1
|
Kim MK, Shin HB, Cho JH, Lee SW. Developing Brain-Based Bare-Handed Human-Machine Interaction via On-Skin Input. IEEE TRANSACTIONS ON CYBERNETICS 2025; 55:1554-1567. [PMID: 40036449 DOI: 10.1109/tcyb.2025.3533088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Developing natural, intuitive, and human-centric input systems for mobile human-machine interaction (HMI) poses significant challenges. Existing gaze or gesture-based interaction systems are often constrained by their dependence on continuous visual engagement, limited interaction surfaces, or cumbersome hardware. To address these challenges, we propose MetaSkin, a novel neurohaptic interface that uniquely integrates neural signals with on-skin interaction for bare-handed, eyes-free interaction by exploiting human's natural proprioceptive capabilities. To support the interface, we developed a deep learning framework that employs multiscale temporal-spectral feature representation and selective feature attention to effectively decode neural signals generated by on-skin touch and motion gestures. In experiments with 12 participants, our method achieved offline accuracies of 81.95% for touch location discrimination, 71.00% for motion type identification, and 46.08% for 10-class touch-motion classification. In pseudo-online settings, accuracies reached 99.43% for touch onset detection, and 80.34% and 67.02% for classification of touch location and motion type, respectively. Neurophysiological analyses revealed distinct neural activation patterns in the sensorimotor cortex, underscoring the efficacy of our multiscale approach in capturing rich temporal and spectral dynamics. Future work will focus on optimizing the system for diverse user populations and dynamic environments, with a long-term goal of advancing human-centered, neuroadaptive interfaces for next-generation HMI systems. This work represents a significant step toward a paradigm shift in design of brain-computer interfaces, bridging sensory and motor paradigms for building more sophisticated systems.
Collapse
|
2
|
Bullock L, Forseth KJ, Woolnough O, Rollo PS, Tandon N. Supplementary motor area in speech initiation: A large-scale intracranial EEG evaluation of stereotyped word articulation. iScience 2025; 28:111531. [PMID: 39807169 PMCID: PMC11729016 DOI: 10.1016/j.isci.2024.111531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/18/2024] [Accepted: 11/28/2024] [Indexed: 01/16/2025] Open
Abstract
Speech production engages a distributed network of cortical and subcortical brain regions. The supplementary motor area (SMA) has long been thought to be a key hub in coordinating across these regions to initiate voluntary movements, including speech. We analyzed direct intracranial recordings from 115 patients with epilepsy as they articulated a single word in a subset of trials from a picture-naming task. We aimed to characterize the temporal dynamics of SMA relative to other cortical regions. SMA and preSMA were among the first regions to activate after cue onset, peaked in activity before articulation onset, and were the earliest regions to predict trial-to-trial response time. Neural activity at single electrodes in SMA and preSMA was closely associated with speech initiation; activity began at a highly predictable time after stimulus onset and extended until speech onset for any given trial. Our results support the idea that SMA is a key node in the speech initiation network.
Collapse
Affiliation(s)
- Latané Bullock
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, TX 77030, United States of America
- Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX 77030, United States of America
| | - Kiefer J Forseth
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, TX 77030, United States of America
- Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX 77030, United States of America
- Department of Neurological Surgery, University of California, San Diego, La Jolla, CA 92093, United States of America
| | - Oscar Woolnough
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, TX 77030, United States of America
- Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX 77030, United States of America
| | - Patrick S Rollo
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, TX 77030, United States of America
- Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX 77030, United States of America
| | - Nitin Tandon
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, TX 77030, United States of America
- Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX 77030, United States of America
- Memorial Hermann Hospital, Texas Medical Center, Houston, TX 77030, United States of America
| |
Collapse
|
3
|
Hsu HH, Yang YR, Chou LW, Huang YC, Wang RY. The Brain Waves During Reaching Tasks in People with Subacute Low Back Pain: A Cross-Sectional Study. IEEE Trans Neural Syst Rehabil Eng 2024; PP:183-190. [PMID: 40030660 DOI: 10.1109/tnsre.2024.3521286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Subacute low back pain (sLBP) is a critical transitional phase between acute and chronic stages and is key in determining the progression to chronic pain. While persistent pain has been linked to changes in brain activity, studies have focused mainly on acute and chronic phases, leaving neural changes during the subacute phase-especially during movement-under-researched. This cross-sectional study aimed to investigate changes in brain activity and the impact of pain intensity in individuals with sLBP during rest and reaching movements. Using a 28-electrode EEG, we measured motor-related brain waves, including theta, alpha, beta, and gamma oscillations. Transitioning from rest to movement phases resulted in significant reductions (> 80%) in mean power across all frequency bands, indicating dynamic brain activation in response to movement. Furthermore, pain intensity was significantly correlated with brain wave activity. During rest, pain intensity was positively correlated with alpha oscillation activity in the central brain area (r = 0.40, p < 0.05). In contrast, during movement, pain intensity was negatively correlated with changes in brain activity (r = -0.36 to -0.40, p < 0.05). These findings suggest that pain influences brain activity differently during rest and movement, underscoring the impact of pain levels on neural networks related to the sensorimotor system in sLBP and highlighting the importance of understanding neural changes during this critical transitional phase.
Collapse
|
4
|
Chen Y, Xie S, Zhang L, Li D, Su H, Wang R, Ao R, Lin X, Liu Y, Zhang S, Zhai D, Sun Y, Wang S, Hu L, Dong Z, Lu X. Attentional network deficits in patients with migraine: behavioral and electrophysiological evidence. J Headache Pain 2024; 25:195. [PMID: 39528969 PMCID: PMC11552239 DOI: 10.1186/s10194-024-01905-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Patients with migraine often experience not only headache pain but also cognitive dysfunction, particularly in attention, which is frequently overlooked in both diagnosis and treatment. The influence of these attentional deficits on the pain-related clinical characteristics of migraine remains poorly understood, and clarifying this relationship could improve care strategies. METHODS This study included 52 patients with migraine and 34 healthy controls. We employed the Attentional Network Test for Interactions and Vigilance-Executive and Arousal Components paradigm, combined with electroencephalography, to assess attentional deficits in patients with migraine, with an emphasis on phasic alerting, orienting, executive control, executive vigilance, and arousal vigilance. An extreme gradient boosting binary classifier was trained on features showing group differences to distinguish patients with migraine from healthy controls. Moreover, an extreme gradient boosting regression model was developed to predict clinical characteristics of patients with migraine using their attentional deficit features. RESULTS For general performance, patients with migraine presented a larger inverse efficiency score, a higher prestimulus beta-band power spectral density and a lower gamma-band event-related synchronization at Cz electrode, and stronger high alpha-band activity at the primary visual cortex, compared to healthy controls. Although no behavior differences in three basic attentional networks were found, patients showed magnified N1 amplitude and prolonged latency of P2 for phasic alerting-trials as well as an increased orienting evoked-P1 amplitude. For vigilance function, improvements in the hit rate of executive vigilance-trials were exhibited in controls but not in patients. Besides, patients with migraine exhibited longer reaction time as well as larger variability in arousal vigilance-trials than controls. The binary classifier developed by such attentional deficit features achieved an F1 score of 0.762 and an accuracy of 0.779 in distinguishing patients with migraine from healthy controls. Crucially, the predicted value available from the regression model involving attentional deficit features significantly correlated with the real value for the frequency of headache. CONCLUSIONS Patients with migraine demonstrated significant attentional deficits, which can be used to differentiate migraine patients from healthy populations and to predict clinical characteristics. These findings highlight the need to address cognitive dysfunction, particularly attentional deficits, in the clinical management of migraine.
Collapse
Affiliation(s)
- Yuxin Chen
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siyuan Xie
- Department of Neurology, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Libo Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
- Neuroscience and Behaviour Laboratory, Italian Institute of Technology, Rome, 00161, Italy
| | - Desheng Li
- Department of Neurology, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Hui Su
- Department of Neurology, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Rongfei Wang
- Department of Neurology, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Ran Ao
- Department of Neurology, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xiaoxue Lin
- Department of Neurology, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yingyuan Liu
- Department of Neurology, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Shuhua Zhang
- Department of Neurology, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Deqi Zhai
- Department of Neurology, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yin Sun
- Department of Neurology, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Shuqing Wang
- Department of Neurology, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhao Dong
- Department of Neurology, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China.
- School of Medicine, Nankai University, Tianjin, 300071, China.
| | - Xuejing Lu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Rhodes E, Gaetz W, Marsden J, Hall SD. Post-Movement Beta Synchrony Inhibits Cortical Excitability. Brain Sci 2024; 14:970. [PMID: 39451984 PMCID: PMC11505688 DOI: 10.3390/brainsci14100970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND/OBJECTIVES This study investigates the relationship between movement-related beta synchrony and primary motor cortex (M1) excitability, focusing on the time-dependent inhibition of movement. Voluntary movement induces beta frequency (13-30 Hz) event-related desynchronisation (B-ERD) in M1, followed by post-movement beta rebound (PMBR). Although PMBR is linked to cortical inhibition, its temporal relationship with motor cortical excitability is unclear. This study aims to determine whether PMBR acts as a marker for post-movement inhibition by assessing motor-evoked potentials (MEPs) during distinct phases of the beta synchrony profile. METHODS Twenty-five right-handed participants (mean age: 24 years) were recruited. EMG data were recorded from the first dorsal interosseous muscle, and TMS was applied to the M1 motor hotspot to evoke MEPs. A reaction time task was used to elicit beta oscillations, with TMS delivered at participant-specific time points based on EEG-derived beta power envelopes. MEP amplitudes were compared across four phases: B-ERD, early PMBR, peak PMBR, and late PMBR. RESULTS Our findings demonstrate that MEP amplitude significantly increased during B-ERD compared to rest, indicating heightened cortical excitability. In contrast, MEPs recorded during peak PMBR were significantly reduced, suggesting cortical inhibition. While all three PMBR phases exhibited reduced cortical excitability, a trend toward amplitude-dependent inhibition was observed. CONCLUSIONS This study confirms that PMBR is linked to reduced cortical excitability, validating its role as a marker of motor cortical inhibition. These results enhance the understanding of beta oscillations in motor control and suggest that further research on altered PMBR could be crucial for understanding neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Edward Rhodes
- Brain Research & Imaging Centre, University of Plymouth, Plymouth PL4 8AA, UK; (E.R.); (J.M.)
- UK Dementia Research Institute, Imperial College London, London W1T 7NF, UK
| | - William Gaetz
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jonathan Marsden
- Brain Research & Imaging Centre, University of Plymouth, Plymouth PL4 8AA, UK; (E.R.); (J.M.)
- School of Health Professions, University of Plymouth, Plymouth PL6 8BH, UK
| | - Stephen D. Hall
- Brain Research & Imaging Centre, University of Plymouth, Plymouth PL4 8AA, UK; (E.R.); (J.M.)
| |
Collapse
|
6
|
Sarrias-Arrabal E, Berchicci M, Bianco V, Vázquez-Marrufo M, Perri RL, Di Russo F. Temporal spectral evolution of pre-stimulus brain activity in visual and visuomotor tasks. Cogn Neurodyn 2023; 17:1433-1446. [PMID: 37969946 PMCID: PMC10640439 DOI: 10.1007/s11571-022-09910-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 10/17/2022] [Accepted: 10/28/2022] [Indexed: 12/05/2022] Open
Abstract
The aim of this study was to describe the spectral features of pre-stimulus event-related potential (ERP) components elicited in visual tasks such as the Bereitschaftspotential (BP), prefrontal negativity (pN) and visual negativity (vN). ERPs are considered time-locked and phase-locked (evoked) activity, but we have also analyzed the non-phase but time-locked (induced) activity in the same interval by applying the temporal spectral evolution (TSE) method. Participants (N = 26) were tested in a passive task, a simple response task (SRT) and a discriminative response task (DRT), where EEG activity was recorded with 64 scalp electrodes. We analyzed the time-frequency modulations (phase and non-phase) prior to the onset of the stimuli in the sub-delta, delta, theta, alpha, beta, and gamma frequency bands. The results showed that all the pre-stimulus ERP components were mainly regulated by evoked activity in the sub-delta band. On the other hand, induced activity seems to be linked to evoked responses but with a different psychophysiological role. We concluded that other preparatory cognitive mechanisms associated with ERPs can also be detected by the TSE method. This finding may suggest underlying mechanisms in non-phase activity and requires the addition of non-phase activity analysis to the traditional analysis (phase and evoked activity).
Collapse
Affiliation(s)
- Esteban Sarrias-Arrabal
- Department of Experimental Psychology, Faculty of Psychology, University of Seville, Seville, Spain
| | - Marika Berchicci
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Valentina Bianco
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Manuel Vázquez-Marrufo
- Department of Experimental Psychology, Faculty of Psychology, University of Seville, Seville, Spain
| | | | - Francesco Di Russo
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
- Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| |
Collapse
|
7
|
Gordon EM, Chauvin RJ, Van AN, Rajesh A, Nielsen A, Newbold DJ, Lynch CJ, Seider NA, Krimmel SR, Scheidter KM, Monk J, Miller RL, Metoki A, Montez DF, Zheng A, Elbau I, Madison T, Nishino T, Myers MJ, Kaplan S, Badke D'Andrea C, Demeter DV, Feigelis M, Ramirez JSB, Xu T, Barch DM, Smyser CD, Rogers CE, Zimmermann J, Botteron KN, Pruett JR, Willie JT, Brunner P, Shimony JS, Kay BP, Marek S, Norris SA, Gratton C, Sylvester CM, Power JD, Liston C, Greene DJ, Roland JL, Petersen SE, Raichle ME, Laumann TO, Fair DA, Dosenbach NUF. A somato-cognitive action network alternates with effector regions in motor cortex. Nature 2023; 617:351-359. [PMID: 37076628 PMCID: PMC10172144 DOI: 10.1038/s41586-023-05964-2] [Citation(s) in RCA: 195] [Impact Index Per Article: 97.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/16/2023] [Indexed: 04/21/2023]
Abstract
Motor cortex (M1) has been thought to form a continuous somatotopic homunculus extending down the precentral gyrus from foot to face representations1,2, despite evidence for concentric functional zones3 and maps of complex actions4. Here, using precision functional magnetic resonance imaging (fMRI) methods, we find that the classic homunculus is interrupted by regions with distinct connectivity, structure and function, alternating with effector-specific (foot, hand and mouth) areas. These inter-effector regions exhibit decreased cortical thickness and strong functional connectivity to each other, as well as to the cingulo-opercular network (CON), critical for action5 and physiological control6, arousal7, errors8 and pain9. This interdigitation of action control-linked and motor effector regions was verified in the three largest fMRI datasets. Macaque and pediatric (newborn, infant and child) precision fMRI suggested cross-species homologues and developmental precursors of the inter-effector system. A battery of motor and action fMRI tasks documented concentric effector somatotopies, separated by the CON-linked inter-effector regions. The inter-effectors lacked movement specificity and co-activated during action planning (coordination of hands and feet) and axial body movement (such as of the abdomen or eyebrows). These results, together with previous studies demonstrating stimulation-evoked complex actions4 and connectivity to internal organs10 such as the adrenal medulla, suggest that M1 is punctuated by a system for whole-body action planning, the somato-cognitive action network (SCAN). In M1, two parallel systems intertwine, forming an integrate-isolate pattern: effector-specific regions (foot, hand and mouth) for isolating fine motor control and the SCAN for integrating goals, physiology and body movement.
Collapse
Affiliation(s)
- Evan M Gordon
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA.
| | - Roselyne J Chauvin
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Andrew N Van
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St Louis, MO, USA
| | - Aishwarya Rajesh
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Ashley Nielsen
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Dillan J Newbold
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
- Department of Neurology, New York University Langone Medical Center, New York, NY, USA
| | - Charles J Lynch
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Nicole A Seider
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - Samuel R Krimmel
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Kristen M Scheidter
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Julia Monk
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Ryland L Miller
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - Athanasia Metoki
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - David F Montez
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Annie Zheng
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Immanuel Elbau
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Thomas Madison
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Tomoyuki Nishino
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - Michael J Myers
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - Sydney Kaplan
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Carolina Badke D'Andrea
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- Department of Cognitive Science, University of California San Diego, La Jolla, CA, USA
| | - Damion V Demeter
- Department of Cognitive Science, University of California San Diego, La Jolla, CA, USA
| | - Matthew Feigelis
- Department of Cognitive Science, University of California San Diego, La Jolla, CA, USA
| | - Julian S B Ramirez
- Center for the Developing Brain, Child Mind Institute, New York, NY, USA
| | - Ting Xu
- Center for the Developing Brain, Child Mind Institute, New York, NY, USA
| | - Deanna M Barch
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St Louis, MO, USA
| | - Christopher D Smyser
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA
| | - Cynthia E Rogers
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA
| | - Jan Zimmermann
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Kelly N Botteron
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - John R Pruett
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - Jon T Willie
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
- Department of Neurosurgery, Washington University School of Medicine, St Louis, MO, USA
| | - Peter Brunner
- Department of Biomedical Engineering, Washington University in St. Louis, St Louis, MO, USA
- Department of Neurosurgery, Washington University School of Medicine, St Louis, MO, USA
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Benjamin P Kay
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Scott Marek
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Scott A Norris
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Caterina Gratton
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| | - Chad M Sylvester
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - Jonathan D Power
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Conor Liston
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Deanna J Greene
- Department of Cognitive Science, University of California San Diego, La Jolla, CA, USA
| | - Jarod L Roland
- Department of Neurosurgery, Washington University School of Medicine, St Louis, MO, USA
| | - Steven E Petersen
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St Louis, MO, USA
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, USA
| | - Marcus E Raichle
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St Louis, MO, USA
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, USA
| | - Timothy O Laumann
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - Damien A Fair
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Institute of Child Development, University of Minnesota, Minneapolis, MN, 55455, United States
| | - Nico U F Dosenbach
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA.
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA.
- Department of Biomedical Engineering, Washington University in St. Louis, St Louis, MO, USA.
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St Louis, MO, USA.
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA.
- Program in Occupational Therapy, Washington University in St. Louis, St Louis, MO, USA.
| |
Collapse
|
8
|
Beta rhythmicity in human motor cortex reflects neural population coupling that modulates subsequent finger coordination stability. Commun Biol 2022; 5:1375. [PMID: 36522455 PMCID: PMC9755311 DOI: 10.1038/s42003-022-04326-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Human behavior is not performed completely as desired, but is influenced by the inherent rhythmicity of the brain. Here we show that anti-phase bimanual coordination stability is regulated by the dynamics of pre-movement neural oscillations in bi-hemispheric primary motor cortices (M1) and supplementary motor area (SMA). In experiment 1, pre-movement bi-hemispheric M1 phase synchrony in beta-band (M1-M1 phase synchrony) was online estimated from 129-channel scalp electroencephalograms. Anti-phase bimanual tapping preceded by lower M1-M1 phase synchrony exhibited significantly longer duration than tapping preceded by higher M1-M1 phase synchrony. Further, the inter-individual variability of duration was explained by the interaction of pre-movement activities within the motor network; lower M1-M1 phase synchrony and spectral power at SMA were associated with longer duration. The necessity of cortical interaction for anti-phase maintenance was revealed by sham-controlled repetitive transcranial magnetic stimulation over SMA in another experiment. Our results demonstrate that pre-movement cortical oscillatory coupling within the motor network unknowingly influences bimanual coordination performance in humans after consolidation, suggesting the feasibility of augmenting human motor ability by covertly monitoring preparatory neural dynamics.
Collapse
|
9
|
Fahimi Hnazaee M, Verwoert M, Freudenburg ZV, van der Salm SMA, Aarnoutse EJ, Leinders S, Van Hulle MM, Ramsey NF, Vansteensel MJ. Towards predicting ECoG-BCI performance: assessing the potential of scalp-EEG . J Neural Eng 2022; 19:046045. [PMID: 35931055 DOI: 10.1088/1741-2552/ac8764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 08/05/2022] [Indexed: 11/11/2022]
Abstract
Objective. Implanted brain-computer interfaces (BCIs) employ neural signals to control a computer and may offer an alternative communication channel for people with locked-in syndrome (LIS). Promising results have been obtained using signals from the sensorimotor (SM) area. However, in earlier work on home-use of an electrocorticography (ECoG)-based BCI by people with LIS, we detected differences in ECoG-BCI performance, which were related to differences in the modulation of low frequency band (LFB) power in the SM area. For future clinical implementation of ECoG-BCIs, it will be crucial to determine whether reliable performance can be predicted before electrode implantation. To assess if non-invasive scalp-electroencephalography (EEG) could serve such prediction, we here investigated if EEG can detect the characteristics observed in the LFB modulation of ECoG signals.Approach. We included three participants with LIS of the earlier study, and a control group of 20 healthy participants. All participants performed a Rest task, and a Movement task involving actual (healthy) or attempted (LIS) hand movements, while their EEG signals were recorded.Main results.Data of the Rest task was used to determine signal-to-noise ratio, which showed a similar range for LIS and healthy participants. Using data of the Movement task, we selected seven EEG electrodes that showed a consistent movement-related decrease in beta power (13-30 Hz) across healthy participants. Within the EEG recordings of this subset of electrodes of two LIS participants, we recognized the phenomena reported earlier for the LFB in their ECoG recordings. Specifically, strong movement-related beta band suppression was observed in one, but not the other, LIS participant, and movement-related alpha band (8-12 Hz) suppression was practically absent in both. Results of the third LIS participant were inconclusive due to technical issues with the EEG recordings.Significance. Together, these findings support a potential role for scalp EEG in the presurgical assessment of ECoG-BCI candidates.
Collapse
Affiliation(s)
| | - Maxime Verwoert
- UMC Utrecht Brain Center, Department of Neurology & Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Zachary V Freudenburg
- UMC Utrecht Brain Center, Department of Neurology & Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sandra M A van der Salm
- UMC Utrecht Brain Center, Department of Neurology & Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Erik J Aarnoutse
- UMC Utrecht Brain Center, Department of Neurology & Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sacha Leinders
- UMC Utrecht Brain Center, Department of Neurology & Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marc M Van Hulle
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven, Belgium
| | - Nick F Ramsey
- UMC Utrecht Brain Center, Department of Neurology & Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mariska J Vansteensel
- UMC Utrecht Brain Center, Department of Neurology & Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
10
|
Bodda S, Diwakar S. Exploring EEG spectral and temporal dynamics underlying a hand grasp movement. PLoS One 2022; 17:e0270366. [PMID: 35737671 PMCID: PMC9223346 DOI: 10.1371/journal.pone.0270366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 06/08/2022] [Indexed: 11/28/2022] Open
Abstract
For brain-computer interfaces, resolving the differences between pre-movement and movement requires decoding neural ensemble activity in the motor cortex's functional regions and behavioural patterns. Here, we explored the underlying neural activity and mechanisms concerning a grasped motor task by recording electroencephalography (EEG) signals during the execution of hand movements in healthy subjects. The grasped movement included different tasks; reaching the target, grasping the target, lifting the object upwards, and moving the object in the left or right directions. 163 trials of EEG data were acquired from 30 healthy participants who performed the grasped movement tasks. Rhythmic EEG activity was analysed during the premovement (alert task) condition and compared against grasped movement tasks while the arm was moved towards the left or right directions. The short positive to negative deflection that initiated around -0.5ms as a wave before the onset of movement cue can be used as a potential biomarker to differentiate movement initiation and movement. A rebound increment of 14% of beta oscillations and 26% gamma oscillations in the central regions was observed and could be used to distinguish pre-movement and grasped movement tasks. Comparing movement initiation to grasp showed a decrease of 10% in beta oscillations and 13% in gamma oscillations, and there was a rebound increment 4% beta and 3% gamma from grasp to grasped movement. We also investigated the combination MRCPs and spectral estimates of α, β, and γ oscillations as features for machine learning classifiers that could categorize movement conditions. Support vector machines with 3rd order polynomial kernel yielded 70% accuracy. Pruning the ranked features to 5 leaf nodes reduced the error rate by 16%. For decoding grasped movement and in the context of BCI applications, this study identifies potential biomarkers, including the spatio-temporal characteristics of MRCPs, spectral information, and choice of classifiers for optimally distinguishing initiation and grasped movement.
Collapse
Affiliation(s)
- Sandeep Bodda
- Amrita Mind Brain Center, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| | - Shyam Diwakar
- Amrita Mind Brain Center, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
- Department of Electronics and Communication Engineering, School of Engineering, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| |
Collapse
|
11
|
Liu H, Li B, Zhang M, Dai C, Xi P, Liu Y, Huang Q, He J, Lang Y, Tang R. Unexpected Terrain Induced Changes in Cortical Activity in Bipedal-Walking Rats. BIOLOGY 2021; 11:biology11010036. [PMID: 35053035 PMCID: PMC8773320 DOI: 10.3390/biology11010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/25/2021] [Accepted: 12/26/2021] [Indexed: 11/23/2022]
Abstract
Simple Summary Most studies on cortical dynamics during walking require subjects to walk stably on specific terrain. In fact, humans or other animals are often disturbed by an abrupt change in terrains during walking. To study the impact of unexpected terrain on cortical activity, we analyzed the kinematics and electroencephalography (EEG) dynamics of bipedal-walking rats after encountering unexpected terrain. We found that the gait of rats after encountering the unexpected terrain were significantly different from normal walking. Furthermore, the activities of the left and right primary motor areas (M1), the left and right primary somatosensory areas (S1), and the retrosplenial area (RSP) are coupled to gait cycle phase and varied with the terrain conditions. These findings suggest that unexpected terrains induced changes in gait and cortical activity, and provide novel insights into cortical dynamics during walking. Abstract Humans and other animals can quickly respond to unexpected terrains during walking, but little is known about the cortical dynamics in this process. To study the impact of unexpected terrains on brain activity, we allowed rats with blocked vision to walk on a treadmill in a bipedal posture and then walk on an uneven area at a random position on the treadmill belt. Whole brain EEG signals and hind limb kinematics of bipedal-walking rats were recorded. After encountering unexpected terrain, the θ band power of the bilateral M1, the γ band power of the left S1, and the θ to γ band power of the RSP significantly decreased compared with normal walking. Furthermore, when the rats left uneven terrain, the β band power of the bilateral M1 and the α band power of the right M1 decreased, while the γ band power of the left M1 significantly increased compared with normal walking. Compared with the flat terrain, the θ to low β (3–20 Hz) band power of the bilateral S1 increased after the rats contacted the uneven terrain and then decreased in the single- or double- support phase. These results support the hypothesis that unexpected terrains induced changes in cortical activity.
Collapse
Affiliation(s)
- Honghao Liu
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; (H.L.); (B.L.); (M.Z.); (C.D.); (P.X.); (Y.L.); (Q.H.); (J.H.)
| | - Bo Li
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; (H.L.); (B.L.); (M.Z.); (C.D.); (P.X.); (Y.L.); (Q.H.); (J.H.)
| | - Minjian Zhang
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; (H.L.); (B.L.); (M.Z.); (C.D.); (P.X.); (Y.L.); (Q.H.); (J.H.)
| | - Chuankai Dai
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; (H.L.); (B.L.); (M.Z.); (C.D.); (P.X.); (Y.L.); (Q.H.); (J.H.)
| | - Pengcheng Xi
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; (H.L.); (B.L.); (M.Z.); (C.D.); (P.X.); (Y.L.); (Q.H.); (J.H.)
| | - Yafei Liu
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; (H.L.); (B.L.); (M.Z.); (C.D.); (P.X.); (Y.L.); (Q.H.); (J.H.)
| | - Qiang Huang
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; (H.L.); (B.L.); (M.Z.); (C.D.); (P.X.); (Y.L.); (Q.H.); (J.H.)
- Beijing Innovation Centre for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China
| | - Jiping He
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; (H.L.); (B.L.); (M.Z.); (C.D.); (P.X.); (Y.L.); (Q.H.); (J.H.)
- Beijing Innovation Centre for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China
| | - Yiran Lang
- Beijing Innovation Centre for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China
- Correspondence: (Y.L.); (R.T.)
| | - Rongyu Tang
- Beijing Innovation Centre for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China
- Correspondence: (Y.L.); (R.T.)
| |
Collapse
|
12
|
Matsuo T, Ishii A, Minami T, Nanjo H, Yoshikawa T. Neural mechanism by which physical fatigue sensation suppresses physical performance: a magnetoencephalography study. Exp Brain Res 2021; 240:237-247. [PMID: 34689244 DOI: 10.1007/s00221-021-06250-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/19/2021] [Indexed: 11/25/2022]
Abstract
The right dorsolateral prefrontal cortex (DLPFC) has been proposed to be the brain region regulating performance through fatigue sensation in fatigue, but direct evidence has been lacking for right DLPFC activation when physical performance is suppressed in the presence of fatigue sensation. We examined whether the right DLPFC is activated when physical performance is suppressed by remembering a physical fatigue sensation. Eighteen healthy male volunteers participated. They performed a rest session followed by a handgrip session to induce physical fatigue sensation. Then, they were instructed to remember the state of the right hand with (i.e., the target condition) and without (i.e., the control condition) fatigue sensation as experienced in the handgrip and rest sessions, respectively while performing motor imagery of maximum handgrip of the right hand. Neural activity during both conditions was recorded using magnetoencephalography. The level of fatigue sensation was higher in the target condition than in the control condition. Decreases of handgrip strength and beta band power in the right Brodmann's area 46 were observed in the target condition, suggesting that the right DLPFC is involved in the regulation of physical performance through fatigue sensation. These findings may help elucidate the neural mechanisms regulating performance under fatigue conditions.
Collapse
Affiliation(s)
- Takashi Matsuo
- Department of Sports Medicine, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka City, Osaka, 545-8585, Japan.
| | - Akira Ishii
- Department of Sports Medicine, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka City, Osaka, 545-8585, Japan
| | - Takayuki Minami
- Department of Sports Medicine, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka City, Osaka, 545-8585, Japan
| | - Hitoshi Nanjo
- Department of Sports Medicine, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka City, Osaka, 545-8585, Japan
| | - Takahiro Yoshikawa
- Department of Sports Medicine, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka City, Osaka, 545-8585, Japan
| |
Collapse
|
13
|
Tatti E, Ferraioli F, Peter J, Alalade T, Nelson AB, Ricci S, Quartarone A, Ghilardi MF. Frontal increase of beta modulation during the practice of a motor task is enhanced by visuomotor learning. Sci Rep 2021; 11:17441. [PMID: 34465846 PMCID: PMC8408223 DOI: 10.1038/s41598-021-97004-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
Movement is accompanied by beta power changes over frontal and sensorimotor regions: a decrease during movement (event-related desynchronization, ERD), followed by an increase (event-related synchronization, ERS) after the movement end. We previously found that enhancements of beta modulation (from ERD to ERS) during a reaching test (mov) occur over frontal and left sensorimotor regions after practice in a visuo-motor adaptation task (ROT) but not after visual learning practice. Thus, these enhancements may reflect local cumulative effects of motor learning. Here we verified whether they are triggered by the learning component inherent in ROT or simply by motor practice in a reaching task without such learning (MOT). We found that beta modulation during mov increased over frontal and left areas after three-hour practice of either ROT or MOT. However, the frontal increase was greater after ROT, while the increase over the left area was similar after the two tasks. These findings confirm that motor practice leaves local traces in beta power during a subsequent motor test. As they occur after motor tasks with and without learning, these traces likely express the cost of processes necessary for both usage and engagement of long-term potentiation mechanisms necessary for the learning required by ROT.
Collapse
Affiliation(s)
- E Tatti
- CUNY School of Medicine, 160 Convent Avenue, Harris Hall Room 008, New York, NY, 10031, USA.
| | - F Ferraioli
- CUNY School of Medicine, 160 Convent Avenue, Harris Hall Room 008, New York, NY, 10031, USA
| | - J Peter
- CUNY School of Medicine, 160 Convent Avenue, Harris Hall Room 008, New York, NY, 10031, USA
| | - T Alalade
- CUNY School of Medicine, 160 Convent Avenue, Harris Hall Room 008, New York, NY, 10031, USA
| | - A B Nelson
- CUNY School of Medicine, 160 Convent Avenue, Harris Hall Room 008, New York, NY, 10031, USA
| | - S Ricci
- CUNY School of Medicine, 160 Convent Avenue, Harris Hall Room 008, New York, NY, 10031, USA.,DIBRIS University of Genova, 16145, Genoa, Italy
| | - A Quartarone
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, 98125, Messina, Italy
| | - M F Ghilardi
- CUNY School of Medicine, 160 Convent Avenue, Harris Hall Room 008, New York, NY, 10031, USA.
| |
Collapse
|
14
|
Giustiniani A, Battaglia G, Messina G, Morello H, Guastella S, Iovane A, Oliveri M, Palma A, Proia P. Transcranial Alternating Current Stimulation (tACS) Does Not Affect Sports People's Explosive Power: A Pilot Study. Front Hum Neurosci 2021; 15:640609. [PMID: 33994980 PMCID: PMC8116517 DOI: 10.3389/fnhum.2021.640609] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/22/2021] [Indexed: 12/23/2022] Open
Abstract
Purpose: This study is aimed to preliminary investigate whether transcranial alternating current stimulation (tACS) could affect explosive power considering genetic background in sport subjects. Methods: Seventeen healthy sports volunteers with at least 3 years of sports activities participated in the experiment. After 2 weeks of familiarization performed without any stimulation, each participant received either 50 Hz-tACS or sham-tACS. Before and after stimulation, subjects performed the following tests: (1) the squat jump with the hands on the hips (SJ); (2) countermovement jump with the hands on the hips (CMJ); (3) countermovement jump with arm swing (CMJ-AS); (4) 15-s Bosco's test; (5) seated backward overhead medicine ball throw (SBOMBT); (6) seated chest pass throw (SCPT) with a 3-kg rubber medicine ball; and (7) hand-grip test. Additionally, saliva samples were collected from each participant. Genotyping analysis was carried out by polymerase chain reaction (PCR). Results: No significant differences were found in sport performance of subjects after 50 Hz-tACS. Additionally, we did not find any influence of genetic background on tACS-related effect on physical performance. These results suggest that tACS at gamma frequency is not able to induce an after-effect modulating sport performance. Further investigations with larger sample size are needed in order to understand the potential role of non-invasive brain stimulation techniques (NIBS) in motor performances. Conclusions: Gamma-tACS applied before the physical performance fails to improve explosive power in sport subjects.
Collapse
Affiliation(s)
- Andreina Giustiniani
- IRCCS San Camillo Hospital, Venice, Italy.,NEUROFARBA Department, University of Florence, Florence, Italy.,Sport and Exercise Sciences Research Unit, Department of Psychological, Pedagogical and Educational Sciences, University of Palermo, Palermo, Italy
| | - Giuseppe Battaglia
- Sport and Exercise Sciences Research Unit, Department of Psychological, Pedagogical and Educational Sciences, University of Palermo, Palermo, Italy
| | - Giuseppe Messina
- Sport and Exercise Sciences Research Unit, Department of Psychological, Pedagogical and Educational Sciences, University of Palermo, Palermo, Italy
| | - Hely Morello
- Sport and Exercise Sciences Research Unit, Department of Psychological, Pedagogical and Educational Sciences, University of Palermo, Palermo, Italy
| | | | - Angelo Iovane
- Sport and Exercise Sciences Research Unit, Department of Psychological, Pedagogical and Educational Sciences, University of Palermo, Palermo, Italy
| | - Massimiliano Oliveri
- Sport and Exercise Sciences Research Unit, Department of Psychological, Pedagogical and Educational Sciences, University of Palermo, Palermo, Italy
| | - Antonio Palma
- Sport and Exercise Sciences Research Unit, Department of Psychological, Pedagogical and Educational Sciences, University of Palermo, Palermo, Italy
| | - Patrizia Proia
- Sport and Exercise Sciences Research Unit, Department of Psychological, Pedagogical and Educational Sciences, University of Palermo, Palermo, Italy
| |
Collapse
|
15
|
Cross KA, Malekmohammadi M, Woo Choi J, Pouratian N. Movement-related changes in pallidocortical synchrony differentiate action execution and observation in humans. Clin Neurophysiol 2021; 132:1990-2001. [PMID: 33980469 DOI: 10.1016/j.clinph.2021.03.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/02/2021] [Accepted: 03/15/2021] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Suppression of local and network alpha and beta oscillations in the human basal ganglia-thalamocortical (BGTC) circuit is a prominent feature of movement, including suppression of local alpha/beta power, cross-region beta phase coupling, and cortical and subcortical phase-amplitude coupling (PAC). We hypothesized that network-level coupling is more directly related to movement execution than local power changes, given the role of pathological network hypersynchrony in movement disorders such as Parkinson disease (PD). Understanding the specificity of these movement-related signals is important for designing novel therapeutics. METHODS We recorded globus pallidus internus (GPi) and motor cortical local field potentials during movement execution, passive movement observation and rest in 12 patients with PD undergoing deep brain stimulator implantation. RESULTS Local alpha/beta power is suppressed in the globus pallidus and motor cortex during both action execution and action observation, although less so during action observation. In contrast, pallidocortical phase synchrony and GPi and motor cortical alpha/beta-gamma PAC are suppressed only during action execution. CONCLUSIONS The functional dissociation across tasks in pallidocortical network activity suggests a particularly important role of network coupling in motor execution. SIGNIFICANCE Network level recordings provide important specificity in differentiating motor behavior and may provide significant value for future closed loop therapies.
Collapse
Affiliation(s)
- Katy A Cross
- Department of Neurology, University of California, Los Angeles, USA.
| | | | - Jeong Woo Choi
- Department of Neurosurgery, University of California, Los Angeles, USA
| | - Nader Pouratian
- Department of Neurosurgery, University of California, Los Angeles, USA
| |
Collapse
|
16
|
Theta Synchrony Is Increased near Neural Populations That Are Active When Initiating Instructed Movement. eNeuro 2021; 8:ENEURO.0252-20.2020. [PMID: 33355232 PMCID: PMC7901148 DOI: 10.1523/eneuro.0252-20.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/29/2020] [Accepted: 12/05/2020] [Indexed: 12/21/2022] Open
Abstract
Theta oscillations (3–8 Hz) in the human brain have been linked to perception, cognitive control, and spatial memory, but their relation to the motor system is less clear. We tested the hypothesis that theta oscillations coordinate distributed behaviorally relevant neural representations during movement using intracranial electroencephalography (iEEG) recordings from nine patients (n = 490 electrodes) as they performed a simple instructed movement task. Using high frequency activity (HFA; 70–200 Hz) as a marker of local spiking activity, we identified electrodes that were positioned near neural populations that showed increased activity during instruction and movement. We found that theta synchrony was widespread throughout the brain but was increased near regions that showed movement-related increases in neural activity. These results support the view that theta oscillations represent a general property of brain activity that may also play a specific role in coordinating widespread neural activity when initiating voluntary movement.
Collapse
|
17
|
Zarei AA, Faghani Jadidi A, Lontis R, Jensen W. Transcutaneous Electrical Stimulation Influences the Time-Frequency Map of Cortical Activity - A Pilot Study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:3905-3908. [PMID: 33018854 DOI: 10.1109/embc44109.2020.9176023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phantom limb pain (PLP) is pain felt in the missing limb in amputees. Somatosensory input delivered as high-frequency surface electrical stimulation may provoke a significant temporary decrease in PLP. Also, transcutaneous electrical nerve stimulation (TENS) is a somatosensory input that may activate descending inhibitory systems and thereby relieve pain. Our aim was to investigate changes in cortical activity following long-time sensory TENS. Time-frequency features were extracted from EEG signals of Cz and C4 channels (contralateral to the stimulation site) with or without TENS (2 subjects). We found that the TENS caused inhibition of the spectral activity of the somatosensory cortex following TENS, whereas no change was found when no stimulation was applied.Clinical Relevance- Although our preliminary results show a depression of the cortical activity following TENS, a future study with a larger population is needed to provide strong evidence to evaluate the effectiveness of sensory TENS on cortical activity. Our results may be useful for the design of TENS protocols for relief of PLP.
Collapse
|
18
|
Tatti E, Ricci S, Nelson AB, Mathew D, Chen H, Quartarone A, Cirelli C, Tononi G, Ghilardi MF. Prior Practice Affects Movement-Related Beta Modulation and Quiet Wake Restores It to Baseline. Front Syst Neurosci 2020; 14:61. [PMID: 33013332 PMCID: PMC7462015 DOI: 10.3389/fnsys.2020.00061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/24/2020] [Indexed: 12/30/2022] Open
Abstract
Beta oscillations (13.5−25 Hz) over the sensorimotor areas are characterized by a power decrease during movement execution (event-related desynchronization, ERD) and a sharp rebound after the movement end (event-related synchronization, ERS). In previous studies, we demonstrated that movement-related beta modulation depth (peak ERS-ERD) during reaching increases within 1-h practice. This increase may represent plasticity processes within the sensorimotor network. If so, beta modulation during a reaching test should be affected by previous learning activity that engages the sensorimotor system but not by learning involving other systems. We thus recorded high-density EEG activity in a group of healthy subjects performing three 45-min blocks of motor adaptation task to a visually rotated display (ROT) and in another performing three blocks of visual sequence-learning (VSEQ). Each block of either ROT or VSEQ was followed by a simple reaching test (mov) without rotation. We found that beta modulation depth increased with practice across mov tests. However, such an increase was greater in the group performing ROT over both the left and frontal areas previously involved in ROT. Importantly, beta modulation values returned to baseline values after a 90-min of either nap or quiet wake. These results show that previous practice leaves a trace in movement-related beta modulation and therefore such increases are cumulative. Furthermore, as sleep is not necessary to bring beta modulation values to baseline, they could reflect local increases of neuronal activity and decrease of energy and supplies.
Collapse
Affiliation(s)
- Elisa Tatti
- CUNY School of Medicine, The City University of New York, New York, NY, United States
| | - Serena Ricci
- CUNY School of Medicine, The City University of New York, New York, NY, United States
| | - Aaron B Nelson
- CUNY School of Medicine, The City University of New York, New York, NY, United States
| | - Dave Mathew
- CUNY School of Medicine, The City University of New York, New York, NY, United States
| | - Henry Chen
- CUNY School of Medicine, The City University of New York, New York, NY, United States
| | - Angelo Quartarone
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Messina, Italy
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, United States
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, United States
| | - Maria Felice Ghilardi
- CUNY School of Medicine, The City University of New York, New York, NY, United States
| |
Collapse
|
19
|
Chettouf S, Rueda-Delgado LM, de Vries R, Ritter P, Daffertshofer A. Are unimanual movements bilateral? Neurosci Biobehav Rev 2020; 113:39-50. [DOI: 10.1016/j.neubiorev.2020.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/07/2020] [Accepted: 03/02/2020] [Indexed: 12/31/2022]
|
20
|
Chen W, de Hemptinne C, Miller AM, Leibbrand M, Little SJ, Lim DA, Larson PS, Starr PA. Prefrontal-Subthalamic Hyperdirect Pathway Modulates Movement Inhibition in Humans. Neuron 2020; 106:579-588.e3. [PMID: 32155442 PMCID: PMC7274135 DOI: 10.1016/j.neuron.2020.02.012] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/06/2020] [Accepted: 02/10/2020] [Indexed: 10/24/2022]
Abstract
The ability to dynamically change motor outputs, such as stopping an initiated response, is an important aspect of human behavior. A hyperdirect pathway between the inferior frontal gyrus and subthalamic nucleus is hypothesized to mediate movement inhibition, but there is limited evidence for this in humans. We recorded high spatial and temporal resolution field potentials from both the inferior frontal gyrus and subthalamic nucleus in 21 subjects. Cortical potentials evoked by subthalamic stimulation revealed short latency events indicative of monosynaptic connectivity between the inferior frontal gyrus and ventral subthalamic nucleus. During a stop signal task, stopping-related potentials in the cortex preceded stopping-related activity in the subthalamic nucleus, and synchronization between these task-evoked potentials predicted the stop signal reaction time. Thus, we show that a prefrontal-subthalamic hyperdirect pathway is present in humans and mediates rapid stopping. These findings may inform therapies to treat disorders featuring perturbed movement inhibition.
Collapse
Affiliation(s)
- Witney Chen
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Coralie de Hemptinne
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Andrew M Miller
- School of Medicine, University of Kansas, Kansas City, KS 66160, USA
| | | | - Simon J Little
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Daniel A Lim
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; San Francisco Veterans Affairs Health Care System, San Francisco, CA 94121, USA
| | - Paul S Larson
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; San Francisco Veterans Affairs Health Care System, San Francisco, CA 94121, USA
| | - Philip A Starr
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
21
|
Visani E, Mariotti C, Nanetti L, Mongelli A, Castaldo A, Panzica F, Rossi Sebastiano D, Nigri A, Grisoli M, Franceschetti S, Canafoglia L. Cortical network dysfunction revealed by magnetoencephalography in carriers of spinocerebellar ataxia 1 or 2 mutation. Clin Neurophysiol 2020; 131:1548-1555. [PMID: 32408088 DOI: 10.1016/j.clinph.2020.03.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/25/2020] [Accepted: 03/22/2020] [Indexed: 11/25/2022]
Abstract
OBJECTIVE In patients with spinocerebellar ataxia type 1 or 2 (SCA1 or SCA2) and in their asymptomatic gene-positive relatives (AsyRs) we investigated the event-related desynchronization and synchronisation (ERD/ERS) on magnetoencephalographic signals to assess the changes occurring before manifest ataxia, by comparing the results obtained in AsyRs and in their gene-negative healthy relatives (HRs). METHODS Twenty-four patients (12 SCA1, 12 SCA2), 24 AsyRs (13 SCA1, 11 SCA2) and 17 HRs performed a visually cued Go/No-go task. We evaluated the ERD/ERS in regions of interest corresponding to the frontal, central and parietal cortices. RESULTS In the SCA patients the main findings were a loss of side predominance for alpha and beta ERD and significantly weakened beta ERS. In AsyRs the main finding was a significantly enhanced alpha ERD, namely in those who were approaching the estimated time of symptom onset. CONCLUSIONS In ataxic patients, the loss of ERD lateralisation and the significantly reduction of beta ERS suggest defective bilateral processes that are involved in ending the movement. In AsyRs, enhanced alpha ERD proposes the presence of preclinical marker closely preceding symptom onset. SIGNIFICANCE Movement-related ERD/ERS can detect the defective sensorimotor integration in ataxic patients, and reveals possible compensatory mechanisms in their AsyRs.
Collapse
Affiliation(s)
- Elisa Visani
- Department of Neurophysiopathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Caterina Mariotti
- Department of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Lorenzo Nanetti
- Department of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Alessia Mongelli
- Department of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Anna Castaldo
- Department of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Ferruccio Panzica
- Department of Neurophysiopathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Davide Rossi Sebastiano
- Department of Neurophysiopathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Anna Nigri
- Department of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Marina Grisoli
- Department of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Silvana Franceschetti
- Department of Neurophysiopathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
| | - Laura Canafoglia
- Department of Neurophysiopathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
22
|
Kolasinski J, Dima DC, Mehler DMA, Stephenson A, Valadan S, Kusmia S, Rossiter HE. Spatially and Temporally Distinct Encoding of Muscle and Kinematic Information in Rostral and Caudal Primary Motor Cortex. Cereb Cortex Commun 2020; 1:tgaa009. [PMID: 32864612 PMCID: PMC7446240 DOI: 10.1093/texcom/tgaa009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/02/2022] Open
Abstract
The organizing principle of human motor cortex does not follow an anatomical body map, but rather a distributed representational structure in which motor primitives are combined to produce motor outputs. Electrophysiological recordings in primates and human imaging data suggest that M1 encodes kinematic features of movements, such as joint position and velocity. However, M1 exhibits well-documented sensory responses to cutaneous and proprioceptive stimuli, raising questions regarding the origins of kinematic motor representations: are they relevant in top-down motor control, or are they an epiphenomenon of bottom-up sensory feedback during movement? Here we provide evidence for spatially and temporally distinct encoding of kinematic and muscle information in human M1 during the production of a wide variety of naturalistic hand movements. Using a powerful combination of high-field functional magnetic resonance imaging and magnetoencephalography, a spatial and temporal multivariate representational similarity analysis revealed encoding of kinematic information in more caudal regions of M1, over 200 ms before movement onset. In contrast, patterns of muscle activity were encoded in more rostral motor regions much later after movements began. We provide compelling evidence that top-down control of dexterous movement engages kinematic representations in caudal regions of M1 prior to movement production.
Collapse
Affiliation(s)
- James Kolasinski
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Diana C Dima
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, CF24 4HQ, UK
| | - David M A Mehler
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Alice Stephenson
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Sara Valadan
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Slawomir Kusmia
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Holly E Rossiter
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, CF24 4HQ, UK
| |
Collapse
|
23
|
Fischer P, Lipski WJ, Neumann WJ, Turner RS, Fries P, Brown P, Richardson RM. Movement-related coupling of human subthalamic nucleus spikes to cortical gamma. eLife 2020; 9:51956. [PMID: 32159515 PMCID: PMC7096181 DOI: 10.7554/elife.51956] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 03/11/2020] [Indexed: 11/13/2022] Open
Abstract
Cortico-basal ganglia interactions continuously shape the way we move. Ideas about how this circuit works are based largely on models those consider only firing rate as the mechanism of information transfer. A distinct feature of neural activity accompanying movement, however, is increased motor cortical and basal ganglia gamma synchrony. To investigate the relationship between neuronal firing in the basal ganglia and cortical gamma activity during movement, we analysed human ECoG and subthalamic nucleus (STN) unit activity during hand gripping. We found that fast reaction times were preceded by enhanced STN spike-to-cortical gamma phase coupling, indicating a role in motor preparation. Importantly, increased gamma phase coupling occurred independent of changes in mean STN firing rates, and the relative timing of STN spikes was offset by half a gamma cycle for ipsilateral vs. contralateral movements, indicating that relative spike timing is as relevant as firing rate for understanding cortico-basal ganglia information transfer.
Collapse
Affiliation(s)
- Petra Fischer
- Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Witold J Lipski
- Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Wolf-Julian Neumann
- Department of Neurology, Campus Mitte, Charite - Universitaetsmedizin Berlin, Berlin, Germany
| | - Robert S Turner
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, United States.,Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, United States
| | - Pascal Fries
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany.,Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - Peter Brown
- Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - R Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Boston, United States.,Harvard Medical School, Boston, United States
| |
Collapse
|
24
|
Amo Usanos C, Boquete L, de Santiago L, Barea Navarro R, Cavaliere C. Induced Gamma-Band Activity during Actual and Imaginary Movements: EEG Analysis. SENSORS 2020; 20:s20061545. [PMID: 32168747 PMCID: PMC7146111 DOI: 10.3390/s20061545] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/03/2020] [Accepted: 03/10/2020] [Indexed: 11/16/2022]
Abstract
The purpose of this paper is to record and analyze induced gamma-band activity (GBA) (30-60 Hz) in cerebral motor areas during imaginary movement and to compare it quantitatively with activity recorded in the same areas during actual movement using a simplified electroencephalogram (EEG). Brain activity (basal activity, imaginary motor task and actual motor task) is obtained from 12 healthy volunteer subjects using an EEG (Cz channel). GBA is analyzed using the mean power spectral density (PSD) value. Event-related synchronization (ERS) is calculated from the PSD values of the basal GBA (GBAb), the GBA of the imaginary movement (GBAim) and the GBA of the actual movement (GBAac). The mean GBAim and GBAac values for the right and left hands are significantly higher than the GBAb value (p = 0.007). No significant difference is detected between mean GBA values during the imaginary and actual movement (p = 0.242). The mean ERS values for the imaginary movement (ERSimM (%) = 23.52) and for the actual movement (ERSacM = 27.47) do not present any significant difference (p = 0.117). We demonstrated that ERS could provide a useful way of indirectly checking the function of neuronal motor circuits activated by voluntary movement, both imaginary and actual. These results, as a proof of concept, could be applied to physiology studies, brain-computer interfaces, and diagnosis of cognitive or motor pathologies.
Collapse
|
25
|
Sengupta R, Yaruss JS, Loucks TM, Gracco VL, Pelczarski K, Nasir SM. Theta Modulated Neural Phase Coherence Facilitates Speech Fluency in Adults Who Stutter. Front Hum Neurosci 2019; 13:394. [PMID: 31798431 PMCID: PMC6878001 DOI: 10.3389/fnhum.2019.00394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/22/2019] [Indexed: 12/03/2022] Open
Abstract
Adults who stutter (AWS) display altered patterns of neural phase coherence within the speech motor system preceding disfluencies. These altered patterns may distinguish fluent speech episodes from disfluent ones. Phase coherence is relevant to the study of stuttering because it reflects neural communication within brain networks. In this follow-up study, the oscillatory cortical dynamics preceding fluent speech in AWS and adults who do not stutter (AWNS) were examined during a single-word delayed reading task using electroencephalographic (EEG) techniques. Compared to AWNS, fluent speech preparation in AWS was characterized by a decrease in theta-gamma phase coherence and a corresponding increase in theta-beta coherence level. Higher spectral powers in the beta and gamma bands were also observed preceding fluent utterances by AWS. Overall, there was altered neural communication during speech planning in AWS that provides novel evidence for atypical allocation of feedforward control by AWS even before fluent utterances.
Collapse
Affiliation(s)
- Ranit Sengupta
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| | - J Scott Yaruss
- Department of Communicative Sciences and Disorders, Michigan State University, East Lansing, MI, United States
| | - Torrey M Loucks
- Department of Communication Sciences and Disorders, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada.,Institute for Stuttering Treatment and Research, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| | | | - Kristin Pelczarski
- School of Family Studies and Human Services, Kansas State University, Manhattan, KS, United States
| | - Sazzad M Nasir
- Haskins Laboratories, New Haven, CT, United States.,Indiana Academy, Ball State University, Muncie, IN, United States
| |
Collapse
|
26
|
Wilkins KB, Yao J. Coordination of multiple joints increases bilateral connectivity with ipsilateral sensorimotor cortices. Neuroimage 2019; 207:116344. [PMID: 31730924 PMCID: PMC7192312 DOI: 10.1016/j.neuroimage.2019.116344] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/09/2019] [Accepted: 11/07/2019] [Indexed: 12/29/2022] Open
Abstract
Although most activities of daily life require simultaneous coordination of both proximal and distal joints, motor preparation during such movements has not been well studied. Previous results for motor preparation have focused on hand/finger movements. For simple hand/finger movements, results have found that such movements typically evoke activity primarily in the contralateral motor cortices. However, increasing the complexity of the finger movements, such as during a distal sequential finger-pressing task, leads to additional recruitment of ipsilateral resources. It has been suggested that this involvement of the ipsilateral hemisphere is critical for temporal coordination of distal joints. The goal of the current study was to examine whether increasing simultaneous coordination of multiple joints (both proximal and distal) leads to a similar increase in coupling with ipsilateral sensorimotor cortices during motor preparation compared to a simple distal movement such as hand opening. To test this possibility, 12 healthy individuals participated in a high-density EEG experiment in which they performed either hand opening or simultaneous hand opening while lifting at the shoulder on a robotic device. We quantified within- and cross-frequency cortical coupling across the sensorimotor cortex for the two tasks using dynamic causal modeling. Both hand opening and simultaneous hand opening while lifting at the shoulder elicited coupling from secondary motor areas to primary motor cortex within the contralateral hemisphere exclusively in the beta band, as well as from ipsilateral primary motor cortex. However, increasing the task complexity by combining hand opening while lifting at the shoulder also led to an increase in cross-frequency coupling within the ipsilateral hemisphere including theta, beta, and gamma frequencies, as well as a change in the coupling frequency of the interhemispheric coupling between the primary motor and premotor cortices. These findings demonstrate that increasing the demand of joint coordination between proximal and distal joints leads to increases in communication with the ipsilateral hemisphere as previously observed in distal sequential finger tasks.
Collapse
Affiliation(s)
- Kevin B Wilkins
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 N Michigan Ave, Suite 1100, Chicago, IL, 60611, USA; Northwestern University Interdepartmental Neuroscience, Northwestern University, 320 E. Superior St, Chicago, IL, 60611, USA.
| | - Jun Yao
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 N Michigan Ave, Suite 1100, Chicago, IL, 60611, USA; Northwestern University Interdepartmental Neuroscience, Northwestern University, 320 E. Superior St, Chicago, IL, 60611, USA; Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.
| |
Collapse
|
27
|
Neshige S, Kobayashi K, Matsuhashi M, Togo M, Sakamoto M, Shimotake A, Hitomi T, Kikuchi T, Yoshida K, Kunieda T, Matsumoto R, Maruyama H, Takahashi R, Miyamoto S, Ikeda A. A score to map the lateral nonprimary motor area: Multispectrum intrinsic brain activity versus cortical stimulation. Epilepsia 2019; 60:2294-2305. [PMID: 31612479 DOI: 10.1111/epi.16367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 09/13/2019] [Accepted: 09/15/2019] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Multispectrum electrocorticographic components are critical for mapping the nonprimary motor area (NPMA). The objective of this study was to derive and validate a reliable scoring system for electrocorticography-based NPMA mapping (NPMA score) to replace electrical cortical stimulation (ECS) during brain surgery. METHODS We analyzed 14 consecutive epilepsy patients with subdural electrodes implanted in the frontal lobe at Kyoto University Hospital. The NPMA score was retrospectively derived from multivariate analysis in the derivation group (patients = 7, electrodes = 713, during 2010-2013) and validated in the validation group (patients = 7, electrodes = 772, during 2014-2017). We assessed the accuracy and reliability of the score relative to ECS in determining the NPMA and predicting postoperative functional outcomes. RESULTS Multivariate analysis in the derivation group led to an 8-point score for predicting ECS-based NPMA (1 point for anatomical localization of the electrode and 1 or 2 points for movement-related electrocorticographic components regardless of somatotopy in very slow cortical potential shifts [<0.5 Hz], 40-80-Hz band power increase, and 8-24-Hz band power decrease), which was validated in the validation group. The area under the receiver operating characteristic curve (AUC) was 0.89 in the derivation group. Good prediction (specificity = 94%, sensitivity = 100%) and discrimination (AUC = 0.87) were reproduced in the validation group. Overall, higher NPMA scores identified 2 patients with postoperative deficits after frontal lobe resection. SIGNIFICANCE The NPMA score is reliable for NPMA mapping, potentially replacing ECS. It is a potential prognostic marker for postoperative functional deficits.
Collapse
Affiliation(s)
- Shuichiro Neshige
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Katsuya Kobayashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masao Matsuhashi
- Department of Epilepsy, Movement Disorders, and Physiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masaya Togo
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Mitsuhiro Sakamoto
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akihiro Shimotake
- Department of Epilepsy, Movement Disorders, and Physiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takefumi Hitomi
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takayuki Kikuchi
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kazumichi Yoshida
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takeharu Kunieda
- Department of Neurosurgery, Ehime University Graduate School of Medicine, Toon, Japan
| | - Riki Matsumoto
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Neurology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hirofumi Maruyama
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders, and Physiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
28
|
Saxena S, Sarma SV, Patel SR, Santaniello S, Eskandar EN, Gale JT. Modulations in Oscillatory Activity of Globus Pallidus Internus Neurons During a Directed Hand Movement Task-A Primary Mechanism for Motor Planning. Front Syst Neurosci 2019; 13:15. [PMID: 31133824 PMCID: PMC6524693 DOI: 10.3389/fnsys.2019.00015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 04/02/2019] [Indexed: 11/13/2022] Open
Abstract
Globus pallidus internus (GPi) neurons in the basal ganglia are traditionally thought to play a significant role in the promotion and suppression of movement via a change in firing rates. Here, we hypothesize that a primary mechanism of movement control by GPi neurons is through specific modulations in their oscillatory patterns. We analyzed neuronal spiking activity of 83 GPi neurons recorded from two healthy nonhuman primates executing a radial center-out motor task. We found that, in directionally tuned neurons, the power in the gamma band is significantly (p < 0.05) greater than that in the beta band (a "cross-over" effect), during the planning stages of movements in their preferred direction. This cross-over effect is not observed in the non-directionally tuned neurons. These data suggest that, during movement planning, information encoding by GPi neurons may be governed by a sudden emergence and suppression of oscillatory activities, rather than simply by a change in average firing rates.
Collapse
Affiliation(s)
- Shreya Saxena
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| | - Sridevi V Sarma
- Neuromedical Control Systems Laboratory, Department of Biomedical Engineering, Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Shaun R Patel
- Genetics and Aging Research Unit, Department of Neurology, McCance Center for Brain Health, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Sabato Santaniello
- Biomedical Engineering Department, CT Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, United States
| | - Emad N Eskandar
- Leo M. Davidoff Department of Neurological Surgery, Albert Einstein College of Medicine, The Bronx, NY, United States
| | - John T Gale
- Department of Neurosurgery, Emory University, Atlanta, GA, United States
| |
Collapse
|
29
|
Visani E, Mariotti C, Nanetti L, Mongelli A, Castaldo A, Panzica F, Franceschetti S, Canafoglia L. Different patterns of movement-related cortical oscillations in patients with myoclonus and in patients with spinocerebellar ataxia. Clin Neurophysiol 2019; 130:714-721. [PMID: 30889419 DOI: 10.1016/j.clinph.2019.01.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 01/30/2023]
Abstract
OBJECTIVE To assess whether different patterns of EEG rhythms during a Go/No-go motor task characterize patients with cortical myoclonus (EPM1) or with spinocerebellar ataxia (SCA). METHODS We analyzed event-related desynchronization (ERD) and synchronization (ERS) in the alpha and beta-bands during visually cued Go/No-go task in 22 patients (11 with EPM1, 11 with SCA) and 11 controls. RESULTS In the Go condition, the only significant difference was a reduced contralateral beta-ERS in the EPM1 patients compared with controls; in the No-go condition, the EPM1 patients showed prolonged alpha-ERD in comparison with both controls and SCA patients, and reduced or delayed alpha- and beta-ERS in comparison with controls. In both conditions, the SCA patients, unlike EPM1 patients and controls, showed minimal or absent lateralization of alpha- and beta-ERD. CONCLUSIONS EPM1 patients showed abnormal ERD/ERS dynamics, whereas SCA patients mainly showed defective ERD lateralization. SIGNIFICANCE A different behavior of ERS/ERD distinguished the two patient groups: the pattern observed in EPM1 suggests a prominent defect of inhibition occurring in motor cortex contralateral to activated segment, whereas the pattern observed in SCA suggested a defective lateralization attributable to the damage of cerebello-cortical network, which is instead marginal in patients with cortical myoclonus.
Collapse
Affiliation(s)
- E Visani
- Department of Neurophysiopathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - C Mariotti
- Department of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - L Nanetti
- Department of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - A Mongelli
- Department of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - A Castaldo
- Department of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - F Panzica
- Department of Neurophysiopathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - S Franceschetti
- Department of Neurophysiopathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
| | - L Canafoglia
- Department of Neurophysiopathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
30
|
Seo NJ, Lakshminarayanan K, Lauer AW, Ramakrishnan V, Schmit BD, Hanlon CA, George MS, Bonilha L, Downey RJ, DeVries W, Nagy T. Use of imperceptible wrist vibration to modulate sensorimotor cortical activity. Exp Brain Res 2019; 237:805-816. [PMID: 30607471 PMCID: PMC6613561 DOI: 10.1007/s00221-018-05465-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 12/21/2018] [Indexed: 11/24/2022]
Abstract
Peripheral sensory stimulation has been used as a method to stimulate the sensorimotor cortex, with applications in neurorehabilitation. To improve delivery modality and usability, a new stimulation method has been developed in which imperceptible random-frequency vibration is applied to the wrist concurrently during hand activity. The objective of this study was to investigate effects of this new sensory stimulation on the sensorimotor cortex. Healthy adults were studied. In a transcranial magnetic stimulation (TMS) study, resting motor threshold, short-interval intracortical inhibition, and intracortical facilitation for the abductor pollicis brevis muscle were compared between vibration on vs. off, while subjects were at rest. In an electroencephalogram (EEG) study, alpha and beta power during rest and event-related desynchronization (ERD) for hand grip were compared between vibration on vs. off. Results showed that vibration decreased EEG power and decreased TMS short-interval intracortical inhibition (i.e., disinhibition) compared with no vibration at rest. Grip-related ERD was also greater during vibration, compared to no vibration. In conclusion, subthreshold random-frequency wrist vibration affected the release of intracortical inhibition and both resting and grip-related sensorimotor cortical activity. Such effects may have implications in rehabilitation.
Collapse
Affiliation(s)
- Na Jin Seo
- Department of Health Professions, Medical University of South Carolina, 151B Rutledge Ave., Charleston, SC, 29425, USA.
- Department of Health Sciences and Research, Medical University of South Carolina, Charleston, SC, 29425, USA.
| | - Kishor Lakshminarayanan
- Department of Industrial and Manufacturing Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI, 53201, USA
| | - Abigail W Lauer
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Viswanathan Ramakrishnan
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Brian D Schmit
- Department of Biomedical Engineering, Marquette University, Milwaukee, WI, 53233, USA
| | - Colleen A Hanlon
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Mark S George
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Leonardo Bonilha
- Department of Neurology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Ryan J Downey
- Department of Health Professions, Medical University of South Carolina, 151B Rutledge Ave., Charleston, SC, 29425, USA
| | - Will DeVries
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Tibor Nagy
- Department of Chemistry, Appalachian State University, Boone, NC, 28608, USA
| |
Collapse
|
31
|
Subasi A, Ahmed A, Aličković E, Rashik Hassan A. Effect of photic stimulation for migraine detection using random forest and discrete wavelet transform. Biomed Signal Process Control 2019. [DOI: 10.1016/j.bspc.2018.12.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Neshige S, Kobayashi K, Matsuhashi M, Hitomi T, Shimotake A, Kikuchi T, Yoshida K, Kunieda T, Matsumoto R, Miyamoto S, Takahashi R, Maruyama H, Ikeda A. A rational, multispectral mapping algorithm for primary motor cortex: A primary step before cortical stimulation. Epilepsia 2019; 60:547-559. [PMID: 30790267 DOI: 10.1111/epi.14669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/20/2019] [Accepted: 01/21/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE For future artificial intelligence-based brain mapping, development of a rational and safe scoring system for a brain motor mapping algorithm using electrocorticography (ECoG score), which contains various spectral, purely intrinsic brain activities, is necessary for either before or in the absence of electrical cortical stimulation (ECS). METHODS We evaluated 1114 electrodes of 10 consecutive focal epilepsy patients who underwent subdural electrode implantation before epilepsy surgery at Kyoto University Hospital during 2011-2017. Data from ECoG-based mapping (bandpass filter of 0.016-300/600 Hz) to define the primary motor area (M1) localization were used to create an ECoG score (range = 0-4) by assigning 1 point each for the occurrence of ECoG components: very slow movement-related cortical potentials (<0.5-1.0 Hz), event-related synchronization (76-100 Hz or 100-200 Hz), and event-related desynchronization (8-12 Hz or 12-24 Hz). The ECoG score was assessed by calculating the sensitivity, specificity, and cutoff values of the score for localization concordance with M1 defined using only ECS as a reference. RESULTS With an area under the receiver operating characteristic curve (AUC) of 0.76, cutoffs of scores of 4 and 1 showed high specificity (94%) and sensitivity (98%) in concordance with ECS-based mapping, respectively. The ECoG score for mapping M1 of the upper limb achieved greater accuracy (AUC = 0.85) compared to that of the face (AUC = 0.64). SIGNIFICANCE The ECoG score proposed in the present study is rational, simple, and useful to define M1, and it is spatially concordant with ECS. Although ECS is still widely employed for presurgical examination, our proposed application of the ECoG score may be suitable for future brain M1 mapping, and possibly beyond M1 mapping, independently of ECS.
Collapse
Affiliation(s)
- Shuichiro Neshige
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Katsuya Kobayashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masao Matsuhashi
- Department of Epilepsy, Movement Disorders, and Physiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takefumi Hitomi
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akihiro Shimotake
- Department of Epilepsy, Movement Disorders, and Physiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takayuki Kikuchi
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kazumichi Yoshida
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takeharu Kunieda
- Department of Neurosurgery, Ehime University Graduate School of Medicine, Noon, Japan
| | - Riki Matsumoto
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hirofumi Maruyama
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders, and Physiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
33
|
Solis-Escalante T, van der Cruijsen J, de Kam D, van Kordelaar J, Weerdesteyn V, Schouten AC. Cortical dynamics during preparation and execution of reactive balance responses with distinct postural demands. Neuroimage 2018; 188:557-571. [PMID: 30590120 DOI: 10.1016/j.neuroimage.2018.12.045] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/07/2018] [Accepted: 12/21/2018] [Indexed: 12/17/2022] Open
Abstract
The contributions of the cerebral cortex to human balance control are clearly demonstrated by the profound impact of cortical lesions on the ability to maintain standing balance. The cerebral cortex is thought to regulate subcortical postural centers to maintain upright balance and posture under varying environmental conditions and task demands. However, the cortical mechanisms that support standing balance remain elusive. Here, we present an EEG-based analysis of cortical oscillatory dynamics during the preparation and execution of balance responses with distinct postural demands. In our experiment, participants responded to backward movements of the support surface either with one forward step or by keeping their feet in place. To challenge the postural control system, we applied participant-specific high accelerations of the support surface such that the postural demand was low for stepping responses and high for feet-in-place responses. We expected that postural demand modulated the power of intrinsic cortical oscillations. Independent component analysis and time-frequency domain statistics revealed stronger suppression of alpha (9-13 Hz) and low-gamma (31-34 Hz) rhythms in the supplementary motor area (SMA) when preparing for feet-in-place responses (i.e., high postural demand). Irrespective of the response condition, support-surface movements elicited broadband (3-17 Hz) power increase in the SMA and enhancement of the theta (3-7 Hz) rhythm in the anterior prefrontal cortex (PFC), anterior cingulate cortex (ACC), and bilateral sensorimotor cortices (M1/S1). Although the execution of reactive responses resulted in largely similar cortical dynamics, comparison between the bilateral M1/S1 showed that stepping responses corresponded with stronger suppression of the beta (13-17 Hz) rhythm in the M1/S1 contralateral to the support leg. Comparison between response conditions showed that feet-in-place responses corresponded with stronger enhancement of the theta (3-7 Hz) rhythm in the PFC. Our results provide novel insights into the cortical dynamics of SMA, PFC, and M1/S1 during the control of human balance.
Collapse
Affiliation(s)
- Teodoro Solis-Escalante
- Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands; Department of Rehabilitation, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Joris van der Cruijsen
- Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands; Department of Rehabilitation, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Rehabilitation Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Digna de Kam
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joost van Kordelaar
- Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands; Department of Biomechanical Engineering, Faculty of Engineering Technology, Technical Medical Centre, University of Twente, Enschede, the Netherlands
| | - Vivian Weerdesteyn
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; Sint Maartenskliniek Research, Nijmegen, the Netherlands
| | - Alfred C Schouten
- Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands; Department of Biomechanical Engineering, Faculty of Engineering Technology, Technical Medical Centre, University of Twente, Enschede, the Netherlands
| |
Collapse
|
34
|
Hsu HT, Lee WK, Shyu KK, Yeh TK, Chang CY, Lee PL. Analyses of EEG Oscillatory Activities during Slow and Fast Repetitive Movements using Holo-Hilbert Spectral Analysis. IEEE Trans Neural Syst Rehabil Eng 2018; 26:1659-1668. [PMID: 30010582 DOI: 10.1109/tnsre.2018.2855804] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Neural oscillatory activities existing in multiple fre-quency bands usually represent different levels of neurophysiolog-ical meanings, from micro-scale to macro-scale organizations. In this study, we adopted Holo-Hilbert spectral analysis (HHSA) to study the amplitude-modulated (AM) and frequency-modulated (FM) components in sensorimotor Mu rhythm, induced by slow- and fast-rate repetitive movements. The HHSA-based approach is a two-layer empirical mode decomposition (EMD) architecture, which firstly decomposes the EEG signal into a series of frequency-modulated intrinsic mode functions (IMF) and then decomposes each frequency-modulated IMF into a set of amplitude-modulated IMFs. With the HHSA, the FM and AM components were incor-porated with their instantaneous power to achieve full-informa-tional spectral analysis. We observed that the instantaneous power induced by slow-rate movements was significantly higher than that induced by fast-rate movements (p < 0.01, Wilcoxon signed rank test). The alpha-band AM frequencies induced by slow-rate movements were higher than those induced by fast-rate move-ments, while no statistical difference was found in beta-band AM frequencies. In addition, to study the functional coupling between the primary sensorimotor area and other brain regions, spectral coherence was applied and statistical difference was found in frontal area in slow-rate versus fast-rate movements. The discrep-ancy between slow- and fast-rate movements might be owing to the change of motor functional modes from default mode network (DMN) to automatic timing with the increase of movement rates. The use of HHSA for oscillatory activity analysis can be an effi-cient tool to provide informative interaction among different fre-quency bands.
Collapse
|
35
|
Neshige S, Matsuhashi M, Kobayashi K, Sakurai T, Shimotake A, Hitomi T, Kikuchi T, Yoshida K, Kunieda T, Matsumoto R, Takahashi R, Miyamoto S, Maruyama H, Matsumoto M, Ikeda A. Multi-component intrinsic brain activities as a safe alternative to cortical stimulation for sensori-motor mapping in neurosurgery. Clin Neurophysiol 2018; 129:2038-2048. [PMID: 29935961 DOI: 10.1016/j.clinph.2018.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/02/2018] [Accepted: 06/08/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To assess the feasibility of multi-component electrocorticography (ECoG)-based mapping using "wide-spectrum, intrinsic-brain activities" for identifying the primary sensori-motor area (S1-M1). METHODS We evaluated 14 epilepsy patients with 1514 subdural electrodes implantation covering the perirolandic cortices at Kyoto University Hospital between 2011 and 2016. We performed multi-component, ECoG-based mapping (band-pass filter, 0.016-300/600 Hz) involving combined analyses of the single components: movement-related cortical potential (<0.5-1 Hz), event-related synchronization (76-200 Hz), and event-related de-synchronization (8-24 Hz) to identify the S1-M1. The feasibility of multi-component mapping was assessed through comparisons with single-component mapping and electrical cortical stimulation (ECS). RESULTS Among 54 functional areas evaluation, ECoG-based maps showed significantly higher rate of localization concordances with ECS maps when the three single-component maps were consistent than when those were inconsistent with each other (p < 0.001 in motor, and p = 0.02 in sensory mappings). Multi-component mapping revealed high sensitivity (89-90%) and specificity (94-97%) as compared with ECS. CONCLUSIONS Wide-spectrum, multi-component ECoG-based mapping is feasible, having high sensitivity/specificity relative to ECS. SIGNIFICANCE This safe (non-stimulus) mapping strategy, alternative to ECS, would allow clinicians to rule in/out the possibility of brain function prior to resection surgery.
Collapse
Affiliation(s)
- Shuichiro Neshige
- Department of Neurology, Kyoto University Graduate School of Medicine, Japan; Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Japan
| | - Masao Matsuhashi
- Human Brain Research Center, Kyoto University Graduate School of Medicine, Japan
| | - Katsuya Kobayashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Japan
| | - Takeyo Sakurai
- Department of Neurology, Kyoto University Graduate School of Medicine, Japan
| | - Akihiro Shimotake
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, Japan
| | - Takefumi Hitomi
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Japan
| | - Takayuki Kikuchi
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Japan
| | - Kazumichi Yoshida
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Japan
| | - Takeharu Kunieda
- Department of Neurosurgery, Ehime University Graduate School of Medicine, Japan
| | - Riki Matsumoto
- Department of Neurology, Kyoto University Graduate School of Medicine, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Japan
| | - Hirofumi Maruyama
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Japan
| | - Masayasu Matsumoto
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Japan
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, Japan.
| |
Collapse
|
36
|
Yao J, Dewald JPA. The Increase in Overlap of Cortical Activity Preceding Static Elbow/Shoulder Motor Tasks Is Associated With Limb Synergies in Severe Stroke. Neurorehabil Neural Repair 2018; 32:624-634. [PMID: 29890871 DOI: 10.1177/1545968318781028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The loss of independent joint control, clinically referred to as limb synergies, is prevalent in the paretic upper limb of individuals with chronic hemiparetic stroke. To understand the underlying neural mechanisms, we previously reported that an increased overlap of cortical representations of shoulder/elbow could contribute to the abnormal poststroke synergies. However, these previous results were limited to a fixed time window just before the onset of motor tasks. Questions such as (1) how this overlap develops during motor preparation and (2) whether such development is also linked to upper limb synergies, remain unclear. To answer these questions, we investigated cortical overlap during motor preparation of isometric shoulder and elbow torque generation tasks in healthy individuals (n = 8), and individuals with moderate to severe chronic hemiparesis following a subcortical stroke (n = 12). We found a significant group difference in how the cortical overlap developed. In the healthy control and moderately impaired stroke groups, cortical overlap between shoulder and elbow motor tasks decreased during the motor preparation; however, this overlap increased in individuals with severe stroke. Furthermore, the rate of cortical overlap decrease/increase was linked to the upper limb Fugl-Meyer scores and limb synergies. These results demonstrate, for the first time, that the increase in overlap of the cortical activity during motor preparation is associated with the expression of synergies in the paretic upper limb of severely impaired poststroke individuals.
Collapse
Affiliation(s)
- Jun Yao
- 1 Northwestern University, Chicago, IL, USA
| | | |
Collapse
|
37
|
Tamás G, Chirumamilla VC, Anwar AR, Raethjen J, Deuschl G, Groppa S, Muthuraman M. Primary Sensorimotor Cortex Drives the Common Cortical Network for Gamma Synchronization in Voluntary Hand Movements. Front Hum Neurosci 2018; 12:130. [PMID: 29681807 PMCID: PMC5897748 DOI: 10.3389/fnhum.2018.00130] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/20/2018] [Indexed: 11/23/2022] Open
Abstract
Background: Gamma synchronization (GS) may promote the processing between functionally related cortico-subcortical neural populations. Our aim was to identify the sources of GS and to analyze the direction of information flow in cerebral networks at the beginning of phasic movements, and during medium-strength isometric contraction of the hand. Methods: We measured 64-channel electroencephalography in 11 healthy volunteers (age: 25 ± 8 years; four females); surface electromyography detected the movements of the dominant hand. In Task 1, subjects kept a constant medium-strength contraction of the first dorsal interosseus muscle, and performed a superimposed repetitive voluntary self-paced brisk squeeze of an object. In Task 2, brisk, and in Task 3, constant contractions were performed. Time-frequency analysis of the EEG signal was performed with the multitaper method. GS sources were identified in five frequency bands (30–49, 51–75, 76–99, 101–125, and 126–149 Hz) with beamformer inverse solution dynamic imaging of coherent sources. The direction of information flow was estimated by renormalized partial directed coherence for each frequency band. The data-driven surrogate test, and the time reversal technique were performed to identify significant connections. Results: In all tasks, we depicted the first three common sources for the studied frequency bands that were as follows: contralateral primary sensorimotor cortex (S1M1), dorsolateral prefrontal cortex (dPFC) and supplementary motor cortex (SMA). GS was detected in narrower low- (∼30–60 Hz) and high-frequency bands (>51–60 Hz) in the contralateral thalamus and ipsilateral cerebellum in all three tasks. The contralateral posterior parietal cortex was activated only in Task 1. In every task, S1M1 had efferent information flow to the SMA and the dPFC while dPFC had no detected afferent connections to the network in the gamma range. Cortical-subcortical information flow captured by the GS was dynamically variable in the narrower frequency bands for the studied movements. Conclusion: A distinct cortical network was identified for GS in voluntary hand movement tasks. Our study revealed that S1M1 modulated the activity of interconnected cortical areas through GS, while subcortical structures modulated the motor network dynamically, and specifically for the studied movement program.
Collapse
Affiliation(s)
- Gertrúd Tamás
- Department of Neurology, Semmelweis University, Budapest, Hungary
| | - Venkata C Chirumamilla
- Section of Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Abdul R Anwar
- Department of Neurology, Christian-Albrechts-University, Kiel, Germany.,Biomedical Engineering Centre, University of Engineering and Technology, Lahore, Pakistan
| | - Jan Raethjen
- Department of Neurology, Christian-Albrechts-University, Kiel, Germany
| | - Günther Deuschl
- Department of Neurology, Christian-Albrechts-University, Kiel, Germany
| | - Sergiu Groppa
- Section of Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Muthuraman Muthuraman
- Section of Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
38
|
Moore BD, Aron AR, Tandon N. Closed-loop intracranial stimulation alters movement timing in humans. Brain Stimul 2018; 11:886-895. [PMID: 29598890 DOI: 10.1016/j.brs.2018.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 02/20/2018] [Accepted: 03/06/2018] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND A prime objective driving the recent development of human neural prosthetics is to stimulate neural circuits in a manner time-locked to ongoing brain activity. The human supplementary motor area (SMA) is a particularly useful target for this objective because it displays characteristic neural activity just prior to voluntary movement. OBJECTIVE Here, we tested a method that detected activity in the human SMA related to impending movement and then delivered cortical stimulation with intracranial electrodes to influence the timing of movement. METHODS We conducted experiments in nine patients with electrodes implanted for epilepsy localization: five patients with SMA electrodes and four control patients with electrodes outside the SMA. In the first experiment, electrocorticographic (ECoG) recordings were used to localize the electrode of interest during a task involving bimanual finger movements. In the second experiment, a real-time sense-and-stimulate (SAS) system was implemented that delivered an electrical stimulus when pre-movement gamma power exceeded a threshold. RESULTS Stimulation based on real-time detection of this supra-threshold activity resulted in significant slowing of motor behavior in all of the cases where stimulation was carried out in the SMA patients but in none of the patients where stimulation was performed at the control site. CONCLUSIONS The neurophysiological correlates of impending movement can be used to trigger a closed loop stimulation device and influence ongoing motor behavior in a manner imperceptible to the subject. This is the first report of a human closed loop system designed to alter movement using direct cortical recordings and direct stimulation.
Collapse
Affiliation(s)
- Bartlett D Moore
- Vivian L Smith Department of Neurosurgery, McGovern Medical School, Houston, TX, 77030, USA
| | - Adam R Aron
- Department of Psychology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Nitin Tandon
- Vivian L Smith Department of Neurosurgery, McGovern Medical School, Houston, TX, 77030, USA; Mischer Neurosciences Institute, Memorial Hermann Hospital, Texas Medical Center, Houston, TX, 77030, USA.
| |
Collapse
|
39
|
Gompf F, Pflug A, Laufs H, Kell CA. Non-linear Relationship between BOLD Activation and Amplitude of Beta Oscillations in the Supplementary Motor Area during Rhythmic Finger Tapping and Internal Timing. Front Hum Neurosci 2017; 11:582. [PMID: 29249950 PMCID: PMC5714933 DOI: 10.3389/fnhum.2017.00582] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/17/2017] [Indexed: 11/13/2022] Open
Abstract
Functional imaging studies using BOLD contrasts have consistently reported activation of the supplementary motor area (SMA) both during motor and internal timing tasks. Opposing findings, however, have been shown for the modulation of beta oscillations in the SMA. While movement suppresses beta oscillations in the SMA, motor and non-motor tasks that rely on internal timing increase the amplitude of beta oscillations in the SMA. These independent observations suggest that the relationship between beta oscillations and BOLD activation is more complex than previously thought. Here we set out to investigate this rapport by examining beta oscillations in the SMA during movement with varying degrees of internal timing demands. In a simultaneous EEG-fMRI experiment, 20 healthy right-handed subjects performed an auditory-paced finger-tapping task. Internal timing was operationalized by including conditions with taps on every fourth auditory beat, which necessitates generation of a slow internal rhythm, while tapping to every auditory beat reflected simple auditory-motor synchronization. In the SMA, BOLD activity increased and power in both the low and the high beta band decreased expectedly during each condition compared to baseline. Internal timing was associated with a reduced desynchronization of low beta oscillations compared to conditions without internal timing demands. In parallel with this relative beta power increase, internal timing activated the SMA more strongly in terms of BOLD. This documents a task-dependent non-linear relationship between BOLD and beta-oscillations in the SMA. We discuss different roles of beta synchronization and desynchronization in active processing within the same cortical region.
Collapse
Affiliation(s)
- Florian Gompf
- Cognitive Neuroscience Group, Department of Neurology, Brain Imaging Center, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Anja Pflug
- Cognitive Neuroscience Group, Department of Neurology, Brain Imaging Center, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Helmut Laufs
- Cognitive Neuroscience Group, Department of Neurology, Brain Imaging Center, Goethe University Frankfurt, Frankfurt am Main, Germany.,Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Christian-Albrechts- Universität zu Kiel, Kiel, Germany
| | - Christian A Kell
- Cognitive Neuroscience Group, Department of Neurology, Brain Imaging Center, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
40
|
Heinrichs-Graham E, Kurz MJ, Gehringer JE, Wilson TW. The functional role of post-movement beta oscillations in motor termination. Brain Struct Funct 2017; 222:3075-3086. [PMID: 28337597 DOI: 10.1007/s00429-017-1387-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 02/09/2017] [Indexed: 11/28/2022]
Abstract
Shortly after movement termination, there is a strong increase or resynchronization of the beta rhythm (15-30 Hz) across the sensorimotor network of humans, known as the post-movement beta rebound (PMBR). This response has been associated with active inhibition of the motor network following the completion of a movement, sensory afferentation of the sensorimotor cortices, and other functions. However, studies that have directly probed the role of the PMBR in movement execution have reported mixed results, possibly due to differences in the amount of total motor output and/or movement complexity. Herein, we used magnetoencephalography during an isometric-force control task to examine whether alterations in the timing of motor termination demands modulate the PMBR, independent of differences in the motor output itself. Briefly, we manipulated the amount of time between the cue to initiate the force and the cue to terminate the force, such that participants were either forced to terminate quickly or slowly. We also performed a control experiment to test for temporal predictability effects. Our results indicated that the PMBR was stronger immediately following movement termination in the prefrontal cortices, supplementary motor area, left postcentral gyrus, paracentral lobule, and parietal cortex when participants were forced to terminate more quickly. These results were not attributable to the temporal predictability of each condition. These findings support the notion that the PMBR response at least partially serves motor inhibition, independent of the parameters within the motor output itself, and that particular nodes of the motor network may be differentially modulated by motor termination.
Collapse
Affiliation(s)
- Elizabeth Heinrichs-Graham
- Center for Magnetoencephalography, University of Nebraska Medical Center (UNMC), 988422 Nebraska Medical Center, Omaha, NE, 68198-8422, USA.,Department of Neurological Sciences, UNMC, Omaha, NE, USA
| | - Max J Kurz
- Center for Magnetoencephalography, University of Nebraska Medical Center (UNMC), 988422 Nebraska Medical Center, Omaha, NE, 68198-8422, USA.,Department of Physical Therapy, Munroe-Meyer Institute, UNMC, Omaha, NE, USA
| | - James E Gehringer
- Center for Magnetoencephalography, University of Nebraska Medical Center (UNMC), 988422 Nebraska Medical Center, Omaha, NE, 68198-8422, USA.,Department of Physical Therapy, Munroe-Meyer Institute, UNMC, Omaha, NE, USA
| | - Tony W Wilson
- Center for Magnetoencephalography, University of Nebraska Medical Center (UNMC), 988422 Nebraska Medical Center, Omaha, NE, 68198-8422, USA. .,Department of Neurological Sciences, UNMC, Omaha, NE, USA. .,Department of Pharmacology and Experimental Neuroscience, UNMC, Omaha, NE, USA.
| |
Collapse
|
41
|
Experience-dependent modulation of alpha and beta during action observation and motor imagery. BMC Neurosci 2017; 18:28. [PMID: 28264664 PMCID: PMC5340035 DOI: 10.1186/s12868-017-0349-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/01/2017] [Indexed: 01/18/2023] Open
Abstract
Background EEG studies investigating the neural networks that facilitate action observation (AO) and kinaesthetic motor imagery (KMI) have shown reduced, or desynchronized, power in the alpha (8–12 Hz) and beta (13–30 Hz) frequency bands relative to rest, reflecting efficient activation of task-relevant areas. Functional modulation of these networks through expertise in dance has been established using fMRI, with greater activation among experts during AO. While there is evidence for experience-dependent plasticity of alpha power during AO of dance, the influence of familiarity on beta power during AO, and alpha and beta activity during KMI, remain unclear. The purpose of the present study was to measure the impact of familiarity on confidence ratings and EEG activity during (1) AO of a brief ballet sequence, (2) KMI of this same sequence, and (3) KMI of non-dance movements among ballet dancers, dancers from other genres, and non-dancers. Results Ballet dancers highly familiar with the genre of the experimental stimulus demonstrated higher individual alpha peak frequency (iAPF), greater alpha desynchronization, and greater task-related beta power during AO, as well as faster iAPF during KMI of non-dance movements. While no between-group differences in alpha or beta power were observed during KMI of dance or non-dance movements, all participants showed significant desynchronization relative to baseline, and further desynchronization during dance KMI relative to non-dance KMI indicative of greater cognitive load. Conclusions These findings confirm and extend evidence for experience-dependent plasticity of alpha and beta activity during AO of dance and KMI. We also provide novel evidence for modulation of iAPF that is faster when tuned to the specific motor repertoire of the observer. By considering the multiple functional roles of these frequency bands during the same task (AO), we have disentangled the compounded contribution of familiarity and expertise to alpha desynchronization for mediating task engagement among familiar ballet dancers and reflecting task difficulty among unfamiliar non-dance subjects, respectively. That KMI of a complex dance sequence relative to everyday, non-dance movements recruits greater cognitive resources suggests it may be a more powerful tool in driving neural plasticity of action networks, especially among the elderly and those with movement disorders.
Collapse
|
42
|
Fujiwara Y, Matsumoto R, Nakae T, Usami K, Matsuhashi M, Kikuchi T, Yoshida K, Kunieda T, Miyamoto S, Mima T, Ikeda A, Osu R. Neural pattern similarity between contra- and ipsilateral movements in high-frequency band of human electrocorticograms. Neuroimage 2016; 147:302-313. [PMID: 27890491 DOI: 10.1016/j.neuroimage.2016.11.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 10/31/2016] [Accepted: 11/22/2016] [Indexed: 01/03/2023] Open
Abstract
The cortical motor areas are activated not only during contralateral limb movements but also during ipsilateral limb movements. Although these ipsilateral activities have been observed in several brain imaging studies, their functional role is poorly understood. Due to its high temporal resolution and low susceptibility to artifacts from body movements, the electrocorticogram (ECoG) is an advantageous measurement method for assessing the human brain function of motor behaviors. Here, we demonstrate that contra- and ipsilateral movements share a similarity in the high-frequency band of human ECoG signals. The ECoG signals were measured from the unilateral sensorimotor cortex while patients conducted self-paced movements of different body parts, contra- or ipsilateral to the measurement side. The movement categories (wrist, shoulder, or ankle) of ipsilateral movements were decoded as accurately as those of contralateral movements from spatial patterns of the high-frequency band of the precentral motor area (the primary motor and premotor areas). The decoder, trained in the high-frequency band of ipsilateral movements generalized to contralateral movements, and vice versa, confirmed that the activity patterns related to ipsilateral limb movements were similar to contralateral ones in the precentral motor area. Our results suggest that the high-frequency band activity patterns of ipsilateral and contralateral movements might be functionally coupled to control limbs, even during unilateral movements.
Collapse
Affiliation(s)
- Yusuke Fujiwara
- ATR Neural Information Analysis Laboratories, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan.
| | - Riki Matsumoto
- Department of Neurology, Kyoto University Graduate School of Medicine, 54 Shogoin-kawaharacho, Sakyo-ku, Kyoto, 606-8507.
| | - Takuro Nakae
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Shogoin-kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kiyohide Usami
- Department of Neurology, Kyoto University Graduate School of Medicine, 54 Shogoin-kawaharacho, Sakyo-ku, Kyoto, 606-8507
| | - Masao Matsuhashi
- Human Brain Research Center, Kyoto University Graduate School of Medicine, 54 Shogoin-kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takayuki Kikuchi
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Shogoin-kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kazumichi Yoshida
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Shogoin-kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takeharu Kunieda
- Department of Neurosurgery, Ehime University Graduate School of Medicine, Shitsukawa, Toon City 791-0295, Ehime, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Shogoin-kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Tatsuya Mima
- Human Brain Research Center, Kyoto University Graduate School of Medicine, 54 Shogoin-kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan; Graduate School of Core Ethics and Frontier Sciences. Ritsumeikan University, 56-1 Toji-in Kitamachi, Kita-ku, Kyoto 603-8577, Japan
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, 54 Shogoin-kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Rieko Osu
- ATR Computational Neuroscience Laboratories, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan
| |
Collapse
|
43
|
Papadelis C, Arfeller C, Erla S, Nollo G, Cattaneo L, Braun C. Inferior frontal gyrus links visual and motor cortices during a visuomotor precision grip force task. Brain Res 2016; 1650:252-266. [DOI: 10.1016/j.brainres.2016.09.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 09/06/2016] [Accepted: 09/07/2016] [Indexed: 11/29/2022]
|
44
|
Cottone C, Porcaro C, Cancelli A, Olejarczyk E, Salustri C, Tecchio F. Neuronal electrical ongoing activity as a signature of cortical areas. Brain Struct Funct 2016; 222:2115-2126. [PMID: 27803994 DOI: 10.1007/s00429-016-1328-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/18/2016] [Indexed: 01/08/2023]
Abstract
Brodmann's pioneering work resulted in the classification of cortical areas based on their cytoarchitecture and topology. Here, we aim at documenting that diverse cortical areas also display different neuronal electric activities. We investigated this notion in the hand-controlling sections of the primary somatosensory (S1) and motor (M1) areas, in both hemispheres. We identified S1 and M1 in 20 healthy volunteers by applying functional source separation (FSS) to their recorded electroencephalograms (EEG). Our results show that S1 and M1 can be clearly differentiated by their neuroelectric activities in both hemispheres and independently of the subject's state (i.e., at rest or performing movements or receiving external stimulations). In particular, S1 displayed higher relative power than M1 in the alpha and low beta frequency ranges (8-25 Hz, p < .003), whereas the opposite occurred in the high gamma band (52-90 Hz, p = .006). In addition, S1's activity had a smaller Higuchi's fractal dimensions (HFD) than M1's (p < .00001) in all subjects, permitting a reliable classification of the two areas. Moreover, HFD of M1's activity resulted correlated with the hand's fine motor control, as expressed by the 9-hole peg test scores. The present work is a first step toward the identification and classification of brain cortical areas based on neuronal dynamics rather than on cytoarchitectural features. We deem this step to be an improvement of our knowledge of the brain's structural-functional unity.
Collapse
|
45
|
Mindful Disintegration and the Decomposition of Self in Healthy Populations: Conception and Preliminary Study. PSYCHOLOGICAL STUDIES 2016. [DOI: 10.1007/s12646-016-0374-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
46
|
Simon S, Mukamel R. Power modulation of electroencephalogram mu and beta frequency depends on perceived level of observed actions. Brain Behav 2016; 6:e00494. [PMID: 27547498 PMCID: PMC4980467 DOI: 10.1002/brb3.494] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/11/2016] [Accepted: 04/16/2016] [Indexed: 01/17/2023] Open
Abstract
INTRODUCTION The ability to understand actions and intentions of others is of great importance to social relationships and is associated with the mirror neuron system of the human brain. Whether conscious perception of specific actions is necessary to trigger activity in this system, or alternatively whether this response is independent of conscious perception is not known. METHODS We addressed this issue by rendering videos of right hand movements invisible to conscious perception, and measuring electroencephalogram (EEG) power suppression in the mu (8-13 Hz) and beta (15-25 Hz) range as index corresponding to the magnitude of mirror neuron activity. RESULTS In the beta range over bilateral sensorimotor sites, we find that suppression indices follow the reported perceptual level of subjects with stronger suppression for consciously perceived trials. Furthermore, in the nonperceived trials, oscillation power is significantly suppressed relative to baseline. In the low mu range (8-10 Hz), oscillation power over the left sensorimotor site is significantly more suppressed in the consciously perceived versus nonperceived trials. CONCLUSIONS Our data suggest that the intensity of mirror system responses during action observation decreases with the observers' perception level yet remains significant during observation of invisible actions. Such subliminal activity could help explain phenomena such as covert imitation.
Collapse
Affiliation(s)
- Shiri Simon
- Sagol School of NeuroscienceTel‐Aviv UniversityTel Aviv6997801Israel
- School of Psychological SciencesTel‐Aviv UniversityTel Aviv6997801Israel
| | - Roy Mukamel
- Sagol School of NeuroscienceTel‐Aviv UniversityTel Aviv6997801Israel
- School of Psychological SciencesTel‐Aviv UniversityTel Aviv6997801Israel
| |
Collapse
|
47
|
Leisman G, Moustafa AA, Shafir T. Thinking, Walking, Talking: Integratory Motor and Cognitive Brain Function. Front Public Health 2016; 4:94. [PMID: 27252937 PMCID: PMC4879139 DOI: 10.3389/fpubh.2016.00094] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 04/26/2016] [Indexed: 12/11/2022] Open
Abstract
In this article, we argue that motor and cognitive processes are functionally related and most likely share a similar evolutionary history. This is supported by clinical and neural data showing that some brain regions integrate both motor and cognitive functions. In addition, we also argue that cognitive processes coincide with complex motor output. Further, we also review data that support the converse notion that motor processes can contribute to cognitive function, as found by many rehabilitation and aerobic exercise training programs. Support is provided for motor and cognitive processes possessing dynamic bidirectional influences on each other.
Collapse
Affiliation(s)
- Gerry Leisman
- The National Institute for Brain and Rehabilitation Sciences, Nazareth, Israel; Facultad Manuel Fajardo, Universidad de Ciencias Médicas de la Habana, Havana, Cuba
| | - Ahmed A Moustafa
- School of Social Sciences and Psychology, Marcs Institute for Brain and Behaviour, University of Western Sydney , Sydney, NSW , Australia
| | - Tal Shafir
- Faculty of Social Welfare and Health Sciences, Graduate School of Creative Arts Therapies, University of Haifa , Haifa , Israel
| |
Collapse
|
48
|
Is an absolute level of cortical beta suppression required for proper movement? Magnetoencephalographic evidence from healthy aging. Neuroimage 2016; 134:514-521. [PMID: 27090351 DOI: 10.1016/j.neuroimage.2016.04.032] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/03/2016] [Accepted: 04/13/2016] [Indexed: 02/07/2023] Open
Abstract
Previous research has connected a specific pattern of beta oscillatory activity to proper motor execution, but no study to date has directly examined how resting beta levels affect motor-related beta oscillatory activity in the motor cortex. Understanding this relationship is imperative to determining the basic mechanisms of motor control, as well as the impact of pathological beta oscillations on movement execution. In the current study, we used magnetoencephalography (MEG) and a complex movement paradigm to quantify resting beta activity and movement-related beta oscillations in the context of healthy aging. We chose healthy aging as a model because preliminary evidence suggests that beta activity is elevated in older adults, and thus by examining older and younger adults we were able to naturally vary resting beta levels. To this end, healthy younger and older participants were recorded during motor performance and at rest. Using beamforming, we imaged the peri-movement beta event-related desynchronization (ERD) and extracted virtual sensors from the peak voxels, which enabled absolute and relative beta power to be assessed. Interestingly, absolute beta power during the pre-movement baseline was much stronger in older relative to younger adults, and older adults also exhibited proportionally large beta desynchronization (ERD) responses during motor planning and execution compared to younger adults. Crucially, we found a significant relationship between spontaneous (resting) beta power and beta ERD magnitude in both primary motor cortices, above and beyond the effects of age. A similar link was found between beta ERD magnitude and movement duration. These findings suggest a direct linkage between beta reduction during movement and spontaneous activity in the motor cortex, such that as spontaneous beta power increases, a greater reduction in beta activity is required to execute movement. We propose that, on an individual level, the primary motor cortices have an absolute threshold of beta power that must be reached in order to move, and that an inability to suppress beta power to this threshold results in an increase in movement duration.
Collapse
|
49
|
Kato K, Yokochi F, Iwamuro H, Kawasaki T, Hamada K, Isoo A, Kimura K, Okiyama R, Taniguchi M, Ushiba J. Frequency-Specific Synchronization in the Bilateral Subthalamic Nuclei Depending on Voluntary Muscle Contraction and Relaxation in Patients with Parkinson's Disease. Front Hum Neurosci 2016; 10:131. [PMID: 27064969 PMCID: PMC4811912 DOI: 10.3389/fnhum.2016.00131] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/11/2016] [Indexed: 11/16/2022] Open
Abstract
The volitional control of muscle contraction and relaxation is a fundamental component of human motor activity, but how the processing of the subcortical networks, including the subthalamic nucleus (STN), is involved in voluntary muscle contraction (VMC) and voluntary muscle relaxation (VMR) remains unclear. In this study, local field potentials (LFPs) of bilateral STNs were recorded in patients with Parkinson’s disease (PD) while performing externally paced VMC and VMR tasks of the unilateral wrist extensor muscle. The VMC- or VMR-related oscillatory activities and their functional couplings were investigated over the theta (4–7 Hz), alpha (8–13 Hz), beta (14–35 Hz), and gamma (40–100 Hz) frequency bands. Alpha and beta desynchronizations were observed in bilateral STNs at the onset of both VMC and VMR tasks. On the other hand, theta and gamma synchronizations were prominent in bilateral STNs specifically at the onset of the VMC task. In particular, just after VMC, theta functional coupling between the bilateral STNs increased, and the theta phase became coupled to the gamma amplitude within the contralateral STN in a phase-amplitude cross-frequency coupled manner. On the other hand, the prominent beta-gamma cross-frequency couplings observed in the bilateral STNs at rest were reduced by the VMC and VMR tasks. These results suggest that STNs are bilaterally involved in the different performances of muscle contraction and relaxation through the theta-gamma and beta-gamma networks between bilateral STNs in patients with PD.
Collapse
Affiliation(s)
- Kenji Kato
- Department of Neurology, Tokyo Metropolitan Neurological HospitalTokyo, Japan; Department of Biosciences and Informatics, Faculty of Science and Technology, Keio UniversityKanagawa, Japan
| | - Fusako Yokochi
- Department of Neurology, Tokyo Metropolitan Neurological Hospital Tokyo, Japan
| | - Hirokazu Iwamuro
- Department of Neurosurgery, Tokyo Metropolitan Neurological Hospital Tokyo, Japan
| | - Takashi Kawasaki
- Department of Neurosurgery, Tokyo Metropolitan Neurological Hospital Tokyo, Japan
| | - Kohichi Hamada
- Department of Neurosurgery, Tokyo Metropolitan Neurological Hospital Tokyo, Japan
| | - Ayako Isoo
- Department of Neurosurgery, Tokyo Metropolitan Neurological Hospital Tokyo, Japan
| | - Katsuo Kimura
- Department of Neurology, Tokyo Metropolitan Neurological Hospital Tokyo, Japan
| | - Ryoichi Okiyama
- Department of Neurology, Tokyo Metropolitan Neurological Hospital Tokyo, Japan
| | - Makoto Taniguchi
- Department of Neurosurgery, Tokyo Metropolitan Neurological Hospital Tokyo, Japan
| | - Junichi Ushiba
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University Kanagawa, Japan
| |
Collapse
|
50
|
Yokoyama O, Nakayama Y, Hoshi E. Area- and band-specific representations of hand movements by local field potentials in caudal cingulate motor area and supplementary motor area of monkeys. J Neurophysiol 2016; 115:1556-76. [PMID: 26792884 DOI: 10.1152/jn.00882.2015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/19/2016] [Indexed: 11/22/2022] Open
Abstract
The caudal cingulate motor area (CMAc) and the supplementary motor area (SMA) play important roles in movement execution. The present study examined the neural mechanisms underlying these roles by investigating local field potentials (LFPs) from these areas while monkeys pressed buttons with either their left or right hand. During hand movement, power increases in the high-gamma (80-120 Hz) and theta (3-8 Hz) bands and a power decrease in the beta (12-30 Hz) band were observed in both the CMAc and SMA. High-gamma and beta activity in the SMA predominantly represented contralateral hand movements, whereas activity in the CMAc preferentially represented movement of either hand. Theta activity in both brain regions most frequently reflected movement of either hand, but a contralateral hand bias was more evident in the SMA than in the CMAc. An analysis of the relationships of the laterality representations between the high-gamma and theta bands at each recording site revealed that, irrespective of the hand preference for the theta band, the high-gamma band in the SMA preferentially represented contralateral hand movement, whereas the high-gamma band in the CMAc represented movement of either hand. These findings suggest that the input-output relationships for ipsilateral and contralateral hand movements in the CMAc and SMA differ in terms of their functionality. The CMAc may transform the input signals representing general aspects of movement into commands to perform movements with either hand, whereas the SMA may transform the input signals into commands to perform movement with the contralateral hand.
Collapse
Affiliation(s)
- Osamu Yokoyama
- Frontal Lobe Function Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan; and Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Tokyo, Japan
| | - Yoshihisa Nakayama
- Frontal Lobe Function Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan; and
| | - Eiji Hoshi
- Frontal Lobe Function Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan; and Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Tokyo, Japan
| |
Collapse
|