1
|
Vaibhav K, Gulhane M, Ahluwalia P, Kumar M, Ahluwalia M, Rafiq AM, Amble V, Zabala MG, Miller JB, Goldman L, Mondal AK, Deak F, Kolhe R, Arbab AS, Vale FL. Single episode of moderate to severe traumatic brain injury leads to chronic neurological deficits and Alzheimer's-like pathological dementia. GeroScience 2024; 46:5439-5457. [PMID: 38733547 PMCID: PMC11493938 DOI: 10.1007/s11357-024-01183-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
Traumatic brain injury (TBI) is one of the foremost causes of disability and mortality globally. While the scientific and medical emphasis is to save lives and avoid disability during acute period of injury, a severe health problem can manifest years after injury. For instance, TBI increases the risk of cognitive impairment in the elderly. Remote TBI history was reported to be a cause of the accelerated clinical trajectory of Alzheimer's disease-related dementia (ADRD) resulting in earlier onset of cognitive impairment and increased AD-associated pathological markers like greater amyloid deposition and cortical thinning. It is not well understood whether a single TBI event may increase the risk of dementia. Moreover, the cellular signaling pathways remain elusive for the chronic effects of TBI on cognition. We have hypothesized that a single TBI induces sustained neuroinflammation and disrupts cellular communication in a way that results later in ADRD pathology. To test this, we induced TBI in young adult CD1 mice and assessed the behavioral outcomes after 11 months followed by pathological, histological, transcriptomic, and MRI assessment. On MRI scans, these mice showed significant loss of tissue, reduced CBF, and higher white matter injury compared to sham mice. We found these brains showed progressive atrophy, markers of ADRD, sustained astrogliosis, loss of neuronal plasticity, and growth factors even after 1-year post-TBI. Because of progressive neurodegeneration, these mice had motor deficits, showed cognitive impairments, and wandered randomly in open field. We, therefore, conclude that progressive pathology after adulthood TBI leads to neurodegenerative conditions such as ADRD and impairs neuronal functions.
Collapse
Affiliation(s)
- Kumar Vaibhav
- Brain Injury, Senescence, and Translational Neuroscience Lab, Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
- Transdisciplinary Research Initiative in Inflammaging and Brain Aging (TRIBA), Augusta University, Augusta, GA, USA.
| | - Mayuri Gulhane
- Brain Injury, Senescence, and Translational Neuroscience Lab, Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Pankaj Ahluwalia
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Manish Kumar
- Brain Injury, Senescence, and Translational Neuroscience Lab, Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Meenakshi Ahluwalia
- Brain Injury, Senescence, and Translational Neuroscience Lab, Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ashiq M Rafiq
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Vibha Amble
- Center for Undergraduate Research Studies, Augusta University, Augusta, GA, USA
| | - Manuela G Zabala
- Center for Undergraduate Research Studies, Augusta University, Augusta, GA, USA
| | - Jacob B Miller
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
- The Graduate School, Augusta University, Augusta, GA, USA
| | - Liam Goldman
- Brain Injury, Senescence, and Translational Neuroscience Lab, Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Ashis K Mondal
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ferenc Deak
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ravindra Kolhe
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ali S Arbab
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Fernando L Vale
- Brain Injury, Senescence, and Translational Neuroscience Lab, Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| |
Collapse
|
2
|
Tastan B, Heneka MT. The impact of neuroinflammation on neuronal integrity. Immunol Rev 2024. [PMID: 39470038 DOI: 10.1111/imr.13419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Neuroinflammation, characterized by a complex interplay among innate and adaptive immune responses within the central nervous system (CNS), is crucial in responding to infections, injuries, and disease pathologies. However, the dysregulation of the neuroinflammatory response could significantly affect neurons in terms of function and structure, leading to profound health implications. Although tremendous progress has been made in understanding the relationship between neuroinflammatory processes and alterations in neuronal integrity, the specific implications concerning both structure and function have not been extensively covered, with the exception of perspectives on glial activation and neurodegeneration. Thus, this review aims to provide a comprehensive overview of the multifaceted interactions among neurons and key inflammatory players, exploring mechanisms through which inflammation influences neuronal functionality and structural integrity in the CNS. Further, it will discuss how these inflammatory mechanisms lead to impairment in neuronal functions and architecture and highlight the consequences caused by dysregulated neuronal functions, such as cognitive dysfunction and mood disorders. By integrating insights from recent research findings, this review will enhance our understanding of the neuroinflammatory landscape and set the stage for future interventions that could transform current approaches to preserve neuronal integrity and function in CNS-related inflammatory conditions.
Collapse
Affiliation(s)
- Bora Tastan
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, North Worcester, Massachusetts, USA
| |
Collapse
|
3
|
Jia X, Zhao W, Zhang H, Zhang X, Ji Q, Li X, Pan Y, Jiang X, Zhang J, Bai L. Cell-Specific Gene Expressions Underlie Selective White Matter Loss Vulnerability in Mild Traumatic Brain Injury. J Neurotrauma 2024. [PMID: 39453870 DOI: 10.1089/neu.2024.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2024] Open
Abstract
Traumatic brain injury (TBI), a risk factor for later-life dementia, leads to salient brain atrophy, particularly in the white matter. It is not clear how white matter atrophy progresses or why some brain regions are damaged while others are spared. We hypothesized that spatial variations of cell-specific gene expression contributed to the selective white matter loss vulnerability following mild TBI (mTBI). Gene expression data were sourced from the publicly available Allen Human Brain Atlas, which comprises microarray data spanning nearly the entire brain, derived from six neurologically normal adult donors. A total of 100 patients with acute stage (within 7 days post-injury) mTBI were enrolled. Of these, 60 patients were followed up at 3 months post-injury and 37 were followed up at 6-12 months post-injury. In addition, 59 healthy controls (HCs), matched for age, gender, and education, were included for comparative analysis. White matter volume changes were analyzed at both the acute stage, 3 months, and 6-12 months follow-up in mTBI patients compared with HCs. Patients with mTBI exhibited significant white matter atrophy in the frontal, parietal, and temporal cortices at 3 months post-injury, which even persisted at 6-12 months follow-up. In addition, mTBI patients with cognitive deficits showed more severe brain atrophy compared with those without cognitive deficits. Crucially, the gene expression marking endothelial cells and S1 pyramidal neurons were associated with increased brain atrophy, whereas the gene expression marking microglia and CA1 pyramidal neurons were associated with decreased brain atrophy in mTBI patients at 3 months post-injury. Microglia and endothelial cells can explain 23.6% of regional variations in the white matter atrophy. These findings suggested that modulating cellular activation, especially by promoting microglial activation at 3 months post-injury, might be a promising approach to prevent white matter atrophy, enhance cognitive outcomes, and reduce the risk of later-life dementia.
Collapse
Affiliation(s)
- Xiaoyan Jia
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Wenpu Zhao
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Haonan Zhang
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xiang Zhang
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Qiuyu Ji
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xuan Li
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yizhen Pan
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xiaofan Jiang
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Jie Zhang
- Department of Radiation Medicine, School of Preventive Medicine, Air Force Medical University, Xi'an, China
| | - Lijun Bai
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
4
|
Michalettos G, Clausen F, Rostami E, Marklund N. Post-injury treatment with 7,8-dihydroxyflavone attenuates white matter pathology in aged mice following focal traumatic brain injury. Neurotherapeutics 2024:e00472. [PMID: 39428261 DOI: 10.1016/j.neurot.2024.e00472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024] Open
Abstract
Traumatic brain injury (TBI) is a major cause of morbidity and mortality, not least in the elderly. The incidence of aged TBI patients has increased dramatically during the last decades. High age is a highly negative prognostic factor in TBI, and pharmacological treatment options are lacking. We used the controlled cortical impact (CCI) TBI model in 23-month-old male and female mice and analyzed the effect of post-injury treatment with 7,8 dihydroxyflavone (7,8-DHF), a brain-derived neurotrophic factor (BDNF)-mimetic compound, on white matter pathology. Following CCI or sham injury, mice received subcutaneous 7,8-DHF injections (5 mg/kg) 30 min post-injury and were sacrificed on 2, 7 or 14 days post-injury (dpi) for histological and immunofluorescence analyses. Histological assessment with Luxol Fast Blue (LFB)/Cresyl Violet stain showed that administration of 7,8-DHF resulted in preserved white matter tissue at 2 and 7 dpi with no difference in cortical tissue loss at all investigated time points. Treatment with 7,8-DHF led to reduced axonal swellings at 2 and 7 dpi, as visualized by SMI-31 (Neurofilament Heavy Chain) immunofluorescence, and reduced number of TUNEL (Terminal deoxynucleotidyl transferase dUTP nick end labelling)/CC1-positive mature oligodendrocytes at 2 dpi in the perilesional white matter. Post-injury proliferation of Platelet-derived Growth Factor Receptor (PDGFRα)-positive oligodendodrocyte progenitor cells was not altered by 7,8-DHF. Our results suggest that 7,8-DHF can attenuate white matter pathology by mitigating axonal injury and oligodendrocyte death in the aged mouse brain following TBI. These data argue that further exploration of 7,8-DHF towards clinical use is warranted.
Collapse
Affiliation(s)
- Georgios Michalettos
- Department of Clinical Sciences Lund, Neurosurgery, Lund University, Lund, Sweden
| | - Fredrik Clausen
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Elham Rostami
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, Uppsala, Sweden; Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Niklas Marklund
- Department of Clinical Sciences Lund, Neurosurgery, Lund University and Lund University Hospital, Lund, Sweden.
| |
Collapse
|
5
|
Spitz G, Hicks AJ, McDonald SJ, Dore V, Krishnadas N, O'Brien TJ, O'Brien WT, Vivash L, Law M, Ponsford JL, Rowe C, Shultz SR. Plasma biomarkers in chronic single moderate-severe traumatic brain injury. Brain 2024:awae255. [PMID: 39315931 DOI: 10.1093/brain/awae255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 06/06/2024] [Accepted: 07/04/2024] [Indexed: 09/25/2024] Open
Abstract
Blood biomarkers are an emerging diagnostic and prognostic tool that reflect a range of neuropathological processes following traumatic brain injury (TBI). Their effectiveness in identifying long-term neuropathological processes after TBI is unclear. Studying biomarkers in the chronic phase is vital because elevated levels in TBI might result from distinct neuropathological mechanisms during acute and chronic phases. Here, we examine plasma biomarkers in the chronic period following TBI and their association with amyloid and tau PET, white matter microarchitecture, brain age and cognition. We recruited participants ≥40 years of age who had suffered a single moderate-severe TBI ≥10 years previously between January 2018 and March 2021. We measured plasma biomarkers using single molecule array technology [ubiquitin C-terminal hydrolase L1 (UCH-L1), neurofilament light (NfL), tau, glial fibrillary acidic protein (GFAP) and phosphorylated tau (P-tau181)]; PET tracers to measure amyloid-β (18F-NAV4694) and tau neurofibrillary tangles (18F-MK6240); MRI to assess white matter microstructure and brain age; and the Rey Auditory Verbal Learning Test to measure verbal-episodic memory. A total of 90 post-TBI participants (73% male; mean = 58.2 years) were recruited on average 22 years (range = 10-33 years) post-injury, and 32 non-TBI control participants (66% male; mean = 57.9 years) were recruited. Plasma UCH-L1 levels were 67% higher {exp(b) = 1.67, P = 0.018, adjusted P = 0.044, 95% confidence interval (CI) [10% to 155%], area under the curve = 0.616} and P-tau181 were 27% higher {exp(b) = 1.24, P = 0.011, adjusted P = 0.044, 95% CI [5% to 46%], area under the curve = 0.632} in TBI participants compared with controls. Amyloid and tau PET were not elevated in TBI participants. Higher concentrations of plasma P-tau181, UCH-L1, GFAP and NfL were significantly associated with worse white matter microstructure but not brain age in TBI participants. For TBI participants, poorer verbal-episodic memory was associated with higher concentration of P-tau181 {short delay: b = -2.17, SE = 1.06, P = 0.043, 95% CI [-4.28, -0.07]; long delay: bP-tau = -2.56, SE = 1.08, P = 0.020, 95% CI [-4.71, -0.41]}, tau {immediate memory: bTau = -6.22, SE = 2.47, P = 0.014, 95% CI [-11.14, -1.30]} and UCH-L1 {immediate memory: bUCH-L1 = -2.14, SE = 1.07, P = 0.048, 95% CI [-4.26, -0.01]}, but was not associated with functional outcome. Elevated plasma markers related to neuronal damage and accumulation of phosphorylated tau suggest the presence of ongoing neuropathology in the chronic phase following a single moderate-severe TBI. Plasma biomarkers were associated with measures of microstructural brain disruption on MRI and disordered cognition, further highlighting their utility as potential objective tools to monitor evolving neuropathology post-TBI.
Collapse
Affiliation(s)
- Gershon Spitz
- Monash-Epworth Rehabilitation Research Centre, School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3800, Australia
- Department of Neuroscience, School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3004, Australia
| | - Amelia J Hicks
- Monash-Epworth Rehabilitation Research Centre, School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Stuart J McDonald
- Department of Neuroscience, School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3004, Australia
- Department of Neurology, The Alfred, Melbourne, VIC 3004, Australia
| | - Vincent Dore
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC 3084, Australia
| | - Natasha Krishnadas
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC 3084, Australia
| | - Terence J O'Brien
- Department of Neuroscience, School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3004, Australia
- Department of Neurology, The Alfred, Melbourne, VIC 3004, Australia
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3010, Australia
| | - William T O'Brien
- Department of Neuroscience, School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3004, Australia
| | - Lucy Vivash
- Department of Neuroscience, School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3004, Australia
- Department of Neurology, The Alfred, Melbourne, VIC 3004, Australia
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Meng Law
- Department of Neuroscience, School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3004, Australia
- Department of Radiology, Alfred Health, Melbourne, VIC 3004, Australia
| | - Jennie L Ponsford
- Monash-Epworth Rehabilitation Research Centre, School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Christopher Rowe
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC 3084, Australia
| | - Sandy R Shultz
- Department of Neuroscience, School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3004, Australia
- Department of Neurology, The Alfred, Melbourne, VIC 3004, Australia
- The Centre for Trauma and Mental Health Research, Health Sciences and Human Services, Vancouver Island University, Nanaimo, BC V9R 5S5, Canada
| |
Collapse
|
6
|
Zhang Y, Tang L, Liu Y, Yang B, Jiang Z, Liu Z, Zhou L. An Objective Injury Threshold for the Maximum Principal Strain Criterion for Brain Tissue in the Finite Element Head Model and Its Application. Bioengineering (Basel) 2024; 11:918. [PMID: 39329660 PMCID: PMC11429161 DOI: 10.3390/bioengineering11090918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Although the finite element head model (FEHM) has been widely utilized to analyze injury locations and patterns in traumatic brain injury, significant controversy persists regarding the selection of a mechanical injury variable and its corresponding threshold. This paper aims to determine an objective injury threshold for maximum principal strain (MPS) through a novel data-driven method, and to validate and apply it. We extract the peak responses from all elements across 100 head impact simulations to form a dataset, and then determine the objective injury threshold by analyzing the relationship between the combined injury degree and the threshold according to the stationary value principle. Using an occipital impact case from a clinical report as an example, we evaluate the accuracy of the injury prediction based on the new threshold. The results show that the injury area predicted by finite element analysis closely matches the main injury area observed in CT images, without the issue of over- or underestimating the injury due to an unreasonable threshold. Furthermore, by applying this threshold to the finite element analysis of designed occipital impacts, we observe, for the first time, supra-tentorium cerebelli injury, which is related to visual memory impairment. This discovery may indicate the biomechanical mechanism of visual memory impairment after occipital impacts reported in clinical cases.
Collapse
Affiliation(s)
| | - Liqun Tang
- Department of Engineering Mechanics, School of Civil Engineering and Transportation, South China University of Technology, No. 381, Wushan Road, Guangzhou 510000, China; (Y.Z.); (Y.L.); (Z.J.); (Z.L.); (L.Z.)
| | | | | | | | | | | |
Collapse
|
7
|
Logan-Wesley AL, Gorse KM, Lafrenaye AD. Microglial process convergence onto injured axonal swellings, a human postmortem brain tissue study. Sci Rep 2024; 14:21369. [PMID: 39266604 PMCID: PMC11392954 DOI: 10.1038/s41598-024-71312-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024] Open
Abstract
Traumatic brain injury (TBI) affects millions globally, with a majority of TBI cases being classified as mild, in which diffuse pathologies prevail. Two of the pathological hallmarks of TBI are diffuse axonal injury (DAI) and microglial activation. While progress has been made investigating the breadth of TBI-induced axonal injury and microglial changes in rodents, the neuroinflammatory progression and interaction between microglia and injured axons in humans is less well understood. Our group previously investigated microglial process convergence (MPC), in which processes of non-phagocytic microglia directly contact injured proximal axonal swellings, in rats and micropigs acutely following TBI. These studies demonstrated that MPC occurred on injured axons in the micropig, but not in the rat, following diffuse TBI. While it has been shown that microglia co-exist and interact with injured axons in humans post-TBI, the occurrence of MPC has not been quantitatively measured in the human brain. Therefore, in the current study we sought to validate our pig findings in human postmortem tissue. We investigated MPC onto injured axonal swellings and intact myelinated fibers in cases from individuals with confirmed DAI and control human brain tissue using multiplex immunofluorescent histochemistry. We found an increase in MPC onto injured axonal swellings, consistent with our previous findings in micropigs, indicating that MPC is a clinically relevant phenomenon that warrants further investigation.
Collapse
Affiliation(s)
| | - Karen M Gorse
- Virginia Commonwealth University, BOX 980709, Richmond, VA, 23298, USA
| | | |
Collapse
|
8
|
Armstrong RC, Sullivan GM, Perl DP, Rosarda JD, Radomski KL. White matter damage and degeneration in traumatic brain injury. Trends Neurosci 2024; 47:677-692. [PMID: 39127568 DOI: 10.1016/j.tins.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/17/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024]
Abstract
Traumatic brain injury (TBI) is a complex condition that can resolve over time but all too often leads to persistent symptoms, and the risk of poor patient outcomes increases with aging. TBI damages neurons and long axons within white matter tracts that are critical for communication between brain regions; this causes slowed information processing and neuronal circuit dysfunction. This review focuses on white matter injury after TBI and the multifactorial processes that underlie white matter damage, potential for recovery, and progression of degeneration. A multiscale perspective across clinical and preclinical advances is presented to encourage interdisciplinary insights from whole-brain neuroimaging of white matter tracts down to cellular and molecular responses of axons, myelin, and glial cells within white matter tissue.
Collapse
Affiliation(s)
- Regina C Armstrong
- Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Military Traumatic Brain Injury Initiative (MTBI(2)), Bethesda, MD, USA.
| | - Genevieve M Sullivan
- Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Military Traumatic Brain Injury Initiative (MTBI(2)), Bethesda, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Daniel P Perl
- Pathology, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Department of Defense - Uniformed Services University Brain Tissue Repository, Bethesda, MD, USA
| | - Jessica D Rosarda
- Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Kryslaine L Radomski
- Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
9
|
Logan-Wesley AL, Gorse KM, Lafrenaye AD. Microglial process convergence onto injured axonal swellings, a human postmortem brain tissue study. RESEARCH SQUARE 2024:rs.3.rs-4713316. [PMID: 39149456 PMCID: PMC11326398 DOI: 10.21203/rs.3.rs-4713316/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Traumatic brain injury (TBI) affects millions globally, with a majority of TBI cases being classified as mild, in which diffuse pathologies prevail. Two of the pathological hallmarks of TBI are diffuse axonal injury and microglial activation. While progress has been made investigating the breadth of TBI-induced axonal injury and microglial changes in rodents, the neuroinflammatory progression and interaction between microglia and injured axons following brain injury in humans is less well understood. Our group previously investigated microglial process convergence (MPC), in which processes of non-phagocytic microglia directly contact injured proximal axonal segments, in rats and micropigs acutely following TBI. These studies demonstrated that MPC occurred on injured axons in the micropig, but not in the rat, following diffuse TBI. While it has been shown that microglia co-exist and interact with injured axons in humans post-TBI, the occurrence of MPC has not been quantitatively measured in the human brain. Therefore, in the current study we sought to validate our pig findings in human postmortem tissue. We investigated MPC onto injured axonal swellings and intact myelinated fibers in cases from individuals that sustained a TBI and control human brain tissue using multiplex immunofluorescent histochemistry. We found an increase in MPC onto injured axonal swellings, consistent with our previous findings in micropigs, indicating that MPC is a clinically relevant phenomenon that warrants further investigation.
Collapse
|
10
|
Bouvette V, Petit Y, De Beaumont L, Guay S, Vinet SA, Wagnac E. American Football On-Field Head Impact Kinematics: Influence of Acceleration Signal Characteristics on Peak Maximal Principal Strain. Ann Biomed Eng 2024; 52:2134-2150. [PMID: 38758459 DOI: 10.1007/s10439-024-03514-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/28/2024] [Indexed: 05/18/2024]
Abstract
Recorded head kinematics from head-impact measurement devices (HIMd) are pivotal for evaluating brain stress and strain through head finite element models (hFEM). The variability in kinematic recording windows across HIMd presents challenges as they yield inconsistent hFEM responses. Despite establishing an ideal recording window for maximum principal strain (MPS) in brain tissue, uncertainties persist about the impact characteristics influencing vulnerability when this window is shortened. This study aimed to scrutinize factors within impact kinematics affecting the reliability of different recording windows on whole-brain peak MPS using a validated hFEM. Utilizing 53 on-field head impacts recorded via an instrumented mouthguard during a Canadian varsity football game, 10 recording windows were investigated with varying pre- and post-impact-trigger durations. Tukey pair-wise comparisons revealed no statistically significant differences in MPS responses for the different recording windows. However, specific impacts showed marked variability up to 40%. It was found, through correlation analyses, that impacts with lower peak linear acceleration exhibited greater response variability across different pre-trigger durations. Signal shape, analyzed through spectral analysis, influenced the time required for MPS development, resulting in specific impacts requiring a prolonged post-trigger duration. This study adds to the existing consensus on standardizing HIMd acquisition time windows and sheds light on impact characteristics leading to peak MPS variation across different head impact kinematic recording windows. Considering impact characteristics in research assessments is crucial, as certain impacts, affected by recording duration, may lead to significant errors in peak MPS responses during cumulative longitudinal exposure assessments.
Collapse
Affiliation(s)
- Véronique Bouvette
- Department of Mechanical Engineering, École de technologie supérieure, 1100 Notre-Dame Street West, Montreal, QC, H3C 1K3, Canada.
- Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal, Montreal, Canada.
- International Laboratory on Spine Imaging and Biomechanics, Montreal, Canada.
- International Laboratory on Spine Imaging and Biomechanics, Marseille, France.
| | - Y Petit
- Department of Mechanical Engineering, École de technologie supérieure, 1100 Notre-Dame Street West, Montreal, QC, H3C 1K3, Canada
- Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal, Montreal, Canada
- International Laboratory on Spine Imaging and Biomechanics, Montreal, Canada
- International Laboratory on Spine Imaging and Biomechanics, Marseille, France
| | - L De Beaumont
- Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal, Montreal, Canada
- Department of Surgery, Université de Montréal, Montreal, Canada
| | - S Guay
- Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal, Montreal, Canada
- Department of Psychology, Université de Montréal, Montreal, Canada
| | - S A Vinet
- Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal, Montreal, Canada
- Department of Psychology, Université de Montréal, Montreal, Canada
| | - E Wagnac
- Department of Mechanical Engineering, École de technologie supérieure, 1100 Notre-Dame Street West, Montreal, QC, H3C 1K3, Canada
- Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal, Montreal, Canada
- International Laboratory on Spine Imaging and Biomechanics, Montreal, Canada
- International Laboratory on Spine Imaging and Biomechanics, Marseille, France
| |
Collapse
|
11
|
Dennis EL, Vervoordt S, Adamson MM, Houshang A, Bigler ED, Caeyenberghs K, Cole JH, Dams-O'Connor K, Deutscher EM, Dobryakova E, Genova HM, Grafman JH, Håberg AK, Hellstrøm T, Irimia A, Koliatsos VE, Lindsey HM, Livny A, Menon DK, Merkley TL, Mohamed AZ, Mondello S, Monti MM, Newcombe VF, Newsome MR, Ponsford J, Rabinowitz A, Smevik H, Spitz G, Venkatesan UM, Westlye LT, Zafonte R, Thompson PM, Wilde EA, Olsen A, Hillary FG. Accelerated Aging after Traumatic Brain Injury: An ENIGMA Multi-Cohort Mega-Analysis. Ann Neurol 2024; 96:365-377. [PMID: 38845484 DOI: 10.1002/ana.26952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 07/11/2024]
Abstract
OBJECTIVE The long-term consequences of traumatic brain injury (TBI) on brain structure remain uncertain. Given evidence that a single significant brain injury event increases the risk of dementia, brain-age estimation could provide a novel and efficient indexing of the long-term consequences of TBI. Brain-age procedures use predictive modeling to calculate brain-age scores for an individual using structural magnetic resonance imaging (MRI) data. Complicated mild, moderate, and severe TBI (cmsTBI) is associated with a higher predicted age difference (PAD), but the progression of PAD over time remains unclear. We sought to examine whether PAD increases as a function of time since injury (TSI) and if injury severity and sex interacted to influence this progression. METHODS Through the ENIGMA Adult Moderate and Severe (AMS)-TBI working group, we examine the largest TBI sample to date (n = 343), along with controls, for a total sample size of n = 540, to replicate and extend prior findings in the study of TBI brain age. Cross-sectional T1w-MRI data were aggregated across 7 cohorts, and brain age was established using a similar brain age algorithm to prior work in TBI. RESULTS Findings show that PAD widens with longer TSI, and there was evidence for differences between sexes in PAD, with men showing more advanced brain age. We did not find strong evidence supporting a link between PAD and cognitive performance. INTERPRETATION This work provides evidence that changes in brain structure after cmsTBI are dynamic, with an initial period of change, followed by relative stability in brain morphometry, eventually leading to further changes in the decades after a single cmsTBI. ANN NEUROL 2024;96:365-377.
Collapse
Affiliation(s)
- Emily L Dennis
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
- George E. Whalen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | | | - Maheen M Adamson
- Women's Operational Military Exposure Network (WOMEN) & Rehabilitation, VA Palo Alto Healthcare System, Palo Alto, CA, USA
- Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Amiri Houshang
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Radiology & Nuclear Medicine, Amsterdam UMC, Amsterdam, The Netherlands
| | - Erin D Bigler
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
- Department of Psychology and Neuroscience Center, Brigham Young University, Provo, UT, USA
| | - Karen Caeyenberghs
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - James H Cole
- Centre for Medical Image Computing, Computer Science, University College London, London, UK
- Dementia Research Centre, Queen Square Institute of Neurology, University College London, London, UK
| | - Kristen Dams-O'Connor
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Evelyn M Deutscher
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Ekaterina Dobryakova
- Center for Traumatic Brain Injury, Kessler Foundation, East Hanover, NJ, USA
- Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Helen M Genova
- Rutgers New Jersey Medical School, Newark, NJ, USA
- Center for Neuropsychology and Neuroscience Research, Kessler Foundation, East Hanover, NJ, USA
| | | | - Asta K Håberg
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, NTNU, Trondheim, Norway
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Torgeir Hellstrøm
- Department of Physical Medicine and Rehabilitation, Oslo University Hospital, Oslo, Norway
| | - Andrei Irimia
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
- Department of Quantitative and Computational Biology, Dornsife College of Arts and Sciences, University of Southern California, Los Angeles, CA, USA
| | - Vassilis E Koliatsos
- Departments of Pathology (Neuropathology), Neurology, and Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Neuropsychiatry Program, Sheppard and Enoch Pratt Hospital, Baltimore, MD, USA
| | - Hannah M Lindsey
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Abigail Livny
- Division of Diagnostic Imaging, Sheba Medical Center, Tel-Aviv, Israel
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Sagol Neuroscience School, Tel-Aviv University, Tel-Aviv, Israel
| | - David K Menon
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Tricia L Merkley
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
- Department of Psychology and Neuroscience Center, Brigham Young University, Provo, UT, USA
| | - Abdalla Z Mohamed
- Thompson Institute, University of the Sunshine Coast, Birtinya, Australia
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Martin M Monti
- Department of Psychology, UCLA, Los Angeles, CA, USA
- Brain Injury Research Center (BIRC), Department of Neurosurgery, UCLA, Los Angeles, CA, USA
| | | | - Mary R Newsome
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
- George E. Whalen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Jennie Ponsford
- Monash-Epworth Rehabilitation Research Centre, School of Psychological Sciences, Monash University, Melbourne, Australia
- School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Amanda Rabinowitz
- Moss Rehabilitation Research Institute, Elkins Park, PA, USA
- Department of Rehabilitation Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Hanne Smevik
- Department of Psychology, NTNU, Trondheim, Norway
- NorHEAD - Norwegian Centre for Headache Research, NTNU, Trondheim, Norway
| | - Gershon Spitz
- Monash-Epworth Rehabilitation Research Centre, School of Psychological Sciences, Monash University, Melbourne, Australia
- School of Psychological Sciences, Monash University, Melbourne, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Umesh M Venkatesan
- Moss Rehabilitation Research Institute, Elkins Park, PA, USA
- Department of Rehabilitation Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Lars T Westlye
- Department of Psychology, University of Oslo, Oslo, Norway
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ross Zafonte
- Department of Physical Medicine and Rehabilitation, Massachusetts General Hospital/Brigham & Women's Hospital, Boston, MA, USA
- Spaulding Rehabilitation Hospital, Boston, MA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
- Departments of Neurology, Pediatrics, Psychiatry, Radiology, Engineering, and Ophthalmology, USC, Los Angeles, CA, USA
| | - Elisabeth A Wilde
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
- George E. Whalen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Alexander Olsen
- Department of Psychology, NTNU, Trondheim, Norway
- NorHEAD - Norwegian Centre for Headache Research, NTNU, Trondheim, Norway
- Clinic of Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Frank G Hillary
- Department of Psychology, Penn State University, State College, PA, USA
| |
Collapse
|
12
|
Kumaria A, Kirkman MA, Scott RA, Dow GR, Leggate AJ, Macarthur DC, Ingale HA, Smith SJ, Basu S. A Reappraisal of the Pathophysiology of Cushing Ulcer: A Narrative Review. J Neurosurg Anesthesiol 2024; 36:211-217. [PMID: 37188653 DOI: 10.1097/ana.0000000000000918] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 03/21/2023] [Indexed: 05/17/2023]
Abstract
In 1932, Harvey Cushing described peptic ulceration secondary to raised intracranial pressure and attributed this to vagal overactivity, causing excess gastric acid secretion. Cushing ulcer remains a cause of morbidity in patients, albeit one that is preventable. This narrative review evaluates the evidence pertaining to the pathophysiology of neurogenic peptic ulceration. Review of the literature suggests that the pathophysiology of Cushing ulcer may extend beyond vagal mechanisms for several reasons: (1) clinical and experimental studies have shown only a modest increase in gastric acid secretion in head-injured patients; (2) increased vagal tone is found in only a minority of cases of intracranial hypertension, most of which are related to catastrophic, nonsurvivable brain injury; (3) direct stimulation of the vagus nerve does not cause peptic ulceration, and; (4) Cushing ulcer can occur after acute ischemic stroke, but only a minority of strokes are associated with raised intracranial pressure and/or increased vagal tone. The 2005 Nobel Prize in Medicine honored the discovery that bacteria play key roles in the pathogenesis of peptic ulcer disease. Brain injury results in widespread changes in the gut microbiome in addition to gastrointestinal inflammation, including systemic upregulation of proinflammatory cytokines. Alternations in the gut microbiome in patients with severe traumatic brain injury include colonization with commensal flora associated with peptic ulceration. The brain-gut-microbiome axis integrates the central nervous system, the enteric nervous system, and the immune system. Following the review of the literature, we propose a novel hypothesis that neurogenic peptic ulcer may be associated with alterations in the gut microbiome, resulting in gastrointestinal inflammation leading to ulceration.
Collapse
Affiliation(s)
| | | | - Robert A Scott
- NIHR Biomedical Research Centre, Nottingham University Hospitals NHS Trust
- Nottingham Digestive Diseases Centre
| | - Graham R Dow
- Department of Neurosurgery, Queen's Medical Centre
| | | | | | | | - Stuart J Smith
- Department of Neurosurgery, Queen's Medical Centre
- Children's Brain Tumour Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Surajit Basu
- Department of Neurosurgery, Queen's Medical Centre
| |
Collapse
|
13
|
Irastorza-Valera L, Soria-Gómez E, Benitez JM, Montáns FJ, Saucedo-Mora L. Review of the Brain's Behaviour after Injury and Disease for Its Application in an Agent-Based Model (ABM). Biomimetics (Basel) 2024; 9:362. [PMID: 38921242 PMCID: PMC11202129 DOI: 10.3390/biomimetics9060362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
The brain is the most complex organ in the human body and, as such, its study entails great challenges (methodological, theoretical, etc.). Nonetheless, there is a remarkable amount of studies about the consequences of pathological conditions on its development and functioning. This bibliographic review aims to cover mostly findings related to changes in the physical distribution of neurons and their connections-the connectome-both structural and functional, as well as their modelling approaches. It does not intend to offer an extensive description of all conditions affecting the brain; rather, it presents the most common ones. Thus, here, we highlight the need for accurate brain modelling that can subsequently be used to understand brain function and be applied to diagnose, track, and simulate treatments for the most prevalent pathologies affecting the brain.
Collapse
Affiliation(s)
- Luis Irastorza-Valera
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
- PIMM Laboratory, ENSAM–Arts et Métiers ParisTech, 151 Bd de l’Hôpital, 75013 Paris, France
| | - Edgar Soria-Gómez
- Achúcarro Basque Center for Neuroscience, Barrio Sarriena, s/n, 48940 Leioa, Spain;
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi, 5, 48009 Bilbao, Spain
- Department of Neurosciences, University of the Basque Country UPV/EHU, Barrio Sarriena, s/n, 48940 Leioa, Spain
| | - José María Benitez
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
| | - Francisco J. Montáns
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Luis Saucedo-Mora
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Ave, Cambridge, MA 02139, USA
| |
Collapse
|
14
|
Abdul Razak LH, Denis T, Murugiah Y, Yoong WK, Idris Z, Senik MH. The Effect of Traumatic Brain Injury on Memory. Malays J Med Sci 2024; 31:52-74. [PMID: 38984242 PMCID: PMC11229567 DOI: 10.21315/mjms2024.31.3.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/22/2023] [Indexed: 07/11/2024] Open
Abstract
Having a good memory is essential for carrying out daily tasks. People cannot study, plan, remember or navigate life effectively if they are memoryless. People may be at risk when mistakes made in the past will be repeated and lessons regarding danger cannot be learned. In the community, traumatic brain injury (TBI) is common and individuals with TBI frequently have memory problems. It is crucial to study how TBI affects memory to better understand the underlying mechanism and to tailor rehabilitation for patients with a range of pathologies and severity levels. Thus, this paper aimed to review studies related to TBI's effect on memory. This review examined recent studies to learn more regarding and comprehend the connection between TBI and memory, including short-term memory (STM), working memory (WM) and long-term memory (LTM). This will undoubtedly have a big impact on how memory problems that may arise after TBI will be addressed. Virtual reality and other technological advancements have given the medical community a new way to investigate rehabilitative therapy.
Collapse
Affiliation(s)
| | - Tedd Denis
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Yoghaanjaly Murugiah
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Weng Kei Yoong
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Zamzuri Idris
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Mohd Harizal Senik
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| |
Collapse
|
15
|
Zheng F, Li W, Su S, Hui Q. Annexin A1 conveys neuroprotective function via inhibiting oxidative stress in diffuse axonal injury of rats. Neuroreport 2024; 35:466-475. [PMID: 38526918 DOI: 10.1097/wnr.0000000000002030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Diffuse axonal injury (DAI) is a critical pathological facet of traumatic brain injury (TBI). Oxidative stress plays a significant role in the progress of DAI. Annexin A1 (AnxA1) has been demonstrated to benefit from recovery of neurofunctional outcomes after TBI. However, whether AnxA1 exhibits neuronal protective function by modulating oxidative stress in DAI remains unknown. Expression of AnxA1 was evaluated via real-time PCR and western blotting in rat brainstem after DAI. The neurological effect of AnxA1 following DAI through quantification of modified neurologic severity score (mNSS) was compared between wild-type and AnxA1-knockout rats. Brain edema and neuronal apoptosis, as well as expression of oxidative factors and inflammatory cytokines, were analyzed between wild-type and AnxA1 deficiency rats after DAI. Furthermore, mNSS, oxidative and inflammatory cytokines were assayed after timely administration of recombinant AnxA1 for DAI rats. In the brainstem of DAI, the expression of AnxA1 remarkably increased. Ablation of AnxA1 increased the mNSS score and brain water content of rats after DAI. Neuron apoptosis in the brainstem after DAI was exaggerated by AnxA1 deficiency. In addition, AnxA1 deficiency significantly upregulated the level of oxidative and inflammatory factors in the brainstem of DAI rats. Moreover, mNSS decreased by AnxA1 treatment in rats following DAI. Expression of oxidative and inflammatory molecules in rat brainstem subjected to DAI inhibited by AnxA1 administration. AnxA1 exhibited neuronal protective function in the progression of DAI mainly dependent on suppressing oxidative stress and inflammation.
Collapse
Affiliation(s)
- Fengwei Zheng
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University
| | - Weixin Li
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University
| | - Shaobo Su
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Qiaoyan Hui
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, Shaanxi, China
| |
Collapse
|
16
|
Khasnavis S, Belliveau T, Arnsten A, Fesharaki-Zadeh A. Combined Use of Guanfacine and N-Acetylcysteine for the Treatment of Cognitive Deficits After Traumatic Brain Injury. Neurotrauma Rep 2024; 5:226-231. [PMID: 38524728 PMCID: PMC10960163 DOI: 10.1089/neur.2023.0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024] Open
Abstract
Traumatic Brain Injury (TBI) is a significant contributor to disability across the world. TBIs vary in severity, and most cases are designated mild TBI (mTBI), involving only brief loss of consciousness and no intracranial findings on imaging. Despite this categorization, many persons continue to report persistent cognitive changes in the months to years after injury, with particular impairment in the cognitive and executive functions of the pre-frontal cortex. For these persons, there are no currently approved medications, and treatment is limited to symptom management and cognitive or behavioral therapy. The current case studies explored the use of the alpha-2A adrenoreceptor agonist, guanfacine, combined with the antioxidant, N-acetylcysteine (NAC), in the treatment of post-TBI cognitive symptoms, based on guanfacine's ability to strengthen pre-frontal cortical function, and the open-label use of NAC in treating TBI. Two persons from our TBI clinic were treated with this combined regimen, with neuropsychological testing performed pre- and post-treatment. Guanfacine + NAC improved attention, processing speed, memory, and executive functioning with minimal side effects in both persons. These results encourage future placebo-controlled trials to more firmly establish the efficacy of guanfacine and NAC for the treatment of cognitive deficits caused by TBI.
Collapse
Affiliation(s)
- Siddharth Khasnavis
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Timothy Belliveau
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Amy Arnsten
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
| | - Arman Fesharaki-Zadeh
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
17
|
Lim L. Traumatic Brain Injury Recovery with Photobiomodulation: Cellular Mechanisms, Clinical Evidence, and Future Potential. Cells 2024; 13:385. [PMID: 38474349 DOI: 10.3390/cells13050385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Traumatic Brain Injury (TBI) remains a significant global health challenge, lacking effective pharmacological treatments. This shortcoming is attributed to TBI's heterogeneous and complex pathophysiology, which includes axonal damage, mitochondrial dysfunction, oxidative stress, and persistent neuroinflammation. The objective of this study is to analyze transcranial photobiomodulation (PBM), which employs specific red to near-infrared light wavelengths to modulate brain functions, as a promising therapy to address TBI's complex pathophysiology in a single intervention. This study reviews the feasibility of this therapy, firstly by synthesizing PBM's cellular mechanisms with each identified TBI's pathophysiological aspect. The outcomes in human clinical studies are then reviewed. The findings support PBM's potential for treating TBI, notwithstanding variations in parameters such as wavelength, power density, dose, light source positioning, and pulse frequencies. Emerging data indicate that each of these parameters plays a role in the outcomes. Additionally, new research into PBM's effects on the electrical properties and polymerization dynamics of neuronal microstructures, like microtubules and tubulins, provides insights for future parameter optimization. In summary, transcranial PBM represents a multifaceted therapeutic intervention for TBI with vast potential which may be fulfilled by optimizing the parameters. Future research should investigate optimizing these parameters, which is possible by incorporating artificial intelligence.
Collapse
Affiliation(s)
- Lew Lim
- Vielight Inc., Toronto, ON M4Y 2G8, Canada
| |
Collapse
|
18
|
Kumari M, Hasija Y, Trivedi R. Acute and sub-acute metabolic change in different brain regions induced by moderate blunt traumatic brain injury. Neuroreport 2024; 35:75-80. [PMID: 38064354 DOI: 10.1097/wnr.0000000000001982] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
The objective of the study was to observe the effect of moderate closed-head injury on hippocampal, thalamic, and striatal tissue metabolism with time. Closed head injury is responsible for metabolic changes. These changes can be permanent or temporary, depending on the injury's impact. For the experiment, 20 rats were randomly divided into four groups, each containing five animals. Animals were subjected to injury using a modified Marmarou's weight drop device; hippocampal, thalamic, and striatal tissue samples were collected after 1 day, 3 days, and 7 days of injury. NMR spectra were acquired following sample processing. Changes in myo-inositol, creatine, glutamate, succinate, lactate, and N-acetyl aspartic acid in hippocampal tissues were observed at day 3 PI. The tyrosine level in the hippocampus was altered at day 7 PI. While thalamic and striatal tissue samples showed altered levels of branched-chain amino acids and myo-inositol at day 1PI. Taurine, gamma amino butyric acid (GABA), choline, and alpha keto-glutarate levels were found to be significantly altered in striatal tissues at days 1 and 3PI. Acetate and GABA levels were altered in the thalamus on day 1 PI. The choline level in the thalamus was found to alter at all-time points after injury. The alteration in these metabolites may be due to the alteration in their respective pathways. Neurotransmitter and energy metabolism pathways were found to be altered in all three brain regions after TBI. This study may help better understand the effect of injury on the metabolic balance of a specific brain region and recovery.
Collapse
Affiliation(s)
- Megha Kumari
- Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Science (INMAS), DRDO
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Yasha Hasija
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Richa Trivedi
- Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Science (INMAS), DRDO
| |
Collapse
|
19
|
Zhang H, Yang Y, Zhang J, Huang L, Niu Y, Chen H, Liu Q, Wang R. Oligodendrocytes Play a Critical Role in White Matter Damage of Vascular Dementia. Neuroscience 2024; 538:1-10. [PMID: 37913862 DOI: 10.1016/j.neuroscience.2023.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/17/2023] [Accepted: 10/21/2023] [Indexed: 11/03/2023]
Abstract
With the deepening of population aging, the treatment of cognitive impairment and dementia is facing increasing challenges. Vascular dementia (VaD) is a cognitive dysfunction caused by brain blood flow damage and one of the most common causes of dementia after Alzheimer's disease. White matter damage in patients with chronic ischemic dementia often occurs before cognitive impairment, and its pathological changes include leukoaraiosis, myelin destruction and oligodendrocyte death. The pathophysiology of vascular dementia is complex, involving a variety of neuronal and vascular lesions. The current proposed mechanisms include calcium overload, oxidative stress, nitrative stress and inflammatory damage, which can lead to hypoxia-ischemia and demyelination. Oligodendrocytes are the only myelinating cells in the central nervous system and closely associated with VaD. In this review article, we intend to further discuss the role of oligodendrocytes in white matter and myelin injury in VaD and the development of anti-myelin injury target drugs.
Collapse
Affiliation(s)
- Hexin Zhang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Yanrong Yang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Jingjing Zhang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Li Huang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Yang Niu
- Key Laboratory of Modernization of Minority Medicine, Ministry of Education, Ningxia medical University, Yinchuan 750004, Ningxia, China
| | - Hua Chen
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Qibing Liu
- Department of Pharmacy, The First Affiliated Hospital of Hainan Medical University, Haikou 570100, China
| | - Rui Wang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| |
Collapse
|
20
|
Jia X, Li X, Ji Q, Yin B, Pan Y, Zhao W, Bai G, Zhang J, Bai L. Serum biomarkers and disease progression in CT-negative mild traumatic brain injury. Cereb Cortex 2024; 34:bhad405. [PMID: 37997466 DOI: 10.1093/cercor/bhad405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 11/25/2023] Open
Abstract
Blood proteins are emerging as potential biomarkers for mild traumatic brain injury (mTBI). Molecular pathology of mTBI underscores the critical roles of neuronal injury, neuroinflammation, and vascular health in disease progression. However, the temporal profile of blood biomarkers associated with the aforementioned molecular pathology after CT-negative mTBI, their diagnostic and prognostic potential, and their utility in monitoring white matter integrity and progressive brain atrophy remain unclear. Thus, we investigated serum biomarkers and neuroimaging in a longitudinal cohort, including 103 CT-negative mTBI patients and 66 matched healthy controls (HCs). Angiogenic biomarker vascular endothelial growth factor (VEGF) exhibited the highest area under the curve of 0.88 in identifying patients from HCs. Inflammatory biomarker interleukin-1β and neuronal cell body injury biomarker ubiquitin carboxyl-terminal hydrolase L1 were elevated in acute-stage patients and associated with deterioration of cognitive function from acute-stage to 6-12 mo post-injury period. Notably, axonal injury biomarker neurofilament light (NfL) was elevated in acute-stage patients, with higher levels associated with impaired white matter integrity in acute-stage and progressive gray and white matter atrophy from 3- to 6-12 mo post-injury period. Collectively, our findings emphasized the potential clinical value of serum biomarkers, particularly NfL and VEGF, in diagnosing mTBI and monitoring disease progression.
Collapse
Affiliation(s)
- Xiaoyan Jia
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xuan Li
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qiuyu Ji
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Bo Yin
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yizhen Pan
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Wenpu Zhao
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Guanghui Bai
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jie Zhang
- Department of Radiation Medicine, School of Preventive Medicine, Air Force Medical University, Xi'an 710032, China
| | - Lijun Bai
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
21
|
Korhonen O, Mononen M, Mohammadian M, Tenovuo O, Blennow K, Hossain I, Hutchinson P, Maanpää HR, Menon DK, Newcombe VF, Sanchez JC, Takala RSK, Tallus J, van Gils M, Zetterberg H, Posti JP. Outlier Analysis for Acute Blood Biomarkers of Moderate and Severe Traumatic Brain Injury. J Neurotrauma 2024; 41:91-105. [PMID: 37725575 DOI: 10.1089/neu.2023.0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023] Open
Abstract
Blood biomarkers have been studied to improve the clinical assessment and prognostication of patients with moderate-severe traumatic brain injury (mo/sTBI). To assess their clinical usability, one needs to know of potential factors that might cause outlier values and affect clinical decision making. In a prospective study, we recruited patients with mo/sTBI (n = 85) and measured the blood levels of eight protein brain pathophysiology biomarkers, including glial fibrillary acidic protein (GFAP), S100 calcium-binding protein B (S100B), neurofilament light (Nf-L), heart-type fatty acid-binding protein (H-FABP), interleukin-10 (IL-10), total tau (T-tau), amyloid β40 (Aβ40) and amyloid β42 (Aβ42), within 24 h of admission. Similar analyses were conducted for controls (n = 40) with an acute orthopedic injury without any head trauma. The patients with TBI were divided into subgroups of normal versus abnormal (n = 9/76) head computed tomography (CT) and favorable (Glasgow Outcome Scale Extended [GOSE] 5-8) versus unfavorable (GOSE <5) (n = 38/42, 5 missing) outcome. Outliers were sought individually from all subgroups from and the whole TBI patient population. Biomarker levels outside Q1 - 1.5 interquartile range (IQR) or Q3 + 1.5 IQR were considered as outliers. The medical records of each outlier patient were reviewed in a team meeting to determine possible reasons for outlier values. A total of 29 patients (34%) combined from all subgroups and 12 patients (30%) among the controls showed outlier values for one or more of the eight biomarkers. Nine patients with TBI and five control patients had outlier values in more than one biomarker (up to 4). All outlier values were > Q3 + 1.5 IQR. A logical explanation was found for almost all cases, except the amyloid proteins. Explanations for outlier values included extremely severe injury, especially for GFAP and S100B. In the case of H-FABP and IL-10, the explanation was extracranial injuries (thoracic injuries for H-FABP and multi-trauma for IL-10), in some cases these also were associated with abnormally high S100B. Timing of sampling and demographic factors such as age and pre-existing neurological conditions (especially for T-tau), explained some of the abnormally high values especially for Nf-L. Similar explanations also emerged in controls, where the outlier values were caused especially by pre-existing neurological diseases. To utilize blood-based biomarkers in clinical assessment of mo/sTBI, very severe or fatal TBIs, various extracranial injuries, timing of sampling, and demographic factors such as age and pre-existing systemic or neurological conditions must be taken into consideration. Very high levels seem to be often associated with poor prognosis and mortality (GFAP and S100B).
Collapse
Affiliation(s)
- Otto Korhonen
- Neurocenter, Department of Neurosurgery, Turku University Hospital and University of Turku, Turko, Finland
- Turku Brain Injury Center, Turku University Hospital and University of Turku, Turko, Finland
- Department of Clinical Neurosciences, Turku University Hospital and University of Turku, Turko, Finland
| | - Malla Mononen
- Neurocenter, Department of Neurosurgery, Turku University Hospital and University of Turku, Turko, Finland
- Turku Brain Injury Center, Turku University Hospital and University of Turku, Turko, Finland
- Department of Clinical Neurosciences, Turku University Hospital and University of Turku, Turko, Finland
| | - Mehrbod Mohammadian
- Turku Brain Injury Center, Turku University Hospital and University of Turku, Turko, Finland
- Department of Clinical Neurosciences, Turku University Hospital and University of Turku, Turko, Finland
| | - Olli Tenovuo
- Turku Brain Injury Center, Turku University Hospital and University of Turku, Turko, Finland
- Department of Clinical Neurosciences, Turku University Hospital and University of Turku, Turko, Finland
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Iftakher Hossain
- Neurocenter, Department of Neurosurgery, Turku University Hospital and University of Turku, Turko, Finland
- Turku Brain Injury Center, Turku University Hospital and University of Turku, Turko, Finland
- Department of Clinical Neurosciences, Turku University Hospital and University of Turku, Turko, Finland
- Department of Clinical Neurosciences, Neurosurgery Unit, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Peter Hutchinson
- Department of Clinical Neurosciences, Neurosurgery Unit, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Henna-Riikka Maanpää
- Neurocenter, Department of Neurosurgery, Turku University Hospital and University of Turku, Turko, Finland
- Turku Brain Injury Center, Turku University Hospital and University of Turku, Turko, Finland
- Department of Clinical Neurosciences, Turku University Hospital and University of Turku, Turko, Finland
| | - David K Menon
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Virginia F Newcombe
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Jean-Charles Sanchez
- Department of Specialities of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Riikka S K Takala
- Perioperative Services, Intensive Care Medicine and Pain Management, Turku University Hospital and University of Turku, Finland
| | - Jussi Tallus
- Turku Brain Injury Center, Turku University Hospital and University of Turku, Turko, Finland
- Department of Clinical Neurosciences, Turku University Hospital and University of Turku, Turko, Finland
- Department of Radiology, Turku University Hospital and University of Turku, Finland
| | - Mark van Gils
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, United Kingdom
- UK Dementia Research Institute at UCL, University College London, London, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jussi P Posti
- Neurocenter, Department of Neurosurgery, Turku University Hospital and University of Turku, Turko, Finland
- Turku Brain Injury Center, Turku University Hospital and University of Turku, Turko, Finland
- Department of Clinical Neurosciences, Turku University Hospital and University of Turku, Turko, Finland
| |
Collapse
|
22
|
Gan S, Sun Y, Liu K, Jia X, Li X, Zhang M, Bai L. APOE ε4 allele status modulates the spatial patterns of progressive atrophy in the temporal lobes after mild traumatic brain injury. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e12550. [PMID: 38371357 PMCID: PMC10870335 DOI: 10.1002/dad2.12550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/20/2024]
Abstract
INTRODUCTION We evaluated how the apolipoprotein E (APOE) ε4 allele modulated the spatial patterns of longitudinal atrophy in the Alzheimer's disease-vulnerable brain areas of patients with mild traumatic brain injury (mTBI) from the acute to chronic phase post injury. METHODS Fifty-nine adult patients with acute mTBI and 48 healthy controls with APOE ε4 allele testing underwent T1-weighted magnetic resonance imaging and neuropsychological assessments with 6 to 12 months of follow-up. Progressive brain volume loss was compared voxel-wise in the temporal lobes. RESULTS Patients with the APOE ε4 allele presented significant longitudinal atrophy in the left superior and middle temporal gyri, where the progressive gray matter volume loss predicted longitudinal impairment in language fluency, whereas mTBI APOE ε4 allele noncarriers showed mainly significant longitudinal atrophy in the medial temporal lobes, without significant neuropsychological relevance. DISCUSSION The atrophy progression observed in mTBI patients with the APOE ε4 allele may increase the possibility of developing a specific phenotype of Alzheimer's disease with language dysfunction. Highlights The apolipoprotein E (APOE) ε4 allele and mild traumatic brain injury (mTBI) are risk factors for Alzheimer's disease (AD) progression.It is unclear how the interaction of mTBI with the APOE ε4 allele impacts the progressive atrophy topography in AD-vulnerable brain regions.In this study, patients with the APOE ε4 allele showed progressive atrophy patterns similar to the early stage of logopenic variant of primary progressive aphasia (lvPPA) phenotype of AD. APOE ε4 allele carriers with mTBI history may be at the risk of developing a given AD phenotype with language dysfunction.
Collapse
Affiliation(s)
- Shuoqiu Gan
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and TechnologyXi'an Jiaotong UniversityXi'anChina
- Institute of Artificial IntelligenceHefei Comprehensive National Science CenterHefeiChina
- Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
- Department of Medical Imagingthe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Yingxiang Sun
- Department of Medical Imagingthe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Kejia Liu
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and TechnologyXi'an Jiaotong UniversityXi'anChina
| | - Xiaoyan Jia
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and TechnologyXi'an Jiaotong UniversityXi'anChina
| | - Xuan Li
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and TechnologyXi'an Jiaotong UniversityXi'anChina
| | - Ming Zhang
- Department of Medical Imagingthe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Lijun Bai
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and TechnologyXi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
23
|
Garza R, Sharma Y, Atacho DAM, Thiruvalluvan A, Abu Hamdeh S, Jönsson ME, Horvath V, Adami A, Ingelsson M, Jern P, Hammell MG, Englund E, Kirkeby A, Jakobsson J, Marklund N. Single-cell transcriptomics of human traumatic brain injury reveals activation of endogenous retroviruses in oligodendroglia. Cell Rep 2023; 42:113395. [PMID: 37967557 DOI: 10.1016/j.celrep.2023.113395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/05/2023] [Accepted: 10/20/2023] [Indexed: 11/17/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of chronic brain impairment and results in a robust, but poorly understood, neuroinflammatory response that contributes to the long-term pathology. We used single-nuclei RNA sequencing (snRNA-seq) to study transcriptomic changes in different cell populations in human brain tissue obtained acutely after severe, life-threatening TBI. This revealed a unique transcriptional response in oligodendrocyte precursors and mature oligodendrocytes, including the activation of a robust innate immune response, indicating an important role for oligodendroglia in the initiation of neuroinflammation. The activation of an innate immune response correlated with transcriptional upregulation of endogenous retroviruses in oligodendroglia. This observation was causally linked in vitro using human glial progenitors, implicating these ancient viral sequences in human neuroinflammation. In summary, this work provides insight into the initiating events of the neuroinflammatory response in TBI, which has therapeutic implications.
Collapse
Affiliation(s)
- Raquel Garza
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, 221 84 Lund, Sweden
| | - Yogita Sharma
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, 221 84 Lund, Sweden
| | - Diahann A M Atacho
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, 221 84 Lund, Sweden
| | - Arun Thiruvalluvan
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW) and Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Sami Abu Hamdeh
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Marie E Jönsson
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, 221 84 Lund, Sweden
| | - Vivien Horvath
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, 221 84 Lund, Sweden
| | - Anita Adami
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, 221 84 Lund, Sweden
| | - Martin Ingelsson
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden; Tanz Centre for Research in Neurodegenerative Diseases, Departments of Medicine and Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada; Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Patric Jern
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Molly Gale Hammell
- Institute for Systems Genetics, Department of Neuroscience and Physiology, NYU Langone Health, New York, NY 10016, USA; Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10003, USA
| | - Elisabet Englund
- Department of Clinical Sciences Lund, Division of Pathology, Lund University, Lund, Sweden
| | - Agnete Kirkeby
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW) and Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark; Department of Experimental Medical Science, Wallenberg Center for Molecular Medicine and Lund Stem Cell Center, Lund University, 221 84 Lund, Sweden
| | - Johan Jakobsson
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, 221 84 Lund, Sweden.
| | - Niklas Marklund
- Department of Clinical Sciences Lund, Neurosurgery, Lund University, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
24
|
Zegarra-Valdivia JA, Pignatelli J, Nuñez A, Torres Aleman I. The Role of Insulin-like Growth Factor I in Mechanisms of Resilience and Vulnerability to Sporadic Alzheimer's Disease. Int J Mol Sci 2023; 24:16440. [PMID: 38003628 PMCID: PMC10671249 DOI: 10.3390/ijms242216440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Despite decades of intense research, disease-modifying therapeutic approaches for Alzheimer's disease (AD) are still very much needed. Apart from the extensively analyzed tau and amyloid pathological cascades, two promising avenues of research that may eventually identify new druggable targets for AD are based on a better understanding of the mechanisms of resilience and vulnerability to this condition. We argue that insulin-like growth factor I (IGF-I) activity in the brain provides a common substrate for the mechanisms of resilience and vulnerability to AD. We postulate that preserved brain IGF-I activity contributes to resilience to AD pathology as this growth factor intervenes in all the major pathological cascades considered to be involved in AD, including metabolic impairment, altered proteostasis, and inflammation, to name the three that are considered to be the most important ones. Conversely, disturbed IGF-I activity is found in many AD risk factors, such as old age, type 2 diabetes, imbalanced diet, sedentary life, sociality, stroke, stress, and low education, whereas the Apolipoprotein (Apo) E4 genotype and traumatic brain injury may also be influenced by brain IGF-I activity. Accordingly, IGF-I activity should be taken into consideration when analyzing these processes, while its preservation will predictably help prevent the progress of AD pathology. Thus, we need to define IGF-I activity in all these conditions and develop a means to preserve it. However, defining brain IGF-I activity cannot be solely based on humoral or tissue levels of this neurotrophic factor, and new functionally based assessments need to be developed.
Collapse
Affiliation(s)
- Jonathan A. Zegarra-Valdivia
- Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain;
- Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain;
- School of Medicine, Universidad Señor de Sipán, Chiclayo 14000, Peru
| | - Jaime Pignatelli
- Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain;
- Cajal Institute (CSIC), 28002 Madrid, Spain
| | - Angel Nuñez
- Department of Anatomy, Histology and Neuroscience, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - Ignacio Torres Aleman
- Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain;
- Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain;
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
25
|
Yu F, Iacono D, Perl DP, Lai C, Gill J, Le TQ, Lee P, Sukumar G, Armstrong RC. Neuronal tau pathology worsens late-phase white matter degeneration after traumatic brain injury in transgenic mice. Acta Neuropathol 2023; 146:585-610. [PMID: 37578550 PMCID: PMC10499978 DOI: 10.1007/s00401-023-02622-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
Traumatic brain injury (TBI) causes diffuse axonal injury which can produce chronic white matter pathology and subsequent post-traumatic neurodegeneration with poor patient outcomes. Tau modulates axon cytoskeletal functions and undergoes phosphorylation and mis-localization in neurodegenerative disorders. The effects of tau pathology on neurodegeneration after TBI are unclear. We used mice with neuronal expression of human mutant tau to examine effects of pathological tau on white matter pathology after TBI. Adult male and female hTau.P301S (Tg2541) transgenic and wild-type (Wt) mice received either moderate single TBI (s-TBI) or repetitive mild TBI (r-mTBI; once daily × 5), or sham procedures. Acutely, s-TBI produced more extensive axon damage in the corpus callosum (CC) as compared to r-mTBI. After s-TBI, significant CC thinning was present at 6 weeks and 4 months post-injury in Wt and transgenic mice, with homozygous tau expression producing additional pathology of late demyelination. In contrast, r-mTBI did not produce significant CC thinning except at the chronic time point of 4 months in homozygous mice, which exhibited significant CC atrophy (- 29.7%) with increased microgliosis. Serum neurofilament light quantification detected traumatic axonal injury at 1 day post-TBI in Wt and homozygous mice. At 4 months, high tau and neurofilament in homozygous mice implicated tau in chronic axon pathology. These findings did not have sex differences detected. Conclusions: Neuronal tau pathology differentially exacerbated CC pathology based on injury severity and chronicity. Ongoing CC atrophy from s-TBI became accompanied by late demyelination. Pathological tau significantly worsened CC atrophy during the chronic phase after r-mTBI.
Collapse
Affiliation(s)
- Fengshan Yu
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD, 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Diego Iacono
- Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Defense-Uniformed Services University Brain Tissue Repository, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Daniel P Perl
- Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Defense-Uniformed Services University Brain Tissue Repository, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Chen Lai
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | - Tuan Q Le
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD, 20814, USA
| | - Patricia Lee
- Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Defense-Uniformed Services University Brain Tissue Repository, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Gauthaman Sukumar
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD, 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Regina C Armstrong
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD, 20814, USA.
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
26
|
Hansson MJ, Elmér E. Cyclosporine as Therapy for Traumatic Brain Injury. Neurotherapeutics 2023; 20:1482-1495. [PMID: 37561274 PMCID: PMC10684836 DOI: 10.1007/s13311-023-01414-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2023] [Indexed: 08/11/2023] Open
Abstract
Drug development in traumatic brain injury (TBI) has been impeded by the complexity and heterogeneity of the disease pathology, as well as limited understanding of the secondary injury cascade that follows the initial trauma. As a result, patients with TBI have an unmet need for effective pharmacological therapies. One promising drug candidate is cyclosporine, a polypeptide traditionally used to achieve immunosuppression in transplant recipients. Cyclosporine inhibits mitochondrial permeability transition, thereby reducing secondary brain injury, and has shown neuroprotective effects in multiple preclinical models of TBI. Moreover, the cyclosporine formulation NeuroSTAT® displayed positive effects on injury biomarker levels in patients with severe TBI enrolled in the Phase Ib/IIa Copenhagen Head Injury Ciclosporin trial (NCT01825044). Future research on neuroprotective compounds such as cyclosporine should take advantage of recent advances in fluid-based biomarkers and neuroimaging to select patients with similar disease pathologies for clinical trials. This would increase statistical power and allow for more accurate assessment of long-term outcomes.
Collapse
Affiliation(s)
- Magnus J Hansson
- Abliva AB, Lund, Sweden.
- Department of Clinical Sciences, Mitochondrial Medicine, Lund University, Lund, Sweden.
| | - Eskil Elmér
- Abliva AB, Lund, Sweden
- Department of Clinical Sciences, Mitochondrial Medicine, Lund University, Lund, Sweden
| |
Collapse
|
27
|
Brennan DJ, Duda J, Ware JB, Whyte J, Choi JY, Gugger J, Focht K, Walter AE, Bushnik T, Gee JC, Diaz‐Arrastia R, Kim JJ. Spatiotemporal profile of atrophy in the first year following moderate-severe traumatic brain injury. Hum Brain Mapp 2023; 44:4692-4709. [PMID: 37399336 PMCID: PMC10400790 DOI: 10.1002/hbm.26410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/04/2023] [Accepted: 06/12/2023] [Indexed: 07/05/2023] Open
Abstract
Traumatic brain injury (TBI) triggers progressive neurodegeneration resulting in brain atrophy that continues months-to-years following injury. However, a comprehensive characterization of the spatial and temporal evolution of TBI-related brain atrophy remains incomplete. Utilizing a sensitive and unbiased morphometry analysis pipeline optimized for detecting longitudinal changes, we analyzed a sample consisting of 37 individuals with moderate-severe TBI who had primarily high-velocity and high-impact injury mechanisms. They were scanned up to three times during the first year after injury (3 months, 6 months, and 12 months post-injury) and compared with 33 demographically matched controls who were scanned once. Individuals with TBI already showed cortical thinning in frontal and temporal regions and reduced volume in the bilateral thalami at 3 months post-injury. Longitudinally, only a subset of cortical regions in the parietal and occipital lobes showed continued atrophy from 3 to 12 months post-injury. Additionally, cortical white matter volume and nearly all deep gray matter structures exhibited progressive atrophy over this period. Finally, we found that disproportionate atrophy of cortex along sulci relative to gyri, an emerging morphometric marker of chronic TBI, was present as early as 3 month post-injury. In parallel, neurocognitive functioning largely recovered during this period despite this pervasive atrophy. Our findings demonstrate msTBI results in characteristic progressive neurodegeneration patterns that are divergent across regions and scale with the severity of injury. Future clinical research using atrophy during the first year of TBI as a biomarker of neurodegeneration should consider the spatiotemporal profile of atrophy described in this study.
Collapse
Affiliation(s)
- Daniel J. Brennan
- CUNY Neuroscience Collaborative, The Graduate CenterCity University of New YorkNew YorkNew YorkUnited States
- Department of Molecular, Cellular, and Biomedical SciencesCUNY School of Medicine, The City College of New YorkNew YorkNew YorkUnited States
| | - Jeffrey Duda
- Department of RadiologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUnited States
- Penn Image Computing and Science LaboratoryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUnited States
| | - Jeffrey B. Ware
- Department of RadiologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUnited States
| | - John Whyte
- Moss Rehabilitation Research Institute, Einstein Healthcare NetworkElkins ParkPennsylvaniaUnited States
| | - Joon Yul Choi
- Department of Molecular, Cellular, and Biomedical SciencesCUNY School of Medicine, The City College of New YorkNew YorkNew YorkUnited States
- Department of Biomedical EngineeringYonsei UniversityWonjuRepublic of Korea
| | - James Gugger
- Department of NeurologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUnited States
| | - Kristen Focht
- Widener University School for Graduate Clinical PsychologyChesterPennsylvaniaUnited States
| | - Alexa E. Walter
- Department of NeurologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUnited States
| | - Tamara Bushnik
- NYU Grossman School of MedicineNew YorkNew YorkUnited States
| | - James C. Gee
- Department of RadiologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUnited States
- Penn Image Computing and Science LaboratoryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUnited States
| | - Ramon Diaz‐Arrastia
- Department of NeurologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUnited States
| | - Junghoon J. Kim
- CUNY Neuroscience Collaborative, The Graduate CenterCity University of New YorkNew YorkNew YorkUnited States
- Department of Molecular, Cellular, and Biomedical SciencesCUNY School of Medicine, The City College of New YorkNew YorkNew YorkUnited States
| |
Collapse
|
28
|
Sanchez-Molano J, Blaya MO, Padgett KR, Moreno WJ, Zhao W, Dietrich WD, Bramlett HM. Multimodal magnetic resonance imaging after experimental moderate and severe traumatic brain injury: A longitudinal correlative assessment of structural and cerebral blood flow changes. PLoS One 2023; 18:e0289786. [PMID: 37549175 PMCID: PMC10406285 DOI: 10.1371/journal.pone.0289786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023] Open
Abstract
Traumatic brain injury (TBI) is a worldwide problem that results in death or disability for millions of people every year. Progressive neurological complications and long-term impairment can significantly disrupt quality of life. We demonstrated the feasibility of multiple magnetic resonance imaging (MRI) modalities to investigate and predict aberrant changes and progressive atrophy of gray and white matter tissue at several acute and chronic time points after moderate and severe parasagittal fluid percussion TBI. T2-weighted imaging, diffusion tensor imaging (DTI), and perfusion weighted imaging (PWI) were performed. Adult Sprague-Dawley rats were imaged sequentially on days 3, 14, and 1, 4, 6, 8, and 12 months following surgery. TBI caused dynamic white and gray matter alterations with significant differences in DTI values and injury-induced alterations in cerebral blood flow (CBF) as measured by PWI. Regional abnormalities after TBI were observed in T2-weighted images that showed hyperintense cortical lesions and significant cerebral atrophy in these hyperintense areas 1 year after TBI. Temporal DTI values indicated significant injury-induced changes in anisotropy in major white matter tracts, the corpus callosum and external capsule, and in gray matter, the hippocampus and cortex, at both early and chronic time points. These alterations were primarily injury-severity dependent with severe TBI exhibiting a greater degree of change relative to uninjured controls. PWI evaluating CBF revealed sustained global reductions in the cortex and in the hippocampus at most time points in an injury-independent manner. We next sought to investigate prognostic correlations across MRI metrics, timepoints, and cerebral pathology, and found that diffusion abnormalities and reductions in CBF significantly correlated with specific vulnerable structures at multiple time points, as well as with the degree of cerebral atrophy observed 1 year after TBI. This study further supports using DTI and PWI as a means of prognostic imaging for progressive structural changes after TBI and emphasizes the progressive nature of TBI damage.
Collapse
Affiliation(s)
- Juliana Sanchez-Molano
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Meghan O. Blaya
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Kyle R. Padgett
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - William J. Moreno
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Weizhao Zhao
- Department of Biomedical Engineering, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - W. Dalton Dietrich
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Helen M. Bramlett
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida, United States of America
| |
Collapse
|
29
|
Siqueira Pinto M, Winzeck S, Kornaropoulos EN, Richter S, Paolella R, Correia MM, Glocker B, Williams G, Vik A, Posti JP, Haberg A, Stenberg J, Guns PJ, den Dekker AJ, Menon DK, Sijbers J, Van Dyck P, Newcombe VFJ. Use of Support Vector Machines Approach via ComBat Harmonized Diffusion Tensor Imaging for the Diagnosis and Prognosis of Mild Traumatic Brain Injury: A CENTER-TBI Study. J Neurotrauma 2023; 40:1317-1338. [PMID: 36974359 DOI: 10.1089/neu.2022.0365] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
The prediction of functional outcome after mild traumatic brain injury (mTBI) is challenging. Conventional magnetic resonance imaging (MRI) does not do a good job of explaining the variance in outcome, as many patients with incomplete recovery will have normal-appearing clinical neuroimaging. More advanced quantitative techniques such as diffusion MRI (dMRI), can detect microstructural changes not otherwise visible, and so may offer a way to improve outcome prediction. In this study, we explore the potential of linear support vector classifiers (linearSVCs) to identify dMRI biomarkers that can predict recovery after mTBI. Simultaneously, the harmonization of fractional anisotropy (FA) and mean diffusivity (MD) via ComBat was evaluated and compared for the classification performances of the linearSVCs. We included dMRI scans of 179 mTBI patients and 85 controls from the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI), a multi-center prospective cohort study, up to 21 days post-injury. Patients were dichotomized according to their Extended Glasgow Outcome Scale (GOSE) scores at 6 months into complete (n = 92; GOSE = 8) and incomplete (n = 87; GOSE <8) recovery. FA and MD maps were registered to a common space and harmonized via the ComBat algorithm. LinearSVCs were applied to distinguish: (1) mTBI patients from controls and (2) mTBI patients with complete from those with incomplete recovery. The linearSVCs were trained on (1) age and sex only, (2) non-harmonized, (3) two-category-harmonized ComBat, and (4) three-category-harmonized ComBat FA and MD images combined with age and sex. White matter FA and MD voxels and regions of interest (ROIs) within the John Hopkins University (JHU) atlas were examined. Recursive feature elimination was used to identify the 10% most discriminative voxels or the 10 most discriminative ROIs for each implementation. mTBI patients displayed significantly higher MD and lower FA values than controls for the discriminative voxels and ROIs. For the analysis between mTBI patients and controls, the three-category-harmonized ComBat FA and MD voxel-wise linearSVC provided significantly higher classification scores (81.4% accuracy, 93.3% sensitivity, 80.3% F1-score, and 0.88 area under the curve [AUC], p < 0.05) compared with the classification based on age and sex only and the ROI approaches (accuracies: 59.8% and 64.8%, respectively). Similar to the analysis between mTBI patients and controls, the three-category-harmonized ComBat FA and MD maps voxelwise approach yields statistically significant prediction scores between mTBI patients with complete and those with incomplete recovery (71.8% specificity, 66.2% F1-score and 0.71 AUC, p < 0.05), which provided a modest increase in the classification score (accuracy: 66.4%) compared with the classification based on age and sex only and ROI-wise approaches (accuracy: 61.4% and 64.7%, respectively). This study showed that ComBat harmonized FA and MD may provide additional information for diagnosis and prognosis of mTBI in a multi-modal machine learning approach. These findings demonstrate that dMRI may assist in the early detection of patients at risk of incomplete recovery from mTBI.
Collapse
Affiliation(s)
- Maíra Siqueira Pinto
- Department of Radiology, Antwerp University Hospital, Antwerp, Belgium
- imec-Vision Lab, University of Antwerp, Antwerp, Belgium
- μNEURO Research Center of Excellence, University of Antwerp, Antwerp, Belgium
| | - Stefan Winzeck
- BioMedIA Group, Department of Computing, Imperial College London, London, United Kingdom
- Division of Anaesthesia, Department of Medicine, Department of Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Evgenios N Kornaropoulos
- Division of Anaesthesia, Department of Medicine, Department of Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Sophie Richter
- Division of Anaesthesia, Department of Medicine, Department of Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Roberto Paolella
- imec-Vision Lab, University of Antwerp, Antwerp, Belgium
- μNEURO Research Center of Excellence, University of Antwerp, Antwerp, Belgium
- Icometrix, Leuven, Belgium
| | - Marta M Correia
- MRC Cognition and Brain Sciences Unit, Department of Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Ben Glocker
- BioMedIA Group, Department of Computing, Imperial College London, London, United Kingdom
| | - Guy Williams
- Wolfson Brain Imaging Centre, Department of Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Anne Vik
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Neurosurgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Jussi P Posti
- Department of Neurosurgery and Turku Brain Injury Center, Turku University Hospital and University of Turku, Turku, Finland
| | - Asta Haberg
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Jonas Stenberg
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | | | - Arnold J den Dekker
- imec-Vision Lab, University of Antwerp, Antwerp, Belgium
- μNEURO Research Center of Excellence, University of Antwerp, Antwerp, Belgium
| | - David K Menon
- Division of Anaesthesia, Department of Medicine, Department of Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Jan Sijbers
- imec-Vision Lab, University of Antwerp, Antwerp, Belgium
- μNEURO Research Center of Excellence, University of Antwerp, Antwerp, Belgium
| | - Pieter Van Dyck
- Department of Radiology, Antwerp University Hospital, Antwerp, Belgium
- mVISION, University of Antwerp, Antwerp, Belgium
| | - Virginia F J Newcombe
- Division of Anaesthesia, Department of Medicine, Department of Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
30
|
Graham NS, Cole JH, Bourke NJ, Schott JM, Sharp DJ. Distinct patterns of neurodegeneration after TBI and in Alzheimer's disease. Alzheimers Dement 2023; 19:3065-3077. [PMID: 36696255 PMCID: PMC10955776 DOI: 10.1002/alz.12934] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Traumatic brain injury (TBI) is a dementia risk factor, with Alzheimer's disease (AD) more common following injury. Patterns of neurodegeneration produced by TBI can be compared to AD and aging using volumetric MRI. METHODS A total of 55 patients after moderate to severe TBI (median age 40), 45 with AD (median age 69), and 61 healthy volunteers underwent magnetic resonance imaging over 2 years. Atrophy patterns were compared. RESULTS AD patients had markedly lower baseline volumes. TBI was associated with increased white matter (WM) atrophy, particularly involving corticospinal tracts and callosum, whereas AD rates were increased across white and gray matter (GM). Subcortical WM loss was shared in AD/TBI, but deep WM atrophy was TBI-specific and cortical atrophy AD-specific. Post-TBI atrophy patterns were distinct from aging, which resembled AD. DISCUSSION Post-traumatic neurodegeneration 1.9-4.0 years (median) following moderate-severe TBI is distinct from aging/AD, predominantly involving central WM. This likely reflects distributions of axonal injury, a neurodegeneration trigger. HIGHLIGHTS We compared patterns of brain atrophy longitudinally after moderate to severe TBI in late-onset AD and healthy aging. Patients after TBI had abnormal brain atrophy involving the corpus callosum and other WM tracts, including corticospinal tracts, in a pattern that was specific and distinct from AD and aging. This pattern is reminiscent of axonal injury following TBI, and atrophy rates were predicted by the extent of axonal injury on diffusion tensor imaging, supporting a relationship between early axonal damage and chronic neurodegeneration.
Collapse
Affiliation(s)
- Neil S.N. Graham
- Department of Brain SciencesImperial College LondonLondonUK
- UK Dementia Research Institute Centre for Care Research and Technology at Imperial College LondonLondonUK
| | - James H. Cole
- Dementia Research CentreUCL Queen Square Institute of NeurologyLondonUK
- Centre for Medical Image ComputingUCLLondonUK
| | - Niall J. Bourke
- Department of Brain SciencesImperial College LondonLondonUK
- UK Dementia Research Institute Centre for Care Research and Technology at Imperial College LondonLondonUK
| | | | - David J. Sharp
- Department of Brain SciencesImperial College LondonLondonUK
- UK Dementia Research Institute Centre for Care Research and Technology at Imperial College LondonLondonUK
- Centre for Injury StudiesImperial College LondonLondonUK
| |
Collapse
|
31
|
Sang XZ, Wang CQ, Chen W, Rong H, Hou LJ. An exhaustive analysis of post-traumatic brain injury dementia using bibliometric methodologies. Front Neurol 2023; 14:1165059. [PMID: 37456644 PMCID: PMC10345842 DOI: 10.3389/fneur.2023.1165059] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Background It is widely accepted that traumatic brain injury (TBI) increases the risk of developing long-term dementia, although some controversies surrounding this topic exist. Annually, approximately 69 million individuals suffer from TBI all around the world. Such a large population of TBI patients could lead to a future surge in the number of dementia patients. Due to the potentially severe consequences of TBI, various research projects on post-TBI dementia have emerged worldwide. Therefore, it is essential to comprehend the current status and development of post-TBI dementia for future research. Objective The purpose of the study was to provide an overview of the field and identify hotspots, research frontiers, and future research trends for post-TBI dementia. Methods Articles related to post-TBI dementia were retrieved from the Web of Science Core Collection for the period between 2007 and 2022, and analyzing them based on factors such as citations, authors, institutions, countries, journals, keywords, and references. Data analysis and visualization were conducted using VOSviewer, CiteSpace, and an online bibliometric platform (https://bibliometric.com). Results From 2007 to 2022, we obtained a total of 727 articles from 3,780 authors and 1,126 institutions across 52 countries, published in 262 journals. These articles received a total of 29,353 citations, citing 25,713 references from 3,921 journals. Over the last 15 years, there has been a significant upward trend in both publications and citations. The most productive country was the United States, the most productive institution was Boston University, and the most productive author was McKee AC. Journal of Neurotrauma has been identified as the periodical with the greatest number of publications. Three clusters were identified through cluster analysis of keywords. A burst in the use of the term "outcome" in 2019 is indicative of a future research hotspot. The timeline view of references showed 14 clusters, of which the first 4 clusters collected the majority of papers. The first 4 clusters were "chronic traumatic encephalopathy," "age of onset," "tauopathy," and "cognitive decline," respectively, suggesting some areas of interest in the field. Conclusion The subject of post-TBI dementia has raised much interest from scientists. Notably, America is at the forefront of research in this area. Further collaborative research between different countries is imperative. Two topical issues in this field are "The association between TBI and dementia-related alterations" and "chronic traumatic encephalopathy (CTE)." Studies on clinical manifestation, therapy, pathology, and pathogenic mechanisms are also popular in the field.
Collapse
Affiliation(s)
- Xian-Zheng Sang
- Department of Neurosurgery, The Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Cheng-Qing Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Wen Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Hong Rong
- Department of Outpatient, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Li-Jun Hou
- Department of Neurosurgery, The Second Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
32
|
Pavlichenko M, Lafrenaye AD. The Central Fluid Percussion Brain Injury in a Gyrencephalic Pig Brain: Scalable Diffuse Injury and Tissue Viability for Glial Cell Immunolabeling following Long-Term Refrigerated Storage. Biomedicines 2023; 11:1682. [PMID: 37371777 PMCID: PMC10295711 DOI: 10.3390/biomedicines11061682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Traumatic brain injury (TBI) affects millions of people annually; however, our knowledge of the diffuse pathologies associated with TBI is limited. As diffuse pathologies, including axonal injury and neuroinflammatory changes, are difficult to visualize in the clinical population, animal models are used. In the current study, we used the central fluid percussion injury (CFPI) model in a micro pig to study the potential scalability of these diffuse pathologies in a gyrencephalic brain of a species with inflammatory systems very similar to humans. We found that both axonal injury and microglia activation within the thalamus and corpus callosum are positively correlated with the weight-normalized pressure pulse, while subtle changes in blood gas and mean arterial blood pressure are not. We also found that the majority of tissue generated up to 10 years previously is viable for immunofluorescent labeling after long-term refrigeration storage. This study indicates that a micro pig CFPI model could allow for specific investigations of various degrees of diffuse pathological burdens following TBI.
Collapse
Affiliation(s)
- Mark Pavlichenko
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298-0709, USA
| | - Audrey D. Lafrenaye
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298-0709, USA
- Richmond Veterans Affairs Medical Center, Richmond, VA 23249-4915, USA
| |
Collapse
|
33
|
Li LM, Heslegrave A, Soreq E, Nattino G, Rosnati M, Garbero E, Zimmerman KA, Graham NSN, Moro F, Novelli D, Gradisek P, Magnoni S, Glocker B, Zetterberg H, Bertolini G, Sharp DJ. Investigating the characteristics and correlates of systemic inflammation after traumatic brain injury: the TBI-BraINFLAMM study. BMJ Open 2023; 13:e069594. [PMID: 37221026 DOI: 10.1136/bmjopen-2022-069594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/25/2023] Open
Abstract
INTRODUCTION A significant environmental risk factor for neurodegenerative disease is traumatic brain injury (TBI). However, it is not clear how TBI results in ongoing chronic neurodegeneration. Animal studies show that systemic inflammation is signalled to the brain. This can result in sustained and aggressive microglial activation, which in turn is associated with widespread neurodegeneration. We aim to evaluate systemic inflammation as a mediator of ongoing neurodegeneration after TBI. METHODS AND ANALYSIS TBI-braINFLAMM will combine data already collected from two large prospective TBI studies. The CREACTIVE study, a broad consortium which enrolled >8000 patients with TBI to have CT scans and blood samples in the hyperacute period, has data available from 854 patients. The BIO-AX-TBI study recruited 311 patients to have acute CT scans, longitudinal blood samples and longitudinal MRI brain scans. The BIO-AX-TBI study also has data from 102 healthy and 24 non-TBI trauma controls, comprising blood samples (both control groups) and MRI scans (healthy controls only). All blood samples from BIO-AX-TBI and CREACTIVE have already been tested for neuronal injury markers (GFAP, tau and NfL), and CREACTIVE blood samples have been tested for inflammatory cytokines. We will additionally test inflammatory cytokine levels from the already collected longitudinal blood samples in the BIO-AX-TBI study, as well as matched microdialysate and blood samples taken during the acute period from a subgroup of patients with TBI (n=18).We will use this unique dataset to characterise post-TBI systemic inflammation, and its relationships with injury severity and ongoing neurodegeneration. ETHICS AND DISSEMINATION Ethical approval for this study has been granted by the London-Camberwell St Giles Research Ethics Committee (17/LO/2066). Results will be submitted for publication in peer-review journals, presented at conferences and inform the design of larger observational and experimental medicine studies assessing the role and management of post-TBI systemic inflammation.
Collapse
Affiliation(s)
- Lucia M Li
- Brain Sciences, Imperial College, London, UK
- UKDRI Centre for Care Research & Technology, London, UK
| | - Amanda Heslegrave
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- UKDRI at UCL, London, UK
| | - Eyal Soreq
- Brain Sciences, Imperial College, London, UK
- UKDRI Centre for Care Research & Technology, London, UK
| | - Giovanni Nattino
- IRCCS-"Mario Negri" Institute for Pharmacological Research, Ranica, Bergamo, Italy
| | - Margherita Rosnati
- Brain Sciences, Imperial College, London, UK
- BioMedIA Group, Department of Computing, Imperial College, London, UK
| | - Elena Garbero
- Istituto Di Ricerche Farmacologiche Mario Negri, Ranica, Italy
| | - Karl A Zimmerman
- Brain Sciences, Imperial College, London, UK
- DRI Centre for Care Research and Technology, London, UK
| | - Neil S N Graham
- Brain Sciences, Imperial College, London, UK
- UKDRI Centre for Care Research & Technology, London, UK
| | - Federico Moro
- Mario Negri Institute for Pharmacological Research, Milan, Italy
| | - Deborah Novelli
- Cardiovascular Medicine, Mario Negri Institute for Pharmacological Research, Milan, Italy
| | - Primoz Gradisek
- Clinical Dpt of Anaesthesiology and Intensive Therapy, University Medical Center, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Sandra Magnoni
- Department of Anesthesia and Intensive Care, Santa Chiara Hospital, Trento, Italy
| | - Ben Glocker
- BioMedIA Group, Department of Computing, Imperial College, London, UK
| | - Henrik Zetterberg
- UKDRI at UCL, London, UK
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Guido Bertolini
- Public Health, Laboratory of Clinical Epidemiology, IRCCS-"Mario Negri" Institute for Pharmacological Research, Ranica, Italy
| | - David J Sharp
- UKDRI Centre for Care Research & Technology, London, UK
- Division of Brain Sciences, Imperial College, London, UK
| |
Collapse
|
34
|
Mollayeva T, Tran A, Hurst M, Escobar M, Colantonio A. The effect of sleep disorders on dementia risk in patients with traumatic brain injury: A large-scale cohort study. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12411. [PMID: 37234486 PMCID: PMC10207584 DOI: 10.1002/dad2.12411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 05/28/2023]
Abstract
Introduction We investigated the association between sleep disorders (SDs) and incident dementia in adults with traumatic brain injury (TBI). Methods Adults with a TBI between 2003 and 2013 were followed until incident dementia. Sleep disorders at TBI were predictors in Cox regression models, controlling for other dementia risks. Results Over 52 months, 4.6% of the 712,708 adults (59% male, median age 44, <1% with SD) developed dementia. An SD was associated with a 26% and a 23% of increased risk of dementia in male and female participants (hazard ratio [HR] 1.26, 95% confidence interval [CI] 1.11-1.42 and HR 1.23, 95% CI 1.09-1.40, respectively). In male participants, SD was associated with a 93% increased risk of early-onset dementia (HR 1.93, 95% CI 1.29-2.87); this did not hold in female participants (HR 1.38, 95% CI 0.78-2.44). Discussion In a province-wide cohort, SDs at TBI were independently associated with incident dementia. Clinical trials testing sex-specific SD care after TBI for dementia prevention are timely. Highlights TBI and sleep disorders are linked to each other, and to dementia.It is unclear if sleep disorders pose a sex-specific dementia risk in brain injury.In this study, presence of a sleep disorder increased dementia risk in both sexes.The risk differed by type of sleep disorder, which differed between the sexes.Sleep disorder awareness and care in persons with brain injury is vital for dementia prevention.
Collapse
Affiliation(s)
- Tatyana Mollayeva
- KITE‐Toronto Rehabilitation InstituteUniversity Health NetworkTorontoOntarioCanada
- Rehabilitation Sciences InstituteTemerty Faculty of MedicineUniversity of TorontoTorontoOntarioCanada
- Dalla Lana School of Public HealthUniversity of TorontoTorontoOntarioCanada
| | - Andrew Tran
- KITE‐Toronto Rehabilitation InstituteUniversity Health NetworkTorontoOntarioCanada
- Dalla Lana School of Public HealthUniversity of TorontoTorontoOntarioCanada
| | - Mackenzie Hurst
- KITE‐Toronto Rehabilitation InstituteUniversity Health NetworkTorontoOntarioCanada
- Dalla Lana School of Public HealthUniversity of TorontoTorontoOntarioCanada
| | - Michael Escobar
- Dalla Lana School of Public HealthUniversity of TorontoTorontoOntarioCanada
| | - Angela Colantonio
- KITE‐Toronto Rehabilitation InstituteUniversity Health NetworkTorontoOntarioCanada
- Rehabilitation Sciences InstituteTemerty Faculty of MedicineUniversity of TorontoTorontoOntarioCanada
- Dalla Lana School of Public HealthUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
35
|
Gugger JJ, Sinha N, Huang Y, Walter AE, Lynch C, Kalyani P, Smyk N, Sandsmark D, Diaz-Arrastia R, Davis KA. Structural brain network deviations predict recovery after traumatic brain injury. Neuroimage Clin 2023; 38:103392. [PMID: 37018913 PMCID: PMC10122019 DOI: 10.1016/j.nicl.2023.103392] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/10/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023]
Abstract
OBJECTIVE Traumatic brain injury results in diffuse axonal injury and the ensuing maladaptive alterations in network function are associated with incomplete recovery and persistent disability. Despite the importance of axonal injury as an endophenotype in TBI, there is no biomarker that can measure the aggregate and region-specific burden of axonal injury. Normative modeling is an emerging quantitative case-control technique that can capture region-specific and aggregate deviations in brain networks at the individual patient level. Our objective was to apply normative modeling in TBI to study deviations in brain networks after primarily complicated mild TBI and study its relationship with other validated measures of injury severity, burden of post-TBI symptoms, and functional impairment. METHOD We analyzed 70 T1-weighted and diffusion-weighted MRIs longitudinally collected from 35 individuals with primarily complicated mild TBI during the subacute and chronic post-injury periods. Each individual underwent longitudinal blood sampling to characterize blood protein biomarkers of axonal and glial injury and assessment of post-injury recovery in the subacute and chronic periods. By comparing the MRI data of individual TBI participants with 35 uninjured controls, we estimated the longitudinal change in structural brain network deviations. We compared network deviation with independent measures of acute intracranial injury estimated from head CT and blood protein biomarkers. Using elastic net regression models, we identified brain regions in which deviations present in the subacute period predict chronic post-TBI symptoms and functional status. RESULTS Post-injury structural network deviation was significantly higher than controls in both subacute and chronic periods, associated with an acute CT lesion and subacute blood levels of glial fibrillary acid protein (r = 0.5, p = 0.008) and neurofilament light (r = 0.41, p = 0.02). Longitudinal change in network deviation associated with change in functional outcome status (r = -0.51, p = 0.003) and post-concussive symptoms (BSI: r = 0.46, p = 0.03; RPQ: r = 0.46, p = 0.02). The brain regions where the node deviation index measured in the subacute period predicted chronic TBI symptoms and functional status corresponded to areas known to be susceptible to neurotrauma. CONCLUSION Normative modeling can capture structural network deviations, which may be useful in estimating the aggregate and region-specific burden of network changes induced by TAI. If validated in larger studies, structural network deviation scores could be useful for enrichment of clinical trials of targeted TAI-directed therapies.
Collapse
Affiliation(s)
- James J Gugger
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Neuroengineering & Therapeutics, University of Pennsylvania, Philadelphia, PA, USA.
| | - Nishant Sinha
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Neuroengineering & Therapeutics, University of Pennsylvania, Philadelphia, PA, USA.
| | - Yiming Huang
- Interdisciplinary Computing and Complex BioSystems, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alexa E Walter
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cillian Lynch
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Priyanka Kalyani
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nathan Smyk
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Danielle Sandsmark
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathryn A Davis
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Neuroengineering & Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
36
|
Graham NSN, Blissitt G, Zimmerman K, Friedland D, Dumas ME, Coady E, Heslegrave A, Zetterberg H, Escott-Price V, Schofield S, Fear NT, Boos C, Bull AMJ, Cullinan P, Bennett A, Sharp DJ. ADVANCE-TBI study protocol: traumatic brain injury outcomes in UK military personnel serving in Afghanistan between 2003 and 2014 - a longitudinal cohort study. BMJ Open 2023; 13:e069243. [PMID: 36944467 PMCID: PMC10032415 DOI: 10.1136/bmjopen-2022-069243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/01/2023] [Indexed: 03/23/2023] Open
Abstract
INTRODUCTION Outcomes of traumatic brain injury (TBI) are highly variable, with cognitive and psychiatric problems often present in survivors, including an increased dementia risk in the long term. Military personnel are at an increased occupational risk of TBI, with high rates of complex polytrauma including TBI characterising the UK campaign in Afghanistan. The ArmeD SerVices TrAuma and RehabilitatioN OutComE (ADVANCE)-TBI substudy will describe the patterns, associations and long-term outcomes of TBI in the established ADVANCE cohort. METHODS AND ANALYSIS The ADVANCE cohort comprises 579 military personnel exposed to major battlefield trauma requiring medical evacuation, and 566 matched military personnel without major trauma. TBI exposure has been captured at baseline using a standardised interview and registry data, and will be refined at first follow-up visit with the Ohio State Method TBI interview (a National Institute of Neurological Disorders and Stroke TBI common data element). Participants will undergo blood sampling, MRI and detailed neuropsychological assessment longitudinally as part of their follow-up visits every 3-5 years over a 20-year period. Biomarkers of injury, neuroinflammation and degeneration will be quantified in blood, and polygenic risk scores calculated for neurodegeneration. Age-matched healthy volunteers will be recruited as controls for MRI analyses. We will describe TBI exposure across the cohort, and consider any relationship with advanced biomarkers of injury and clinical outcomes including cognitive performance, neuropsychiatric symptom burden and function. The influence of genotype will be assessed. This research will explore the relationship between military head injury exposure and long-term outcomes, providing insights into underlying disease mechanisms and informing prevention interventions. ETHICS AND DISSEMINATION The ADVANCE-TBI substudy has received a favourable opinion from the Ministry of Defence Research Ethics Committee (ref: 2126/MODREC/22). Findings will be disseminated via publications in peer-reviewed journals and presentations at conferences.
Collapse
Affiliation(s)
- Neil S N Graham
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute Centre for Care Research and Technology, Imperial College London, London, UK
| | - Grace Blissitt
- National Heart and Lung Institute, Imperial College London, London, UK
- Academic Department of Military Rehabilitation, Defence Medical Rehabilitation Centre, Loughborough, UK
| | - Karl Zimmerman
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute Centre for Care Research and Technology, Imperial College London, London, UK
| | - Daniel Friedland
- Department of Brain Sciences, Imperial College London, London, UK
| | - Marc-Emmanuel Dumas
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Emma Coady
- National Heart and Lung Institute, Imperial College London, London, UK
- Academic Department of Military Rehabilitation, Defence Medical Rehabilitation Centre, Loughborough, UK
| | - Amanda Heslegrave
- Institute of Neurology, UCL Queen Square, London, UK
- UK Dementia Research Institute, University College London, London, UK
| | - Henrik Zetterberg
- Institute of Neurology, UCL Queen Square, London, UK
- UK Dementia Research Institute, University College London, London, UK
| | - Valentina Escott-Price
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
- UK Dementia Research Institute, Cardiff University, Cardiff, UK
| | - Susie Schofield
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Nicola T Fear
- King's Centre for Military Health Research, King's College London, London, UK
- Academic Department for Military Mental Health, King's College London, London, UK
| | - Christopher Boos
- National Heart and Lung Institute, Imperial College London, London, UK
- Academic Department for Military Mental Health, King's College London, London, UK
| | - Anthony M J Bull
- Centre for Injury Studies, Imperial College London, London, UK
- Department of Bioengineering, Imperial College London, London, UK
| | - Paul Cullinan
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Alexander Bennett
- National Heart and Lung Institute, Imperial College London, London, UK
- Academic Department of Military Rehabilitation, Defence Medical Rehabilitation Centre, Loughborough, UK
| | - David J Sharp
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute Centre for Care Research and Technology, Imperial College London, London, UK
| |
Collapse
|
37
|
Machine learning classification of chronic traumatic brain injury using diffusion tensor imaging and NODDI: A replication and extension study. NEUROIMAGE: REPORTS 2023; 3. [PMID: 37169013 PMCID: PMC10168530 DOI: 10.1016/j.ynirp.2023.100157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Individuals with acute and chronic traumatic brain injury (TBI) are associated with unique white matter (WM) structural abnormalities, including fractional anisotropy (FA) differences. Our research group previously used FA as a feature in a linear support vector machine (SVM) pattern classifier, observing high classification between individuals with and without acute TBI (i.e., an area under the curve [AUC] value of 75.50%). However, it is not known whether FA could similarly classify between individuals with and without history of chronic TBI. Here, we attempted to replicate our previous work with a new sample, investigating whether FA could similarly classify between incarcerated men with (n = 80) and without (n = 80) self-reported history of chronic TBI. Additionally, given limitations associated with FA, including underestimation of FA values in WM tracts containing crossing fibers, we extended upon our previous study by incorporating neurite orientation dispersion and density imaging (NODDI) metrics, including orientation dispersion (ODI) and isotropic volume (Viso). A linear SVM based classification approach, similar to our previous study, was incorporated here to classify between individuals with and without self-reported chronic TBI using FA and NODDI metrics as separate features. Overall classification rates were similar when incorporating FA and NODDI ODI metrics as features (AUC: 82.50%). Additionally, NODDI-based metrics provided the highest sensitivity (ODI: 85.00%) and specificity (Viso: 82.50%) rates. The current study serves as a replication and extension of our previous study, observing that multiple diffusion MRI metrics can reliably classify between individuals with and without self-reported history of chronic TBI.
Collapse
|
38
|
Patient-Centered Approaches to Cognitive Assessment in Acute TBI. Curr Neurol Neurosci Rep 2023; 23:59-66. [PMID: 36705882 DOI: 10.1007/s11910-023-01253-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2023] [Indexed: 01/28/2023]
Abstract
PURPOSE OF THE REVIEW The purpose of this article is to help clinicians understand how underlying pathophysiologies and medical comorbidities associated with acute traumatic brain injury (TBI) can impact assessment of cognition during the initial stages of recovery. Clinicians can use information from this article to develop assessment plans rooted in patient-centered care. RECENT FINDINGS The authors conducted a review of the literature related to the assessment of cognition in acute TBI, focusing on pathophysiology, medical comorbidities, and assessment approaches. Results indicated that TBI pathophysiologies associated with white and gray matter changes make many patients vulnerable to cognitive deficits. Acute comorbidities such as psychological and pain status influence cognitive abilities as well. The current approaches to cognitive assessment can be limited in many ways, though by using the patient's neuropathological profile, noted comorbidities, and other patient specific factors, clinicians can potentially improve the effectiveness of assessment.
Collapse
|
39
|
So I, Meusel LAC, Sharma B, Monette GA, Colella B, Wheeler AL, Rabin JS, Mikulis DJ, Green REA. Longitudinal Patterns of Functional Connectivity in Moderate-to-Severe Traumatic Brain Injury. J Neurotrauma 2023; 40:665-682. [PMID: 36367163 DOI: 10.1089/neu.2022.0242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Longitudinal neuroimaging studies aid our understanding of recovery mechanisms in moderate-to-severe traumatic brain injury (TBI); however, there is a dearth of longitudinal functional connectivity research. Our aim was to characterize longitudinal functional connectivity patterns in two clinically important brain networks, the frontoparietal network (FPN) and the default mode network (DMN), in moderate-to-severe TBI. This inception cohort study of prospectively collected longitudinal data used resting-state functional magnetic resonance imaging (fMRI) to characterize functional connectivity patterns in the FPN and DMN. Forty adults with moderate-to-severe TBI (mean ± standard deviation [SD]; age = 39.53 ± 16.49 years, education = 13.92 ± 3.20 years, lowest Glasgow Coma Scale score = 6.63 ± 3.24, sex = 70% male) were scanned at approximately 0.5, 1-1.5, and 3+ years post-injury. Seventeen healthy, uninjured participants (mean ± SD; age = 38.91 ± 15.57 years, education = 15.11 ± 2.71 years, sex = 29% male) were scanned at baseline and approximately 11 months afterwards. Group independent component analyses and linear mixed-effects modeling with linear splines that contained a knot at 1.5 years post-injury were employed to investigate longitudinal network changes, and associations with covariates, including age, sex, and injury severity. In patients with TBI, functional connectivity in the right FPN increased from approximately 0.5 to 1.5 years post-injury (unstandardized estimate = 0.19, standard error [SE] = 0.07, p = 0.009), contained a slope change in the opposite direction, from positive to negative at 1.5 years post-injury (estimate = -0.21, SE = 0.11, p = 0.009), and marginally declined afterwards (estimate = -0.10, SE = 0.06, p = 0.079). Functional connectivity in the DMN increased from approximately 0.5 to 1.5 years (estimate = 0.15, SE = 0.05, p = 0.006), contained a slope change in the opposite direction, from positive to negative at 1.5 years post-injury (estimate = -0.19, SE = 0.08, p = 0.021), and was estimated to decline from 1.5 to 3+ years (estimate = -0.04, SE = 0.04, p = 0.303). Similarly, the left FPN increased in functional connectivity from approximately 0.5 to 1.5 years post-injury (estimate = 0.15, SE = 0.05, p = 0.002), contained a slope change in the opposite direction, from positive to negative at 1.5 years post-injury (estimate = -0.18, SE = 0.07, p = 0.008), and was estimated to decline thereafter (estimate = -0.04, SE = 0.03, p = 0.254). At approximately 0.5 years post-injury, patients showed hypoconnectivity compared with healthy, uninjured participants at baseline. Covariates were not significantly associated in any of the models. Findings of early improvement but a tapering and possible decline in connectivity thereafter suggest that compensatory effects are time-limited. These later reductions in connectivity mirror growing evidence of behavioral and structural decline in chronic moderate-to-severe TBI. Targeting such declines represents a novel avenue of research and offers potential for improving clinical outcomes.
Collapse
Affiliation(s)
- Isis So
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,KITE Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario, Canada
| | - Liesel-Ann C Meusel
- KITE Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario, Canada
| | - Bhanu Sharma
- KITE Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario, Canada.,Department of Medical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Georges A Monette
- Department of Mathematics and Statistics, York University, Toronto, Ontario, Canada
| | - Brenda Colella
- KITE Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario, Canada
| | - Anne L Wheeler
- Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Jennifer S Rabin
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Medicine (Neurology), Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.,Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
| | - David J Mikulis
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Medical Imaging, Toronto Western Hospital-University Health Network, Toronto, Ontario, Canada
| | - Robin E A Green
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,KITE Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario, Canada.,Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
40
|
Stellon D, Talbot J, Hewitt AW, King AE, Cook AL. Seeing Neurodegeneration in a New Light Using Genetically Encoded Fluorescent Biosensors and iPSCs. Int J Mol Sci 2023; 24:1766. [PMID: 36675282 PMCID: PMC9861453 DOI: 10.3390/ijms24021766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Neurodegenerative diseases present a progressive loss of neuronal structure and function, leading to cell death and irrecoverable brain atrophy. Most have disease-modifying therapies, in part because the mechanisms of neurodegeneration are yet to be defined, preventing the development of targeted therapies. To overcome this, there is a need for tools that enable a quantitative assessment of how cellular mechanisms and diverse environmental conditions contribute to disease. One such tool is genetically encodable fluorescent biosensors (GEFBs), engineered constructs encoding proteins with novel functions capable of sensing spatiotemporal changes in specific pathways, enzyme functions, or metabolite levels. GEFB technology therefore presents a plethora of unique sensing capabilities that, when coupled with induced pluripotent stem cells (iPSCs), present a powerful tool for exploring disease mechanisms and identifying novel therapeutics. In this review, we discuss different GEFBs relevant to neurodegenerative disease and how they can be used with iPSCs to illuminate unresolved questions about causes and risks for neurodegenerative disease.
Collapse
Affiliation(s)
- David Stellon
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7000, Australia
| | - Jana Talbot
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7000, Australia
| | - Alex W. Hewitt
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Anna E. King
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7000, Australia
| | - Anthony L. Cook
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7000, Australia
| |
Collapse
|
41
|
A model for estimating the brainstem volume in normal healthy individuals and its application to diffuse axonal injury patients. Sci Rep 2023; 13:33. [PMID: 36593347 PMCID: PMC9807567 DOI: 10.1038/s41598-022-27202-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Diffuse axonal injury (DAI) is a subtype of traumatic brain injury that causes acute-phase consciousness disorders and widespread chronic-phase brain atrophy. Considering the importance of brainstem damage in DAI, a valid method for evaluating brainstem volume is required. We obtained volume measurements from 182 healthy adults by analyzing T1-weighted magnetic resonance images, and created an age-/sex-/intracranial volume-based quantitative model to estimate the normal healthy volume of the brainstem and cerebrum. We then applied this model to the volume measurements of 22 DAI patients, most of whom were in the long-term chronic phase and had no gross focal injury, to estimate the percentage difference in volume from the expected normal healthy volume in different brain regions, and investigated its association with the duration of posttraumatic amnesia (which is an early marker of injury severity). The average loss of the whole brainstem was 13.9%. Moreover, the percentage loss of the whole brainstem, and particularly of the pons and midbrain, was significantly negatively correlated with the duration of posttraumatic amnesia. Our findings suggest that injury severity, as denoted by the duration of posttraumatic amnesia, is among the factors affecting the chronic-phase brainstem volume in patients with DAI.
Collapse
|
42
|
Muresanu DF, Sharma A, Tian ZR, Lafuente JV, Nozari A, Feng L, Buzoianu AD, Wiklund L, Sharma HS. Nanowired Delivery of Cerebrolysin with Mesenchymal Stem Cells Attenuates Heat Stress-Induced Exacerbation of Neuropathology Following Brain Blast Injury. ADVANCES IN NEUROBIOLOGY 2023; 32:231-270. [PMID: 37480463 DOI: 10.1007/978-3-031-32997-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Blast brain injury (bBI) following explosive detonations in warfare is one of the prominent causes of multidimensional insults to the central nervous and other vital organs injury. Several military personnel suffered from bBI during the Middle East conflict at hot environment. The bBI largely occurs due to pressure waves, generation of heat together with release of shrapnel and gun powders explosion with penetrating and/or impact head trauma causing multiple brain damage. As a result, bBI-induced secondary injury causes breakdown of the blood-brain barrier (BBB) and edema formation that further results in neuronal, glial and axonal injuries. Previously, we reported endocrine imbalance and influence of diabetes on bBI-induced brain pathology that was significantly attenuated by nanowired delivery of cerebrolysin in model experiments. Cerebrolysin is a balanced composition of several neurotrophic factors, and active peptide fragment is capable of neuroprotection in several neurological insults. Exposure to heat stress alone causes BBB damage, edema formation and brain pathology. Thus, it is quite likely that hot environment further exacerbates the consequences of bBI. Thus, novel therapeutic strategies using nanodelivery of stem cell and cerebrolysin may further enhance superior neuroprotection in bBI at hot environment. Our observations are the first to show that combined nanowired delivery of mesenchymal stem cells (MSCs) and cerebrolysin significantly attenuated exacerbation of bBI in hot environment and induced superior neuroprotection, not reported earlier. The possible mechanisms of neuroprotection with MSCs and cerebrolysin in bBI are discussed in the light of current literature.
Collapse
Affiliation(s)
- Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Ala Nozari
- Anesthesiology & Intensive Care, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan, Hebei Province, China
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
43
|
Gibbons LE, Power MC, Walker RL, Kumar RG, Murphy A, Latimer CS, Nolan AL, Melief EJ, Beller A, Bogdani M, Keene CD, Larson EB, Crane PK, Dams-O’Connor K. Association of Traumatic Brain Injury with Late Life Neuropathological Outcomes in a Community-Based Cohort. J Alzheimers Dis 2023; 93:949-961. [PMID: 37125552 PMCID: PMC10860614 DOI: 10.3233/jad-221224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
BACKGROUND Prior studies into the association of head trauma with neuropathology have been limited by incomplete lifetime neurotrauma exposure characterization. OBJECTIVE To investigate the neuropathological sequelae of traumatic brain injury (TBI) in an autopsy sample using three sources of TBI ascertainment, weighting findings to reflect associations in the larger, community-based cohort. METHODS Self-reported head trauma with loss of consciousness (LOC) exposure was collected in biennial clinic visits from 780 older adults from the Adult Changes in Thought study who later died and donated their brain for research. Self-report data were supplemented with medical record abstraction, and, for 244 people, structured interviews on lifetime head trauma. Neuropathology outcomes included Braak stage, CERAD neuritic plaque density, Lewy body distribution, vascular pathology, hippocampal sclerosis, and cerebral/cortical atrophy. Exposures were TBI with or without LOC. Modified Poisson regressions adjusting for age, sex, education, and APOE ɛ4 genotype were weighted back to the full cohort of 5,546 participants. RESULTS TBI with LOC was associated with the presence of cerebral cortical atrophy (Relative Risk 1.22, 95% CI 1.02, 1.42). None of the other outcomes was associated with TBI with or without LOC. CONCLUSION TBI with LOC was associated with increased risk of cerebral cortical atrophy. Despite our enhanced TBI ascertainment, we found no association with the Alzheimer's disease-related neuropathologic outcomes among people who survived to at least age 65 without dementia. This suggests the pathophysiological processes underlying post-traumatic neurodegeneration are distinct from the hallmark pathologies of Alzheimer's disease.
Collapse
Affiliation(s)
- Laura E. Gibbons
- General Internal Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Melinda C. Power
- George Washington University Milken Institute School of Public Health, Washington, DC, USA
| | - Rod L. Walker
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Raj G. Kumar
- Department of Rehabilitation and Human Performance, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alia Murphy
- George Washington University Milken Institute School of Public Health, Washington, DC, USA
| | - Caitlin S. Latimer
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Amber L. Nolan
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Erica J. Melief
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Allison Beller
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Marika Bogdani
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, USA
| | - C. Dirk Keene
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Eric B. Larson
- General Internal Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Paul K. Crane
- General Internal Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Kristen Dams-O’Connor
- Department of Rehabilitation and Human Performance, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
44
|
Havlicek DF, Furhang R, Nikulina E, Smith-Salzberg B, Lawless S, Severin SA, Mallaboeva S, Nayab F, Seifert AC, Crary JF, Bergold PJ. A single closed head injury in male adult mice induces chronic, progressive white matter atrophy and increased phospho-tau expressing oligodendrocytes. Exp Neurol 2023; 359:114241. [PMID: 36240881 DOI: 10.1016/j.expneurol.2022.114241] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
Abstract
Traumatic brain injury (TBI) acutely damages the brain; this injury can evolve into chronic neurodegeneration. While much is known about the chronic effects arising from multiple mild TBIs, far less is known about the long-term effects of a single moderate to severe TBI. We found that a single moderate closed head injury to mice induces diffuse axonal injury within 1-day post-injury (DPI). At 14 DPI, injured animals have atrophy of ipsilesional cortex, thalamus, and corpus callosum, with bilateral atrophy of the dorsal fornix. Atrophy of the ipsilesional corpus callosum is accompanied by decreased fractional anisotropy and increased mean and radial diffusivity that remains unchanged between 14 and 180 DPI. Injured animals show an increased density of phospho-tau immunoreactive (pTau+) cells in the ipsilesional cortex and thalamus, and bilaterally in corpus callosum. Between 14 and 180 DPI, atrophy occurs in the ipsilesional ventral fornix, contralesional corpus callosum, and bilateral internal capsule. Diffusion tensor MRI parameters remain unchanged in white matter regions with delayed atrophy. Between 14 and 180 DPI, pTau+ cell density increases bilaterally in corpus callosum, but decreases in cortex and thalamus. The location of pTau+ cells within the ipsilesional corpus callosum changes between 14 and 180 DPI; density of all cells increases including pTau+ or pTau- cells. >90% of the pTau+ cells are in the oligodendrocyte lineage in both gray and white matter. Density of thioflavin-S+ cells in thalamus increases by 180 DPI. These data suggest a single closed head impact produces multiple forms of chronic neurodegeneration. Gray and white matter regions proximal to the impact site undergo early atrophy. More distal white matter regions undergo chronic, progressive white matter atrophy with an increasing density of oligodendrocytes containing pTau. These data suggest a complex chronic neurodegenerative process arising from a single moderate closed head injury.
Collapse
Affiliation(s)
- David F Havlicek
- School of Graduate Studies, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States of America
| | - Rachel Furhang
- School of Graduate Studies, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States of America
| | - Elena Nikulina
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States of America
| | - Bayle Smith-Salzberg
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States of America
| | - Siobhán Lawless
- School of Graduate Studies, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States of America
| | - Sasha A Severin
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States of America
| | - Sevara Mallaboeva
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States of America
| | - Fizza Nayab
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States of America
| | - Alan C Seifert
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - John F Crary
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Peter J Bergold
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States of America.
| |
Collapse
|
45
|
Chauvière L. Early cognitive comorbidities before disease onset: A common symptom towards prevention of related brain diseases? Heliyon 2022; 8:e12259. [PMID: 36590531 PMCID: PMC9800323 DOI: 10.1016/j.heliyon.2022.e12259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
Brain diseases are very heterogeneous; however they also display multiple common risk factors and comorbidities. With a paucity of disease-modifying therapies, prevention became a health priority. Towards prevention, one strategy is to focus on similar symptoms of brain diseases occurring before disease onset. Cognitive deficits are a promising candidate as they occur across brain diseases before disease onset. Based on recent research, this review highlights the similarity of brain diseases and discusses how early cognitive deficits can be exploited to tackle disease prevention. After briefly introducing common risk factors, I review common comorbidities across brain diseases, with a focus on cognitive deficits before disease onset, reporting both experimental and clinical findings. Next, I describe network abnormalities associated with early cognitive deficits and discuss how these abnormalities can be targeted to prevent disease onset. A scenario on brain disease etiology with the idea that early cognitive deficits may constitute a common symptom of brain diseases is proposed.
Collapse
|
46
|
Bratkowski M, Burdett TC, Danao J, Wang X, Mathur P, Gu W, Beckstead JA, Talreja S, Yang YS, Danko G, Park JH, Walton M, Brown SP, Tegley CM, Joseph PRB, Reynolds CH, Sambashivan S. Uncompetitive, adduct-forming SARM1 inhibitors are neuroprotective in preclinical models of nerve injury and disease. Neuron 2022; 110:3711-3726.e16. [PMID: 36087583 DOI: 10.1016/j.neuron.2022.08.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/06/2022] [Accepted: 08/10/2022] [Indexed: 12/15/2022]
Abstract
Axon degeneration is an early pathological event in many neurological diseases. The identification of the nicotinamide adenine dinucleotide (NAD) hydrolase SARM1 as a central metabolic sensor and axon executioner presents an exciting opportunity to develop novel neuroprotective therapies that can prevent or halt the degenerative process, yet limited progress has been made on advancing efficacious inhibitors. We describe a class of NAD-dependent active-site SARM1 inhibitors that function by intercepting NAD hydrolysis and undergoing covalent conjugation with the reaction product adenosine diphosphate ribose (ADPR). The resulting small-molecule ADPR adducts are highly potent and confer compelling neuroprotection in preclinical models of neurological injury and disease, validating this mode of inhibition as a viable therapeutic strategy. Additionally, we show that the most potent inhibitor of CD38, a related NAD hydrolase, also functions by the same mechanism, further underscoring the broader applicability of this mechanism in developing therapies against this class of enzymes.
Collapse
Affiliation(s)
| | - Thomas C Burdett
- Biology Department, Nura Bio Inc., South San Francisco, CA 94080, USA
| | - Jean Danao
- Biology Department, Nura Bio Inc., South San Francisco, CA 94080, USA
| | - Xidao Wang
- Biology Department, Nura Bio Inc., South San Francisco, CA 94080, USA
| | - Prakhyat Mathur
- Biology Department, Nura Bio Inc., South San Francisco, CA 94080, USA
| | - Weijing Gu
- Biology Department, Nura Bio Inc., South San Francisco, CA 94080, USA
| | | | - Santosh Talreja
- Biology Department, Nura Bio Inc., South San Francisco, CA 94080, USA
| | - Yu-San Yang
- Biology Department, Nura Bio Inc., South San Francisco, CA 94080, USA
| | - Gregory Danko
- Biology Department, Nura Bio Inc., South San Francisco, CA 94080, USA
| | - Jae Hong Park
- Biology Department, Nura Bio Inc., South San Francisco, CA 94080, USA
| | - Mary Walton
- Chemistry Department, Nura Bio Inc., South San Francisco, CA 94080, USA
| | - Sean P Brown
- Chemistry Department, Nura Bio Inc., South San Francisco, CA 94080, USA
| | | | - Prem Raj B Joseph
- WuXi AppTec, Research Services Division, 6 Cedarbrook Drive, Cranbury, NJ 08512, USA
| | | | | |
Collapse
|
47
|
Sasun AR, Qureshi MI. Physiotherapy Rehabilitation as an Adjunct to Functional Independence in Diffuse Axonal Injury: A Case Report. Cureus 2022; 14:e30255. [DOI: 10.7759/cureus.30255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022] Open
|
48
|
Abdullah AN, Ahmad AH, Zakaria R, Tamam S, Abd Hamid AI, Chai WJ, Omar H, Abdul Rahman MR, Fitzrol DN, Idris Z, Ghani ARI, Wan Mohamad WNA, Mustafar F, Hanafi MH, Reza MF, Umar H, Mohd Zulkifly MF, Ang SY, Zakaria Z, Musa KI, Othman A, Embong Z, Sapiai NA, Kandasamy R, Ibrahim H, Abdullah MZ, Amaruchkul K, Valdes-Sosa PA, Bringas Vega ML, Biswal B, Songsiri J, Yaacob HS, Sumari P, Noh NA, Azman A, Jamir Singh PS, Abdullah JM. Disruption of white matter integrity and its relationship with cognitive function in non-severe traumatic brain injury. Front Neurol 2022; 13:1011304. [PMID: 36303559 PMCID: PMC9592834 DOI: 10.3389/fneur.2022.1011304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/23/2022] [Indexed: 11/30/2022] Open
Abstract
Background Impairment in cognitive function is a recognized outcome of traumatic brain injury (TBI). However, the degree of impairment has variable relationship with TBI severity and time post injury. The underlying pathology is often due to diffuse axonal injury that has been found even in mild TBI. In this study, we examine the state of white matter putative connectivity in patients with non-severe TBI in the subacute phase, i.e., within 10 weeks of injury and determine its relationship with neuropsychological scores. Methods We conducted a case-control prospective study involving 11 male adult patients with non-severe TBI and an age-matched control group of 11 adult male volunteers. Diffusion MRI scanning and neuropsychological tests were administered within 10 weeks post injury. The difference in fractional anisotropy (FA) values between the patient and control groups was examined using tract-based spatial statistics. The FA values that were significantly different between patients and controls were then correlated with neuropsychological tests in the patient group. Results Several clusters with peak voxels of significant FA reductions (p < 0.05) in the white matter skeleton were seen in patients compared to the control group. These clusters were located in the superior fronto-occipital fasciculus, superior longitudinal fasciculus, uncinate fasciculus, and cingulum, as well as white matter fibers in the area of genu of corpus callosum, anterior corona radiata, superior corona radiata, anterior thalamic radiation and part of inferior frontal gyrus. Mean global FA magnitude correlated significantly with MAVLT immediate recall scores while matrix reasoning scores correlated positively with FA values in the area of right superior fronto-occipital fasciculus and left anterior corona radiata. Conclusion The non-severe TBI patients had abnormally reduced FA values in multiple regions compared to controls that correlated with several measures of executive function during the sub-acute phase of TBI.
Collapse
Affiliation(s)
- Aimi Nadhiah Abdullah
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Asma Hayati Ahmad
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- *Correspondence: Asma Hayati Ahmad
| | - Rahimah Zakaria
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Sofina Tamam
- Faculty of Science and Technology, Universiti Sains Islam Malaysia, Nilai, Malaysia
| | - Aini Ismafairus Abd Hamid
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Wen Jia Chai
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Hazim Omar
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Muhammad Riddha Abdul Rahman
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Diana Noma Fitzrol
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Zamzuri Idris
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Abdul Rahman Izaini Ghani
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Wan Nor Azlen Wan Mohamad
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Faiz Mustafar
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Muhammad Hafiz Hanafi
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Mohamed Faruque Reza
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Hafidah Umar
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Mohd Faizal Mohd Zulkifly
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Song Yee Ang
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Zaitun Zakaria
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Kamarul Imran Musa
- Department of Community Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Azizah Othman
- Department of Pediatrics, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Zunaina Embong
- Department of Ophthalmology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Nur Asma Sapiai
- Department of Radiology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | | | - Haidi Ibrahim
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- School of Electrical and Electronic Engineering, Universiti Sains Malaysia, Nibong Tebal, Malaysia
| | - Mohd Zaid Abdullah
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- School of Electrical and Electronic Engineering, Universiti Sains Malaysia, Nibong Tebal, Malaysia
| | - Kannapha Amaruchkul
- Graduate School of Applied Statistics, National Institute of Development Administration (NIDA), Bangkok, Thailand
| | - Pedro Antonio Valdes-Sosa
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- The Cuban Neurosciences Center, La Habana, Cuba
| | - Maria Luisa Bringas Vega
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- The Cuban Neurosciences Center, La Habana, Cuba
| | - Bharat Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| | - Jitkomut Songsiri
- EE410 Control Systems Laboratory, Department of Electrical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Hamwira Sakti Yaacob
- Department of Computer Science, Kulliyah of Information and Communication Technology, International Islamic University Malaysia, Kuala Lumpur, Malaysia
| | - Putra Sumari
- School of Computer Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Nor Azila Noh
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai, Malaysia
| | - Azlinda Azman
- School of Social Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | | | - Jafri Malin Abdullah
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| |
Collapse
|
49
|
Muacevic A, Adler JR. Perks of Early Physical Therapy Rehabilitation for a Patient With Diffuse Axonal Injury. Cureus 2022; 14:e30886. [PMID: 36465762 PMCID: PMC9709247 DOI: 10.7759/cureus.30886] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/30/2022] [Indexed: 01/25/2023] Open
Abstract
Traumatic brain injury (TBI) is characterized as any neurological trauma that develops after birth and therefore is completely unconnected from congenital anomalies, developmental disorders, or gradual processes. People who have survived accidents or other severe head injuries that left them with brain damage have been linked to memory loss and disability. On February 9, 2022, a 23-year-old individual was taken to a nearby hospital with a head injury after being involved in a traffic accident that morning while under the influence of alcohol. After several tests, the individual was identified as having a diffuse axonal injury in the anterolateral aspect of the pons, which was confirmed by an MRI and CT scan of the brain. The patient had been managed conservatively with appropriate medications like (tab Zifi® 200mg, tab Epilive® 500mg, tab Strocit plus®, tab Modalert®, tab Oxynerve plus®, etc.) along with physiotherapy, and other supportive treatments. Key indicators involve recovery of consciousness, normalization of muscle tone, earlier onset of movements, adequate strength, and quality of life. The TBI rehabilitation service is advantageous, as supported by proportionally massive progress in exercise tolerance and overall health. The above case study serves as an example of an extensive rehabilitation program for patients who have undergone conservative treatment after suffering a diffuse axonal injury.
Collapse
|
50
|
UPLC/Q-TOF MS-Based Urine Metabonomics Study to Identify Diffuse Axonal Injury Biomarkers in Rat. DISEASE MARKERS 2022; 2022:2579489. [PMID: 36188427 PMCID: PMC9519327 DOI: 10.1155/2022/2579489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 11/22/2022]
Abstract
Diffuse axonal injury (DAI) represents a frequent traumatic brain injury (TBI) type, significantly contributing to the dismal neurological prognosis and high mortality in TBI patients. The increase in mortality can be associated with delayed and nonspecific initial symptoms in DAI patients. Additionally, the existing approaches for diagnosis and monitoring are either low sensitivity or high cost. Therefore, novel, reliable, and objective diagnostic markers should be developed to diagnose and monitor DAI prognosis. Urine is an optimal sample to detect biomarkers for DAI noninvasively. Therefore, the DAI rat model was established in this work. Meanwhile, the ultraperformance liquid chromatography quadrupole-time-of-flight hybrid mass spectrometry- (UPLC/Q-TOF MS-) untargeted metabolomics approach was utilized to identify the features of urine metabolomics to diagnose DAI. This work included 57 metabolites with significant alterations and 21 abnormal metabolic pathways from the injury groups. Three metabolites, viz., urea, butyric acid, and taurine, were identified as possible biomarkers to diagnose DAI based on the great fold changes (FCs) and biological functions during DAI. The present study detected several novel biomarkers for noninvasively diagnosing and monitoring DAI and helped understand the DAI-associated metabolic events.
Collapse
|