1
|
Coemans S, De Aguiar V, Paquier P, Tsapkini K, Engelborghs S, Struys E, Keulen S. Effects of Cerebellar Transcranial Direct Current Stimulation in Bilingual Logopenic Primary Progressive Aphasia. J Alzheimers Dis Rep 2024; 8:1253-1273. [PMID: 39434819 PMCID: PMC11491977 DOI: 10.3233/adr-240034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/21/2024] [Indexed: 10/23/2024] Open
Abstract
Background Primary progressive aphasia (PPA) is a language-based dementia, causing progressive decline of language functions. Transcranial direct current stimulation (tDCS) can augment effects of speech-and language therapy (SLT). However, this has not been investigated in bilingual patients with PPA. Objective We evaluated the case of Mr. G., a French (native language, L1)/Dutch (second language, L2)-speaking 59-year-old male, with logopenic PPA, associated with Alzheimer's disease pathology. We aimed to characterize his patterns of language decline and evaluate the effects of tDCS applied to the right posterolateral cerebellum on his language abilities and executive control circuits. Methods In a within-subject controlled design, Mr. G received 9 sessions of sham and anodal tDCS combined with semantic and phonological SLT in L2. Changes were evaluated with an oral naming task in L2, the Boston Naming Task and subtests of the Bilingual Aphasia Test in in L2 and L1, the Stroop Test and Attention Network Test, before and after each phase of stimulation (sham/tDCS) and at 2-month follow-up. Results After anodal tDCS, but not after sham, results improved significantly on oral naming in L2, with generalization to untrained tasks and cross-language transfer (CLT) to L1: picture naming in both languages, syntactic comprehension and repetition in L2, and response times in the incongruent condition of the Attention Network Test, indicating increased inhibitory control. Conclusions Our preliminary results are the first to indicate that tDCS applied to the cerebellum may be a valuable tool to enhance the effects of SLT in bilingual patients with logopenic PPA.
Collapse
Affiliation(s)
- Silke Coemans
- Brussels Centre for Language Studies (BCLS), Vrije Universiteit Brussels (VUB), Brussels, Belgium
| | - Vânia De Aguiar
- Groningen Center for Language and Cognition (CLCG), University of Groningen, Groningen, The Netherlands
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Philippe Paquier
- Brussels Centre for Language Studies (BCLS), Vrije Universiteit Brussels (VUB), Brussels, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussels (VUB), Brussels, Belgium
| | - Kyrana Tsapkini
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, USA
| | - Sebastiaan Engelborghs
- Center for Neurosciences (C4N), Vrije Universiteit Brussels (VUB), Brussels, Belgium
- Department of Neurology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
- Department of Biomedical Sciences, Universiteit Antwerpen (UA), Antwerp, Belgium
| | - Esli Struys
- Brussels Centre for Language Studies (BCLS), Vrije Universiteit Brussels (VUB), Brussels, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussels (VUB), Brussels, Belgium
| | - Stefanie Keulen
- Brussels Centre for Language Studies (BCLS), Vrije Universiteit Brussels (VUB), Brussels, Belgium
| |
Collapse
|
2
|
Jossinger S, Yablonski M, Amir O, Ben-Shachar M. The Contributions of the Cerebellar Peduncles and the Frontal Aslant Tract in Mediating Speech Fluency. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2024; 5:676-700. [PMID: 39175785 PMCID: PMC11338307 DOI: 10.1162/nol_a_00098] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/23/2022] [Indexed: 08/24/2024]
Abstract
Fluent speech production is a complex task that spans multiple processes, from conceptual framing and lexical access, through phonological encoding, to articulatory control. For the most part, imaging studies portraying the neural correlates of speech fluency tend to examine clinical populations sustaining speech impairments and focus on either lexical access or articulatory control, but not both. Here, we evaluated the contribution of the cerebellar peduncles to speech fluency by measuring the different components of the process in a sample of 45 neurotypical adults. Participants underwent an unstructured interview to assess their natural speaking rate and articulation rate, and completed timed semantic and phonemic fluency tasks to assess their verbal fluency. Diffusion magnetic resonance imaging with probabilistic tractography was used to segment the bilateral cerebellar peduncles (CPs) and frontal aslant tract (FAT), previously associated with speech production in clinical populations. Our results demonstrate distinct patterns of white matter associations with different fluency components. Specifically, verbal fluency is associated with the right superior CP, whereas speaking rate is associated with the right middle CP and bilateral FAT. No association is found with articulation rate in these pathways, in contrast to previous findings in persons who stutter. Our findings support the contribution of the cerebellum to aspects of speech production that go beyond articulatory control, such as lexical access, pragmatic or syntactic generation. Further, we demonstrate that distinct cerebellar pathways dissociate different components of speech fluency in neurotypical speakers.
Collapse
Affiliation(s)
- Sivan Jossinger
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Maya Yablonski
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Ofer Amir
- Department of Communication Disorders, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Michal Ben-Shachar
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
- The Department of English Literature and Linguistics, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
3
|
Das A, Menon V. Frequency-specific directed connectivity between the hippocampus and parietal cortex during verbal and spatial episodic memory: an intracranial EEG replication. Cereb Cortex 2024; 34:bhae287. [PMID: 39042030 PMCID: PMC11264422 DOI: 10.1093/cercor/bhae287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/23/2024] [Indexed: 07/24/2024] Open
Abstract
Hippocampus-parietal cortex circuits are thought to play a crucial role in memory and attention, but their neural basis remains poorly understood. We employed intracranial intracranial electroencephalography (iEEG) to investigate the neurophysiological underpinning of these circuits across three memory tasks spanning verbal and spatial domains. We uncovered a consistent pattern of higher causal directed connectivity from the hippocampus to both lateral parietal cortex (supramarginal and angular gyrus) and medial parietal cortex (posterior cingulate cortex) in the delta-theta band during memory encoding and recall. This connectivity was independent of activation or suppression states in the hippocampus or parietal cortex. Crucially, directed connectivity from the supramarginal gyrus to the hippocampus was enhanced in participants with higher memory recall, highlighting its behavioral significance. Our findings align with the attention-to-memory model, which posits that attention directs cognitive resources toward pertinent information during memory formation. The robustness of these results was demonstrated through Bayesian replication analysis of the memory encoding and recall periods across the three tasks. Our study sheds light on the neural basis of casual signaling within hippocampus-parietal circuits, broadening our understanding of their critical roles in human cognition.
Collapse
Affiliation(s)
- Anup Das
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Vinod Menon
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
4
|
Ouerchefani R, Ouerchefani N, Ben Rejeb MR, Le Gall D. Exploring behavioural and cognitive dysexecutive syndrome in patients with focal prefrontal cortex damage. APPLIED NEUROPSYCHOLOGY. ADULT 2024; 31:443-463. [PMID: 35244518 DOI: 10.1080/23279095.2022.2036152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This study's objectives were to characterize the frequency and profile of behavioral and cognitive dysexecutive syndromes in patients with focal prefrontal cortex damage and how these syndromes overlap. We also examined the contribution of the prefrontal brain regions to these syndromes. Therefore, thirty patients with prefrontal cortex damage and thirty control subjects were compared on their performances using the GREFEX battery assessing the dysexecutive syndromes. The results showed that combined behavioral and cognitive dysexecutive syndrome was observed in 53.33%, while pure cognitive dysexecutive syndrome was observed in 20% and behavioral in 26.67%. Also, almost all behavioral and cognitive dysexecutive disorders discriminated frontal patients from controls. Moreover, correlations and regression analyses between task scores in both domains of dysexecutive syndromes showed that the spectrum of behavioral disorders was differentially associated with cognitive impairment of initiation, inhibition, generation, deduction, coordination, flexibility and the planning process. Furthermore, the patterns of cognitive and behavioral dysexecutive syndrome were both predictors of impairment in daily living activities and loss of autonomy. Finally, frontal regions contributing to different dysexecutive syndromes assessed by MRI voxel lesion symptom analysis indicate several overlapping regions centered on the ventromedial and dorsomedial prefrontal cortex for both domains of dysexecutive syndrome. This study concludes that damage to the frontal structures may lead to a diverse set of changes in both cognitive and behavioral domains which both contribute to loss of autonomy. The association of the ventromedial and dorsomedial prefrontal regions to both domains of dysexecutive syndrome suggests a higher integrative role of these regions in processing cognition and behavior.
Collapse
Affiliation(s)
- Riadh Ouerchefani
- High Institute of Human Sciences, Department of Psychology, University of Tunis El Manar, Tunis, Tunisia
- Univ Angers, Université de Nantes, LPPL, SFR Confluences, Angers, France
| | | | - Mohamed Riadh Ben Rejeb
- Faculty of Human and Social Science of Tunisia, Department of Psychology, University of Tunis I, Tunis, Tunisia
| | - Didier Le Gall
- Univ Angers, Université de Nantes, LPPL, SFR Confluences, Angers, France
| |
Collapse
|
5
|
Das A, Menon V. Hippocampal-parietal cortex causal directed connectivity during human episodic memory formation: Replication across three experiments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.07.566056. [PMID: 37986855 PMCID: PMC10659286 DOI: 10.1101/2023.11.07.566056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Hippocampus-parietal cortex circuits are thought to play a crucial role in memory and attention, but their neural basis remains poorly understood. We employed intracranial EEG from 96 participants (51 females) to investigate the neurophysiological underpinning of these circuits across three memory tasks spanning verbal and spatial domains. We uncovered a consistent pattern of higher causal directed connectivity from the hippocampus to both lateral parietal cortex (supramarginal and angular gyrus) and medial parietal cortex (posterior cingulate cortex) in the delta-theta band during memory encoding and recall. This connectivity was independent of activation or suppression states in the hippocampus or parietal cortex. Crucially, directed connectivity from the supramarginal gyrus to the hippocampus was enhanced in participants with higher memory recall, highlighting its behavioral significance. Our findings align with the attention-to-memory model, which posits that attention directs cognitive resources toward pertinent information during memory formation. The robustness of these results was demonstrated through Bayesian replication analysis of the memory encoding and recall periods across the three tasks. Our study sheds light on the neural basis of casual signaling within hippocampus-parietal circuits, broadening our understanding of their critical roles in human cognition.
Collapse
Affiliation(s)
- Anup Das
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine Stanford, CA 94305
| | - Vinod Menon
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine Stanford, CA 94305
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine Stanford, CA 94305
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine Stanford, CA 94305
| |
Collapse
|
6
|
Petríková D, Marko M, Rovný R, Riečanský I. Electrical stimulation of the cerebellum facilitates automatic but not controlled word retrieval. Brain Struct Funct 2023; 228:2137-2146. [PMID: 37783862 PMCID: PMC10587269 DOI: 10.1007/s00429-023-02712-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/10/2023] [Indexed: 10/04/2023]
Abstract
Recent research has indicated that the cerebellum is engaged in language functions, yet the role of the cerebellum in lexical-semantic memory is poorly understood. In a double-blind randomized controlled experiment, we therefore targeted the cerebellum by transcranial direct current stimulation (tDCS) to assess and compare the contribution of the cerebellar processing to automatic and controlled retrieval of words in healthy adults (n = 136). Anodal cerebellar tDCS facilitated retrieval of semantically related words in free-associative chains, which was not due to a non-specific acceleration of processing speed. The stimulation had no influence on controlled word retrieval that employed inhibition or switching. The effect of cathodal tDCS was opposite to the anodal stimulation, but statistically non-significant. Our data show that the cerebellum is engaged extracting associative information from the system of semantic representations, established and strengthened/automated by learning, and indicates a domain-general role of this structure in automation of behavior, cognition and language.
Collapse
Affiliation(s)
- Dominika Petríková
- Department of Behavioural Neuroscience, Centre of Experimental Medicine, Slovak Academy of Sciences, Sienkiewiczova 1, 81371, Bratislava, Slovakia
| | - Martin Marko
- Department of Behavioural Neuroscience, Centre of Experimental Medicine, Slovak Academy of Sciences, Sienkiewiczova 1, 81371, Bratislava, Slovakia
- Department of Applied Informatics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Bratislava, Slovakia
| | - Rastislav Rovný
- Department of Behavioural Neuroscience, Centre of Experimental Medicine, Slovak Academy of Sciences, Sienkiewiczova 1, 81371, Bratislava, Slovakia
| | - Igor Riečanský
- Department of Behavioural Neuroscience, Centre of Experimental Medicine, Slovak Academy of Sciences, Sienkiewiczova 1, 81371, Bratislava, Slovakia.
- Department of Psychiatry, Faculty of Medicine, Slovak Medical University in Bratislava, Bratislava, Slovakia.
| |
Collapse
|
7
|
Winters DE, Dugré JR, Sakai JT, Carter RM. Executive function and underlying brain network distinctions for callous-unemotional traits and conduct problems in adolescents. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.565009. [PMID: 37961691 PMCID: PMC10635075 DOI: 10.1101/2023.10.31.565009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The complexity of executive function (EF) impairments in youth antisocial phenotypes of callous-unemotional (CU) traits and conduct problems (CP) challenge identifying phenotypic specific EF deficits. We can redress these challenges by (1) accounting for EF measurement error and (2) testing distinct functional brain properties accounting for differences in EF. Thus, we employed a latent modeling approach for EFs (inhibition, shifting, fluency, common EF) and extracted connection density from matching contemporary EF brain models with a sample of 112 adolescents (ages 13-17, 42% female). Path analysis indicated CU traits associated with lower inhibition. Inhibition network density positively associated with inhibition, but this association was strengthened by CU and attenuated by CP. Common EF associated with three-way interactions between density*CP by CU for the inhibition and shifting networks. This suggests those higher in CU require their brain to work harder for lower inhibition, whereas those higher in CP have difficulty engaging inhibitory brain responses. Additionally, those with CP interacting with CU show distinct brain patterns for a more general EF capacity. Importantly, modeling cross-network connection density in contemporary EF models to test EF involvement in core impairments in CU and CP may accelerate our understanding of EF in these phenotypes.
Collapse
Affiliation(s)
- Drew E. Winters
- Department of Psychiatry, University of Colorado School of Medicine, Anschutz Medical Campus
| | - Jules R Dugré
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Joseph T. Sakai
- Department of Psychiatry, University of Colorado School of Medicine, Anschutz Medical Campus
| | - R. McKell Carter
- Department of Psychology & Neuroscience, University of Colorado Boulder, Boulder, CO, USA
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, USA; Department of Electrical, Computer and Energy Engineering, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
8
|
Lundin NB, Brown JW, Johns BT, Jones MN, Purcell JR, Hetrick WP, O’Donnell BF, Todd PM. Neural evidence of switch processes during semantic and phonetic foraging in human memory. Proc Natl Acad Sci U S A 2023; 120:e2312462120. [PMID: 37824523 PMCID: PMC10589708 DOI: 10.1073/pnas.2312462120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/06/2023] [Indexed: 10/14/2023] Open
Abstract
Humans may retrieve words from memory by exploring and exploiting in "semantic space" similar to how nonhuman animals forage for resources in physical space. This has been studied using the verbal fluency test (VFT), in which participants generate words belonging to a semantic or phonetic category in a limited time. People produce bursts of related items during VFT, referred to as "clustering" and "switching." The strategic foraging model posits that cognitive search behavior is guided by a monitoring process which detects relevant declines in performance and then triggers the searcher to seek a new patch or cluster in memory after the current patch has been depleted. An alternative body of research proposes that this behavior can be explained by an undirected rather than strategic search process, such as random walks with or without random jumps to new parts of semantic space. This study contributes to this theoretical debate by testing for neural evidence of strategically timed switches during memory search. Thirty participants performed category and letter VFT during functional MRI. Responses were classified as cluster or switch events based on computational metrics of similarity and participant evaluations. Results showed greater hippocampal and posterior cerebellar activation during switching than clustering, even while controlling for interresponse times and linguistic distance. Furthermore, these regions exhibited ramping activity which increased during within-patch search leading up to switches. Findings support the strategic foraging model, clarifying how neural switch processes may guide memory search in a manner akin to foraging in patchy spatial environments.
Collapse
Affiliation(s)
- Nancy B. Lundin
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN47405
- Program in Neuroscience, Indiana University, Bloomington, IN47405
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH43210
| | - Joshua W. Brown
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN47405
- Program in Neuroscience, Indiana University, Bloomington, IN47405
- Cognitive Science Program, Indiana University, Bloomington, IN47405
| | - Brendan T. Johns
- Department of Psychology, McGill University, Montréal, QCH3A 1G1, Canada
| | - Michael N. Jones
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN47405
- Cognitive Science Program, Indiana University, Bloomington, IN47405
| | - John R. Purcell
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN47405
- Program in Neuroscience, Indiana University, Bloomington, IN47405
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ08854
| | - William P. Hetrick
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN47405
- Program in Neuroscience, Indiana University, Bloomington, IN47405
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN46202
| | - Brian F. O’Donnell
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN47405
- Program in Neuroscience, Indiana University, Bloomington, IN47405
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN46202
| | - Peter M. Todd
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN47405
- Cognitive Science Program, Indiana University, Bloomington, IN47405
| |
Collapse
|
9
|
Maitreyee R, Varley R, Cowell PE. Verbal ability in postmenopausal women in relation to age, cognitive and reproductive factors. Acta Psychol (Amst) 2023; 238:103963. [PMID: 37364371 DOI: 10.1016/j.actpsy.2023.103963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Abstract
Word-finding difficulties have been associated with age and, in women, lowered sex hormone levels following menopause. However, there is limited understanding of the ways that specific aspects of word-finding are shaped by women's age, reproductive histories, and background factors such as education. The current study investigated the effects of age, cognitive and reproductive factors on word-finding abilities in 53 healthy postmenopausal women aged 48-79. A questionnaire was used to gather demographic information and reproductive history. A battery of verbal fluency, continuous series, and naming tasks was designed to assess word-finding across different sensory modalities and cognitive demands. Category and letter fluency were quantified as total number of correct words produced on each task. For continuous series, switch rates and switch costs were computed. For the naming tasks, accuracy and latency measures were used. There were three key findings. Firstly, there was a consistent positive association between education and all word-finding measures, i.e., verbal fluency, continuous series, and naming. Secondly, age-related declines were seen on tasks heavily dependent on working memory such as the continuous series task. Thirdly, reproductive factors across the lifespan such as age at menarche and reproductive years showed subtle effects on naming abilities, but not on verbal fluency or continuous series. The results highlight that word-finding abilities in healthy postmenopausal women are shaped by factors associated with their early years (education, age at menarche) and later adult life (age, reproductive years). The study also distinguished between the more global effects of education, and the more task-specific associations with age and reproductive variables, on verbal task performance after menopause.
Collapse
Affiliation(s)
- Ramya Maitreyee
- Division of Human Communication Sciences, Health Sciences School, The University of Sheffield, 362 Mushroom Lane, Sheffield S10 2TS, United Kingdom.
| | - Rosemary Varley
- Division of Psychology and Language Sciences, UCL, 313, Chandler House, 2 Wakefield Street, London WC1N 1PF, United Kingdom.
| | - Patricia E Cowell
- Division of Human Communication Sciences, Health Sciences School, The University of Sheffield, 362 Mushroom Lane, Sheffield S10 2TS, United Kingdom.
| |
Collapse
|
10
|
Das A, Menon V. Concurrent- and After-Effects of Medial Temporal Lobe Stimulation on Directed Information Flow to and from Prefrontal and Parietal Cortices during Memory Formation. J Neurosci 2023; 43:3159-3175. [PMID: 36963847 PMCID: PMC10146497 DOI: 10.1523/jneurosci.1728-22.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 03/26/2023] Open
Abstract
Electrical stimulation of the medial temporal lobe (MTL) has the potential to uncover causal circuit mechanisms underlying memory function. However, little is known about how MTL stimulation alters information flow with frontoparietal cortical regions implicated in episodic memory. We used intracranial EEG recordings from humans (14 participants, 10 females) to investigate how MTL stimulation alters directed information flow between MTL and PFC and between MTL and posterior parietal cortex (PPC). Participants performed a verbal episodic memory task during which they were presented with words and asked to recall them after a delay of ∼20 s; 50 Hz stimulation was applied to MTL electrodes on selected trials during memory encoding. Directed information flow was examined using phase transfer entropy. Behaviorally, we observed that MTL stimulation reduced memory recall. MTL stimulation decreased top-down PFC→MTL directed information flow during both memory encoding and subsequent memory recall, revealing aftereffects more than 20 s after end of stimulation. Stimulation suppressed top-down PFC→MTL influences to a greater extent than PPC→MTL. Finally, MTL→PFC information flow on stimulation trials was significantly lower for successful, compared with unsuccessful, memory recall; in contrast, MTL→ventral PPC information flow was higher for successful, compared with unsuccessful, memory recall. Together, these results demonstrate that the effects of MTL stimulation are behaviorally, regionally, and directionally specific, that MTL stimulation selectively impairs directional signaling with PFC, and that causal MTL-ventral PPC circuits support successful memory recall. Findings provide new insights into dynamic casual circuits underling episodic memory and their modulation by MTL stimulation.SIGNIFICANCE STATEMENT The medial temporal lobe (MTL) and its interactions with prefrontal and parietal cortices (PFC and PPC) play a critical role in human memory. Dysfunctional MTL-PFC and MTL-PPC circuits are prominent in psychiatric and neurologic disorders, including Alzheimer's disease and schizophrenia. Brain stimulation has emerged as a potential mechanism for enhancing memory and cognitive functions, but the underlying neurophysiological mechanisms and dynamic causal circuitry underlying bottom-up and top-down signaling involving the MTL are unknown. Here, we use intracranial EEG recordings to investigate the effects of MTL stimulation on causal signaling in key episodic memory circuits linking the MTL with PFC and PPC. Our findings have implications for translational applications aimed at realizing the promise of brain stimulation-based treatment of memory disorders.
Collapse
Affiliation(s)
- Anup Das
- Department of Psychiatry & Behavioral Sciences
| | - Vinod Menon
- Department of Psychiatry & Behavioral Sciences
- Department of Neurology & Neurological Sciences
- Stanford Neurosciences Institute, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
11
|
Schwarze SA, Laube C, Khosravani N, Lindenberger U, Bunge SA, Fandakova Y. Does prefrontal connectivity during task switching help or hinder children's performance? Dev Cogn Neurosci 2023; 60:101217. [PMID: 36807013 PMCID: PMC9969289 DOI: 10.1016/j.dcn.2023.101217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/12/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
The ability to flexibly switch between tasks is key for goal-directed behavior and continues to improve across childhood. Children's task switching difficulties are thought to reflect less efficient engagement of sustained and transient control processes, resulting in lower performance on blocks that intermix tasks (sustained demand) and trials that require a task switch (transient demand). Sustained and transient control processes are associated with frontoparietal regions, which develop throughout childhood and may contribute to task switching development. We examined age differences in the modulation of frontoparietal regions by sustained and transient control demands in children (8-11 years) and adults. Children showed greater performance costs than adults, especially under sustained demand, along with less upregulation of sustained and transient control activation in frontoparietal regions. Compared to adults, children showed increased connectivity between the inferior frontal junction (IFJ) and lateral prefrontal cortex (lPFC) from single to mixed blocks. For children whose sustained activation was less adult-like, increased IFJ-lPFC connectivity was associated with better performance. Children with more adult-like sustained activation showed the inverse effect. These results suggest that individual differences in task switching in later childhood at least partly depend on the recruitment of frontoparietal regions in an adult-like manner.
Collapse
Affiliation(s)
- Sina A. Schwarze
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany,Correspondence to: Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany.
| | - Corinna Laube
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany,Fresenius University of Applied Sciences, Jägerstraße 32, 10117 Berlin, Germany
| | - Neda Khosravani
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Lentzeallee 94, 14195 Berlin, Germany,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, 10-12 Russell Square, WC1B 5EH London, UK
| | - Silvia A. Bunge
- Department of Psychology and Helen Wills Neuroscience Institute, University of California at Berkeley, 2121 Berkeley Way, Berkeley, CA 94720-1650, USA
| | - Yana Fandakova
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| |
Collapse
|
12
|
Sugimoto H, Otake-Matsuura M. A pilot voxel-based morphometry study of older adults after the PICMOR intervention program. BMC Geriatr 2022; 22:63. [PMID: 35045810 PMCID: PMC8772081 DOI: 10.1186/s12877-021-02669-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 11/26/2021] [Indexed: 11/10/2022] Open
Abstract
Background Age-related decline in cognitive function, such as executive function, is associated with structural changes in the neural substrates, such as volume reductions in the lateral prefrontal cortex. To prevent or delay age-related changes in cognitive function, cognitive intervention methods that employ social activity, including conversations, have been proposed in some intervention studies. Interestingly, previous studies have consistently reported that verbal fluency ability can be trained by conversation-based interventions in healthy older adults. However, little is known about the neural substrates that underlie the beneficial effect of conversation-based interventions on cognitive function. In this pilot study, we aimed to provide candidate brain regions that are responsible for the enhancement of cognitive function, by analyzing structural magnetic resonance imaging (MRI) data that were additionally obtained from participants in our previous intervention study. Methods A voxel-based morphometric analysis was applied to the structural MRI data. In the analysis, the regional brain volume was compared between the intervention group, who participated in a group conversation-based intervention program named Photo-Integrated Conversation Moderated by Robots (PICMOR), and the control group, who joined in a control program based on unstructured free conversations. Furthermore, regions whose volume was positively correlated with an increase in verbal fluency task scores throughout the intervention period were explored. Results Results showed that the volume of several regions, including the superior frontal gyrus, parahippocampal gyrus/hippocampus, posterior middle temporal gyrus, and postcentral gyrus, was greater in the intervention group than in the control group. In contrast, no regions showed greater volume in the control group than in the intervention group. The region whose volume showed a positive correlation with the increased task scores was identified in the inferior parietal lobule. Conclusions Although definitive conclusions cannot be drawn from this study due to a lack of MRI data from the pre-intervention period, it achieved the exploratory purpose by successfully identifying candidate brain regions that reflect the beneficial effect of conversation-based interventions on cognitive function, including the lateral prefrontal cortex, which plays an important role in executive functions. Trial registration The trial was retrospectively registered on 7 May 2019 (UMIN Clinical Trials Registry number: UMIN000036667). Supplementary Information The online version contains supplementary material available at 10.1186/s12877-021-02669-x.
Collapse
|
13
|
Mekki Y, Guillemot V, Lemaitre H, Carrion-Castillo A, Forkel S, Frouin V, Philippe C. The genetic architecture of language functional connectivity. Neuroimage 2021; 249:118795. [PMID: 34929384 DOI: 10.1016/j.neuroimage.2021.118795] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/11/2021] [Accepted: 12/08/2021] [Indexed: 02/08/2023] Open
Abstract
Language is a unique trait of the human species, of which the genetic architecture remains largely unknown. Through language disorders studies, many candidate genes were identified. However, such complex and multifactorial trait is unlikely to be driven by only few genes and case-control studies, suffering from a lack of power, struggle to uncover significant variants. In parallel, neuroimaging has significantly contributed to the understanding of structural and functional aspects of language in the human brain and the recent availability of large scale cohorts like UK Biobank have made possible to study language via image-derived endophenotypes in the general population. Because of its strong relationship with task-based fMRI (tbfMRI) activations and its easiness of acquisition, resting-state functional MRI (rsfMRI) have been more popularised, making it a good surrogate of functional neuronal processes. Taking advantage of such a synergistic system by aggregating effects across spatially distributed traits, we performed a multivariate genome-wide association study (mvGWAS) between genetic variations and resting-state functional connectivity (FC) of classical brain language areas in the inferior frontal (pars opercularis, triangularis and orbitalis), temporal and inferior parietal lobes (angular and supramarginal gyri), in 32,186 participants from UK Biobank. Twenty genomic loci were found associated with language FCs, out of which three were replicated in an independent replication sample. A locus in 3p11.1, regulating EPHA3 gene expression, is found associated with FCs of the semantic component of the language network, while a locus in 15q14, regulating THBS1 gene expression is found associated with FCs of the perceptual-motor language processing, bringing novel insights into the neurobiology of language.
Collapse
Affiliation(s)
- Yasmina Mekki
- NeuroSpin, Institut Joliot, CEA - Université Paris-Saclay, Gif-Sur-Yvette, 91191, France.
| | - Vincent Guillemot
- Hub de Bioinformatique et Biostatistique, Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, Paris, France
| | - Hervé Lemaitre
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, CNRS UMR 5293, Université de Bordeaux, Centre Broca Nouvelle-Aquitaine, Bordeaux, France
| | | | - Stephanie Forkel
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, CNRS UMR 5293, Université de Bordeaux, Centre Broca Nouvelle-Aquitaine, Bordeaux, France; Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France; Department of Neuroimaging, Institute of Psychiatry, Psychology and Neurosciences, King's College London, UK
| | - Vincent Frouin
- NeuroSpin, Institut Joliot, CEA - Université Paris-Saclay, Gif-Sur-Yvette, 91191, France
| | - Cathy Philippe
- NeuroSpin, Institut Joliot, CEA - Université Paris-Saclay, Gif-Sur-Yvette, 91191, France.
| |
Collapse
|
14
|
Kanatome A, Ano Y, Shinagawa K, Ide Y, Shibata M, Umeda S. β-Lactolin Enhances Neural Activity, Indicated by Event-Related P300 Amplitude, in Healthy Adults: A Randomized Controlled Trial. J Alzheimers Dis 2021; 81:787-796. [PMID: 33814437 PMCID: PMC8203246 DOI: 10.3233/jad-201413] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Background: Epidemiological studies have shown that dairy product consumption is beneficial for cognitive function in elderly individuals. β-lactolin is a Gly–Thr–Trp–Tyr lacto-tetrapeptide rich in fermented dairy products that improves memory retrieval, attention, and executive function in older adults with subjective cognitive decline and prevents the pathology of Alzheimer’s disease in rodents. There has been no study on the effects of β-lactolin on neural activity in humans. Objective: We investigated the effects of β-lactolin on neural activity and cognitive function in healthy adults. Methods: In this randomized, double-blind, placebo-controlled study, 30 participants (45–64 years old) consumed β-lactolin or placebo for 6 weeks. Neural activity during auditory and language tasks was measured through 64-channel electroencephalography. Moreover, verbal fluency tests were performed at baseline and after 6 weeks. Results: The β-lactolin group had a significantly higher P300 amplitude at the Cp2 site (a part of the parietal lobe near the center of brain, p = 0.011), and C4 site (the area between the frontal and parietal lobe, p = 0.02) during the auditory tasks after 6 weeks than the placebo group. Thus, β-lactolin supplementation promoted neural activity in the parietal area, which increases concentration and attention during auditory cognitive tasks. Compared with the placebo group, the β-lactolin group also showed significant changes in the scores of verbal fluency test after 6 weeks (p = 0.033). Conclusion: Our findings provide insight into the mechanisms underlying the effects of β-lactolin on attention in healthy adults.
Collapse
Affiliation(s)
- Ayana Kanatome
- Kirin Central Research Institute, Kirin Holdings Company, Ltd., Fujisawa, Kanagawa, Japan
| | - Yasuhisa Ano
- Kirin Central Research Institute, Kirin Holdings Company, Ltd., Fujisawa, Kanagawa, Japan
| | - Kazushi Shinagawa
- Department of Psychology, Keio University, Mita, Minato-ku, Tokyo, Japan
| | - Yumiko Ide
- Tokyo Center Clinic, Chuo-ku, Tokyo, Japan
| | - Midori Shibata
- Department of Psychology, Keio University, Mita, Minato-ku, Tokyo, Japan
| | - Satoshi Umeda
- Department of Psychology, Keio University, Mita, Minato-ku, Tokyo, Japan
| |
Collapse
|
15
|
Slivkoff S, Gallant JL. Design of complex neuroscience experiments using mixed-integer linear programming. Neuron 2021; 109:1433-1448. [PMID: 33689687 DOI: 10.1016/j.neuron.2021.02.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/05/2021] [Accepted: 02/16/2021] [Indexed: 11/29/2022]
Abstract
Over the past few decades, neuroscience experiments have become increasingly complex and naturalistic. Experimental design has in turn become more challenging, as experiments must conform to an ever-increasing diversity of design constraints. In this article, we demonstrate how this design process can be greatly assisted using an optimization tool known as mixed-integer linear programming (MILP). MILP provides a rich framework for incorporating many types of real-world design constraints into a neuroscience experiment. We introduce the mathematical foundations of MILP, compare MILP to other experimental design techniques, and provide four case studies of how MILP can be used to solve complex experimental design challenges.
Collapse
Affiliation(s)
- Storm Slivkoff
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jack L Gallant
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Psychology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
16
|
Scheuringer A, Harris TA, Pletzer B. Recruiting the right hemisphere: Sex differences in inter-hemispheric communication during semantic verbal fluency. BRAIN AND LANGUAGE 2020; 207:104814. [PMID: 32502896 PMCID: PMC7611590 DOI: 10.1016/j.bandl.2020.104814] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/14/2020] [Accepted: 05/16/2020] [Indexed: 06/11/2023]
Abstract
Sex differences in cognitive functions are heavily debated. Recent work suggests that sex differences do stem from different processing strategies utilized by men and women. While these processing strategies are likely reflected in different brain networks, so far the link between brain networks and processing strategies remains speculative. In the present study we seek for the first time to link sex differences in brain activation patterns to sex differences in processing strategies utilizing a semantic verbal fluency task in a large sample of 35 men and 35 women, all scanned thrice. For verbal fluency, strategies of clustering and switching have been described. Our results show that men show higher activation in the brain network supporting clustering, while women show higher activation in the brain network supporting switching. Furthermore, converging evidence from activation results, lateralization indices and connectivity analyses suggests that men recruit the right hemisphere more strongly during clustering, but women during switching. These results may explain findings of differential performance and strategy-use in previous behavioral studies.
Collapse
Affiliation(s)
- Andrea Scheuringer
- Department of Psychology, University of Salzburg, Salzburg, Austria; Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| | - Ti-Anni Harris
- Department of Psychology, University of Salzburg, Salzburg, Austria; Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| | - Belinda Pletzer
- Department of Psychology, University of Salzburg, Salzburg, Austria; Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria.
| |
Collapse
|
17
|
Rodríguez-Aranda C, Castro-Chavira SA, Espenes R, Barrios FA, Waterloo K, Vangberg TR. The Role of Moderating Variables on BOLD fMRI Response During Semantic Verbal Fluency and Finger Tapping in Active and Educated Healthy Seniors. Front Hum Neurosci 2020; 14:203. [PMID: 32581748 PMCID: PMC7290010 DOI: 10.3389/fnhum.2020.00203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/06/2020] [Indexed: 11/28/2022] Open
Abstract
Semantic verbal fluency is among the most employed tasks in cognitive aging research and substantial work is devoted to understanding the underlying mechanisms behind age-related differences at the neural and behavioral levels. The present investigation aimed to evaluate the role of moderating variables, such as age, sex, MMSE, and proxies of cognitive reserve (CR) on the hemodynamic response evoked by semantic verbal fluency in healthy young and healthy older adults. So far, no study has been conducted to this end. To elucidate the exclusive effect of the mentioned variables on brain activation during semantic fluency, finger tapping was included as a control task. Results showed that disregarding adjustments for age, older adults displayed important parietal activations during semantic fluency as well as during finger-tapping. Specifically, the anterior intra-parietal sulcus (IPS) and left inferior parietal lobule (IPL) were areas activated in both tasks in the older group. Younger adults, only displayed parietal activations related to age and sex when these demographics were employed as predictors. Concerning proxies of CR in semantic fluency, the only vocabulary was an important moderator in both age groups. Higher vocabulary scores were associated with lesser activation in occipital areas. Education did not show significant correlations with brain activity during semantic fluency in any of the groups. However, both CR proxies were significantly correlated to brain activations of older adults during finger tapping. Specifically, vocabulary was associated with frontal regions, while education correlated with parietal lobe and cingulate gyrus. Finally, the effects of MMSE were mostly observed on brain activation of older adults in both tasks. These findings demonstrate that the effects of moderating variables on shaping brain activation are intricate and not exclusive of complex verbal tasks. Thus, before adjusting for “nuisance variables,” their importance needs to be established. This is especially true for samples including older adults for whom a motor task may be a demanding operation due to normal age-related processes of dedifferentiation.
Collapse
Affiliation(s)
- Claudia Rodríguez-Aranda
- Department of Psychology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Susana A Castro-Chavira
- Department of Psychology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ragna Espenes
- Department of Psychology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Fernando A Barrios
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Knut Waterloo
- Department of Psychology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway.,Department of Neurology, University Hospital of North Norway, Tromsø, Norway
| | - Torgil R Vangberg
- Department of Radiology and Nuclear Medicine, University Hospital of North Norway, Tromsø, Norway.,Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
18
|
Uehara S, Mizuguchi N, Hirose S, Yamamoto S, Naito E. Involvement of human left frontoparietal cortices in neural processes associated with task-switching between two sequences of skilled finger movements. Brain Res 2019; 1722:146365. [PMID: 31400310 DOI: 10.1016/j.brainres.2019.146365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/25/2019] [Accepted: 08/06/2019] [Indexed: 11/30/2022]
Abstract
In this study, we demonstrate the involvement of left frontoparietal cortices in neural processes for task-switching between skilled movements. Functional magnetic resonance imaging was conducted while thirty-two right-handed healthy participants performed two sequential finger-movement tasks with their left hands. One group (n = 16) trained these tasks through random-practice (tasks were either switched or repeated trial by trial) on one day and blocked-practice (successive intensive practice of each task) on the next day, while the remaining participants practiced in the reverse order. On the first day, performance of both tasks improved in all participants, suggesting that the two skilful tasks can be learned in both practice schedules. However, during the random-practice, the performance in the switched trials initially deteriorated and gradually approached to that in the repeated trials as the practice proceeded. The left (mainly inferior) frontoparietal cortices showed greater preparatory activity for the switched trials compared with the repeated trials in a left-hemispheric dominant manner, and the left intraparietal activity decreased as the performance of the switched trials improved. The results indicate that neural processes for task-switching are associated with the greater preparatory activity in the left inferior frontoparietal cortices, and the efficient switching may proceed concomitantly with the left intraparietal activity reduction.
Collapse
Affiliation(s)
- Shintaro Uehara
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Osaka 565-0871, Japan; The Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
| | - Nobuaki Mizuguchi
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Osaka 565-0871, Japan; Graduate School of Medicine and Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Satoshi Hirose
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Osaka 565-0871, Japan; Graduate School of Medicine and Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Shinji Yamamoto
- School of Health and Sport Sciences, Osaka University of Health and Sport Sciences, Osaka 590-0496, Japan
| | - Eiichi Naito
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Osaka 565-0871, Japan; Graduate School of Medicine and Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan.
| |
Collapse
|
19
|
Liebherr M, Antons S, Brand M. The SwAD-Task – An Innovative Paradigm for Measuring Costs of Switching Between Different Attentional Demands. Front Psychol 2019; 10:2178. [PMID: 31636578 PMCID: PMC6788298 DOI: 10.3389/fpsyg.2019.02178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/10/2019] [Indexed: 11/20/2022] Open
Abstract
Task switching paradigms are frequently used to identify costs of switching between modalities, spatiality, attributes, rules, etc., but switching between different attentional demands has been somehow neglected. The present study introduces an innovative paradigm, that allows to test single attentional demands (such as selective and divided attention), and more importantly the process of switching between these demands. We examined the feasibility of the paradigm by focusing on the demands of selective and divided attention with a sample of 94 people (age: M = 21.44 years, SD = 2.68; 76 women). In addition, we tested correlations between the implemented single attentional demands and commonly used measures of selective and divided attention. Results show no general difference between individual assessments under single demand conditions. Reaction times under divided attention are significantly higher compared to selective attention. In the switching condition, reaction times in both demands increase with increased switching. Furthermore, switching costs significantly increase in selective but not in divided attention. Means of selective and divided attention in single and switching conditions significantly correlate with a commonly used measure of selective attention. Means of divided attention under single demand significantly correlate with performance in a commonly used dual-task paradigm. Summarizing the present findings, it can be stated that the introduced paradigm comprises a feasible way for quantifying the process of switching attention between different demands.
Collapse
|
20
|
Manca R, Mitolo M, Stabile MR, Bevilacqua F, Sharrack B, Venneri A. Multiple brain networks support processing speed abilities of patients with multiple sclerosis. Postgrad Med 2019; 131:523-532. [PMID: 31478421 DOI: 10.1080/00325481.2019.1663706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Objectives: Many people affected by multiple sclerosis (MS) experience cognitive impairment, especially decreases in information processing speed (PS). Neural disconnection is thought to represent the neural marker of this symptom, although the role played by alterations of specific functional brain networks still remains unclear. The aim is to investigate and compare patterns of association between PS-demanding cognitive performance and functional connectivity across two MS phenotypes. Methods: Forty patients with relapsing-remitting MS (RRMS) and 25 with secondary progressive MS (SPMS) had neuropsychological and MRI assessments. Multiple regression models were used to investigate the relationship between performance on tests of visuomotor and verbal PS, and on the verbal fluency tests, and functional connectivity of four cognitive networks, i.e. left and right frontoparietal, salience and default-mode, and two control networks, i.e. visual and sensorimotor. Results: Patients with SPMS were older and had longer disease history than patients with RRMS and presented with worse overall clinical conditions: higher disease severity, total lesion volume, and cognitive impairment rates. However, in both patient samples, cognitive performance across tests was negatively correlated with functional connectivity of the salience and default-mode networks, and positively with connectivity of the left frontoparietal network. Only the visuomotor PS scores of the RRMS group were also associated with connectivity of the sensorimotor network. Conclusions: PS-demanding cognitive performance in patients with MS appears mainly associated with strength of functional connectivity of frontal networks involved in the evaluation and manipulation of information, as well as the default mode network. These results are in line with the hypothesis that multiple neural networks are needed to support normal cognitive performance across MS phenotypes. However, different PS measures showed partially different patterns of association with functional connectivity. Therefore, further investigations are needed to clarify the contribution of inter-network communication to specific cognitive deficits due to MS.
Collapse
Affiliation(s)
- Riccardo Manca
- Department of Neuroscience, University of Sheffield , Sheffield , UK
| | - Micaela Mitolo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Diagnostica Funzionale Neuroradiologica , Bologna , Italy
| | | | | | - Basil Sharrack
- Academic Department of Neuroscience, Sheffield Teaching Hospital, NHS Foundation Trust , Sheffield , UK
| | - Annalena Venneri
- Department of Neuroscience, University of Sheffield , Sheffield , UK
| |
Collapse
|
21
|
Jones SE, Idris A, Bullen JA, Miller JB, Banks SJ. Relationship between cortical thickness and fluency in the memory disorders clinic population. Neuropsychologia 2019; 129:294-301. [DOI: 10.1016/j.neuropsychologia.2019.03.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 03/16/2019] [Accepted: 03/28/2019] [Indexed: 01/18/2023]
|
22
|
The strength of alpha and gamma oscillations predicts behavioral switch costs. Neuroimage 2018; 188:274-281. [PMID: 30543844 DOI: 10.1016/j.neuroimage.2018.12.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 11/23/2022] Open
Abstract
Cognitive flexibility is often examined using task-switch paradigms, whereby individuals either switch between tasks or repeat the same task on successive trials. The behavioral costs of switching in terms of accuracy and reaction time are well-known, but the oscillatory dynamics underlying such costs are poorly understood. Herein, we examined 25 healthy adults who performed a task-switching paradigm during magnetoencephalography (MEG). All MEG data were transformed into the time-frequency domain and significant oscillatory responses were imaged separately per condition (i.e., switch, repeat) using a beamformer. To determine the impact of task-switching on the neural dynamics, the resulting images were examined using paired-samples t-tests. Whole-brain correlations were also computed using the switch-related difference images (switch - repeat) and the switch-related behavioral data (i.e., switch costs). Our key results indicated stronger decreases in alpha and beta activity, and greater increases in gamma activity in nodes of the cingulo-opercular and fronto-parietal networks during switch relative to repeat trials. In addition, behavioral switch costs were positively correlated with switch-related differences in right frontal and inferior parietal alpha activity, and negatively correlated with switch effects in anterior cingulate and right temporoparietal gamma activity. In other words, participants who had a greater decrease in alpha or increase in gamma in these respective regions had smaller behavioral switch costs, which suggests that these oscillations are critical to supporting cognitive flexibility. In sum, we provide novel data linking switch effects and gamma oscillations, and employed a whole-brain approach to directly link switch-related oscillatory differences with switch-related performance differences.
Collapse
|
23
|
Gilsoul J, Simon J, Hogge M, Collette F. Do attentional capacities and processing speed mediate the effect of age on executive functioning? AGING NEUROPSYCHOLOGY AND COGNITION 2018; 26:282-317. [DOI: 10.1080/13825585.2018.1432746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Jessica Gilsoul
- GIGA-CRC in Vivo Imaging, University of Liège, Liège, Belgium
- Psychology and Neuroscience of Cognition, University of Liège, Liège, Belgium
| | - Jessica Simon
- GIGA-CRC in Vivo Imaging, University of Liège, Liège, Belgium
- Psychology and Neuroscience of Cognition, University of Liège, Liège, Belgium
| | - Michaël Hogge
- Psychology and Neuroscience of Cognition, University of Liège, Liège, Belgium
| | - Fabienne Collette
- GIGA-CRC in Vivo Imaging, University of Liège, Liège, Belgium
- Psychology and Neuroscience of Cognition, University of Liège, Liège, Belgium
| |
Collapse
|
24
|
Methqal I, Marsolais Y, Wilson MA, Monchi O, Joanette Y. More expertise for a better perspective: Task and strategy-driven adaptive neurofunctional reorganization for word production in high-performing older adults. AGING NEUROPSYCHOLOGY AND COGNITION 2018; 26:190-221. [PMID: 29334837 DOI: 10.1080/13825585.2017.1423021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The suggestion that neurofunctional reorganization may contribute to preserved language abilities is still emerging in aging studies. Some of these abilities, such as verbal fluency (VF), are not unitary but instead rely on different strategic processes that are differentially changed with age. Younger (n = 13) and older adults (n = 13) carried out an overt self-paced semantic and orthographic VF tasks within mixed fMRI design. Our results suggest that patterns of brain activation sustaining equivalent performances could be underpinned by different strategies facing brain changes during healthy aging. These main findings suggest that temporally mediated semantic clustering and frontally mediated orthographic switching were driven by evolutive neurofunctional resources in high-performing older adults. These age-related activation changes can appear to be compatible with the idea that unique neural patterns expressing distinctive cognitive strategies are necessary to support older adults' performance on VF tasks.
Collapse
Affiliation(s)
- Ikram Methqal
- a Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal , Montreal, QC , Canada.,b Faculty of Medecine , University of Montreal , Montreal , QC , Canada
| | | | - Maximiliano A Wilson
- d Centre de recherche CERVO - CIUSSS de la Capitale-Nationale et Département de réadaptation , Université Laval , Québec , Canada
| | - Oury Monchi
- e Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine , University of Calgary , Calgary , Canada
| | - Yves Joanette
- a Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal , Montreal, QC , Canada.,b Faculty of Medecine , University of Montreal , Montreal , QC , Canada
| |
Collapse
|
25
|
Marangolo P, Fiori V, Caltagirone C, Pisano F, Priori A. Transcranial Cerebellar Direct Current Stimulation Enhances Verb Generation but Not Verb Naming in Poststroke Aphasia. J Cogn Neurosci 2017; 30:188-199. [PMID: 29064340 DOI: 10.1162/jocn_a_01201] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Although the role of the cerebellum in motor function is well recognized, its involvement in the lexical domain remains to be further elucidated. Indeed, it has not yet been clarified whether the cerebellum is a language structure per se or whether it contributes to language processing when other cognitive components (e.g., cognitive effort, working memory) are required by the language task. Neuromodulation studies on healthy participants have suggested that cerebellar transcranial direct current stimulation (tDCS) is a valuable tool to modulate cognitive functions. However, so far, only a single case study has investigated whether cerebellar stimulation enhances language recovery in aphasic individuals. In a randomized, crossover, double-blind design, we explored the effect of cerebellar tDCS coupled with language treatment for verb improvement in 12 aphasic individuals. Each participant received cerebellar tDCS (20 min, 2 mA) in four experimental conditions: (1) right cathodal and (2) sham stimulation during a verb generation task and (3) right cathodal and (4) sham stimulation during a verb naming task. Each experimental condition was run in five consecutive daily sessions over 4 weeks. At the end of treatment, a significant improvement was found after cathodal stimulation only in the verb generation task. No significant differences were present for verb naming among the two conditions. We hypothesize that cerebellar tDCS is a viable tool for recovery from aphasia but only when the language task, such as verb generation, also demands the activation of nonlinguistic strategies.
Collapse
Affiliation(s)
- Paola Marangolo
- Università Federico II, Naples, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | | | - Carlo Caltagirone
- IRCCS Fondazione Santa Lucia, Rome, Italy.,Università degli Studi di Roma Tor Vergata, Rome, Italy
| | | | | |
Collapse
|
26
|
Gollan TH, Stasenko A, Li C, Salmon DP. Bilingual language intrusions and other speech errors in Alzheimer's disease. Brain Cogn 2017; 118:27-44. [PMID: 28753438 DOI: 10.1016/j.bandc.2017.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 07/12/2017] [Accepted: 07/20/2017] [Indexed: 10/19/2022]
Abstract
The current study investigated how Alzheimer's disease (AD) affects production of speech errors in reading-aloud. Twelve Spanish-English bilinguals with AD and 19 matched controls read-aloud 8 paragraphs in four conditions (a) English-only, (b) Spanish-only, (c) English-mixed (mostly English with 6 Spanish words), and (d) Spanish-mixed (mostly Spanish with 6 English words). Reading elicited language intrusions (e.g., saying la instead of the), and several types of within-language errors (e.g., saying their instead of the). Patients produced more intrusions (and self-corrected less often) than controls, particularly when reading non-dominant language paragraphs with switches into the dominant language. Patients also produced more within-language errors than controls, but differences between groups for these were not consistently larger with dominant versus non-dominant language targets. These results illustrate the potential utility of speech errors for diagnosis of AD, suggest a variety of linguistic and executive control impairments in AD, and reveal multiple cognitive mechanisms needed to mix languages fluently. The observed pattern of deficits, and unique sensitivity of intrusions to AD in bilinguals, suggests intact ability to select a default language with contextual support, to rapidly translate and switch languages in production of connected speech, but impaired ability to monitor language membership while regulating inhibitory control.
Collapse
Affiliation(s)
| | - Alena Stasenko
- San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, United States
| | - Chuchu Li
- University of California, San Diego, United States
| | | |
Collapse
|
27
|
Li M, Zhang Y, Song L, Huang R, Ding J, Fang Y, Xu Y, Han Z. Structural connectivity subserving verbal fluency revealed by lesion-behavior mapping in stroke patients. Neuropsychologia 2017; 101:85-96. [PMID: 28495601 DOI: 10.1016/j.neuropsychologia.2017.05.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 05/04/2017] [Accepted: 05/06/2017] [Indexed: 12/28/2022]
Abstract
Tests of verbal fluency have been widely used to assess the cognitive functioning of persons, and are typically classified into two categories (semantic and phonological fluency). While widely-distributed divergent and convergent brain regions have been found to be involved in semantic and phonological fluency, the anatomical connectivity underlying the fluency is not well understood. The present study aims to construct a comprehensive white-matter network associated with semantic and phonological fluency by investigating the relationship between the integrity of 22 major tracts in the whole brain and semantic fluency (measured by 3 cues) and phonological fluency (measured by 2 cues) in a group of 51 stroke patients. We found five left-lateralized tracts including the anterior thalamic radiation (ATR), inferior fronto-occipital fasciculus (IFOF), uncinate fasciculus (UF), superior longitudinal fasciculus (SLF) and frontal aslant tract (FAT) were significantly correlated with the scores of both semantic and phonological fluencies. These effects persisted even when we ruled out the influence of potential confounding factors (e.g., total lesion volume). Moreover, the damage to the first three tracts caused additional impairments in the semantic compared to the phonological fluency. These findings reveal the white-matter neuroanatomical connectivity underlying semantic and phonological fluency, and deepen the understanding of the neural network of verbal fluency.
Collapse
Affiliation(s)
- Mingyang Li
- National Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Yumei Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Luping Song
- Rehabilitation College and China Rehabilitation Research Center, Capital Medical University, Beijing 100038, China
| | - Ruiwang Huang
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Junhua Ding
- National Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Yuxing Fang
- National Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Yangwen Xu
- National Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Zaizhu Han
- National Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
28
|
Li Y, Grabell AS, Wakschlag LS, Huppert TJ, Perlman SB. The neural substrates of cognitive flexibility are related to individual differences in preschool irritability: A fNIRS investigation. Dev Cogn Neurosci 2016; 25:138-144. [PMID: 27527736 PMCID: PMC5292091 DOI: 10.1016/j.dcn.2016.07.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/15/2016] [Accepted: 07/27/2016] [Indexed: 11/17/2022] Open
Abstract
A novel, child-appropriate, Stroop task was used to assess preschoolers’ cognitive flexibility. Cognitive flexibility was linked to increased oxygenated-hemoglobin in the left DLPFC. Oxygenated-hemoglobin in the bilateral DLPFC during cognitive flexibility was positively correlated with irritability.
Preschool (age 3–5) is a phase of rapid development in both cognition and emotion, making this a period in which the neurodevelopment of each domain is particularly sensitive to that of the other. During this period, children rapidly learn how to flexibly shift their attention between competing demands and, at the same time, acquire critical emotion regulation skills to respond to negative affective challenges. The integration of cognitive flexibility and individual differences in irritability may be an important developmental process of early childhood maturation. However, at present it is unclear if they share common neural substrates in early childhood. Our main goal was to examine the neural correlates of cognitive flexibility in preschool children and test for associations with irritability. Forty-six preschool aged children completed a novel, child-appropriate, Stroop task while dorsolateral prefrontal cortex (DLPFC) activation was recorded using functional Near Infrared Spectroscopy (fNIRS). Parents rated their child’s irritability. Results indicated that left DLPFC activation was associated with cognitive flexibility and positively correlated with irritability. Right DLPFC activation was also positively correlated with irritability. Results suggest the entwined nature of cognitive and emotional neurodevelopment during a developmental period of rapid and mutual acceleration.
Collapse
Affiliation(s)
- Yanwei Li
- Research Center for Learning Science, Key Laboratory of Child Development and Learning Science of Ministry of Education, Southeast University, Nanjing, Jiangsu, China; Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh, United States
| | - Adam S Grabell
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh, United States
| | - Lauren S Wakschlag
- Department of Medical Social Sciences, Feinberg School of Medicine and Institute for Policy Research, Northwestern University, United States
| | | | - Susan B Perlman
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh, United States.
| |
Collapse
|
29
|
Campanella F, Skrap M, Vallesi A. Speed-accuracy strategy regulations in prefrontal tumor patients. Neuropsychologia 2016; 82:1-10. [PMID: 26772144 PMCID: PMC4758810 DOI: 10.1016/j.neuropsychologia.2016.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/11/2015] [Accepted: 01/06/2016] [Indexed: 10/27/2022]
Abstract
The ability to flexibly switch between fast and accurate decisions is crucial in everyday life. Recent neuroimaging evidence suggested that left lateral prefrontal cortex plays a role in switching from a quick response strategy to an accurate one. However, the causal role of the left prefrontal cortex in this particular, non-verbal, strategy switch has never been demonstrated. To fill this gap, we administered a perceptual decision-making task to neuro-oncological prefrontal patients, in which the requirement to be quick or accurate changed randomly on a trial-by-trial basis. To directly assess hemispheric asymmetries in speed-accuracy regulation, patients were tested a few days before and a few days after surgical excision of a brain tumor involving either the left (N=13) or the right (N=12) lateral frontal brain region. A group of age- and education-matched healthy controls was also recruited. To gain more insight on the component processes implied in the task, performance data (accuracy and speed) were not only analyzed separately but also submitted to a diffusion model analysis. The main findings indicated that the left prefrontal patients were impaired in appropriately adopting stricter response criteria in speed-to-accuracy switching trials with respect to healthy controls and right prefrontal patients, who were not impaired in this condition. This study demonstrates that the prefrontal cortex in the left hemisphere is necessary for flexible behavioral regulations, in particular when setting stricter response criteria is required in order to successfully switch from a speedy strategy to an accurate one.
Collapse
Affiliation(s)
- Fabio Campanella
- Neurosurgery Unit, Azienda Ospedaliero-Universitaria Santa Maria della Misericordia, Piazzale Santa Maria della Misericordia 15, 33100 Udine, Italy; Department of Human Sciences, University of Udine, via Petracco 8, 33100 Udine, Italy
| | - Miran Skrap
- Neurosurgery Unit, Azienda Ospedaliero-Universitaria Santa Maria della Misericordia, Piazzale Santa Maria della Misericordia 15, 33100 Udine, Italy
| | - Antonino Vallesi
- Department of Neuroscience, University of Padova, Via Giustiniani, 5, 35128 Padova, Italy; Centro di Neuroscienze Cognitive, University of Padova, Via Giustiniani, 5, 35128 Padova, Italy.
| |
Collapse
|
30
|
Wei M, Joshi AA, Zhang M, Mei L, Manis FR, He Q, Beattie RL, Xue G, Shattuck DW, Leahy RM, Xue F, Houston SM, Chen C, Dong Q, Lu ZL. How age of acquisition influences brain architecture in bilinguals. JOURNAL OF NEUROLINGUISTICS 2015; 36:35-55. [PMID: 27695193 PMCID: PMC5045052 DOI: 10.1016/j.jneuroling.2015.05.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In the present study, we explored how Age of Acquisition (AoA) of L2 affected brain structures in bilingual individuals. Thirty-six native English speakers who were bilingual were scanned with high resolution MRI. After MRI signal intensity inhomogeneity correction, we applied both voxel-based morphometry (VBM) and surface-based morphometry (SBM) approaches to the data. VBM analysis was performed using FSL's standard VBM processing pipeline. For the SBM analysis, we utilized a semi-automated sulci delineation procedure, registered the brains to an atlas, and extracted measures of twenty four pre-selected regions of interest. We addressed three questions: (1) Which areas are more susceptible to differences in AoA? (2) How do AoA, proficiency and current level of exposure work together in predicting structural differences in the brain? And (3) What is the direction of the effect of AoA on regional volumetric and surface measures? Both VBM and SBM results suggested that earlier second language exposure was associated with larger volumes in the right parietal cortex. Consistently, SBM showed that the cortical area of the right superior parietal lobule increased as AoA decreased. In contrast, in the right pars orbitalis of the inferior frontal gyrus, AoA, proficiency, and current level of exposure are equally important in accounting for the structural differences. We interpret our results in terms of current theory and research on the effects of L2 learning on brain structures and functions.
Collapse
Affiliation(s)
- Miao Wei
- Department of Psychology, University of Southern California, Los Angeles, CA 90089-1061, USA
| | - Anand A. Joshi
- Signal and Image Processing Institute, University of Southern California, Los Angeles, CA 90089-2564, USA
| | - Mingxia Zhang
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Leilei Mei
- Center for Studies of Psychological Application and School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Franklin R. Manis
- Department of Psychology, University of Southern California, Los Angeles, CA 90089-1061, USA
| | - Qinghua He
- Department of Psychology, University of Southern California, Los Angeles, CA 90089-1061, USA
| | - Rachel L. Beattie
- Center for Cognitive and Behavioral Brain Imaging and Department of Psychology, The Ohio State University, Columbus, OH 43210, USA
| | - Gui Xue
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - David W. Shattuck
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095-7334, USA
| | - Richard M. Leahy
- Signal and Image Processing Institute, University of Southern California, Los Angeles, CA 90089-2564, USA
| | - Feng Xue
- Department of Psychology, University of Southern California, Los Angeles, CA 90089-1061, USA
| | - Suzanne M. Houston
- Department of Psychology, University of Southern California, Los Angeles, CA 90089-1061, USA
| | - Chuansheng Chen
- Department of Psychology and Social Behavior, University of California Irvine, Irvine, CA 92697, USA
| | - Qi Dong
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Zhong-Lin Lu
- Center for Cognitive and Behavioral Brain Imaging and Department of Psychology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
31
|
Thothathiri M, Rattinger M. Controlled processing during sequencing. Front Hum Neurosci 2015; 9:599. [PMID: 26578941 PMCID: PMC4624862 DOI: 10.3389/fnhum.2015.00599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 10/15/2015] [Indexed: 11/25/2022] Open
Abstract
Longstanding evidence has identified a role for the frontal cortex in sequencing within both linguistic and non-linguistic domains. More recently, neuropsychological studies have suggested a specific role for the left premotor-prefrontal junction (BA 44/6) in selection between competing alternatives during sequencing. In this study, we used neuroimaging with healthy adults to confirm and extend knowledge about the neural correlates of sequencing. Participants reproduced visually presented sequences of syllables and words using manual button presses. Items in the sequence were presented either consecutively or concurrently. Concurrent presentation is known to trigger the planning of multiple responses, which might compete with one another. Therefore, we hypothesized that regions involved in controlled processing would show greater recruitment during the concurrent than the consecutive condition. Whole-brain analysis showed concurrent > consecutive activation in sensory, motor and somatosensory cortices and notably also in rostral-dorsal anterior cingulate cortex. Region of interest analyses showed increased activation within left BA 44/6 and correlation between this region’s activation and behavioral response times. Functional connectivity analysis revealed increased connectivity between left BA 44/6 and the posterior lobe of the cerebellum during the concurrent than the consecutive condition. These results corroborate recent evidence and demonstrate the involvement of BA 44/6 and other control regions when ordering co-activated representations.
Collapse
Affiliation(s)
- Malathi Thothathiri
- Department of Speech and Hearing Science, The George Washington University, Washington DC, USA
| | - Michelle Rattinger
- Department of Speech and Hearing Science, The George Washington University, Washington DC, USA
| |
Collapse
|
32
|
Vallesi A, Arbula S, Capizzi M, Causin F, D'Avella D. Domain-independent neural underpinning of task-switching: An fMRI investigation. Cortex 2015; 65:173-83. [DOI: 10.1016/j.cortex.2015.01.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 10/07/2014] [Accepted: 01/27/2015] [Indexed: 11/17/2022]
|
33
|
Golestanirad L, Das S, Schweizer TA, Graham SJ. A preliminary fMRI study of a novel self-paced written fluency task: observation of left-hemispheric activation, and increased frontal activation in late vs. early task phases. Front Hum Neurosci 2015; 9:113. [PMID: 25805984 PMCID: PMC4354285 DOI: 10.3389/fnhum.2015.00113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 02/16/2015] [Indexed: 11/16/2022] Open
Abstract
Neuropsychological tests of verbal fluency are very widely used to characterize impaired cognitive function. For clinical neuroscience studies and potential medical applications, measuring the brain activity that underlies such tests with functional magnetic resonance imaging (fMRI) is of significant interest—but a challenging proposition because overt speech can cause signal artifacts, which tend to worsen as the duration of speech tasks becomes longer. In a novel approach, we present the group brain activity of 12 subjects who performed a self-paced written version of phonemic fluency using fMRI-compatible tablet technology that recorded responses and provided task-related feedback on a projection screen display, over long-duration task blocks (60 s). As predicted, we observed robust activation in the left anterior inferior and medial frontal gyri, consistent with previously reported results of verbal fluency tasks which established the role of these areas in strategic word retrieval. In addition, the number of words produced in the late phase (last 30 s) of written phonemic fluency was significantly less (p < 0.05) than the number produced in the early phase (first 30 s). Activation during the late phase vs. the early phase was also assessed from the first 20 s and last 20 s of task performance, which eliminated the possibility that the sluggish hemodynamic response from the early phase would affect the activation estimates of the late phase. The last 20 s produced greater activation maps covering extended areas in bilateral precuneus, cuneus, middle temporal gyrus, insula, middle frontal gyrus and cingulate gyrus. Among these areas, greater activation was observed in the bilateral middle frontal gyrus (Brodmann area BA 9) and cingulate gyrus (BA 24, 32) likely as part of the initiation, maintenance, and shifting of attentional resources. Consistent with previous pertinent fMRI literature involving overt and covert verbal responses, these findings highlight the promise and practicality of fMRI of written phonemic fluency.
Collapse
Affiliation(s)
| | - Sunit Das
- Keenan Research Institute, St. Michael's Hospital Toronto, ON, Canada
| | - Tom A Schweizer
- Keenan Research Institute, St. Michael's Hospital Toronto, ON, Canada
| | - Simon J Graham
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre Toronto, ON, Canada
| |
Collapse
|
34
|
Magnin E, Teichmann M, Martinaud O, Moreaud O, Ryff I, Belliard S, Pariente J, Moulin T, Vandel P, Démonet JF. Particularités du variant logopénique au sein des aphasies progressives primaires. Rev Neurol (Paris) 2015; 171:16-30. [DOI: 10.1016/j.neurol.2014.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/16/2014] [Accepted: 08/29/2014] [Indexed: 11/26/2022]
|
35
|
Kolinsky R, Monteiro-Plantin RS, Mengarda EJ, Grimm-Cabral L, Scliar-Cabral L, Morais J. How formal education and literacy impact on the content and structure of semantic categories. Trends Neurosci Educ 2014. [DOI: 10.1016/j.tine.2014.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Op de Beeck S, Galoppin A, Willemarck N. [Verbal fluency among healthy elderly: a study of three complex verbal fluency tasks under healthy older people and patients with neurocognitive disorder or onset dementia of the Alzheimer type]. Tijdschr Gerontol Geriatr 2014; 45:154-163. [PMID: 24515343 DOI: 10.1007/s12439-014-0061-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The aim of this study is to provide normative data for a phonological alternating task (FAT), a semantic alternating task (SAT) and an excluded letter task (ELT). The tasks were administered to 146 Flemish-speaking, cognitively healthy elderly. Data from 102 were used and were classified according to the significant variables. Subsequently, these tasks were administered to seven patients diagnosed with mild neurocognitive impairment (mild cognitive impairment, MCI) and seven patients with onset dementia of the Alzheimer type (DAT). Results of the standard study show that the level of education is a significant variable for all complex VFT and age for the SAT and the ELT, while age related deterioration is highest for the ELT. The error rate is highest for the ELT and lowest for the SAT. Analysis of the time duration shows that data should be collected for at least 2 min. The patients scored significantly lower than the normgroup of healthy adults. The error rate is highest for the SAT and lowest for the ELT.
Collapse
|
37
|
Yang J, Zevin J. The impact of task demand on visual word recognition. Neuroscience 2014; 272:102-15. [PMID: 24814725 DOI: 10.1016/j.neuroscience.2014.04.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 03/29/2014] [Accepted: 04/15/2014] [Indexed: 11/17/2022]
Abstract
The left occipitotemporal cortex has been found sensitive to the hierarchy of increasingly complex features in visually presented words, from individual letters to bigrams and morphemes. However, whether this sensitivity is a stable property of the brain regions engaged by word recognition is still unclear. To address the issue, the current study investigated whether different task demands modify this sensitivity. Participants viewed real English words and stimuli with hierarchical word-likeness while performing a lexical decision task (i.e., to decide whether each presented stimulus is a real word) and a symbol detection task. General linear model and independent component analysis indicated strong activation in the fronto-parietal and temporal regions during the two tasks. Furthermore, the bilateral inferior frontal gyrus and insula showed significant interaction effects between task demand and stimulus type in the pseudoword condition. The occipitotemporal cortex showed strong main effects for task demand and stimulus type, but no sensitivity to the hierarchical word-likeness was found. These results suggest that different task demands on semantic, phonological and orthographic processes can influence the involvement of the relevant regions during visual word recognition.
Collapse
Affiliation(s)
- J Yang
- Sackler Institute of Developmental Psychobiology, Department of Psychiatry, Weill Medical College of Cornell University, New York, NY 10065, United States.
| | - J Zevin
- Sackler Institute of Developmental Psychobiology, Department of Psychiatry, Weill Medical College of Cornell University, New York, NY 10065, United States
| |
Collapse
|
38
|
Spalletta G, Piras F, Fagioli S, Caltagirone C, Piras F. Brain microstructural changes and cognitive correlates in patients with pure obsessive compulsive disorder. Brain Behav 2014; 4:261-77. [PMID: 24683518 PMCID: PMC3967541 DOI: 10.1002/brb3.212] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 12/12/2013] [Accepted: 12/15/2013] [Indexed: 02/06/2023] Open
Abstract
OBJECT The aim of this study was to investigate macrostructural and microstructural brain changes in patients with pure obsessive compulsive disorder (OCD) and to examine the relationship between brain structure and neuropsychological deficits. METHOD 20 patients with OCD underwent a comprehensive neuropsychological battery. A combined voxel-based morphometry (VBM) and diffusion tensor imaging (DTI) analysis was used to capture gray matter (GM) and white matter changes in OCD patients as compared to pair-matched healthy volunteers. Multiple regression designs explored the relationship between cognition and neuroimaging parameters. RESULTS OCD patients had increased mean diffusivity (MD) in GM nodes of the orbitofronto-striatal loop (left dorsal anterior cingulate [Z = 3.67, P < 0.001] left insula [Z = 3.35 P < 0.001] left thalamus [Z = 3.59, P < 0.001] left parahippocampal gyrus [Z = 3.77 P < 0.001]) and in lateral frontal and posterior associative cortices (right frontal operculum [Z = 3.42 P < 0.001], right temporal lobe [Z = 3.79 P < 0.001] left parietal lobe [Z = 3.91 P < 0.001]). Decreased fractional anisotropy (FA) was detected in intrahemispheric (left superior longitudinal fasciculus [Z = 4.07 P < 0.001]) and interhemispheric (body of corpus callosum [CC, Z = 4.42 P < 0.001]) bundles. Concurrently, the semantic fluency score, a measure of executive control processes, significantly predicted OCD diagnosis (Odds Ratio = 1.37; 95% Confidence Intervals = 1.09-1.73; P = 0.0058), while variation in performance was correlated with increased MD in left temporal (Z = 4.25 P < 0.001) and bilateral parietal regions (left Z = 3.94, right Z = 4.19 P < 0.001), and decreased FA in the right posterior corona radiata (Z = 4.07 P < 0.001) and the left corticospinal tract (Z = 3.95 P < 0.001). CONCLUSIONS The reported deficit in executive processes and the underlying microstructural alterations may qualify as behavioral and biological markers of OCD.
Collapse
Affiliation(s)
- Gianfranco Spalletta
- Department of Clinical and Behavioral Neurology, Neuropsychiatry Laboratory, IRCCS Santa Lucia Foundation Via Ardeatina 306, 00179, Rome, Italy
| | - Fabrizio Piras
- Department of Clinical and Behavioral Neurology, Neuropsychiatry Laboratory, IRCCS Santa Lucia Foundation Via Ardeatina 306, 00179, Rome, Italy
| | - Sabrina Fagioli
- Department of Clinical and Behavioral Neurology, Neuropsychiatry Laboratory, IRCCS Santa Lucia Foundation Via Ardeatina 306, 00179, Rome, Italy
| | - Carlo Caltagirone
- Department of Clinical and Behavioral Neurology, Neuropsychiatry Laboratory, IRCCS Santa Lucia Foundation Via Ardeatina 306, 00179, Rome, Italy ; Department of Neuroscience, Tor Vergata University of Rome Rome, Italy
| | - Federica Piras
- Department of Clinical and Behavioral Neurology, Neuropsychiatry Laboratory, IRCCS Santa Lucia Foundation Via Ardeatina 306, 00179, Rome, Italy
| |
Collapse
|
39
|
Cognitive flexibility in internet addicts: fMRI evidence from difficult-to-easy and easy-to-difficult switching situations. Addict Behav 2014; 39:677-83. [PMID: 24368005 DOI: 10.1016/j.addbeh.2013.11.028] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 11/07/2013] [Accepted: 11/27/2013] [Indexed: 12/14/2022]
Abstract
Internet addiction disorder (IAD) has raised widespread public health concerns. In this study, we explored the cognitive flexibility in IAD subjects using a color-word Stroop task. Behavioral and imaging data were collected from 15 IAD subjects (21.2±3.2years) and 15 healthy controls (HC, 22.1±3.6years). Group comparisons found that IAD subjects show higher superior temporal gyrus activations than healthy controls in switching (easy to difficult; difficult to easy) than in repeating trials. In addition, in difficult-to-easy situation, IAD subjects show higher brain activation in bilateral insula than healthy controls; in easy-to-difficult situation, IAD subjects show higher brain activation in bilateral precuneus than healthy controls. Correlations were also performed between behavioral performances and brain activities in relevant brain regions. Taken together, we concluded that IAD subjects engaged more endeavors in executive control and attention in the switching task. From another perspective, IAD subjects show impaired cognitive flexibilities.
Collapse
|
40
|
Dong G, Zhou H, Lin X, Hu Y, Lu Q. Why the processing of repeated targets are better than that of no repetition: evidence from easy-to-difficult and difficult-to-easy switching situations. Behav Brain Funct 2014; 10:4. [PMID: 24524597 PMCID: PMC3942170 DOI: 10.1186/1744-9081-10-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 02/06/2014] [Indexed: 11/26/2022] Open
Abstract
Background Previous studies have found that the processing of repeated targets are easier than that of non-repetition. Although several theories attempt to explain this issue, the underlying mechanism still remains uncovered. In this study, we tried to address this issue by exploring the underlying brain responses during this process. Methods Brain activities were recorded while thirty participants performing a Stroop task (Chinese version) in the MRI scanner. Using pseudo-random strategies, we created two types of switching conditions (easy-to-difficult; difficult-to-easy) and relevant repeating conditions. Results The results show that, in difficult-to-easy switching situation, higher brain activations are found in left precuneus than repeating ones (the precuneus is thought related with attention demands). In easy-to-difficult switching conditions, higher brain activations are found in precuneus, superior temporal gyrus, posterior cingulate cortex, and inferior frontal gyrus than repeating trials (most of these regions are thought related with executive function). No overlapping brain regions are observed in con_CON and incon_INCON conditions. Beta figures of the survived clusters in different conditions, correlations between brain activations and switch cost were calculated. Conclusions The present study suggests that the feature that response time in switching trials are longer than that in repeating trials are caused by the extra endeavors engaged in the switching processes.
Collapse
Affiliation(s)
- Guangheng Dong
- Department of Psychology, Zhejiang Normal University, 688 Yingbin Road, Jinhua, Zhejiang Province, P,R, China.
| | | | | | | | | |
Collapse
|
41
|
E KH, Chen SHA, Ho MHR, Desmond JE. A meta-analysis of cerebellar contributions to higher cognition from PET and fMRI studies. Hum Brain Mapp 2014; 35:593-615. [PMID: 23125108 PMCID: PMC3866223 DOI: 10.1002/hbm.22194] [Citation(s) in RCA: 331] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 07/04/2012] [Accepted: 08/14/2012] [Indexed: 11/07/2022] Open
Abstract
A growing interest in cerebellar function and its involvement in higher cognition have prompted much research in recent years. Cerebellar presence in a wide range of cognitive functions examined within an increasing body of neuroimaging literature has been observed. We applied a meta-analytic approach, which employed the activation likelihood estimate method, to consolidate results of cerebellar involvement accumulated in different cognitive tasks of interest and systematically identified similarities among the studies. The current analysis included 88 neuroimaging studies demonstrating cerebellar activations in higher cognitive domains involving emotion, executive function, language, music, timing and working memory. While largely consistent with a prior meta-analysis by Stoodley and Schmahmann ([2009]: Neuroimage 44:489-501), our results extended their findings to include music and timing domains to provide further insights into cerebellar involvement and elucidate its role in higher cognition. In addition, we conducted inter- and intradomain comparisons for the cognitive domains of emotion, language, and working memory. We also considered task differences within the domain of verbal working memory by conducting a comparison of the Sternberg with the n-back task, as well as an analysis of the differential components within the Sternberg task. Results showed a consistent cerebellar presence in the timing domain, providing evidence for a role in time keeping. Unique clusters identified within the domain further refine the topographic organization of the cerebellum.
Collapse
Affiliation(s)
- Keren-Happuch E
- Division of Psychology, School of Humanities and Social Sciences, Nanyang Technological University, Singapore
| | | | | | | |
Collapse
|
42
|
Wagner S, Sebastian A, Lieb K, Tüscher O, Tadić A. A coordinate-based ALE functional MRI meta-analysis of brain activation during verbal fluency tasks in healthy control subjects. BMC Neurosci 2014; 15:19. [PMID: 24456150 PMCID: PMC3903437 DOI: 10.1186/1471-2202-15-19] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 01/17/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The processing of verbal fluency tasks relies on the coordinated activity of a number of brain areas, particularly in the frontal and temporal lobes of the left hemisphere. Recent studies using functional magnetic resonance imaging (fMRI) to study the neural networks subserving verbal fluency functions have yielded divergent results especially with respect to a parcellation of the inferior frontal gyrus for phonemic and semantic verbal fluency. We conducted a coordinate-based activation likelihood estimation (ALE) meta-analysis on brain activation during the processing of phonemic and semantic verbal fluency tasks involving 28 individual studies with 490 healthy volunteers. RESULTS For phonemic as well as for semantic verbal fluency, the most prominent clusters of brain activation were found in the left inferior/middle frontal gyrus (LIFG/MIFG) and the anterior cingulate gyrus. BA 44 was only involved in the processing of phonemic verbal fluency tasks, BA 45 and 47 in the processing of phonemic and semantic fluency tasks. CONCLUSIONS Our comparison of brain activation during the execution of either phonemic or semantic verbal fluency tasks revealed evidence for spatially different activation in BA 44, but not other regions of the LIFG/LMFG (BA 9, 45, 47) during phonemic and semantic verbal fluency processing.
Collapse
Affiliation(s)
- Stefanie Wagner
- Department of Psychiatry and Psychotherapy, University Medical Centre Mainz, Untere Zahlbacher Str, 8, Mainz, Germany.
| | | | | | | | | |
Collapse
|
43
|
Noonan KA, Jefferies E, Visser M, Lambon Ralph MA. Going beyond Inferior Prefrontal Involvement in Semantic Control: Evidence for the Additional Contribution of Dorsal Angular Gyrus and Posterior Middle Temporal Cortex. J Cogn Neurosci 2013; 25:1824-50. [PMID: 23859646 DOI: 10.1162/jocn_a_00442] [Citation(s) in RCA: 326] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
Semantic cognition requires a combination of semantic representations and executive control processes to direct activation in a task- and time-appropriate fashion [Jefferies, E., & Lambon Ralph, M. A. Semantic impairment in stroke aphasia versus semantic dementia: A case-series comparison. Brain, 129, 2132–2147, 2006]. We undertook a formal meta-analysis to investigate which regions within the large-scale semantic network are specifically associated with the executive component of semantic cognition. Previous studies have described in detail the role of left ventral pFC in semantic regulation. We examined 53 studies that contrasted semantic tasks with high > low executive requirements to determine whether cortical regions beyond the left pFC show the same response profile to executive semantic demands. Our findings revealed that right pFC, posterior middle temporal gyrus (pMTG) and dorsal angular gyrus (bordering intraparietal sulcus) were also consistently recruited by executively demanding semantic tasks, demonstrating patterns of activation that were highly similar to the left ventral pFC. These regions overlap with the lesions in aphasic patients who exhibit multimodal semantic impairment because of impaired regulatory control (semantic aphasia)—providing important convergence between functional neuroimaging and neuropsychological studies of semantic cognition. Activation in dorsal angular gyrus and left ventral pFC was consistent across all types of executive semantic manipulation, regardless of whether the task was receptive or expressive, whereas pMTG activation was only observed for manipulation of control demands within receptive tasks. Second, we contrasted executively demanding tasks tapping semantics and phonology. Our findings revealed substantial overlap between the two sets of contrasts within left ventral pFC, suggesting this region underpins domain-general control mechanisms. In contrast, we observed relative specialization for semantic control within pMTG as well as the most ventral aspects of left pFC (BA 47), consistent with our proposal of a distributed network underpinning semantic control.
Collapse
Affiliation(s)
- Krist A. Noonan
- 1Research Institute for the Care of Older People, Bath, UK
- 2University of Manchester
| | | | | | | |
Collapse
|
44
|
Neural substrates of cognitive switching and inhibition in a face processing task. Neuroimage 2013; 82:489-99. [DOI: 10.1016/j.neuroimage.2013.06.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/14/2013] [Accepted: 06/06/2013] [Indexed: 11/19/2022] Open
|
45
|
Discordant cerebral lateralisation for verbal fluency is not an artefact of attention: evidence from MzHd twins. Brain Struct Funct 2013; 220:59-69. [DOI: 10.1007/s00429-013-0637-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 09/10/2013] [Indexed: 01/31/2023]
|
46
|
Kenworthy L, Wallace GL, Birn R, Milleville SC, Case LK, Bandettini PA, Martin A. Aberrant neural mediation of verbal fluency in autism spectrum disorders. Brain Cogn 2013; 83:218-26. [PMID: 24056237 DOI: 10.1016/j.bandc.2013.08.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 08/09/2013] [Accepted: 08/24/2013] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Contrasts of verbal fluency and automatic speech provide an opportunity to evaluate the neural underpinnings of generativity and flexibility in autism spectrum disorders (ASD). METHOD We used functional magnetic resonance imaging (fMRI) to contrast brain activity in high functioning ASD (n=17, mean verbal IQ=117) and neurotypical (NT; n=20, mean verbal IQ=112) adolescent and young adult males (12-23years). Participants responded to three word generation conditions: automatic speech (reciting months), category fluency, and letter fluency. RESULTS Our paradigm closely mirrored behavioral fluency tasks by requiring overt, free recall word generation while controlling for differences in verbal output between the groups and systematically increasing the task demand. The ASD group showed reduced neural response compared to the NT participants during fluency tasks in multiple regions of left anterior and posterior cortices, and sub-cortical structures. Six of these regions fell in cortico-striatal circuits previously linked to repetitive behaviors (Langen, Durston, Kas, van Engeland, & Staal, 2011), and activity in two of them (putamen and thalamus) was negatively correlated with autism repetitive behavior symptoms in the ASD group. In addition, response in left inferior frontal gyrus was differentially modulated in the ASD, relative to the NT, group as a function of task demand. CONCLUSIONS These data indicate a specific, atypical brain response in ASD to demanding generativity tasks that may have relevance to repetitive behavior symptoms in ASD as well as to difficulties generating original verbal responses.
Collapse
Affiliation(s)
- Lauren Kenworthy
- Laboratory of Brain and Cognition, National Institute of Mental Health, 10 Center Drive, Room 4C104, MSC 1366, Bethesda, MD 20892-1366, USA; Center for Autism Spectrum Disorders, Children's National Medical Center, 15245 Shady Grove Road, Suite 350, Rockville, MD 20850, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Kasparek T, Prikryl R, Rehulova J, Marecek R, Mikl M, Prikrylova H, Vanicek J, Ceskova E. Brain functional connectivity of male patients in remission after the first episode of schizophrenia. Hum Brain Mapp 2013. [PMID: 23520601 DOI: 10.1002/hbm.21469] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES Abnormal task-related activation and connectivity is present in schizophrenia. The aim of this study was the analysis of functional networks in schizophrenia patients in remission after the first episode. EXPERIMENTAL DESIGN Twenty-nine male patients in remission after the first episode of schizophrenia and 22 healthy controls underwent examination by functional magnetic resonance during verbal fluency tasks (VFT). The functional connectivity of brain networks was analyzed using independent component analysis. RESULTS The patients showed lower activation of the salience network during VFT. They also showed lower deactivation of the default mode network (DMN) during VFT processing. Spectral analysis of the component time courses showed decreased power in slow frequencies of signal fluctuations in the salience and DMNs and increased power in higher frequencies in the left frontoparietal cortex reflecting higher fluctuations of the network activity. Moreover, there was decreased similarity of component time courses in schizophrenia—the patients had smaller negative correlation between VFT activated and deactivated networks, and smaller positive correlations between DMN subcomponents. CONCLUSIONS There is still an abnormal functional connectivity of several brain networks in remission after the first episode of schizophrenia. The effect of different treatment modalities on brain connectivity, together with temporal dynamics of this functional abnormality should be the objective of further studies to assess its potential as a marker of disease stabilization.
Collapse
Affiliation(s)
- Tomas Kasparek
- Department of Psychiatry, Masaryk University and University hospital Brno, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Ellfolk U, Joutsa J, Rinne JO, Parkkola R, Jokinen P, Karrasch M. Striatal volume is related to phonemic verbal fluency but not to semantic or alternating verbal fluency in early Parkinson's disease. J Neural Transm (Vienna) 2013; 121:33-40. [PMID: 23913130 PMCID: PMC3889690 DOI: 10.1007/s00702-013-1073-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 07/22/2013] [Indexed: 12/13/2022]
Abstract
Verbal fluency impairments are frequent in Parkinson’s disease (PD) and they may be present already at early stages. Semantic fluency impairment is associated with Parkinson’s disease dementia and temporal, frontal and cerebellar cortical changes. Few studies have addressed cerebral structural correlates of different verbal fluency tasks in early stage PD. We therefore studied gray matter volumes of T1-weighted MRI images using voxel-based morphometry in relation to semantic, phonemic, and alternating verbal fluency in younger (mean age <65 years), early stage (mean disease duration <3 years), non-demented PD patients (n = 28) and healthy controls (n = 27). We found a significant association between worse phonemic fluency and smaller striatal, namely right caudate gray matter volume in the PD group only (family-wise error corrected p = 0.007). Reduced semantic fluency was associated with smaller gray matter volumes in left parietal cortex (p = 0.037) and at trend level with smaller bilateral cerebellum gray matter volume across groups (p = 0.062), but not in the separate PD or control groups. There were no significant relationships between alternating fluency and gray matter volumes in the whole sample or in the groups separately. The fact that phonemic fluency, but not semantic or alternating fluency, was associated with caudate gray matter volume at early stage PD suggests that different fluency tasks rely on different neural substrates, and that language networks supporting semantic search and verbal-semantic switching are unrelated to brain gray matter volume at early disease stages in PD.
Collapse
Affiliation(s)
- Ulla Ellfolk
- Department of Psychology and Logopedics, Abo Akademi University, 20500, Turku, Finland,
| | | | | | | | | | | |
Collapse
|
49
|
Dan H, Dan I, Sano T, Kyutoku Y, Oguro K, Yokota H, Tsuzuki D, Watanabe E. Language-specific cortical activation patterns for verbal fluency tasks in Japanese as assessed by multichannel functional near-infrared spectroscopy. BRAIN AND LANGUAGE 2013; 126:208-16. [PMID: 23800710 DOI: 10.1016/j.bandl.2013.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 05/08/2013] [Accepted: 05/16/2013] [Indexed: 05/16/2023]
Abstract
In Japan, verbal fluency tasks are commonly utilized as a standard paradigm for neuropsychological testing of cognitive and linguistic abilities. The Japanese "letter fluency task" is a mora/letter fluency task based on the phonological and orthographical characteristics of the Japanese language. Whether there are similar activation patterns across languages or a Japanese-specific mora/letter fluency pattern is not certain. We investigated the neural correlates of overt mora/letter and category fluency tasks in healthy Japanese. The category fluency task activated the bilateral fronto-temporal language-related regions with left-superior lateralization, while the mora/letter fluency task led to wider activation including the inferior parietal regions (left and right supramarginal gyrus). Specific bilateral supramarginal activation during the mora/letter fluency task in Japanese was distinct from that of similar letter fluency tasks in syllable-alphabet-based languages: this might be due to the requirement of additional phonological processing and working memory, or due to increased cognitive load in general.
Collapse
Affiliation(s)
- Haruka Dan
- Applied Cognitive Neuroscience Laboratory, Research and Development Initiatives, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Simoni D, Rubbieri G, Baccini M, Rinaldi L, Becheri D, Forconi T, Mossello E, Zanieri S, Marchionni N, Di Bari M. Different motor tasks impact differently on cognitive performance of older persons during dual task tests. Clin Biomech (Bristol, Avon) 2013; 28:692-6. [PMID: 23791081 DOI: 10.1016/j.clinbiomech.2013.05.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 04/16/2013] [Accepted: 05/29/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND Dual task paradigm states that the introduction of a second task during a cognitive or motor performance results in a decreased performance in either task. Treadmill walk, often used in clinical applications of dual task testing, has never been compared to overground walk, to ascertain its susceptibility to interference from a second task. We compared the effects of overground and treadmill gait on dual task performance. METHODS Gait kinematic parameters and cognitive performance were obtained in 29 healthy older adults (mean age 75 years, 14 females) when they were walking freely on a sensorized carpet or during treadmill walking with an optoelectronic system, in single task or dual task conditions, using alternate repetition of letters as a cognitive verbal task. FINDINGS During overground walking, speed, cadence, step length stride length, and double support time (all with P value<0.001) and cognitive performance (number of correct words, P<0.001) decreased substantially from single to dual task testing. When subjects walked at a fixed speed on the treadmill, cadence decreased significantly (P=0.005), whereas cognitive performance remained unaffected. INTERPRETATION Both motor and cognitive performances decline during dual task testing with overground walking. Conversely, cognitive performance remains unaffected in dual task testing on the treadmill. In the light of current dual task paradigm, these findings may have relevant implication for our understanding of motor control, as they suggest that treadmill walk does not involve brain areas susceptible to interference from the introduction of a cognitive task.
Collapse
Affiliation(s)
- David Simoni
- Research Unit of Medicine of Aging, Department of Experimental and Clinical Medicine, University of Florence, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|