1
|
Quidé Y, Jahanshad N, Andoh J, Antoniou G, Apkarian AV, Ashar YK, Badran BW, Baird CL, Baxter L, Bell TR, Blanco-Hinojo L, Borckardt J, Cheung CL, Ciampi de Andrade D, Couto BA, Cox SR, Cruz-Almeida Y, Dannlowski U, De Martino E, de Tommaso M, Deus J, Domin M, Egorova-Brumley N, Elliott J, Fanton S, Fauchon C, Flor H, Franz CE, Gatt JM, Gerdhem P, Gilman JM, Gollub RL, Govind V, Graven-Nielsen T, Håkansson G, Hales T, Haswell C, Heukamp NJ, Hu L, Huang L, Hussain A, Jensen K, Kircher T, Kremen WS, Leehr EJ, Lindquist M, Loggia ML, Lotze M, Martucci KT, Meeker TJ, Meinert S, Millard SK, Morey RA, Murillo C, Nees F, Nenadic I, Park HR, Peng X, Ploner M, Pujol J, Robayo LE, Salan T, Seminowicz DA, Serian A, Slater R, Stein F, Stevens J, Strauss S, Sun D, Vachon-Presseau E, Valdes-Hernandez PA, Vanneste S, Vernon M, Verriotis M, Wager TD, Widerstrom-Noga E, Woodbury A, Zeidan F, Bhatt RR, Ching CR, Haddad E, Thomopoulos SI, Thompson PM, Gustin SM. ENIGMA-Chronic Pain: a worldwide initiative to identify brain correlates of chronic pain. Pain 2024; 165:2662-2666. [PMID: 39058957 PMCID: PMC11562752 DOI: 10.1097/j.pain.0000000000003317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 05/20/2024] [Indexed: 07/28/2024]
Affiliation(s)
- Yann Quidé
- School of Psychology, The University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
- Centre for Pain IMPACT, Neuroscience Research Australia, Randwick, NSW, Australia
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Jamila Andoh
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Georgia Antoniou
- Division of Population Health and Genomics, Medical Research Institute, University of Dundee, Dundee, Scotland, United Kingdom
| | - Apkar Vania Apkarian
- Center for Translational Pain Research, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Anesthesiology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Yoni K. Ashar
- Department of General Internal Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Bashar W. Badran
- Department of Psychiatry and Behavioral Sciences, Neuro-X Lab, Medical University of South Carolina, Charleston, SC, United States
| | - C. Lexi Baird
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, NC, United States
- VA Mid-Atlantic MIRECC, Durham VA Medical Center, Durham VA, Durham, NC, United States
| | - Luke Baxter
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Tyler R. Bell
- Department of Psychiatry, University of California, San Diego, CA, United States
- Center for Behavior Genetics of Aging, University of California, San Diego, CA, United States
| | - Laura Blanco-Hinojo
- MRI Research Unit, Department of Radiology, Hospital del Mar, Barcelona, Spain
- IsGlobal, Barcelona, Spain
| | - Jeffrey Borckardt
- Department of Psychiatry and Behavioral Sciences, Neuro-X Lab, Medical University of South Carolina, Charleston, SC, United States
- Medical University of South Carolina, Charleston, SC, United States
- Ralph H. Johnson VAMC, Charleston, SC, United States
| | - Chloe L. Cheung
- Neuroscience Graduate Program, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Daniel Ciampi de Andrade
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Bruno A. Couto
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Simon R. Cox
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Yenisel Cruz-Almeida
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, FL, United States
- Department of Community Dentistry and Behavioral Sciences, College of Dentistry, University of Florida, Gainesville, FL, United States
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Udo Dannlowski
- Institute of Translational Psychiatry, University of Münster, Münster, Germany
| | - Enrico De Martino
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Marina de Tommaso
- Neurophysiopathology Unit, DiBrain Department, Bari Aldo Moro University, Bari, Italy
| | - Joan Deus
- MRI Research Unit, Department of Radiology, Hospital del Mar, Barcelona, Spain
- Department of Clinical and Health Psychology, Autonomous University of Barcelona, Barcelona, Spain
| | - Martin Domin
- Functional Imaging Unit, Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Natalia Egorova-Brumley
- Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - James Elliott
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Northern Sydney Local Health District, Sydney, NSW, Australia
- The Kolling Institute, St Leonards, NSW, Australia
| | - Silvia Fanton
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Camille Fauchon
- Neuro-Dol, Inserm, University Hospital of Clermont-Ferrand, University of Clermont-Auvergne, Clermont-Ferrand, France
- NEUROPAIN Team, CRNL, CNRS, Inserm, University of Saint-Etienne, Saint-Etienne, France
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | - Carol E. Franz
- Department of Psychiatry, University of California, San Diego, CA, United States
- Center for Behavior Genetics of Aging, University of California, San Diego, CA, United States
| | - Justine M. Gatt
- School of Psychology, The University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
- Centre for Wellbeing, Resilience and Recovery, Neuroscience Research Australia, Randwick, NSW, Australia
- Black Dog Institute, Randwick, NSW, Australia
| | - Paul Gerdhem
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Department of Orthopaedics and Hand Surgery, Uppsala University Hospital, Uppsala, Sweden
| | - Jodi M. Gilman
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Center for Addiction Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Randy L. Gollub
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Varan Govind
- Department of Radiology, University of Miami, Miller School of Medicine, Miami, FL, United States
| | - Thomas Graven-Nielsen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Gustaf Håkansson
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Tim Hales
- Consortium Against Pain Inequality, University of Dundee, Dundee, Scotland, United Kingdom
| | - Courtney Haswell
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, NC, United States
- VA Mid-Atlantic MIRECC, Durham VA Medical Center, Durham VA, Durham, NC, United States
| | - Nils Jannik Heukamp
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Lejian Huang
- Center for Translational Pain Research, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Ahmed Hussain
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, NC, United States
- VA Mid-Atlantic MIRECC, Durham VA Medical Center, Durham VA, Durham, NC, United States
| | - Karin Jensen
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - William S. Kremen
- Department of Psychiatry, University of California, San Diego, CA, United States
- Center for Behavior Genetics of Aging, University of California, San Diego, CA, United States
| | - Elisabeth J. Leehr
- Institute of Translational Psychiatry, University of Münster, Münster, Germany
| | - Martin Lindquist
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD, United States
| | - Marco L. Loggia
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Department of Anesthesia, Clinical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Martin Lotze
- Functional Imaging Unit, Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Katherine T. Martucci
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Timothy J. Meeker
- Department of Biology, Morgan State University, Baltimore, MD, United States
| | - Susanne Meinert
- Institute of Translational Psychiatry, University of Münster, Münster, Germany
- Institute for Translational Neuroscience, University of Münster, Münster, Germany
| | - Samantha K. Millard
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Rajendra A. Morey
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, NC, United States
- VA Mid-Atlantic MIRECC, Durham VA Medical Center, Durham VA, Durham, NC, United States
| | - Carlos Murillo
- Department of General Internal Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium
| | - Frauke Nees
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Igor Nenadic
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Haeme R.P. Park
- School of Psychology, The University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
- Centre for Wellbeing, Resilience and Recovery, Neuroscience Research Australia, Randwick, NSW, Australia
| | - Xiaolong Peng
- Department of Psychiatry and Behavioral Sciences, Neuro-X Lab, Medical University of South Carolina, Charleston, SC, United States
| | - Markus Ploner
- Department of Neurology, Center for Interdisciplinary Pain Medicine and TUM-Neuroimaging Center, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Jesus Pujol
- MRI Research Unit, Department of Radiology, Hospital del Mar, Barcelona, Spain
| | - Linda E. Robayo
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Teddy Salan
- Department of Radiology, University of Miami, Miller School of Medicine, Miami, FL, United States
| | - David A. Seminowicz
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Angela Serian
- Department of Neurology, University Hospital Greifswald, Greifswald, Germany
| | - Rebeccah Slater
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Jennifer Stevens
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
- Atlanta Veterans Affairs Healthcare System, Atlanta, GA, United States
| | - Sebastian Strauss
- Department of Neurology, University Hospital Greifswald, Greifswald, Germany
| | - Delin Sun
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, NC, United States
- VA Mid-Atlantic MIRECC, Durham VA Medical Center, Durham VA, Durham, NC, United States
- Department of Psychiatry, School of Medicine, Duke University, Durham, NC, United States
| | - Etienne Vachon-Presseau
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
- Department of Anesthesia, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain (AECRP), McGill University, Montreal, QC, Canada
| | - Pedro A. Valdes-Hernandez
- Department of Community Dentistry and Behavioral Sciences, College of Dentistry, University of Florida, Gainesville, FL, United States
| | - Sven Vanneste
- School of Psychology, Trinity College Dublin, Dublin, Ireland
- Trinity Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Mark Vernon
- Atlanta Veterans Affairs Healthcare System, Atlanta, GA, United States
| | - Madeleine Verriotis
- Developmental Neurosciences Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- Department of Anaesthesia and Pain Medicine, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | | | - Eva Widerstrom-Noga
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Anna Woodbury
- Atlanta Veterans Affairs Healthcare System, Atlanta, GA, United States
- Division of Pain Medicine, Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Fadel Zeidan
- Center for Pain Medicine, Department of Anesthesiology, University of California San Diego, La Jolla, CA, United States
| | - Ravi R. Bhatt
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Christopher R.K. Ching
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Elizabeth Haddad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Sophia I. Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Paul M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Sylvia M. Gustin
- School of Psychology, The University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
- Centre for Pain IMPACT, Neuroscience Research Australia, Randwick, NSW, Australia
| |
Collapse
|
2
|
Johnston KJA, Signer R, Huckins LM. Chronic overlapping pain conditions and nociplastic pain. HGG ADVANCES 2024; 6:100381. [PMID: 39497418 PMCID: PMC11617767 DOI: 10.1016/j.xhgg.2024.100381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/13/2024] Open
Abstract
Chronic overlapping pain conditions (COPCs) are a subset of chronic pain conditions commonly comorbid with one another and more prevalent in women and individuals assigned female at birth (AFAB). Pain experience in these conditions may better fit with a new mechanistic pain descriptor, nociplastic pain, and nociplastic pain may represent a shared underlying factor among COPCs. We applied GenomicSEM common-factor genome-wide association study (GWAS) and multivariate transcriptome-wide association (TWAS) analyses to existing GWAS output for six COPCs in order to find genetic variation associated with nociplastic pain, followed by genetic correlation (linkage disequilibrium score regression), gene set, and tissue enrichment analyses. We found 24 independent single nucleotide polymorphisms (SNPs), and 127 unique genes significantly associated with nociplastic pain, and showed nociplastic pain to be a polygenic trait with significant SNP heritability. We found significant genetic overlap between multisite chronic pain and nociplastic pain, and to a smaller extent with rheumatoid arthritis and a neuropathic pain phenotype. Tissue enrichment analyses highlighted cardiac and thyroid tissue, and gene set enrichment analyses emphasized potential shared mechanisms in cognitive, personality, and metabolic traits and nociplastic pain along with distinct pathology in migraine and headache. We used a well-powered network approach to investigate nociplastic pain using existing COPC GWAS output, and show nociplastic pain to be a complex, heritable trait, in addition to contributing to understanding of potential mechanisms in development of nociplastic pain.
Collapse
Affiliation(s)
- Keira J A Johnston
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, CT 06511, USA
| | - Rebecca Signer
- Department of Genetic and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Laura M Huckins
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
3
|
Farrell SF, Armfield NR, Kristjansson E, Niere K, Christensen SWM, Sterling M. Trajectories of cold but not mechanical sensitivity correspond with disability trajectories after whiplash injury. Pain 2024:00006396-990000000-00760. [PMID: 39480249 DOI: 10.1097/j.pain.0000000000003461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/24/2024] [Indexed: 11/02/2024]
Abstract
ABSTRACT Developmental trajectories for neck disability after whiplash injury have been identified. Their relationship to cold and mechanical sensitivity trajectories is not known. We aimed to (1) identify recovery trajectories of cold and mechanical sensitivity, (2) explore their codevelopment with disability trajectories, (3) identify predictors of sensitivity trajectories, and (4) explore codevelopment of cold and mechanical sensitivity trajectories. Participants (n = 233) were assessed at <1, 3, 6, and 12 months after whiplash injury. Outcomes were cold pain detection threshold (CPT at neck), pressure pain detection thresholds (PPT, neck C5, and tibialis anterior), and the Neck Disability Index. We used group-based trajectory models to identify postinjury recovery trajectories and multinominal logistic regression to explore associations between baseline characteristics and trajectory membership. We identified the following trajectory groups: CPT (low [50.0%], moderate [29.7%], and high [20.4%] sensitivity); PPT C5 (low [10.8%] and high [89.2%] sensitivity); and PPT tibialis anterior (low [23.9%], moderate [39.0%], and high [37.1%] sensitivity); all were stable over the 12 months. There was good correspondence between disability and cold sensitivity trajectory groups but not for mechanical sensitivity; cold and mechanical sensitivity trajectories were not well associated. Higher baseline pain predicted membership of the high cold sensitivity trajectory (RR 1.27, 95% CI 1.01-1.59) and hyperarousal symptoms predicted membership of the moderate cold sensitivity trajectory (RR 1.17, 95% CI 1.01-1.36). We found no associations between baseline characteristics and mechanical sensitivity. There is an interplay between cold allodynia, pain, and hyperarousal symptoms in development of ongoing disability after whiplash injury. Different mechanisms likely underlie cold and mechanical sensitivity.
Collapse
Affiliation(s)
- Scott F Farrell
- RECOVER Injury Research Centre, The University of Queensland, Brisbane, Australia
- NHMRC Centre of Research Excellence: Better Health Outcomes for Compensable Injury, The University of Queensland, Brisbane, Australia
- STARS Education and Research Alliance, Surgical Treatment and Rehabilitation Service (STARS), The University of Queensland and Metro North Health, Brisbane, Australia
| | - Nigel R Armfield
- RECOVER Injury Research Centre, The University of Queensland, Brisbane, Australia
- NHMRC Centre of Research Excellence: Better Health Outcomes for Compensable Injury, The University of Queensland, Brisbane, Australia
- STARS Education and Research Alliance, Surgical Treatment and Rehabilitation Service (STARS), The University of Queensland and Metro North Health, Brisbane, Australia
| | | | - Ken Niere
- Brisbane Physio Specialists, Brisbane, Australia
| | - Steffan Wittrup McPhee Christensen
- Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
- Department of Physiotherapy, University College of Northern Denmark, Aalborg, Denmark
| | - Michele Sterling
- RECOVER Injury Research Centre, The University of Queensland, Brisbane, Australia
- NHMRC Centre of Research Excellence: Better Health Outcomes for Compensable Injury, The University of Queensland, Brisbane, Australia
- STARS Education and Research Alliance, Surgical Treatment and Rehabilitation Service (STARS), The University of Queensland and Metro North Health, Brisbane, Australia
| |
Collapse
|
4
|
You B, Wen H, Jackson T. Pain resilience dimensions and regional gray matter volume as risk factors for poor outcomes of chronic pain: a prospective cohort study. Psychol Med 2024; 54:1-10. [PMID: 39439301 PMCID: PMC11536115 DOI: 10.1017/s0033291724001703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 05/10/2024] [Accepted: 08/09/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Pain resilience and regional gray matter volume (rGMV) are established correlates of adaptation to chronic pain within cross-sectional studies. Extending such work, this prospective cohort study tested the status of baseline pain resilience dimension scores and rGMV as risk factors for subsequent exacerbations in chronic pain disability and intensity. METHODS 142 adults with chronic musculoskeletal pain completed an initial assessment comprising a structural magnetic resonance imaging scan and self-report measures of cognitive/affective positivity and behavioral perseverance pain resilience dimensions, disability, pain intensity, and demographics. Disability and pain intensity were outcomes re-assessed at a 6-month follow-up. The impact of pain resilience dimension scores and identified rGMV sites on follow-up outcomes was examined after controlling for other baseline correlates of outcomes. Mediating effects of identified rGMV sites on pain resilience dimension-follow-up outcome relations were also evaluated. RESULTS Aside from the significant multivariate effect of lower behavioral perseverance and cognitive/affective positivity scores, augmented left precuneus, temporal pole, superior temporal gyrus (STG), and precentral gyrus rGMV combined to predict higher follow-up disability levels, independent of covariates. Higher left fusiform gyrus rGMV levels predicted follow-up exacerbations in pain intensity, but pain resilience dimension scores did not. Finally, left precuneus and left temporal pole STG rGMV partially mediated cognitive/affective positivity-follow-up disability relations. CONCLUSIONS Findings underscore deficits in pain resilience and increased rGMV as potential risk factors for poorer subsequent outcomes of chronic musculoskeletal pain and provide foundations for further prospective extensions as well as targeted intervention research.
Collapse
Affiliation(s)
- Beibei You
- School of Nursing, Guizhou Medical University, Guiyang, 561113, China
| | - Hongwei Wen
- Key Laboratory of Cognition and Personality (Ministry of Education), Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Todd Jackson
- Department of Psychology, University of Macau, Taipa, 999078, Macau, SAR, China
| |
Collapse
|
5
|
Mackenzie SC, Rahmioglu N, Romaniuk L, Collins F, Coxon L, Whalley HC, Vincent K, Zondervan KT, Horne AW, Whitaker LHR. Genome-wide association reveals a locus in neuregulin 3 associated with gabapentin efficacy in women with chronic pelvic pain. iScience 2024; 27:110370. [PMID: 39258169 PMCID: PMC11384074 DOI: 10.1016/j.isci.2024.110370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/13/2024] [Accepted: 06/21/2024] [Indexed: 09/12/2024] Open
Abstract
Chronic pelvic pain (CPP) in women with no obvious pelvic pathology has few evidence-based treatment options. Our recent multicenter randomized controlled trial (GaPP2) in women with CPP and no obvious pelvic pathology showed that gabapentin did not relieve pain overall and was associated with more side effects than placebo. We conducted an exploratory genome-wide association study using eligible GaPP2 participants aiming to identify genetic variants associated with gabapentin response. One genome-wide significant association with gabapentin analgesic response was identified, rs4442490, an intron variant located in Neuregulin 3 (NRG3) (p = 2·11×10-8; OR = 18·82 (95% CI 4·86-72·83). Analysis of a large sample of UK Biobank participants demonstrated phenome-wide significant brain imaging features of rs4442490, particularly implicating the orbitofrontal cortex. NRG3 is expressed predominantly in central nervous system tissues and plays a critical role in nervous system development, maintenance, and repair, suggesting a neurobiologically plausible role in gabapentin efficacy and potential for personalized analgesic treatment.
Collapse
Affiliation(s)
- Scott C Mackenzie
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Nilufer Rahmioglu
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7BN, UK
- Oxford Endometriosis CaRe Centre, Nuffield Department of Women's & Reproductive Health, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Liana Romaniuk
- Division of Psychiatry, University of Edinburgh, Edinburgh EH10 5HF, UK
| | - Frances Collins
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Lydia Coxon
- Oxford Endometriosis CaRe Centre, Nuffield Department of Women's & Reproductive Health, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Heather C Whalley
- Division of Psychiatry, University of Edinburgh, Edinburgh EH10 5HF, UK
- Generation Scotland, Institute for Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Katy Vincent
- Oxford Endometriosis CaRe Centre, Nuffield Department of Women's & Reproductive Health, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Krina T Zondervan
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7BN, UK
- Oxford Endometriosis CaRe Centre, Nuffield Department of Women's & Reproductive Health, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Andrew W Horne
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Lucy H R Whitaker
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| |
Collapse
|
6
|
Liu A, Wang J, Jin T, Jiang Z, Huang S, Li S, Ying Z, Jiang H. Identifying the genetic association between the cerebral cortex and fibromyalgia. Cereb Cortex 2024; 34:bhae318. [PMID: 39106177 DOI: 10.1093/cercor/bhae318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/08/2024] [Indexed: 08/09/2024] Open
Abstract
Fibromyalgia (FM) is a central sensitization syndrome that is strongly associated with the cerebral cortex. This study used bidirectional two-sample Mendelian randomization (MR) analysis to investigate the bidirectional causality between FM and the cortical surface area and cortical thickness of 34 brain regions. Inverse variance weighted (IVW) was used as the primary method for this study, and sensitivity analyses further supported the results. The forward MR analysis revealed that genetically determined thinner cortical thickness in the parstriangularis (OR = 0.0567 mm, PIVW = 0.0463), caudal middle frontal (OR = 0.0346 mm, PIVW = 0.0433), and rostral middle frontal (OR = 0.0285 mm, PIVW = 0.0463) was associated with FM. Additionally, a reduced genetically determined cortical surface area in the pericalcarine (OR = 0.9988 mm2, PIVW = 0.0085) was associated with an increased risk of FM. Conversely, reverse MR indicated that FM was associated with cortical thickness in the caudal middle frontal region (β = -0.0035 mm, PIVW = 0.0265), fusiform region (β = 0.0024 mm, SE = 0.0012, PIVW = 0.0440), the cortical surface area in the supramarginal (β = -9.3938 mm2, PIVW = 0.0132), and postcentral regions (β = -6.3137 mm2, PIVW = 0.0360). Reduced cortical thickness in the caudal middle frontal gyrus is shown to have a significant relationship with FM prevalence in a bidirectional causal analysis.
Collapse
Affiliation(s)
- Aihui Liu
- Department of Rheumatology and Immunology, Center for General Practice Medicine, Hangzhou Medical College, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, No. 158 Shangtang Road, Gongshu District, Hangzhou, Zhejiang 310000, China
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine Cultivation for Arthritis Diagnosis and Treatment, No. 158 Shangtang Road, Gongshu District, Hangzhou, Zhejiang Province 31000, China
- Rheumatology and Immunology Research Institute, Hangzhou Medical College, No. 158 Shangtang Road, Gongshu District, Hangzhou, Zhejiang Province 310000, China
| | - Jing Wang
- Department of Rheumatology and Immunology, Center for General Practice Medicine, Hangzhou Medical College, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, No. 158 Shangtang Road, Gongshu District, Hangzhou, Zhejiang 310000, China
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine Cultivation for Arthritis Diagnosis and Treatment, No. 158 Shangtang Road, Gongshu District, Hangzhou, Zhejiang Province 31000, China
- Rheumatology and Immunology Research Institute, Hangzhou Medical College, No. 158 Shangtang Road, Gongshu District, Hangzhou, Zhejiang Province 310000, China
| | - Tianyu Jin
- China Rehabilitation Research center, No. 10, Jiaomen North Road, Fengtai District, Beijing 100068, China
| | - Zhaoyu Jiang
- Department of Rheumatology and Immunology, Center for General Practice Medicine, Hangzhou Medical College, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, No. 158 Shangtang Road, Gongshu District, Hangzhou, Zhejiang 310000, China
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine Cultivation for Arthritis Diagnosis and Treatment, No. 158 Shangtang Road, Gongshu District, Hangzhou, Zhejiang Province 31000, China
- Rheumatology and Immunology Research Institute, Hangzhou Medical College, No. 158 Shangtang Road, Gongshu District, Hangzhou, Zhejiang Province 310000, China
| | - Shan Huang
- Department of Rheumatology and Immunology, Center for General Practice Medicine, Hangzhou Medical College, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, No. 158 Shangtang Road, Gongshu District, Hangzhou, Zhejiang 310000, China
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine Cultivation for Arthritis Diagnosis and Treatment, No. 158 Shangtang Road, Gongshu District, Hangzhou, Zhejiang Province 31000, China
- Rheumatology and Immunology Research Institute, Hangzhou Medical College, No. 158 Shangtang Road, Gongshu District, Hangzhou, Zhejiang Province 310000, China
| | - Shinan Li
- Department of Rheumatology and Immunology, Center for General Practice Medicine, Hangzhou Medical College, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, No. 158 Shangtang Road, Gongshu District, Hangzhou, Zhejiang 310000, China
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine Cultivation for Arthritis Diagnosis and Treatment, No. 158 Shangtang Road, Gongshu District, Hangzhou, Zhejiang Province 31000, China
- Rheumatology and Immunology Research Institute, Hangzhou Medical College, No. 158 Shangtang Road, Gongshu District, Hangzhou, Zhejiang Province 310000, China
| | - Zhenhua Ying
- Department of Rheumatology and Immunology, Center for General Practice Medicine, Hangzhou Medical College, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, No. 158 Shangtang Road, Gongshu District, Hangzhou, Zhejiang 310000, China
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine Cultivation for Arthritis Diagnosis and Treatment, No. 158 Shangtang Road, Gongshu District, Hangzhou, Zhejiang Province 31000, China
- Rheumatology and Immunology Research Institute, Hangzhou Medical College, No. 158 Shangtang Road, Gongshu District, Hangzhou, Zhejiang Province 310000, China
| | - Hongyang Jiang
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine Cultivation for Arthritis Diagnosis and Treatment, No. 158 Shangtang Road, Gongshu District, Hangzhou, Zhejiang Province 31000, China
- Rheumatology and Immunology Research Institute, Hangzhou Medical College, No. 158 Shangtang Road, Gongshu District, Hangzhou, Zhejiang Province 310000, China
- Department of Radiology, Center for Rehabilitation Medicine, Hangzhou Medical College, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, No. 158 Shangtang Road, Gongshu District, Hangzhou, Zhejiang 310000, China
| |
Collapse
|
7
|
Collier L, Seah C, Hicks EM, Holtzheimer PE, Krystal JH, Girgenti MJ, Huckins LM, Johnston KJA. The impact of chronic pain on brain gene expression. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.20.24307630. [PMID: 38826319 PMCID: PMC11142271 DOI: 10.1101/2024.05.20.24307630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Background Chronic pain affects one fifth of American adults, contributing significant public health burden. Chronic pain mechanisms can be further understood through investigating brain gene expression. Methods We tested differentially expressed genes (DEGs) in chronic pain, migraine, lifetime fentanyl and oxymorphone use, and with chronic pain genetic risk in four brain regions (dACC, DLPFC, MeA, BLA) and imputed cell type expression data from 304 postmortem donors. We compared findings across traits and with independent transcriptomics resources, and performed gene-set enrichment. Results We identified two chronic pain DEGs: B4GALT and VEGFB in bulk dACC. We found over 2000 (primarily BLA microglia) chronic pain cell type DEGs. Findings were enriched for mouse microglia pain genes, and for hypoxia and immune response. Cross-trait DEG overlap was minimal. Conclusions Chronic pain-associated gene expression is heterogeneous across cell type, largely distinct from that in pain-related traits, and shows BLA microglia are a key cell type.
Collapse
Affiliation(s)
- Lily Collier
- Department of Biological Sciences, Columbia University, New York City, NY
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University, New Haven, CT
| | - Carina Seah
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY
| | - Emily M Hicks
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY
| | - Paul E Holtzheimer
- National Center for PTSD, U.S. Department of Veterans Affairs
- Department of Psychiatry, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - John H Krystal
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University, New Haven, CT
- Clinical Neuroscience Division, National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT
| | - Matthew J Girgenti
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University, New Haven, CT
- Clinical Neuroscience Division, National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT
| | - Laura M Huckins
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University, New Haven, CT
| | - Keira J A Johnston
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University, New Haven, CT
| |
Collapse
|
8
|
Johnston KJA, Signer R, Huckins LM. Chronic Overlapping Pain Conditions and Nociplastic Pain. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.06.27.23291959. [PMID: 38766033 PMCID: PMC11100847 DOI: 10.1101/2023.06.27.23291959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Chronic Overlapping Pain Conditions (COPCs) are a subset of chronic pain conditions commonly comorbid with one another and more prevalent in women and assigned female at birth (AFAB) individuals. Pain experience in these conditions may better fit with a new mechanistic pain descriptor, nociplastic pain, and nociplastic type pain may represent a shared underlying factor among COPCs. We applied GenomicSEM common-factor genome wide association study (GWAS) and multivariate transcriptome-wide association (TWAS) analyses to existing GWAS output for six COPCs in order to find genetic variation associated with nociplastic type pain, followed by genetic correlation (linkage-disequilibrium score regression), gene-set and tissue enrichment analyses. We found 24 independent single nucleotide polymorphisms (SNPs), and 127 unique genes significantly associated with nociplastic type pain, and showed nociplastic type pain to be a polygenic trait with significant SNP-heritability. We found significant genetic overlap between multisite chronic pain and nociplastic type pain, and to a smaller extent with rheumatoid arthritis and a neuropathic pain phenotype. Tissue enrichment analyses highlighted cardiac and thyroid tissue, and gene set enrichment analyses emphasized potential shared mechanisms in cognitive, personality, and metabolic traits and nociplastic type pain along with distinct pathology in migraine and headache. We use a well-powered network approach to investigate nociplastic type pain using existing COPC GWAS output, and show nociplastic type pain to be a complex, heritable trait, in addition to contributing to understanding of potential mechanisms in development of nociplastic pain.
Collapse
Affiliation(s)
- Keira J A Johnston
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, CT 06511, USA
| | - Rebecca Signer
- Department of Genetic and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Laura M Huckins
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
9
|
Johnston KJA, Cote AC, Hicks E, Johnson J, Huckins LM. Genetically Regulated Gene Expression in the Brain Associated With Chronic Pain: Relationships With Clinical Traits and Potential for Drug Repurposing. Biol Psychiatry 2024; 95:745-761. [PMID: 37678542 PMCID: PMC10924073 DOI: 10.1016/j.biopsych.2023.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 07/20/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Chronic pain is a common, poorly understood condition. Genetic studies including genome-wide association studies have identified many relevant variants, which have yet to be translated into full understanding of chronic pain. Transcriptome-wide association studies using transcriptomic imputation methods such as S-PrediXcan can help bridge this genotype-phenotype gap. METHODS We carried out transcriptomic imputation using S-PrediXcan to identify genetically regulated gene expression associated with multisite chronic pain in 13 brain tissues and whole blood. Then, we imputed genetically regulated gene expression for over 31,000 Mount Sinai BioMe participants and performed a phenome-wide association study to investigate clinical relationships in chronic pain-associated gene expression changes. RESULTS We identified 95 experiment-wide significant gene-tissue associations (p < 7.97 × 10-7), including 36 unique genes and an additional 134 gene-tissue associations reaching within-tissue significance, including 53 additional unique genes. Of the 89 unique genes in total, 59 were novel for multisite chronic pain and 18 are established drug targets. Chronic pain genetically regulated gene expression for 10 unique genes was significantly associated with cardiac dysrhythmia, metabolic syndrome, disc disorders/dorsopathies, joint/ligament sprain, anemias, and neurologic disorder phecodes. Phenome-wide association study analyses adjusting for mean pain score showed that associations were not driven by mean pain score. CONCLUSIONS We carried out the largest transcriptomic imputation study of any chronic pain trait to date. Results highlight potential causal genes in chronic pain development and tissue and direction of effect. Several gene results were also drug targets. Phenome-wide association study results showed significant associations for phecodes including cardiac dysrhythmia and metabolic syndrome, thereby indicating potential shared mechanisms.
Collapse
Affiliation(s)
- Keira J A Johnston
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.
| | - Alanna C Cote
- Pamela Sklar Division of Psychiatric Genetics, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Emily Hicks
- Pamela Sklar Division of Psychiatric Genetics, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jessica Johnson
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Laura M Huckins
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
10
|
McBenedict B, Petrus D, Pires MP, Pogodina A, Arrey Agbor DB, Ahmed YA, Castro Ceron JI, Balaji A, Abrahão A, Lima Pessôa B. The Role of the Insula in Chronic Pain and Associated Structural Changes: An Integrative Review. Cureus 2024; 16:e58511. [PMID: 38770492 PMCID: PMC11103916 DOI: 10.7759/cureus.58511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/17/2024] [Indexed: 05/22/2024] Open
Abstract
Chronic pain affects a substantial portion of the global population, significantly impacting quality of life and well-being. This condition involves complex mechanisms, including dysfunction of the autonomic nervous system, which plays a crucial role in pain perception. The insula, a key brain region involved in pain processing, plays a critical role in pain perception and modulation. Lesions in the insula can result in pain asymbolia, where pain perception remains intact but emotional responses are inappropriate. The insula is anatomically and functionally divided into anterior and posterior regions, with the posterior insula processing nociceptive input based on intensity and location before relaying it to the anterior insula for emotional mediation. Understanding the insula's intricate role in pain processing is crucial, as it is involved in encoding prediction errors and mediating emotional dimensions of pain perception. The focus of this review was on synthesizing existing literature on the role of the insula in chronic pain and associated structural changes. The goal was to integrate findings from various sources to provide a comprehensive overview of the topic. The search strategy included a combination of Medical Subject Headings (MeSH) and relevant keywords related to insula and chronic pain. The following databases were surveyed: PubMed, Embase, Scopus, and Web of Science. We identified a total of 2515 articles, and after following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline based on eligibility criteria, 46 articles were used to synthesize this review. Our study highlights the pivotal role of the insula in chronic pain processing and associated structural changes, integrating findings from diverse studies and neuroimaging investigations. Beyond mere pain sensation, the insula contributes to emotional awareness, attention, and salience detection within the pain network. Various chronic pain conditions reveal alterations in insular activity and connectivity, accompanied by changes in gray matter volume and neurochemical profiles. Interventions targeting the insula show promise in alleviating chronic pain symptoms. However, further research is needed to understand underlying mechanisms, which can aid in developing more effective therapeutic interventions for pain.
Collapse
Affiliation(s)
| | - Dulci Petrus
- Family Health, Directorate of Special Programs, Ministry of Health and Social Services, Windhoek, NAM
| | | | - Anna Pogodina
- Medicine and Surgery, University of Buckingham, Buckingham, GBR
| | | | - Yusuf A Ahmed
- Faculty of Medicine, Mansoura University, Mansoura, EGY
| | - Jose Ittay Castro Ceron
- Academic Medicine, Institute of Health Sciences, Autonomous University of the State of Hidalgo, Pachuca, MEX
| | - Aishwariya Balaji
- General Practice, Government Kilpauk Medical College and Hospital, Chennai, IND
| | - Ana Abrahão
- Public Health, Fluminense Federal University, Niterói, BRA
| | | |
Collapse
|
11
|
Farrell SF, Armfield NR, Cabot PJ, Elphinston RA, Gray P, Minhas G, Collyer MR, Sterling M. C-Reactive Protein (CRP) is Associated With Chronic Pain Independently of Biopsychosocial Factors. THE JOURNAL OF PAIN 2024; 25:476-496. [PMID: 37741522 DOI: 10.1016/j.jpain.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
Inflammation is linked with chronic pain but the extent to which this relationship is associated with biopsychosocial factors is not known. We investigated relationships between blood C-reactive protein (CRP) and regional chronic pain conditions adjusting for a large range and number of potential confounders. We performed cross-sectional analyses using the UK Biobank (N = 415,567) comparing CRP in people reporting any of 9 types of regional chronic pain with pain-free controls. Using logistic regression modelling, we explored relationships between CRP and the presence of chronic pain, with demographic, socioeconomic, psychological/lifestyle factors, and medical comorbidities as covariates. CRP was higher in chronic pain at any site compared with controls (Females: median [interquartile range] 1.60 mg/L [2.74] vs 1.17 mg/L [1.87], P < .001; Males: 1.44 mg/L [2.12] vs 1.15 mg/L [1.65], P < .001). In males, associations between CRP and all types of chronic pain were attenuated but remained significant after adjustment for biopsychosocial covariates (OR range 1.08-1.49, P ≤ .001). For females, adjusted associations between CRP and pain remained significant for most chronic pain types (OR range 1.07-1.34, P < .001) except for facial pain (OR 1.04, P = .17) and headache (OR 1.02, P = .07)-although these non-significant findings may reflect reduced sample size. The significant association between CRP and chronic pain after adjustment for key biopsychosocial confounders implicates an independent underlying biological mechanism of inflammation in chronic pain. The presence of yet unknown or unmeasured confounding factors cannot be ruled out. Our findings may inform better-targeted treatments for chronic pain. PERSPECTIVE: Using a large-scale dataset, this article investigates associations between chronic pain conditions and blood C-reactive protein (CRP), to evaluate the confounding effects of a range of biopsychosocial factors. CRP levels were higher in those with chronic pain versus controls after adjusting for confounders-suggesting a possible independent biological mechanism.
Collapse
Affiliation(s)
- Scott F Farrell
- RECOVER Injury Research Centre, NHMRC Centre of Research Excellence: Better Health Outcomes for Compensable Injury, The University of Queensland, Herston, QLD, Australia; STARS Education and Research Alliance, Surgical Treatment and Rehabilitation Service (STARS), The University of Queensland and Metro North Health, Herston, QLD, Australia; Tess Cramond Pain & Research Centre, Royal Brisbane & Women's Hospital, Herston, QLD, Australia
| | - Nigel R Armfield
- RECOVER Injury Research Centre, NHMRC Centre of Research Excellence: Better Health Outcomes for Compensable Injury, The University of Queensland, Herston, QLD, Australia; STARS Education and Research Alliance, Surgical Treatment and Rehabilitation Service (STARS), The University of Queensland and Metro North Health, Herston, QLD, Australia; Centre for Health Services Research, The University of Queensland, Brisbane, QLD, Australia
| | - Peter J Cabot
- School of Pharmacy, The University of Queensland, St Lucia, QLD, Australia
| | - Rachel A Elphinston
- RECOVER Injury Research Centre, NHMRC Centre of Research Excellence: Better Health Outcomes for Compensable Injury, The University of Queensland, Herston, QLD, Australia; STARS Education and Research Alliance, Surgical Treatment and Rehabilitation Service (STARS), The University of Queensland and Metro North Health, Herston, QLD, Australia
| | - Paul Gray
- Tess Cramond Pain & Research Centre, Royal Brisbane & Women's Hospital, Herston, QLD, Australia; Royal Brisbane Clinical Unit, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Gunjeet Minhas
- Tess Cramond Pain & Research Centre, Royal Brisbane & Women's Hospital, Herston, QLD, Australia
| | - Martin R Collyer
- School of Health and Rehabilitation Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Michele Sterling
- RECOVER Injury Research Centre, NHMRC Centre of Research Excellence: Better Health Outcomes for Compensable Injury, The University of Queensland, Herston, QLD, Australia; STARS Education and Research Alliance, Surgical Treatment and Rehabilitation Service (STARS), The University of Queensland and Metro North Health, Herston, QLD, Australia
| |
Collapse
|
12
|
Li X, Hao H, Li Y, Au LWC, Du G, Gao X, Yan J, Tong RKY, Lou W. Menstrually-related migraine shapes the structural similarity network integration of brain. Cereb Cortex 2023; 33:9867-9876. [PMID: 37415071 DOI: 10.1093/cercor/bhad250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023] Open
Abstract
Menstrually-related migraine (MM) is a primary migraine in women of reproductive age. The underlying neural mechanism of MM was still unclear. In this study, we aimed to reveal the case-control differences in network integration and segregation for the morphometric similarity network of MM. Thirty-six patients with MM and 29 healthy females were recruited and underwent MRI scanning. The morphometric features were extracted in each region to construct the single-subject interareal cortical connection using morphometric similarity. The network topology characteristics, in terms of integration and segregation, were analyzed. Our results revealed that, in the absence of morphology differences, disrupted cortical network integration was found in MM patients compared to controls. The patients with MM showed a decreased global efficiency and increased characteristic path length compared to healthy controls. Regional efficiency analysis revealed the decreased efficiency in the left precentral gyrus and bilateral superior temporal gyrus contributed to the decreased network integration. The increased nodal degree centrality in the right pars triangularis was positively associated with the attack frequency in MM. Our results suggested MM would reorganize the morphology in the pain-related brain regions and reduce the parallel information processing capacity of the brain.
Collapse
Affiliation(s)
- Xinyu Li
- Imaging Center, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Huifen Hao
- Imaging Center, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Yingying Li
- Imaging Center, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Lisa Wing-Chi Au
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Ganqin Du
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Xiuju Gao
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Junqiang Yan
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Raymond Kai-Yu Tong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wutao Lou
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
13
|
de Zoete RMJ, Berryman CF, Nijs J, Walls A, Jenkinson M. Differential Structural Brain Changes Between Responders and Nonresponders After Physical Exercise Therapy for Chronic Nonspecific Neck Pain. Clin J Pain 2023; 39:270-277. [PMID: 37220328 DOI: 10.1097/ajp.0000000000001115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 03/23/2023] [Indexed: 05/25/2023]
Abstract
OBJECTIVES Physical exercise therapy is effective for some people with chronic nonspecific neck pain but not for others. Differences in exercise-induced pain-modulatory responses are likely driven by brain changes. We investigated structural brain differences at baseline and changes after an exercise intervention. The primary aim was to investigate changes in structural brain characteristics after physical exercise therapy for people with chronic nonspecific neck pain. The secondary aims were to investigate (1) baseline differences in structural brain characteristics between responders and nonresponders to exercise therapy, and (2) differential brain changes after exercise therapy between responders and nonresponders. MATERIALS AND METHODS This was a prospective longitudinal cohort study. Twenty-four participants (18 females, mean age 39.7 y) with chronic nonspecific neck pain were included. Responders were selected as those with ≥20% improvement in Neck Disability Index. Structural magnetic resonance imaging was obtained before and after an 8-week physical exercise intervention delivered by a physiotherapist. Freesurfer cluster-wise analyses were performed and supplemented with an analysis of pain-specific brain regions of interest. RESULTS Various changes in grey matter volume and thickness were found after the intervention, for example, frontal cortex volume decreased (cluster-weighted P value = 0.0002, 95% CI: 0.0000-0.0004). We found numerous differences between responders and nonresponders, most notably, after the exercise intervention bilateral insular volume decreased in responders, but increased in nonresponders (cluster-weighted P value ≤ 0.0002). DISCUSSION The brain changes found in this study may underpin clinically observed differential effects between responders and nonresponders to exercise therapy for people with chronic neck pain. Identification of these changes is an important step toward personalized treatment approaches.
Collapse
Affiliation(s)
| | - Carolyn F Berryman
- Brain Stimulation, Imaging and Cognition Group, School of Medicine
- IIMPACT in Health, The University of South Australia
| | - Jo Nijs
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Vrije Universiteit Brussel
- Chronic pain rehabilitation, Department of Physical Medicine and Physiotherapy, University Hospital Brussels, Belgium
- Department of Health and Rehabilitation, Unit of Physiotherapy, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Angela Walls
- Clinical and Research Imaging Centre, South Australian Health and Medical Research Institute
| | - Mark Jenkinson
- Australian Institute for Machine Learning (AIML), School of Computer Science, University of Adelaide
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| |
Collapse
|
14
|
Farrell SF, Sterling M, Klyne DM, Mustafa S, Campos AI, Kho PF, Lundberg M, Rentería ME, Ngo TT, Cuéllar-Partida G. Genetic impact of blood C-reactive protein levels on chronic spinal & widespread pain. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2023; 32:2078-2085. [PMID: 37069442 DOI: 10.1007/s00586-023-07711-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 02/27/2023] [Accepted: 04/06/2023] [Indexed: 04/19/2023]
Abstract
PURPOSE Causal mechanisms underlying systemic inflammation in spinal & widespread pain remain an intractable experimental challenge. Here we examined whether: (i) associations between blood C-reactive protein (CRP) and chronic back, neck/shoulder & widespread pain can be explained by shared underlying genetic variants; and (ii) higher CRP levels causally contribute to these conditions. METHODS Using genome-wide association studies (GWAS) of chronic back, neck/shoulder & widespread pain (N = 6063-79,089 cases; N = 239,125 controls) and GWAS summary statistics for blood CRP (Pan-UK Biobank N = 400,094 & PAGE consortium N = 28,520), we employed cross-trait bivariate linkage disequilibrium score regression to determine genetic correlations (rG) between these chronic pain phenotypes and CRP levels (FDR < 5%). Latent causal variable (LCV) and generalised summary data-based Mendelian randomisation (GSMR) analyses examined putative causal associations between chronic pain & CRP (FDR < 5%). RESULTS Higher CRP levels were genetically correlated with chronic back, neck/shoulder & widespread pain (rG range 0.26-0.36; P ≤ 8.07E-9; 3/6 trait pairs). Although genetic causal proportions (GCP) did not explain this finding (GCP range - 0.32-0.08; P ≥ 0.02), GSMR demonstrated putative causal effects of higher CRP levels contributing to each pain type (beta range 0.027-0.166; P ≤ 9.82E-03; 3 trait pairs) as well as neck/shoulder pain effects on CRP levels (beta [S.E.] 0.030 [0.021]; P = 6.97E-04). CONCLUSION This genetic evidence for higher CRP levels in chronic spinal (back, neck/shoulder) & widespread pain warrants further large-scale multimodal & prospective longitudinal studies to accelerate the identification of novel translational targets and more effective therapeutic strategies.
Collapse
Affiliation(s)
- Scott F Farrell
- RECOVER Injury Research Centre, The University of Queensland, Level 7 STARS Hospital, 296 Herston Rd, Herston, QLD, 4029, Australia.
- NHMRC Centre of Research Excellence: Better Health Outcomes for Compensable Injury, The University of Queensland, Herston, QLD, Australia.
- Tess Cramond Pain & Research Centre, Royal Brisbane & Women's Hospital, Herston, QLD, Australia.
| | - Michele Sterling
- RECOVER Injury Research Centre, The University of Queensland, Level 7 STARS Hospital, 296 Herston Rd, Herston, QLD, 4029, Australia
- NHMRC Centre of Research Excellence: Better Health Outcomes for Compensable Injury, The University of Queensland, Herston, QLD, Australia
| | - David M Klyne
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health; School of Health & Rehabilitation Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Sanam Mustafa
- Davies Livestock Research Centre, The University of Adelaide, Roseworthy, SA, Australia
| | - Adrián I Campos
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
- Genetic Epidemiology Laboratory, Mental Health & Neuroscience Program, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Pik-Fang Kho
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Molecular Cancer Epidemiology Laboratory, Population Health Program, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Mischa Lundberg
- Institute of Biological Psychiatry, Boserupvej 2, 4000, Roskilde, Denmark
- Transformational Bioinformatics, CSIRO Health & Biosecurity, North Ryde, NSW, Australia
- UQ Diamantina Institute, The University of Queensland & Translational Research Institute, Woolloongabba, QLD, Australia
| | - Miguel E Rentería
- Genetic Epidemiology Laboratory, Mental Health & Neuroscience Program, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Trung Thanh Ngo
- RECOVER Injury Research Centre, The University of Queensland, Level 7 STARS Hospital, 296 Herston Rd, Herston, QLD, 4029, Australia
| | - Gabriel Cuéllar-Partida
- UQ Diamantina Institute, The University of Queensland & Translational Research Institute, Woolloongabba, QLD, Australia
- Gilead Sciences, Foster City, CA, USA
| |
Collapse
|
15
|
Farrell SF, Kho PF, Lundberg M, Campos AI, Rentería ME, de Zoete RMJ, Sterling M, Ngo TT, Cuéllar-Partida G. A Shared Genetic Signature for Common Chronic Pain Conditions and its Impact on Biopsychosocial Traits. THE JOURNAL OF PAIN 2023; 24:369-386. [PMID: 36252619 DOI: 10.1016/j.jpain.2022.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/28/2022] [Accepted: 10/06/2022] [Indexed: 11/11/2022]
Abstract
The multiple comorbidities & dimensions of chronic pain present a formidable challenge in disentangling its aetiology. Here, we performed genome-wide association studies of 8 chronic pain types using UK Biobank data (N =4,037-79,089 cases; N = 239,125 controls), followed by bivariate linkage disequilibrium-score regression and latent causal variable analyses to determine (respectively) their genetic correlations and genetic causal proportion (GCP) parameters with 1,492 other complex traits. We report evidence of a shared genetic signature across chronic pain types as their genetic correlations and GCP directions were broadly consistent across an array of biopsychosocial traits. Across 5,942 significant genetic correlations, 570 trait pairs could be explained by a causal association (|GCP| >0.6; 5% false discovery rate), including 82 traits affected by pain while 410 contributed to an increased risk of chronic pain (cf. 78 with a decreased risk) such as certain somatic pathologies (eg, musculoskeletal), psychiatric traits (eg, depression), socioeconomic factors (eg, occupation) and medical comorbidities (eg, cardiovascular disease). This data-driven phenome-wide association analysis has demonstrated a novel and efficient strategy for identifying genetically supported risk & protective traits to enhance the design of interventional trials targeting underlying causal factors and accelerate the development of more effective treatments with broader clinical utility. PERSPECTIVE: Through large-scale phenome-wide association analyses of >1,400 biopsychosocial traits, this article provides evidence for a shared genetic signature across 8 common chronic pain types. It lays the foundation for further translational studies focused on identifying causal genetic variants and pathophysiological pathways to develop novel diagnostic & therapeutic technologies and strategies.
Collapse
Affiliation(s)
- Scott F Farrell
- RECOVER Injury Research Centre, The University of Queensland, Herston, Queensland, Australia; NHMRC Centre of Research Excellence: Better Health Outcomes for Compensable Injury, The University of Queensland, Herston, Queensland, Australia; Tess Cramond Pain & Research Centre, Royal Brisbane & Women's Hospital, Herston, Queensland, Australia.
| | - Pik-Fang Kho
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California; Molecular Cancer Epidemiology Laboratory, Population Health Program, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia; School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Mischa Lundberg
- UQ Diamantina Institute, The University of Queensland & Translational Research Institute, Woolloongabba, Queensland, Australia; Transformational Bioinformatics, CSIRO Health & Biosecurity, North Ryde, New South Wales, Australia
| | - Adrián I Campos
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia; Genetic Epidemiology Laboratory, Mental Health & Neuroscience Program, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Miguel E Rentería
- Genetic Epidemiology Laboratory, Mental Health & Neuroscience Program, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Rutger M J de Zoete
- School of Allied Health Science and Practice, The University of Adelaide, Adelaide, South Australia, Australia
| | - Michele Sterling
- RECOVER Injury Research Centre, The University of Queensland, Herston, Queensland, Australia; NHMRC Centre of Research Excellence: Better Health Outcomes for Compensable Injury, The University of Queensland, Herston, Queensland, Australia
| | - Trung Thanh Ngo
- RECOVER Injury Research Centre, The University of Queensland, Herston, Queensland, Australia
| | - Gabriel Cuéllar-Partida
- UQ Diamantina Institute, The University of Queensland & Translational Research Institute, Woolloongabba, Queensland, Australia
| |
Collapse
|
16
|
Back Pain without Disease or Substantial Injury in Children and Adolescents: A Twin Family Study Investigating Genetic Influence and Associations. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10020375. [PMID: 36832504 PMCID: PMC9955700 DOI: 10.3390/children10020375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/22/2022] [Accepted: 01/06/2023] [Indexed: 02/17/2023]
Abstract
This twin family study first aimed to investigate the evidence for genetic factors predicting the risk of lifetime prevalence of non-specific low back pain of at least three months duration (LBP (life)) and one-month current prevalence of thoracolumbar back pain (TLBP (current)) using a study of children, adolescents, and their first-degree relatives. Secondly, the study aimed to identify associations between pain in the back with pain in other regions and also with other conditions of interest. Randomly selected families (n = 2479) with child or adolescent twin pairs and their biological parents and first siblings were approached by Twins Research Australia. There were 651 complete twin pairs aged 6-20 years (response 26%). Casewise concordance, correlation, and odds ratios were compared for monozygous (MZ) and dizygous (DZ) pairs to enable inference about the potential existence of genetic vulnerability. Multivariable random effects logistic regression was used to estimate associations between LBP (life) or TLBP (current) as an outcome with the potentially relevant condition as predictors. The MZ pairs were more similar than the DZ pairs for each of the back pain conditions (all p values < 0.02). Both back pain conditions were associated with pain in multiple sites and with primary pain and other conditions using the combined twin and sibling sample (n = 1382). Data were consistent with the existence of genetic influences on the pain measures under the equal environments assumption of the classic twin model and associations with both categories of back pain were consistent with primary pain conditions and syndromes of childhood and adolescence which has research and clinical implications.
Collapse
|
17
|
de Zoete RMJ, Coppieters I, Farrell SF. Editorial: Whiplash-associated disorder—advances in pathophysiology, patient assessment and clinical management. FRONTIERS IN PAIN RESEARCH 2022; 3:1071810. [DOI: 10.3389/fpain.2022.1071810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
|
18
|
Brain-specific genes contribute to chronic but not to acute back pain. Pain Rep 2022; 7:e1018. [PMID: 35975136 PMCID: PMC9371560 DOI: 10.1097/pr9.0000000000001018] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/20/2022] [Accepted: 05/20/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Back pain is the leading cause of disability worldwide. Although most back pain cases are acute, 20% of acute pain patients experience chronic back pain symptoms. It is unclear whether acute pain and chronic pain have similar or distinct underlying genetic mechanisms. Objectives To characterize the molecular and cellular pathways contributing to acute and chronic pain states. Methods Cross-sectional observational genome-wide association study. Results A total of 375,158 individuals from the UK Biobank cohort were included in the discovery of genome-wide association study. Of those, 70,633 (19%) and 32,209 (9%) individuals met the definition of chronic and acute back pain, respectively. A total of 355 single nucleotide polymorphism grouped into 13 loci reached the genome-wide significance threshold (5x10-8) for chronic back pain, but none for acute. Of these, 7 loci were replicated in the Nord-Trøndelag Health Study (HUNT) cohort (19,760 chronic low back pain cases and 28,674 pain-free controls). Single nucleotide polymorphism heritability was 4.6% (P=1.4x10-78) for chronic back pain and 0.81% (P=1.4x10-8) for acute back pain. Similar differences in heritability estimates between acute and chronic back pain were found in the HUNT cohort: 3.4% (P=0.0011) and 0.6% (P=0.851), respectively. Pathway analyses, tissue-specific heritability enrichment analyses, and epigenetic characterization suggest a substantial genetic contribution to chronic but not acute back pain from the loci predominantly expressed in the central nervous system. Conclusion Chronic back pain is substantially more heritable than acute back pain. This heritability is mostly attributed to genes expressed in the brain.
Collapse
|