1
|
Volloch V, Rits-Volloch S. Quintessential Synergy: Concurrent Transient Administration of Integrated Stress Response Inhibitors and BACE1 and/or BACE2 Activators as the Optimal Therapeutic Strategy for Alzheimer's Disease. Int J Mol Sci 2024; 25:9913. [PMID: 39337400 PMCID: PMC11432332 DOI: 10.3390/ijms25189913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
The present study analyzes two potential therapeutic approaches for Alzheimer's disease (AD). One is the suppression of the neuronal integrated stress response (ISR). Another is the targeted degradation of intraneuronal amyloid-beta (iAβ) via the activation of BACE1 (Beta-site Aβ-protein-precursor Cleaving Enzyme) and/or BACE2. Both approaches are rational. Both are promising. Both have substantial intrinsic limitations. However, when combined in a carefully orchestrated manner into a composite therapy they display a prototypical synergy and constitute the apparently optimal, potentially most effective therapeutic strategy for AD.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Children’s Hospital, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
2
|
Banerjee G, Schott JM, Ryan NS. Familial cerebral amyloid disorders with prominent white matter involvement. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:289-315. [PMID: 39322385 DOI: 10.1016/b978-0-323-99209-1.00010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Familial cerebral amyloid disorders are characterized by the accumulation of fibrillar protein aggregates, which deposit in the parenchyma as plaques and in the vasculature as cerebral amyloid angiopathy (CAA). Amyloid β (Aβ) is the most common of these amyloid proteins, accumulating in familial and sporadic forms of Alzheimer's disease and CAA. However, there are also a number of rare, hereditary, non-Aβ cerebral amyloidosis. The clinical manifestations of these familial cerebral amyloid disorders are diverse, including cognitive or neuropsychiatric presentations, intracerebral hemorrhage, seizures, myoclonus, headache, ataxia, and spasticity. Some mutations are associated with extensive white matter hyperintensities on imaging, which may or may not be accompanied by hemorrhagic imaging markers of CAA; others are associated with occipital calcification. We describe the clinical, imaging, and pathologic features of these disorders and discuss putative disease mechanisms. Familial disorders of cerebral amyloid accumulation offer unique insights into the contributions of vascular and parenchymal amyloid to pathogenesis and the pathways underlying white matter involvement in neurodegeneration. With Aβ immunotherapies now entering the clinical realm, gaining a deeper understanding of these processes and the relationships between genotype and phenotype has never been more relevant.
Collapse
Affiliation(s)
- Gargi Banerjee
- MRC Prion Unit at University College London (UCL), Institute of Prion Diseases, UCL, London, United Kingdom
| | - Jonathan M Schott
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, United Kingdom; UK Dementia Research Institute at UCL, London, United Kingdom
| | - Natalie S Ryan
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, United Kingdom; UK Dementia Research Institute at UCL, London, United Kingdom.
| |
Collapse
|
3
|
Banerjee G, Collinge J, Fox NC, Lashley T, Mead S, Schott JM, Werring DJ, Ryan NS. Clinical considerations in early-onset cerebral amyloid angiopathy. Brain 2023; 146:3991-4014. [PMID: 37280119 PMCID: PMC10545523 DOI: 10.1093/brain/awad193] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 04/16/2023] [Accepted: 05/01/2023] [Indexed: 06/08/2023] Open
Abstract
Cerebral amyloid angiopathy (CAA) is an important cerebral small vessel disease associated with brain haemorrhage and cognitive change. The commonest form, sporadic amyloid-β CAA, usually affects people in mid- to later life. However, early-onset forms, though uncommon, are increasingly recognized and may result from genetic or iatrogenic causes that warrant specific and focused investigation and management. In this review, we firstly describe the causes of early-onset CAA, including monogenic causes of amyloid-β CAA (APP missense mutations and copy number variants; mutations of PSEN1 and PSEN2) and non-amyloid-β CAA (associated with ITM2B, CST3, GSN, PRNP and TTR mutations), and other unusual sporadic and acquired causes including the newly-recognized iatrogenic subtype. We then provide a structured approach for investigating early-onset CAA, and highlight important management considerations. Improving awareness of these unusual forms of CAA amongst healthcare professionals is essential for facilitating their prompt diagnosis, and an understanding of their underlying pathophysiology may have implications for more common, late-onset, forms of the disease.
Collapse
Affiliation(s)
- Gargi Banerjee
- MRC Prion Unit at University College London (UCL), Institute of Prion Diseases, UCL, London, W1W 7FF, UK
| | - John Collinge
- MRC Prion Unit at University College London (UCL), Institute of Prion Diseases, UCL, London, W1W 7FF, UK
| | - Nick C Fox
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
| | - Tammaryn Lashley
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Disorders, UCL Queen Square Institute of Neurology, London, W1 1PJ, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Simon Mead
- MRC Prion Unit at University College London (UCL), Institute of Prion Diseases, UCL, London, W1W 7FF, UK
| | - Jonathan M Schott
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
| | - David J Werring
- Stroke Research Centre, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Natalie S Ryan
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
| |
Collapse
|
4
|
Schilling S, Pradhan A, Heesch A, Helbig A, Blennow K, Koch C, Bertgen L, Koo EH, Brinkmalm G, Zetterberg H, Kins S, Eggert S. Differential effects of familial Alzheimer's disease-causing mutations on amyloid precursor protein (APP) trafficking, proteolytic conversion, and synaptogenic activity. Acta Neuropathol Commun 2023; 11:87. [PMID: 37259128 DOI: 10.1186/s40478-023-01577-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/04/2023] [Indexed: 06/02/2023] Open
Abstract
The amyloid precursor protein (APP) is a key player in Alzheimer`s disease (AD) and the precursor of the Aβ peptide, which is generated by consecutive cleavages of β- and γ-secretases. Familial Alzheimer's disease (FAD) describes a hereditary subgroup of AD that represents a low percentage of AD cases with an early onset of the disease. Different APP FAD mutations are thought to have qualitatively different effects on its proteolytic conversion. However, few studies have explored the pathogenic and putative physiological differences in more detail. Here, we compared different FAD mutations, located at the β- (Swedish), α- (Flemish, Arctic, Iowa) or γ-secretase (Iberian) cleavage sites. We examined heterologous expression of APP WT and FAD mutants in non-neuronal cells and their impact on presynaptic differentiation in contacting axons of co-cultured neurons. To decipher the underlying molecular mechanism, we tested the subcellular localization, the endocytosis rate and the proteolytic processing in detail by immunoprecipitation-mass spectrometry. Interestingly, we found that only the Iberian mutation showed altered synaptogenic function. Furthermore, the APP Iowa mutant shows significantly decreased α-secretase processing which is in line with our results that APP carrying the Iowa mutation was significantly increased in early endosomes. However, most interestingly, immunoprecipitation-mass spectrometry analysis revealed that the amino acid substitutions of APP FAD mutants have a decisive impact on their processing reflected in altered Aβ profiles. Importantly, N-terminally truncated Aβ peptides starting at position 5 were detected preferentially for APP Flemish, Arctic, and Iowa mutants containing amino acid substitutions around the α-secretase cleavage site. The strongest change in the ratio of Aβ40/Aβ42 was observed for the Iberian mutation while APP Swedish showed a substantial increase in Aβ1-17 peptides. Together, our data indicate that familial AD mutations located at the α-, β-, and γ-secretase cleavage sites show considerable differences in the underlying pathogenic mechanisms.
Collapse
Affiliation(s)
- Sandra Schilling
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Ajay Pradhan
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Amelie Heesch
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Andrea Helbig
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Christian Koch
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Lea Bertgen
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Edward H Koo
- San Diego (UCSD), Department of Neuroscience, University of California, La Jolla, CA, 92093-0662, USA
| | - Gunnar Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Stefan Kins
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Simone Eggert
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663, Kaiserslautern, Germany.
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, City-Campus, Hermann-Rein-Str. 3, 37075, Göttingen, Germany.
| |
Collapse
|
5
|
Dent P, Booth L, Roberts JL, Poklepovic A, Martinez J, Cridebring D, Reiman EM. AR12 increases BAG3 expression which is essential for Tau and APP degradation via LC3-associated phagocytosis and macroautophagy. Aging (Albany NY) 2022; 14:8221-8242. [PMID: 36227739 PMCID: PMC9648812 DOI: 10.18632/aging.204337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/05/2022] [Indexed: 11/26/2022]
Abstract
We defined the mechanisms by which the chaperone ATPase inhibitor AR12 and the multi-kinase inhibitor neratinib interacted to reduce expression of Tau and amyloid-precursor protein (APP) in microglia and neuronal cells. AR12 and neratinib interacted to increase the phosphorylation of eIF2A S51 and the expression of BAG3, Beclin1 and ATG5, and in parallel, enhanced autophagosome formation and autophagic flux. Knock down of BAG3, Beclin1 or ATG5 abolished autophagosome formation and significantly reduced degradation of p62, LAMP2, Tau, APP, and GRP78 (total and plasma membrane). Knock down of Rubicon, a key component of LC3-associated phagocytosis (LAP), significantly reduced autophagosome formation but not autophagic flux and prevented degradation of Tau, APP, and cell surface GRP78, but not ER-localized GRP78. Knock down of Beclin1, ATG5 or Rubicon or over-expression of GRP78 prevented the significant increase in eIF2A phosphorylation. Knock down of eIF2A prevented the increase in BAG3 expression and significantly reduced autophagosome formation, autophagic flux, and it prevented Tau and APP degradation. We conclude that AR12 has the potential to reduce Tau and APP levels in neurons and microglia via the actions of LAP, endoplasmic reticulum stress signaling and macroautophagy. We hypothesize that the initial inactivation of GRP78 catalytic function by AR12 facilitates an initial increase in eIF2A phosphorylation which in turn is essential for greater levels of eIF2A phosphorylation, greater levels of BAG3 and macroautophagy and eventually leading to significant amounts of APP/Tau degradation.
Collapse
Affiliation(s)
- Paul Dent
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Laurence Booth
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jane L Roberts
- Department of Surgery, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Andrew Poklepovic
- Department of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jennifer Martinez
- National Institute of Environmental Health Sciences, Inflammation and Autoimmunity Group, Triangle Park, Durham, NC 27709, USA
| | - Derek Cridebring
- Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Eric M Reiman
- Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA.,Banner Alzheimer's Institute, Phoenix, AZ 85006, USA
| |
Collapse
|
6
|
Mao C, Li J, Dong L, Huang X, Lei D, Wang J, Chu S, Liu C, Peng B, Román GC, Cui L, Gao J. Clinical Phenotype and Mutation Spectrum of Alzheimer's Disease with Causative Genetic Mutation in a Chinese Cohort. Curr Alzheimer Res 2021; 18:265-272. [PMID: 34102969 PMCID: PMC8506917 DOI: 10.2174/1567205018666210608120339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/06/2021] [Accepted: 04/06/2021] [Indexed: 11/22/2022]
Abstract
Background Alzheimer’s disease with a causative genetic mutation (AD-CGM) is an uncommon form, characterized by a heterogeneous clinical phenotype and variations in the genotype of racial groups affected. Objective We aimed to systemically describe the phenotype variance and mutation spectrum in the large sample size of the Peking Union Medical College Hospital (PUMCH) cohort, Beijing, China. Methods Next-generation sequencing (NGS) was carried out in 1108 patients diagnosed with dementia. A total of 40 Han Chinese patients with three AD gene mutations were enrolled. A systemic review of all the patients was performed, including clinical history, neurocognitive assessment, brain magnetic resonance imaging, and cerebrospinal fluid (CSF) biomarkers. Results We studied the following gene mutation variants: 12 AβPP, 13 PSEN1, and 9 PSEN2, and 23 among them were novel. Most of them were early-onset, but PSEN1 mutation carriers had the youngest onset age. The commonest symptoms were similar to those of AD, including an amnestic syndrome, followed by psychiatric symptoms and movement disorder. On MRI, parietal and posterior temporal atrophy was prominent in PSEN1 and PSEN2 mutation carriers, while AβPP mutation carriers had more vascular changes. The CSF biomarkers profile was indistinguishable from sporadic AD. Conclusion We identified a small group of AD-CGM subjects representing 3.6% among more than 1000 demented patients in the PUMCH cohort. These subjects usually presented with early-onset
dementia and exhibited significant clinical and genetic heterogeneity. Identification required complete screening of genetic mutations using NGS. Although family history was usually present, we found non-familial cases of all three genetic mutations.
Collapse
Affiliation(s)
- Chenhui Mao
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100730, China
| | - Jie Li
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100730, China
| | - Liling Dong
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100730, China
| | - Xinying Huang
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100730, China
| | - Dan Lei
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100730, China
| | - Jie Wang
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100730, China
| | - Shanshan Chu
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100730, China
| | - Caiyan Liu
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100730, China
| | - Bin Peng
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100730, China
| | - Gustavo C Román
- Stanley H. Appel Department of Neurology, Nantz National Alzheimer Center, Houston Methodist Hospital, Houston, Texas 77030, United States
| | - Liying Cui
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100730, China
| | - Jing Gao
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100730, China
| |
Collapse
|
7
|
Penke B, Bogár F, Paragi G, Gera J, Fülöp L. Key Peptides and Proteins in Alzheimer's Disease. Curr Protein Pept Sci 2019; 20:577-599. [PMID: 30605056 DOI: 10.2174/1389203720666190103123434] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/03/2018] [Accepted: 12/27/2018] [Indexed: 02/02/2023]
Abstract
Alzheimer's Disease (AD) is a form of progressive dementia involving cognitive impairment, loss of learning and memory. Different proteins (such as amyloid precursor protein (APP), β- amyloid (Aβ) and tau protein) play a key role in the initiation and progression of AD. We review the role of the most important proteins and peptides in AD pathogenesis. The structure, biosynthesis and physiological role of APP are shortly summarized. The details of trafficking and processing of APP to Aβ, the cytosolic intracellular Aβ domain (AICD) and small soluble proteins are shown, together with other amyloid-forming proteins such as tau and α-synuclein (α-syn). Hypothetic physiological functions of Aβ are summarized. The mechanism of conformational change, the formation and the role of neurotoxic amyloid oligomeric (oAβ) are shown. The fibril formation process and the co-existence of different steric structures (U-shaped and S-shaped) of Aβ monomers in mature fibrils are demonstrated. We summarize the known pathogenic and non-pathogenic mutations and show the toxic interactions of Aβ species after binding to cellular receptors. Tau phosphorylation, fibrillation, the molecular structure of tau filaments and their toxic effect on microtubules are shown. Development of Aβ and tau imaging in AD brain and CSF as well as blood biomarkers is shortly summarized. The most probable pathomechanisms of AD including the toxic effects of oAβ and tau; the three (biochemical, cellular and clinical) phases of AD are shown. Finally, the last section summarizes the present state of Aβ- and tau-directed therapies and future directions of AD research and drug development.
Collapse
Affiliation(s)
- Botond Penke
- Department of Medical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dom square 8, Szeged, H-6720, Hungary
| | - Ferenc Bogár
- Department of Medical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dom square 8, Szeged, H-6720, Hungary.,MTA-SZTE Biomimetic Systems Research Group, University of Szeged, H-6720 Szeged, Dom square 8, Hungary
| | - Gábor Paragi
- MTA-SZTE Biomimetic Systems Research Group, University of Szeged, H-6720 Szeged, Dom square 8, Hungary.,Institute of Physics, University of Pécs, H-7624 Pecs, Ifjusag utja 6, Hungary
| | - János Gera
- Department of Medical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dom square 8, Szeged, H-6720, Hungary
| | - Lívia Fülöp
- Department of Medical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dom square 8, Szeged, H-6720, Hungary
| |
Collapse
|
8
|
Stoychev KR, Stoimenova-Popova M, Chumpalova P, Ilieva L, Swamad M, Kamburova-Martinova Z. A Clinical Case of Patient Carrying Rare Pathological PSEN1 Gene Mutation (L424V) Demonstrates the Phenotypic Heterogenity of Early Onset Familial AD. Front Psychiatry 2019; 10:857. [PMID: 31920735 PMCID: PMC6918796 DOI: 10.3389/fpsyt.2019.00857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/31/2019] [Indexed: 12/22/2022] Open
Abstract
Dementia comprises several neurodegenerative disorders with similar neuropsychiatric features and Alzheimer's disease (AD) is the most common of them. Genetic factors are strongly implicated into its etiology especially for early-onset cases (EOAD) occuring before the age of 65. About 10% of these are inherited in autosomal dominant fashion via pathogenic polymorphisms in three genes- APP, PSEN-1, and PSEN-2. Despite genotypic clarity, however, phenotypic variability exists with different symptom constellations observed in patients with identical mutations. Below, we present a case of a 39-year-old male with a family history for early onset dementia who was referred to our department with anamnesis for abrupt behavioral change 7 months prior to hospitalization-noticeable slowing of speech and reactivity, impaired occupational functioning and irritability, followed by aphasic symptoms and transient episodes of disorientation. He was followed up for 2 years and manifested rapidly progressing cognitive decline with further deterioration of speech, apraxia, acalculia, ataxia, and subsequently bradykinesia and tremor. Based on the clinical and neuroimaging findings (severe cortical atrophy), familial EOAD was suspected and a whole exome sequence (WES) analysis was performed. It identified a heterozygous missense variant Leu424Val (g.71074C > G) in PSEN-1 gene considered to be pathogenic, and only reported once until now in a Spanish patient in 2009. Despite genotype identity however, distinct phenotypic presentations were observed in the two affected subjects, with different neuroimaging findings, and the presence and absence of seizures in the Spanish and Bulgarian case, respectively. Besides, myoclonus and spastic paraparesis considered "typical" EOAD clinical features were absent. Age of symptom onset was consistent with two of the reported mutations affecting 424 codon of PSEN-1 gene and significantly earlier than the other two implying that factors influencing activity of PSEN-1 pathological forms are yet to be clarified. Furthermore, our patient had co-occurring lupus erythematosus (LE) and we suggest that this condition might be etiologically linked to the PSEN-1 mutation. In addition to illustrating the symptomatic heterogeneity of PSEN-1 caused EOAD, our study confirms that in patients presenting with early cognitive deterioration and family history for dementia, WES can be especially informative and should be considered as a first-line examination.
Collapse
Affiliation(s)
| | | | | | - Lilia Ilieva
- Department of Neurology, Sveti Panteleimon Hospital, Pleven, Bulgaria
| | - Mohamed Swamad
- Department of Health and Aging Unit, King's College Hospital, London, United Kingdom
| | | |
Collapse
|
9
|
Van Giau V, Senanarong V, Bagyinszky E, Limwongse C, An SSA, Kim S. Identification of a novel mutation in APP gene in a Thai subject with early-onset Alzheimer's disease. Neuropsychiatr Dis Treat 2018; 14:3015-3023. [PMID: 30510423 PMCID: PMC6231518 DOI: 10.2147/ndt.s180174] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
INTRODUCTION Early-onset Alzheimer's disease (AD) accounts for than less 1% of all AD cases, with large variation in the reported genetic contributions of known dementia genes. Mutations in the amyloid precursor protein (APP) gene were the first to be recognized as the cause of AD. METHODS Here, a male patient with probable early-onset AD at the age of 55 years from Thailand was investigated by next-generation sequencing. RESULTS A novel mutation in exon 14 of APP (c.1810C>T, p.V604M) was found. He initially illustrated the clinical manifestations of progressive nonfluent aphasia in 2011. However, he was finally diagnosed with AD presenting logopenic aphasia in 2013. The follow-up magnetic resonance imaging scan showed progression of hippocampal trophy compared with the initial image. A 3D protein structure model revealed that V604M exchange could result in significant changes in the APP protein due to the increased hydrophobicity of methionine in the helix, which could result in altering of the APP functions. CONCLUSION Additional studies to characterize APP p.V604M are necessary to further understand the effects of this mutation.
Collapse
Affiliation(s)
- Vo Van Giau
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, Seongnam, South Korea,
| | - Vorapun Senanarong
- Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Eva Bagyinszky
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, Seongnam, South Korea,
| | - Chanin Limwongse
- Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Seong Soo A An
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, Seongnam, South Korea,
| | - SangYun Kim
- Department of Neurology, Seoul National University College of Medicine & Neurocognitive Behavior Center, Seoul National University Bundang Hospital, Seongnam, South Korea,
| |
Collapse
|
10
|
Bernstein AM, Ritch R, Wolosin JM. Exfoliation Syndrome: A Disease of Autophagy and LOXL1 Proteopathy. J Glaucoma 2018; 27 Suppl 1:S44-S53. [PMID: 29547474 PMCID: PMC6028293 DOI: 10.1097/ijg.0000000000000919] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Exfoliation syndrome (XFS) is an age-related disease involving the deposition of aggregated fibrillar material (exfoliation material) at extracellular matrices in tissues that synthesize elastic fibers. Its main morbidity is in the eye, where exfoliation material accumulations form on the surface of the ciliary body, iris, and lens. Exfoliation glaucoma (XFG) occurs in a high proportion of persons with XFS and can be a rapidly progressing disease. Worldwide, XFG accounts for about 25% of open-angle glaucoma cases. XFS and XFG show a sharp age-dependence, similarly to the many age-related diseases classified as aggregopathies. Progress in understanding the cellular bases for XFS/XFG has been slowed by a lack of experimental models. Working with primary human tenon fibroblasts (TF) derived from trabeculectomies of XFG patients and age-matched primary open-glaucoma controls, we found that TF from XFG cells display many of the functional features observed in cells from other protein aggregate diseases, such as Parkinson, Alzheimer, Huntington, and age-related macular degeneration. We have documented defects in lysosomal positioning, microtubule organization, autophagy processing rate, and mitochondrial health. In regard to failure of lysosomal and autophagosome positioning in XFG cells, we have found that XFG TF are unable to establish the transnuclear microtubule organizing center that is required for efficient centripetal vesicular locomotion along microtubules. In regard to potential sources of the autophagy malfunction, we have directed our attention to a potential role of the lysyl oxidase-like 1 protein (LOXL1), the elastic fiber catalyst that displays variant-dependent association with risk for XFG. Our experiments show that (a) in XFG cells, a substantial fraction of LOXL1 is processed for degradation by the autophagic system; (b) most of the LOXL1 N-terminus domain exists in a highly disordered state, a condition known to greatly increase the frequency of polypeptide misfolding; (c) that maximum misfolding occurs at amino acid position 153, the location of the high risk variant G153D; and (d) that replacement of glycine (G) by aspartate (D) there results in a substantial decrease in disorder within the 20 amino acid surrounding domain. Finally, we show that clusterin, a protein that can be induced by the presence of intracellular, or extracellular aggregates, is uniformly overexpressed in XFG TF. The implications of our results for a theory relating XFG to cellular aggregopathy are discussed.
Collapse
Affiliation(s)
- Audrey M Bernstein
- Department of Ophthalmology, Eye and Vision Research Institute Icahn School of Medicine at Mount Sinai
- Department of Ophthalmology, Center for Vision Research, SUNY Upstate Medical University, Syracuse, NY
| | - Robert Ritch
- Einhorn Clinical Research Center, New York Eye and Ear Infirmary of Mount Sinai, New York
| | - Jose M Wolosin
- Department of Ophthalmology, Eye and Vision Research Institute Icahn School of Medicine at Mount Sinai
| |
Collapse
|
11
|
Sellal F, Wallon D, Martinez-Almoyna L, Marelli C, Dhar A, Oesterlé H, Rovelet-Lecrux A, Rousseau S, Kourkoulis CE, Rosand J, DiPucchio ZY, Frosch M, Gombert C, Audoin B, Miné M, Riant F, Frebourg T, Hannequin D, Campion D, Greenberg SM, Tournier-Lasserve E, Nicolas G. APP Mutations in Cerebral Amyloid Angiopathy with or without Cortical Calcifications: Report of Three Families and a Literature Review. J Alzheimers Dis 2018; 56:37-46. [PMID: 27858710 DOI: 10.3233/jad-160709] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Specific APP mutations cause cerebral amyloid angiopathy (CAA) with or without Alzheimer's disease (AD). OBJECTIVE We aimed at reporting APP mutations associated with CAA, describe the clinical, cerebrospinal fluid AD biomarkers, and neuroimaging features, and compare them with the data from the literature. METHODS We performed a retrospective study in two French genetics laboratories by gathering all clinical and neuroimaging data from patients referred for a genetic diagnosis of CAA with an age of onset before 66 years and fulfilling the other Boston revised criteria. We studied the segregation of mutations in families and performed a comprehensive literature review of all cases reported with the same APP mutation. RESULTS We screened APP in 61 unrelated French patients. Three mutations, located in the Aβ coding region, were detected in five patients from three families: p.Ala692Gly (Flemish), p.Glu693Lys (Italian), and p.Asp694Asn (Iowa). Patients exhibited CAA and progressive cognitive impairment associated with cortical calcifications in the Iowa and Italian mutation carriers, but not the patient carrying the Flemish mutation. CONCLUSIONS This is the first evidence of cortical calcification in patients with an APP mutation other than the Iowa mutation. We discuss the radiological, cerebrospinal fluid, and clinical phenotype of patients carrying these mutations in the literature.
Collapse
Affiliation(s)
- François Sellal
- Department of Neurology and Consultation Mémoire de Ressource et de Recherche, Hôpitaux Civils de Colmar, Colmar, France.,Strasbourg University, INSERM U-1118, Faculty of Medicine, Strasbourg, France
| | - David Wallon
- Department of Neurology, Rouen University Hospital, Rouen, France.,CNR-MAJ, Rouen University Hospital, Rouen, France.,Inserm U1079, Rouen University, IRIB, Normandy University, Rouen, France.,Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | | | - Cecilia Marelli
- Service de Neurologie, CMRR, CHRU Gui de Chauliac, Montpellier, France
| | - Abhinav Dhar
- Radiology Service, Hospital of Moenchsberg, Mulhouse, France
| | - Héléne Oesterlé
- Radiology Service, Hospital of Moenchsberg, Mulhouse, France
| | - Anne Rovelet-Lecrux
- Inserm U1079, Rouen University, IRIB, Normandy University, Rouen, France.,Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Stéphane Rousseau
- CNR-MAJ, Rouen University Hospital, Rouen, France.,Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Christina E Kourkoulis
- J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Boston, USA.,Division of Neurocritical Care and Emergency Neurology, Department of Neurology, Massachusetts General Hospital, Boston, USA
| | - Jon Rosand
- J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Boston, USA.,Division of Neurocritical Care and Emergency Neurology, Department of Neurology, Massachusetts General Hospital, Boston, USA
| | - Zora Y DiPucchio
- J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Boston, USA.,Division of Neurocritical Care and Emergency Neurology, Department of Neurology, Massachusetts General Hospital, Boston, USA
| | - Matthew Frosch
- Neuropathology Service, C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Claudine Gombert
- Neurology Department, Centre Hospitalier, Aix-en-Provence, France
| | - Bertrand Audoin
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, Marseille, France/APHM, Hôpital de la Timone, Pôle de Neurosciences Cliniques, Service de Neurologie, Marseille, France
| | - Manuèle Miné
- AP-HP, Service de génétique moléculaire neurovasculaire, Hôpital Lariboisiére, Paris, France.,Inserm, U1161, Université Paris 7 Diderot, Paris, France
| | - Florence Riant
- AP-HP, Service de génétique moléculaire neurovasculaire, Hôpital Lariboisiére, Paris, France.,Inserm, U1161, Université Paris 7 Diderot, Paris, France
| | - Thierry Frebourg
- Inserm U1079, Rouen University, IRIB, Normandy University, Rouen, France.,Normandy Center for Genomic and Personalized Medicine, Rouen, France.,Department of Genetics, Rouen University Hospital, Rouen, France
| | - Didier Hannequin
- Department of Neurology, Rouen University Hospital, Rouen, France.,CNR-MAJ, Rouen University Hospital, Rouen, France.,Inserm U1079, Rouen University, IRIB, Normandy University, Rouen, France.,Normandy Center for Genomic and Personalized Medicine, Rouen, France.,Department of Genetics, Rouen University Hospital, Rouen, France
| | - Dominique Campion
- CNR-MAJ, Rouen University Hospital, Rouen, France.,Inserm U1079, Rouen University, IRIB, Normandy University, Rouen, France.,Normandy Center for Genomic and Personalized Medicine, Rouen, France.,Department of Research, Rouvray Psychiatric Hospital, Sotteville-Lés-Rouen, France
| | - Steven M Greenberg
- J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Boston, USA.,Division of Neurocritical Care and Emergency Neurology, Department of Neurology, Massachusetts General Hospital, Boston, USA
| | - Elisabeth Tournier-Lasserve
- AP-HP, Service de génétique moléculaire neurovasculaire, Hôpital Lariboisiére, Paris, France.,Inserm, U1161, Université Paris 7 Diderot, Paris, France
| | - Gaël Nicolas
- CNR-MAJ, Rouen University Hospital, Rouen, France.,Inserm U1079, Rouen University, IRIB, Normandy University, Rouen, France.,Normandy Center for Genomic and Personalized Medicine, Rouen, France.,Department of Genetics, Rouen University Hospital, Rouen, France
| |
Collapse
|
12
|
Genetic Complexity of Early-Onset Alzheimer’s Disease. NEURODEGENER DIS 2018. [DOI: 10.1007/978-3-319-72938-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
13
|
Ghani M, Reitz C, Cheng R, Vardarajan BN, Jun G, Sato C, Naj A, Rajbhandary R, Wang LS, Valladares O, Lin CF, Larson EB, Graff-Radford NR, Evans D, De Jager PL, Crane PK, Buxbaum JD, Murrell JR, Raj T, Ertekin-Taner N, Logue M, Baldwin CT, Green RC, Barnes LL, Cantwell LB, Fallin MD, Go RCP, Griffith PA, Obisesan TO, Manly JJ, Lunetta KL, Kamboh MI, Lopez OL, Bennett DA, Hendrie H, Hall KS, Goate AM, Byrd GS, Kukull WA, Foroud TM, Haines JL, Farrer LA, Pericak-Vance MA, Lee JH, Schellenberg GD, St George-Hyslop P, Mayeux R, Rogaeva E. Association of Long Runs of Homozygosity With Alzheimer Disease Among African American Individuals. JAMA Neurol 2016; 72:1313-23. [PMID: 26366463 DOI: 10.1001/jamaneurol.2015.1700] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
IMPORTANCE Mutations in known causal Alzheimer disease (AD) genes account for only 1% to 3% of patients and almost all are dominantly inherited. Recessive inheritance of complex phenotypes can be linked to long (>1-megabase [Mb]) runs of homozygosity (ROHs) detectable by single-nucleotide polymorphism (SNP) arrays. OBJECTIVE To evaluate the association between ROHs and AD in an African American population known to have a risk for AD up to 3 times higher than white individuals. DESIGN, SETTING, AND PARTICIPANTS Case-control study of a large African American data set previously genotyped on different genome-wide SNP arrays conducted from December 2013 to January 2015. Global and locus-based ROH measurements were analyzed using raw or imputed genotype data. We studied the raw genotypes from 2 case-control subsets grouped based on SNP array: Alzheimer's Disease Genetics Consortium data set (871 cases and 1620 control individuals) and Chicago Health and Aging Project-Indianapolis Ibadan Dementia Study data set (279 cases and 1367 control individuals). We then examined the entire data set using imputed genotypes from 1917 cases and 3858 control individuals. MAIN OUTCOMES AND MEASURES The ROHs larger than 1 Mb, 2 Mb, or 3 Mb were investigated separately for global burden evaluation, consensus regions, and gene-based analyses. RESULTS The African American cohort had a low degree of inbreeding (F ~ 0.006). In the Alzheimer's Disease Genetics Consortium data set, we detected a significantly higher proportion of cases with ROHs greater than 2 Mb (P = .004) or greater than 3 Mb (P = .02), as well as a significant 114-kilobase consensus region on chr4q31.3 (empirical P value 2 = .04; ROHs >2 Mb). In the Chicago Health and Aging Project-Indianapolis Ibadan Dementia Study data set, we identified a significant 202-kilobase consensus region on Chr15q24.1 (empirical P value 2 = .02; ROHs >1 Mb) and a cluster of 13 significant genes on Chr3p21.31 (empirical P value 2 = .03; ROHs >3 Mb). A total of 43 of 49 nominally significant genes common for both data sets also mapped to Chr3p21.31. Analyses of imputed SNP data from the entire data set confirmed the association of AD with global ROH measurements (12.38 ROHs >1 Mb in cases vs 12.11 in controls; 2.986 Mb average size of ROHs >2 Mb in cases vs 2.889 Mb in controls; and 22% of cases with ROHs >3 Mb vs 19% of controls) and a gene-cluster on Chr3p21.31 (empirical P value 2 = .006-.04; ROHs >3 Mb). Also, we detected a significant association between AD and CLDN17 (empirical P value 2 = .01; ROHs >1 Mb), encoding a protein from the Claudin family, members of which were previously suggested as AD biomarkers. CONCLUSIONS AND RELEVANCE To our knowledge, we discovered the first evidence of increased burden of ROHs among patients with AD from an outbred African American population, which could reflect either the cumulative effect of multiple ROHs to AD or the contribution of specific loci harboring recessive mutations and risk haplotypes in a subset of patients. Sequencing is required to uncover AD variants in these individuals.
Collapse
Affiliation(s)
- Mahdi Ghani
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Christiane Reitz
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, New York3Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, New York4
| | - Rong Cheng
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Badri Narayan Vardarajan
- Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Gyungah Jun
- Department of Medicine (Biomedical Genetics), Boston University, Boston, Massachusetts6Department of Biostatistics, Boston University, Boston, Massachusetts7Department of Ophthalmology, Boston University, Boston, Massachusetts
| | - Christine Sato
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Adam Naj
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, Florida
| | - Ruchita Rajbhandary
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, Florida
| | - Li-San Wang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Otto Valladares
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Chiao-Feng Lin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Eric B Larson
- Department of Medicine, University of Washington, Seattle11Group Health Research Institute, Group Health, Seattle, Washington
| | - Neill R Graff-Radford
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida13Department of Neurology, Mayo Clinic, Jacksonville, Florida
| | - Denis Evans
- Rush Institute for Healthy Aging, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| | - Philip L De Jager
- Program in Translational Neuropsychiatric Genomics, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts16Harvard Medical School, Boston, Massachusetts17Program in Medical and Population Genetics, The Broad Institute, Cambridge, Ma
| | - Paul K Crane
- Department of Medicine, University of Washington, Seattle
| | - Joseph D Buxbaum
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York19Department of Genetics and Genomics Sciences, Mount Sinai School of Medicine, New York, New York20Department of Neuroscience, Mount Sinai School of Medicine, New York, New York2
| | - Jill R Murrell
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis
| | | | - Nilufer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida13Department of Neurology, Mayo Clinic, Jacksonville, Florida
| | - Mark Logue
- Department of Medicine (Biomedical Genetics), Boston University, Boston, Massachusetts
| | - Clinton T Baldwin
- Department of Medicine (Biomedical Genetics), Boston University, Boston, Massachusetts
| | - Robert C Green
- Harvard Medical School, Boston, Massachusetts23Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts24Partners Center for Personalized Genetic Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Lisa L Barnes
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois26Department of Behavioral Sciences, Rush University Medical Center, Chicago, Illinois
| | - Laura B Cantwell
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - M Daniele Fallin
- Department of Epidemiology, Johns Hopkins University School of Public Health, Baltimore, Maryland
| | - Rodney C P Go
- School of Public Health, University of Alabama at Birmingham
| | | | | | - Jennifer J Manly
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, New York4Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Kathryn L Lunetta
- Department of Biostatistics, Boston University, Boston, Massachusetts
| | - M Ilyas Kamboh
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania32Alzheimer's Disease Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Oscar L Lopez
- Alzheimer's Disease Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David A Bennett
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois33Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois
| | - Hugh Hendrie
- Indiana University Center for Aging Research, Indianapolis35Department of Psychiatry, Indiana University School of Medicine, Indianapolis36Regenstrief Institute Inc, Indianapolis, Indiana
| | - Kathleen S Hall
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis
| | - Alison M Goate
- Hope Center Program on Protein Aggregation and Neurodegeneration, Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri
| | - Goldie S Byrd
- Department of Biology, North Carolina A & T University, Greensboro
| | - Walter A Kukull
- National Alzheimer's Coordinating Center, Department of Epidemiology, University of Washington, Seattle
| | - Tatiana M Foroud
- Department of Behavioral Sciences, Rush University Medical Center, Chicago, Illinois
| | - Jonathan L Haines
- Vanderbilt Center for Human Genetics Research, Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Lindsay A Farrer
- Department of Medicine (Biomedical Genetics), Boston University, Boston, Massachusetts6Department of Biostatistics, Boston University, Boston, Massachusetts7Department of Ophthalmology, Boston University, Boston, Massachusetts41Department of Neurology, Bo
| | | | - Joseph H Lee
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, New York3Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, New York4
| | - Gerard D Schellenberg
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Peter St George-Hyslop
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Richard Mayeux
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, New York3Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, New York4
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
14
|
Wallon D, Nicolas G. Genetica delle demenze degenerative. Neurologia 2015. [DOI: 10.1016/s1634-7072(15)73962-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
15
|
Shea YF, Chu LW, Chan AOK, Ha J, Li Y, Song YQ. A systematic review of familial Alzheimer's disease: Differences in presentation of clinical features among three mutated genes and potential ethnic differences. J Formos Med Assoc 2015; 115:67-75. [PMID: 26337232 DOI: 10.1016/j.jfma.2015.08.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 08/04/2015] [Accepted: 08/05/2015] [Indexed: 12/31/2022] Open
Abstract
There are great diversities of clinical phenotypes among the various familial Alzheimer's disease (FAD) families. We aimed to systematically review all the previously reported cases of FAD and to perform comparisons between Asian and white patients. In this regard, we collected individual-level data from 658 pedigrees. We found that patients with presenilin 1 (PSEN1) mutations had the earliest age of onset (AOO; 43.3 ± 8.6 years, p < 0.001) and were more commonly affected by seizures, spastic paraparesis, myoclonus, and cerebellar signs (p < 0.001, p < 0.001, p = 0.003, and p = 0.002, respectively). Patients with PSEN2 mutations have a delayed AOO with longest disease duration and presented more frequently with disorientation (p = 0.03). Patients with amyloid precursor protein (APP) mutations presented more frequently with aggression (p = 0.02) and those with APP duplication presented more frequently with apraxia (p = 0.03). PSEN1 mutations before codon 200 had an earlier AOO than those having mutations after codon 200 (41.4 ± 8.0 years vs. 44.7 ± 8.7 years, p < 0.001). Because 42.9% of the mutations reported are novel, the mutation spectrum and clinical features in Asian FAD families could be different from that of whites. Asian patients with PSEN1 mutations presented more frequently with disorientation (p = 0.02) and personality change (p = 0.01) but less frequently with atypical clinical features. Asian patients with APP mutations presented less frequently with aphasia (p = 0.02). Thus, clinical features could be modified by underlying mutations, and Asian FAD patients may have different clinical features when compared with whites.
Collapse
Affiliation(s)
- Yat-Fung Shea
- Department of Medicine, LKS Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region.
| | - Leung-Wing Chu
- Department of Medicine, LKS Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region; Alzheimer's Disease Research Network, Strategic Research Theme on Aging, The University of Hong Kong, Pok Fu Lam, Hong Kong, Hong Kong Special Administrative Region
| | - Angel On-Kei Chan
- Division of Clinical Biochemistry, Department of Pathology and Clinical Biochemistry, Queen Mary Hospital, Hong Kong, Hong Kong Special Administrative Region
| | - Joyce Ha
- Department of Medicine, LKS Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region
| | - Yan Li
- Center for Transport Phenomena, Energy Research Institute of Shandong Academy of Sciences, Jinan, People's Republic of China
| | - You-Qiang Song
- Department of Biochemistry, LKS Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, Hong Kong Special Administrative Region
| |
Collapse
|
16
|
Zou Z, Liu C, Che C, Huang H. Clinical genetics of Alzheimer's disease. BIOMED RESEARCH INTERNATIONAL 2014; 2014:291862. [PMID: 24955352 PMCID: PMC4052685 DOI: 10.1155/2014/291862] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/21/2014] [Indexed: 11/25/2022]
Abstract
Alzheimer's disease (AD) is the most common progressive neurodegenerative disease and the most common form of dementia in the elderly. It is a complex disorder with environmental and genetic components. There are two major types of AD, early onset and the more common late onset. The genetics of early-onset AD are largely understood with mutations in three different genes leading to the disease. In contrast, while susceptibility loci and alleles associated with late-onset AD have been identified using genetic association studies, the genetics of late-onset Alzheimer's disease are not fully understood. Here we review the known genetics of early- and late-onset AD, the clinical features of EOAD according to genotypes, and the clinical implications of the genetics of AD.
Collapse
Affiliation(s)
- Zhangyu Zou
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Changyun Liu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Chunhui Che
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Huapin Huang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| |
Collapse
|
17
|
Abstract
Alzheimer’s disease (AD) is a complex and heterogeneous neurodegenerative disorder, classified as either early onset (under 65 years of age), or late onset (over 65 years of age). Three main genes are involved in early onset AD: amyloid precursor protein (APP), presenilin 1 (PSEN1), and presenilin 2 (PSEN2). The apolipoprotein E (APOE) E4 allele has been found to be a main risk factor for late-onset Alzheimer’s disease. Additionally, genome-wide association studies (GWASs) have identified several genes that might be potential risk factors for AD, including clusterin (CLU), complement receptor 1 (CR1), phosphatidylinositol binding clathrin assembly protein (PICALM), and sortilin-related receptor (SORL1). Recent studies have discovered additional novel genes that might be involved in late-onset AD, such as triggering receptor expressed on myeloid cells 2 (TREM2) and cluster of differentiation 33 (CD33). Identification of new AD-related genes is important for better understanding of the pathomechanisms leading to neurodegeneration. Since the differential diagnoses of neurodegenerative disorders are difficult, especially in the early stages, genetic testing is essential for diagnostic processes. Next-generation sequencing studies have been successfully used for detecting mutations, monitoring the epigenetic changes, and analyzing transcriptomes. These studies may be a promising approach toward understanding the complete genetic mechanisms of diverse genetic disorders such as AD.
Collapse
Affiliation(s)
- Eva Bagyinszky
- Department of BioNano Technology Gachon University, Gyeonggi-do, South Korea
| | - Young Chul Youn
- Department of Neurology, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Seong Soo A An
- Department of BioNano Technology Gachon University, Gyeonggi-do, South Korea
| | - SangYun Kim
- Department of Neurology, Seoul National University Budang Hospital, Gyeonggi-do, South Korea
| |
Collapse
|
18
|
Abstract
25% of all people aged 55 years and older have a family history of dementia. For most, the family history is due to genetically complex disease, where many genetic variations of small effect interact to increase risk of dementia. The lifetime risk of dementia for these families is about 20%, compared with 10% in the general population. A small proportion of families have an autosomal dominant family history of early-onset dementia, which is often due to mendelian disease, caused by a mutation in one of the dementia genes. Each family member has a 50% chance of inheriting the mutation, which confers a lifetime dementia risk of over 95%. In this Review, we focus on the evidence for, and the approach to, genetic testing in Alzheimer's disease (APP, PSEN1, and PSEN2 genes), frontotemporal dementia (MAPT, GRN, C9ORF72, and other genes), and other familial dementias. We conclude by discussing the practical aspects of genetic counselling.
Collapse
Affiliation(s)
- Clement T Loy
- School of Public Health, University of Sydney, Sydney, NSW, Australia; Neuroscience Research Australia, Randwick, NSW, Australia; Huntington Disease Service, Westmead Hospital, Westmead, NSW, Australia
| | - Peter R Schofield
- Neuroscience Research Australia, Randwick, NSW, Australia; University of New South Wales, Kensington, NSW, Australia
| | - Anne M Turner
- Department of Medical Genetics, Sydney Children's Hospital, Randwick, NSW, Australia
| | - John B J Kwok
- Neuroscience Research Australia, Randwick, NSW, Australia; University of New South Wales, Kensington, NSW, Australia.
| |
Collapse
|
19
|
|
20
|
|
21
|
Gessel MM, Bernstein S, Kemper M, Teplow DB, Bowers MT. Familial Alzheimer's disease mutations differentially alter amyloid β-protein oligomerization. ACS Chem Neurosci 2012; 3:909-18. [PMID: 23173071 DOI: 10.1021/cn300050d] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 06/26/2012] [Indexed: 11/30/2022] Open
Abstract
Although most cases of Alzheimer's disease (AD) are sporadic, ∼5% of cases are genetic in origin. These cases, known as familial Alzheimer's disease (FAD), are caused by mutations that alter the rate of production or the primary structure of the amyloid β-protein (Aβ). Changes in the primary structure of Aβ alter the peptide's assembly and toxic activity. Recently, a primary working hypothesis for AD has evolved where causation has been attributed to early, soluble peptide oligomer states. Here we posit that both experimental and pathological differences between FAD-related mutants and wild-type Aβ could be reflected in the early oligomer distributions of these peptides. We use ion mobility-based mass spectrometry to probe the structure and early aggregation states of three mutant forms of Aβ40 and Aβ42: Tottori (D7N), Flemish (A21G), and Arctic (E22G). Our results indicate that the FAD-related amino acid substitutions have no noticeable effect on Aβ monomer cross section, indicating there are no major structural changes in the monomers. However, we observe significant changes to the aggregation states populated by the various Aβ mutants, indicating that structural changes present in the monomers are reflected in the oligomers. Moreover, the early oligomer distributions differ for each mutant, suggesting a possible structural basis for the varied pathogenesis of different forms of FAD.
Collapse
Affiliation(s)
- Megan Murray Gessel
- Department
of Chemistry and
Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Summer Bernstein
- Department
of Chemistry and
Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Martin Kemper
- Department
of Chemistry and
Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - David B. Teplow
- Department of Neurology, David
Geffen School of Medicine at UCLA, Mary S. Easton Center for Alzheimer’s
Disease Research at UCLA, and Brain Research Institute and Molecular
Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Michael T. Bowers
- Department
of Chemistry and
Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
22
|
Abstract
Early-onset familial Alzheimer's disease (EOFAD) is a condition characterized by early onset dementia (age at onset < 65 years) and a positive family history for dementia. To date, 230 mutations in presenilin (PS1, PS2) and amyloid precursor protein (APP) genes have been identified in EOFAD. The mutations within these three genes (PS1/PS2/APP) affect a common pathogenic pathway in APP synthesis and proteolysis, which lead to excessive production of amyloid β. Compared with sporadic Alzheimer's disease (AD), EOFAD has some distinctive features including early age at onset, positive familial history, a variety of non-cognitive neurological symptoms and signs, and a more aggressive course. There is marked phenotypic heterogeneity among different mutations of EOFAD. Studies in presymptomatic mutation carriers reveal biomarkers abnormalities. EOFAD diagnosis is based on clinical and family history, neurological symptoms and examination, biomarker features, as well as genotyping in some cases. New therapeutic agents targeting amyloid formation may benefit EOFAD individuals.
Collapse
|
23
|
Auriel E, Greenberg SM. The Pathophysiology and Clinical Presentation of Cerebral Amyloid Angiopathy. Curr Atheroscler Rep 2012; 14:343-50. [DOI: 10.1007/s11883-012-0254-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
24
|
Pontes-Neto OM, Auriel E, Greenberg SM. Advances in our Understanding of the Pathophysiology, Detection and Management of Cerebral Amyloid Angiopathy. ACTA ACUST UNITED AC 2012; 7:134-139. [PMID: 24058380 DOI: 10.17925/enr.2012.07.02.134] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cerebral amyloid angiopathy (CAA) is pathologically defined as the deposition of amyloid protein, most commonly the amyloid β peptide (Aβ), primarily within the media and adventitia of small and medium-sized arteries of the leptomeninges, cerebral and cerebellar cortex. This deposition likely reflects an imbalance between Aβ production and clearance within the brain and leads to weakening of the overall structure of brain small vessels, predisposing patients tolobar intracerebral haemorrhage (ICH), brain ischaemia and cognitive decline. CAA is associated with markers of small vessel disease, like lobar microbleeds and white matter hyperintensities on magnetic resonance imaging. Therefore, it can be now be diagnosed during life with reasonable accuracy by clinical and neuroimaging criteria. Despite the lack of a specific treatment for this condition, the detection of CAA may help in the management of patients, regarding the prevention of major haemorrhagic complications and genetic counselling. This review discusses recent advances in our understanding of the pathophysiology, detection and management of CAA.
Collapse
Affiliation(s)
- Octavio M Pontes-Neto
- J Philip Kistler Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, US and Associate Professor of Neurology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
25
|
Genetic animal models of cerebral vasculopathies. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 105:25-55. [PMID: 22137428 DOI: 10.1016/b978-0-12-394596-9.00002-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cerebral amyloid angiopathy (CAA) and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) are genetic cerebrovasculopathies associated with neurodegeneration and vascular cognitive impairment. Linked to autosomal dominant mutations in diverse genes that encode cell-surface receptors (i.e., amyloid precursor protein in CAA and NOTCH3 in CADASIL), both diseases are associated with accumulation of abnormal material around cerebral vessels, such as amyloid in CAA or granular osmiophilic material in CADASIL. Both CAA and CADASIL share clinical features of white matter degeneration and infarcts, and vascular dementia in the human adult; microbleeds occur in both CADASIL and CAA, but large intracerebral hemorrhages are more characteristic for the latter. While the mechanisms are poorly understood, wall thickening, luminal narrowing, and eventual loss of vascular smooth muscle cells are overlapping pathologies involving leptomeningeal, and pial or penetrating small arteries and arterioles in CAA and CADASIL. Dysregulation of cerebral blood flow and eventual hypoperfusion are believed to be the key pathophysiological steps in neurodegeneration and cognitive impairment. Although animal models expressing CAA or CADASIL mutations have partially reproduced the human pathology, there has been marked heterogeneity in the phenotypic spectrum, possibly due to genetic background differences among mouse models, and obvious species differences between mouse and man. Here, we provide an overview of animal models of CAA and CADASIL and the insight on molecular and physiological mechanisms of disease gained from these models.
Collapse
|
26
|
Ryan NS, Rossor MN. Correlating familial Alzheimer's disease gene mutations with clinical phenotype. Biomark Med 2010; 4:99-112. [PMID: 20387306 DOI: 10.2217/bmm.09.92] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease (AD) causes devastating cognitive impairment and an intense research effort is currently devoted to developing improved treatments for it. A minority of cases occur at a particularly young age and are caused by autosomal dominantly inherited genetic mutations. Although rare, familial AD provides unique opportunities to gain insights into the cascade of pathological events and how they relate to clinical manifestations. The phenotype of familial AD is highly variable and, although it shares many clinical features with sporadic AD, it also possesses important differences. Exploring the genetic and pathological basis of this phenotypic heterogeneity can illuminate aspects of the underlying disease mechanism, and is likely to inform our understanding and treatment of AD in the future.
Collapse
Affiliation(s)
- Natalie S Ryan
- Dementia Research Centre, Department of Neurodegenerative Diseases, University College London, Institute of Neurology, London, UK.
| | | |
Collapse
|
27
|
Kumar-Singh S. Hereditary and sporadic forms of abeta-cerebrovascular amyloidosis and relevant transgenic mouse models. Int J Mol Sci 2009; 10:1872-1895. [PMID: 19468344 PMCID: PMC2680652 DOI: 10.3390/ijms10041872] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 04/14/2009] [Accepted: 04/20/2009] [Indexed: 12/28/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA) refers to the specific deposition of amyloid fibrils in the leptomeningeal and cerebral blood vessel walls, often causing secondary vascular degenerative changes. Although many kinds of peptides are known to be deposited as vascular amyloid, amyloid-beta (Abeta)-CAA is the most common type associated with normal aging, sporadic CAA, Alzheimer's disease (AD) and Down's syndrome. Moreover, Abeta-CAA is also associated with rare hereditary cerebrovascular amyloidosis due to mutations within the Abeta domain of the amyloid precursor protein (APP) such as Dutch and Flemish APP mutations. Genetics and clinicopathological studies on these familial diseases as well as sporadic conditions have already shown that CAA not only causes haemorrhagic and ischemic strokes, but also leads to progressive dementia. Transgenic mouse models based on familial AD mutations have also successfully reproduced many of the features found in human disease, providing us with important insights into the pathogenesis of CAA. Importantly, such studies have pointed out that specific vastopic Abeta variants or an unaltered Abeta42/Abeta40 ratio favor vascular Abeta deposition over parenchymal plaques, but higher than critical levels of Abeta40 are also observed to be anti-amyloidogenic. These data would be important in the development of therapies targeting amyloid in vessels.
Collapse
Affiliation(s)
- Samir Kumar-Singh
- Neurodegenerative Brain Diseases Group, VIB Department of Molecular Genetics, University of Antwerp, Antwerpen - CDE, Universiteitsplein 1, B-2610, Antwerpen, Belgium; E-Mail:
; Tel. +3232651002; Fax: +3232651012
- Laboratory of Neurogenetics, Institute Born Bunge, University of Antwerp, Antwerpen, Belgium
- University of Antwerp, Antwerpen, Belgium
| |
Collapse
|
28
|
Génétique de la maladie d’Alzheimer : formes autosomiques dominantes. Rev Neurol (Paris) 2009; 165:223-31. [DOI: 10.1016/j.neurol.2008.10.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 09/17/2008] [Accepted: 10/08/2008] [Indexed: 11/20/2022]
|
29
|
Aggregation and catabolism of disease-associated intra-Abeta mutations: reduced proteolysis of AbetaA21G by neprilysin. Neurobiol Dis 2008; 31:442-50. [PMID: 18602473 DOI: 10.1016/j.nbd.2008.06.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 06/04/2008] [Accepted: 06/05/2008] [Indexed: 01/23/2023] Open
Abstract
Five point mutations within the amyloid beta-protein (Abeta) sequence of the APP gene are associated with hereditary diseases which are similar or identical to Alzheimer's disease and encode: the A21G (Flemish), E22G (Arctic), E22K (Italian), E22Q (Dutch) and the D23N (Iowa) amino acid substitutions. Although a substantial body of data exists on the effects of these mutations on Abeta production, whether or not intra-Abeta mutations alter degradation and how this relates to their aggregation state remain unclear. Here we report that the E22G, E22Q and the D23N substitutions significantly increase fibril nucleation and extension, whereas the E22K substitution exhibits only an increased rate of extension and the A21G substitution actually causes a decrease in the extension rate. These substantial differences in aggregation together with our observation that aggregated wild type Abeta(1-40) was much less well degraded than monomeric wild type Abeta(1-40), prompted us to assess whether or not disease-associated intra-Abeta mutations alter proteolysis independent of their effects on aggregation. Neprilysin (NEP), insulin degrading enzyme (IDE) and plasmin play a major role in Abeta catabolism, therefore we compared the ability of these enzymes to degrade wild type and mutant monomeric Abeta peptides. Experiments investigating proteolysis revealed that all monomeric peptides are degraded similarly by IDE and plasmin, but that the Flemish peptide was degraded significantly more slowly by NEP than wild type Abeta or any of the other mutant peptides. This finding suggests that resistance to NEP-mediated proteolysis may underlie the pathogenicity associated with the A21G mutation.
Collapse
|
30
|
Basun H, Bogdanovic N, Ingelsson M, Almkvist O, Näslund J, Axelman K, Bird TD, Nochlin D, Schellenberg GD, Wahlund LO, Lannfelt L. Clinical and neuropathological features of the arctic APP gene mutation causing early-onset Alzheimer disease. ACTA ACUST UNITED AC 2008; 65:499-505. [PMID: 18413473 DOI: 10.1001/archneur.65.4.499] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
BACKGROUND A majority of mutations within the beta-amyloid region of the amyloid precursor protein (APP) gene cause inherited forms of intracerebral hemorrhage. Most of these mutations may also cause cognitive impairment, but the Arctic APP mutation is the only known intra-beta-amyloid mutation to date causing the more typical clinical picture of Alzheimer disease. OBJECTIVE To describe features of 1 Swedish and 1 American family with the previously reported Arctic APP mutation. DESIGN, SETTING, AND PARTICIPANTS Affected and nonaffected carriers of the Arctic APP mutation from the Swedish and American families were investigated clinically. In addition, 1 brain from each family was investigated neuropathologically. RESULTS The clinical picture, with age at disease onset in the sixth to seventh decade of life and dysfunction in multiple cognitive areas, is indicative of Alzheimer disease and similar to the phenotype for other Alzheimer disease APP mutations. Several affected mutation carriers displayed general brain atrophy and reduced blood flow of the parietal lobe as demonstrated by magnetic resonance imaging and single-photon emission computed tomography. One Swedish case and 1 American case with the Arctic APP mutation came to autopsy, and both showed no signs of hemorrhage but revealed severe congophilic angiopathy, region-specific neurofibrillary tangle pathological findings, and abundant amyloid plaques. Intriguingly, most plaques from both of these cases had a characteristic ringlike character. CONCLUSIONS Overall, our findings corroborate that the Arctic APP mutation causes a clinical and neuropathological picture compatible with Alzheimer disease.
Collapse
Affiliation(s)
- Hans Basun
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Dynamics and Cleavability at the alpha-cleavage site of APP(684-726) in different lipid environments. Biophys J 2008; 95:1460-73. [PMID: 18390599 DOI: 10.1529/biophysj.108.129726] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The occurrence of late-onset Alzheimer's disease has been related to the lipid homeostasis. We tested whether the membrane lipid environment affects the dynamics and cleavability of a model peptide corresponding to the amino acid sequence 684-726 of the amyloid precursor protein APP reconstituted in liposomes. Solid-state NMR with (2)H-Ala(713), which is located within the putative transmembrane domain, suggested that the peptide observes less rotational motion in egg phosphatidylcholine (PhC) membranes than in dimyristoyl-phosphatidylcholine (DMPC) bilayers above the main phase transition temperature T(c). The residue (15)N-Ala(692), which is in the vicinity of the alpha-cleavage site, i.e., Lys(687), showed less motion after reconstitution in distearoyl-phosphatidylcholine liposomes <T(c) than in PhC, DMPC, or sphingomyelin vesicles. In all tested liposomal systems the alpha-cleavage site was accessible for hydrolysis by trypsin. However, the catalytic rate constant was higher in the PhC and DMPC than in the sphingomyelin and distearoyl-phosphatidylcholine systems. In conclusion, the dynamics of APP(684-726) on the transmembrane level as well as the motion of the alpha-cleavage site and its hydrolysis by a model enzyme are dependent on the bilayer characteristics. This could be relevant for the processing of APP in vivo.
Collapse
|
32
|
Kumar-Singh S. Cerebral amyloid angiopathy: pathogenetic mechanisms and link to dense amyloid plaques. GENES BRAIN AND BEHAVIOR 2008; 7 Suppl 1:67-82. [PMID: 18184371 DOI: 10.1111/j.1601-183x.2007.00380.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cerebral amyloid angiopathy (CAA) of the amyloid-beta (Abeta) type is the most common form of sporadic CAA and is now also accepted as an early and integral part of Alzheimer's disease (AD) pathogenesis. Cerebral amyloid angiopathy is a risk factor for haemorrhagic stroke and is believed to independently contribute to dementia. Rare forms of hereditary cerebral amyloidosis caused by mutations within the Abeta domain of amyloid precursor protein (APP) have been identified, where mutant Abeta preferably deposits in vessels because of a decreased fibrillogenic potential and/or increased vasotopicity. A review of factors involved in CAA caused by wild-type Abeta suggests that increased Abeta levels in brain without an increased Abeta42/Abeta40 ratio is one of the most important prerequisites for vascular amyloidosis. This is exemplified by CAA observed in APP duplication and Down's syndrome patients, neprilysin polymorphism patients and knockout mice and Swedish APP (KM670/671NL) mice. Select presenilin mutations also lead to a prominent CAA, and importantly, presenilin mutations are shown to have varied effects on the production of Abeta40, the predominant amyloid found in CAA. Conversely, APP mutations such as Austrian APP (T714I) drastically decrease Abeta40 production and are deficient in CAA. Apolipoprotein E-epsilon4 is also shown to be a risk factor for CAA, and this might be because of its specific role in the aggregation of Abeta40. Recent data also suggest that dense-core senile plaques in humans and dense plaques in transgenic mice, composed predominantly of Abeta40, associate with vessels. This review highlights some of these aspects of genetics and biochemistry of CAA and pathological descriptions linked to a prominent CAA and/or dense plaques in humans and relevant mouse models and discusses how this knowledge has led to a better understanding of the processes involved in vascular amyloidosis, and in causing dementia, and thus has important therapeutic implications.
Collapse
Affiliation(s)
- S Kumar-Singh
- Neurodegenerative Brain Diseases Group, VIB Department of Molecular Genetics, University of Antwerp, Antwerpen, Belgium.
| |
Collapse
|
33
|
Abstract
The term Cerebral Amyloid Angiopathy (CAA) is used to describe the pathological changes occurring in cerebral blood vessels, both leptomeningeal and cortical that result from the deposition of amyloid proteins. This CNS vasculopathy is associated with a spectrum of clinical phenotypes that include both ischemic and hemorrhagic presentations. Dementia, cognitive impairment and transient neurological symptoms or signs are also being increasingly recognized as part of the CAA clinical spectrum. This review covers the clinical, pathological and neuroimaging aspects of CAA.
Collapse
Affiliation(s)
- Luís F Maia
- Department of Neurology, Hospital Geral Santo António, Porto, Portugal
| | | | | |
Collapse
|
34
|
Abstract
The amyloid beta-protein (Abeta) E22Q mutation of the rare disorder hereditary cerebral hemorrhage with amyloidosis-Dutch type (HCHWA-D) causes severe cerebral amyloid angiopathy (CAA) with hemorrhagic strokes of mid-life onset and dementia. The mutation does not affect total Abeta production but may alter the Abeta1-42:Abeta1-40 ratio, and affect the proteolytic degradation of Abeta and its transport across the blood-brain barrier. Abeta E22Q aggregates faster into more stable amyloid-like fibrils than wild-type Abeta. Non-fibrillar Abeta(x-42) deposits precede the appearance of fibrils and the deposition of Abeta(x-40) in the vascular basement membrane. CAA severity tends to increase with age but may vary greatly among patients of comparable ages. Lumenal narrowing of affected blood vessels, leukoencephalopathy, CAA-associated vasculopathies, and perivascular astrocytosis, microgliosis, and neuritic degeneration complicate the development of HCHWA-D CAA. Parenchymal Abeta deposition is also enhanced in the HCHWA-D brain with non-fibrillar membrane-bound Abeta(x-42) deposits evolving into relatively fibrillar diffuse plaques variously associated with reactive astrocytes, activated microglia, and degenerating neurites. Plaque density tends to decrease with age. Neurofibrillary degeneration is absent or limited. HCHWA-D dementia is associated with CAA severity independently of Braak stage, age, and plaque density. Particularly, microaneurysms may contribute to the development of (small) hemorrhages/infarcts and the latter to cognitive decline in affected subjects. However, the relative importance of cerebral hemorrhages/infarcts, white matter damage and/or other CAA- or Abeta-related factors for cognitive deterioration in HCHWA-D remains to be determined.
Collapse
Affiliation(s)
- Marion Maat-Schieman
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | |
Collapse
|
35
|
van Horssen J, de Jong D, de Waal RMW, Maass C, Otte-Holler I, Kremer B, Verbeek MM, Wesseling P. Cerebral amyloid angiopathy with severe secondary vascular pathology: a histopathological study. Dement Geriatr Cogn Disord 2005; 20:321-30. [PMID: 16179828 DOI: 10.1159/000088462] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Indexed: 11/19/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA) is a common neuropathological finding and is characterized by deposition of fibrillar amyloid in cortical and leptomeningeal vessels. In this study we describe the macroscopic and microscopic neuropathological findings of 5 patients with severe CAA-associated secondary vascular changes, including smooth muscle cell degeneration, hyalinization, 'double-barreling' phenomenon, macrophage infiltration, and aneurysmal dilatation of the vessel wall. In 3 of the 5 patients these vascular changes were associated with multiple small hemorrhages, whereas in 2 patients areas of ischemic necrosis were observed. However, none of these patients suffered from large (lobar) hemorrhagic accidents. Nevertheless, severe CAA, particularly when associated with secondary vascular pathology, may lead to vascular dementia-like ischemic changes. Hence, the distinction between patients with severe CAA and secondary vascular abnormalities from those suffering from vascular dementia can be difficult. We speculate that CAA, particularly when associated with secondary vascular pathology, although not resulting in large hemorrhages, may contribute to cognitive decline. The functional impact of CAA and CAA-related secondary vascular changes on cognitive performance warrants further exploration.
Collapse
Affiliation(s)
- Jack van Horssen
- Department of Pathology, University Medical Center, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Mobley DL, Cox DL, Singh RRP, Maddox MW, Longo ML. Modeling amyloid beta-peptide insertion into lipid bilayers. Biophys J 2005; 86:3585-97. [PMID: 15189856 PMCID: PMC1304261 DOI: 10.1529/biophysj.103.032342] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Inspired by recent suggestions that the Alzheimer's amyloid beta peptide (Abeta) can insert into cell membranes and form harmful ion channels, we model insertion of the 40- and 42-residue forms of the peptide into cell membranes using a Monte Carlo code which is specific at the amino acid level. We examine insertion of the regular Abeta peptide as well as mutants causing familial Alzheimer's disease, and find that all but one of the mutants change the insertion behavior by causing the peptide to spend more simulation steps in only one leaflet of the bilayer. We also find that Abeta42, because of the extra hydrophobic residues relative to Abeta40, is more likely to adopt this conformation than Abeta40 in both wild-type and mutant forms. We argue qualitatively why these effects happen. Here, we present our results and develop the hypothesis that this partial insertion increases the probability of harmful channel formation. This hypothesis can partly explain why these mutations are neurotoxic simply due to peptide insertion behavior. We further apply this model to various artificial Abeta mutants which have been examined experimentally, and offer testable experimental predictions contrasting the roles of aggregation and insertion with regard to toxicity of Abeta mutants. These can be used through further experiments to test our hypothesis.
Collapse
Affiliation(s)
- David L Mobley
- Department of Physics, University of California, Davis, California 95616, USA.
| | | | | | | | | |
Collapse
|
37
|
Abstract
Cerebral amyloid angiopathy (CAA) is the result of the deposition of an amyloidogenic protein in cortical and leptomeningeal vessels. The most common type of CAA is caused by amyloid beta-protein (Abeta), which is particularly associated with Alzheimer's disease (AD). Excessive Abeta-CAA formation can be caused by several mutations in the Abeta precursor protein and presenilin genes. The origin of Abeta in CAA is likely to be neuronal, although cerebrovascular cells or the circulation cannot be excluded as a source. Despite the apparent similarity, the pathogenesis of CAA appears to differ from that of senile plaques in several aspects, including the mechanism of Abeta-induced cellular toxicity, the extent of inflammatory reaction and the role of oxidative stress. Therefore, therapeutic strategies for AD should, at least in part, also target CAA. Moreover, CAA and cerebrovascular disease (CVD) may set a lower threshold for AD-like changes to cause dementia and may even cause dementia on its own, since patients with AD and CAA and/or CVD appear to be more cognitively impaired than patients with only AD. In conclusion, the precise impact of CAA on AD or dementia remains unclear, however, its role may have been underestimated in the past, and more extensive studies of in vitro and in vivo models for CAA will be needed to elucidate the importance of CAA-specific approaches in designing intervention strategies for AD.
Collapse
Affiliation(s)
- Annemieke A M Rensink
- Department of Neurology, Laboratory of Pediatrics and Neurology, University Medical Center, 319, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
38
|
Kumar-Singh S, Julliams A, Nuydens R, Ceuterick C, Labeur C, Serneels S, Vennekens K, Van Osta P, Geerts H, De Strooper B, Van Broeckhoven C. In vitro studies of Flemish, Dutch, and wild-type beta-amyloid provide evidence for two-staged neurotoxicity. Neurobiol Dis 2002; 11:330-40. [PMID: 12505425 DOI: 10.1006/nbdi.2002.0529] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mutations in the beta-amyloid (Abeta) sequence of the amyloid precursor protein gene (APP) present with variable disease phenotypes. While patients with the Dutch APP mutation (E693Q) have predominantly hemorrhagic strokes, Flemish APP (A692G) patients develop both strokes and Alzheimer's disease (AD). To determine whether these diverse clinical and pathological presentations are due to mutant Abeta or APP, we studied the effect of Flemish, Dutch, and wild-type Abeta/APP on phosphorylation of specific tau epitopes observed in AD. No effect was observed in differentiated SH-SY5Y cells either stably expressing APP or treated with synthetic Abeta(12-42). However, we did observe a paradoxical temporal difference in the neurotoxic potential of mutant and wild-type Abeta. While long 24-h incubation at physiological levels of Abeta (2 microM) showed a higher amount of apoptosis for Dutch Abeta, a short 2-h incubation showed elevated apoptosis for Flemish and wild-type Abeta. The altered aggregating properties of Abeta, with Dutch Abeta aggregating faster and Flemish Abeta slower than wild type, elucidated a discrete two-phase Abeta neurotoxicity. We propose here that, at least in vitro, Abeta might be neurotoxic in an initial phase due to its soluble oligomeric or other early toxic Abeta intermediate(s), which is perhaps distinct from the late neurotoxicity incurred by aggregated larger assemblies of Abeta.
Collapse
Affiliation(s)
- Samir Kumar-Singh
- Department of Molecular Genetics, Flanders Interuniversity Institute for Biotechnology, Born-Bunge Foundation, University of Antwerp, B-2610 Antwerp, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kumar-Singh S, Cras P, Wang R, Kros JM, van Swieten J, Lübke U, Ceuterick C, Serneels S, Vennekens K, Timmermans JP, Van Marck E, Martin JJ, van Duijn CM, Van Broeckhoven C. Dense-core senile plaques in the Flemish variant of Alzheimer's disease are vasocentric. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 161:507-20. [PMID: 12163376 PMCID: PMC1850756 DOI: 10.1016/s0002-9440(10)64207-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Alzheimer's disease (AD) is characterized by deposition of beta-amyloid (Abeta) in diffuse and senile plaques, and variably in vessels. Mutations in the Abeta-encoding region of the amyloid precursor protein (APP) gene are frequently associated with very severe forms of vascular Abeta deposition, sometimes also accompanied by AD pathology. We earlier described a Flemish APP (A692G) mutation causing a form of early-onset AD with a prominent cerebral amyloid angiopathy and unusually large senile plaque cores. The pathogenic basis of Flemish AD is unknown. By image and mass spectrometric Abeta analyses, we demonstrated that in contrast to other familial AD cases with predominant brain Abeta42, Flemish AD patients predominantly deposit Abeta40. On serial histological section analysis we further showed that the neuritic senile plaques in APP692 brains were centered on vessels. Of a total of 2400 senile plaque cores studied from various brain regions from three patients, 68% enclosed a vessel, whereas the remainder were associated with vascular walls. These observations were confirmed by electron microscopy coupled with examination of serial semi-thin plastic sections, as well as three-dimensional observations by confocal microscopy. Diffuse plaques did not associate with vessels, or with neuritic or inflammatory pathology. Together with earlier in vitro data on APP692, our analyses suggest that the altered biological properties of the Flemish APP and Abeta facilitate progressive Abeta deposition in vascular walls that in addition to causing strokes, initiates formation of dense-core senile plaques in the Flemish variant of AD.
Collapse
Affiliation(s)
- Samir Kumar-Singh
- Department of Molecular Genetics, University of Antwerp, Antwerp, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Vinters HV. Cerebral amyloid angiopathy: a microvascular link between parenchymal and vascular dementia? Ann Neurol 2001; 49:691-3. [PMID: 11409417 DOI: 10.1002/ana.1055] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|