1
|
Barton JJS. The 2024 Richardson Lecture: Prosopagnosia - A Classic Neurologic Deficit Meets the Modern Era. Can J Neurol Sci 2024:1-9. [PMID: 39391940 DOI: 10.1017/cjn.2024.295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Acquired prosopagnosia is a rare disorder, but it serves as a model for impairments in expert-level visual processing. This review discusses five key observations made over the past 30 years. First, there are variants, an apperceptive type linked to damage to the inferior occipitotemporal cortex and an amnestic type associated with anterior temporal lesions, both either right or bilateral. Second, these variants are clustered in syndromes with other perceptual deficits, the apperceptive type with field defects, dyschromatopsia and topographagnosia, and the amnestic type with topographagnosia and the auditory disorders of phonagnosia and acquired amusia. Third, extensive testing often shows additional problems with recognizing exemplars of other objects, especially when degrees of expertise are taken into account. Fourth, the prosopagnosic impairment does not affect all facial information. For example, the perception of expression and lip-reading likely depends on other neural substrates than those for processing facial identity. Last, face perception in prosopagnosia is not immutable but can improve with extensive training, though as yet this does not represent a cure for the condition. Continuing work with neural networks and animal models will enhance our understanding of this intriguing condition and what it tells us about how our brains process vision.
Collapse
Affiliation(s)
- Jason J S Barton
- Departments of Medicine (Neurology), Ophthalmology and Visual Sciences, Psychology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
2
|
Angelini L, Jacques C, Maillard L, Colnat-Coulbois S, Rossion B, Jonas J. Bidirectional and Cross-Hemispheric Modulations of Face-Selective Neural Activity Induced by Electrical Stimulation within the Human Cortical Face Network. Brain Sci 2024; 14:906. [PMID: 39335402 PMCID: PMC11429542 DOI: 10.3390/brainsci14090906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/08/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
A major scientific objective of cognitive neuroscience is to define cortico-cortical functional connections supporting cognitive functions. Here, we use an original approach combining frequency-tagging and direct electrical stimulation (DES) to test for bidirectional and cross-hemispheric category-specific modulations within the human cortical face network. A unique patient bilaterally implanted with depth electrodes in multiple face-selective cortical regions of the ventral occipito-temporal cortex (VOTC) was shown 70 s sequences of variable natural object images at a 6 Hz rate, objectively identifying deviant face-selective neural activity at 1.2 Hz (i.e., every five images). Concurrent electrical stimulation was separately applied for 10 seconds on four independently defined face-selective sites in the right and left VOTC. Upon stimulation, we observed reduced or even abolished face-selective neural activity locally and, most interestingly, at distant VOTC recording sites. Remote DES effects were found up to the anterior temporal lobe (ATL) in both forward and backward directions along the VOTC, as well as across the two hemispheres. This reduction was specific to face-selective neural activity, with the general 6 Hz visual response being mostly unaffected. Overall, these results shed light on the functional connectivity of the cortical face-selective network, supporting its non-hierarchical organization as well as bidirectional effective category-selective connections between posterior 'core' regions and the ATL. They also pave the way for widespread and systematic development of this approach to better understand the functional and effective connectivity of human brain networks.
Collapse
Affiliation(s)
- Luna Angelini
- Université de Lorraine, IMoPA, UMR CNRS 7365, F-54000 Nancy, France; (L.A.)
| | - Corentin Jacques
- Université de Lorraine, IMoPA, UMR CNRS 7365, F-54000 Nancy, France; (L.A.)
| | - Louis Maillard
- Université de Lorraine, IMoPA, UMR CNRS 7365, F-54000 Nancy, France; (L.A.)
- Université de Lorraine, CHRU-Nancy, Service de Neurologie, F-54000 Nancy, France
| | - Sophie Colnat-Coulbois
- Université de Lorraine, IMoPA, UMR CNRS 7365, F-54000 Nancy, France; (L.A.)
- Université de Lorraine, CHRU-Nancy, Service de Neurochirurgie, F-54000 Nancy, France
| | - Bruno Rossion
- Université de Lorraine, IMoPA, UMR CNRS 7365, F-54000 Nancy, France; (L.A.)
- Université de Lorraine, CHRU-Nancy, Service de Neurologie, F-54000 Nancy, France
| | - Jacques Jonas
- Université de Lorraine, IMoPA, UMR CNRS 7365, F-54000 Nancy, France; (L.A.)
- Université de Lorraine, CHRU-Nancy, Service de Neurologie, F-54000 Nancy, France
| |
Collapse
|
3
|
Volfart A, Rossion B. The neuropsychological evaluation of face identity recognition. Neuropsychologia 2024; 198:108865. [PMID: 38522782 DOI: 10.1016/j.neuropsychologia.2024.108865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Facial identity recognition (FIR) is arguably the ultimate form of recognition for the adult human brain. Even if the term prosopagnosia is reserved for exceptionally rare brain-damaged cases with a category-specific abrupt loss of FIR at adulthood, subjective and objective impairments or difficulties of FIR are common in the neuropsychological population. Here we provide a critical overview of the evaluation of FIR both for clinicians and researchers in neuropsychology. FIR impairments occur following many causes that should be identified objectively by both general and specific, behavioral and neural examinations. We refute the commonly used dissociation between perceptual and memory deficits/tests for FIR, since even a task involving the discrimination of unfamiliar face images presented side-by-side relies on cortical memories of faces in the right-lateralized ventral occipito-temporal cortex. Another frequently encountered confusion is between specific deficits of the FIR function and a more general impairment of semantic memory (of people), the latter being most often encountered following anterior temporal lobe damage. Many computerized tests aimed at evaluating FIR have appeared over the last two decades, as reviewed here. However, despite undeniable strengths, they often suffer from ecological limitations, difficulties of instruction, as well as a lack of consideration for processing speed and qualitative information. Taking into account these issues, a recently developed behavioral test with natural images manipulating face familiarity, stimulus inversion, and correct response times as a key variable appears promising. The measurement of electroencephalographic (EEG) activity in the frequency domain from fast periodic visual stimulation also appears as a particularly promising tool to complete and enhance the neuropsychological assessment of FIR.
Collapse
Affiliation(s)
- Angélique Volfart
- School of Psychology and Counselling, Faculty of Health, Queensland University of Technology, Australia.
| | - Bruno Rossion
- Centre for Biomedical Technologies, Queensland University of Technology, Australia; Université de Lorraine, CNRS, IMoPA, F-54000, Nancy, France.
| |
Collapse
|
4
|
Pouliot JJ, Ward RT, Traiser CM, Chiasson P, Gilbert FE, Keil A. Neurophysiological and Autonomic Dynamics of Threat Processing During Sustained Social Fear Generalization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.16.589830. [PMID: 38659834 PMCID: PMC11042332 DOI: 10.1101/2024.04.16.589830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Survival in dynamic environments requires that organisms learn to predict danger from situational cues. One key facet of threat prediction is generalization from a predictive cue to similar cues, ensuring that a cue-outcome contingency is applied beyond the original learning environment. Generalization has been observed in laboratory studies of aversive conditioning: behavioral and physiological processes generalize responses from a stimulus paired with threat (the CS+) to unpaired stimuli, with response magnitudes varying with CS+ similarity. In contrast, work focusing on sensory responses in visual cortex has found a sharpening pattern, in which responses to stimuli closely resembling the CS+ are maximally suppressed, potentially reflecting lateral inhibitory interactions with the CS+ representation. Originally demonstrated with simple visual cues, changes in visuocortical tuning have also been observed in threat generalization learning across facial identities. It is unclear to what extent these visuocortical changes represent transient or sustained effects and if generalization learning requires prior conditioning to the CS+. The present study addressed these questions using EEG and pupillometry in an aversive generalization paradigm involving hundreds of trials using a gradient of facial identities. Visuocortical ssVEP sharpening occurred after dozens of trials of generalization learning without prior differential conditioning, but diminished as learning continued. By contrast, generalization of alpha power suppression, pupil dilation, and self-reported valence and arousal was seen throughout the experiment. Findings are consistent with threat processing models emphasizing the role of changing visucocortical and attentional dynamics when forming, curating, and shaping fear memories as observers continue learning about stimulus-outcome contingencies.
Collapse
Affiliation(s)
| | | | - Caitlin M. Traiser
- Center for the Study of Emotion and Attention, University of Florida; Department of Psychology, University of Florida
| | - Payton Chiasson
- Center for the Study of Emotion and Attention, University of Florida; Department of Psychology, University of Florida
| | - Faith E. Gilbert
- Center for the Study of Emotion and Attention, University of Florida; Department of Psychology, University of Florida
| | - Andreas Keil
- Center for the Study of Emotion and Attention, University of Florida; Department of Psychology, University of Florida
| |
Collapse
|
5
|
Faghel-Soubeyrand S, Richoz AR, Waeber D, Woodhams J, Caldara R, Gosselin F, Charest I. Neural computations in prosopagnosia. Cereb Cortex 2024; 34:bhae211. [PMID: 38795358 PMCID: PMC11127037 DOI: 10.1093/cercor/bhae211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/27/2024] Open
Abstract
We report an investigation of the neural processes involved in the processing of faces and objects of brain-lesioned patient PS, a well-documented case of pure acquired prosopagnosia. We gathered a substantial dataset of high-density electrophysiological recordings from both PS and neurotypicals. Using representational similarity analysis, we produced time-resolved brain representations in a format that facilitates direct comparisons across time points, different individuals, and computational models. To understand how the lesions in PS's ventral stream affect the temporal evolution of her brain representations, we computed the temporal generalization of her brain representations. We uncovered that PS's early brain representations exhibit an unusual similarity to later representations, implying an excessive generalization of early visual patterns. To reveal the underlying computational deficits, we correlated PS' brain representations with those of deep neural networks (DNN). We found that the computations underlying PS' brain activity bore a closer resemblance to early layers of a visual DNN than those of controls. However, the brain representations in neurotypicals became more akin to those of the later layers of the model compared to PS. We confirmed PS's deficits in high-level brain representations by demonstrating that her brain representations exhibited less similarity with those of a DNN of semantics.
Collapse
Affiliation(s)
- Simon Faghel-Soubeyrand
- Département de psychologie, Université de Montréal, 90 av. Vincent D’indy, Montreal, H2V 2S9, Canada
- Department of Experimental Psychology, University of Oxford, Anna Watts Building, Woodstock Rd, Oxford OX2 6GG
| | - Anne-Raphaelle Richoz
- Département de psychologie, Université de Fribourg, RM 01 bu. C-3.117Rue P.A. de Faucigny 21700 Fribourg, Switzerland
| | - Delphine Waeber
- Département de psychologie, Université de Fribourg, RM 01 bu. C-3.117Rue P.A. de Faucigny 21700 Fribourg, Switzerland
| | - Jessica Woodhams
- School of Psychology, University of Birmingham, Hills Building, Edgbaston Park Rd, Birmingham B15 2TT, UK
| | - Roberto Caldara
- Département de psychologie, Université de Fribourg, RM 01 bu. C-3.117Rue P.A. de Faucigny 21700 Fribourg, Switzerland
| | - Frédéric Gosselin
- Département de psychologie, Université de Montréal, 90 av. Vincent D’indy, Montreal, H2V 2S9, Canada
| | - Ian Charest
- Département de psychologie, Université de Montréal, 90 av. Vincent D’indy, Montreal, H2V 2S9, Canada
| |
Collapse
|
6
|
Federico G, Ciccarelli G, Noce G, Cavaliere C, Ilardi CR, Tramontano L, Alfano V, Mele G, Di Cecca A, Salvatore M, Brandimonte MA. The fear of COVID-19 contagion: an exploratory EEG-fMRI study. Sci Rep 2024; 14:5263. [PMID: 38438468 PMCID: PMC10912687 DOI: 10.1038/s41598-024-56014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/29/2024] [Indexed: 03/06/2024] Open
Abstract
Pandemics have the potential to change how people behave and feel. The COVID-19 pandemic is no exception; thus, it may serve as a "challenging context" for understanding how pandemics affect people's minds. In this study, we used high-density electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) to examine the neural correlates of fear of contagion during the most critical moments of COVID-19 in Italy (i.e., October 2020-May 2021). To do that, we stimulated participants (N = 17; nine females) with artificial-intelligence-generated faces of people presented as healthy, recovered from COVID-19, or infected by SARS-CoV-2. The fMRI results documented a modulation of large bilateral fronto-temporo-parietal functional brain networks. Critically, we found selective recruitment of cortical (e.g., frontal lobes) and subcortical fear-related structures (e.g., amygdala and putamen) of the so-called social brain network when participants observed COVID-19-related faces. Consistently, EEG results showed distinct patterns of brain activity selectively associated with infected and recovered faces (e.g., delta and gamma rhythm). Together, these results highlight how pandemic contexts may reverberate in the human brain, thus influencing most basic social and cognitive functioning. This may explain the emergence of a cluster of psychopathologies during and after the COVID-19 pandemic. Therefore, this study underscores the need for prompt interventions to address pandemics' short- and long-term consequences on mental health.
Collapse
|
7
|
Ciftci E, Farhad S, Metin B, Tarhan N. Neurocognition across bipolar disorder phases compared to healthy subjects. Cogn Neuropsychiatry 2024; 29:73-86. [PMID: 38335235 DOI: 10.1080/13546805.2024.2313387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 12/17/2023] [Indexed: 02/12/2024]
Abstract
INTRODUCTION Bipolar disorder (BD) is associated with cognitive abnormalities that may persist during euthymia and are linked to poor occupational performance. The cognitive differences between phases of BD are not well known. Therefore, a cross-sectional study with a relatively large population was conducted to evaluate the differences among BD phases in a wide range of neurocognitive parameters. METHODS Neuropsychological profile of 169 patients with a diagnosis of BD in manic, depressive, mixed, and euthymic phases between the ages of 18 and 70 years were compared to 45 healthy individuals' between ages of 24 and 69 years. The working memory (digit-span backward test), face recognition, executive functions (verbal fluency and Stroop test), face recognition, and visual and verbal memory (immediate and delayed recall) were evaluated. For BD subgroup analyses, we used the Kruskal-Wallis (KW) test. Then, for the comparison of BD versus healthy individuals, we used the Mann-Whitney U (MWU) test. RESULTS Analyses based on non-parametric tests showed impairments in BD for all tests. There were no significant differences between phases. CONCLUSION Cognitive performance in patients with BD appears to be mostly unrelated to the phase of the disorder, implying that cognitive dysfunction in BD is present even during remission.
Collapse
Affiliation(s)
- Elvan Ciftci
- Department of Psychiatry, NP Istanbul Brain Hospital, Uskudar University, Istanbul, Turkey
| | - Shams Farhad
- Clinical Neuroscience, NP Istanbul Brain Hospital, Uskudar University, Istanbul, Turkey
| | - Baris Metin
- Department of Neurology, NP Istanbul Brain Hospital, Uskudar University, Istanbul, Turkey
| | - Nevzat Tarhan
- Department of Psychiatry, NP Istanbul Brain Hospital, Uskudar University, Istanbul, Turkey
| |
Collapse
|
8
|
Rossion B, Jacques C, Jonas J. The anterior fusiform gyrus: The ghost in the cortical face machine. Neurosci Biobehav Rev 2024; 158:105535. [PMID: 38191080 DOI: 10.1016/j.neubiorev.2024.105535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 01/10/2024]
Abstract
Face-selective regions in the human ventral occipito-temporal cortex (VOTC) have been defined for decades mainly with functional magnetic resonance imaging. This face-selective VOTC network is traditionally divided in a posterior 'core' system thought to subtend face perception, and regions of the anterior temporal lobe as a semantic memory component of an extended general system. In between these two putative systems lies the anterior fusiform gyrus and surrounding sulci, affected by magnetic susceptibility artifacts. Here we suggest that this methodological gap overlaps with and contributes to a conceptual gap between (visual) perception and semantic memory for faces. Filling this gap with intracerebral recordings and direct electrical stimulation reveals robust face-selectivity in the anterior fusiform gyrus and a crucial role of this region, especially in the right hemisphere, in identity recognition for both familiar and unfamiliar faces. Based on these observations, we propose an integrated theoretical framework for human face (identity) recognition according to which face-selective regions in the anterior fusiform gyrus join the dots between posterior and anterior cortical face memories.
Collapse
Affiliation(s)
- Bruno Rossion
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France; Université de Lorraine, CHRU-Nancy, Service de Neurologie, F-54000 Nancy, France.
| | | | - Jacques Jonas
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France; Université de Lorraine, CHRU-Nancy, Service de Neurologie, F-54000 Nancy, France
| |
Collapse
|
9
|
Volfart A, Rossion B, Brissart H, Busigny T, Colnat-Coulbois S, Maillard L, Jonas J. Stability of face recognition abilities after left or right anterior temporal lobectomy. J Neuropsychol 2024; 18 Suppl 1:115-133. [PMID: 37391874 DOI: 10.1111/jnp.12337] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/08/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023]
Abstract
Patients with anterior temporal lobe (ATL) resection due to mesial temporal lobe epilepsy (MTLE) have difficulties at identifying familiar faces and explicitly remembering newly learned faces but their ability to individuate unfamiliar faces remains largely unknown. Moreover, the extent to which their difficulties with familiar face identity recognition and learning is truly due to the ATL resection remains unknown. Here, we report a study of 24 MTLE patients and matched healthy controls tested with an extensive set of seven face and visual object recognition tasks (including three tasks evaluating unfamiliar face individuation) before and about 6 months after unilateral (nine left, 15 right) ATL resection. We found that ATL resection has little or no effect on the patients' preserved pre-surgical ability to perform unfamiliar face individuation, both at the group and individual levels. More surprisingly, ATL resection also has little effect on the patients' performance at recognizing and naming famous faces as well as at learning new faces. A substantial proportion of right MTLE patients (33%) even improved their response times on several tasks, which may indicate a functional release of visuo-spatial processing after resection in the right ATL. Altogether this study shows that face recognition abilities are mainly unaffected by ATL resection in MTLE, either because the critical regions for face recognition are spared or because performance at some tasks is already lower than normal preoperatively. Overall, these findings urge caution when interpreting the causal effect of brain lesions on face recognition ability in patients with ATL resection due to MTLE. They also illustrate the complexity of predicting cognitive outcomes after epilepsy surgery because of the influence of many different intertwined factors.
Collapse
Affiliation(s)
- Angélique Volfart
- CNRS, CRAN UMR 7039, Université de Lorraine, Nancy, France
- Institute of Research in Psychological Science, Université Catholique de Louvain, Louvain-La-Neuve, Belgium
- School of Psychology and Counselling, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Bruno Rossion
- CNRS, CRAN UMR 7039, Université de Lorraine, Nancy, France
- Institute of Research in Psychological Science, Université Catholique de Louvain, Louvain-La-Neuve, Belgium
- CHRU-Nancy, Service de Neurologie, Université de Lorraine, Nancy, France
| | - Hélène Brissart
- CNRS, CRAN UMR 7039, Université de Lorraine, Nancy, France
- CHRU-Nancy, Service de Neurologie, Université de Lorraine, Nancy, France
| | - Thomas Busigny
- CNRS, CRAN UMR 7039, Université de Lorraine, Nancy, France
| | - Sophie Colnat-Coulbois
- CNRS, CRAN UMR 7039, Université de Lorraine, Nancy, France
- CHRU-Nancy, Service de Neurochirurgie, Université de Lorraine, Nancy, France
| | - Louis Maillard
- CNRS, CRAN UMR 7039, Université de Lorraine, Nancy, France
- CHRU-Nancy, Service de Neurologie, Université de Lorraine, Nancy, France
| | - Jacques Jonas
- CNRS, CRAN UMR 7039, Université de Lorraine, Nancy, France
- CHRU-Nancy, Service de Neurologie, Université de Lorraine, Nancy, France
| |
Collapse
|
10
|
Rho G, Callara AL, Bossi F, Ognibene D, Cecchetto C, Lomonaco T, Scilingo EP, Greco A. Combining electrodermal activity analysis and dynamic causal modeling to investigate the visual-odor multimodal integration during face perception. J Neural Eng 2024; 21:016020. [PMID: 38290158 DOI: 10.1088/1741-2552/ad2403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/30/2024] [Indexed: 02/01/2024]
Abstract
Objective. This study presents a novel methodological approach for incorporating information related to the peripheral sympathetic response into the investigation of neural dynamics. Particularly, we explore how hedonic contextual olfactory stimuli influence the processing of neutral faces in terms of sympathetic response, event-related potentials and effective connectivity analysis. The objective is to investigate how the emotional valence of odors influences the cortical connectivity underlying face processing and the role of face-induced sympathetic arousal in this visual-olfactory multimodal integration.Approach. To this aim, we combine electrodermal activity (EDA) analysis and dynamic causal modeling to examine changes in cortico-cortical interactions.Results. The results reveal that stimuli arising sympathetic EDA responses are associated with a more negative N170 amplitude, which may be a marker of heightened arousal in response to faces. Hedonic odors, on the other hand, lead to a more negative N1 component and a reduced the vertex positive potential when they are unpleasant or pleasant. Concerning connectivity, unpleasant odors strengthen the forward connection from the inferior temporal gyrus (ITG) to the middle temporal gyrus, which is involved in processing changeable facial features. Conversely, the occurrence of sympathetic responses after a stimulus is correlated with an inhibition of this same connection and an enhancement of the backward connection from ITG to the fusiform face gyrus.Significance. These findings suggest that unpleasant odors may enhance the interpretation of emotional expressions and mental states, while faces capable of eliciting sympathetic arousal prioritize identity processing.
Collapse
Affiliation(s)
- Gianluca Rho
- Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy
- Research Center 'E. Piaggio', School of Engineering, University of Pisa, Pisa, Italy
| | - Alejandro Luis Callara
- Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy
- Research Center 'E. Piaggio', School of Engineering, University of Pisa, Pisa, Italy
| | - Francesco Bossi
- Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy
| | - Dimitri Ognibene
- Università Milano-Bicocca, Milan, Italy
- University of Essex, Colchester, United Kingdom
| | - Cinzia Cecchetto
- Department of General Psychology, University of Padua, Padua, Italy
| | - Tommaso Lomonaco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Enzo Pasquale Scilingo
- Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy
- Research Center 'E. Piaggio', School of Engineering, University of Pisa, Pisa, Italy
| | - Alberto Greco
- Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy
- Research Center 'E. Piaggio', School of Engineering, University of Pisa, Pisa, Italy
| |
Collapse
|
11
|
Soulos P, Isik L. Disentangled deep generative models reveal coding principles of the human face processing network. PLoS Comput Biol 2024; 20:e1011887. [PMID: 38408105 PMCID: PMC10919870 DOI: 10.1371/journal.pcbi.1011887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/07/2024] [Accepted: 02/02/2024] [Indexed: 02/28/2024] Open
Abstract
Despite decades of research, much is still unknown about the computations carried out in the human face processing network. Recently, deep networks have been proposed as a computational account of human visual processing, but while they provide a good match to neural data throughout visual cortex, they lack interpretability. We introduce a method for interpreting brain activity using a new class of deep generative models, disentangled representation learning models, which learn a low-dimensional latent space that "disentangles" different semantically meaningful dimensions of faces, such as rotation, lighting, or hairstyle, in an unsupervised manner by enforcing statistical independence between dimensions. We find that the majority of our model's learned latent dimensions are interpretable by human raters. Further, these latent dimensions serve as a good encoding model for human fMRI data. We next investigate the representation of different latent dimensions across face-selective voxels. We find that low- and high-level face features are represented in posterior and anterior face-selective regions, respectively, corroborating prior models of human face recognition. Interestingly, though, we find identity-relevant and irrelevant face features across the face processing network. Finally, we provide new insight into the few "entangled" (uninterpretable) dimensions in our model by showing that they match responses in the ventral stream and carry information about facial identity. Disentangled face encoding models provide an exciting alternative to standard "black box" deep learning approaches for modeling and interpreting human brain data.
Collapse
Affiliation(s)
- Paul Soulos
- Department of Cognitive Science, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Leyla Isik
- Department of Cognitive Science, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
12
|
Plaza PL, Renier L, Rosemann S, De Volder AG, Rauschecker JP. Sound-encoded faces activate the left fusiform face area in the early blind. PLoS One 2023; 18:e0286512. [PMID: 37992062 PMCID: PMC10664868 DOI: 10.1371/journal.pone.0286512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 05/17/2023] [Indexed: 11/24/2023] Open
Abstract
Face perception in humans and nonhuman primates is accomplished by a patchwork of specialized cortical regions. How these regions develop has remained controversial. In sighted individuals, facial information is primarily conveyed via the visual modality. Early blind individuals, on the other hand, can recognize shapes using auditory and tactile cues. Here we demonstrate that such individuals can learn to distinguish faces from houses and other shapes by using a sensory substitution device (SSD) presenting schematic faces as sound-encoded stimuli in the auditory modality. Using functional MRI, we then asked whether a face-selective brain region like the fusiform face area (FFA) shows selectivity for faces in the same subjects, and indeed, we found evidence for preferential activation of the left FFA by sound-encoded faces. These results imply that FFA development does not depend on experience with visual faces per se but may instead depend on exposure to the geometry of facial configurations.
Collapse
Affiliation(s)
- Paula L. Plaza
- Laboratory of Integrative Neuroscience and Cognition, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States of America
| | - Laurent Renier
- Laboratory of Integrative Neuroscience and Cognition, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States of America
- Neural Rehabilitation Laboratory, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Stephanie Rosemann
- Laboratory of Integrative Neuroscience and Cognition, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States of America
| | - Anne G. De Volder
- Neural Rehabilitation Laboratory, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Josef P. Rauschecker
- Laboratory of Integrative Neuroscience and Cognition, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States of America
| |
Collapse
|
13
|
Volfart A, Rossion B, Yan X, Angelini L, Maillard L, Colnat-Coulbois S, Jonas J. Intracerebral electrical stimulation of the face-selective right lateral fusiform gyrus transiently impairs face identity recognition. Neuropsychologia 2023; 190:108705. [PMID: 37839512 DOI: 10.1016/j.neuropsychologia.2023.108705] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/14/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
Neuroimaging and intracranial electrophysiological studies have consistently shown the largest and most consistent face-selective neural activity in the middle portion of the human right lateral fusiform gyrus ('fusiform face area(s)', FFA). Yet, direct evidence for the critical role of this region in face identity recognition (FIR) is still lacking. Here we report the first evidence of transient behavioral impairment of FIR during focal electrical stimulation of the right FFA. Upon stimulation of an electrode contact within this region, subject CJ, who shows typical FIR ability outside of stimulation, was transiently unable to point to pictures of famous faces among strangers and to match pictures of famous or unfamiliar faces presented simultaneously for their identity. Her performance at comparable tasks with other visual materials (written names, pictures of buildings) remained unaffected by stimulation at the same location. During right FFA stimulation, CJ consistently reported that simultaneously presented faces appeared as being the same identity, with little or no distortion of the spatial face configuration. Independent electrophysiological recordings showed the largest neural face-selective and face identity activity at the critical electrode contacts. Altogether, this extensive multimodal case report supports the causal role of the right FFA in FIR.
Collapse
Affiliation(s)
- Angélique Volfart
- Université de Lorraine, CNRS, F-54000, Nancy, France; University of Louvain, Psychological Sciences Research Institute, B-1348, Louvain-La-Neuve, Belgium; Queensland University of Technology, Faculty of Health, School of Psychology & Counselling, 4059, Brisbane, Australia
| | - Bruno Rossion
- Université de Lorraine, CNRS, F-54000, Nancy, France; University of Louvain, Psychological Sciences Research Institute, B-1348, Louvain-La-Neuve, Belgium; Université de Lorraine, CHRU-Nancy, Service de Neurologie, F-54000, Nancy, France.
| | - Xiaoqian Yan
- Université de Lorraine, CNRS, F-54000, Nancy, France; University of Louvain, Psychological Sciences Research Institute, B-1348, Louvain-La-Neuve, Belgium; Fudan University, Institute of Science and Technology for Brain-Inspired Intelligence, 200433, Shanghai, China
| | - Luna Angelini
- Université de Lorraine, CNRS, F-54000, Nancy, France
| | - Louis Maillard
- Université de Lorraine, CNRS, F-54000, Nancy, France; Université de Lorraine, CHRU-Nancy, Service de Neurologie, F-54000, Nancy, France
| | - Sophie Colnat-Coulbois
- Université de Lorraine, CNRS, F-54000, Nancy, France; Université de Lorraine, CHRU-Nancy, Service de Neurochirurgie, F-54000, Nancy, France
| | - Jacques Jonas
- Université de Lorraine, CNRS, F-54000, Nancy, France; Université de Lorraine, CHRU-Nancy, Service de Neurologie, F-54000, Nancy, France
| |
Collapse
|
14
|
Geng L, Feng Q, Wang X, Gao Y, Hao L, Qiu J. Connectome-based modeling reveals a resting-state functional network that mediates the relationship between social rejection and rumination. Front Psychol 2023; 14:1264221. [PMID: 37965648 PMCID: PMC10642796 DOI: 10.3389/fpsyg.2023.1264221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/11/2023] [Indexed: 11/16/2023] Open
Abstract
Background Rumination impedes problem solving and is one of the most important factors in the onset and maintenance of multiple psychiatric disorders. The current study aims to investigate the impact of social rejection on rumination and explore the underlying neural mechanisms involved in this process. Methods We utilized psychological questionnaire and resting-state brain imaging data from a sample of 560 individuals. The predictive model for rumination scores was constructed using resting-state functional connectivity data through connectome-based predictive modeling. Additionally, a mediation analysis was conducted to investigate the mediating role of the prediction network in the relationship between social rejection and rumination. Results A positive correlation between social rejection and rumination was found. We obtained the prediction model of rumination and found that the strongest contributions came from the intra- and internetwork connectivity within the default mode network (DMN), dorsal attention network (DAN), frontoparietal control network (FPCN), and sensorimotor networks (SMN). Analysis of node strength revealed the significance of the supramarginal gyrus (SMG) and angular gyrus (AG) as key nodes in the prediction model. In addition, mediation analysis showed that the strength of the prediction network mediated the relationship between social rejection and rumination. Conclusion The findings highlight the crucial role of functional connections among the DMN, DAN, FPCN, and SMN in linking social rejection and rumination, particular in brain regions implicated in social cognition and emotion, namely the SMG and AG regions. These results enhance our understanding of the consequences of social rejection and provide insights for novel intervention strategies targeting rumination.
Collapse
Affiliation(s)
- Li Geng
- Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing, China
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Qiuyang Feng
- Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing, China
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Xueyang Wang
- Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing, China
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Yixin Gao
- Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing, China
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Lei Hao
- College of Teacher Education, Southwest University, Chongqing, China
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing, China
- Faculty of Psychology, Southwest University, Chongqing, China
| |
Collapse
|
15
|
Kho SK, Keeble DRT, Wong HK, Estudillo AJ. Investigating the role of the fusiform face area and occipital face area using multifocal transcranial direct current stimulation. Neuropsychologia 2023; 189:108663. [PMID: 37611740 DOI: 10.1016/j.neuropsychologia.2023.108663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023]
Abstract
The functional role of the occipital face area (OFA) and the fusiform face area (FFA) in face recognition is inconclusive to date. While some research has shown that the OFA and FFA are involved in early (i.e., featural processing) and late (i.e., holistic processing) stages of face recognition respectively, other research suggests that both regions are involved in both early and late stages of face recognition. Thus, the current study aims to further examine the role of the OFA and the FFA using multifocal transcranial direct current stimulation (tDCS). In Experiment 1, we used computer-generated faces. Thirty-five participants completed whole face and facial features (i.e., eyes, nose, mouth) recognition tasks after OFA and FFA stimulation in a within-subject design. No difference was found in recognition performance after either OFA or FFA stimulation. In Experiment 2 with 60 participants, we used real faces, provided stimulation following a between-subjects design and included a sham control group. Results showed that FFA stimulation led to enhanced efficiency of facial features recognition. Additionally, no effect of OFA stimulation was found for either facial feature or whole face recognition. These results suggest the involvement of FFA in the recognition of facial features.
Collapse
Affiliation(s)
- Siew Kei Kho
- Department of Psychology, Bournemouth University, UK; School of Psychology, University of Nottingham, Malaysia.
| | | | - Hoo Keat Wong
- School of Psychology, University of Nottingham, Malaysia
| | - Alejandro J Estudillo
- Department of Psychology, Bournemouth University, UK; School of Psychology, University of Nottingham, Malaysia.
| |
Collapse
|
16
|
Manippa V, Palmisano A, Ventura M, Rivolta D. The Neural Correlates of Developmental Prosopagnosia: Twenty-Five Years on. Brain Sci 2023; 13:1399. [PMID: 37891769 PMCID: PMC10605188 DOI: 10.3390/brainsci13101399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/21/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Faces play a crucial role in social interactions. Developmental prosopagnosia (DP) refers to the lifelong difficulty in recognizing faces despite the absence of obvious signs of brain lesions. In recent decades, the neural substrate of this condition has been extensively investigated. While early neuroimaging studies did not reveal significant functional and structural abnormalities in the brains of individuals with developmental prosopagnosia (DPs), recent evidence identifies abnormalities at multiple levels within DPs' face-processing networks. The current work aims to provide an overview of the convergent and contrasting findings by examining twenty-five years of neuroimaging literature on the anatomo-functional correlates of DP. We included 55 original papers, including 63 studies that compared the brain structure (MRI) and activity (fMRI, EEG, MEG) of healthy control participants and DPs. Despite variations in methods, procedures, outcomes, sample selection, and study design, this scoping review suggests that morphological, functional, and electrophysiological features characterize DPs' brains, primarily within the ventral visual stream. Particularly, the functional and anatomical connectivity between the Fusiform Face Area and the other face-sensitive regions seems strongly impaired. The cognitive and clinical implications as well as the limitations of these findings are discussed in light of the available knowledge and challenges in the context of DP.
Collapse
Affiliation(s)
- Valerio Manippa
- Department of Education, Psychology and Communication, University of Bari Aldo Moro, 70122 Bari, Italy; (V.M.); (A.P.); (M.V.)
| | - Annalisa Palmisano
- Department of Education, Psychology and Communication, University of Bari Aldo Moro, 70122 Bari, Italy; (V.M.); (A.P.); (M.V.)
- Chair of Lifespan Developmental Neuroscience, TUD Dresden University of Technology, 01069 Dresden, Germany
| | - Martina Ventura
- Department of Education, Psychology and Communication, University of Bari Aldo Moro, 70122 Bari, Italy; (V.M.); (A.P.); (M.V.)
- The MARCS Institute for Brain, Behaviour, and Development, Western Sydney University, Sydney 2145, Australia
| | - Davide Rivolta
- Department of Education, Psychology and Communication, University of Bari Aldo Moro, 70122 Bari, Italy; (V.M.); (A.P.); (M.V.)
| |
Collapse
|
17
|
Wang P, Wang J, Wang L, Mu W, Zhan G, Zhang X, Niu L, Bin J, Dong Z, Zhang L, Jia J, Gan Z, Kang X. Face preference detection task based on EEG energy analysis in the source domain. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38082969 DOI: 10.1109/embc40787.2023.10340356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Facial stimulation can produce specific event-related potential (ERP) component N170 in the fusiform gyrus region. However, the role of the fusiform gyrus region in facial preference tasks is not clear at present, and the current research of facial preference analysis based on EEG signals is mostly carried out in the scalp domain. This paper explores whether the region of the fusiform gyrus is involved in processing face preference emotions in terms of the distribution of energy over the source domain, and finds that the pars orbitalis cortex is most energetically active in the face preference task and that there are significant differences between the left and right hemispheres.Clinical Relevance- The role of pars orbitalis in facial preference may help doctors determine whether the pars orbitalis cortex is lost in clinical practice.
Collapse
|
18
|
Pletzer B, Noachtar I, Hidalgo-Lopez E. Hormonal contraception & face processing: Examining face gender, androgenicity & treatment duration. Psychoneuroendocrinology 2023; 154:106292. [PMID: 37210755 DOI: 10.1016/j.psyneuen.2023.106292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/23/2023]
Abstract
Previous cross-sectional studies observed differences between users and non-users of combined oral contraceptives (COCs) in both the structure and function of the fusiform face area (FFA) related to face processing. For the present study 120 female participants performed high-resolution structural, as well as functional scans at rest, during face encoding and face recognition. Participants were either never-users of COCs (26), current first-time users of androgenic (29) or anti-androgenic COCs (23) or previous users of androgenic (21) or anti-androgenic COCs (21). Results suggest that associations between COC-use and face processing are modulated by androgenicity, but do not persist beyond the duration of COC use. The majority of findings concern the connectivity of the left FFA to the left supramarginal gyrus (SMG), which is a key region in cognitive empathy. While connectivity in anti-androgenic COC users differs from never users irrespective of the duration of COC use already at rest, connectivity in androgenic COC users decreases with longer duration of use during face recognition. Furthermore, longer duration of androgenic COC use was related to reduced identification accuracy, as well as increased connectivity of the left FFA to the right orbitofrontal cortex. Accordingly, the FFA and SMG emerge as promising ROIs for future randomized controlled trials on the effects of COC use on face processing.
Collapse
Affiliation(s)
- Belinda Pletzer
- Department of Psychology & Centre for Cognitive Neuroscience Paris-Lodron-University of Salzburg, Salzburg, Austria.
| | - Isabel Noachtar
- Department of Psychology & Centre for Cognitive Neuroscience Paris-Lodron-University of Salzburg, Salzburg, Austria
| | - Esmeralda Hidalgo-Lopez
- Department of Psychology & Centre for Cognitive Neuroscience Paris-Lodron-University of Salzburg, Salzburg, Austria
| |
Collapse
|
19
|
Schuurmans JP, Bennett MA, Petras K, Goffaux V. Backward masking reveals coarse-to-fine dynamics in human V1. Neuroimage 2023; 274:120139. [PMID: 37137434 DOI: 10.1016/j.neuroimage.2023.120139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/05/2023] Open
Abstract
Natural images exhibit luminance variations aligned across a broad spectrum of spatial frequencies (SFs). It has been proposed that, at early stages of processing, the coarse signals carried by the low SF (LSF) of the visual input are sent rapidly from primary visual cortex (V1) to ventral, dorsal and frontal regions to form a coarse representation of the input, which is later sent back to V1 to guide the processing of fine-grained high SFs (i.e., HSF). We used functional resonance imaging (fMRI) to investigate the role of human V1 in the coarse-to-fine integration of visual input. We disrupted the processing of the coarse and fine content of full-spectrum human face stimuli via backward masking of selective SF ranges (LSFs: <1.75cpd and HSFs: >1.75cpd) at specific times (50, 83, 100 or 150ms). In line with coarse-to-fine proposals, we found that (1) the selective masking of stimulus LSF disrupted V1 activity in the earliest time window, and progressively decreased in influence, while (2) an opposite trend was observed for the masking of stimulus' HSF. This pattern of activity was found in V1, as well as in ventral (i.e. the Fusiform Face area, FFA), dorsal and orbitofrontal regions. We additionally presented subjects with contrast negated stimuli. While contrast negation significantly reduced response amplitudes in the FFA, as well as coupling between FFA and V1, coarse-to-fine dynamics were not affected by this manipulation. The fact that V1 response dynamics to strictly identical stimulus sets differed depending on the masked scale adds to growing evidence that V1 role goes beyond the early and quasi-passive transmission of visual information to the rest of the brain. It instead indicates that V1 may yield a 'spatially registered common forum' or 'blackboard' that integrates top-down inferences with incoming visual signals through its recurrent interaction with high-level regions located in the inferotemporal, dorsal and frontal regions.
Collapse
Affiliation(s)
- Jolien P Schuurmans
- Psychological Sciences Research Institute (IPSY), UC Louvain, Louvain-la-Neuve, Belgium.
| | - Matthew A Bennett
- Psychological Sciences Research Institute (IPSY), UC Louvain, Louvain-la-Neuve, Belgium; Institute of Neuroscience (IONS), UC Louvain, Louvain-la-Neuve, Belgium
| | - Kirsten Petras
- Integrative Neuroscience and Cognition Center, CNRS, Université Paris Cité, Paris, France
| | - Valérie Goffaux
- Psychological Sciences Research Institute (IPSY), UC Louvain, Louvain-la-Neuve, Belgium; Institute of Neuroscience (IONS), UC Louvain, Louvain-la-Neuve, Belgium; Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
20
|
Schaller P, Caldara R, Richoz AR. Prosopagnosia does not abolish other-race effects. Neuropsychologia 2023; 180:108479. [PMID: 36623806 DOI: 10.1016/j.neuropsychologia.2023.108479] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 12/28/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Healthy observers recognize more accurately same-than other-race faces (i.e., the Same-Race Recognition Advantage - SRRA) but categorize them by race more slowly than other-race faces (i.e., the Other-Race Categorization Advantage - ORCA). Several fMRI studies reported discrepant bilateral activations in the Fusiform Face Area (FFA) and Occipital Face Area (OFA) correlating with both effects. However, due to the very nature and limits of fMRI results, whether these face-sensitive regions play an unequivocal causal role in those other-race effects remains to be clarified. To this aim, we tested PS, a well-studied pure case of acquired prosopagnosia with lesions encompassing the left FFA and the right OFA. PS, healthy age-matched and young adults performed two recognition and three categorization by race tasks, respectively using Western Caucasian and East Asian faces normalized for their low-level properties with and without-external features, as well as in naturalistic settings. As expected, PS was slower and less accurate than the controls. Crucially, however, the magnitudes of her SRRA and ORCA were comparable to the controls in all the tasks. Our data show that prosopagnosia does not abolish other-race effects, as an intact face system, the left FFA and/or right OFA are not critical for eliciting the SRRA and ORCA. Race is a strong visual and social signal that is encoded in a large neural face-sensitive network, robustly tuned for processing same-race faces.
Collapse
Affiliation(s)
- Pauline Schaller
- Eye and Brain Mapping Laboratory (iBMLab), Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Roberto Caldara
- Eye and Brain Mapping Laboratory (iBMLab), Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Anne-Raphaëlle Richoz
- Eye and Brain Mapping Laboratory (iBMLab), Department of Psychology, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
21
|
Burra N, Vrtička P. Association between attachment anxiety and the gaze direction-related N170. Attach Hum Dev 2023; 25:181-198. [PMID: 35924946 DOI: 10.1080/14616734.2022.2091337] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Attachment theory suggests that interindividual differences in attachment security versus insecurity (anxiety and avoidance) contribute to the ways in which people perceive social emotional signals, particularly from the human face. Among different facial features, eye gaze conveys crucial information for social interaction, with a straight gaze triggering different cognitive and emotional processes as compared to an averted gaze. It remains unknown, however, how interindividual differences in attachment associate with early face encoding in the context of a straight versus averted gaze. Using electroencephalography (EEG) and recording event-related potentials (ERPs), specifically the N170 component, the present study (N = 50 healthy adults) measured how the characteristics of attachment anxiety and avoidance relate to the encoding of faces with respect to gaze direction and head orientation. Our findings reveal a significant relationship between gaze direction (irrespective of head orientation) and attachment anxiety on the interhemispheric (i.e. right) asymmetry of the N170 and thus provide evidence for an association between attachment anxiety and eye gaze processing during early visual face encoding.
Collapse
Affiliation(s)
- Nicolas Burra
- Faculté de Psychologie et des Sciences de l'Education, Université de Genève, Geneva, Switzerland
| | - Pascal Vrtička
- Department of Psychology, University of Essex, Colchester, UK
| |
Collapse
|
22
|
Chen X, Liu X, Parker BJ, Zhen Z, Weiner KS. Functionally and structurally distinct fusiform face area(s) in over 1000 participants. Neuroimage 2023. [PMID: 36427753 DOI: 10.1101/2022.04.08.487562v1.full.pdf] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
The fusiform face area (FFA) is a widely studied region causally involved in face perception. Even though cognitive neuroscientists have been studying the FFA for over two decades, answers to foundational questions regarding the function, architecture, and connectivity of the FFA from a large (N>1000) group of participants are still lacking. To fill this gap in knowledge, we quantified these multimodal features of fusiform face-selective regions in 1053 participants in the Human Connectome Project. After manually defining over 4,000 fusiform face-selective regions, we report five main findings. First, 68.76% of hemispheres have two cortically separate regions (pFus-faces/FFA-1 and mFus-faces/FFA-2). Second, in 26.69% of hemispheres, pFus-faces/FFA-1 and mFus-faces/FFA-2 are spatially contiguous, yet are distinct based on functional, architectural, and connectivity metrics. Third, pFus-faces/FFA-1 is more face-selective than mFus-faces/FFA-2, and the two regions have distinct functional connectivity fingerprints. Fourth, pFus-faces/FFA-1 is cortically thinner and more heavily myelinated than mFus-faces/FFA-2. Fifth, face-selective patterns and functional connectivity fingerprints of each region are more similar in monozygotic than dizygotic twins and more so than architectural gradients. As we share our areal definitions with the field, future studies can explore how structural and functional features of these regions will inform theories regarding how visual categories are represented in the brain.
Collapse
Affiliation(s)
- Xiayu Chen
- Faculty of Psychology, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Xingyu Liu
- Faculty of Psychology, Beijing Normal University, Beijing 100875, China
| | - Benjamin J Parker
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States
| | - Zonglei Zhen
- Faculty of Psychology, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.
| | - Kevin S Weiner
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States; Department of Psychology, University of California, Berkeley, CA 94720, United States
| |
Collapse
|
23
|
Chen X, Liu X, Parker BJ, Zhen Z, Weiner KS. Functionally and structurally distinct fusiform face area(s) in over 1000 participants. Neuroimage 2023; 265:119765. [PMID: 36427753 PMCID: PMC9889174 DOI: 10.1016/j.neuroimage.2022.119765] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
The fusiform face area (FFA) is a widely studied region causally involved in face perception. Even though cognitive neuroscientists have been studying the FFA for over two decades, answers to foundational questions regarding the function, architecture, and connectivity of the FFA from a large (N>1000) group of participants are still lacking. To fill this gap in knowledge, we quantified these multimodal features of fusiform face-selective regions in 1053 participants in the Human Connectome Project. After manually defining over 4,000 fusiform face-selective regions, we report five main findings. First, 68.76% of hemispheres have two cortically separate regions (pFus-faces/FFA-1 and mFus-faces/FFA-2). Second, in 26.69% of hemispheres, pFus-faces/FFA-1 and mFus-faces/FFA-2 are spatially contiguous, yet are distinct based on functional, architectural, and connectivity metrics. Third, pFus-faces/FFA-1 is more face-selective than mFus-faces/FFA-2, and the two regions have distinct functional connectivity fingerprints. Fourth, pFus-faces/FFA-1 is cortically thinner and more heavily myelinated than mFus-faces/FFA-2. Fifth, face-selective patterns and functional connectivity fingerprints of each region are more similar in monozygotic than dizygotic twins and more so than architectural gradients. As we share our areal definitions with the field, future studies can explore how structural and functional features of these regions will inform theories regarding how visual categories are represented in the brain.
Collapse
Affiliation(s)
- Xiayu Chen
- Faculty of Psychology, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Xingyu Liu
- Faculty of Psychology, Beijing Normal University, Beijing 100875, China
| | - Benjamin J Parker
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States
| | - Zonglei Zhen
- Faculty of Psychology, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.
| | - Kevin S Weiner
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States; Department of Psychology, University of California, Berkeley, CA 94720, United States
| |
Collapse
|
24
|
Lee SM, Tibon R, Zeidman P, Yadav PS, Henson R. Effects of face repetition on ventral visual stream connectivity using dynamic causal modelling of fMRI data. Neuroimage 2022; 264:119708. [PMID: 36280098 DOI: 10.1016/j.neuroimage.2022.119708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Stimulus repetition normally causes reduced neural activity in brain regions that process that stimulus. Some theories claim that this "repetition suppression" reflects local mechanisms such as neuronal fatigue or sharpening within a region, whereas other theories claim that it results from changed connectivity between regions, following changes in synchrony or top-down predictions. In this study, we applied dynamic causal modeling (DCM) on a public fMRI dataset involving repeated presentations of faces and scrambled faces to test whether repetition affected local (self-connections) and/or between-region connectivity in left and right early visual cortex (EVC), occipital face area (OFA) and fusiform face area (FFA). Face "perception" (faces versus scrambled faces) modulated nearly all connections, within and between regions, including direct connections from EVC to FFA, supporting a non-hierarchical view of face processing. Face "recognition" (familiar versus unfamiliar faces) modulated connections between EVC and OFA/FFA, particularly in the left hemisphere. Most importantly, immediate and delayed repetition of stimuli were also best captured by modulations of connections between EVC and OFA/FFA, but not self-connections of OFA/FFA, consistent with synchronization or predictive coding theories, though also possibly reflecting local mechanisms like synaptic depression.
Collapse
Affiliation(s)
- Sung-Mu Lee
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei, Taiwan; MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
| | - Roni Tibon
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom; School of Psychology, University of Nottingham, Nottingham, United Kingdom
| | - Peter Zeidman
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London, United Kingdom
| | - Pranay S Yadav
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
| | - Richard Henson
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom; Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
25
|
Arbel R, Heimler B, Amedi A. Face shape processing via visual-to-auditory sensory substitution activates regions within the face processing networks in the absence of visual experience. Front Neurosci 2022; 16:921321. [PMID: 36263367 PMCID: PMC9576157 DOI: 10.3389/fnins.2022.921321] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Previous evidence suggests that visual experience is crucial for the emergence and tuning of the typical neural system for face recognition. To challenge this conclusion, we trained congenitally blind adults to recognize faces via visual-to-auditory sensory-substitution (SDD). Our results showed a preference for trained faces over other SSD-conveyed visual categories in the fusiform gyrus and in other known face-responsive-regions of the deprived ventral visual stream. We also observed a parametric modulation in the same cortical regions, for face orientation (upright vs. inverted) and face novelty (trained vs. untrained). Our results strengthen the conclusion that there is a predisposition for sensory-independent and computation-specific processing in specific cortical regions that can be retained in life-long sensory deprivation, independently of previous perceptual experience. They also highlight that if the right training is provided, such cortical preference maintains its tuning to what were considered visual-specific face features.
Collapse
Affiliation(s)
- Roni Arbel
- Department of Medical Neurobiology, Hadassah Ein-Kerem, Hebrew University of Jerusalem, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Pediatrics, Hadassah University Hospital-Mount Scopus, Jerusalem, Israel
- *Correspondence: Roni Arbel,
| | - Benedetta Heimler
- Department of Medical Neurobiology, Hadassah Ein-Kerem, Hebrew University of Jerusalem, Jerusalem, Israel
- Ivcher School of Psychology, The Institute for Brain, Mind, and Technology, Reichman University, Herzeliya, Israel
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Ramat Gan, Israel
| | - Amir Amedi
- Department of Medical Neurobiology, Hadassah Ein-Kerem, Hebrew University of Jerusalem, Jerusalem, Israel
- Ivcher School of Psychology, The Institute for Brain, Mind, and Technology, Reichman University, Herzeliya, Israel
| |
Collapse
|
26
|
Ficco L, Müller VI, Kaufmann JM, Schweinberger SR. Socio‐cognitive, expertise‐based and appearance‐based accounts of the other‐‘race’ effect in face perception: A label‐based systematic review of neuroimaging results. Br J Psychol 2022; 114 Suppl 1:45-69. [DOI: 10.1111/bjop.12595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 08/13/2022] [Accepted: 08/18/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Linda Ficco
- Department of General Psychology and Cognitive Neuroscience Friedrich Schiller University Jena Germany
- Department of Linguistics and Cultural Evolution International Max Planck Research School for the Science of Human History Jena Germany
| | - Veronika I. Müller
- Institute of Systems Neuroscience, Medical Faculty Heinrich Heine University Düsseldorf Düsseldorf Germany
- Institute of Neuroscience und Medicine (INM‐7) Research Centre Jülich Jülich Germany
| | - Jürgen M. Kaufmann
- Department of General Psychology and Cognitive Neuroscience Friedrich Schiller University Jena Germany
| | - Stefan R. Schweinberger
- Department of General Psychology and Cognitive Neuroscience Friedrich Schiller University Jena Germany
- Department of Linguistics and Cultural Evolution International Max Planck Research School for the Science of Human History Jena Germany
| |
Collapse
|
27
|
Approaching or Decentering? Differential Neural Networks Underlying Experiential Emotion Regulation and Cognitive Defusion. Brain Sci 2022; 12:brainsci12091215. [PMID: 36138951 PMCID: PMC9496919 DOI: 10.3390/brainsci12091215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
The current study investigated the bottom-up experiential emotion regulation in comparison to the cognitiveve top down-approach of cognitive defusion. Rooted in an experiential- and client-centered psychotherapeutic approach, experiential emotion regulation involves an active, non-intervening, accepting, open and welcoming approach towards the bodily felt affective experience in a welcoming, compassionate way, expressed in ‘experiential awareness’ in a first phase, and its verbalization or ‘experiential expression’ in a second phase. Defusion refers to the ability to observe one’s thoughts and feelings in a detached manner. Nineteen healthy participants completed an emotion regulation task during fMRI scanning by processing highly arousing negative events by images. Both experiential emotion regulation and cognitive defusion resulted in higher negative emotion compared to a ‘watch’ control condition. On the neurophysiological level, experiential emotion regulation recruited brain areas that regulate attention towards affective- and somatosensorial experience such as the anterior cingulate cortex, the paracingulate gyrus, the inferior frontal gyrus, and the prefrontal pole, areas underlying multisensory information integration (e.g., angular gyrus), and linking body states to emotion recognition and awareness (e.g., postcentral gyrus). Experiential emotion regulation, relative to the control condition, also resulted in a higher interaction between the anterior insular cortex and left amygdala while participants experienced less negative emotion. Cognitive defusion decreased activation in the subcortical areas such as the brainstem, the thalamus, the amygdala, and the hippocampus. In contrast to cognitive defusion, experiential emotion regulation relative to demonstrated greater activation in the left angular gyrus, indicating more multisensory information integration. These findings provide insight into different and specific neural networks underlying psychotherapy-based experiential emotion regulation and cognitive defusion.
Collapse
|
28
|
Korisky A, Gordon I, Goldstein A. Oxytocin impacts top-down and bottom-up social perception in adolescents with ASD: a MEG study of neural connectivity. Mol Autism 2022; 13:36. [PMID: 36064612 PMCID: PMC9446859 DOI: 10.1186/s13229-022-00513-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022] Open
Abstract
Background In the last decade, accumulative evidence has shown that oxytocin can modulate social perception in typically developed individuals and individuals diagnosed with autism. While several studies show that oxytocin (OT) modulates neural activation in social-related neural regions, the mechanism that underlies OT effects in ASD is not fully known yet. Despite evidence from animal studies on connections between the oxytocinergic system and excitation/inhibition neural balance, the influence of OT on oscillatory responses among individuals with ASD has been rarely examined. To bridge these gaps in knowledge, we investigated the effects of OT on both social and non-social stimuli while focusing on its specific influence on the neural connectivity between three socially related neural regions—the left and right fusiform and the medial frontal cortex.
Methods Twenty-five adolescents with ASD participated in a wall-established social task during a randomized, double-blind placebo-controlled MEG and OT administration study. Our main task was a social-related task that required the identification of social and non-social-related pictures. We hypothesized that OT would modulate the oscillatory connectivity between three pre-selected regions of interest to be more adaptive to social processing. Specifically, we focused on alpha and gamma bands which are known to play an important role in face processing and top-down/bottom-up balance.
Results Compared to placebo, OT reduced the connectivity between the medial frontal cortex and the fusiform in the low gamma more for social stimuli than for non-social ones, a reduction that was correlated with individuals’ performance in the task. Additionally, for both social and non-social stimuli, OT increased the connectivity in the alpha and beta bands. Limitations Sample size was determined based on sample sizes previously reported in MEG in clinical populations, especially OT administration studies in combination with neuroimaging in ASD. We were limited in our capability to recruit for such a study, and as such, the sample size was not based on a priori power analysis. Additionally, we limited our analyses to specific neural bands and regions. To validate the current results, future studies may be needed to explore other parameters using whole-brain approaches in larger samples. Conclusion These results suggest that OT influenced social perception by modifying the communication between frontal and posterior regions, an attenuation that potentially impacts both social and non-social early perception. We also show that OT influences differ between top-down and bottom-up processes, depending on the social context. Overall, by showing that OT influences both social-related perception and overall attention during early processing stages, we add new information to the existing understanding of the impact of OT on neural processing in ASD. Furthermore, by highlighting the influence of OT on early perception, we provide new directions for treatments for difficulties in early attentional phases in this population. Trial registration Registered on October 27, 2021—Retrospectively registered, https://clinicaltrials.gov/ct2/show/record/NCT05096676 (details on clinical registration can be found in www.clinicalTrial.gov, unique identifier: NCT05096676). Supplementary Information The online version contains supplementary material available at 10.1186/s13229-022-00513-6.
Collapse
Affiliation(s)
- Adi Korisky
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, 5290002, Ramat Gan, Israel
| | - Ilanit Gordon
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, 5290002, Ramat Gan, Israel. .,Department of Psychology, Bar-Ilan University, 5290002, Ramat Gan, Israel.
| | - Abraham Goldstein
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, 5290002, Ramat Gan, Israel.,Department of Psychology, Bar-Ilan University, 5290002, Ramat Gan, Israel
| |
Collapse
|
29
|
Scharinger M, Knoop CA, Wagner V, Menninghaus W. Neural processing of poems and songs is based on melodic properties. Neuroimage 2022; 257:119310. [PMID: 35569784 DOI: 10.1016/j.neuroimage.2022.119310] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/26/2022] [Accepted: 05/11/2022] [Indexed: 11/30/2022] Open
Abstract
The neural processing of speech and music is still a matter of debate. A long tradition that assumes shared processing capacities for the two domains contrasts with views that assume domain-specific processing. We here contribute to this topic by investigating, in a functional magnetic imaging (fMRI) study, ecologically valid stimuli that are identical in wording and differ only in that one group is typically spoken (or silently read), whereas the other is sung: poems and their respective musical settings. We focus on the melodic properties of spoken poems and their sung musical counterparts by looking at proportions of significant autocorrelations (PSA) based on pitch values extracted from their recordings. Following earlier studies, we assumed a bias of poem-processing towards the left and a bias for song-processing on the right hemisphere. Furthermore, PSA values of poems and songs were expected to explain variance in left- vs. right-temporal brain areas, while continuous liking ratings obtained in the scanner should modulate activity in the reward network. Overall, poem processing compared to song processing relied on left temporal regions, including the superior temporal gyrus, whereas song processing compared to poem processing recruited more right temporal areas, including Heschl's gyrus and the superior temporal gyrus. PSA values co-varied with activation in bilateral temporal regions for poems, and in right-dominant fronto-temporal regions for songs. Continuous liking ratings were correlated with activity in the default mode network for both poems and songs. The pattern of results suggests that the neural processing of poems and their musical settings is based on their melodic properties, supported by bilateral temporal auditory areas and an additional right fronto-temporal network known to be implicated in the processing of melodies in songs. These findings take a middle ground in providing evidence for specific processing circuits for speech and music in the left and right hemisphere, but simultaneously for shared processing of melodic aspects of both poems and their musical settings in the right temporal cortex. Thus, we demonstrate the neurobiological plausibility of assuming the importance of melodic properties in spoken and sung aesthetic language alike, along with the involvement of the default mode network in the aesthetic appreciation of these properties.
Collapse
Affiliation(s)
- Mathias Scharinger
- Department of Language and Literature, Max Planck Institute for Empirical Aesthetics, Frankfurt, Germany; Research Group Phonetics, Institute of German Linguistics, Philipps-University Marburg, Pilgrimstein 16, Marburg 35032, Germany; Center for Mind, Brain and Behavior, Universities of Marburg and Gießen, Germany.
| | - Christine A Knoop
- Department of Language and Literature, Max Planck Institute for Empirical Aesthetics, Frankfurt, Germany; Department of Music, Max Planck Institute for Empirical Aesthetics, Frankfurt, Germany
| | - Valentin Wagner
- Department of Language and Literature, Max Planck Institute for Empirical Aesthetics, Frankfurt, Germany; Experimental Psychology Unit, Helmut Schmidt University / University of the Federal Armed Forces Hamburg, Germany
| | - Winfried Menninghaus
- Department of Language and Literature, Max Planck Institute for Empirical Aesthetics, Frankfurt, Germany
| |
Collapse
|
30
|
Nikel L, Sliwinska MW, Kucuk E, Ungerleider LG, Pitcher D. Measuring the response to visually presented faces in the human lateral prefrontal cortex. Cereb Cortex Commun 2022; 3:tgac036. [PMID: 36159205 PMCID: PMC9491845 DOI: 10.1093/texcom/tgac036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 12/04/2022] Open
Abstract
Neuroimaging studies identify multiple face-selective areas in the human brain. In the current study, we compared the functional response of the face area in the lateral prefrontal cortex to that of other face-selective areas. In Experiment 1, participants (n = 32) were scanned viewing videos containing faces, bodies, scenes, objects, and scrambled objects. We identified a face-selective area in the right inferior frontal gyrus (rIFG). In Experiment 2, participants (n = 24) viewed the same videos or static images. Results showed that the rIFG, right posterior superior temporal sulcus (rpSTS), and right occipital face area (rOFA) exhibited a greater response to moving than static faces. In Experiment 3, participants (n = 18) viewed face videos in the contralateral and ipsilateral visual fields. Results showed that the rIFG and rpSTS showed no visual field bias, while the rOFA and right fusiform face area (rFFA) showed a contralateral bias. These experiments suggest two conclusions; firstly, in all three experiments, the face area in the IFG was not as reliably identified as face areas in the occipitotemporal cortex. Secondly, the similarity of the response profiles in the IFG and pSTS suggests the areas may perform similar cognitive functions, a conclusion consistent with prior neuroanatomical and functional connectivity evidence.
Collapse
Affiliation(s)
- Lara Nikel
- Department of Psychology, University of York, Heslington , York YO10 5DD , UK
| | | | - Emel Kucuk
- Department of Psychology, University of York, Heslington , York YO10 5DD , UK
| | - Leslie G Ungerleider
- Section on Neurocircuitry, Laboratory of Brain and Cognition, National Institute of Mental Health , Bethesda, MD, 20892 , USA
| | - David Pitcher
- Department of Psychology, University of York, Heslington , York YO10 5DD , UK
| |
Collapse
|
31
|
Leite L, Esper NB, Junior JRML, Lara DR, Buchweitz A. An exploratory study of resting-state functional connectivity of amygdala subregions in posttraumatic stress disorder following trauma in adulthood. Sci Rep 2022; 12:9558. [PMID: 35688847 PMCID: PMC9187646 DOI: 10.1038/s41598-022-13395-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/03/2022] [Indexed: 11/09/2022] Open
Abstract
We carried out an exploratory study aimed at identifying differences in resting-state functional connectivity for the amygdala and its subregions, right and left basolateral, centromedial and superficial nuclei, in patients with Posttraumatic Stress Disorder (PTSD), relative to controls. The study included 10 participants with PTSD following trauma in adulthood (9 females), and 10 controls (9 females). The results suggest PTSD was associated with a decreased (negative) functional connectivity between the superficial amygdala and posterior brain regions relative to controls. The differences were observed between right superficial amygdala and right fusiform gyrus, and between left superficial amygdala and left lingual and left middle occipital gyri. The results suggest that among PTSD patients, the worse the PTSD symptoms, the lower the connectivity. The results corroborate the fMRI literature that shows PTSD is associated with weaker amygdala functional connectivity with areas of the brain involved in sensory and perceptual processes. The results also suggest that though the patients traumatic experience occured in adulthood, the presence of early traumatic experiences were associated with negative connectivity between the centromedial amygdala and sensory and perceptual regions. We argue that the understanding of the mechanisms of PTSD symptoms, its behaviors and the effects on quality of life of patients may benefit from the investigation of brain function that underpins sensory and perceptual symptoms associated with the disorder.
Collapse
Affiliation(s)
- Leticia Leite
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, 90619-900, Brazil.
| | - Nathalia Bianchini Esper
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, 90619-900, Brazil
- Brain Institute (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, 90610-000, Brazil
| | - José Roberto M Lopes Junior
- School of Psychology and Health, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, 90050-170, Brazil
| | | | - Augusto Buchweitz
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, 90619-900, Brazil.
- Brain Institute (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, 90610-000, Brazil.
- Department of Psychology, University of Connecticut, Stamford, 06269-1020, United States of America.
| |
Collapse
|
32
|
Rossion B. Twenty years of investigation with the case of prosopagnosia PS to understand human face identity recognition. Part II: Neural basis. Neuropsychologia 2022; 173:108279. [PMID: 35667496 DOI: 10.1016/j.neuropsychologia.2022.108279] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 04/30/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
Abstract
Patient PS sustained her dramatic brain injury in 1992, the same year as the first report of a neuroimaging study of human face recognition. The present paper complements the review on the functional nature of PS's prosopagnosia (part I), illustrating how her case study directly, i.e., through neuroimaging investigations of her brain structure and activity, but also indirectly, through neural studies performed on other clinical cases and neurotypical individuals, inspired and constrained neural models of human face recognition. In the dominant right hemisphere for face recognition in humans, PS's main lesion concerns (inputs to) the inferior occipital gyrus (IOG), in a region where face-selective activity is typically found in normal individuals ('Occipital Face Area', OFA). Her case study initially supported the criticality of this region for face identity recognition (FIR) and provided the impetus for transcranial magnetic stimulation (TMS), intracerebral electrical stimulation, and cortical surgery studies that have generally supported this view. Despite PS's right IOG lesion, typical face-selectivity is found anteriorly in the middle portion of the fusiform gyrus, a hominoid structure (termed the right 'Fusiform Face Area', FFA) that is widely considered to be the most important region for human face recognition. This finding led to the original proposal of direct anatomico-functional connections from early visual cortices to the FFA, bypassing the IOG/OFA (lulu), a hypothesis supported by further neuroimaging studies of PS, other neurological cases and neuro-typical individuals with original visual stimulation paradigms, data recordings and analyses. The proposal of a lack of sensitivity to face identity in PS's right FFA due to defective reentrant inputs from the IOG/FFA has also been supported by other cases, functional connectivity and cortical surgery studies. Overall, neural studies of, and based on, the case of prosopagnosia PS strongly question the hierarchical organization of the human neural face recognition system, supporting a more flexible and dynamic view of this key social brain function.
Collapse
Affiliation(s)
- Bruno Rossion
- Université de Lorraine, CNRS, CRAN, F-54000, Nancy, France; CHRU-Nancy, Service de Neurologie, F-5400, France; Psychological Sciences Research Institute, Institute of Neuroscience, University of Louvain, Belgium.
| |
Collapse
|
33
|
Rossion B. Twenty years of investigation with the case of prosopagnosia PS to understand human face identity recognition. Part I: Function. Neuropsychologia 2022; 173:108278. [DOI: 10.1016/j.neuropsychologia.2022.108278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/28/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
|
34
|
Liang RB, Liu LQ, Shi WQ, Sun T, Ge QM, Li QY, Shu HY, Zhang LJ, Shao Y. Abnormal Fractional Amplitude of Low Frequency Fluctuation Changes in Patients With Dry Eye Disease: A Functional Magnetic Resonance Imaging Study. Front Hum Neurosci 2022; 16:900409. [PMID: 35693538 PMCID: PMC9175025 DOI: 10.3389/fnhum.2022.900409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
PurposeTo investigate spontaneous brain activity in patients with dry eye (DE) and healthy control (HC) using the fractional amplitude of low frequency fluctuation (fALFF) technique with the aim of elucidating the relationship between the clinical symptoms of DE and changes in brain function.Material and MethodsA total of 28 patients with DE and 28 matched healthy volunteers (10 males and 18 females in each group) were enrolled. Resting-state functional magnetic resonance imaging scans were performed in both groups. Then all subjects were required to complete a comprehensive Hospital Anxiety and Depression Scale (HADS). Receiver operating characteristic (ROC) curve analysis was used to evaluate the differences in fALFF values between the two groups and their diagnostic value. Linear correlations between HADS and fALFF values in different brain regions of DE patients were analyzed using the Pearson correlation coefficient.ResultsPatients with DE had significantly higher fALFF values in the left calcarine sulcus (CS) than the HC group, while fALFF values in the bilateral middle frontal gyrus (MFG) and right MFG/right inferior frontal gyrus (IFG) were significantly lower in DE patients than in HC group. fALFF values had a high diagnostic value for differentiating patients with DE from the HC group (P < 0.001). Right MFG and right MFG/IFG were significantly correlated with HADS values.ConclusionOur study found that DE mainly involved functional disorders in the brain areas of the left CS, bilateral MFG and right MFG/right IFG, which helped us to find possible clinical features of DE disease and reflected the potential pathological mechanism of DE.
Collapse
|
35
|
Rogers D, Baseler H, Young AW, Jenkins R, Andrews TJ. The roles of shape and texture in the recognition of familiar faces. Vision Res 2022; 194:108013. [DOI: 10.1016/j.visres.2022.108013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 10/19/2022]
|
36
|
Juliane H, Marcus R, Philipp S, Guido H. Probing the attentional modulation of unconscious processing under interocular suppression in a spatial cueing paradigm. Cortex 2022; 153:32-43. [PMID: 35576671 DOI: 10.1016/j.cortex.2022.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 03/04/2022] [Accepted: 04/13/2022] [Indexed: 11/03/2022]
Abstract
The debate about the scope and limits of unconscious visual processing under continuous flash suppression (CFS) has created a heterogeneous set of divergent findings that are yet to be reconciled. Attention has been suggested as an important factor in modulating the processing of suppressed visual information under CFS. Specifically, Eo et al. (2016) reported that semantic processing under CFS can be significantly facilitated when spatial attention is diverted away from the suppressed stimulus. Based on event-related potential (ERP) findings involving the N400, they proposed that inattention attenuates interocular suppression and thereby makes semantic processing available unconsciously, potentially reconciling conflicting evidence in the literature. In this study, we aimed to further investigate the "CFS-attenuation-by-inattention" hypothesis using functional magnetic resonance imaging (fMRI) and multivariate pattern analysis (MVPA). We tested whether the decodability of object category increases under CFS when attention is diverted away from the suppressed stimulus in a spatial cueing task. Our results provide no evidence for the "CFS-attenuation-by-inattention" hypothesis, but show higher decoding accuracies for visible stimuli than for invisible stimuli. We discuss the implications of our findings for the important endeavor of trying to reconcile the divergent reports of unconscious processing under CFS.
Collapse
|
37
|
Medial prefrontal and occipito-temporal activity at encoding determines enhanced recognition of threatening faces after 1.5 years. Brain Struct Funct 2022; 227:1655-1672. [PMID: 35174416 DOI: 10.1007/s00429-022-02462-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/24/2022] [Indexed: 11/02/2022]
Abstract
Studies demonstrated that faces with threatening emotional expressions are better remembered than non-threatening faces. However, whether this memory advantage persists over years and which neural systems underlie such an effect remains unknown. Here, we employed an individual difference approach to examine whether the neural activity during incidental encoding was associated with differential recognition of faces with emotional expressions (angry, fearful, happy, sad and neutral) after a retention interval of > 1.5 years (N = 89). Behaviorally, we found a better recognition for threatening (angry, fearful) versus non-threatening (happy and neutral) faces after a delay of > 1.5 years, which was driven by forgetting of non-threatening faces compared with immediate recognition after encoding. Multivariate principal component analysis (PCA) on the behavioral responses further confirmed the discriminative recognition performance between threatening and non-threatening faces. A voxel-wise whole-brain analysis on the concomitantly acquired functional magnetic resonance imaging (fMRI) data during incidental encoding revealed that neural activity in bilateral inferior occipital gyrus (IOG) and ventromedial prefrontal/orbitofrontal cortex (vmPFC/OFC) was associated with the individual differences in the discriminative emotional face recognition performance measured by an innovative behavioral pattern similarity analysis (BPSA). The left fusiform face area (FFA) was additionally determined using a regionally focused analysis. Overall, the present study provides evidence that threatening facial expressions lead to persistent face recognition over periods of > 1.5 years, and that differential encoding-related activity in the medial prefrontal cortex and occipito-temporal cortex may underlie this effect.
Collapse
|
38
|
Żochowska A, Jakuszyk P, Nowicka MM, Nowicka A. Are covered faces eye-catching for us? The impact of masks on attentional processing of self and other faces during the COVID-19 pandemic. Cortex 2022; 149:173-187. [PMID: 35257944 PMCID: PMC8830153 DOI: 10.1016/j.cortex.2022.01.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 11/19/2021] [Accepted: 01/29/2022] [Indexed: 12/01/2022]
Abstract
During the COVID-19 pandemic, we have been confronted with faces covered by surgical-like masks. This raises a question about how our brains process this kind of visual information. Thus, the aims of the current study were twofold: (1) to investigate the role of attention in the processing of different types of faces with masks, and (2) to test whether such partial information about faces is treated similarly to fully visible faces. Participants were tasked with the simple detection of self-, close-other's, and unknown faces with and without a mask; this task relies on attentional processes. Event-related potential (ERP) findings revealed a similar impact of surgical-like masks for all faces: the amplitudes of early (P100) and late (P300, LPP) attention-related components were higher for faces with masks than for fully visible faces. Amplitudes of N170 were similar for covered and fully visible faces, and sources of brain activity were located in the fusiform gyri in both cases. Linear Discriminant Analysis (LDA) revealed that irrespective of whether the algorithm was trained to discriminate three types of faces either with or without masks, it was able to effectively discriminate faces that were not presented in the training phase.
Collapse
Affiliation(s)
- Anna Żochowska
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Paweł Jakuszyk
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Maria M Nowicka
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Nowicka
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
39
|
Volfart A, Yan X, Maillard L, Colnat-Coulbois S, Hossu G, Rossion B, Jonas J. Intracerebral electrical stimulation of the right anterior fusiform gyrus impairs human face identity recognition. Neuroimage 2022; 250:118932. [PMID: 35085763 DOI: 10.1016/j.neuroimage.2022.118932] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 01/17/2022] [Accepted: 01/23/2022] [Indexed: 01/23/2023] Open
Abstract
Brain regions located between the right fusiform face area (FFA) in the middle fusiform gyrus and the temporal pole may play a critical role in human face identity recognition but their investigation is limited by a large signal drop-out in functional magnetic resonance imaging (fMRI). Here we report an original case who is suddenly unable to recognize the identity of faces when electrically stimulated on a focal location inside this intermediate region of the right anterior fusiform gyrus. The reliable transient identity recognition deficit occurs without any change of percept, even during nonverbal face tasks (i.e., pointing out the famous face picture among three options; matching pictures of unfamiliar or familiar faces for their identities), and without difficulty at recognizing visual objects or famous written names. The effective contact is associated with the largest frequency-tagged electrophysiological signals of face-selectivity and of familiar and unfamiliar face identity recognition. This extensive multimodal investigation points to the right anterior fusiform gyrus as a critical hub of the human cortical face network, between posterior ventral occipito-temporal face-selective regions directly connected to low-level visual cortex, the medial temporal lobe involved in generic memory encoding, and ventral anterior temporal lobe regions holding semantic associations to people's identity.
Collapse
Affiliation(s)
- Angélique Volfart
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; University of Louvain, Psychological Sciences Research Institute, B-1348 Louvain-La-Neuve, Belgium
| | - Xiaoqian Yan
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; University of Louvain, Psychological Sciences Research Institute, B-1348 Louvain-La-Neuve, Belgium; Stanford University, Department of Psychology, CA 94305 Stanford, USA
| | - Louis Maillard
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; Université de Lorraine, CHRU-Nancy, Service de Neurologie, F-54000 Nancy, France
| | - Sophie Colnat-Coulbois
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; Université de Lorraine, CHRU-Nancy, Service de Neurochirurgie, F-54000 Nancy, France
| | - Gabriela Hossu
- Université de Lorraine, CHRU-Nancy, CIC-IT, F-54000 Nancy, France; Université de Lorraine, Inserm, IADI, F-54000 Nancy, France
| | - Bruno Rossion
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; University of Louvain, Psychological Sciences Research Institute, B-1348 Louvain-La-Neuve, Belgium; Université de Lorraine, CHRU-Nancy, Service de Neurologie, F-54000 Nancy, France
| | - Jacques Jonas
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; Université de Lorraine, CHRU-Nancy, Service de Neurologie, F-54000 Nancy, France.
| |
Collapse
|
40
|
Abstract
Face perception is a socially important but complex process with many stages and many facets. There is substantial evidence from many sources that it involves a large extent of the temporal lobe, from the ventral occipitotemporal cortex and superior temporal sulci to anterior temporal regions. While early human neuroimaging work suggested a core face network consisting of the occipital face area, fusiform face area, and posterior superior temporal sulcus, studies in both humans and monkeys show a system of face patches stretching from posterior to anterior in both the superior temporal sulcus and inferotemporal cortex. Sophisticated techniques such as fMRI adaptation have shown that these face-activated regions show responses that have many of the attributes of human face processing. Lesions of some of these regions in humans lead to variants of prosopagnosia, the inability to recognize the identity of a face. Lesion, imaging, and electrophysiologic data all suggest that there is a segregation between identity and expression processing, though some suggest this may be better characterized as a distinction between static and dynamic facial information.
Collapse
Affiliation(s)
- Jason J S Barton
- Division of Neuro-ophthalmology, Departments of Medicine (Neurology), Ophthalmology and Visual Sciences, Psychology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
41
|
Abstract
The Benton Facial Recognition Test (BFRT) is a paper-and-pen task that is traditionally used to assess face perception skills in neurological, clinical and psychiatric conditions. Despite criticisms of its stimuli, the task enjoys a simple procedure and is rapid to administer. Further, it has recently been computerised (BFRT-c), allowing reliable measurement of completion times and the need for online testing. Here, in response to calls for repeat screening for the accurate detection of face processing deficits, we present the BFRT-Revised (BFRT-r): a new version of the BFRT-c that maintains the task's basic paradigm, but employs new, higher-quality stimuli that reflect recent theoretical advances in the field. An initial validation study with typical participants indicated that the BFRT-r has good internal reliability and content validity. A second investigation indicated that while younger and older participants had comparable accuracy, completion times were longer in the latter, highlighting the need for age-matched norms. Administration of the BFRT-r and BFRT-c to 32 individuals with developmental prosopagnosia resulted in improved sensitivity in diagnostic screening for the BFRT-r compared to the BFRT-c. These findings are discussed in relation to current diagnostic screening protocols for face perception deficits. The BFRT-r is stored in an open repository and is freely available to other researchers.
Collapse
|
42
|
Fysh MC, Ramon M. Accurate but inefficient: Standard face identity matching tests fail to identify prosopagnosia. Neuropsychologia 2021; 165:108119. [PMID: 34919897 DOI: 10.1016/j.neuropsychologia.2021.108119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 11/24/2021] [Accepted: 12/09/2021] [Indexed: 12/27/2022]
Abstract
In recent years, the number of face identity matching tests in circulation has grown considerably and these are being increasingly utilized to study individual differences in face cognition. Although many of these tests were designed for testing typical observers, recent studies have begun to utilize general-purpose tests for studying specific, atypical populations (e.g., super-recognizers and individuals with prosopagnosia). In this study, we examined the capacity of four tests requiring binary face-matching decisions to study individual differences between healthy observers. Uniquely, we used performance of the patient PS (Rossion, 2018), a well-documented case of acquired prosopagnosia (AP), as a benchmark. Two main findings emerged: (i) PS could exhibit typical rates of accuracy in all tests; (ii) compared to age-matched controls and when considering both accuracy and speed to account for potential trade-offs, only the KFMT - but not the EFCT, PICT or GFMT - was able to detect PS's severe impairment. These findings reflect the importance of considering both accuracy and response times to measure individual differences in face matching, and the need for comparing tests in terms of their sensitivity, when used as a measure of human cognition and brain functioning.
Collapse
Affiliation(s)
- Matthew C Fysh
- School of Psychology, University of Kent, Canterbury, Kent, United Kingdom
| | - Meike Ramon
- Applied Face Cognition Lab, Department of Psychology, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
43
|
Geller WN, Liu K, Warren SL. Specificity of anhedonic alterations in resting-state network connectivity and structure: A transdiagnostic approach. Psychiatry Res Neuroimaging 2021; 317:111349. [PMID: 34399282 DOI: 10.1016/j.pscychresns.2021.111349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/11/2021] [Accepted: 07/28/2021] [Indexed: 10/20/2022]
Abstract
Anhedonia is a prominent characteristic of depression and related pathology that is associated with a prolonged course of mood disturbance and treatment resistance. However, the neurobiological mechanisms of anhedonia are poorly understood as few studies have disentangled the specific effects of anhedonia from other co-occurring symptoms. Here, we take a transdiagnostic, dimensional approach to distinguish anhedonia alterations from other internalizing symptoms on intrinsic functional brain circuits. 53 adults with varying degrees of anxiety and/or depression completed resting-state fMRI. Neural networks were identified through independent components analysis. Dual regression was used to characterize within-network functional connectivity alterations associated with individual differences in anhedonia. Modulation of between-network functional connectivity by anhedonia was tested using region-of-interest to region-of-interest correlational analyses. Anhedonia was associated with visual network hyperconnectivity and expansion of the visual, dorsal attention, and default networks. Additionally, anhedonia was associated with decreased between-network connectivity among default, salience, dorsal attention, somatomotor, and visual networks. Findings suggest that anhedonia is associated with aberrant connectivity and structural alterations in resting-state networks that contribute to impairments in reward learning, low motivation, and negativity bias characteristic of depression. Results reveal dissociable effects of anhedonia on resting-state network dynamics, characterizing possible neurocircuit mechanisms for intervention.
Collapse
Affiliation(s)
- Whitney N Geller
- Department of Psychology, Palo Alto University, 1791 Arastradero Road, Palo Alto, CA 94304, USA
| | - Kevin Liu
- Department of Psychology, Palo Alto University, 1791 Arastradero Road, Palo Alto, CA 94304, USA
| | - Stacie L Warren
- Department of Psychology, Palo Alto University, 1791 Arastradero Road, Palo Alto, CA 94304, USA.
| |
Collapse
|
44
|
One object, two networks? Assessing the relationship between the face and body-selective regions in the primate visual system. Brain Struct Funct 2021; 227:1423-1438. [PMID: 34792643 DOI: 10.1007/s00429-021-02420-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/22/2021] [Indexed: 10/19/2022]
Abstract
Faces and bodies are often treated as distinct categories that are processed separately by face- and body-selective brain regions in the primate visual system. These regions occupy distinct regions of visual cortex and are often thought to constitute independent functional networks. Yet faces and bodies are part of the same object and their presence inevitably covary in naturalistic settings. Here, we re-evaluate both the evidence supporting the independent processing of faces and bodies and the organizational principles that have been invoked to explain this distinction. We outline four hypotheses ranging from completely separate networks to a single network supporting the perception of whole people or animals. The current evidence, especially in humans, is compatible with all of these hypotheses, making it presently unclear how the representation of faces and bodies is organized in the cortex.
Collapse
|
45
|
Loi N, Ginatempo F, Manca A, Melis F, Deriu F. Faces emotional expressions: from perceptive to motor areas in aged and young subjects. J Neurophysiol 2021; 126:1642-1652. [PMID: 34614362 DOI: 10.1152/jn.00328.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The role of age in perception and production of facial expressions is still unclear. Therefore, this work compared, in aged and young subjects, the effects of passive viewing of faces expressing different emotions on perceptive brain regions, such as occipital and temporal cortical areas and on the primary motor cortex (M1) innervating lower face muscles. Seventeen young (24.41 ± 0.71 yr) and seventeen aged (63.82 ± 0.99 yr) subjects underwent recording of event-related potentials (ERP), of motor potentials evoked by transcranial magnetic stimulation of face M1 in the depressor anguli oris muscle and reaction time assessment. In both groups, the P100 and N170 waves, as well as short-latency intracortical inhibition (SICI) and intracortical facilitation (ICF) were probed in face M1 after 300 ms from the presentation of images reporting faces expressing happy, sad, and neutral emotions. ERP data evidenced a major involvement of the right hemisphere in perceptual processing of faces, regardless of age. Compared with young subjects, the aged group showed a delayed N170 wave and a smaller P100 wave following the view of sad but not happy or neutral expressions, along with less accuracy and longer reaction times for recognition of the emotion expressed by faces. Aged subjects presented less SICI than young subjects, but facial expressions of happiness increased the excitability of face M1 with no differences between groups. In conclusion, data suggest that encoding of sad face expressions is impaired in the aged compared with the young group, whereas perception of happiness and its excitatory effects on face M1 remains preserved.NEW & NOTEWORTHY This study shows that aged subjects have less visual attention and impaired perception for sad, but not for happy, face expressions. Conversely, the view of happy, but not sad, faces increases excitability in face M1 bilaterally, regardless of age. The impaired attention for sad expressions, the preserved perception of faces expressing happiness, along with the enhancing effects of the latter on face M1 excitability, likely makes the aged subjects more motivated in approaching positive emotions.
Collapse
Affiliation(s)
- Nicola Loi
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | | | - Andrea Manca
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Francesco Melis
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Franca Deriu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy.,Unit of Endocrinology, Nutritional and Metabolic Disorders, AOU Sassari, Sassari, Italy
| |
Collapse
|
46
|
Babo-Rebelo M, Puce A, Bullock D, Hugueville L, Pestilli F, Adam C, Lehongre K, Lambrecq V, Dinkelacker V, George N. Visual Information Routes in the Posterior Dorsal and Ventral Face Network Studied with Intracranial Neurophysiology and White Matter Tract Endpoints. Cereb Cortex 2021; 32:342-366. [PMID: 34339495 PMCID: PMC8754371 DOI: 10.1093/cercor/bhab212] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 05/03/2021] [Accepted: 06/02/2021] [Indexed: 11/13/2022] Open
Abstract
Occipitotemporal regions within the face network process perceptual and socioemotional information, but the dynamics and information flow between different nodes of this network are still debated. Here, we analyzed intracerebral EEG from 11 epileptic patients viewing a stimulus sequence beginning with a neutral face with direct gaze. The gaze could avert or remain direct, while the emotion changed to fearful or happy. N200 field potential peak latencies indicated that face processing begins in inferior occipital cortex and proceeds anteroventrally to fusiform and inferior temporal cortices, in parallel. The superior temporal sulcus responded preferentially to gaze changes with augmented field potential amplitudes for averted versus direct gaze, and large effect sizes relative to other network regions. An overlap analysis of posterior white matter tractography endpoints (from 1066 healthy brains) relative to active intracerebral electrodes in the 11 patients showed likely involvement of both dorsal and ventral posterior white matter pathways. Overall, our data provide new insight into the timing of face and social cue processing in the occipitotemporal brain and anchor the superior temporal cortex in dynamic gaze processing.
Collapse
Affiliation(s)
- M Babo-Rebelo
- Institut du Cerveau-Paris Brain Institute, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Centre de Neuroimagerie de Recherche, CENIR, Centre MEG-EEG and STIM Platform, Paris F-75013, France.,Sorbonne Université, Institut du Cerveau-Paris Brain Institute, ICM, Inserm U 1127, CNRS UMR 7225, Experimental Neurosurgery Team, Paris F-75013, France.,Institute of Cognitive Neuroscience, University College London, WC1N 3AZ, London, UK
| | - A Puce
- Department of Psychological and Brain Sciences, Programs in Neuroscience, Cognitive Science, Indiana University, Bloomington, IN 47401, USA
| | - D Bullock
- Department of Psychological and Brain Sciences, Programs in Neuroscience, Cognitive Science, Indiana University, Bloomington, IN 47401, USA
| | - L Hugueville
- Institut du Cerveau-Paris Brain Institute, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Centre de Neuroimagerie de Recherche, CENIR, Centre MEG-EEG and STIM Platform, Paris F-75013, France
| | - F Pestilli
- Department of Psychological and Brain Sciences, Programs in Neuroscience, Cognitive Science, Indiana University, Bloomington, IN 47401, USA
| | - C Adam
- Neurophysiology Department, AP-HP, GH Pitié-Salpêtrière-Charles Foix, Paris F-75013, France
| | - K Lehongre
- Institut du Cerveau-Paris Brain Institute, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Centre de Neuroimagerie de Recherche, CENIR, Centre MEG-EEG and STIM Platform, Paris F-75013, France
| | - V Lambrecq
- Institut du Cerveau-Paris Brain Institute, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Centre de Neuroimagerie de Recherche, CENIR, Centre MEG-EEG and STIM Platform, Paris F-75013, France.,Neurophysiology Department, AP-HP, GH Pitié-Salpêtrière-Charles Foix, Paris F-75013, France
| | - V Dinkelacker
- Department of Neurology, Rothschild Foundation, Paris F-75019, France
| | - N George
- Institut du Cerveau-Paris Brain Institute, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Centre de Neuroimagerie de Recherche, CENIR, Centre MEG-EEG and STIM Platform, Paris F-75013, France.,Sorbonne Université, Institut du Cerveau-Paris Brain Institute, ICM, Inserm U 1127, CNRS UMR 7225, Experimental Neurosurgery Team, Paris F-75013, France
| |
Collapse
|
47
|
Ramon M. Super-Recognizers - a novel diagnostic framework, 70 cases, and guidelines for future work. Neuropsychologia 2021; 158:107809. [PMID: 33662395 DOI: 10.1016/j.neuropsychologia.2021.107809] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 11/20/2022]
Abstract
When you hear the word Super-Recognizer, you may think of comic-book-hero-esque agents searching the underground to find people who went missing decades ago. Compared to this fantasy, the reality seems somewhat less exciting. Super-Recognizers (SRs) were initially reported a decade ago as a collateral while developing tests for developmental prosopagnosia. Today, the topic of SRs sparks interest from groups seeking to enhance scientific knowledge, public safety, or their monetary gain. With no immediate consequences of erroneous SR identification, there has been no pressure to establish a clear SR definition. This promotes heterogenous empirical evidence and the proliferation of unsupported claims in the media. Not only is this status quo unfortunate, it stands in opposition to the potential of special populations - both for science and application. SRs are a special population with imminent real-world value that can advance our understanding of brain functioning. To exploit their potential, I propose a needed formal framework for SR diagnosis, and introduce 70 cases identified based hereupon. These cases represent the core of a growing SR cohort, studied in my lab in the course of a long-term, multi-methodological research agenda involving academic and government collaborators. Finally, I provide recommendations for those interested in SR work, and highlight current caveats and future challenges.
Collapse
Affiliation(s)
- Meike Ramon
- Applied Face Cognition (AFC) Lab, University of Fribourg, Department of Psychology, Faucigny 2, 1700 Fribourg, Switzerland.
| |
Collapse
|
48
|
Papagno C, Pisoni A, Gainotti G. False alarms during recognition of famous people from faces and voices in patients with unilateral temporal lobe resection and normal participants tested after anodal tDCS over the left or right ATL. Neuropsychologia 2021; 159:107926. [PMID: 34216595 DOI: 10.1016/j.neuropsychologia.2021.107926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 06/04/2021] [Accepted: 06/23/2021] [Indexed: 10/21/2022]
Abstract
Data gathered in the field of the experimental social psychology have shown that it is more difficult to recognize a person through his/her voice than through his/her face and that false alarms (FA) are produced more in voice than in face recognition. Furthermore, some neuropsychological investigations have suggested that in patients with damage to the right anterior temporal lobe (ATL) the number of FA could be higher for voice than for face recognition. In the present study we assessed FA during recognition of famous people from faces and voices in patients with unilateral ATL tumours and in normal participants tested after anodal transcranial direct current stimulation (tCDS), over the left or right ATL. The number of FA was significantly higher in patients with right than in those with left temporal tumours on both face and voice familiarity. Furthermore, lesion side did not differentially affect patient's sensitivity or response criterion when recognizing famous faces, but influenced both these measures on a voice recognition task. In fact, in this condition patients with right temporal tumours showed a lower sensitivity index and a lower response criterion than those with left-sided lesions. In normal subjects, the greater right sided involvement in voice than in face processing was confirmed by the observation that right ATL anodal stimulation significantly increased voice but only marginally influenced face sensitivity. This asymmetry between face and voice processing in the right hemisphere could be due to the greater complexity of voice processing and to the difficulty of forming stable and well-structured representations, allowing to evaluate if a presented voice matches or not with an already known voice.
Collapse
Affiliation(s)
- C Papagno
- CIMeC, Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy; Department of Psychology, University of Milano-Bicocca, Milano, Italy.
| | - A Pisoni
- Department of Psychology, University of Milano-Bicocca, Milano, Italy
| | - G Gainotti
- Catholic University, Policlinico Gemelli, Roma, Italy
| |
Collapse
|
49
|
Meyer K, Sommer W, Hildebrandt A. Reflections and New Perspectives on Face Cognition as a Specific Socio-Cognitive Ability. J Intell 2021; 9:30. [PMID: 34207993 PMCID: PMC8293405 DOI: 10.3390/jintelligence9020030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 05/11/2021] [Accepted: 06/08/2021] [Indexed: 01/07/2023] Open
Abstract
The study of socio-cognitive abilities emerged from intelligence research, and their specificity remains controversial until today. In recent years, the psychometric structure of face cognition (FC)-a basic facet of socio-cognitive abilities-was extensively studied. In this review, we summarize and discuss the divergent psychometric structures of FC in easy and difficult tasks. While accuracy in difficult tasks was consistently shown to be face-specific, the evidence for easy tasks was inconsistent. The structure of response speed in easy tasks was mostly-but not always-unitary across object categories, including faces. Here, we compare studies to identify characteristics leading to face specificity in easy tasks. The following pattern emerges: in easy tasks, face specificity is found when modeling speed in a single task; however, when modeling speed across multiple, different easy tasks, only a unitary factor structure is reported. In difficult tasks, however, face specificity occurs in both single task approaches and task batteries. This suggests different cognitive mechanisms behind face specificity in easy and difficult tasks. In easy tasks, face specificity relies on isolated cognitive sub-processes such as face identity recognition. In difficult tasks, face-specific and task-independent cognitive processes are employed. We propose a descriptive model and argue for FC to be integrated into common taxonomies of intelligence.
Collapse
Affiliation(s)
- Kristina Meyer
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Psychiatric University Hospital Charité at St. Hedwig Hospital, Große Hamburger Str. 5-11, 10115 Berlin, Germany
| | - Werner Sommer
- Institut für Psychologie, Humboldt-Universität zu Berlin and Department of Psychology, Zhejiang Normal University, Jinhua 321004, China;
| | - Andrea Hildebrandt
- Department of Psychology, Carl von Ossietzky Universität Oldenburg and the Research Center Neurosensory Science, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany;
| |
Collapse
|
50
|
Sakaki K, Nozawa T, Ikeda S, Kawashima R. Neural correlates of cognitive bias modification for interpretation. Soc Cogn Affect Neurosci 2021; 15:247-260. [PMID: 32322880 PMCID: PMC7304515 DOI: 10.1093/scan/nsaa026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/31/2019] [Accepted: 03/06/2020] [Indexed: 11/30/2022] Open
Abstract
The effectiveness of cognitive bias modification for interpretation (CBM-I), a treatment method employed to reduce social anxiety (SA), has been examined. However, the neural correlates of CBM-I remain unclear, and we aimed to elucidate brain activities during intervention and activity changes associated with CBM-I effectiveness in a pre–post intervention comparison. Healthy participants divided into two groups (CBM, control) were scanned before, during and after intervention using functional magnetic resonance imaging. Ambiguous social situations followed by positive outcomes were repeatedly imagined by the CBM group during intervention, while half of the outcomes in the control group were negative. Whole-brain analysis revealed that activation of the somatomotor and somatosensory areas, occipital lobe, fusiform gyrus and thalamus during intervention was significantly greater in the CBM than in the control group. Furthermore, altered activities in the somatomotor and somatosensory areas, occipital lobe and posterior cingulate gyrus during interpreting ambiguous social situations showed a significant group × change in SA interaction. Our result suggests that when facing ambiguous social situations, positive imagery instilled by CBM-I is recalled, and interpretations are modified to contain social reward. These findings may help to suggest an alternative manner of enhancing CBM-I effectiveness from a cognitive-neuroscience perspective.
Collapse
Affiliation(s)
- Kohei Sakaki
- Department of Functional Brain Imaging, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan.,Division for Interdisciplinary Advanced Research and Education, Tohoku University, Sendai 980-8578, Japan.,Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
| | - Takayuki Nozawa
- Research Institute for the Earth Inclusive Sensing Empathizing with Silent Voices, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Shigeyuki Ikeda
- Department of Ubiquitous Sensing, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Ryuta Kawashima
- Department of Ubiquitous Sensing, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan.,Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| |
Collapse
|