1
|
Durand-Dubief F, Shor N, Audoin B, Bourre B, Cohen M, Kremer S, Maillart E, Papeix C, Ruet A, Savatovsky J, Tourdias T, Ayrignac X, Ciron J, Collongues N, Laplaud D, Michel L, Deschamps R, Thouvenot E, Zephir H, Marignier R, Cotton F. MRI management of NMOSD and MOGAD: Proposals from the French Expert Group NOMADMUS. J Neuroradiol 2024; 52:101235. [PMID: 39626832 DOI: 10.1016/j.neurad.2024.101235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 11/23/2024] [Accepted: 11/23/2024] [Indexed: 12/15/2024]
Abstract
BACKGROUND Currently, there are no available recommendations or guidelines on how to perform MRI monitoring in the management of neuromyelitis optica spectrum disorder (NMOSD) and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD). The issue is to determine a valuable MRI monitoring protocol to be applied in the management of NMOSD and MOGAD, as previously proposed for the monitoring of multiple sclerosis. OBJECTIVES The objectives of this work are to establish proposals for a standardized and feasible MRI acquisition protocol, and to propose control time points for systematic MRI monitoring in the management of NMOSD and MOGAD. METHODS A steering committee composed of 7 neurologists and 5 neuroradiologists, experts in NMOSD and MOGAD from the French group NOMADMUS, defined 8 proposals based on their expertise and a review from the literature. These proposals were then submitted to a Rating Group composed of French NMOSD / MOGAD experts. RESULTS In the management of NMOSD and MOGAD, a consensus has been reached to perform systematic MRI of the brain, optic nerve and spinal cord, including cauda equina nerve roots, at the time of diagnosis, both without and after gadolinium administration. Moreover, it has been agreed to perform a systematic MRI scan 6 months after diagnosis, focusing on the area of interest, both without and after gadolinium administration. For long-term follow-up of NMOSD and MOGAD, and in the absence of clinical activity, it has been agreed to perform gadolinium-free MRI of the brain (+/- optic nerves) and spinal cord, every 36 months. Ideally, these MRI scans should be performed on the same MRI system, preferably a 3T MRI system for brain and optic nerve MRI, and at least a 1.5T MRI system for spinal cord MRI. CONCLUSIONS This expert consensus approach provides physicians with proposals for the MRI management of NMOSD and MOGAD.
Collapse
Affiliation(s)
- Françoise Durand-Dubief
- Service de Sclérose en Plaques, Pathologies de la substance blanche et Neuroinflammation, Hôpital Neurologique, Hospices Civils de Lyon, Bron, France; Creatis LRMN, CNRS UMR 5220, Université Claude Bernard Lyon 1, INSERM U630, Lyon, France.
| | - Natalia Shor
- Service de Neuroradiologie, Hôpital de la Pitie-Salpetrière, AP-HP, Paris, France
| | - Bertrand Audoin
- Service de Neurologie, Maladies Inflammatoires du Cerveau et de la Moelle Épinière (MICeME), Hôpital de la Timone, AP-HM, Marseille CEDEX 5, France
| | - Bertrand Bourre
- Service de Neurologie, Centre Hospitalier Universitaire Rouen, Rouen F-76000, France
| | - Mickael Cohen
- CRC-SEP, Neurologie Pasteur 2, CHU de Nice, Nice, France; Université Cote d'Azur, UMR2CA (URRIS), Nice, France
| | - Stéphane Kremer
- Service d'imagerie 2, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France; Engineering Science, Computer Science and Imaging Laboratory (ICube), Integrative Multimodal Imaging in Healthcare, UMR 7357, University of Strasbourg-CNRS, Strasbourg, France
| | - Elisabeth Maillart
- Service de Neurologie, Hôpital de la Pitie-Salpetrière, Centre de Références des Maladies Inflammatoires Rares du Cerveau Et de la Moelle épinière, AP-HP, Paris, France
| | - Caroline Papeix
- Service de Neurologie, Hôpital Fondation Adolphe de Rothschild, Paris, France
| | - Aurélie Ruet
- Service de Neurologie et Maladies inflammatoires du Système nerveux Central, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France; Université de Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | - Julien Savatovsky
- Service d'Imagerie Médicale, Hôpital Fondation Adolphe de Rothschild, Paris, France
| | - Thomas Tourdias
- Neuroimagerie Diagnostique et Thérapeutique, Centre Hospitalier Universitaire de Bordeaux, Bordeaux F-33000, France; Université Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux F-3300, France
| | - Xavier Ayrignac
- Université de Montpellier, Montpellier, France; Département de Neurologie, CRC-SEP, CRMR LEUKOFRANCE, Hôpital Gui de Chauliac, Centre Hospitalier Universitaire de Montpellier, France
| | - Jonathan Ciron
- Service de Neurologie, CRC-SEP, Centre Hospitalier Universitaire de Toulouse, France
| | - Nicolas Collongues
- Service de Neurologie, Centre Hospitalier Universitaire de Strasbourg, Strasbourg, France; Center for Clinical Investigation, INSERM U1434, Strasbourg, France; Department of Pharmacology, Addictology, Toxicology, and Therapeutics, Strasbourg University, Strasbourg, France
| | - David Laplaud
- Center for Research in Transplantation and Translational Immunology, Nantes Université, INSERM, CHU de Nantes, UMR 1064, CIC INSERM 1413, Service de Neurologie, Nantes F-44000, France
| | - Laure Michel
- Service de Neurologie, Centre Hospitalier Universitaire de Rennes, Rennes, France; Clinical Neuroscience Centre, University Hospital, Rennes University, CIC_P1414 INSERM, Rennes, France
| | - Romain Deschamps
- Service de Neurologie, Hôpital Fondation Adolphe de Rothschild, Paris, France
| | - Eric Thouvenot
- Service de Neurologie, Centre Hospitalier Universitaire de Nîmes, Nîmes, France; Institut de Génomique Fonctionnelle, Université Montpellier, CNRS INSERM, Montpellier, France
| | - Hélène Zephir
- CCMR MIRCEM, Université de Lille INSERM U1172, CHU de Lille, Lille, France; CCMR MIRCEM, CHU de Lille, Lille, France
| | - Romain Marignier
- Service de Sclérose en Plaques, Pathologies de la substance blanche et Neuroinflammation, Hôpital Neurologique, Hospices Civils de Lyon, Bron, France
| | - François Cotton
- Service de Radiologie, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre-Bénite, France; Creatis LRMN, CNRS UMR 5220, Université Claude Bernard Lyon 1, INSERM U630, Lyon, France
| |
Collapse
|
2
|
Keegan BM, Absinta M, Cohen-Adad J, Flanagan EP, Henry RG, Klawiter EC, Kolind S, Krieger S, Laule C, Lincoln JA, Messina S, Oh J, Papinutto N, Smith SA, Traboulsee A. Spinal cord evaluation in multiple sclerosis: clinical and radiological associations, present and future. Brain Commun 2024; 6:fcae395. [PMID: 39611182 PMCID: PMC11604059 DOI: 10.1093/braincomms/fcae395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/30/2024] [Accepted: 11/05/2024] [Indexed: 11/30/2024] Open
Abstract
Spinal cord disease is important in most people with multiple sclerosis, but assessment remains less emphasized in patient care, basic and clinical research and therapeutic trials. The North American Imaging in Multiple Sclerosis Spinal Cord Interest Group was formed to determine and present the contemporary landscape of multiple sclerosis spinal cord evaluation, further existing and advanced spinal cord imaging techniques, and foster collaborative work. Important themes arose: (i) multiple sclerosis spinal cord lesions (differential diagnosis, association with clinical course); (ii) spinal cord radiological-pathological associations; (iii) 'critical' spinal cord lesions; (iv) multiple sclerosis topographical model; (v) spinal cord atrophy; and (vi) automated and special imaging techniques. Distinguishing multiple sclerosis from other myelopathic aetiology is increasingly refined by imaging and serological studies. Post-mortem spinal cord findings and MRI pathological correlative studies demonstrate MRI's high sensitivity in detecting microstructural demyelination and axonal loss. Spinal leptomeninges include immune inflammatory infiltrates, some in B-cell lymphoid-like structures. 'Critical' demyelinating lesions along spinal cord corticospinal tracts are anatomically consistent with and may be disproportionately associated with motor progression. Multiple sclerosis topographical model implicates the spinal cord as an area where threshold impairment associates with multiple sclerosis disability. Progressive spinal cord atrophy and 'silent' multiple sclerosis progression may be emerging as an important multiple sclerosis prognostic biomarker. Manual atrophy assessment is complicated by rater bias, while automation (e.g. Spinal Cord Toolbox), and artificial intelligence may reduce this. Collaborative research by the North American Imaging in Multiple Sclerosis and similar groups with experts combining distinct strengths is key to advancing assessment and treatment of people with multiple sclerosis spinal cord disease.
Collapse
Affiliation(s)
- B Mark Keegan
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Martina Absinta
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Julien Cohen-Adad
- Institute of Biomedical Imaging, Polytechnique Montreal, Montreal, Canada H3T 1J4
| | - Eoin P Flanagan
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Roland G Henry
- Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Eric C Klawiter
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Shannon Kolind
- Division of Neurology, University of British Columbia, Vancouver, Canada V6T 2B5
| | - Stephen Krieger
- Department of Neurology, Mount Sinai, New York City, NY 10029, USA
| | - Cornelia Laule
- Division of Neurology, University of British Columbia, Vancouver, Canada V6T 2B5
| | - John A Lincoln
- McGovern Medical School, UTHealth, Houston, TX 77030, USA
| | - Steven Messina
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jiwon Oh
- Division of Neurology, University of Toronto, Toronto, Canada M5B 1W8
| | - Nico Papinutto
- Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Seth Aaron Smith
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA
| | - Anthony Traboulsee
- Division of Neurology, University of British Columbia, Vancouver, Canada V6T 2B5
| |
Collapse
|
3
|
Uzawa A, Oertel FC, Mori M, Paul F, Kuwabara S. NMOSD and MOGAD: an evolving disease spectrum. Nat Rev Neurol 2024; 20:602-619. [PMID: 39271964 DOI: 10.1038/s41582-024-01014-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 09/15/2024]
Abstract
Neuromyelitis optica (NMO) spectrum disorder (NMOSD) is a relapsing inflammatory disease of the CNS, characterized by the presence of serum aquaporin 4 (AQP4) autoantibodies (AQP4-IgGs) and core clinical manifestations such as optic neuritis, myelitis, and brain or brainstem syndromes. Some people exhibit clinical characteristics of NMOSD but test negative for AQP4-IgG, and a subset of these individuals are now recognized to have serum autoantibodies against myelin oligodendrocyte glycoprotein (MOG) - a condition termed MOG antibody-associated disease (MOGAD). Therefore, the concept of NMOSD is changing, with a disease spectrum emerging that includes AQP4-IgG-seropositive NMOSD, MOGAD and double-seronegative NMOSD. MOGAD shares features with NMOSD, including optic neuritis and myelitis, but has distinct pathophysiology, clinical profiles, neuroimaging findings (including acute disseminated encephalomyelitis and/or cortical encephalitis) and biomarkers. AQP4-IgG-seronegative NMOSD seems to be a heterogeneous condition and requires further study. MOGAD can manifest as either a monophasic or a relapsing disease, whereas NMOSD is usually relapsing. This Review summarizes the history and current concepts of NMOSD and MOGAD, comparing epidemiology, clinical features, neuroimaging, pathology and immunology. In addition, we discuss new monoclonal antibody therapies for AQP4-IgG-seropositive NMOSD that target complement, B cells or IL-6 receptors, which might be applied to MOGAD in the near future.
Collapse
Affiliation(s)
- Akiyuki Uzawa
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | - Frederike Cosima Oertel
- Experimental and Clinical Research Center (ECRC), Max Delbrück Center Berlin and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Department of Neurology, Charité-Universiaätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Masahiro Mori
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Friedemann Paul
- Experimental and Clinical Research Center (ECRC), Max Delbrück Center Berlin and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Department of Neurology, Charité-Universiaätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
4
|
Geraldes R, Arrambide G, Banwell B, Rovira À, Cortese R, Lassmann H, Messina S, Rocca MA, Waters P, Chard D, Gasperini C, Hacohen Y, Mariano R, Paul F, DeLuca GC, Enzinger C, Kappos L, Leite MI, Sastre-Garriga J, Yousry T, Ciccarelli O, Filippi M, Barkhof F, Palace J. The influence of MOGAD on diagnosis of multiple sclerosis using MRI. Nat Rev Neurol 2024; 20:620-635. [PMID: 39227463 DOI: 10.1038/s41582-024-01005-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2024] [Indexed: 09/05/2024]
Abstract
Myelin oligodendrocyte glycoprotein (MOG) antibody-associated disease (MOGAD) is an immune-mediated demyelinating disease that is challenging to differentiate from multiple sclerosis (MS), as the clinical phenotypes overlap, and people with MOGAD can fulfil the current MRI-based diagnostic criteria for MS. In addition, the MOG antibody assays that are an essential component of MOGAD diagnosis are not standardized. Accurate diagnosis of MOGAD is crucial because the treatments and long-term prognosis differ from those for MS. This Expert Recommendation summarizes the outcomes from a Magnetic Resonance Imaging in MS workshop held in Oxford, UK in May 2022, in which MS and MOGAD experts reflected on the pathology and clinical features of these disorders, the contributions of MRI to their diagnosis and the clinical use of the MOG antibody assay. We also critically reviewed the literature to assess the validity of distinctive imaging features in the current MS and MOGAD criteria. We conclude that dedicated orbital and spinal cord imaging (with axial slices) can inform MOGAD diagnosis and also illuminate differential diagnoses. We provide practical guidance to neurologists and neuroradiologists on how to navigate the current MOGAD and MS criteria. We suggest a strategy that includes useful imaging discriminators on standard clinical MRI and discuss imaging features detected by non-conventional MRI sequences that demonstrate promise in differentiating these two disorders.
Collapse
Affiliation(s)
- Ruth Geraldes
- NMO Service, Department of Neurology, Oxford University Hospitals, Oxford, UK.
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK.
- Wexham Park Hospital, Frimley Health Foundation Trust, Slough, UK.
| | - Georgina Arrambide
- Neurology-Neuroimmunology Department, Multiple Sclerosis Centre of Catalonia (Cemcat), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Brenda Banwell
- Division of Child Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Àlex Rovira
- Section of Neuroradiology, Department of Radiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Rosa Cortese
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Silvia Messina
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
- Wexham Park Hospital, Frimley Health Foundation Trust, Slough, UK
| | - Mara Assunta Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Patrick Waters
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Declan Chard
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- National Institute for Health Research (NIHR) University College London Hospitals (CLH) Biomedical Research Centre, London, UK
| | - Claudio Gasperini
- Multiple Sclerosis Centre, Department of Neurosciences, San Camillo-Forlanini Hospital, Rome, Italy
| | - Yael Hacohen
- Department of Paediatric Neurology, Great Ormond Street Hospital for Children, London, UK
| | - Romina Mariano
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Gabriele C DeLuca
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Christian Enzinger
- Department of Neurology, Medical University of Graz, Graz, Austria
- Division of Neuroradiology, Vascular and Interventional Radiology, Medical University of Graz, Graz, Austria
| | - Ludwig Kappos
- Research Center for Clinical Neuroimmunology and Neuroscience, University Hospital and University, Basel, Switzerland
| | - M Isabel Leite
- NMO Service, Department of Neurology, Oxford University Hospitals, Oxford, UK
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Jaume Sastre-Garriga
- Neurology-Neuroimmunology Department, Multiple Sclerosis Centre of Catalonia (Cemcat), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Tarek Yousry
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Olga Ciccarelli
- Department of Neuroinflammation, Queen Square MS Centre, UCL Queen Square Institute of Neurology, London, UK
- University College London Hospitals (UCLH) National Institute for Health and Research (NIHR) Biomedical Research Centre (BRC), London, UK
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
- Queen Square Institute of Neurology and Centre for Medical Image Computing, University College London, London, UK
| | - Jacqueline Palace
- NMO Service, Department of Neurology, Oxford University Hospitals, Oxford, UK.
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK.
| |
Collapse
|
5
|
Zhang L, Feng C, He L, Huang SY, Liu XY, Fan X. MOG-antibody-associated transverse myelitis with the H-sign and unusual MRI enhancement: a case report and literature review. Front Pediatr 2024; 12:1451688. [PMID: 39318613 PMCID: PMC11420004 DOI: 10.3389/fped.2024.1451688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/28/2024] [Indexed: 09/26/2024] Open
Abstract
Transverse myelitis is the second most common symptoms in myelin oligodendrocyte antibody-associated diseases (MOGAD), causing obvious clinical manifestation. T2-hyperintense lesions mainly restricted to the gray matter in the spinal cord on axial magnetic resonance imaging, produce the H-sign, which is thought to be the typical finding of MOGAD. Contrast enhancement can be observed in some cases of myelin oligodendrocyte antibody-associated transverse myelitis (MOG-TM). However, reports on the enhancement pattern associated with the H-sign are rarely seen. In this report, we describe a case of pediatric MOG-TM in which the H-sign was observed without enhancement, while the surrounding white matter exhibited enhancement. This pattern contradicts the previously observed gray matter involvement. Then we reviewed the literatures of myelin oligodendrocyte antibody-positive myelitis to focus on the neuroimaging features and discuss the implications of our finding.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Radiology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Chuan Feng
- Department of Radiology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ling He
- Department of Radiology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Shi-Yu Huang
- Department of Radiology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xin-Yin Liu
- Department of Radiology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao Fan
- Department of Radiology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Luchetti L, Prados F, Cortese R, Gentile G, Calabrese M, Mortilla M, De Stefano N, Battaglini M. Evaluation of cervical spinal cord atrophy using a modified SIENA approach. Neuroimage 2024; 298:120775. [PMID: 39106936 DOI: 10.1016/j.neuroimage.2024.120775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/12/2024] [Accepted: 08/02/2024] [Indexed: 08/09/2024] Open
Abstract
Spinal cord (SC) atrophy obtained from structural magnetic resonance imaging has gained relevance as an indicator of neurodegeneration in various neurological disorders. The common method to assess SC atrophy is by comparing numerical differences of the cross-sectional spinal cord area (CSA) between time points. However, this indirect approach leads to considerable variability in the obtained results. Studies showed that this limitation can be overcome by using a registration-based technique. The present study introduces the Structural Image Evaluation using Normalization of Atrophy on the Spinal Cord (SIENA-SC), which is an adapted version of the original SIENA method, designed to directly calculate the percentage of SC volume change over time from clinical brain MRI acquired with an extended field of view to cover the superior part of the cervical SC. In this work, we compared SIENA-SC with the Generalized Boundary Shift Integral (GBSI) and the CSA change. On a scan-rescan dataset, SIENA-SC was shown to have the lowest measurement error than the other two methods. When comparing a group of 190 Healthy Controls with a group of 65 Multiple Sclerosis patients, SIENA-SC provided significantly higher yearly rates of atrophy in patients than in controls and a lower sample size when measured for treatment effect sizes of 50%, 30% and 10%. Our findings indicate that SIENA-SC is a robust, reproducible, and sensitive approach for assessing longitudinal changes in spinal cord volume, providing neuroscientists with an accessible and automated tool able to reduce the need for manual intervention and minimize variability in measurements.
Collapse
Affiliation(s)
- Ludovico Luchetti
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy; Siena Imaging S.r.l., Siena, Italy
| | - Ferran Prados
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom; Center for Medical Imaging Computing, Medical Physics and Biomedical Engineering Department, University College London, London, United Kingdom; e-Health Center, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Rosa Cortese
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | | | - Massimilano Calabrese
- Department of Neuroscience, Biomedicine and Movements, The Multiple Sclerosis Center of the University Hospital of Verona, Verona, Italy
| | - Marzia Mortilla
- Anna Meyer Children's University Hospital-IRCCS, Florence, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Marco Battaglini
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy; Siena Imaging S.r.l., Siena, Italy.
| |
Collapse
|
7
|
Chen X, Roberts N, Zheng Q, Peng Y, Han Y, Luo Q, Feng J, Luo T, Li Y. Comparison of diffusion tensor imaging (DTI) tissue characterization parameters in white matter tracts of patients with multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD). Eur Radiol 2024; 34:5263-5275. [PMID: 38175221 DOI: 10.1007/s00330-023-10550-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/25/2023] [Accepted: 11/11/2023] [Indexed: 01/05/2024]
Abstract
OBJECTIVE To investigate the microstructural properties of T2 lesion and normal-appearing white matter (NAWM) in 20 white matter tracts between multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD) and correlations between the tissue damage and clinical variables. METHODS The white matter (WM) compartment of the brain was segmented for 56 healthy controls (HC), 48 patients with MS, and 38 patients with NMOSD, and for the patients further subdivided into T2 lesion and NAWM. Subsequently, the diffusion tensor imaging (DTI) tissue characterization parameters of fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were compared for 20 principal white matter tracts. The correlation between tissue damage and clinical variables was also investigated. RESULTS The higher T2 lesion volumes of 14 fibers were shown in MS compared to NMOSD. MS showed more microstructure damage in 13 fibers of T2 lesion, but similar microstructure in seven fibers compared to NMOSD. MS and NMOSD had microstructure damage of NAWM in 20 fibers compared to WM in HC, with more damage in 20 fibers in MS compared to NMOSD. MS patients showed higher correlation between the microstructure of T2 lesion areas and NAWM. The T2 lesion microstructure damage was correlated with duration and impaired cognition in MS. CONCLUSIONS Patients with MS and NMOSD show different patterns of microstructural damage in T2 lesion and NAWM areas. The prolonged disease course of MS may aggravate the microstructural damage, and the degree of microstructural damage is further related to cognitive impairment. CLINICAL RELEVANCE STATEMENT Microstructure differences between T2 lesion areas and normal-appearing white matter help distinguish multiple sclerosis and neuromyelitis optica spectrum disorder. In multiple sclerosis, lesions rather than normal-appearing white matter should be a concern, because the degree of lesion severity correlated both with normal-appearing white matter damage and cognitive impairment. KEY POINTS • Multiple sclerosis and neuromyelitis optica spectrum disorder have different damage patterns in T2 lesion and normal-appearing white matter areas. • The microstructure damage of normal-appearing white matter is correlated with the microstructure of T2 lesion in multiple sclerosis and neuromyelitis optica spectrum disorder. • The microstructure damage of T2 lesion in multiple sclerosis is correlated with duration and cognitive impairment.
Collapse
Affiliation(s)
- Xiaoya Chen
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Neil Roberts
- Edinburgh Imaging Facility QMRI, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Qiao Zheng
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yuling Peng
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yongliang Han
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Qi Luo
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jinzhou Feng
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Tianyou Luo
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Yongmei Li
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
8
|
Maillart E, Deiva K, Marignier R. Clinical characteristics of patients with myelin oligodendrocyte glycoprotein antibodies. Curr Opin Neurol 2024; 37:338-344. [PMID: 38497310 DOI: 10.1097/wco.0000000000001265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
PURPOSE OF REVIEW The clinical landscape associated to myelin oligodendrocyte glycoprotein antibodies (MOG-Ab) has undergone a remarkable transformation over the past two decades, primarily driven by advancements in antibody detection techniques that have enhanced both the specificity and sensitivity of assays, enabling the identification of novel clinical phenotypes. RECENT FINDINGS Recent pivotal research publications, comprehensive reviews from established research groups, and most notably the first proposed international criteria for MOG-Ab associated disease (MOGAD) have substantially enriched our understanding of the clinical features associated with MOG-Ab. This review presents a comprehensive overview of the clinical characteristics of patients with MOG-Ab, systematically examining each core clinical syndrome defined by the proposed international MOGAD criteria. We incorporated recent insights and discussed potential challenges in applying these criteria across diverse clinical scenarios. SUMMARY The proposed international MOGAD criteria provide a comprehensive, homogeneous, and specific framework for characterizing the clinical features of patients with MOG-Ab, encompassing both paediatric and adult populations. In the future, the widespread adoption of specific and reliable assays for MOG-Ab detection, complemented by the development of surrogate fluid and imaging markers, holds promise for better characterizing atypical presentations, only-cerebrospinal fluid positivity and the MOGAD "seronegative" situations.
Collapse
Affiliation(s)
- Elisabeth Maillart
- Centre de Référence des maladies inflammatoires rares du cerveau et de la moelle (MIRCEM)
- Department of Neurology, Hôpital Pitié-Salpêtrière, APHP, Paris
| | - Kumaran Deiva
- Centre de Référence des maladies inflammatoires rares du cerveau et de la moelle (MIRCEM)
- Department of Pediatric Neurology, Bicêtre Hospital, University Hospitals Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre
| | - Romain Marignier
- Centre de Référence des maladies inflammatoires rares du cerveau et de la moelle (MIRCEM)
- Service de Neurologie, sclérose en plaques, pathologies de la myéline et neuroinflammation, Hôpital Neurologique P. Wertheimer, Hospices Civils de Lyon, France
| |
Collapse
|
9
|
Biddle G, Beck RT, Raslan O, Ebinu J, Jenner Z, Hamer J, Hacein-Bey L, Apperson M, Ivanovic V. Autoimmune diseases of the spine and spinal cord. Neuroradiol J 2024; 37:285-303. [PMID: 37394950 PMCID: PMC11138326 DOI: 10.1177/19714009231187340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023] Open
Abstract
Magnetic resonance imaging (MRI) and clinicopathological tools have led to the identification of a wide spectrum of autoimmune entities that involve the spine. A clearer understanding of the unique imaging features of these disorders, along with their clinical presentations, will prove invaluable to clinicians and potentially limit the need for more invasive procedures such as tissue biopsies. Here, we review various autoimmune diseases affecting the spine and highlight salient imaging features that distinguish them radiologically from other disease entities.
Collapse
Affiliation(s)
- Garrick Biddle
- Radiology Department, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Ryan T Beck
- Neuroradiology, Radiology Department, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Osama Raslan
- Radiology Department, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Julius Ebinu
- Neurosurgery Department, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Zach Jenner
- Radiology Department, University of California Davis School of Medicine, Sacramento, CA, USA
| | - John Hamer
- Neuroradiology, Radiology Department, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Lotfi Hacein-Bey
- Radiology Department, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Michelle Apperson
- Neurology Department, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Vladimir Ivanovic
- Neuroradiology, Radiology Department, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
10
|
Wang J, Huang J, Sun Z, Dong H, Li K, Lu J. Structural changes in spinal cord following optic neuritis: Insights from quantitative spinal MRI. Brain Res 2024; 1831:148830. [PMID: 38408557 DOI: 10.1016/j.brainres.2024.148830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
OBJECTIVES Previous studies have demonstrated that optic neuritis (ON) affects brain plasticity. However, whether ON affects the spinal cord remains unclear. We aimed to investigate the spinal cord changes in ON and their associations with disability. METHODS A total of 101 ON patients, and 41 healthy controls (HC) were retrospectively recruited. High-resolution imaging was conducted using a Magnetization Prepared Rapid Acquisition Gradient-Echo (MP-RAGE) sequence for T1-weighted images and an echo planar imaging (EPI) sequence for Diffusion Tensor Imaging (DTI) data collection. Additionally, patients' disability and cognitive impairment were evaluated using the Expanded Disability Status Scale (EDSS) and the Paced Auditory Serial Addition Test (PASAT), respectively. The quantitative spinal MRI was employed to examine the cross-sectional area (CSA) and diffusion indicators, with a specific focus on calculating the average values across the C2-C7 cervical spinal cord segments. CSA, fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were compared between groups. Correlation analyses were performed between CSA, diffusion indicators, and clinical variables. RESULTS No significant differences were found in CSA between ON patients and HCs. MD (p = 0.007) and RD (p = 0.018) were increased in ON patients compared with HCs, and AD was decreased in ON (p = 0.013). The AD values of the ON patients were significantly positively correlated with PASAT scores (r = 0.37, p < 0.001). CONCLUSIONS This study provided imaging evidence for DTI abnormalities in patients with ON. Spinal cord DTI can improve our knowledge of the path physiology of ON, and clinical progression.
Collapse
Affiliation(s)
- Jiyuan Wang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing, China
| | - Jing Huang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing, China
| | - Zheng Sun
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing, China
| | - Huiqing Dong
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Kuncheng Li
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing, China
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing, China.
| |
Collapse
|
11
|
Lorefice L, Cortese R. Brain and spinal cord atrophy in NMOSD and MOGAD: Current evidence and future perspectives. Mult Scler Relat Disord 2024; 85:105559. [PMID: 38554671 DOI: 10.1016/j.msard.2024.105559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/26/2024] [Accepted: 03/18/2024] [Indexed: 04/02/2024]
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is a severe form of inflammation of the central nervous system (CNS) including acute myelitis, optic neuritis and brain syndrome. Currently, the classification of NMOSD relies on serologic testing, distinguishing between seropositive or seronegative anti-aquaporin-4 antibody (AQP4) status. However, the situation has recently grown more intricate with the identification of patients exhibiting the NMOSD phenotype and myelin oligodendrocyte glycoprotein antibodies (MOGAD). NMOSD is primarily recognized as a relapsing disorder; MOGAD can manifest with either a monophasic or relapsing course. Significant symptomatic inflammatory CNS injuries with stability in clinical findings outside the acute phase are reported in both diseases. Nevertheless, recent studies have proposed the existence of a subclinical pathological process, revealing longitudinal changes in brain and spinal cord atrophy. Within this context, we summarise key studies investigating brain and spinal cord measurements in adult NMOSD and MOGAD. We also explore their relationship with clinical aspects, highlight differences from multiple sclerosis (MS), and address future challenges. This exploration is crucial for determining the presence of chronic damage processes, enabling the customization of therapeutic interventions irrespective of the acute phase of the disease.
Collapse
Affiliation(s)
- L Lorefice
- Department of Medical Sciences and Public Health, Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari, University of Cagliari, Via Is Guadazzonis 2, Cagliari 09126, Italy.
| | - R Cortese
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
12
|
Oertel FC, Hastermann M, Paul F. Delimiting MOGAD as a disease entity using translational imaging. Front Neurol 2023; 14:1216477. [PMID: 38333186 PMCID: PMC10851159 DOI: 10.3389/fneur.2023.1216477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/23/2023] [Indexed: 02/10/2024] Open
Abstract
The first formal consensus diagnostic criteria for myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) were recently proposed. Yet, the distinction of MOGAD-defining characteristics from characteristics of its important differential diagnoses such as multiple sclerosis (MS) and aquaporin-4 antibody seropositive neuromyelitis optica spectrum disorder (NMOSD) is still obstructed. In preclinical research, MOG antibody-based animal models were used for decades to derive knowledge about MS. In clinical research, people with MOGAD have been combined into cohorts with other diagnoses. Thus, it remains unclear to which extent the generated knowledge is specifically applicable to MOGAD. Translational research can contribute to identifying MOGAD characteristic features by establishing imaging methods and outcome parameters on proven pathophysiological grounds. This article reviews suitable animal models for translational MOGAD research and the current state and prospect of translational imaging in MOGAD.
Collapse
Affiliation(s)
- Frederike Cosima Oertel
- Experimental and Clinical Research Center, Max-Delbrück-Centrum für Molekulare Medizin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Neuroscience Clinical Research Center, Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Neurology, Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Maria Hastermann
- Experimental and Clinical Research Center, Max-Delbrück-Centrum für Molekulare Medizin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Neuroscience Clinical Research Center, Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max-Delbrück-Centrum für Molekulare Medizin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Neuroscience Clinical Research Center, Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Neurology, Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
13
|
Mirmosayyeb O, Ghaffary EM, Dehghan MS, Ghoshouni H, Bagherieh S, Barzegar M, Shaygannejad V. Myelin Oligodendrocyte Glycoprotein Antibody-Associated Disease and COVID-19: A Systematic Review. J Cent Nerv Syst Dis 2023; 15:11795735231167869. [PMID: 37008248 PMCID: PMC10063869 DOI: 10.1177/11795735231167869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Background Myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) is an uncommon neurological disease affecting the central nervous system (CNS). Numerous neurological disorders, including multiple sclerosis (MS), neuromyelitis optica spectrum disorder (NMOSD), acute transverse myelitis (ATM), and MOGAD, have been reported following the COVID-19 infection during the current COVID-19 pandemic. On the other hand, it has been suggested that patients with MOGAD may be at greater risk for infection (particularly in the current pandemic). Objective In this systematic review, we gathered separately 1) MOGAD cases following COVID-19 infection as well as 2) clinical course of patients with MOGAD infected with COVID-19 based on case reports/series. Methods 329 articles were collected from 4 databases. These articles were conducted from inception to March 1st, 2022. Results Following the screening, exclusion criteria were followed and eventually, 22 studies were included. In 18 studies, a mean ± SD time interval of 18.6 ± 14.9 days was observed between infection with COVID-19 and the onset of MOGAD symptoms. Symptoms were partially or completely recovered in a mean of 67 days of follow-up. Among 4 studies on MOGAD patients, the hospitalization rate was 25%, and 15% of patients were hospitalized in the intensive care unit (ICU). Conclusion Our systematic review demonstrated that following COVID-19 infection, there is a rare possibility of contracting MOGAD. Moreover, there is no clear consensus on the susceptibility of MOGAD patients to severe COVID-19. However, obtaining deterministic results requires studies with a larger sample size.
Collapse
Affiliation(s)
- Omid Mirmosayyeb
- Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Moases Ghaffary
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad S. Dehghan
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamed Ghoshouni
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sara Bagherieh
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahdi Barzegar
- Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vahid Shaygannejad
- Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Vahid Shaygannejad, Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Kashani Street, Kashani Hospital, Isfahan 81746 73461, Iran.
| |
Collapse
|
14
|
Cacciaguerra L, Rocca MA, Filippi M. Understanding the Pathophysiology and Magnetic Resonance Imaging of Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorders. Korean J Radiol 2023; 24:1260-1283. [PMID: 38016685 PMCID: PMC10700997 DOI: 10.3348/kjr.2023.0360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 11/30/2023] Open
Abstract
Magnetic resonance imaging (MRI) has been extensively applied in the study of multiple sclerosis (MS), substantially contributing to diagnosis, differential diagnosis, and disease monitoring. MRI studies have significantly contributed to the understanding of MS through the characterization of typical radiological features and their clinical or prognostic implications using conventional MRI pulse sequences and further with the application of advanced imaging techniques sensitive to microstructural damage. Interpretation of results has often been validated by MRI-pathology studies. However, the application of MRI techniques in the study of neuromyelitis optica spectrum disorders (NMOSD) remains an emerging field, and MRI studies have focused on radiological correlates of NMOSD and its pathophysiology to aid in diagnosis, improve monitoring, and identify relevant prognostic factors. In this review, we discuss the main contributions of MRI to the understanding of MS and NMOSD, focusing on the most novel discoveries to clarify differences in the pathophysiology of focal inflammation initiation and perpetuation, involvement of normal-appearing tissue, potential entry routes of pathogenic elements into the CNS, and existence of primary or secondary mechanisms of neurodegeneration.
Collapse
Affiliation(s)
- Laura Cacciaguerra
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milano, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
- Vita-Salute San Raffaele University, Milano, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milano, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
- Vita-Salute San Raffaele University, Milano, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milano, Italy.
| |
Collapse
|
15
|
Huda S, Palace J. It's not multiple sclerosis, what is it?! Pract Neurol 2023; 23:270-272. [PMID: 37100592 DOI: 10.1136/pn-2022-003677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2023] [Indexed: 04/28/2023]
Affiliation(s)
- Saif Huda
- Department of Neurology, The Walton Centre NHS Foundation Trust, Liverpool, UK
| | | |
Collapse
|
16
|
Perez-Giraldo G, Caldito NG, Grebenciucova E. Transverse myelitis in myelin oligodendrocyte glycoprotein antibody-associated disease. Front Neurol 2023; 14:1210972. [PMID: 37483456 PMCID: PMC10359891 DOI: 10.3389/fneur.2023.1210972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 05/30/2023] [Indexed: 07/25/2023] Open
Abstract
Transverse myelitis (TM) is the second most common presentation of myelin oligodendrocyte antibody-associated disease (MOGAD), occurring in approximately 26% of affected patients. The diagnosis may be complicated by the lack of diagnostic specificity of low titers of MOG antibody in serum, fluctuation in seropositivity overtime, including initially normal MRI in up to 10% of patients, and in many instances complete resolution of radiological abnormalities when MRI is done in a significantly delayed fashion. The use of preventive disease modifying treatments is limited by the uncertainty whether the disease process will remain monophasic or become relapsing, as well as by the lack FDA approved treatments. In this review, we discuss clinical, radiological and cerebrospinal fluid (CSF) characteristics, including the significance of MOG titers and changes in the seropositivity status for the diagnosis of MOGAD-associated TM, its radiological features and management options, highlighting the data on the risk of relapses associated with TM at presentation and the need for further randomized clinical trials to empower effective treatment algorithms.
Collapse
|
17
|
Li X, Wu W, Hou C, Zeng Y, Wu W, Chen L, Liao Y, Zhu H, Tian Y, Peng B, Zheng K, Shi K, Li Y, Gao Y, Zhang Y, Lin H, Chen WX. Pediatric myelin oligodendrocyte glycoprotein antibody-associated disease in southern China: analysis of 93 cases. Front Immunol 2023; 14:1162647. [PMID: 37342342 PMCID: PMC10277863 DOI: 10.3389/fimmu.2023.1162647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/22/2023] [Indexed: 06/22/2023] Open
Abstract
Objective To study the clinical features of children diagnosed with myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) in southern China. Methods Clinical data of children diagnosed with MOGAD from April 2014 to September 2021 were analyzed. Results A total of 93 children (M/F=45/48; median onset age=6.0 y) with MOGAD were involved. Seizures or limb paralysis was the most common onset or course symptom, respectively. The most common lesion locations in brain MRI, orbital MRI, and spinal cord MRI were basal ganglia and subcortical white matter, the orbital segment of the optic nerve, and the cervical segment, respectively. ADEM (58.10%) was the most common clinical phenotype. The relapse rate was 24.7%. Compared with the patients without relapse, relapsed patients had a longer interval from onset to diagnosis (median: 19 days VS 20 days) and higher MOG antibody titer at onset (median: 1:32 VS 1:100) with longer positively persistent (median: 3 months VS 24 months). All patients received IVMP plus IVIG at the acute phase, and 96.8% of patients achieved remission after one to three courses of treatment. MMF, monthly IVIG, and maintaining a low dose of oral prednisone were used alone or in combination as maintenance immunotherapy for relapsed patients and effectively reduced relapse. It transpired 41.9% of patients had neurological sequelae, with movement disorder being the most common. Compared with patients without sequelae, patients with sequelae had higher MOG antibody titer at onset (median: 1:32 VS 1:100) with longer persistence (median: 3 months VS 6 months) and higher disease relapse rate (14.8% VS 38.5%). Conclusions Results showed the following about pediatric MOGAD in southern China: the median onset age was 6.0 years, with no obvious sex distribution difference; seizure or limb paralysis, respectively, are the most common onset or course symptom; the lesions of basal ganglia, subcortical white matter, the orbital segment of the optic nerve, and cervical segment were commonly involved in the CNS MRI; ADEM was the most common clinical phenotype; most had a good response to immunotherapy; although the relapse rate was relatively high, MMF, monthly IVIG and a low dose of oral prednisone might effectively reduce relapse; neurological sequelae were common, and possibly associated with MOG antibody status and disease relapse.
Collapse
|
18
|
Banwell B, Bennett JL, Marignier R, Kim HJ, Brilot F, Flanagan EP, Ramanathan S, Waters P, Tenembaum S, Graves JS, Chitnis T, Brandt AU, Hemingway C, Neuteboom R, Pandit L, Reindl M, Saiz A, Sato DK, Rostasy K, Paul F, Pittock SJ, Fujihara K, Palace J. Diagnosis of myelin oligodendrocyte glycoprotein antibody-associated disease: International MOGAD Panel proposed criteria. Lancet Neurol 2023; 22:268-282. [PMID: 36706773 DOI: 10.1016/s1474-4422(22)00431-8] [Citation(s) in RCA: 417] [Impact Index Per Article: 208.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 09/07/2022] [Accepted: 10/13/2022] [Indexed: 01/26/2023]
Abstract
Serum antibodies directed against myelin oligodendrocyte glycoprotein (MOG) are found in patients with acquired CNS demyelinating syndromes that are distinct from multiple sclerosis and aquaporin-4-seropositive neuromyelitis optica spectrum disorder. Based on an extensive literature review and a structured consensus process, we propose diagnostic criteria for MOG antibody-associated disease (MOGAD) in which the presence of MOG-IgG is a core criterion. According to our proposed criteria, MOGAD is typically associated with acute disseminated encephalomyelitis, optic neuritis, or transverse myelitis, and is less commonly associated with cerebral cortical encephalitis, brainstem presentations, or cerebellar presentations. MOGAD can present as either a monophasic or relapsing disease course, and MOG-IgG cell-based assays are important for diagnostic accuracy. Diagnoses such as multiple sclerosis need to be excluded, but not all patients with multiple sclerosis should undergo screening for MOG-IgG. These proposed diagnostic criteria require validation but have the potential to improve identification of individuals with MOGAD, which is essential to define long-term clinical outcomes, refine inclusion criteria for clinical trials, and identify predictors of a relapsing versus a monophasic disease course.
Collapse
Affiliation(s)
- Brenda Banwell
- Division of Child Neurology, Children's Hospital of Philadelphia, Department of Neurology and Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, PA, USA.
| | - Jeffrey L Bennett
- Departments of Neurology and Ophthalmology, Programs in Neuroscience and Immunology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Romain Marignier
- Service de neurologie, sclérose en plaques, pathologies de la myéline et neuro-inflammation, and Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, France; Centre de Recherche en Neurosciences de Lyon, Lyon, France; Université Claude Bernard Lyon, Lyon, France
| | - Ho Jin Kim
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, South Korea
| | - Fabienne Brilot
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, Australia; School of Medical Sciences, Faculty of Medicine and Health and Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Eoin P Flanagan
- Departments of Neurology, Laboratory Medicine and Pathology and Center MS and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | - Sudarshini Ramanathan
- Department of Neurology, Concord Hospital, Translational Neuroimmunology Group, Kids Neuroscience Centre, Children's Hospital at Westmead, Sydney, Australia; Brain and Mind Centre and Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Patrick Waters
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Silvia Tenembaum
- Paediatric Neuroimmunology Clinic, Department of Neurology, National Paediatric Hospital Dr J P Garrahan, Ciudad de Buenos Aires, Argentina
| | - Jennifer S Graves
- Department of Neurosciences, University of California, San Diego, CA, USA
| | - Tanuja Chitnis
- Department of Pediatric Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Cheryl Hemingway
- Department of Paediatric Neurology, Great Ormond Street Hospital, London, UK; Institute of Neurology, UCL, London, UK
| | - Rinze Neuteboom
- Department of Neurology, MS Center ErasMS, Sophia Children's Hospital, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Lekha Pandit
- Center for Advanced Neurological Research, Nitte University Mangalore, Mangalore, India
| | - Markus Reindl
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Albert Saiz
- Neuroimmunology and Multiple Sclerosis Unit, Service of Neurology, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Facultat de Medicina i Ciencies de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Douglas Kazutoshi Sato
- School of Medicine and Institute for Geriatrics and Gerontology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Kevin Rostasy
- Department of Paediatric Neurology, Children'sHospital Datteln, University Witten and Herdecke, Datteln, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sean J Pittock
- Departments of Neurology, Laboratory Medicine, and Pathology and Center MS and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | - Kazuo Fujihara
- Department of Multiple Sclerosis Therapeutics, Fukushima Medical University School of Medicine, Fukushima, Japan; Multiple Sclerosis and Neuromyelitis Optica Center, Southern TOHOKU Research Institute for Neuroscience, Koriyama, Japan
| | - Jacqueline Palace
- Department of Neurology John Radcliffe Hospital Oxford and Nuffield Department of Clinical Neurosciences Oxford University, Oxford, UK
| |
Collapse
|
19
|
Cortese R, Prados Carrasco F, Tur C, Bianchi A, Brownlee W, De Angelis F, De La Paz I, Grussu F, Haider L, Jacob A, Kanber B, Magnollay L, Nicholas RS, Trip A, Yiannakas M, Toosy AT, Hacohen Y, Barkhof F, Ciccarelli O. Differentiating Multiple Sclerosis From AQP4-Neuromyelitis Optica Spectrum Disorder and MOG-Antibody Disease With Imaging. Neurology 2023; 100:e308-e323. [PMID: 36192175 PMCID: PMC9869760 DOI: 10.1212/wnl.0000000000201465] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 09/09/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Relapsing-remitting multiple sclerosis (RRMS), aquaporin-4 antibody-positive neuromyelitis optica spectrum disorder (AQP4-NMOSD), and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) may have overlapping clinical features. There is an unmet need for imaging markers that differentiate between them when serologic testing is unavailable or ambiguous. We assessed whether imaging characteristics typical of MS discriminate RRMS from AQP4-NMOSD and MOGAD, alone and in combination. METHODS Adult, nonacute patients with RRMS, APQ4-NMOSD, and MOGAD and healthy controls were prospectively recruited at the National Hospital for Neurology and Neurosurgery (London, United Kingdom) and the Walton Centre (Liverpool, United Kingdom) between 2014 and 2019. They underwent conventional and advanced brain, cord, and optic nerve MRI and optical coherence tomography (OCT). RESULTS A total of 91 consecutive patients (31 RRMS, 30 APQ4-NMOSD, and 30 MOGAD) and 34 healthy controls were recruited. The most accurate measures differentiating RRMS from AQP4-NMOSD were the proportion of lesions with the central vein sign (CVS) (84% vs 33%, accuracy/specificity/sensitivity: 91/88/93%, p < 0.001), followed by cortical lesions (median: 2 [range: 1-14] vs 1 [0-1], accuracy/specificity/sensitivity: 84/90/77%, p = 0.002) and white matter lesions (mean: 39.07 [±25.8] vs 9.5 [±14], accuracy/specificity/sensitivity: 78/84/73%, p = 0.001). The combination of higher proportion of CVS, cortical lesions, and optic nerve magnetization transfer ratio reached the highest accuracy in distinguishing RRMS from AQP4-NMOSD (accuracy/specificity/sensitivity: 95/92/97%, p < 0.001). The most accurate measures favoring RRMS over MOGAD were white matter lesions (39.07 [±25.8] vs 1 [±2.3], accuracy/specificity/sensitivity: 94/94/93%, p = 0.006), followed by cortical lesions (2 [1-14] vs 1 [0-1], accuracy/specificity/sensitivity: 84/97/71%, p = 0.004), and retinal nerve fiber layer thickness (RNFL) (mean: 87.54 [±13.83] vs 75.54 [±20.33], accuracy/specificity/sensitivity: 80/79/81%, p = 0.009). Higher cortical lesion number combined with higher RNFL thickness best differentiated RRMS from MOGAD (accuracy/specificity/sensitivity: 84/92/77%, p < 0.001). DISCUSSION Cortical lesions, CVS, and optic nerve markers achieve a high accuracy in distinguishing RRMS from APQ4-NMOSD and MOGAD. This information may be useful in clinical practice, especially outside the acute phase and when serologic testing is ambiguous or not promptly available. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that selected conventional and advanced brain, cord, and optic nerve MRI and OCT markers distinguish adult patients with RRMS from AQP4-NMOSD and MOGAD.
Collapse
Affiliation(s)
- Rosa Cortese
- From the Department of Neuroinflammation (R.C., F.P.C., C.T., A.B., W.B., F.D.A., I.D.L.P., F.G., L.H., L.M., A.T., M.Y., A.T.T., Y.H.R.C.P.C.H., F.B., O.C.), Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Science, University College of London; Department of Medicine (R.C.), Surgery and Neuroscience, University of Siena, Italy; Department of Medical Physics and Biomedical Engineering (F.P.C., B.K., F.B.), Centre for Medical Imaging Computing, University College of London; Universitat Oberta de Catalunya (F.P.C.), Barcelona, Spain; MS Centre of Catalonia (Cemcat) (C.T.), Vall d'Hebron Institute of Research, Spain; Radiomics Group (F.G.), Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Barcelona, Spain; Department of Biomedical Imaging and Image Guided Therapy (L.H.), Medical University of Vienna, Austria; NMO Clinical Service at the Walton Centre (A.J.), Liverpool, United Kingdom; Division of Multiple Sclerosis and Autoimmune Neurology (A.J.), Neurological Institute, Cleveland Clinic Abu Dhabi, United Arab Emirates; Division of Brain Sciences (R.S.N.), Department of Medicine, Imperial College London; National Institute for Health Research (NIHR) (A.T., F.B., O.C.), University College London Hospitals (UCLH), Biomedical Research Centre; and Department of Radiology and Nuclear Medicine (F.B.), Amsterdam University Medical Centre, the Netherlands
| | - Ferran Prados Carrasco
- From the Department of Neuroinflammation (R.C., F.P.C., C.T., A.B., W.B., F.D.A., I.D.L.P., F.G., L.H., L.M., A.T., M.Y., A.T.T., Y.H.R.C.P.C.H., F.B., O.C.), Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Science, University College of London; Department of Medicine (R.C.), Surgery and Neuroscience, University of Siena, Italy; Department of Medical Physics and Biomedical Engineering (F.P.C., B.K., F.B.), Centre for Medical Imaging Computing, University College of London; Universitat Oberta de Catalunya (F.P.C.), Barcelona, Spain; MS Centre of Catalonia (Cemcat) (C.T.), Vall d'Hebron Institute of Research, Spain; Radiomics Group (F.G.), Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Barcelona, Spain; Department of Biomedical Imaging and Image Guided Therapy (L.H.), Medical University of Vienna, Austria; NMO Clinical Service at the Walton Centre (A.J.), Liverpool, United Kingdom; Division of Multiple Sclerosis and Autoimmune Neurology (A.J.), Neurological Institute, Cleveland Clinic Abu Dhabi, United Arab Emirates; Division of Brain Sciences (R.S.N.), Department of Medicine, Imperial College London; National Institute for Health Research (NIHR) (A.T., F.B., O.C.), University College London Hospitals (UCLH), Biomedical Research Centre; and Department of Radiology and Nuclear Medicine (F.B.), Amsterdam University Medical Centre, the Netherlands
| | - Carmen Tur
- From the Department of Neuroinflammation (R.C., F.P.C., C.T., A.B., W.B., F.D.A., I.D.L.P., F.G., L.H., L.M., A.T., M.Y., A.T.T., Y.H.R.C.P.C.H., F.B., O.C.), Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Science, University College of London; Department of Medicine (R.C.), Surgery and Neuroscience, University of Siena, Italy; Department of Medical Physics and Biomedical Engineering (F.P.C., B.K., F.B.), Centre for Medical Imaging Computing, University College of London; Universitat Oberta de Catalunya (F.P.C.), Barcelona, Spain; MS Centre of Catalonia (Cemcat) (C.T.), Vall d'Hebron Institute of Research, Spain; Radiomics Group (F.G.), Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Barcelona, Spain; Department of Biomedical Imaging and Image Guided Therapy (L.H.), Medical University of Vienna, Austria; NMO Clinical Service at the Walton Centre (A.J.), Liverpool, United Kingdom; Division of Multiple Sclerosis and Autoimmune Neurology (A.J.), Neurological Institute, Cleveland Clinic Abu Dhabi, United Arab Emirates; Division of Brain Sciences (R.S.N.), Department of Medicine, Imperial College London; National Institute for Health Research (NIHR) (A.T., F.B., O.C.), University College London Hospitals (UCLH), Biomedical Research Centre; and Department of Radiology and Nuclear Medicine (F.B.), Amsterdam University Medical Centre, the Netherlands
| | - Alessia Bianchi
- From the Department of Neuroinflammation (R.C., F.P.C., C.T., A.B., W.B., F.D.A., I.D.L.P., F.G., L.H., L.M., A.T., M.Y., A.T.T., Y.H.R.C.P.C.H., F.B., O.C.), Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Science, University College of London; Department of Medicine (R.C.), Surgery and Neuroscience, University of Siena, Italy; Department of Medical Physics and Biomedical Engineering (F.P.C., B.K., F.B.), Centre for Medical Imaging Computing, University College of London; Universitat Oberta de Catalunya (F.P.C.), Barcelona, Spain; MS Centre of Catalonia (Cemcat) (C.T.), Vall d'Hebron Institute of Research, Spain; Radiomics Group (F.G.), Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Barcelona, Spain; Department of Biomedical Imaging and Image Guided Therapy (L.H.), Medical University of Vienna, Austria; NMO Clinical Service at the Walton Centre (A.J.), Liverpool, United Kingdom; Division of Multiple Sclerosis and Autoimmune Neurology (A.J.), Neurological Institute, Cleveland Clinic Abu Dhabi, United Arab Emirates; Division of Brain Sciences (R.S.N.), Department of Medicine, Imperial College London; National Institute for Health Research (NIHR) (A.T., F.B., O.C.), University College London Hospitals (UCLH), Biomedical Research Centre; and Department of Radiology and Nuclear Medicine (F.B.), Amsterdam University Medical Centre, the Netherlands
| | - Wallace Brownlee
- From the Department of Neuroinflammation (R.C., F.P.C., C.T., A.B., W.B., F.D.A., I.D.L.P., F.G., L.H., L.M., A.T., M.Y., A.T.T., Y.H.R.C.P.C.H., F.B., O.C.), Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Science, University College of London; Department of Medicine (R.C.), Surgery and Neuroscience, University of Siena, Italy; Department of Medical Physics and Biomedical Engineering (F.P.C., B.K., F.B.), Centre for Medical Imaging Computing, University College of London; Universitat Oberta de Catalunya (F.P.C.), Barcelona, Spain; MS Centre of Catalonia (Cemcat) (C.T.), Vall d'Hebron Institute of Research, Spain; Radiomics Group (F.G.), Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Barcelona, Spain; Department of Biomedical Imaging and Image Guided Therapy (L.H.), Medical University of Vienna, Austria; NMO Clinical Service at the Walton Centre (A.J.), Liverpool, United Kingdom; Division of Multiple Sclerosis and Autoimmune Neurology (A.J.), Neurological Institute, Cleveland Clinic Abu Dhabi, United Arab Emirates; Division of Brain Sciences (R.S.N.), Department of Medicine, Imperial College London; National Institute for Health Research (NIHR) (A.T., F.B., O.C.), University College London Hospitals (UCLH), Biomedical Research Centre; and Department of Radiology and Nuclear Medicine (F.B.), Amsterdam University Medical Centre, the Netherlands
| | - Floriana De Angelis
- From the Department of Neuroinflammation (R.C., F.P.C., C.T., A.B., W.B., F.D.A., I.D.L.P., F.G., L.H., L.M., A.T., M.Y., A.T.T., Y.H.R.C.P.C.H., F.B., O.C.), Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Science, University College of London; Department of Medicine (R.C.), Surgery and Neuroscience, University of Siena, Italy; Department of Medical Physics and Biomedical Engineering (F.P.C., B.K., F.B.), Centre for Medical Imaging Computing, University College of London; Universitat Oberta de Catalunya (F.P.C.), Barcelona, Spain; MS Centre of Catalonia (Cemcat) (C.T.), Vall d'Hebron Institute of Research, Spain; Radiomics Group (F.G.), Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Barcelona, Spain; Department of Biomedical Imaging and Image Guided Therapy (L.H.), Medical University of Vienna, Austria; NMO Clinical Service at the Walton Centre (A.J.), Liverpool, United Kingdom; Division of Multiple Sclerosis and Autoimmune Neurology (A.J.), Neurological Institute, Cleveland Clinic Abu Dhabi, United Arab Emirates; Division of Brain Sciences (R.S.N.), Department of Medicine, Imperial College London; National Institute for Health Research (NIHR) (A.T., F.B., O.C.), University College London Hospitals (UCLH), Biomedical Research Centre; and Department of Radiology and Nuclear Medicine (F.B.), Amsterdam University Medical Centre, the Netherlands
| | - Isabel De La Paz
- From the Department of Neuroinflammation (R.C., F.P.C., C.T., A.B., W.B., F.D.A., I.D.L.P., F.G., L.H., L.M., A.T., M.Y., A.T.T., Y.H.R.C.P.C.H., F.B., O.C.), Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Science, University College of London; Department of Medicine (R.C.), Surgery and Neuroscience, University of Siena, Italy; Department of Medical Physics and Biomedical Engineering (F.P.C., B.K., F.B.), Centre for Medical Imaging Computing, University College of London; Universitat Oberta de Catalunya (F.P.C.), Barcelona, Spain; MS Centre of Catalonia (Cemcat) (C.T.), Vall d'Hebron Institute of Research, Spain; Radiomics Group (F.G.), Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Barcelona, Spain; Department of Biomedical Imaging and Image Guided Therapy (L.H.), Medical University of Vienna, Austria; NMO Clinical Service at the Walton Centre (A.J.), Liverpool, United Kingdom; Division of Multiple Sclerosis and Autoimmune Neurology (A.J.), Neurological Institute, Cleveland Clinic Abu Dhabi, United Arab Emirates; Division of Brain Sciences (R.S.N.), Department of Medicine, Imperial College London; National Institute for Health Research (NIHR) (A.T., F.B., O.C.), University College London Hospitals (UCLH), Biomedical Research Centre; and Department of Radiology and Nuclear Medicine (F.B.), Amsterdam University Medical Centre, the Netherlands
| | - Francesco Grussu
- From the Department of Neuroinflammation (R.C., F.P.C., C.T., A.B., W.B., F.D.A., I.D.L.P., F.G., L.H., L.M., A.T., M.Y., A.T.T., Y.H.R.C.P.C.H., F.B., O.C.), Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Science, University College of London; Department of Medicine (R.C.), Surgery and Neuroscience, University of Siena, Italy; Department of Medical Physics and Biomedical Engineering (F.P.C., B.K., F.B.), Centre for Medical Imaging Computing, University College of London; Universitat Oberta de Catalunya (F.P.C.), Barcelona, Spain; MS Centre of Catalonia (Cemcat) (C.T.), Vall d'Hebron Institute of Research, Spain; Radiomics Group (F.G.), Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Barcelona, Spain; Department of Biomedical Imaging and Image Guided Therapy (L.H.), Medical University of Vienna, Austria; NMO Clinical Service at the Walton Centre (A.J.), Liverpool, United Kingdom; Division of Multiple Sclerosis and Autoimmune Neurology (A.J.), Neurological Institute, Cleveland Clinic Abu Dhabi, United Arab Emirates; Division of Brain Sciences (R.S.N.), Department of Medicine, Imperial College London; National Institute for Health Research (NIHR) (A.T., F.B., O.C.), University College London Hospitals (UCLH), Biomedical Research Centre; and Department of Radiology and Nuclear Medicine (F.B.), Amsterdam University Medical Centre, the Netherlands
| | - Lukas Haider
- From the Department of Neuroinflammation (R.C., F.P.C., C.T., A.B., W.B., F.D.A., I.D.L.P., F.G., L.H., L.M., A.T., M.Y., A.T.T., Y.H.R.C.P.C.H., F.B., O.C.), Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Science, University College of London; Department of Medicine (R.C.), Surgery and Neuroscience, University of Siena, Italy; Department of Medical Physics and Biomedical Engineering (F.P.C., B.K., F.B.), Centre for Medical Imaging Computing, University College of London; Universitat Oberta de Catalunya (F.P.C.), Barcelona, Spain; MS Centre of Catalonia (Cemcat) (C.T.), Vall d'Hebron Institute of Research, Spain; Radiomics Group (F.G.), Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Barcelona, Spain; Department of Biomedical Imaging and Image Guided Therapy (L.H.), Medical University of Vienna, Austria; NMO Clinical Service at the Walton Centre (A.J.), Liverpool, United Kingdom; Division of Multiple Sclerosis and Autoimmune Neurology (A.J.), Neurological Institute, Cleveland Clinic Abu Dhabi, United Arab Emirates; Division of Brain Sciences (R.S.N.), Department of Medicine, Imperial College London; National Institute for Health Research (NIHR) (A.T., F.B., O.C.), University College London Hospitals (UCLH), Biomedical Research Centre; and Department of Radiology and Nuclear Medicine (F.B.), Amsterdam University Medical Centre, the Netherlands
| | - Anu Jacob
- From the Department of Neuroinflammation (R.C., F.P.C., C.T., A.B., W.B., F.D.A., I.D.L.P., F.G., L.H., L.M., A.T., M.Y., A.T.T., Y.H.R.C.P.C.H., F.B., O.C.), Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Science, University College of London; Department of Medicine (R.C.), Surgery and Neuroscience, University of Siena, Italy; Department of Medical Physics and Biomedical Engineering (F.P.C., B.K., F.B.), Centre for Medical Imaging Computing, University College of London; Universitat Oberta de Catalunya (F.P.C.), Barcelona, Spain; MS Centre of Catalonia (Cemcat) (C.T.), Vall d'Hebron Institute of Research, Spain; Radiomics Group (F.G.), Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Barcelona, Spain; Department of Biomedical Imaging and Image Guided Therapy (L.H.), Medical University of Vienna, Austria; NMO Clinical Service at the Walton Centre (A.J.), Liverpool, United Kingdom; Division of Multiple Sclerosis and Autoimmune Neurology (A.J.), Neurological Institute, Cleveland Clinic Abu Dhabi, United Arab Emirates; Division of Brain Sciences (R.S.N.), Department of Medicine, Imperial College London; National Institute for Health Research (NIHR) (A.T., F.B., O.C.), University College London Hospitals (UCLH), Biomedical Research Centre; and Department of Radiology and Nuclear Medicine (F.B.), Amsterdam University Medical Centre, the Netherlands
| | - Baris Kanber
- From the Department of Neuroinflammation (R.C., F.P.C., C.T., A.B., W.B., F.D.A., I.D.L.P., F.G., L.H., L.M., A.T., M.Y., A.T.T., Y.H.R.C.P.C.H., F.B., O.C.), Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Science, University College of London; Department of Medicine (R.C.), Surgery and Neuroscience, University of Siena, Italy; Department of Medical Physics and Biomedical Engineering (F.P.C., B.K., F.B.), Centre for Medical Imaging Computing, University College of London; Universitat Oberta de Catalunya (F.P.C.), Barcelona, Spain; MS Centre of Catalonia (Cemcat) (C.T.), Vall d'Hebron Institute of Research, Spain; Radiomics Group (F.G.), Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Barcelona, Spain; Department of Biomedical Imaging and Image Guided Therapy (L.H.), Medical University of Vienna, Austria; NMO Clinical Service at the Walton Centre (A.J.), Liverpool, United Kingdom; Division of Multiple Sclerosis and Autoimmune Neurology (A.J.), Neurological Institute, Cleveland Clinic Abu Dhabi, United Arab Emirates; Division of Brain Sciences (R.S.N.), Department of Medicine, Imperial College London; National Institute for Health Research (NIHR) (A.T., F.B., O.C.), University College London Hospitals (UCLH), Biomedical Research Centre; and Department of Radiology and Nuclear Medicine (F.B.), Amsterdam University Medical Centre, the Netherlands
| | - Lise Magnollay
- From the Department of Neuroinflammation (R.C., F.P.C., C.T., A.B., W.B., F.D.A., I.D.L.P., F.G., L.H., L.M., A.T., M.Y., A.T.T., Y.H.R.C.P.C.H., F.B., O.C.), Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Science, University College of London; Department of Medicine (R.C.), Surgery and Neuroscience, University of Siena, Italy; Department of Medical Physics and Biomedical Engineering (F.P.C., B.K., F.B.), Centre for Medical Imaging Computing, University College of London; Universitat Oberta de Catalunya (F.P.C.), Barcelona, Spain; MS Centre of Catalonia (Cemcat) (C.T.), Vall d'Hebron Institute of Research, Spain; Radiomics Group (F.G.), Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Barcelona, Spain; Department of Biomedical Imaging and Image Guided Therapy (L.H.), Medical University of Vienna, Austria; NMO Clinical Service at the Walton Centre (A.J.), Liverpool, United Kingdom; Division of Multiple Sclerosis and Autoimmune Neurology (A.J.), Neurological Institute, Cleveland Clinic Abu Dhabi, United Arab Emirates; Division of Brain Sciences (R.S.N.), Department of Medicine, Imperial College London; National Institute for Health Research (NIHR) (A.T., F.B., O.C.), University College London Hospitals (UCLH), Biomedical Research Centre; and Department of Radiology and Nuclear Medicine (F.B.), Amsterdam University Medical Centre, the Netherlands
| | - Richard S Nicholas
- From the Department of Neuroinflammation (R.C., F.P.C., C.T., A.B., W.B., F.D.A., I.D.L.P., F.G., L.H., L.M., A.T., M.Y., A.T.T., Y.H.R.C.P.C.H., F.B., O.C.), Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Science, University College of London; Department of Medicine (R.C.), Surgery and Neuroscience, University of Siena, Italy; Department of Medical Physics and Biomedical Engineering (F.P.C., B.K., F.B.), Centre for Medical Imaging Computing, University College of London; Universitat Oberta de Catalunya (F.P.C.), Barcelona, Spain; MS Centre of Catalonia (Cemcat) (C.T.), Vall d'Hebron Institute of Research, Spain; Radiomics Group (F.G.), Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Barcelona, Spain; Department of Biomedical Imaging and Image Guided Therapy (L.H.), Medical University of Vienna, Austria; NMO Clinical Service at the Walton Centre (A.J.), Liverpool, United Kingdom; Division of Multiple Sclerosis and Autoimmune Neurology (A.J.), Neurological Institute, Cleveland Clinic Abu Dhabi, United Arab Emirates; Division of Brain Sciences (R.S.N.), Department of Medicine, Imperial College London; National Institute for Health Research (NIHR) (A.T., F.B., O.C.), University College London Hospitals (UCLH), Biomedical Research Centre; and Department of Radiology and Nuclear Medicine (F.B.), Amsterdam University Medical Centre, the Netherlands
| | - Anand Trip
- From the Department of Neuroinflammation (R.C., F.P.C., C.T., A.B., W.B., F.D.A., I.D.L.P., F.G., L.H., L.M., A.T., M.Y., A.T.T., Y.H.R.C.P.C.H., F.B., O.C.), Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Science, University College of London; Department of Medicine (R.C.), Surgery and Neuroscience, University of Siena, Italy; Department of Medical Physics and Biomedical Engineering (F.P.C., B.K., F.B.), Centre for Medical Imaging Computing, University College of London; Universitat Oberta de Catalunya (F.P.C.), Barcelona, Spain; MS Centre of Catalonia (Cemcat) (C.T.), Vall d'Hebron Institute of Research, Spain; Radiomics Group (F.G.), Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Barcelona, Spain; Department of Biomedical Imaging and Image Guided Therapy (L.H.), Medical University of Vienna, Austria; NMO Clinical Service at the Walton Centre (A.J.), Liverpool, United Kingdom; Division of Multiple Sclerosis and Autoimmune Neurology (A.J.), Neurological Institute, Cleveland Clinic Abu Dhabi, United Arab Emirates; Division of Brain Sciences (R.S.N.), Department of Medicine, Imperial College London; National Institute for Health Research (NIHR) (A.T., F.B., O.C.), University College London Hospitals (UCLH), Biomedical Research Centre; and Department of Radiology and Nuclear Medicine (F.B.), Amsterdam University Medical Centre, the Netherlands
| | - Marios Yiannakas
- From the Department of Neuroinflammation (R.C., F.P.C., C.T., A.B., W.B., F.D.A., I.D.L.P., F.G., L.H., L.M., A.T., M.Y., A.T.T., Y.H.R.C.P.C.H., F.B., O.C.), Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Science, University College of London; Department of Medicine (R.C.), Surgery and Neuroscience, University of Siena, Italy; Department of Medical Physics and Biomedical Engineering (F.P.C., B.K., F.B.), Centre for Medical Imaging Computing, University College of London; Universitat Oberta de Catalunya (F.P.C.), Barcelona, Spain; MS Centre of Catalonia (Cemcat) (C.T.), Vall d'Hebron Institute of Research, Spain; Radiomics Group (F.G.), Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Barcelona, Spain; Department of Biomedical Imaging and Image Guided Therapy (L.H.), Medical University of Vienna, Austria; NMO Clinical Service at the Walton Centre (A.J.), Liverpool, United Kingdom; Division of Multiple Sclerosis and Autoimmune Neurology (A.J.), Neurological Institute, Cleveland Clinic Abu Dhabi, United Arab Emirates; Division of Brain Sciences (R.S.N.), Department of Medicine, Imperial College London; National Institute for Health Research (NIHR) (A.T., F.B., O.C.), University College London Hospitals (UCLH), Biomedical Research Centre; and Department of Radiology and Nuclear Medicine (F.B.), Amsterdam University Medical Centre, the Netherlands
| | - Ahmed T Toosy
- From the Department of Neuroinflammation (R.C., F.P.C., C.T., A.B., W.B., F.D.A., I.D.L.P., F.G., L.H., L.M., A.T., M.Y., A.T.T., Y.H.R.C.P.C.H., F.B., O.C.), Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Science, University College of London; Department of Medicine (R.C.), Surgery and Neuroscience, University of Siena, Italy; Department of Medical Physics and Biomedical Engineering (F.P.C., B.K., F.B.), Centre for Medical Imaging Computing, University College of London; Universitat Oberta de Catalunya (F.P.C.), Barcelona, Spain; MS Centre of Catalonia (Cemcat) (C.T.), Vall d'Hebron Institute of Research, Spain; Radiomics Group (F.G.), Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Barcelona, Spain; Department of Biomedical Imaging and Image Guided Therapy (L.H.), Medical University of Vienna, Austria; NMO Clinical Service at the Walton Centre (A.J.), Liverpool, United Kingdom; Division of Multiple Sclerosis and Autoimmune Neurology (A.J.), Neurological Institute, Cleveland Clinic Abu Dhabi, United Arab Emirates; Division of Brain Sciences (R.S.N.), Department of Medicine, Imperial College London; National Institute for Health Research (NIHR) (A.T., F.B., O.C.), University College London Hospitals (UCLH), Biomedical Research Centre; and Department of Radiology and Nuclear Medicine (F.B.), Amsterdam University Medical Centre, the Netherlands
| | - Yael Hacohen
- From the Department of Neuroinflammation (R.C., F.P.C., C.T., A.B., W.B., F.D.A., I.D.L.P., F.G., L.H., L.M., A.T., M.Y., A.T.T., Y.H.R.C.P.C.H., F.B., O.C.), Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Science, University College of London; Department of Medicine (R.C.), Surgery and Neuroscience, University of Siena, Italy; Department of Medical Physics and Biomedical Engineering (F.P.C., B.K., F.B.), Centre for Medical Imaging Computing, University College of London; Universitat Oberta de Catalunya (F.P.C.), Barcelona, Spain; MS Centre of Catalonia (Cemcat) (C.T.), Vall d'Hebron Institute of Research, Spain; Radiomics Group (F.G.), Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Barcelona, Spain; Department of Biomedical Imaging and Image Guided Therapy (L.H.), Medical University of Vienna, Austria; NMO Clinical Service at the Walton Centre (A.J.), Liverpool, United Kingdom; Division of Multiple Sclerosis and Autoimmune Neurology (A.J.), Neurological Institute, Cleveland Clinic Abu Dhabi, United Arab Emirates; Division of Brain Sciences (R.S.N.), Department of Medicine, Imperial College London; National Institute for Health Research (NIHR) (A.T., F.B., O.C.), University College London Hospitals (UCLH), Biomedical Research Centre; and Department of Radiology and Nuclear Medicine (F.B.), Amsterdam University Medical Centre, the Netherlands
| | - Frederik Barkhof
- From the Department of Neuroinflammation (R.C., F.P.C., C.T., A.B., W.B., F.D.A., I.D.L.P., F.G., L.H., L.M., A.T., M.Y., A.T.T., Y.H.R.C.P.C.H., F.B., O.C.), Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Science, University College of London; Department of Medicine (R.C.), Surgery and Neuroscience, University of Siena, Italy; Department of Medical Physics and Biomedical Engineering (F.P.C., B.K., F.B.), Centre for Medical Imaging Computing, University College of London; Universitat Oberta de Catalunya (F.P.C.), Barcelona, Spain; MS Centre of Catalonia (Cemcat) (C.T.), Vall d'Hebron Institute of Research, Spain; Radiomics Group (F.G.), Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Barcelona, Spain; Department of Biomedical Imaging and Image Guided Therapy (L.H.), Medical University of Vienna, Austria; NMO Clinical Service at the Walton Centre (A.J.), Liverpool, United Kingdom; Division of Multiple Sclerosis and Autoimmune Neurology (A.J.), Neurological Institute, Cleveland Clinic Abu Dhabi, United Arab Emirates; Division of Brain Sciences (R.S.N.), Department of Medicine, Imperial College London; National Institute for Health Research (NIHR) (A.T., F.B., O.C.), University College London Hospitals (UCLH), Biomedical Research Centre; and Department of Radiology and Nuclear Medicine (F.B.), Amsterdam University Medical Centre, the Netherlands
| | - Olga Ciccarelli
- From the Department of Neuroinflammation (R.C., F.P.C., C.T., A.B., W.B., F.D.A., I.D.L.P., F.G., L.H., L.M., A.T., M.Y., A.T.T., Y.H.R.C.P.C.H., F.B., O.C.), Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Science, University College of London; Department of Medicine (R.C.), Surgery and Neuroscience, University of Siena, Italy; Department of Medical Physics and Biomedical Engineering (F.P.C., B.K., F.B.), Centre for Medical Imaging Computing, University College of London; Universitat Oberta de Catalunya (F.P.C.), Barcelona, Spain; MS Centre of Catalonia (Cemcat) (C.T.), Vall d'Hebron Institute of Research, Spain; Radiomics Group (F.G.), Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Barcelona, Spain; Department of Biomedical Imaging and Image Guided Therapy (L.H.), Medical University of Vienna, Austria; NMO Clinical Service at the Walton Centre (A.J.), Liverpool, United Kingdom; Division of Multiple Sclerosis and Autoimmune Neurology (A.J.), Neurological Institute, Cleveland Clinic Abu Dhabi, United Arab Emirates; Division of Brain Sciences (R.S.N.), Department of Medicine, Imperial College London; National Institute for Health Research (NIHR) (A.T., F.B., O.C.), University College London Hospitals (UCLH), Biomedical Research Centre; and Department of Radiology and Nuclear Medicine (F.B.), Amsterdam University Medical Centre, the Netherlands.
| |
Collapse
|
20
|
Belova AN, Sheiko GE, Rakhmanova EM, Boyko AN. [Clinical features and modern diagnostic criteria of the disease associated with myelin oligodendrocyte glycoprotein antibody disease]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:47-56. [PMID: 37994888 DOI: 10.17116/jnevro202312311147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Demyelinating disease of the central nervous system associated with antibodies to myelin oligodendrocyte glycoprotein (MOGAD) has been proposed to be distinguished from neuromyelitis optica spectrum disorders (NMOSD) into a separate nosological form. The basis for the recognition of nosological independence was the presence of clinical features of this disease and the detection of a specific biomarker in the blood serum of patients - IgG class antibodies to MOG. The article summarizes the current data on the clinical and radiological phenotypes of MOGAD in children and adults and the features of the course of the disease. The requirements for the laboratory diagnosis of the disease and diagnostic criteria for MOGAD proposed by an international group of experts in 2023 are given.
Collapse
Affiliation(s)
- A N Belova
- Volga Research Medical University, Nizhny Novgorod, Russia
| | - G E Sheiko
- Volga Research Medical University, Nizhny Novgorod, Russia
| | - E M Rakhmanova
- Volga Research Medical University, Nizhny Novgorod, Russia
| | - A N Boyko
- Pirogov Russian National Research Medical University, Moscow, Russia
- Federal Center of Brain and Neurotechnologies of the Federal Medical Biological Agency, Moscow, Russia
| |
Collapse
|
21
|
Weil EL, Nakawah MO, Masdeu JC. Advances in the neuroimaging of motor disorders. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:359-381. [PMID: 37562878 DOI: 10.1016/b978-0-323-98818-6.00039-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Neuroimaging is a valuable adjunct to the history and examination in the evaluation of motor system disorders. Conventional imaging with computed tomography or magnetic resonance imaging depicts important anatomic information and helps to identify imaging patterns which may support diagnosis of a specific motor disorder. Advanced imaging techniques can provide further detail regarding volume, functional, or metabolic changes occurring in nervous system pathology. This chapter is an overview of the advances in neuroimaging with particular emphasis on both standard and less well-known advanced imaging techniques and findings, such as diffusion tensor imaging or volumetric studies, and their application to specific motor disorders. In addition, it provides reference to emerging imaging biomarkers in motor system disorders such as Parkinson disease, amyotrophic lateral sclerosis, and Huntington disease, and briefly reviews the neuroimaging findings in different causes of myelopathy and peripheral nerve disorders.
Collapse
Affiliation(s)
- Erika L Weil
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States; Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, TX, United States.
| | - Mohammad Obadah Nakawah
- Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, TX, United States; Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Joseph C Masdeu
- Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, TX, United States; Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
22
|
New Insights into Risk Genes and Their Candidates in Multiple Sclerosis. Neurol Int 2022; 15:24-39. [PMID: 36648967 PMCID: PMC9844300 DOI: 10.3390/neurolint15010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/16/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Oligodendrocytes are central nervous system glial cells that wrap neuronal axons with their differentiated myelin membranes as biological insulators. There has recently been an emerging concept that multiple sclerosis could be triggered and promoted by various risk genes that appear likely to contribute to the degeneration of oligodendrocytes. Despite the known involvement of vitamin D, immunity, and inflammatory cytokines in disease progression, the common causes and key genetic mechanisms remain unknown. Herein, we focus on recently identified risk factors and risk genes in the background of multiple sclerosis and discuss their relationships.
Collapse
|
23
|
Cortese R, Mariotto S, Mancinelli CR, Tortorella C. Pregnancy and antibody-mediated CNS disorders: What do we know and what should we know? Front Neurol 2022; 13:1048502. [PMID: 36601293 PMCID: PMC9806181 DOI: 10.3389/fneur.2022.1048502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022] Open
Abstract
Antibody-mediated central nervous system (CNS) disorders including those associated with aquaporin-4 or myelin oligodendrocyte glycoprotein IgG and autoimmune encephalitis often affect women of childbearing age. Pathogenic antibodies of these diseases can potentially alter reproductive functions and influence fetal development. Hormonal changes occurring during pregnancy may modify the course of autoimmune diseases by influencing relapse risk, attack severity, and affect the delivery and postpartum period. Moreover, balancing treatment related safety issues with the risk of potentially disabling relapses during pregnancy and breastfeeding are major challenges. Intentional prenatal, gestational, and post-partum counseling is paramount to address these issues and mitigate these risks. Fortunately, new insights on risk factors for adverse pregnancy outcomes and possible preventive strategies are emerging. This review aims to summarize the interplay between antibody-mediated CNS disorders and pregnancy during the prenatal, gestational, and postpartum periods, highlight current treatment recommendations, and discuss future areas of research.
Collapse
Affiliation(s)
- Rosa Cortese
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy,*Correspondence: Rosa Cortese
| | - Sara Mariotto
- Neurology Unit, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | - Carla Tortorella
- Department of Neurosciences, S. Camillo-Forlanini Hospital, Rome, Italy
| |
Collapse
|
24
|
Yang L, Qin Y, Chen K, Xu C, Peng M, Tan S, Liu T, Yao D. The role of basal ganglia network in neural plasticity in neuromyelitis optica spectrum disorder with myelitis. Mult Scler Relat Disord 2022; 68:104170. [PMID: 36113277 DOI: 10.1016/j.msard.2022.104170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/02/2022] [Accepted: 09/08/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVES To explore the alternation of the brain baseline activity in neuromyelitis optica spectrum disorder (NMOSD) patients after myelitis, and characterize the representation of the neural plasticity process. METHODS Clinical evaluation and resting-state fMRI were obtained from 20 NMOSD patients with myelitis and 20 healthy controls, matched in gender and age. Resting-state networks (RSNs) were identified through independent component analysis (ICA), and functional connectivity (FC) intra-RSNs and between region-of-interest (ROI) seed to whole-brain voxels were analyzed. Between-group comparisons and correlations with motor performance were also assessed. RESULTS A total of 14 main functional RSNs were identified. Group comparison of intra-network FCs revealed that FC strengths increased in basal ganglia network (BGN) and left frontoparietal network, decreased in sensorimotor network and default mode network in NMOSD. Better motor performance was found closely correlated with higher FC of BGN. Additionally, remarkably increased FC between caudate in BGN with cerebellum, frontal lobe and parietal lobe was discovered in further ROI-based whole-brain voxels FC analysis. CONCLUSIONS NMOSD patients presented wide brain resting-state functional connectivity alterations after myelitis, and BGN might be highly active in the process of neural plasticity in chronic stage of NMOSD. Besides, understanding neural plasticity representation, especially that in NMOSD patients after myelitis, might have important applications in monitoring and designing rehabilitative approaches.
Collapse
Affiliation(s)
- Lili Yang
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 West Second Section of First Ring Road, Chengdu 611731, China
| | - Yun Qin
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave., West Hi-Tech Zone, Chengdu, Sichuan 611731, China
| | - Kai Chen
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 West Second Section of First Ring Road, Chengdu 611731, China
| | - Congyu Xu
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave., West Hi-Tech Zone, Chengdu, Sichuan 611731, China
| | - Maoqing Peng
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave., West Hi-Tech Zone, Chengdu, Sichuan 611731, China
| | - Song Tan
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 West Second Section of First Ring Road, Chengdu 611731, China.
| | - Tiejun Liu
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave., West Hi-Tech Zone, Chengdu, Sichuan 611731, China.
| | - Dezhong Yao
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave., West Hi-Tech Zone, Chengdu, Sichuan 611731, China.
| |
Collapse
|
25
|
Fadda G, Flanagan EP, Cacciaguerra L, Jitprapaikulsan J, Solla P, Zara P, Sechi E. Myelitis features and outcomes in CNS demyelinating disorders: Comparison between multiple sclerosis, MOGAD, and AQP4-IgG-positive NMOSD. Front Neurol 2022; 13:1011579. [PMID: 36419536 PMCID: PMC9676369 DOI: 10.3389/fneur.2022.1011579] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/11/2022] [Indexed: 07/25/2023] Open
Abstract
Inflammatory myelopathies can manifest with a combination of motor, sensory and autonomic dysfunction of variable severity. Depending on the underlying etiology, the episodes of myelitis can recur, often leading to irreversible spinal cord damage and major long-term disability. Three main demyelinating disorders of the central nervous system, namely multiple sclerosis (MS), aquaporin-4-IgG-positive neuromyelitis optica spectrum disorders (AQP4+NMOSD) and myelin oligodendrocyte glycoprotein-IgG associated disease (MOGAD), can induce spinal cord inflammation through different pathogenic mechanisms, resulting in a more or less profound disruption of spinal cord integrity. This ultimately translates into distinctive clinical-MRI features, as well as distinct patterns of disability accrual, with a step-wise worsening of neurological function in MOGAD and AQP4+NMOSD, and progressive disability accrual in MS. Early recognition of the specific etiologies of demyelinating myelitis and initiation of the appropriate treatment is crucial to improve outcome. In this review article we summarize and compare the clinical and imaging features of spinal cord involvement in these three demyelinating disorders, both during the acute phase and over time, and outline the current knowledge on the expected patterns of disability accrual and outcomes. We also discuss the potential implications of these observations for patient management and counseling.
Collapse
Affiliation(s)
- Giulia Fadda
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Eoin P. Flanagan
- Department of Neurology, Center for MS and Autoimmune Neurology, Mayo Clinic, Rochester, MN, United States
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Laura Cacciaguerra
- Department of Neurology, Center for MS and Autoimmune Neurology, Mayo Clinic, Rochester, MN, United States
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Paolo Solla
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Pietro Zara
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Elia Sechi
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW This article reviews the cardinal clinical features, distinct immunopathology, current diagnostic criteria, relapse-related risk factors, emerging biomarkers, and evolving treatment strategies pertaining to neuromyelitis optica spectrum disorders (NMOSD). RECENT FINDINGS The discovery of the pathogenic aquaporin-4 (AQP4)-IgG autoantibody and characterization of NMOSD as an autoimmune astrocytopathy have spearheaded the identification of key immunologic therapeutic targets in this disease, including but not limited to the complement system, the interleukin 6 (IL-6) receptor, and B cells. Accordingly, four recent randomized controlled trials have demonstrated the efficacy of three new NMOSD therapies, namely eculizumab, satralizumab, and inebilizumab. SUMMARY Currently, NMOSD poses both diagnostic and treatment challenges. It is debated whether individuals who are seropositive for myelin oligodendrocyte glycoprotein (MOG)-IgG belong within the neuromyelitis optica spectrum. This discussion is fueled by disparities in treatment responses between patients who are AQP4-IgG seropositive and seronegative, suggesting different immunopathologic mechanisms may govern these conditions. As our understanding regarding the immune pathophysiology of NMOSD expands, emerging biomarkers, including serum neurofilament light chain and glial fibrillary acidic protein (GFAP), may facilitate earlier relapse detection and inform long-term treatment decisions. Future research focal points should include strategies to optimize relapse management, restorative treatments that augment neurologic recovery, and practical solutions that promote equitable access to approved therapies for all patients with NMOSD.
Collapse
|
27
|
MR-imaging in children with transverse myelitis and acquired demyelinating syndromes. Mult Scler Relat Disord 2022; 67:104068. [DOI: 10.1016/j.msard.2022.104068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 07/13/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022]
|
28
|
Sechi E, Cacciaguerra L, Chen JJ, Mariotto S, Fadda G, Dinoto A, Lopez-Chiriboga AS, Pittock SJ, Flanagan EP. Myelin Oligodendrocyte Glycoprotein Antibody-Associated Disease (MOGAD): A Review of Clinical and MRI Features, Diagnosis, and Management. Front Neurol 2022; 13:885218. [PMID: 35785363 PMCID: PMC9247462 DOI: 10.3389/fneur.2022.885218] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/06/2022] [Indexed: 01/02/2023] Open
Abstract
Myelin oligodendrocyte glycoprotein (MOG) antibody-associated disease (MOGAD) is the most recently defined inflammatory demyelinating disease of the central nervous system (CNS). Over the last decade, several studies have helped delineate the characteristic clinical-MRI phenotypes of the disease, allowing distinction from aquaporin-4 (AQP4)-IgG-positive neuromyelitis optica spectrum disorder (AQP4-IgG+NMOSD) and multiple sclerosis (MS). The clinical manifestations of MOGAD are heterogeneous, ranging from isolated optic neuritis or myelitis to multifocal CNS demyelination often in the form of acute disseminated encephalomyelitis (ADEM), or cortical encephalitis. A relapsing course is observed in approximately 50% of patients. Characteristic MRI features have been described that increase the diagnostic suspicion (e.g., perineural optic nerve enhancement, spinal cord H-sign, T2-lesion resolution over time) and help discriminate from MS and AQP4+NMOSD, despite some overlap. The detection of MOG-IgG in the serum (and sometimes CSF) confirms the diagnosis in patients with compatible clinical-MRI phenotypes, but false positive results are occasionally encountered, especially with indiscriminate testing of large unselected populations. The type of cell-based assay used to evaluate for MOG-IgG (fixed vs. live) and antibody end-titer (low vs. high) can influence the likelihood of MOGAD diagnosis. International consensus diagnostic criteria for MOGAD are currently being compiled and will assist in clinical diagnosis and be useful for enrolment in clinical trials. Although randomized controlled trials are lacking, MOGAD acute attacks appear to be very responsive to high dose steroids and plasma exchange may be considered in refractory cases. Attack-prevention treatments also lack class-I data and empiric maintenance treatment is generally reserved for relapsing cases or patients with severe residual disability after the presenting attack. A variety of empiric steroid-sparing immunosuppressants can be considered and may be efficacious based on retrospective or prospective observational studies but prospective randomized placebo-controlled trials are needed to better guide treatment. In summary, this article will review our rapidly evolving understanding of MOGAD diagnosis and management.
Collapse
Affiliation(s)
- Elia Sechi
- Neurology Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Laura Cacciaguerra
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Milan, Italy
- Department of Neurology and Center for Multiple Sclerosis and Autoimmune Neurology Mayo Clinic, Rochester, MN, United States
| | - John J. Chen
- Department of Neurology and Center for Multiple Sclerosis and Autoimmune Neurology Mayo Clinic, Rochester, MN, United States
- Department of Ophthalmology, Mayo Clinic, Rochester, MN, United States
| | - Sara Mariotto
- Neurology Unit, Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Verona, Italy
| | - Giulia Fadda
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Alessandro Dinoto
- Neurology Unit, Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Verona, Italy
| | | | - Sean J. Pittock
- Department of Neurology and Center for Multiple Sclerosis and Autoimmune Neurology Mayo Clinic, Rochester, MN, United States
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Eoin P. Flanagan
- Department of Neurology and Center for Multiple Sclerosis and Autoimmune Neurology Mayo Clinic, Rochester, MN, United States
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
- *Correspondence: Eoin P. Flanagan
| |
Collapse
|
29
|
Kim KH, Kim SH, Hyun JW, Kim HJ. Clinical and Radiological Features of Myelin Oligodendrocyte Glycoprotein-Associated Myelitis in Adults. J Clin Neurol 2022; 18:280-289. [PMID: 35589317 PMCID: PMC9163942 DOI: 10.3988/jcn.2022.18.3.280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 11/17/2022] Open
Abstract
Antibodies against myelin oligodendrocyte glycoprotein (MOG-IgG) have recently been established as a biomarker for MOG-antibody-associated disease (MOGAD), which is a distinct demyelinating disease of the central nervous system. Among the diverse clinical phenotypes of MOGAD, myelitis is the second-most-common presentation in adults, followed by optic neuritis. While some features overlap, there are multiple reports of distinctive clinical and radiological features of MOG-IgG-associated myelitis, which are useful for differentiating MOGAD from both multiple sclerosis and neuromyelitis optica spectrum disorder. In this review we summarize the clinical and radiographic characteristics of MOG-IgG-associated myelitis with a particular focus on adult patients.
Collapse
Affiliation(s)
- Ki Hoon Kim
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| | - Su-Hyun Kim
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| | - Jae-Won Hyun
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| | - Ho Jin Kim
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, Korea.
| |
Collapse
|
30
|
Bussas M, El Husseini M, Harabacz L, Pineker V, Grahl S, Pongratz V, Berthele A, Riederer I, Zimmer C, Hemmer B, Kirschke JS, Mühlau M. Multiple sclerosis lesions and atrophy in the spinal cord: Distribution across vertebral levels and correlation with disability. Neuroimage Clin 2022; 34:103006. [PMID: 35468568 PMCID: PMC9059154 DOI: 10.1016/j.nicl.2022.103006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND The vast majority of magnetic resonance imaging (MRI) studies on multiple sclerosis (MS) covered the spinal cord (SC), if at all, incompletely. OBJECTIVE To assess SC involvement in MS, as detectable by whole SC MRI, with regard to distribution across vertebral levels and relation to clinical phenotypes and disability. METHODS We investigated SC MRI with sagittal and axial coverage. Analyzed were brain and SC MRI scans of 17 healthy controls (HC) and of 370 patients with either clinically isolated syndrome (CIS, 27), relapsing remitting MS (RRMS, 303) or progressive MS (PMS, 40). Across vertebral levels, cross-sectional areas were semiautomatically segmented, and lesions manually delineated. RESULTS The frequency of SC lesions was highest at the level C3-4. The volume of SC lesions increased from CIS to RRMS, and from RRMS to PMS whereas lesion distribution across SC levels did not differ. SC atrophy was demonstrated in RRMS and, to a higher degree, in PMS; apart from an accentuation at the level C3-4, it was evenly distributed across SC levels. SC lesions and atrophy volume were not correlated with each other and were independently associated with disability. CONCLUSION SC lesions and atrophy already exist at the stage of RRMS in the whole SC with an accentuation in the cervical enlargement; SC lesions and atrophy are more pronounced in the stage of PMS. Both contribute to the clinical picture but are largely independent.
Collapse
Affiliation(s)
- Matthias Bussas
- Dept. of Neurology, School of Medicine, Technical University of Munich, Munich, Germany; TUM-Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Malek El Husseini
- Dept. of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Laura Harabacz
- Dept. of Neurology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Viktor Pineker
- Dept. of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Sophia Grahl
- Dept. of Neurology, School of Medicine, Technical University of Munich, Munich, Germany; TUM-Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Viola Pongratz
- Dept. of Neurology, School of Medicine, Technical University of Munich, Munich, Germany; TUM-Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Achim Berthele
- Dept. of Neurology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Isabelle Riederer
- Dept. of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Claus Zimmer
- Dept. of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Bernhard Hemmer
- Dept. of Neurology, School of Medicine, Technical University of Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Jan S Kirschke
- Dept. of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Mark Mühlau
- Dept. of Neurology, School of Medicine, Technical University of Munich, Munich, Germany; TUM-Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany.
| |
Collapse
|
31
|
Akaishi T, Himori N, Takeshita T, Misu T, Takahashi T, Takai Y, Nishiyama S, Kaneko K, Fujimori J, Ishii T, Aoki M, Fujihara K, Nakazawa T, Nakashima I. Follow-up of retinal thickness and optic MRI after optic neuritis in anti-MOG antibody-associated disease and anti-AQP4 antibody-positive NMOSD. J Neurol Sci 2022; 437:120269. [DOI: 10.1016/j.jns.2022.120269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 11/25/2022]
|
32
|
Shadmani G, Simkins TJ, Assadsangabi R, Apperson M, Hacein-Bey L, Raslan O, Ivanovic V. Autoimmune diseases of the brain, imaging and clinical review. Neuroradiol J 2022; 35:152-169. [PMID: 34490814 PMCID: PMC9130615 DOI: 10.1177/19714009211042879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
There is an extensive spectrum of autoimmune entities that can involve the central nervous system, which has expanded with the emergence of new imaging modalities and several clinicopathologic entities. Clinical presentation is usually non-specific, and imaging has a critical role in the workup of these diseases. Immune-mediated diseases of the brain are not common in daily practice for radiologists and, except for a few of them such as multiple sclerosis, there is a vague understanding about differentiating them from each other based on the radiological findings. In this review, we aim to provide a practical diagnostic approach based on the unique radiological findings for each disease. We hope our diagnostic approach will help radiologists expand their basic understanding of the discussed disease entities and narrow the differential diagnosis in specific clinical scenarios. An understanding of unique imaging features of these disorders, along with laboratory evaluation, may enable clinicians to decrease the need for tissue biopsy.
Collapse
Affiliation(s)
- Ghazal Shadmani
- Department of Radiology, Section of
Neuroradiology, University of California Davis Medical Center, USA
| | - Tyrell J Simkins
- Department of Neurology
(Neuroimmunulogy), University of California Davis Medical center, USA
| | - Reza Assadsangabi
- Department of Radiology, Section of
Neuroradiology, University of California Davis Medical Center, USA
| | - Michelle Apperson
- Department of Neurology
(Neuroimmunulogy), University of California Davis Medical center, USA
| | - Lotfi Hacein-Bey
- Department of Radiology, Section of
Neuroradiology, University of California Davis Medical Center, USA
| | - Osama Raslan
- Department of Radiology, Section of
Neuroradiology, University of California Davis Medical Center, USA
| | - Vladimir Ivanovic
- Department of Radiology, Section of
Neuroradiology, University of California Davis Medical Center, USA
| |
Collapse
|
33
|
Li Y, Liu X, Wang J, Pan C, Tang Z. Clinical Features and Imaging Findings of Myelin Oligodendrocyte Glycoprotein-IgG-Associated Disorder (MOGAD). Front Aging Neurosci 2022; 14:850743. [PMID: 35370624 PMCID: PMC8965323 DOI: 10.3389/fnagi.2022.850743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/08/2022] [Indexed: 01/14/2023] Open
Abstract
Myelin oligodendrocyte glycoprotein-IgG-associated disorder (MOGAD) is a nervous system (NS) demyelination disease and a newly recognized distinct disease complicated with various diseases or symptoms; however, MOGAD was once considered a subset of neuromyelitis optica spectrum disorder (NMOSD). The detection of MOG-IgG has been greatly improved by the cell-based assay test method. In one study, 31% of NMOSD patients with negative aquaporin-4 (AQP-4) antibody were MOG-IgG positive. MOGAD occurs in approximately the fourth decade of a person’s life without a markedly female predominance. Usually, optic neuritis (ON), myelitis or acute disseminated encephalomyelitis (ADEM) encephalitis are the typical symptoms of MOGAD. MOG-IgG have been found in patients with peripheral neuropathy, teratoma, COVID-19 pneumonia, etc. Some studies have revealed the presence of brainstem lesions, encephalopathy or cortical encephalitis. Attention should be given to screening patients with atypical symptoms. Compared to NMOSD, MOGAD generally responds well to immunotherapy and has a good functional prognosis. Approximately 44-83% of patients undergo relapsing episodes within 8 months, which mostly involve the optic nerve, and persistently observed MOG-IgG and severe clinical performance may indicate a polyphasic course of illness. Currently, there is a lack of clinical randomized controlled trials on the treatment and prognosis of MOGAD. The purpose of this review is to discuss the clinical manifestations, imaging features, outcomes and prognosis of MOGAD.
Collapse
|
34
|
Cortese R, Giorgio A, Severa G, De Stefano N. MRI Prognostic Factors in Multiple Sclerosis, Neuromyelitis Optica Spectrum Disorder, and Myelin Oligodendrocyte Antibody Disease. Front Neurol 2021; 12:679881. [PMID: 34867701 PMCID: PMC8636325 DOI: 10.3389/fneur.2021.679881] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 10/08/2021] [Indexed: 11/25/2022] Open
Abstract
Several MRI measures have been developed in the last couple of decades, providing a number of imaging biomarkers that can capture the complexity of the pathological processes occurring in multiple sclerosis (MS) brains. Such measures have provided more specific information on the heterogeneous pathologic substrate of MS-related tissue damage, being able to detect, and quantify the evolution of structural changes both within and outside focal lesions. In clinical practise, MRI is increasingly used in the MS field to help to assess patients during follow-up, guide treatment decisions and, importantly, predict the disease course. Moreover, the process of identifying new effective therapies for MS patients has been supported by the use of serial MRI examinations in order to sensitively detect the sub-clinical effects of disease-modifying treatments at an earlier stage than is possible using measures based on clinical disease activity. However, despite this has been largely demonstrated in the relapsing forms of MS, a poor understanding of the underlying pathologic mechanisms leading to either progression or tissue repair in MS as well as the lack of sensitive outcome measures for the progressive phases of the disease and repair therapies makes the development of effective treatments a big challenge. Finally, the role of MRI biomarkers in the monitoring of disease activity and the assessment of treatment response in other inflammatory demyelinating diseases of the central nervous system, such as neuromyelitis optica spectrum disorder (NMOSD) and myelin oligodendrocyte antibody disease (MOGAD) is still marginal, and advanced MRI studies have shown conflicting results. Against this background, this review focused on recently developed MRI measures, which were sensitive to pathological changes, and that could best contribute in the future to provide prognostic information and monitor patients with MS and other inflammatory demyelinating diseases, in particular, NMOSD and MOGAD.
Collapse
Affiliation(s)
- Rosa Cortese
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Antonio Giorgio
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Gianmarco Severa
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
35
|
Huda S, Whittam D, Jackson R, Karthikeayan V, Kelly P, Linaker S, Mutch K, Kneen R, Woodhall M, Murray K, Hunt D, Waters P, Jacob A. Predictors of relapse in MOG antibody associated disease: a cohort study. BMJ Open 2021; 11:e055392. [PMID: 34848526 PMCID: PMC8634280 DOI: 10.1136/bmjopen-2021-055392] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To identify factors predictive of relapse risk and disability in myelin oligodendrocyte glycoprotein associated disease (MOGAD). SETTING Patients were seen by the neuromyelitis optica spectrum disorders (NMOSD) service in Liverpool, UK, a national referral centre for adult patients with MOGAD, NMOSD and related conditions. PARTICIPANTS Patients with MOGAD=76 from England, Northern Ireland and Scotland were included in this cohort study. RESULTS Relapsing disease was observed in 55% (42/76) of cases. Steroid treatment >1 month (OR 0.2, 95% CI 0.05 to 0.80; p=0.022), transverse myelitis (TM) at first attack (OR 0.03, 95% CI 0.004 to 0.23; p=0.001) and male sex (OR 0.16, 95% CI 0.04 to 0.68; p=0.014) were associated with monophasic disease (area under the curve=0.85). Male sex (HR 0.46, 95% CI 0.24 to 0.89; p=0.011) and TM at disease onset (HR 0.42, 95% CI 0.22 to 0.82; p=0.011) were also associated with an increased latency to first relapse. 45% (32/71) of patients became MOG-antibody negative and in relapsing patients negative seroconversion was associated with a lower relapse risk (relative risk 0.11 95% CI 0.05 to 0.26; p<0.001). No specific factors were predictive of visual or overall disability. CONCLUSIONS Male patients with spinal cord involvement at disease onset have a lower risk of relapsing disease and longer latency to first relapse. Steroid treatment for at least 1 month at first attack was also associated with a monophasic disease course. MOG-antibody negative seroconversion was associated with a lower risk of relapse and may help inform treatment decisions and duration.
Collapse
Affiliation(s)
- Saif Huda
- Department of Neurology, The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Daniel Whittam
- Department of Neurology, The Walton Centre NHS Foundation Trust, Liverpool, UK
- Department of Neurology, Salford Royal Hospital, Salford, UK
| | - Richard Jackson
- Liverpool Cancer Trials Unit, University of Liverpool, Liverpool, Merseyside, UK
| | | | - Patricia Kelly
- Department of Neurology, The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Sam Linaker
- Department of Neurology, The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Kerry Mutch
- Department of Neurology, The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Rachel Kneen
- Department of Neurology, Alder Hey Children's NHS Foundation Trust, Liverpool, Merseyside, UK
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Mark Woodhall
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Katy Murray
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, UK
| | - David Hunt
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, Scotland
| | - Patrick Waters
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Anu Jacob
- Department of Neurology, The Walton Centre NHS Foundation Trust, Liverpool, UK
- Department of Neurology, Cleveland Clinic Abu Dhabi, Abu Dhabi, UAE
| |
Collapse
|
36
|
Fadda G, Alves CA, O’Mahony J, Castro DA, Yeh EA, Marrie RA, Arnold DL, Waters P, Bar-Or A, Vossough A, Banwell B. Comparison of Spinal Cord Magnetic Resonance Imaging Features Among Children With Acquired Demyelinating Syndromes. JAMA Netw Open 2021; 4:e2128871. [PMID: 34643718 PMCID: PMC8515204 DOI: 10.1001/jamanetworkopen.2021.28871] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
IMPORTANCE The recognition of magnetic resonance imaging (MRI) features associated with distinct causes of myelitis in children is essential to guide investigations and support diagnostic categorization. OBJECTIVE To determine the clinical and MRI features and outcomes associated with spinal cord involvement in pediatric myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD), multiple sclerosis (MS), and seronegative monophasic myelitis. DESIGN, SETTING, AND PARTICIPANTS In this cohort study, participants were recruited between 2004 and 2017 through the multicenter Canadian Pediatric Demyelinating Disease Study, which enrolled youth younger than 18 years presenting within 90 days of an acquired demyelinating syndrome. Of the 430 participants recruited, those with lesions on available spine MRI and anti-MOG testing performed on archived samples obtained close to clinical presentation were selected. Participants with poor-quality images and final diagnoses of nondemyelinating disease, anti-aquaporin 4 antibody positivity, and relapsing seronegative myelitis were excluded. Data analysis was performed from December 2019 to November 2020. MAIN OUTCOMES AND MEASURES Spinal cord involvement was evaluated on 324 MRI sequences, with reviewers blinded to clinical, serological, and brain MRI findings. Associated clinical features and disability scores at 5 years of follow-up were retrieved. Results were compared between groups. RESULTS A total of 107 participants (median [IQR] age at onset, 11.14 [5.59-13.39] years; 55 girls [51%]) were included in the analyses; 40 children had MOGAD, 21 had MS, and 46 had seronegative myelitis. Longitudinally extensive lesions were very common among children with MOGAD (30 of 40 children [75%]), less common among those with seronegative myelitis (20 of 46 children [43%]), and rare in children with MS (1 of 21 children [5%]). Axial gray matter T2-hyperintensity (ie, the H-sign) was observed in 22 of 35 children (63%) with MOGAD, in 14 of 42 children (33%) with seronegative myelitis, and in none of those with MS. The presence of leptomeningeal enhancement was highly suggestive for MOGAD (22 of 32 children [69%] with MOGAD vs 10 of 38 children [26%] with seronegative myelitis and 1 of 15 children [7%] with MS). Children with MOGAD were more likely to have complete lesion resolution on serial images (14 of 21 children [67%]) compared with those with MS (0 of 13 children). CONCLUSIONS AND RELEVANCE These findings suggest that several features may help identify children at presentation who are more likely to have myelitis associated with MOGAD. Prominent involvement of gray matter and leptomeningeal enhancement are common in pediatric MOGAD, although the pathological underpinning of these observations requires further study.
Collapse
Affiliation(s)
- Giulia Fadda
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Cesar A. Alves
- Division of Neuroradiology, Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Julia O’Mahony
- Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Community Health Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Denise A. Castro
- Department of Diagnostic Radiology, Queen’s University, Kingston, Ontario, Canada
| | - E. Ann Yeh
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Ruth Ann Marrie
- Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Community Health Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Douglas L. Arnold
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Patrick Waters
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Amit Bar-Or
- Center for Neuroinflammation and Neurotherapeutics, Multiple Sclerosis Division, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Arastoo Vossough
- Division of Neuroradiology, Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Brenda Banwell
- Division of Child Neurology, Department of Neurology, The Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| |
Collapse
|
37
|
Lin TY, Chien C, Lu A, Paul F, Zimmermann HG. Retinal optical coherence tomography and magnetic resonance imaging in neuromyelitis optica spectrum disorders and MOG-antibody associated disorders: an updated review. Expert Rev Neurother 2021; 21:1101-1123. [PMID: 34551653 DOI: 10.1080/14737175.2021.1982697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Neuromyelitis optica spectrum disorders (NMOSD) and myelin oligodendrocyte glycoprotein IgG antibody-associated disorders (MOGAD) comprise two groups of rare neuroinflammatory diseases that cause attack-related damage to the central nervous system (CNS). Clinical attacks are often characterized by optic neuritis, transverse myelitis, and to a lesser extent, brainstem encephalitis/area postrema syndrome. Retinal optical coherence tomography (OCT) is a non-invasive technique that allows for in vivo thickness quantification of the retinal layers. Apart from OCT, magnetic resonance imaging (MRI) plays an increasingly important role in NMOSD and MOGAD diagnosis based on the current international diagnostic criteria. Retinal OCT and brain/spinal cord/optic nerve MRI can help to distinguish NMOSD and MOGAD from other neuroinflammatory diseases, particularly from multiple sclerosis, and to monitor disease-associated CNS-damage. AREAS COVERED This article summarizes the current status of imaging research in NMOSD and MOGAD, and reviews the clinical relevance of OCT, MRI and other relevant imaging techniques for differential diagnosis, screening and monitoring of the disease course. EXPERT OPINION Retinal OCT and MRI can visualize and quantify CNS damage in vivo, improving our understanding of NMOSD and MOGAD pathology. Further efforts on the standardization of these imaging techniques are essential for implementation into clinical practice and as outcome parameters in clinical trials.
Collapse
Affiliation(s)
- Ting-Yi Lin
- Experimental and Clinical Research Center, Max-Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Claudia Chien
- Experimental and Clinical Research Center, Max-Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Angelo Lu
- Experimental and Clinical Research Center, Max-Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max-Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Hanna G Zimmermann
- Experimental and Clinical Research Center, Max-Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
38
|
Sechi E, Krecke KN, Messina SA, Buciuc M, Pittock SJ, Chen JJ, Weinshenker BG, Lopez-Chiriboga AS, Lucchinetti CF, Zalewski NL, Tillema JM, Kunchok A, Monaco S, Morris PP, Fryer JP, Nguyen A, Greenwood T, Syc-Mazurek SB, Keegan BM, Flanagan EP. Comparison of MRI Lesion Evolution in Different Central Nervous System Demyelinating Disorders. Neurology 2021; 97:e1097-e1109. [PMID: 34261784 PMCID: PMC8456356 DOI: 10.1212/wnl.0000000000012467] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/11/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVE There are few studies that compare lesion evolution across different CNS demyelinating diseases, yet knowledge of this may be important for diagnosis and understanding differences in disease pathogenesis. We sought to compare MRI T2-lesion evolution in myelin-oligodendrocyte-glycoprotein-IgG-associated disorder (MOGAD), aquaporin-4-IgG-positive neuromyelitis optica spectrum disorder (AQP4-IgG-NMOSD), and multiple sclerosis (MS). METHODS In this descriptive study, we retrospectively identified Mayo Clinic patients with MOGAD, AQP4-IgG-NMOSD, or MS and: 1) brain or myelitis attack; 2) available attack MRI within 6 weeks; and 3) follow-up MRI beyond 6 months without interval relapses in that region. Two neurologists identified the symptomatic or largest T2-lesion for each patient (index lesion). MRIs were then independently reviewed by two neuroradiologists blinded to diagnosis to determine resolution of T2-lesions by consensus. The index T2-lesion area was manually outlined acutely and at follow-up to assess variation in size. RESULTS We included 156 patients (MOGAD, 38; AQP4-IgG-NMOSD, 51; MS, 67) with 172 attacks (brain, 81; myelitis, 91). The age (median [range]) differed between MOGAD (25 [2-74]), AQP4-IgG-NMOSD (53 [10-78]) and MS (37 [16-61]) (p<0.01) and female sex predominated in the AQP4-IgG-NMOSD (41/51 [80%]) and MS (51/67 [76%]) groups but not among those with MOGAD (17/38 [45%]). Complete resolution of the index T2-lesion was more frequent in MOGAD (brain, 13/18[72%]; spine, 22/28[79%]) than AQP4-IgG-NMOSD (brain, 3/21[14%]; spine, 0/34[0%]) and MS (brain, 7/42[17%]; spine, 0/29[0%]), p<0.001. Resolution of all T2-Lesions occurred most often in MOGAD (brain, 7/18[39%]; spine, 22/28[79%]) than AQP4-IgG-NMOSD (brain, 2/21[10%]; spine, 0/34[0%]), and MS (brain, 2/42[5%]; spine, 0/29[0%]), p< 0.01. There was a larger median (range) reduction in T2-lesion area in mm2 on follow-up axial brain MRI with MOGAD (213[55-873]) than AQP4-IgG-NMOSD (104[0.7-597]) (p=0.02) and MS, 36[0-506]) (p< 0.001) and the reductions in size on sagittal spine MRI follow-up in MOGAD (262[0-888]) and AQP4-IgG-NMOSD (309[0-1885]) were similar (p=0.4) and greater than MS (23[0-152]) (p<0.001). CONCLUSIONS The MRI T2-lesions in MOGAD resolve completely more often than AQP4-IgG-NMOSD and MS. This has implications for diagnosis, monitoring disease activity, and clinical trial design, while also providing insight into pathogenesis of central nervous system demyelinating diseases.
Collapse
Affiliation(s)
- Elia Sechi
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.,Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Verona, Italy
| | - Karl N Krecke
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - Marina Buciuc
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Sean J Pittock
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - John J Chen
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.,Department of Ophthalmology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | | - Amy Kunchok
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Salvatore Monaco
- Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Verona, Italy
| | | | - James P Fryer
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Adam Nguyen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Tammy Greenwood
- Department of Ophthalmology, Mayo Clinic, Rochester, MN, USA
| | | | - B Mark Keegan
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Eoin P Flanagan
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; .,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
39
|
Messina S, Mariano R, Roca-Fernandez A, Cavey A, Jurynczyk M, Leite MI, Calabrese M, Jenkinson M, Palace J. Contrasting the brain imaging features of MOG-antibody disease, with AQP4-antibody NMOSD and multiple sclerosis. Mult Scler 2021; 28:217-227. [PMID: 34048323 PMCID: PMC8795219 DOI: 10.1177/13524585211018987] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background: Identifying magnetic resonance imaging (MRI) markers in myelin-oligodendrocytes-glycoprotein antibody-associated disease (MOGAD), neuromyelitis optica spectrum disorder-aquaporin-4 positive (NMOSD-AQP4) and multiple sclerosis (MS) is essential for establishing objective outcome measures. Objectives: To quantify imaging patterns of central nervous system (CNS) damage in MOGAD during the remission stage, and to compare it with NMOSD-AQP4 and MS. Methods: 20 MOGAD, 19 NMOSD-AQP4, 18 MS in remission with brain or spinal cord involvement and 18 healthy controls (HC) were recruited. Volumetrics, lesions and cortical lesions, diffusion-imaging measures, were analysed. Results: Deep grey matter volumes were lower in MOGAD (p = 0.02) and MS (p = 0.0001), compared to HC and were strongly correlated with current lesion volume (MOGAD R = −0.93, p < 0.001, MS R = −0.65, p = 0.0034). Cortical/juxtacortical lesions were seen in a minority of MOGAD, in a majority of MS and in none of NMOSD-AQP4. Non-lesional tissue fractional anisotropy (FA) was only reduced in MS (p = 0.01), although focal reductions were noted in NMOSD-AQP4, reflecting mainly optic nerve and corticospinal tract pathways. Conclusion: MOGAD patients are left with grey matter damage, and this may be related to persistent white matter lesions. NMOSD-AQP4 patients showed a relative sparing of deep grey matter volumes, but reduced non-lesional tissue FA. Observations from our study can be used to identify new markers of damage for future multicentre studies.
Collapse
Affiliation(s)
- Silvia Messina
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK/Oxford University Hospital NHS Foundation Trust, Oxford, UK
| | - Romina Mariano
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Adriana Roca-Fernandez
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Ana Cavey
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Maciej Jurynczyk
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK/Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Maria Isabel Leite
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK/Oxford University Hospital NHS Foundation Trust, Oxford, UK
| | - Massimiliano Calabrese
- Multiple Sclerosis Centre, Neurology Department of Neurosciences, Biomedicine and Movement, University Hospital of Verona, Verona, Italy
| | - Mark Jenkinson
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK/University of Adelaide, Adelaide, SA, Australia
| | - Jacqueline Palace
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK/Oxford University Hospital NHS Foundation Trust, Oxford, UK
| |
Collapse
|
40
|
Solomon JM, Paul F, Chien C, Oh J, Rotstein DL. A window into the future? MRI for evaluation of neuromyelitis optica spectrum disorder throughout the disease course. Ther Adv Neurol Disord 2021; 14:17562864211014389. [PMID: 34035837 PMCID: PMC8111516 DOI: 10.1177/17562864211014389] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is a relapsing, inflammatory disease of the central nervous system marked by relapses often associated with poor recovery and long-term disability. Magnetic resonance imaging (MRI) is recognized as an important tool for timely diagnosis of NMOSD as, in combination with serologic testing, it aids in distinguishing NMOSD from possible mimics. Although the role of MRI for disease monitoring after diagnosis is not as well established, MRI may provide important prognostic information and help differentiate between relapses and pseudorelapses. Increasing evidence of subclinical disease activity and the emergence of newly approved, highly effective immunotherapies for NMOSD adjure us to re-evaluate MRI as a tool to guide optimal treatment selection and escalation throughout the disease course. In this article we review the role of MRI in NMOSD diagnosis, prognostication, disease monitoring, and treatment selection.
Collapse
Affiliation(s)
- Jacqueline M. Solomon
- University of Toronto, Department of Medicine, Toronto, ON, Canada
- St. Michael’s Hospital, Toronto, ON, Canada
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité Universitaetsmedizin Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité Universitaetsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Claudia Chien
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité Universitaetsmedizin Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité Universitaetsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité Universitaetsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jiwon Oh
- University of Toronto, Department of Medicine, Toronto, ON, Canada
- St. Michael’s Hospital, Toronto, ON, Canada
| | - Dalia L. Rotstein
- St. Michael’s Hospital, 30 Bond Street, Shuter 3-018, Toronto, ON, M5B 1W8, Canada
| |
Collapse
|
41
|
Bautin P, Cohen-Adad J. Minimum detectable spinal cord atrophy with automatic segmentation: Investigations using an open-access dataset of healthy participants. NEUROIMAGE: CLINICAL 2021; 32:102849. [PMID: 34624638 PMCID: PMC8503570 DOI: 10.1016/j.nicl.2021.102849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/07/2021] [Accepted: 09/28/2021] [Indexed: 11/20/2022] Open
Abstract
Evaluate the robustness of an automated analysis pipeline for detecting SC atrophy. Simulate spinal cord atrophy and scan-rescan variability. Fully automated analysis method available on an open access database. Evaluation of sample size and inter/intra-subject variability for T1w and T2w images.
Spinal cord atrophy is a well-known biomarker in multiple sclerosis (MS) and other diseases. It is measured by segmenting the spinal cord on an MRI image and computing the average cross-sectional area (CSA) over a few slices. Introduced about 25 years ago, this procedure is highly sensitive to the quality of the segmentation and is prone to rater-bias. Recently, fully-automated spinal cord segmentation methods, which remove the rater-bias and enable the automated analysis of large populations, have been introduced. A lingering question related to these automated methods is: How reliable are they at detecting atrophy? In this study, we evaluated the precision and accuracy of automated atrophy measurements by simulating scan-rescan experiments. Spinal cord MRI data from the open-access spine-generic project were used. The dataset aggregates 42 sites worldwide and consists of 260 healthy subjects and includes T1w and T2w contrasts. To simulate atrophy, each volume was globally rescaled at various scaling factors. Moreover, to simulate patient repositioning, random rigid transformations were applied. Using the DeepSeg algorithm from the Spinal Cord Toolbox, the spinal cord was segmented and vertebral levels were identified. Then, the average CSA between C3-C5 vertebral levels was computed for each Monte Carlo sample, allowing us to derive measures of atrophy, intra/inter-subject variability, and sample-size calculations. The minimum sample size required to detect an atrophy of 2% between unpaired study arms, commonly seen in MS studies, was 467 +/− 13.9 using T1w and 467 +/− 3.2 using T2w images. The minimum sample size to detect a longitudinal atrophy (between paired study arms) of 0.8% was 60 +/− 25.1 using T1w and 10 +/− 1.2 using T2w images. At the intra-subject level, the estimated CSA, observed in this study, showed good precision compared to other studies with COVs (across Monte Carlo transformations) of 0.8% for T1w and 0.6% for T2w images. While these sample sizes seem small, we would like to stress that these results correspond to a “best case” scenario, in that the dataset used here was of particularly good quality and the model for simulating atrophy does not encompass all the variability met in real-life datasets. The simulated atrophy and scan-rescan variability may over-simplify the biological reality. The proposed framework is open-source and available at https://csa-atrophy.readthedocs.io/.
Collapse
Affiliation(s)
- Paul Bautin
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada; Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, QC, Canada; Mila - Quebec AI Institute, Montreal, QC, Canada.
| |
Collapse
|