipital, and inferior-longitudinal) fasciculi using manual and automatic tracking. We found the left inferior-longitudinal fasciculus to be predictive of word-learning success in two word-to-meaning tasks: contextual and cross-situational learning paradigms. The left uncinate was predictive of cross-situational word learning. No significant correlations were found for the arcuate or the inferior-fronto-occipital fasciculus. While previous results showed that learning new phonological word forms is supported by the arcuate fasciculus, these findings demonstrate that learning new word-to-meaning associations is mainly dependent on temporal white matter pathways.
Collapse
|
46
|
Schlaffke L, Leemans A, Schweizer LM, Ocklenburg S, Schmidt-Wilcke T. Learning Morse Code Alters Microstructural Properties in the Inferior Longitudinal Fasciculus: A DTI Study. Front Hum Neurosci 2017; 11:383. [PMID: 28798672 PMCID: PMC5526915 DOI: 10.3389/fnhum.2017.00383] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 07/10/2017] [Indexed: 11/13/2022] Open
Abstract
Learning relies on neuroplasticity, which has mainly been studied in gray matter (GM). However, there is mounting evidence indicating a critical role of white matter changes involved in learning processes. One of the most important learning processes in human development is language acquisition. However, due to the length of this learning process, it has been notoriously difficult to investigate the underlying neuroplastic changes. Here, we report a novel learning paradigm to assess the role of white matter plasticity for language acquisition. By acoustically presenting Morse Code (MC) using an in house developed audio book as a model for language-type learning, we generated a well-controlled learning environment that allows for the detection of subtle white matter changes related to language type learning in a much shorter time frame than usual language acquisition. In total 12 letters of the MC alphabet were learned within six learning session, which allowed study participants to perform a word recognition MC decoding task. In this study, we found that learning MC was associated with significant microstructural changes in the left inferior longitudinal fasciculus (ILF). The fractional anisotropy (FA) of this associative fiber bundle connecting the occipital and posterior temporal cortex with the temporal pole as well as the hippocampus and amygdala was increased. Furthermore, white matter plasticity was associated with task performance of MC decoding, indicating that the structural changes were related to learning efficiency. In conclusion, our findings demonstrate an important role of white matter neuroplasticity for acquiring a new language skill.
Collapse
Affiliation(s)
- Lara Schlaffke
- Department of Neurology, BG-Kliniken Bergmannsheil, Ruhr Universität BochumBochum, Germany.,Department of Radiology, University Medical Center UtrechtUtrecht, Netherlands
| | - Alexander Leemans
- Image Sciences Institute, University Medical Center UtrechtUtrecht, Netherlands
| | - Lauren M Schweizer
- Department of Neurology, BG-Kliniken Bergmannsheil, Ruhr Universität BochumBochum, Germany
| | | | - Tobias Schmidt-Wilcke
- Department of Neurology, BG-Kliniken Bergmannsheil, Ruhr Universität BochumBochum, Germany.,Department of Neurology, St. Mauritius TherapieklinikMeerbusch, Germany.,Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, University of DüsseldorfDüsseldorf, Germany
| |
Collapse
|
47
|
Wu C, Zheng Y, Li J, Zhang B, Li R, Wu H, She S, Liu S, Peng H, Ning Y, Li L. Activation and Functional Connectivity of the Left Inferior Temporal Gyrus during Visual Speech Priming in Healthy Listeners and Listeners with Schizophrenia. Front Neurosci 2017; 11:107. [PMID: 28360829 PMCID: PMC5350153 DOI: 10.3389/fnins.2017.00107] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 02/20/2017] [Indexed: 11/13/2022] Open
Abstract
Under a "cocktail-party" listening condition with multiple-people talking, compared to healthy people, people with schizophrenia benefit less from the use of visual-speech (lipreading) priming (VSP) cues to improve speech recognition. The neural mechanisms underlying the unmasking effect of VSP remain unknown. This study investigated the brain substrates underlying the unmasking effect of VSP in healthy listeners and the schizophrenia-induced changes in the brain substrates. Using functional magnetic resonance imaging, brain activation and functional connectivity for the contrasts of the VSP listening condition vs. the visual non-speech priming (VNSP) condition were examined in 16 healthy listeners (27.4 ± 8.6 years old, 9 females and 7 males) and 22 listeners with schizophrenia (29.0 ± 8.1 years old, 8 females and 14 males). The results showed that in healthy listeners, but not listeners with schizophrenia, the VSP-induced activation (against the VNSP condition) of the left posterior inferior temporal gyrus (pITG) was significantly correlated with the VSP-induced improvement in target-speech recognition against speech masking. Compared to healthy listeners, listeners with schizophrenia showed significantly lower VSP-induced activation of the left pITG and reduced functional connectivity of the left pITG with the bilateral Rolandic operculum, bilateral STG, and left insular. Thus, the left pITG and its functional connectivity may be the brain substrates related to the unmasking effect of VSP, assumedly through enhancing both the processing of target visual-speech signals and the inhibition of masking-speech signals. In people with schizophrenia, the reduced unmasking effect of VSP on speech recognition may be associated with a schizophrenia-related reduction of VSP-induced activation and functional connectivity of the left pITG.
Collapse
Affiliation(s)
- Chao Wu
- Beijing Key Laboratory of Behavior and Mental Health, Key Laboratory on Machine Perception, Ministry of Education, School of Psychological and Cognitive Sciences, Peking UniversityBeijing, China; School of Life Sciences, Peking UniversityBeijing, China; School of Psychology, Beijing Normal UniversityBeijing, China
| | - Yingjun Zheng
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital) Guangzhou, China
| | - Juanhua Li
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital) Guangzhou, China
| | - Bei Zhang
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital) Guangzhou, China
| | - Ruikeng Li
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital) Guangzhou, China
| | - Haibo Wu
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital) Guangzhou, China
| | - Shenglin She
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital) Guangzhou, China
| | - Sha Liu
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital) Guangzhou, China
| | - Hongjun Peng
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital) Guangzhou, China
| | - Yuping Ning
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital) Guangzhou, China
| | - Liang Li
- Beijing Key Laboratory of Behavior and Mental Health, Key Laboratory on Machine Perception, Ministry of Education, School of Psychological and Cognitive Sciences, Peking UniversityBeijing, China; The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital)Guangzhou, China; Beijing Institute for Brain Disorder, Capital Medical UniversityBeijing, China
| |
Collapse
|
48
|
Scalar adjectives and the temporal unfolding of semantic composition: An MEG investigation. Neuropsychologia 2016; 89:161-171. [DOI: 10.1016/j.neuropsychologia.2016.06.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/19/2016] [Accepted: 06/09/2016] [Indexed: 12/22/2022]
|
49
|
Jokel R, Kielar A, Anderson ND, Black SE, Rochon E, Graham S, Freedman M, Tang-Wai DF. Behavioural and neuroimaging changes after naming therapy for semantic variant primary progressive aphasia. Neuropsychologia 2016; 89:191-216. [DOI: 10.1016/j.neuropsychologia.2016.06.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 10/21/2022]
|
50
|
Woollacott IOC, Rohrer JD. The clinical spectrum of sporadic and familial forms of frontotemporal dementia. J Neurochem 2016; 138 Suppl 1:6-31. [PMID: 27144467 DOI: 10.1111/jnc.13654] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/10/2016] [Accepted: 04/27/2016] [Indexed: 12/11/2022]
Abstract
The term frontotemporal dementia (FTD) describes a clinically, genetically and pathologically diverse group of neurodegenerative disorders. Symptoms of FTD can present in individuals in their 20s through to their 90s, but the mean age at onset is in the sixth decade. The most common presentation is with a change in personality and impaired social conduct (behavioural variant FTD). Less frequently patients present with language problems (primary progressive aphasia). Both of these groups of patients can develop motor features consistent with either motor neuron disease (usually the amyotrophic lateral sclerosis variant) or parkinsonism (most commonly a progressive supranuclear palsy or corticobasal syndrome). In about a third of cases FTD is familial, with mutations in the progranulin, microtubule-associated protein tau and chromosome 9 open reading frame 72 genes being the major causes. Mutations in a number of other genes including TANK-binding kinase 1 are rare causes of familial FTD. This review aims to clarify the often confusing terminology of FTD, and outline the various clinical features and diagnostic criteria of sporadic and familial FTD syndromes. It will also discuss the current major challenges in FTD research and clinical practice, and potential areas for future research. This review clarifies the terminology of frontotemporal dementia (FTD) and summarizes the various clinical features and most recent diagnostic criteria of sporadic and familial FTD syndromes. It also discusses the current major challenges in FTD research and clinical practice, and highlights potential areas for future research.
Collapse
Affiliation(s)
- Ione O C Woollacott
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| |
Collapse
|