1
|
Janecek JK, Swanson SJ, Pillay S. Epilepsy and Neuropsychology. Neurol Clin 2024; 42:849-861. [PMID: 39343479 DOI: 10.1016/j.ncl.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Neuropsychological evaluation is an essential component of clinical care for people with epilepsy and also has a specialized role in predicting cognitive outcome after epilepsy surgery. Neuropsychological research in the field of epilepsy has had a significant impact on our knowledge regarding memory and language systems, lateralization of cognitive functions, and the heterogeneity in cognitive phenotypes among people with epilepsy. Interventions that consider the impact of health disparities, cognition, psychological functioning, individual risk and resilience factors, and modifiable lifestyle factors, are critical for optimizing cognitive functioning, psychological health, and quality of life for people with epilepsy.
Collapse
Affiliation(s)
- Julie K Janecek
- Department of Neurology, Medical College of Wisconsin, 8701 W Watertown Plank Road, Milwaukee, WI 53226, USA.
| | - Sara J Swanson
- Department of Neurology, Medical College of Wisconsin, 8701 W Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Sara Pillay
- Department of Neurology, Medical College of Wisconsin, 8701 W Watertown Plank Road, Milwaukee, WI 53226, USA
| |
Collapse
|
2
|
Zou Y, Wang C, Li H, Zhong M, Lin J, Hu Y, Chen Z, Gan CL. Epileptic seizures induced by pentylenetetrazole kindling accelerate Alzheimer-like neuropathology in 5×FAD mice. Front Pharmacol 2024; 15:1500105. [PMID: 39545066 PMCID: PMC11560768 DOI: 10.3389/fphar.2024.1500105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 10/23/2024] [Indexed: 11/17/2024] Open
Abstract
Clinical studies have shown that epileptic seizures worsen Alzheimer's disease (AD) pathology and related cognitive deficits; however, the underlying mechanism is unclear. To assess the effects of seizures on the progression of AD, chronic temporal lobe epilepsy was induced in five familial AD mutation (5×FAD) mice by kindling with the chemoconvulsant pentylenetetrazole (PTZ) at 3-3.5 months of age. The amyloidogenic pathway, tauopathy, synaptic damage, neuronal death, neurological inflammatory response and associated kinase signaling pathway dysregulation were examined at 9 months of age. We found that APP, p-APP, BACE1, Aβ and kinase-associated p-tau levels were elevated after PTZ kindling in 5×FAD mice. In addition, PTZ kindling exacerbated hippocampal synaptic damage and neuronal cell death, as determined by scanning electron microscopy and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) staining, respectively. Finally, the levels of the neuroinflammation markers GFAP and Iba1, as well as the inflammatory cytokine IL-1β, were increased after PTZ insult. PTZ kindling profoundly exacerbated extracellular regulated kinase (ERK)-death-associated protein kinase (DAPK) signaling pathway overactivation, and acute ERK inhibitor treatment downregulated Aβ production and p-APP and p-tau levels in epileptic 5×FAD mice. In addition, long-term use of the antiseizure drug carbamazepine (CBZ) alleviated seizure-induced accelerated amyloid and tau pathology and ERK-DAPK overactivation in 5×FAD mice. Collectively, these results demonstrate that seizure-induced increases in AD-like neuropathology in 5×FAD mice are partially regulated by the ERK-DAPK pathway, suggesting that the ERK-DAPK axis could be a new therapeutic target for the treatment of AD patients with comorbid seizures.
Collapse
Affiliation(s)
- Yulian Zou
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, Fujian, China
| | - Chengyan Wang
- Institute of Laboratory Animal Center, Fujian Medical University, Fuzhou, China
| | - Huang Li
- Department of Pharmacy of Fuzhou First General Hospital Affiliated With Fujian Medical University, Fuzhou, China
| | - Meihua Zhong
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Jin Lin
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Yan Hu
- Public Technology Service Center, Fujian Medical University, Fuzhou, Fujian, China
| | - Zhou Chen
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Chen-Ling Gan
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
3
|
Sone D, Kanemoto K. Neuropsychiatry revisited: epilepsy as the borderland between neurology and psychiatry. Front Psychiatry 2024; 15:1486667. [PMID: 39398961 PMCID: PMC11466751 DOI: 10.3389/fpsyt.2024.1486667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 09/11/2024] [Indexed: 10/15/2024] Open
Abstract
Since epilepsy is often complicated by psychiatric symptoms, the contributions of psychiatry are indispensable for the care and improvement of the quality of life of individuals with epilepsy. Moreover, the existence of a bidirectional relationship between epilepsy and psychiatric symptoms was recently proposed, based on the evidence that not only are some psychiatric symptoms more likely than others to follow epilepsy, but also that psychiatric symptoms may precede the onset of epilepsy and the presence of psychiatric symptoms may influence the outcome of treatment for seizures. There has also been a gradual accumulation of neurobiological findings related to psychosis, depressive, and anxiety symptoms that are associated with epilepsy with respect to abnormalities in brain networks and neurotransmission. This mini-review focuses on the neuropsychiatric aspects of epilepsy and proposes that a reconsideration of neuropsychiatry in light of epilepsy findings could serve as a bridge between psychiatry and neurology.
Collapse
Affiliation(s)
- Daichi Sone
- Department of Psychiatry, Jikei University School of Medicine, Tokyo, sJapan
| | - Kousuke Kanemoto
- Department of Neuropsychiatry, Aichi Medical University, Nagakute, Japan
| |
Collapse
|
4
|
Cretin B. Epileptic variant in the spectrum of Alzheimer's disease - practical implications. Seizure 2024:S1059-1311(24)00263-2. [PMID: 39343706 DOI: 10.1016/j.seizure.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 09/11/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024] Open
Abstract
Alzheimer's disease (AD) is known to be associated with an increased risk of epilepsy, which is not exclusively related to the late stage of the disease - when a major cognitive impairment is observed, previously known as the dementia stage - but also to its prodromal stage (mild cognitive impairment). Moreover, published case reports and cohorts have shown that epilepsy may occur even earlier, at the preclinical stage of AD: Epileptic seizures may therefore be the sole objective manifestation of the disease. Such a situation is called the epileptic variant of AD (evAD). EvAD is one of the etiologies of late-onset epilepsy, which means that it carries a risk of later progression to dementia and that it can only be diagnosed by assessing amyloid and tau biomarkers. However, evAD is a window of therapeutic opportunity that is probably optimal for preventing, through antiseizure medication treatment, the accelerated cognitive decline associated with AD-related brain hyperexcitability (manifested by seizures or interictal epileptiform activities).
Collapse
Affiliation(s)
- Benjamin Cretin
- Centre Mémoire, de Ressources et de Recherche de Strasbourg, France; Unité de Neuropsychologie, Service de Neurologie des Hôpitaux Universitaires de Strasbourg, Strasbourg, France; University of Strasbourg and CNRS, ICube laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), team IMIS/Neurocrypto Strasbourg, France; Centre de Compétences des démences rares des Hôpitaux Universitaires de Strasbourg, France.
| |
Collapse
|
5
|
Hashmi SA, Sachdeva S, Sindhu U, Tsai C, Bonda K, Keezer M, Zawar I, Punia V. The implications of frailty in older adults with epilepsy. Epilepsia Open 2024. [PMID: 39248297 DOI: 10.1002/epi4.13046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/15/2024] [Accepted: 08/29/2024] [Indexed: 09/10/2024] Open
Abstract
Older adults constitute a large proportion of people with epilepsy (PWE) due to the changing demographics worldwide and epilepsy's natural history. Aging-related pathophysiological changes lower the tolerance and increase our vulnerability to stressors, which manifests as frailty. Frailty is closely associated with adverse health outcomes. This narrative review examines the interplay between frailty and epilepsy, especially in older adults, emphasizing its clinical implications, including its role in managing PWE. Mechanistically, frailty develops through complex interactions among molecular and cellular damage, including genomic instability, mitochondrial dysfunction, and hormonal changes. These contribute to systemic muscle mass, bone density, and organ function decline. The concept of frailty has evolved from a primarily physical syndrome to include social, psychological, and cognitive dimensions. The "phenotypic frailty" model, which focuses on physical performance, and the "deficit accumulation" model, which quantifies health deficits, provide frameworks for understanding and assessing frailty. PWE are potentially more prone to developing frailty due to a higher prevalence of risk factors predisposing to frailty. These include, but are not limited to, polypharmacy, higher comorbidity, low exercise level, social isolation, low vitamin D, and osteoporosis. We lack commercial biomarkers to measure frailty but can diagnose it using self- or healthcare provider-administered frailty scales. Recent attempts to develop a PWE-specific frailty scale are promising. Unlike chronological age, frailty is reversible, so its management using multidisciplinary care teams should be strongly considered. Frailty can affect antiseizure medication (ASM) tolerance secondary to its impact on pharmacokinetics and pharmacodynamics. While frailty's effect on seizure control efficacy of ASM is poorly understood, its undoubted association with overall poor outcomes, including epilepsy surgery, behooves us to consider its presence and implication while treating older PWE. Incorporation of frailty measures in future research is essential to improve our understanding of frailty's role in PWE health. PLAIN LANGUAGE SUMMARY: Frailty is the declining state of the human body. People with epilepsy are more prone to it. It should be factored into their management.
Collapse
Affiliation(s)
- Syeda Amrah Hashmi
- Department of Neurology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Seerat Sachdeva
- Clinical Observer, Epilepsy Center, Cleveland Clinic, Cleveland, Ohio, USA
| | - Udeept Sindhu
- Clinical Observer, Epilepsy Center, Cleveland Clinic, Cleveland, Ohio, USA
| | - Carolyn Tsai
- Epilepsy Center, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Mark Keezer
- Department of Neurosciences, Université de Montréal, Montreal, Quebec, Canada
| | - Ifrah Zawar
- Department of Neurology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Vineet Punia
- Epilepsy Center, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
6
|
Liu Y, Jia N, Tang C, Long H, Wang J. Microglia in Microbiota-Gut-Brain Axis: A Hub in Epilepsy. Mol Neurobiol 2024; 61:7109-7126. [PMID: 38366306 DOI: 10.1007/s12035-024-04022-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/06/2024] [Indexed: 02/18/2024]
Abstract
There is growing concern about the role of the microbiota-gut-brain axis in neurological illnesses, and it makes sense to consider microglia as a critical component of this axis in the context of epilepsy. Microglia, which reside in the central nervous system, are dynamic guardians that monitor brain homeostasis. Microglia receive information from the gut microbiota and function as hubs that may be involved in triggering epileptic seizures. Vagus nerve bridges the communication in the axis. Essential axis signaling molecules, such as gamma-aminobutyric acid, 5-hydroxytryptamin, and short-chain fatty acids, are currently under investigation for their participation in drug-resistant epilepsy (DRE). In this review, we explain how vagus nerve connects the gut microbiota to microglia in the brain and discuss the emerging concepts derived from this interaction. Understanding microbiota-gut-brain axis in epilepsy brings hope for DRE therapies. Future treatments can focus on the modulatory effect of the axis and target microglia in solving DRE.
Collapse
Affiliation(s)
- Yuyang Liu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- The First Clinical Medicine College, Southern Medical University, Guangzhou, China
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, China
| | - Ningkang Jia
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, China
- The Second Clinical Medicine College, Southern Medical University, Guangzhou, China
| | - Chuqi Tang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- The First Clinical Medicine College, Southern Medical University, Guangzhou, China
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, China
| | - Hao Long
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- The First Clinical Medicine College, Southern Medical University, Guangzhou, China
| | - Jun Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- The First Clinical Medicine College, Southern Medical University, Guangzhou, China.
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, China.
| |
Collapse
|
7
|
Wan X, Zeng Y, Wang J, Tian M, Yin X, Zhang J. Structural and functional abnormalities and cognitive profiles in older adults with early-onset and late-onset focal epilepsy. Cereb Cortex 2024; 34:bhae300. [PMID: 39052362 DOI: 10.1093/cercor/bhae300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/26/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
This study aimed to determine the patterns of changes in structure, function, and cognitive ability in early-onset and late-onset older adults with focal epilepsy (OFE). This study first utilized the deformation-based morphometry analysis to identify structural abnormalities, which were used as the seed region to investigate the functional connectivity with the whole brain. Next, a correlation analysis was performed between the altered imaging findings and neuropsychiatry assessments. Finally, the potential role of structural-functional abnormalities in the diagnosis of epilepsy was further explored by using mediation analysis. Compared with healthy controls (n = 28), the area of reduced structural volume was concentrated in the bilateral cerebellum, right thalamus, and right middle cingulate cortex, with frontal, temporal, and occipital lobes also affected in early-onset focal epilepsy (n = 26), while late-onset patients (n = 31) displayed cerebellar, thalamic, and cingulate atrophy. Furthermore, correlation analyses suggest an association between structural abnormalities and cognitive assessments. Dysfunctional connectivity in the cerebellum, cingulate cortex, and frontal gyrus partially mediates the relationship between structural abnormalities and the diagnosis of early-onset focal epilepsy. This study identified structural and functional abnormalities in early-onset and late-onset focal epilepsy and explored characters in cognitive performance. Structural-functional coupling may play a potential role in the diagnosis of epilepsy.
Collapse
Affiliation(s)
- Xinyue Wan
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200040, China
- Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Yanwei Zeng
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200040, China
| | - Jianhong Wang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Mei Tian
- Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Xuyang Yin
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200040, China
| | - Jun Zhang
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Fudan University, Shanghai 200040, China
| |
Collapse
|
8
|
Kalyvas AC, Dimitriou M, Ioannidis P, Grigoriadis N, Afrantou T. Alzheimer's Disease and Epilepsy: Exploring Shared Pathways and Promising Biomarkers for Future Treatments. J Clin Med 2024; 13:3879. [PMID: 38999445 PMCID: PMC11242231 DOI: 10.3390/jcm13133879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/25/2024] [Accepted: 06/29/2024] [Indexed: 07/14/2024] Open
Abstract
Background: Alzheimer's disease (AD) and epilepsy represent two complex neurological disorders with distinct clinical manifestations, yet recent research has highlighted their intricate interplay. This review examines the association between AD and epilepsy, with particular emphasis on late-onset epilepsy of unknown etiology, increasingly acknowledged as a prodrome of AD. It delves into epidemiology, pathogenic mechanisms, clinical features, diagnostic characteristics, treatment strategies, and emerging biomarkers to provide a comprehensive understanding of this relationship. Methods: A comprehensive literature search was conducted, identifying 128 relevant articles published between 2018 and 2024. Results: Findings underscore a bidirectional relationship between AD and epilepsy, indicating shared pathogenic pathways that extend beyond traditional amyloid-beta and Tau protein pathology. These pathways encompass neuroinflammation, synaptic dysfunction, structural and network alterations, as well as molecular mechanisms. Notably, epileptic activity in AD patients may exacerbate cognitive decline, necessitating prompt detection and treatment. Novel biomarkers, such as subclinical epileptiform activity detected via advanced electroencephalographic techniques, offer promise for early diagnosis and targeted interventions. Furthermore, emerging therapeutic approaches targeting shared pathogenic mechanisms hold potential for disease modification in both AD and epilepsy. Conclusions: This review highlights the importance of understanding the relationship between AD and epilepsy, providing insights into future research directions. Clinical data and diagnostic methods are also reviewed, enabling clinicians to implement more effective treatment strategies.
Collapse
Affiliation(s)
- Athanasios-Christos Kalyvas
- 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, GR54636 Thessaloniki, Greece
| | - Maria Dimitriou
- 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, GR54636 Thessaloniki, Greece
| | - Panagiotis Ioannidis
- 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, GR54636 Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, GR54636 Thessaloniki, Greece
| | - Theodora Afrantou
- 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, GR54636 Thessaloniki, Greece
| |
Collapse
|
9
|
Liu AA, Barr WB. Overlapping and distinct phenotypic profiles in Alzheimer's disease and late onset epilepsy: a biologically-based approach. Front Neurol 2024; 14:1260523. [PMID: 38545454 PMCID: PMC10965692 DOI: 10.3389/fneur.2023.1260523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/18/2023] [Indexed: 04/05/2024] Open
Abstract
Due to shared hippocampal dysfunction, patients with Alzheimer's dementia and late-onset epilepsy (LOE) report memory decline. Multiple studies have described the epidemiological, pathological, neurophysiological, and behavioral overlap between Alzheimer's Disease and LOE, implying a bi-directional relationship. We describe the neurobiological decline occurring at different spatial in AD and LOE patients, which may explain why their phenotypes overlap and differ. We provide suggestions for clinical recognition of dual presentation and novel approaches for behavioral testing that reflect an "inside-out," or biologically-based approach to testing memory. New memory and language assessments could detect-and treat-memory impairment in AD and LOE at an earlier, actionable stage.
Collapse
Affiliation(s)
- Anli A. Liu
- Langone Medical Center, New York University, New York, NY, United States
- Department of Neurology, School of Medicine, New York University, New York, NY, United States
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY, United States
| | - William B. Barr
- Department of Neurology, School of Medicine, New York University, New York, NY, United States
| |
Collapse
|
10
|
Gugger JJ, Walter AE, Diaz‐Arrastia R, Huang J, Jack CR, Reid R, Kucharska‐Newton AM, Gottesman RF, Schneider ALC, Johnson EL. Association between structural brain MRI abnormalities and epilepsy in older adults. Ann Clin Transl Neurol 2024; 11:342-354. [PMID: 38155477 PMCID: PMC10863905 DOI: 10.1002/acn3.51955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/21/2023] [Accepted: 11/11/2023] [Indexed: 12/30/2023] Open
Abstract
OBJECTIVE To determine the association between brain MRI abnormalities and incident epilepsy in older adults. METHODS Men and women (ages 45-64 years) from the Atherosclerosis Risk in Communities study were followed up from 1987 to 2018 with brain MRI performed between 2011 and 2013. We identified cases of incident late-onset epilepsy (LOE) with onset of seizures occurring after the acquisition of brain MRI. We evaluated the relative pattern of cortical thickness, subcortical volume, and white matter integrity among participants with incident LOE after MRI in comparison with participants without seizures. We examined the association between MRI abnormalities and incident LOE using Cox proportional hazards regression. Models were adjusted for demographics, hypertension, diabetes, smoking, stroke, and dementia status. RESULTS Among 1251 participants with brain MRI data, 27 (2.2%) developed LOE after MRI over a median of 6.4 years (25-75 percentile 5.8-6.9) of follow-up. Participants with incident LOE after MRI had higher levels of cortical thinning and white matter microstructural abnormalities before seizure onset compared to those without seizures. In longitudinal analyses, greater number of abnormalities was associated with incident LOE after controlling for demographic factors, risk factors for cardiovascular disease, stroke, and dementia (gray matter: hazard ratio [HR]: 2.3, 95% confidence interval [CI]: 1.0-4.9; white matter diffusivity: HR: 3.0, 95% CI: 1.2-7.3). INTERPRETATION This study demonstrates considerable gray and white matter pathology among individuals with LOE, which is present prior to the onset of seizures and provides important insights into the role of neurodegeneration, both of gray and white matter, and the risk of LOE.
Collapse
Affiliation(s)
- James J. Gugger
- Department of NeurologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Alexa E. Walter
- Department of NeurologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Ramon Diaz‐Arrastia
- Department of NeurologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Juebin Huang
- Department of NeurologyUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | | | - Robert Reid
- Department of RadiologyMayo ClinicRochesterMinnesotaUSA
| | - Anna M. Kucharska‐Newton
- Department of EpidemiologyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Rebecca F. Gottesman
- National Institute of Neurological Disorders and Stroke Intramural Research ProgramBethesdaMarylandUSA
| | - Andrea L. C. Schneider
- Department of NeurologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
- Department of Biostatistics, Epidemiology, and InformaticsUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Emily L. Johnson
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
11
|
Shariff S, Nouh HA, Inshutiyimana S, Kachouh C, Abdelwahab MM, Nazir A, Wojtara M, Uwishema O. Advances in understanding the pathogenesis of epilepsy: Unraveling the molecular mechanisms: A cross-sectional study. Health Sci Rep 2024; 7:e1896. [PMID: 38361811 PMCID: PMC10867297 DOI: 10.1002/hsr2.1896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/15/2023] [Accepted: 01/31/2024] [Indexed: 02/17/2024] Open
Abstract
Introduction Epilepsy is characterized by having two or more unprovoked seizures. Understanding the pathogenesis of epilepsy, requires deep investigation into the molecular mechanisms. This helps develop diagnostic techniques, treatments, and pharmacotherapy. It also enhances precision medicine and individualized treatment processes. This article reviews all the molecular mechanisms predisposing to epileptogenesis, presents the current diagnostic techniques and drug therapy, and suggests future perspectives in treating Epilepsy in a more comprehensive and holistic approach. Methodology Four authors searched keywords concerning epilepsy at a molecular level, Epilepsy diagnostic techniques and technologies, and antiepileptic drug therapy and precision medicine. Separate search strategies were conducted for each concern and retrieved articles were reviewed for relevant results. Results The traditional diagnostic techniques for Epilepsy and its pathogenesis are insufficient in highlighting dynamic brain changes. For this, emerging technologies including genetic sequencing and profiling, and functional neuroimaging techniques are prevailing. Concerning treatment, the current approach focuses on managing symptoms and stopping seizures using antiseizure medications. However, their usage is limited by developing resistance to such drugs. Some therapies show promise, although most antiseizure drugs do not prevent epilepsy. Discussion Understanding epileptogenesis at a molecular and genetic level aids in developing new antiepileptic pharmacotherapy. The aim is to develop therapies that could prevent seizures or modify disease course, decreasing the severity and avoiding drug resistance. Gene therapy and precision medicine are promising but applications are limited due to the heterogeneity in studying the Epileptic brain, dynamically. The dynamic investigation of the epileptic brain with its comorbidities works hand-in-hand with precision medicine, in developing personalized treatment plans.
Collapse
Affiliation(s)
- Sanobar Shariff
- Oli Health Magazine Organization, Research and EducationKigaliRwanda
- Department of MedicineYerevan State Medical UniversityYerevanArmenia
| | - Halah A. Nouh
- Oli Health Magazine Organization, Research and EducationKigaliRwanda
- Department of MedicineLebanese UniversityBeirutLebanon
| | - Samuel Inshutiyimana
- Oli Health Magazine Organization, Research and EducationKigaliRwanda
- Department of MedicineUnited States International University‐AfricaNairobiKenya
| | - Charbel Kachouh
- Oli Health Magazine Organization, Research and EducationKigaliRwanda
- Department of MedicineSaint‐Joseph UniversityBeirutLebanon
| | - Maya M. Abdelwahab
- Oli Health Magazine Organization, Research and EducationKigaliRwanda
- Faculty of MedicineHelwan UniversityCairoEgypt
| | - Abubakar Nazir
- Oli Health Magazine Organization, Research and EducationKigaliRwanda
- Department of MedicineKing Edward Medical UniversityLahorePakistan
| | - Magda Wojtara
- Oli Health Magazine Organization, Research and EducationKigaliRwanda
- Department of MedicineUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Olivier Uwishema
- Oli Health Magazine Organization, Research and EducationKigaliRwanda
- Department of MedicineClinton Global Initiative UniversityNew YorkNew YorkUSA
- Faculty of MedicineKaradeniz Technical UniversityTrabzonTurkey
| |
Collapse
|
12
|
Sansone G, Megevand P, Vulliémoz S, Corbetta M, Picard F, Seeck M. Long-term outcome of alcohol withdrawal seizures. Eur J Neurol 2024; 31:e16075. [PMID: 37823698 PMCID: PMC11235997 DOI: 10.1111/ene.16075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/18/2023] [Accepted: 09/07/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND AND PURPOSE Alcohol withdrawal seizures (AWS) are a well-known complication of chronic alcohol abuse, but there is currently little knowledge of their long-term relapse rate and prognosis. The aims of this study were to identify risk factors for AWS recurrence and to study the overall outcome of patients after AWS. METHODS In this retrospective single-center study, we included patients who were admitted to the Emergency Department after an AWS between January 1, 2013 and August 10, 2021 and for whom an electroencephalogram (EEG) was requested. AWS relapses up until April 29, 2022 were researched. We compared history, treatment with benzodiazepines or antiseizure medications (ASMs), laboratory, EEG and computed tomography findings between patients with AWS relapse (r-AWS) and patients with no AWS relapse (nr-AWS). RESULTS A total of 199 patients were enrolled (mean age 53 ± 12 years; 78.9% men). AWS relapses occurred in 11% of patients, after a median time of 470.5 days. Brain computed tomography (n = 182) showed pathological findings in 35.7%. Risk factors for relapses were history of previous AWS (p = 0.013), skull fractures (p = 0.004) at the index AWS, and possibly epileptiform EEG abnormalities (p = 0.07). Benzodiazepines or other ASMs, taken before or after the index event, did not differ between the r-AWS and the nr-AWS group. The mortality rate was 2.9%/year of follow-up, which was 13 times higher compared to the general population. Risk factors for death were history of AWS (p < 0.001) and encephalopathic EEG (p = 0.043). CONCLUSIONS Delayed AWS relapses occur in 11% of patients and are associated with risk factors (previous AWS >24 h apart, skull fractures, and pathological EEG findings) that also increase the epilepsy risk, that is, predisposition for seizures, if not treated. Future prospective studies are mandatory to determine appropriate long-term diagnostic and therapeutic strategies, in order to reduce the risk of relapse and mortality associated with AWS.
Collapse
Affiliation(s)
- Giulio Sansone
- Department of Clinical NeurosciencesUniversity Hospital of Geneva & Faculty of MedicineGenevaSwitzerland
- Department of NeuroscienceUniversity of PadovaPadovaItaly
| | - Pierre Megevand
- Department of Clinical NeurosciencesUniversity Hospital of Geneva & Faculty of MedicineGenevaSwitzerland
| | - Serge Vulliémoz
- Department of Clinical NeurosciencesUniversity Hospital of Geneva & Faculty of MedicineGenevaSwitzerland
| | - Maurizio Corbetta
- Department of NeuroscienceUniversity of PadovaPadovaItaly
- Padova Neuroscience Center (PNC)University of PadovaPadovaItaly
- Venetian Institute of Molecular Medicine (VIMM)Fondazione BiomedicaPadovaItaly
| | - Fabienne Picard
- Department of Clinical NeurosciencesUniversity Hospital of Geneva & Faculty of MedicineGenevaSwitzerland
| | - Margitta Seeck
- Department of Clinical NeurosciencesUniversity Hospital of Geneva & Faculty of MedicineGenevaSwitzerland
| |
Collapse
|
13
|
Yang L, Zhang Q, Wu XQ, Qiu XY, Fei F, Lai NX, Zheng YY, Zhang MD, Zhang QY, Wang Y, Wang F, Xu CL, Ruan YP, Wang Y, Chen Z. Chemogenetic inhibition of subicular seizure-activated neurons alleviates cognitive deficit in male mouse epilepsy model. Acta Pharmacol Sin 2023; 44:2376-2387. [PMID: 37488426 PMCID: PMC10692337 DOI: 10.1038/s41401-023-01129-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/28/2023] [Indexed: 07/26/2023] Open
Abstract
Cognitive deficit is a common comorbidity in temporal lobe epilepsy (TLE) and is not well controlled by current therapeutics. How epileptic seizure affects cognitive performance remains largely unclear. In this study we investigated the role of subicular seizure-activated neurons in cognitive impairment in TLE. A bipolar electrode was implanted into hippocampal CA3 in male mice for kindling stimulation and EEG recording; a special promoter with enhanced synaptic activity-responsive element (E-SARE) was used to label seizure-activated neurons in the subiculum; the activity of subicular seizure-activated neurons was manipulated using chemogenetic approach; cognitive function was assessed in object location memory (OLM) and novel object recognition (NOR) tasks. We showed that chemogenetic inhibition of subicular seizure-activated neurons (mainly CaMKIIα+ glutamatergic neurons) alleviated seizure generalization and improved cognitive performance, but inhibition of seizure-activated GABAergic interneurons had no effect on seizure and cognition. For comparison, inhibition of the whole subicular CaMKIIα+ neuron impaired cognitive function in naïve mice in basal condition. Notably, chemogenetic inhibition of subicular seizure-activated neurons enhanced the recruitment of cognition-responsive c-fos+ neurons via increasing neural excitability during cognition tasks. Our results demonstrate that subicular seizure-activated neurons contribute to cognitive impairment in TLE, suggesting seizure-activated neurons as the potential therapeutic target to alleviate cognitive impairment in TLE.
Collapse
Affiliation(s)
- Lin Yang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qi Zhang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xue-Qing Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiao-Yun Qiu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Fan Fei
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Zhejiang Rehabilitation Medical Center, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310013, China
| | - Nan-Xi Lai
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yu-Yi Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Meng-di Zhang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qing-Yang Zhang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yu Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Fei Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Ceng-Lin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Ye-Ping Ruan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Zhejiang Rehabilitation Medical Center, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310013, China.
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| |
Collapse
|
14
|
Lu O, Kouser T, Skylar-Scott IA. Alzheimer's disease and epilepsy: shared neuropathology guides current and future treatment strategies. Front Neurol 2023; 14:1241339. [PMID: 37936917 PMCID: PMC10626492 DOI: 10.3389/fneur.2023.1241339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/12/2023] [Indexed: 11/09/2023] Open
Abstract
Epilepsy is a cause of profound disability in patients with Alzheimer's disease (AD). The risk of being diagnosed with AD increases the risk for epilepsy, and in parallel, a history of epilepsy increases the likelihood of the development of AD. This bi-directional relationship may be due to underlying shared pathophysiologic hallmarks, including decreased cerebrospinal fluid amyloid beta 42 (Aβ42), increased hyperphosphorylated tau protein, and hippocampal hyperexcitability. Additionally, there are practical treatment considerations in patients with co-morbid AD and epilepsy-namely, there is a higher risk of seizures associated with medications commonly prescribed for Alzheimer's disease patients, including antidepressants and antipsychotics such as trazodone, serotonin norepinephrine reuptake inhibitors (SNRIs), and first-generation neuroleptics. Anti-amyloid antibodies like aducanumab and lecanemab present new and unique considerations in patients with co-morbid AD and epilepsy given the risk of seizures associated with amyloid-related imaging abnormalities (ARIA) seen with this drug class. Finally, we identify and detail five active studies, including two clinical trials of levetiracetam in the respective treatment of cognition and neuropsychiatric features of AD, a study characterizing the prevalence of epilepsy in AD via prolonged EEG monitoring, a study characterizing AD biomarkers in late-onset epilepsy, and a study evaluating hyperexcitability in AD. These ongoing trials may guide future clinical decision-making and the development of novel therapeutics.
Collapse
Affiliation(s)
- Olivia Lu
- Stanford Neuroscience Clinical Research Group, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Taimur Kouser
- Stanford University School of Medicine, Palo Alto, CA, United States
| | - Irina A. Skylar-Scott
- Memory Disorders Division, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, CA, United States
| |
Collapse
|
15
|
Helmstaedter C, Lutz T, Wolf V, Witt JA. Prevalence of dementia in a level 4 university epilepsy center: how big is the problem? Front Neurol 2023; 14:1217594. [PMID: 37928163 PMCID: PMC10623304 DOI: 10.3389/fneur.2023.1217594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/27/2023] [Indexed: 11/07/2023] Open
Abstract
Background The relationship between epilepsy and dementia is currently a topic of great interest. Our study aimed to determine the prevalence of dementia diagnoses among patients of a large level 4 university epilepsy center. Methods In this retrospective monocentric study conducted at the Department of Epileptology of the University Hospital Bonn, we searched for dementia-related terms in a total of 145,501 medical letters from 40,360 adult patients who were seen between 2003 and 2021. Files with at least one hit were selected and analyzed with regard to diagnoses, age, age at epilepsy onset, and the question as to whether epilepsy preceded or followed the dementia diagnosis. Results Among the medical letters of 513 patients, dementia-related terms were found. The letters of 12.7% of these patients stated a dementia diagnosis, 6.6% were suspected of having dementia, 4.9% had mild cognitive impairment, and 6.6% had other neurodegenerative diseases without dementia. Taking all 40,360 patients into account, the prevalence of diagnosed or suspected dementia was 0.25%. An older age (≥60 years) and late-onset epilepsy (≥60 years), but not a longer epilepsy duration, increased the odds of dementia by 6.1 (CI 3.5-10.7) and 2.9 (CI 1.7-4.7), respectively. Additionally, vascular, metabolic, inflammatory, and behavioral mood-related comorbidities were commonly observed. Epilepsy tended to precede (23.2%) rather than follow (8.1%) the dementia diagnosis. Conclusion Despite the clear limitations of a selection bias and the potential underdiagnosis of dementia and underestimation of its prevalence when relying on the medical letters from a specialized center which rather focuses on epilepsy-related issues, the findings of this study offer valuable insights from the perspective of an epilepsy center. In this setting, the prevalence of dementia in epilepsy is rather low. However, physicians should be aware that the risk of dementia is higher in the elderly, in late-onset epilepsies, and when comorbid risk factors exist. Seizures can also be an early sign of a neurodegenerative disease. Future research should explicitly screen for dementia in patients with epilepsy and stratify them according to their underlying pathologies and comorbidities.
Collapse
|
16
|
Hickman LB, Stern JM, Silverman DHS, Salamon N, Vossel K. Clinical, imaging, and biomarker evidence of amyloid- and tau-related neurodegeneration in late-onset epilepsy of unknown etiology. Front Neurol 2023; 14:1241638. [PMID: 37830092 PMCID: PMC10565489 DOI: 10.3389/fneur.2023.1241638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/05/2023] [Indexed: 10/14/2023] Open
Abstract
Accumulating evidence suggests amyloid and tau-related neurodegeneration may play a role in development of late-onset epilepsy of unknown etiology (LOEU). In this article, we review recent evidence that epilepsy may be an initial manifestation of an amyloidopathy or tauopathy that precedes development of Alzheimer's disease (AD). Patients with LOEU demonstrate an increased risk of cognitive decline, and patients with AD have increased prevalence of preceding epilepsy. Moreover, investigations of LOEU that use CSF biomarkers and imaging techniques have identified preclinical neurodegeneration with evidence of amyloid and tau deposition. Overall, findings to date suggest a relationship between acquired, non-lesional late-onset epilepsy and amyloid and tau-related neurodegeneration, which supports that preclinical or prodromal AD is a distinct etiology of late-onset epilepsy. We propose criteria for assessing elevated risk of developing dementia in patients with late-onset epilepsy utilizing clinical features, available imaging techniques, and biomarker measurements. Further research is needed to validate these criteria and assess optimal treatment strategies for patients with probable epileptic preclinical AD and epileptic prodromal AD.
Collapse
Affiliation(s)
- L. Brian Hickman
- Mary S. Easton Center for Alzheimer’s Research and Care, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Neurology, UCLA Seizure Disorder Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - John M. Stern
- Department of Neurology, UCLA Seizure Disorder Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Daniel H. S. Silverman
- Mary S. Easton Center for Alzheimer’s Research and Care, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Ahmanson Translational Imaging Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Noriko Salamon
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Keith Vossel
- Mary S. Easton Center for Alzheimer’s Research and Care, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
17
|
Kaestner E, Rao J, Chang AJ, Wang ZI, Busch RM, Keller SS, Rüber T, Drane DL, Stoub T, Gleichgerrcht E, Bonilha L, Hasenstab K, McDonald C. Convolutional Neural Network Algorithm to Determine Lateralization of Seizure Onset in Patients With Epilepsy: A Proof-of-Principle Study. Neurology 2023; 101:e324-e335. [PMID: 37202160 PMCID: PMC10382265 DOI: 10.1212/wnl.0000000000207411] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 03/30/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND AND OBJECTIVES A new frontier in diagnostic radiology is the inclusion of machine-assisted support tools that facilitate the identification of subtle lesions often not visible to the human eye. Structural neuroimaging plays an essential role in the identification of lesions in patients with epilepsy, which often coincide with the seizure focus. In this study, we explored the potential for a convolutional neural network (CNN) to determine lateralization of seizure onset in patients with epilepsy using T1-weighted structural MRI scans as input. METHODS Using a dataset of 359 patients with temporal lobe epilepsy (TLE) from 7 surgical centers, we tested whether a CNN based on T1-weighted images could classify seizure laterality concordant with clinical team consensus. This CNN was compared with a randomized model (comparison with chance) and a hippocampal volume logistic regression (comparison with current clinically available measures). Furthermore, we leveraged a CNN feature visualization technique to identify regions used to classify patients. RESULTS Across 100 runs, the CNN model was concordant with clinician lateralization on average 78% (SD = 5.1%) of runs with the best-performing model achieving 89% concordance. The CNN outperformed the randomized model (average concordance of 51.7%) on 100% of runs with an average improvement of 26.2% and outperformed the hippocampal volume model (average concordance of 71.7%) on 85% of runs with an average improvement of 6.25%. Feature visualization maps revealed that in addition to the medial temporal lobe, regions in the lateral temporal lobe, cingulate, and precentral gyrus aided in classification. DISCUSSION These extratemporal lobe features underscore the importance of whole-brain models to highlight areas worthy of clinician scrutiny during temporal lobe epilepsy lateralization. This proof-of-concept study illustrates that a CNN applied to structural MRI data can visually aid clinician-led localization of epileptogenic zone and identify extrahippocampal regions that may require additional radiologic attention. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that in patients with drug-resistant unilateral temporal lobe epilepsy, a convolutional neural network algorithm derived from T1-weighted MRI can correctly classify seizure laterality.
Collapse
Affiliation(s)
- Erik Kaestner
- From the University of California San Diego (E.K., J.R., C.M.), CA; Medical University of South Carolina (A.J.C., E.G.), Charleston; Cleveland Clinic (Z.I.W., R.M.B.), OH; University of Liverpool (S.S.K.), United Kingdom; University of Bonn (T.R.), DE; University of Emory (D.L.D., L.B.), Atlanta, GA; Rush University (T.S.), Chicago, IL; and San Diego State University (K.H.), San Diego, CA
| | - Jun Rao
- From the University of California San Diego (E.K., J.R., C.M.), CA; Medical University of South Carolina (A.J.C., E.G.), Charleston; Cleveland Clinic (Z.I.W., R.M.B.), OH; University of Liverpool (S.S.K.), United Kingdom; University of Bonn (T.R.), DE; University of Emory (D.L.D., L.B.), Atlanta, GA; Rush University (T.S.), Chicago, IL; and San Diego State University (K.H.), San Diego, CA
| | - Allen J Chang
- From the University of California San Diego (E.K., J.R., C.M.), CA; Medical University of South Carolina (A.J.C., E.G.), Charleston; Cleveland Clinic (Z.I.W., R.M.B.), OH; University of Liverpool (S.S.K.), United Kingdom; University of Bonn (T.R.), DE; University of Emory (D.L.D., L.B.), Atlanta, GA; Rush University (T.S.), Chicago, IL; and San Diego State University (K.H.), San Diego, CA
| | - Zhong Irene Wang
- From the University of California San Diego (E.K., J.R., C.M.), CA; Medical University of South Carolina (A.J.C., E.G.), Charleston; Cleveland Clinic (Z.I.W., R.M.B.), OH; University of Liverpool (S.S.K.), United Kingdom; University of Bonn (T.R.), DE; University of Emory (D.L.D., L.B.), Atlanta, GA; Rush University (T.S.), Chicago, IL; and San Diego State University (K.H.), San Diego, CA
| | - Robyn M Busch
- From the University of California San Diego (E.K., J.R., C.M.), CA; Medical University of South Carolina (A.J.C., E.G.), Charleston; Cleveland Clinic (Z.I.W., R.M.B.), OH; University of Liverpool (S.S.K.), United Kingdom; University of Bonn (T.R.), DE; University of Emory (D.L.D., L.B.), Atlanta, GA; Rush University (T.S.), Chicago, IL; and San Diego State University (K.H.), San Diego, CA
| | - Simon S Keller
- From the University of California San Diego (E.K., J.R., C.M.), CA; Medical University of South Carolina (A.J.C., E.G.), Charleston; Cleveland Clinic (Z.I.W., R.M.B.), OH; University of Liverpool (S.S.K.), United Kingdom; University of Bonn (T.R.), DE; University of Emory (D.L.D., L.B.), Atlanta, GA; Rush University (T.S.), Chicago, IL; and San Diego State University (K.H.), San Diego, CA
| | - Theodor Rüber
- From the University of California San Diego (E.K., J.R., C.M.), CA; Medical University of South Carolina (A.J.C., E.G.), Charleston; Cleveland Clinic (Z.I.W., R.M.B.), OH; University of Liverpool (S.S.K.), United Kingdom; University of Bonn (T.R.), DE; University of Emory (D.L.D., L.B.), Atlanta, GA; Rush University (T.S.), Chicago, IL; and San Diego State University (K.H.), San Diego, CA
| | - Daniel L Drane
- From the University of California San Diego (E.K., J.R., C.M.), CA; Medical University of South Carolina (A.J.C., E.G.), Charleston; Cleveland Clinic (Z.I.W., R.M.B.), OH; University of Liverpool (S.S.K.), United Kingdom; University of Bonn (T.R.), DE; University of Emory (D.L.D., L.B.), Atlanta, GA; Rush University (T.S.), Chicago, IL; and San Diego State University (K.H.), San Diego, CA
| | - Travis Stoub
- From the University of California San Diego (E.K., J.R., C.M.), CA; Medical University of South Carolina (A.J.C., E.G.), Charleston; Cleveland Clinic (Z.I.W., R.M.B.), OH; University of Liverpool (S.S.K.), United Kingdom; University of Bonn (T.R.), DE; University of Emory (D.L.D., L.B.), Atlanta, GA; Rush University (T.S.), Chicago, IL; and San Diego State University (K.H.), San Diego, CA
| | - Ezequiel Gleichgerrcht
- From the University of California San Diego (E.K., J.R., C.M.), CA; Medical University of South Carolina (A.J.C., E.G.), Charleston; Cleveland Clinic (Z.I.W., R.M.B.), OH; University of Liverpool (S.S.K.), United Kingdom; University of Bonn (T.R.), DE; University of Emory (D.L.D., L.B.), Atlanta, GA; Rush University (T.S.), Chicago, IL; and San Diego State University (K.H.), San Diego, CA
| | - Leonardo Bonilha
- From the University of California San Diego (E.K., J.R., C.M.), CA; Medical University of South Carolina (A.J.C., E.G.), Charleston; Cleveland Clinic (Z.I.W., R.M.B.), OH; University of Liverpool (S.S.K.), United Kingdom; University of Bonn (T.R.), DE; University of Emory (D.L.D., L.B.), Atlanta, GA; Rush University (T.S.), Chicago, IL; and San Diego State University (K.H.), San Diego, CA
| | - Kyle Hasenstab
- From the University of California San Diego (E.K., J.R., C.M.), CA; Medical University of South Carolina (A.J.C., E.G.), Charleston; Cleveland Clinic (Z.I.W., R.M.B.), OH; University of Liverpool (S.S.K.), United Kingdom; University of Bonn (T.R.), DE; University of Emory (D.L.D., L.B.), Atlanta, GA; Rush University (T.S.), Chicago, IL; and San Diego State University (K.H.), San Diego, CA
| | - Carrie McDonald
- From the University of California San Diego (E.K., J.R., C.M.), CA; Medical University of South Carolina (A.J.C., E.G.), Charleston; Cleveland Clinic (Z.I.W., R.M.B.), OH; University of Liverpool (S.S.K.), United Kingdom; University of Bonn (T.R.), DE; University of Emory (D.L.D., L.B.), Atlanta, GA; Rush University (T.S.), Chicago, IL; and San Diego State University (K.H.), San Diego, CA.
| |
Collapse
|
18
|
Leitner DF, Kanshin E, Faustin A, Thierry M, Friedman D, Devore S, Ueberheide B, Devinsky O, Wisniewski T. Localized proteomic differences in the choroid plexus of Alzheimer's disease and epilepsy patients. Front Neurol 2023; 14:1221775. [PMID: 37521285 PMCID: PMC10379643 DOI: 10.3389/fneur.2023.1221775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/22/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Alzheimer's disease (AD) and epilepsy are reciprocally related. Among sporadic AD patients, clinical seizures occur in 10-22% and subclinical epileptiform abnormalities occur in 22-54%. Cognitive deficits, especially short-term memory impairments, occur in most epilepsy patients. Common neurophysiological and molecular mechanisms occur in AD and epilepsy. The choroid plexus undergoes pathological changes in aging, AD, and epilepsy, including decreased CSF turnover, amyloid beta (Aβ), and tau accumulation due to impaired clearance and disrupted CSF amino acid homeostasis. This pathology may contribute to synaptic dysfunction in AD and epilepsy. Methods We evaluated control (n = 8), severe AD (n = 8; A3, B3, C3 neuropathology), and epilepsy autopsy cases (n = 12) using laser capture microdissection (LCM) followed by label-free quantitative mass spectrometry on the choroid plexus adjacent to the hippocampus at the lateral geniculate nucleus level. Results Proteomics identified 2,459 proteins in the choroid plexus. At a 5% false discovery rate (FDR), 616 proteins were differentially expressed in AD vs. control, 1 protein in epilepsy vs. control, and 438 proteins in AD vs. epilepsy. There was more variability in the epilepsy group across syndromes. The top 20 signaling pathways associated with differentially expressed proteins in AD vs. control included cell metabolism pathways; activated fatty acid beta-oxidation (p = 2.00 x 10-7, z = 3.00), and inhibited glycolysis (p = 1.00 x 10-12, z = -3.46). For AD vs. epilepsy, the altered pathways included cell metabolism pathways, activated complement system (p = 5.62 x 10-5, z = 2.00), and pathogen-induced cytokine storm (p = 2.19 x 10-2, z = 3.61). Of the 617 altered proteins in AD and epilepsy vs. controls, 497 (81%) were positively correlated (p < 0.0001, R2 = 0.27). Discussion We found altered signaling pathways in the choroid plexus of severe AD cases and many correlated changes in the protein expression of cell metabolism pathways in AD and epilepsy cases. The shared molecular mechanisms should be investigated further to distinguish primary pathogenic changes from the secondary ones. These mechanisms could inform novel therapeutic strategies to prevent disease progression or restore normal function. A focus on dual-diagnosed AD/epilepsy cases, specific epilepsy syndromes, such as temporal lobe epilepsy, and changes across different severity levels in AD and epilepsy would add to our understanding.
Collapse
Affiliation(s)
- Dominique F. Leitner
- Comprehensive Epilepsy Center, New York University Grossman School of Medicine, New York, NY, United States
- Center for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
| | - Evgeny Kanshin
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY, United States
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, United States
| | - Arline Faustin
- Center for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, United States
| | - Manon Thierry
- Center for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
| | - Daniel Friedman
- Comprehensive Epilepsy Center, New York University Grossman School of Medicine, New York, NY, United States
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
| | - Sasha Devore
- Comprehensive Epilepsy Center, New York University Grossman School of Medicine, New York, NY, United States
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
| | - Beatrix Ueberheide
- Center for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY, United States
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, United States
| | - Orrin Devinsky
- Comprehensive Epilepsy Center, New York University Grossman School of Medicine, New York, NY, United States
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
| | - Thomas Wisniewski
- Center for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, United States
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
19
|
Ballerini A, Arienzo D, Stasenko A, Schadler A, Vaudano AE, Meletti S, Kaestner E, McDonald CR. Spatial patterns of gray and white matter compromise relate to age of seizure onset in temporal lobe epilepsy. Neuroimage Clin 2023; 39:103473. [PMID: 37531834 PMCID: PMC10415805 DOI: 10.1016/j.nicl.2023.103473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 08/04/2023]
Abstract
OBJECTIVE Temporal Lobe Epilepsy (TLE) is frequently a neurodevelopmental disorder, involving subcortical volume loss, cortical atrophy, and white matter (WM) disruption. However, few studies have addressed how these pathological changes in TLE relate to one another. In this study, we investigate spatial patterns of gray and white matter degeneration in TLE and evaluate the hypothesis that the relationship among these patterns varies as a function of the age at which seizures begin. METHODS Eighty-two patients with TLE and 59 healthy controls were enrolled. T1-weighted images were used to obtain hippocampal volumes and cortical thickness estimates. Diffusion-weighted imaging was used to obtain fractional anisotropy (FA) and mean diffusivity (MD) of the superficial WM (SWM) and deep WM tracts. Analysis of covariance was used to examine patterns of WM and gray matter alterations in TLE relative to controls, controlling for age and sex. Sliding window correlations were then performed to examine the relationships between SWM degeneration, cortical thinning, and hippocampal atrophy across ages of seizure onset. RESULTS Cortical thinning in TLE followed a widespread, bilateral pattern that was pronounced in posterior centroparietal regions, whereas SWM and deep WM loss occurred mostly in ipsilateral, temporolimbic regions compared to controls. Window correlations revealed a relationship between hippocampal volume loss and whole brain SWM disruption in patients who developed epilepsy during childhood. On the other hand, in patients with adult-onset TLE, co-occurring cortical and SWM alterations were observed in the medial temporal lobe ipsilateral to the seizure focus. SIGNIFICANCE Our results suggest that although cortical, hippocampal and WM alterations appear spatially discordant at the group level, the relationship among these features depends on the age at which seizures begin. Whereas neurodevelopmental aspects of TLE may result in co-occurring WM and hippocampal degeneration near the epileptogenic zone, the onset of seizures in adulthood may set off a cascade of SWM microstructural loss and cortical atrophy of a neurodegenerative nature.
Collapse
Affiliation(s)
- Alice Ballerini
- Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, Modena, Italy; Department of Psychiatry, University of California, San Diego, USA
| | - Donatello Arienzo
- Department of Psychiatry, University of California, San Diego, USA; Center for Multimodal Imaging and Genetics, University of California, San Diego, USA
| | - Alena Stasenko
- Department of Psychiatry, University of California, San Diego, USA; Center for Multimodal Imaging and Genetics, University of California, San Diego, USA
| | - Adam Schadler
- Department of Psychiatry, University of California, San Diego, USA; Center for Multimodal Imaging and Genetics, University of California, San Diego, USA
| | - Anna Elisabetta Vaudano
- Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, Modena, Italy; Neurology Unit, OCB Hospital, AOU Modena, Italy
| | - Stefano Meletti
- Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, Modena, Italy; Neurology Unit, OCB Hospital, AOU Modena, Italy
| | - Erik Kaestner
- Department of Psychiatry, University of California, San Diego, USA; Center for Multimodal Imaging and Genetics, University of California, San Diego, USA
| | - Carrie R McDonald
- Department of Psychiatry, University of California, San Diego, USA; Center for Multimodal Imaging and Genetics, University of California, San Diego, USA; Department of Radiation Medicine & Applied Sciences, University of California, San Diego, USA.
| |
Collapse
|
20
|
Romoli M, Costa C. Cardiovascular risk factors for epilepsy and dementia. Nat Rev Neurol 2023; 19:391-392. [PMID: 37253853 DOI: 10.1038/s41582-023-00826-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Affiliation(s)
- Michele Romoli
- Department of Neuroscience, Bufalini Hospital - AUSL Romagna, Cesena, Italy
| | - Cinzia Costa
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Santa Maria della Misericordia Hospital, Perugia, Italy.
| |
Collapse
|
21
|
Tai XY, Torzillo E, Lyall DM, Manohar S, Husain M, Sen A. Association of Dementia Risk With Focal Epilepsy and Modifiable Cardiovascular Risk Factors. JAMA Neurol 2023; 80:445-454. [PMID: 36972059 PMCID: PMC10043806 DOI: 10.1001/jamaneurol.2023.0339] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/26/2023] [Indexed: 03/29/2023]
Abstract
Importance Epilepsy has been associated with cognitive impairment and potentially dementia in older individuals. However, the extent to which epilepsy may increase dementia risk, how this compares with other neurological conditions, and how modifiable cardiovascular risk factors may affect this risk remain unclear. Objective To compare the differential risks of subsequent dementia for focal epilepsy compared with stroke and migraine as well as healthy controls, stratified by cardiovascular risk. Design, Setting, and Participants This cross-sectional study is based on data from the UK Biobank, a population-based cohort of more than 500 000 participants aged 38 to 72 years who underwent physiological measurements and cognitive testing and provided biological samples at 1 of 22 centers across the United Kingdom. Participants were eligible for this study if they were without dementia at baseline and had clinical data pertaining to a history of focal epilepsy, stroke, or migraine. The baseline assessment was performed from 2006 to 2010, and participants were followed up until 2021. Exposures Mutually exclusive groups of participants with epilepsy, stroke, and migraine at baseline assessment and controls (who had none of these conditions). Individuals were divided into low, moderate, or high cardiovascular risk groups based on factors that included waist to hip ratio, history of hypertension, hypercholesterolemia, diabetes, and smoking pack-years. Main Outcomes and Measures Incident all-cause dementia; measures of executive function; and brain total hippocampal, gray matter, and white matter hyperintensity volumes. Results Of 495 149 participants (225 481 [45.5%] men; mean [SD] age, 57.5 [8.1] years), 3864 had a diagnosis of focal epilepsy only, 6397 had a history of stroke only, and 14 518 had migraine only. Executive function was comparable between participants with epilepsy and stroke and worse than the control and migraine group. Focal epilepsy was associated with a higher risk of developing dementia (hazard ratio [HR], 4.02; 95% CI, 3.45 to 4.68; P < .001), compared with stroke (HR, 2.56; 95% CI, 2.28 to 2.87; P < .001), or migraine (HR, 1.02; 95% CI, 0.85 to 1.21; P = .94). Participants with focal epilepsy and high cardiovascular risk were more than 13 times more likely to develop dementia (HR, 13.66; 95% CI, 10.61 to 17.60; P < .001) compared with controls with low cardiovascular risk. The imaging subsample included 42 353 participants. Focal epilepsy was associated with lower hippocampal volume (mean difference, -0.17; 95% CI, -0.02 to -0.32; t = -2.18; P = .03) and lower total gray matter volume (mean difference, -0.33; 95% CI, -0.18 to -0.48; t = -4.29; P < .001) compared with controls. There was no significant difference in white matter hyperintensity volume (mean difference, 0.10; 95% CI, -0.07 to 0.26; t = 1.14; P = .26). Conclusions and Relevance In this study, focal epilepsy was associated with a significant risk of developing dementia, to a greater extent than stroke, which was magnified substantially in individuals with high cardiovascular risk. Further findings suggest that targeting modifiable cardiovascular risk factors may be an effective intervention to reduce dementia risk in individuals with epilepsy.
Collapse
Affiliation(s)
- Xin You Tai
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Division of Clinical Neurology, John Radcliffe Hospital, Oxford University Hospitals Trust, Oxford, United Kingdom
| | - Emma Torzillo
- Epilepsy Department, National Hospital for Neurology and Neurosurgery, University College London, London, United Kingdom
| | - Donald M. Lyall
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, United Kingdom
| | - Sanjay Manohar
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Division of Clinical Neurology, John Radcliffe Hospital, Oxford University Hospitals Trust, Oxford, United Kingdom
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Masud Husain
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Division of Clinical Neurology, John Radcliffe Hospital, Oxford University Hospitals Trust, Oxford, United Kingdom
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Arjune Sen
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Division of Clinical Neurology, John Radcliffe Hospital, Oxford University Hospitals Trust, Oxford, United Kingdom
- Oxford Epilepsy Research Group, NIHR Biomedical Research Centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
22
|
Chang AJ, Roth R, Bougioukli E, Ruber T, Keller SS, Drane DL, Gross RE, Welsh J, Abrol A, Calhoun V, Karakis I, Kaestner E, Weber B, McDonald C, Gleichgerrcht E, Bonilha L. MRI-based deep learning can discriminate between temporal lobe epilepsy, Alzheimer's disease, and healthy controls. COMMUNICATIONS MEDICINE 2023; 3:33. [PMID: 36849746 PMCID: PMC9970972 DOI: 10.1038/s43856-023-00262-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 02/10/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Radiological identification of temporal lobe epilepsy (TLE) is crucial for diagnosis and treatment planning. TLE neuroimaging abnormalities are pervasive at the group level, but they can be subtle and difficult to identify by visual inspection of individual scans, prompting applications of artificial intelligence (AI) assisted technologies. METHOD We assessed the ability of a convolutional neural network (CNN) algorithm to classify TLE vs. patients with AD vs. healthy controls using T1-weighted magnetic resonance imaging (MRI) scans. We used feature visualization techniques to identify regions the CNN employed to differentiate disease types. RESULTS We show the following classification results: healthy control accuracy = 81.54% (SD = 1.77%), precision = 0.81 (SD = 0.02), recall = 0.85 (SD = 0.03), and F1-score = 0.83 (SD = 0.02); TLE accuracy = 90.45% (SD = 1.59%), precision = 0.86 (SD = 0.03), recall = 0.86 (SD = 0.04), and F1-score = 0.85 (SD = 0.04); and AD accuracy = 88.52% (SD = 1.27%), precision = 0.64 (SD = 0.05), recall = 0.53 (SD = 0.07), and F1 score = 0.58 (0.05). The high accuracy in identification of TLE was remarkable, considering that only 47% of the cohort had deemed to be lesional based on MRI alone. Model predictions were also considerably better than random permutation classifications (p < 0.01) and were independent of age effects. CONCLUSIONS AI (CNN deep learning) can classify and distinguish TLE, underscoring its potential utility for future computer-aided radiological assessments of epilepsy, especially for patients who do not exhibit easily identifiable TLE associated MRI features (e.g., hippocampal sclerosis).
Collapse
Affiliation(s)
- Allen J Chang
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
| | - Rebecca Roth
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Eleni Bougioukli
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
| | - Theodor Ruber
- Department of Epileptology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Simon S Keller
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Daniel L Drane
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Robert E Gross
- Department of Neurosurgery, Emory University Hospital, Atlanta, GA, USA
| | - James Welsh
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
| | - Anees Abrol
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Vince Calhoun
- School of Electrical & Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ioannis Karakis
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Erik Kaestner
- Department of Psychology, University of California, San Diego, CA, USA
| | - Bernd Weber
- Institute of Experimental Epileptology and Cognition Research, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Carrie McDonald
- Department of Psychology, University of California, San Diego, CA, USA
| | | | - Leonardo Bonilha
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
23
|
Xie K, Royer J, Lariviere S, Rodriguez-Cruces R, de Wael RV, Park BY, Auer H, Tavakol S, DeKraker J, Abdallah C, Caciagli L, Bassett DS, Bernasconi A, Bernasconi N, Frauscher B, Concha L, Bernhardt BC. Atypical intrinsic neural timescales in temporal lobe epilepsy. Epilepsia 2023; 64:998-1011. [PMID: 36764677 DOI: 10.1111/epi.17541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
OBJECTIVE Temporal lobe epilepsy (TLE) is the most common pharmacoresistant epilepsy in adults. Here we profiled local neural function in TLE in vivo, building on prior evidence that has identified widespread structural alterations. Using resting-state functional magnetic resonance imaging (rs-fMRI), we mapped the whole-brain intrinsic neural timescales (INT), which reflect temporal hierarchies of neural processing. Parallel analysis of structural and diffusion MRI data examined associations with TLE-related structural compromise. Finally, we evaluated the clinical utility of INT. METHODS We studied 46 patients with TLE and 44 healthy controls from two independent sites, and mapped INT changes in patients relative to controls across hippocampal, subcortical, and neocortical regions. We examined region-specific associations to structural alterations and explored the effects of age and epilepsy duration. Supervised machine learning assessed the utility of INT for identifying patients with TLE vs controls and left- vs right-sided seizure onset. RESULTS Relative to controls, TLE showed marked INT reductions across multiple regions bilaterally, indexing faster changing resting activity, with strongest effects in the ipsilateral medial and lateral temporal regions, and bilateral sensorimotor cortices as well as thalamus and hippocampus. Findings were similar, albeit with reduced effect sizes, when correcting for structural alterations. INT reductions in TLE increased with advancing disease duration, yet findings differed from the aging effects seen in controls. INT-derived classifiers discriminated patients vs controls (balanced accuracy, 5-fold: 76% ± 2.65%; cross-site, 72%-83%) and lateralized the focus in TLE (balanced accuracy, 5-fold: 96% ± 2.10%; cross-site, 95%-97%), with high accuracy and cross-site generalizability. Findings were consistent across both acquisition sites and robust when controlling for motion and several methodological confounds. SIGNIFICANCE Our findings demonstrate atypical macroscale function in TLE in a topography that extends beyond mesiotemporal epicenters. INT measurements can assist in TLE diagnosis, seizure focus lateralization, and monitoring of disease progression, which emphasizes promising clinical utility.
Collapse
Affiliation(s)
- Ke Xie
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Jessica Royer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Sara Lariviere
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Raul Rodriguez-Cruces
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Reinder Vos de Wael
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Bo-Yong Park
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.,Department of Data Science, Inha University, Incheon, Republic of Korea.,Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
| | - Hans Auer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Shahin Tavakol
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Jordan DeKraker
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Chifaou Abdallah
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Lorenzo Caciagli
- Department of Biomedical Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dani S Bassett
- Department of Biomedical Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Santa Fe Institute, Santa Fe, New Mexico, USA
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Birgit Frauscher
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Luis Concha
- Brain Connectivity Laboratory, Institute of Neurobiology, Universidad Nacional Autónoma de Mexico (UNAM), Juriquilla, Mexico
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
24
|
Zhang D, Chen S, Xu S, Wu J, Zhuang Y, Cao W, Chen X, Li X. The clinical correlation between Alzheimer's disease and epilepsy. Front Neurol 2022; 13:922535. [PMID: 35937069 PMCID: PMC9352925 DOI: 10.3389/fneur.2022.922535] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer's disease and epilepsy are common nervous system diseases in older adults, and their incidence rates tend to increase with age. Patients with mild cognitive impairment and Alzheimer's disease are more prone to have seizures. In patients older than 65 years, neurodegenerative conditions accounted for ~10% of all late-onset epilepsy cases, most of which are Alzheimer's disease. Epilepsy and seizure can occur in the early and late stages of Alzheimer's disease, leading to functional deterioration and behavioral alterations. Seizures promote amyloid-β and tau deposits, leading to neurodegenerative processes. Thus, there is a bi-directional association between Alzheimer's disease and epilepsy. Epilepsy is a risk factor for Alzheimer's disease and, in turn, Alzheimer's disease is an independent risk factor for developing epilepsy in old age. Many studies have evaluated the shared pathogenesis and clinical relevance of Alzheimer's disease and epilepsy. In this review, we discuss the clinical associations between Alzheimer's disease and epilepsy, including their incidence, clinical features, and electroencephalogram abnormalities. Clinical studies of the two disorders in recent years are summarized, and new antiepileptic drugs used for treating Alzheimer's disease are reviewed.
Collapse
|
25
|
Brain structural connectivity sub typing in unilateral temporal lobe epilepsy. Brain Imaging Behav 2022; 16:2220-2228. [PMID: 35674920 DOI: 10.1007/s11682-022-00691-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2022] [Indexed: 11/02/2022]
Abstract
To categorize and clinically characterize subtypes of brain structural connectivity patterns in unilateral temporal lobe epilepsy (TLE). Voxel based morphometry (VBM) and surfaced based morphometry (SBM) analysis were used to detect brain structural alterations associated with TLE from MRI data. Principal component analysis (PCA) was performed to identify subtypes of brain structural connectivity patterns. Correlation analysis was used to explore associations between PC scores and clinical characteristics. A total of 59 patients with TLE and 100 healthy adults were included in this study. Widespread cortical atrophy was shown in both left and right TLE (P < 0.05, FWE corrected). Six principal components (PCs) that explained more than 70% of the variance were extracted for left and right TLE, reflecting patterns of brain structural connectivity. PCs representing perisylvian connectivity were positively correlated with verbal IQ (left TLE: r = 0.696, P < 0.001; right TLE: r = 0.484, P = 0.012) and total IQ (left TLE r = 0.608, P < 0.001) and negatively correlated with disease duration (r = -0.448, P = 0.009). In left TLE, the PC in the ipsilateral mesial temporal region was negatively correlated with age at onset (r = -0.382, P = 0.028). In right TLE, the PC representing the default mode network was negatively correlated with number of antiepileptic drugs (r = -0.407, P = 0.039). This study categorized subtypes of unilateral TLE based on brain structural connectivity patterns. Findings may provide insight into seizure pathways, the pathophysiology of epilepsy, including comorbidities such as cognitive impairment, and help predict treatment outcomes.
Collapse
|
26
|
Mechanisms Involved in Epileptogenesis in Alzheimer's Disease and Their Therapeutic Implications. Int J Mol Sci 2022; 23:ijms23084307. [PMID: 35457126 PMCID: PMC9030029 DOI: 10.3390/ijms23084307] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 12/22/2022] Open
Abstract
Epilepsy and Alzheimer's disease (AD) incidence increases with age. There are reciprocal relationships between epilepsy and AD. Epilepsy is a risk factor for AD and, in turn, AD is an independent risk factor for developing epilepsy in old age, and abnormal AD biomarkers in PET and/or CSF are frequently found in late-onset epilepsies of unknown etiology. Accordingly, epilepsy and AD share pathophysiological processes, including neuronal hyperexcitability and an early excitatory-inhibitory dysregulation, leading to dysfunction in the inhibitory GABAergic and excitatory glutamatergic systems. Moreover, both β-amyloid and tau protein aggregates, the anatomopathological hallmarks of AD, have proepileptic effects. Finally, these aggregates have been found in the resection material of refractory temporal lobe epilepsies, suggesting that epilepsy leads to amyloid and tau aggregates. Some epileptic syndromes, such as medial temporal lobe epilepsy, share structural and functional neuroimaging findings with AD, leading to overlapping symptomatology, such as episodic memory deficits and toxic synergistic effects. In this respect, the existence of epileptiform activity and electroclinical seizures in AD appears to accelerate the progression of cognitive decline, and the presence of cognitive decline is much more prevalent in epileptic patients than in elderly patients without epilepsy. Notwithstanding their clinical significance, the diagnosis of clinical seizures in AD is a challenge. Most are focal and manifest with an altered level of consciousness without motor symptoms, and are often interpreted as cognitive fluctuations. Finally, despite the frequent association of epilepsy and AD dementia, there is a lack of clinical trials to guide the use of antiseizure medications (ASMs). There is also a potential role for ASMs to be used as disease-modifying drugs in AD.
Collapse
|
27
|
B. Szabo A, Cretin B, Gérard F, Curot J, J. Barbeau E, Pariente J, Dahan L, Valton L. Sleep: The Tip of the Iceberg in the Bidirectional Link Between Alzheimer's Disease and Epilepsy. Front Neurol 2022; 13:836292. [PMID: 35481265 PMCID: PMC9035794 DOI: 10.3389/fneur.2022.836292] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
The observation that a pathophysiological link might exist between Alzheimer's disease (AD) and epilepsy dates back to the identification of the first cases of the pathology itself and is now strongly supported by an ever-increasing mountain of literature. An overwhelming majority of data suggests not only a higher prevalence of epilepsy in Alzheimer's disease compared to healthy aging, but also that AD patients with a comorbid epileptic syndrome, even subclinical, have a steeper cognitive decline. Moreover, clinical and preclinical investigations have revealed a marked sleep-related increase in the frequency of epileptic activities. This characteristic might provide clues to the pathophysiological pathways underlying this comorbidity. Furthermore, the preferential sleep-related occurrence of epileptic events opens up the possibility that they might hasten cognitive decline by interfering with the delicately orchestrated synchrony of oscillatory activities implicated in sleep-related memory consolidation. Therefore, we scrutinized the literature for mechanisms that might promote sleep-related epileptic activity in AD and, possibly dementia onset in epilepsy, and we also aimed to determine to what degree and through which processes such events might alter the progression of AD. Finally, we discuss the implications for patient care and try to identify a common basis for methodological considerations for future research and clinical practice.
Collapse
Affiliation(s)
- Anna B. Szabo
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
- Centre de Recherche Cerveau & Cognition (CerCo), UMR 5549, CNRS-UPS, Toulouse, France
- *Correspondence: Anna B. Szabo
| | - Benjamin Cretin
- Clinical Neuropsychology Unit, Neurology Department, CM2R (Memory Resource and Research Centre), University Hospital of Strasbourg, Strasbourg, France
- CNRS, ICube Laboratory, UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), Team IMIS, University of Strasbourg, Strasbourg, France
- CMRR d'Alsace, Service de Neurologie des Hôpitaux Universitaires de Strasbourg, Pôle Tête et Cou, Strasbourg, France
| | - Fleur Gérard
- Centre de Recherche Cerveau & Cognition (CerCo), UMR 5549, CNRS-UPS, Toulouse, France
- Neurology Department, Hôpital Purpan Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Jonathan Curot
- Centre de Recherche Cerveau & Cognition (CerCo), UMR 5549, CNRS-UPS, Toulouse, France
- Neurology Department, Hôpital Purpan Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Emmanuel J. Barbeau
- Centre de Recherche Cerveau & Cognition (CerCo), UMR 5549, CNRS-UPS, Toulouse, France
| | - Jérémie Pariente
- Neurology Department, Hôpital Purpan Centre Hospitalier Universitaire de Toulouse, Toulouse, France
- Toulouse NeuroImaging Center (ToNIC), INSERM-University of Toulouse Paul Sabatier, Toulouse, France
| | - Lionel Dahan
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Luc Valton
- Centre de Recherche Cerveau & Cognition (CerCo), UMR 5549, CNRS-UPS, Toulouse, France
- Neurology Department, Hôpital Purpan Centre Hospitalier Universitaire de Toulouse, Toulouse, France
- Luc Valton
| |
Collapse
|
28
|
Tung H, Pan SY, Lan TH, Lin YY, Peng SJ. Characterization of Hippocampal-Thalamic-Cortical Morphometric Reorganization in Temporal Lobe Epilepsy. Front Neurol 2022; 12:810186. [PMID: 35222230 PMCID: PMC8866816 DOI: 10.3389/fneur.2021.810186] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/31/2021] [Indexed: 11/13/2022] Open
Abstract
IntroductionBrain cortico-subcortical connectivity has been investigated in epilepsy using the functional MRI (MRI). Although structural images cannot demonstrate dynamic changes, they provide higher spatial resolution, which allows exploration of the organization of brain in greater detail.MethodsWe used high-resolution brain MRI to study the hippocampal-thalamic-cortical networks in temporal lobe epilepsy (TLE) using a volume-based morphometric method. We enrolled 22 right-TLE, 33 left-TLE, and 28 age/gender-matched controls retrospectively. FreeSurfer software was used for the thalamus segmentation.ResultsAmong the 50 subfields, ipsilateral anterior, lateral, and parts of the intralaminar and medial nuclei, as well as the contralateral parts of lateral nuclei had significant volume loss in both TLE. The anteroventral nucleus was most vulnerable. Most thalamic subfields were susceptible to seizure burden, especially the left-TLE. SPM12 was used to conduct an analysis of the gray matter density (GMD) maps. Decreased extratemporal GMD occurred bilaterally. Both TLE demonstrated significant GMD loss over the ipsilateral inferior frontal gyrus, precentral gyrus, and medial orbital cortices.SignificanceThalamic subfield atrophy was related to the ipsilateral inferior frontal GMD changes, which presented positively in left-TLE and negatively in right-TLE. These findings suggest prefrontal-thalamo-hippocampal network disruption in TLE.
Collapse
Affiliation(s)
- Hsin Tung
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Center of Faculty Development, Taichung Veterans General Hospital, Taichung, Taiwan
- Division of Epilepsy, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Szu-Yen Pan
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Tsuo-Hung Lan
- Tsaotun Psychiatric Center, Ministry of Health and Welfare, Nantou, Taiwan
- Department of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yung-Yang Lin
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Syu-Jyun Peng
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- *Correspondence: Syu-Jyun Peng
| |
Collapse
|
29
|
Qi L, Zhao J, Zhao P, Zhang H, Zhong J, Pan P, Wang G, Yi Z, Xie L. Theory of mind and facial emotion recognition in adults with temporal lobe epilepsy: A meta-analysis. Front Psychiatry 2022; 13:976439. [PMID: 36276336 PMCID: PMC9582667 DOI: 10.3389/fpsyt.2022.976439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/16/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Mounting studies have investigated impairments in social cognitive domains (including theory of mind [ToM] and facial emotion recognition [FER] in adult patients with temporal lobe epilepsy (TLE). However, to date, inconsistent findings remain. METHODS A search of PubMed, Web of Science, and Embase databases was conducted until December 2021. Hedges g effect sizes were computed with a random-effects model. Meta-regressions were used to assess the potential confounding factors of between-study variability in effect sizes. RESULTS The meta-analysis included 41 studies, with a combined sample of 1,749 adult patients with TLE and 1,324 healthy controls (HCs). Relative to HCs, adult patients with TLE showed large impairments in ToM (g = -0.92) and cognitive ToM (g = -0.92), followed by medium impairments in affective ToM (g = -0.79) and FER (g = -0.77). Besides, no (statistically) significant differences were observed between the magnitude of social cognition impairment in adult with TLE who underwent and those who did not undergo epilepsy surgery. Meta-regressions exhibited that greater severity of executive functioning was associated with more severe ToM defects, and older age was associated with more severe FER defects. CONCLUSIONS Results of this meta-analysis suggest that adult patients with TLE show differential impairments in the core aspects of social cognitive domains (including ToM and FER), which may help in planning individualized treatment with appropriate cognitive and behavioral interventions.
Collapse
Affiliation(s)
- Liang Qi
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huaian, China
| | - Jing Zhao
- Department of Central Laboratory, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, Yancheng, China
| | - PanWen Zhao
- Department of Central Laboratory, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, Yancheng, China
| | - Hui Zhang
- Department of Central Laboratory, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, Yancheng, China
| | - JianGuo Zhong
- Department of Neurology, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, Yancheng, China
| | - PingLei Pan
- Department of Central Laboratory, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, Yancheng, China.,Department of Neurology, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, Yancheng, China
| | - GenDi Wang
- Department of Neurology, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, Yancheng, China
| | - ZhongQuan Yi
- Department of Central Laboratory, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, Yancheng, China
| | - LiLi Xie
- Department of Neurology, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, Yancheng, China
| |
Collapse
|
30
|
Romoli M, Sen A, Parnetti L, Calabresi P, Costa C. Amyloid-β: a potential link between epilepsy and cognitive decline. Nat Rev Neurol 2021; 17:469-485. [PMID: 34117482 DOI: 10.1038/s41582-021-00505-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2021] [Indexed: 02/05/2023]
Abstract
People with epilepsy - in particular, late-onset epilepsy of unknown aetiology - have an elevated risk of dementia, and seizures have been detected in the early stages of Alzheimer disease (AD), supporting the concept of an epileptic AD prodrome. However, the relationship between epilepsy and cognitive decline remains controversial, with substantial uncertainties about whether epilepsy drives cognitive decline or vice versa, and whether shared pathways underlie both conditions. Here, we review evidence that amyloid-β (Aβ) forms part of a shared pathway between epilepsy and cognitive decline, particularly in the context of AD. People with epilepsy show an increased burden of Aβ pathology in the brain, and Aβ-mediated epileptogenic alterations have been demonstrated in experimental studies, with evidence suggesting that Aβ pathology might already be pro-epileptogenic at the soluble stage, long before plaque deposition. We discuss the hypothesis that Aβ mediates - or is at least a major determinant of - a continuum spanning epilepsy and cognitive decline. Serial cognitive testing and assessment of Aβ levels might be worthwhile to stratify the risk of developing dementia in people with late-onset epilepsy. If seizures are a clinical harbinger of dementia, people with late-onset epilepsy could be an ideal group in which to implement preventive or therapeutic strategies to slow cognitive decline.
Collapse
Affiliation(s)
- Michele Romoli
- Neurology Clinic, Department of Medicine and Surgery, University of Perugia - S. Maria della Misericordia Hospital, Perugia, Italy.,Oxford Epilepsy Research Group, NIHR Biomedical Research Centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK.,Neurology and Stroke Unit, "Maurizio Bufalini" Hospital, Cesena, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Neurologia e Rete Stroke Metropolitana, Ospedale Maggiore, Bologna, Italy
| | - Arjune Sen
- Oxford Epilepsy Research Group, NIHR Biomedical Research Centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - Lucilla Parnetti
- Neurology Clinic, Department of Medicine and Surgery, University of Perugia - S. Maria della Misericordia Hospital, Perugia, Italy
| | - Paolo Calabresi
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli, IRCCS, UOC Neurologia, Dipartimento di Scienze dell'Invecchiamento, Neurologiche, Ortopediche e della Testa-Collo, Rome, Italy
| | - Cinzia Costa
- Neurology Clinic, Department of Medicine and Surgery, University of Perugia - S. Maria della Misericordia Hospital, Perugia, Italy.
| |
Collapse
|
31
|
Sen A, Romoli M. Pathological brain ageing in epilepsy and dementia: two sides of the same coin? Brain 2021; 144:9-11. [PMID: 33578425 DOI: 10.1093/brain/awaa441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
This scientific commentary refers to ‘Atrophy and cognitive profiles in older adults with temporal lobe epilepsy are similar to mild cognitive impairment’, by Kaestneret al. (doi:10.1093/brain/awaa397).
Collapse
Affiliation(s)
- Arjune Sen
- Oxford Epilepsy Research Group, National Institute for Health Research Oxford Biomedical Research Centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - Michele Romoli
- Neurology Clinic, University of Perugia - S. Maria della Misericordia Hospital, Perugia, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Neurology and Metropolitan Stroke Network, "C.A. Pizzardi" Maggiore Hospital, Bologna, Italy
| |
Collapse
|