1
|
SoRelle ED, Luftig MA. Multiple sclerosis and infection: history, EBV, and the search for mechanism. Microbiol Mol Biol Rev 2025:e0011923. [PMID: 39817754 DOI: 10.1128/mmbr.00119-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025] Open
Abstract
SUMMARYInfection has long been hypothesized as the cause of multiple sclerosis (MS), and recent evidence for Epstein-Barr virus (EBV) as the trigger of MS is clear and compelling. This clarity contrasts with yet uncertain viral mechanisms and their relation to MS neuroinflammation and demyelination. As long as this disparity persists, it will invigorate virologists, molecular biologists, immunologists, and clinicians to ascertain how EBV potentiates MS onset, and possibly the disease's chronic activity and progression. Such efforts should take advantage of the diverse body of basic and clinical research conducted over nearly two centuries since the first clinical descriptions of MS plaques. Defining the contribution of EBV to the complex and multifactorial pathology of MS will also require suitable experimental models and techniques. Such efforts will broaden our understanding of virus-driven neuroinflammation and specifically inform the development of EBV-targeted therapies for MS management and, ultimately, prevention.
Collapse
Affiliation(s)
- Elliott D SoRelle
- Department of Molecular Genetics & Microbiology, Center for Virology, Duke University, Durham, North Carolina, USA
| | - Micah A Luftig
- Department of Molecular Genetics & Microbiology, Center for Virology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
2
|
Sokolovska L, Cistjakovs M, Matroze A, Murovska M, Sultanova A. From Viral Infection to Autoimmune Reaction: Exploring the Link between Human Herpesvirus 6 and Autoimmune Diseases. Microorganisms 2024; 12:362. [PMID: 38399766 PMCID: PMC10892088 DOI: 10.3390/microorganisms12020362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The complexity of autoimmunity initiation has been the subject of many studies. Both genetic and environmental factors are essential in autoimmunity development. Among others, environmental factors include infectious agents. HHV-6 is a ubiquitous human pathogen with a high global prevalence. It has several properties suggestive of its contribution to autoimmunity development. HHV-6 has a broad cell tropism, the ability to establish latency with subsequent reactivation and persistence, and a range of immunomodulation capabilities. Studies have implicated HHV-6 in a plethora of autoimmune diseases-endocrine, neurological, connective tissue, and others-with some studies even proposing possible autoimmunity induction mechanisms. HHV-6 can be frequently found in autoimmunity-affected tissues and lesions; it has been found to infect autoimmune-pathology-relevant cells and influence immune responses and signaling. This review highlights some of the most well-known autoimmune conditions to which HHV-6 has been linked, like multiple sclerosis and autoimmune thyroiditis, and summarizes the data on HHV-6 involvement in autoimmunity development.
Collapse
Affiliation(s)
- Liba Sokolovska
- Institute of Microbiology and Virology, Riga Stradins University, LV-1067 Riga, Latvia
| | - Maksims Cistjakovs
- Institute of Microbiology and Virology, Riga Stradins University, LV-1067 Riga, Latvia
| | - Asnate Matroze
- Faculty of Residency, Riga Stradins University, LV-1007 Riga, Latvia
| | - Modra Murovska
- Institute of Microbiology and Virology, Riga Stradins University, LV-1067 Riga, Latvia
| | - Alina Sultanova
- Institute of Microbiology and Virology, Riga Stradins University, LV-1067 Riga, Latvia
| |
Collapse
|
3
|
De Francesco MA. Herpesviridae, Neurodegenerative Disorders and Autoimmune Diseases: What Is the Relationship between Them? Viruses 2024; 16:133. [PMID: 38257833 PMCID: PMC10818483 DOI: 10.3390/v16010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/06/2023] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Alzheimer's disease and Parkinson's disease represent the most common forms of cognitive impairment. Multiple sclerosis is a chronic inflammatory disease of the central nervous system responsible for severe disability. An aberrant immune response is the cause of myelin destruction that covers axons in the brain, spinal cord, and optic nerves. Systemic lupus erythematosus is an autoimmune disease characterized by alteration of B cell activation, while Sjögren's syndrome is a heterogeneous autoimmune disease characterized by altered immune responses. The etiology of all these diseases is very complex, including an interrelationship between genetic factors, principally immune associated genes, and environmental factors such as infectious agents. However, neurodegenerative and autoimmune diseases share proinflammatory signatures and a perturbation of adaptive immunity that might be influenced by herpesviruses. Therefore, they might play a critical role in the disease pathogenesis. The aim of this review was to summarize the principal findings that link herpesviruses to both neurodegenerative and autoimmune diseases; moreover, briefly underlining the potential therapeutic approach of virus vaccination and antivirals.
Collapse
Affiliation(s)
- Maria Antonia De Francesco
- Department of Molecular and Translational Medicine, Institute of Microbiology, University of Brescia-ASST Spedali Civili, 25123 Brescia, Italy
| |
Collapse
|
4
|
Grut V, Biström M, Salzer J, Stridh P, Jons D, Gustafsson R, Fogdell-Hahn A, Huang J, Butt J, Lindam A, Alonso-Magdalena L, Bergström T, Kockum I, Waterboer T, Olsson T, Zetterberg H, Blennow K, Andersen O, Nilsson S, Sundström P. Human herpesvirus 6A and axonal injury before the clinical onset of multiple sclerosis. Brain 2024; 147:177-185. [PMID: 37930324 PMCID: PMC10766246 DOI: 10.1093/brain/awad374] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/23/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023] Open
Abstract
Recent research indicates that multiple sclerosis is preceded by a prodromal phase with elevated levels of serum neurofilament light chain (sNfL), a marker of axonal injury. The effect of environmental risk factors on the extent of axonal injury during this prodrome is unknown. Human herpesvirus 6A (HHV-6A) is associated with an increased risk of developing multiple sclerosis. The objective of this study was to determine if HHV-6A serostatus is associated with the level of sNfL in the multiple sclerosis prodrome, which would support a causative role of HHV-6A. A nested case-control study was performed by crosslinking multiple sclerosis registries with Swedish biobanks. Individuals with biobank samples collected before the clinical onset of multiple sclerosis were included as cases. Controls without multiple sclerosis were randomly selected, matched for biobank, sex, sampling date and age. Serostatus of HHV-6A and Epstein-Barr virus was analysed with a bead-based multiplex assay. The concentration of sNfL was analysed with single molecule array technology. The association between HHV-6A serology and sNfL was assessed by stratified t-tests and linear regressions, adjusted for Epstein-Barr virus serostatus and sampling age. Within-pair ratios of HHV-6A seroreactivity and sNfL were calculated for each case and its matched control. To assess the temporal relationship between HHV-6A antibodies and sNfL, these ratios were plotted against the time to the clinical onset of multiple sclerosis and compared using locally estimated scatterplot smoothing regressions with 95% confidence intervals (CI). Samples from 519 matched case-control pairs were included. In cases, seropositivity of HHV-6A was significantly associated with the level of sNfL (+11%, 95% CI 0.2-24%, P = 0.045) and most pronounced in the younger half of the cases (+24%, 95% CI 6-45%, P = 0.007). No such associations were observed among the controls. Increasing seroreactivity against HHV-6A was detectable before the rise of sNfL (significant within-pair ratios from 13.6 years versus 6.6 years before the clinical onset of multiple sclerosis). In this study, we describe the association between HHV-6A antibodies and the degree of axonal injury in the multiple sclerosis prodrome. The findings indicate that elevated HHV-6A antibodies both precede and are associated with a higher degree of axonal injury, supporting the hypothesis that HHV-6A infection may contribute to multiple sclerosis development in a proportion of cases.
Collapse
Affiliation(s)
- Viktor Grut
- Department of Clinical Science, Neurosciences, Umeå University, 901 87 Umeå, Sweden
| | - Martin Biström
- Department of Clinical Science, Neurosciences, Umeå University, 901 87 Umeå, Sweden
| | - Jonatan Salzer
- Department of Clinical Science, Neurosciences, Umeå University, 901 87 Umeå, Sweden
| | - Pernilla Stridh
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Daniel Jons
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Rasmus Gustafsson
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Anna Fogdell-Hahn
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Jesse Huang
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Julia Butt
- Infections and Cancer Epidemiology Division, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Anna Lindam
- Department of Public Health and Clinical Medicine, Unit of Research, Education and Development Östersund Hospital, Umeå University, 901 87 Umeå, Sweden
| | - Lucia Alonso-Magdalena
- Department of Neurology, Skåne University Hospital and Department of Clinical Sciences, Lund University, 221 84 Lund, Sweden
| | - Tomas Bergström
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Ingrid Kockum
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Tim Waterboer
- Infections and Cancer Epidemiology Division, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Tomas Olsson
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 431 80 Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London, W1T 7NF, UK
- Hong Kong Centre for Neurodegenerative Diseases, Hong Kong999077, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 431 80 Mölndal, Sweden
| | - Oluf Andersen
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Staffan Nilsson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Peter Sundström
- Department of Clinical Science, Neurosciences, Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
5
|
Sahi N, Haider L, Chung K, Prados Carrasco F, Kanber B, Samson R, Thompson AJ, Gandini Wheeler-Kingshott CAM, Trip SA, Brownlee W, Ciccarelli O, Barkhof F, Tur C, Houlden H, Chard D. Genetic influences on disease course and severity, 30 years after a clinically isolated syndrome. Brain Commun 2023; 5:fcad255. [PMID: 37841069 PMCID: PMC10576246 DOI: 10.1093/braincomms/fcad255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/31/2023] [Accepted: 10/02/2023] [Indexed: 10/17/2023] Open
Abstract
Multiple sclerosis risk has a well-established polygenic component, yet the genetic contribution to disease course and severity remains unclear and difficult to examine. Accurately measuring disease progression requires long-term study of clinical and radiological outcomes with sufficient follow-up duration to confidently confirm disability accrual and multiple sclerosis phenotypes. In this retrospective study, we explore genetic influences on long-term disease course and severity; in a unique cohort of clinically isolated syndrome patients with homogenous 30-year disease duration, deep clinical phenotyping and advanced MRI metrics. Sixty-one clinically isolated syndrome patients [41 female (67%): 20 male (33%)] underwent clinical and MRI assessment at baseline, 1-, 5-, 10-, 14-, 20- and 30-year follow-up (mean age ± standard deviation: 60.9 ± 6.5 years). After 30 years, 29 patients developed relapsing-remitting multiple sclerosis, 15 developed secondary progressive multiple sclerosis and 17 still had a clinically isolated syndrome. Twenty-seven genes were investigated for associations with clinical outcomes [including disease course and Expanded Disability Status Scale (EDSS)] and brain MRI (including white matter lesions, cortical lesions, and brain tissue volumes) at the 30-year follow-up. Genetic associations with changes in EDSS, relapses, white matter lesions and brain atrophy (third ventricular and medullary measurements) over 30 years were assessed using mixed-effects models. HLA-DRB1*1501-positive (n = 26) patients showed faster white matter lesion accrual [+1.96 lesions/year (0.64-3.29), P = 3.8 × 10-3], greater 30-year white matter lesion volumes [+11.60 ml, (5.49-18.29), P = 1.27 × 10-3] and higher annualized relapse rates [+0.06 relapses/year (0.005-0.11), P = 0.031] compared with HLA-DRB1*1501-negative patients (n = 35). PVRL2-positive patients (n = 41) had more cortical lesions (+0.83 [0.08-1.66], P = 0.042), faster EDSS worsening [+0.06 points/year (0.02-0.11), P = 0.010], greater 30-year EDSS [+1.72 (0.49-2.93), P = 0.013; multiple sclerosis cases: +2.60 (1.30-3.87), P = 2.02 × 10-3], and greater risk of secondary progressive multiple sclerosis [odds ratio (OR) = 12.25 (1.15-23.10), P = 0.031] than PVRL2-negative patients (n = 18). In contrast, IRX1-positive (n = 30) patients had preserved 30-year grey matter fraction [+0.76% (0.28-1.29), P = 8.4 × 10-3], lower risk of cortical lesions [OR = 0.22 (0.05-0.99), P = 0.049] and lower 30-year EDSS [-1.35 (-0.87,-3.44), P = 0.026; multiple sclerosis cases: -2.12 (-0.87, -3.44), P = 5.02 × 10-3] than IRX1-negative patients (n = 30). In multiple sclerosis cases, IRX1-positive patients also had slower EDSS worsening [-0.07 points/year (-0.01,-0.13), P = 0.015] and lower risk of secondary progressive multiple sclerosis [OR = 0.19 (0.04-0.92), P = 0.042]. These exploratory findings support diverse genetic influences on pathological mechanisms associated with multiple sclerosis disease course. HLA-DRB1*1501 influenced white matter inflammation and relapses, while IRX1 (protective) and PVRL2 (adverse) were associated with grey matter pathology (cortical lesions and atrophy), long-term disability worsening and the risk of developing secondary progressive multiple sclerosis.
Collapse
Affiliation(s)
- Nitin Sahi
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, University College London Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Lukas Haider
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, University College London Queen Square Institute of Neurology, London WC1N 3BG, UK
- Department of Biomedical Imaging and Image Guided Therapy, Medical University Vienna, 1090 Vienna, Austria
| | - Karen Chung
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, University College London Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Ferran Prados Carrasco
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, University College London Queen Square Institute of Neurology, London WC1N 3BG, UK
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK
- Universitat Oberta de Catalunya, 08018 Barcelona, Spain
| | - Baris Kanber
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, University College London Queen Square Institute of Neurology, London WC1N 3BG, UK
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK
- Department of Clinical and Experimental Epilepsy, University College London, London WC1N 3BG, UK
| | - Rebecca Samson
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, University College London Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Alan J Thompson
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, University College London Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Claudia A M Gandini Wheeler-Kingshott
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, University College London Queen Square Institute of Neurology, London WC1N 3BG, UK
- Department of Brain and Behavioural Sciences, University of Pavia, 27100 Pavia, Italy
- Brain MRI 3T Research Centre, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - S Anand Trip
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, University College London Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Wallace Brownlee
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, University College London Queen Square Institute of Neurology, London WC1N 3BG, UK
- National Institute for Health and Care Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre, London W1T 7DN, UK
| | - Olga Ciccarelli
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, University College London Queen Square Institute of Neurology, London WC1N 3BG, UK
- National Institute for Health and Care Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre, London W1T 7DN, UK
| | - Frederik Barkhof
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, University College London Queen Square Institute of Neurology, London WC1N 3BG, UK
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK
- National Institute for Health and Care Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre, London W1T 7DN, UK
- Department of Radiology and Nuclear Medicine, VU University Medical Centre, 1081 HV Amsterdam, The Netherlands
| | - Carmen Tur
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, University College London Queen Square Institute of Neurology, London WC1N 3BG, UK
- MS Centre of Catalonia (Cemcat), Vall d'Hebron Institute of Research, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen’s Square House, Queen’s Square, London, WC1N 3BG, UK
| | - Declan Chard
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, University College London Queen Square Institute of Neurology, London WC1N 3BG, UK
- National Institute for Health and Care Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre, London W1T 7DN, UK
| |
Collapse
|
6
|
Landry RL, Embers ME. The Probable Infectious Origin of Multiple Sclerosis. NEUROSCI 2023; 4:211-234. [PMID: 39483197 PMCID: PMC11523707 DOI: 10.3390/neurosci4030019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 11/03/2024] Open
Abstract
Multiple sclerosis (MS) is an immune inflammatory disease that causes demyelination of the white matter of the central nervous system. It is generally accepted that the etiology of MS is multifactorial and believed to be a complex interplay between genetic susceptibility, environmental factors, and infectious agents. While the exact cause of MS is still unknown, increasing evidence suggests that disease development is the result of interactions between genetically susceptible individuals and the environment that lead to immune dysregulation and CNS inflammation. Genetic factors are not sufficient on their own to cause MS, and environmental factors such as viral infections, smoking, and vitamin D deficiency also play important roles in disease development. Several pathogens have been implicated in the etiology of MS, including Epstein-Barr virus, human herpesvirus 6, varicella-zoster virus, cytomegalovirus, Helicobacter pylori, Chlamydia pneumoniae, and Borrelia burgdorferi. Although vastly different, viruses and bacteria can manipulate host gene expression, causing immune dysregulation, myelin destruction, and neuroinflammation. This review emphasizes the pathogenic triggers that should be considered in MS progression.
Collapse
Affiliation(s)
- Remi L Landry
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA;
- Division of Immunology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA 70433, USA
| | - Monica E Embers
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA;
- Division of Immunology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA 70433, USA
| |
Collapse
|
7
|
Pereira JG, Leon LAA, de Almeida NAA, Raposo-Vedovi JV, Fontes-Dantas FL, Farinhas JGD, Pereira VCSR, Alves-Leon SV, de Paula VS. Higher frequency of Human herpesvirus-6 (HHV-6) viral DNA simultaneously with low frequency of Epstein-Barr virus (EBV) viral DNA in a cohort of multiple sclerosis patients from Rio de Janeiro, Brazil. Mult Scler Relat Disord 2023; 76:104747. [PMID: 37267685 DOI: 10.1016/j.msard.2023.104747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 04/18/2023] [Accepted: 04/30/2023] [Indexed: 06/04/2023]
Abstract
Multiple sclerosis (MS) is a chronic neuroinflammatory and neurodegenerative disease of the central nervous system (CNS). The etiology of MS is not well understood, but it's likely one of the genetic and environmental factors. Approximately 85% of patients have relapsing-remitting MS (RRMS), while 10-15% have primary progressive MS (PPMS). Epstein-Barr virus (EBV) and Human herpesvirus 6 (HHV-6), members of the human Herpesviridae family, are strong candidates for representing the macroenvironmental factors associated with MS) pathogenesis. Antigenic mimicry of EBV involving B-cells has been implicate in MS risk factors and concomitance of EBV and HHV-6 latent infection has been associated to inflammatory MS cascade. To verify the possible role of EBV and HHV-6 as triggering or aggravating factors in RRMS and PPMS, we compare their frequency in blood samples collected from 166 MS patients. The presence of herpes DNA was searched by real-time PCR (qPCR). The frequency of EBV and HHV-6 in MS patients were 1.8% (3/166) and 8.9% (14/166), respectively. Among the positive patients, 100% (3/3) EBV and 85.8% (12/14) HHV-6 are RRMS and 14.4% (2/14) HHV-6 are PPMS. Detection of EBV was 1.2% (2/166) and HHV-6 was 0.6% (1/166) in blood donors. About clinical phenotype of these patients, incomplete multifocal myelitis, and optic neuritis were the main CNS manifestations. These are the first data about concomitant infection of these viruses in MS patients from Brazil. Up to date, our findings confirm a higher prevalence in female with MS and a high frequency of EBV and HHV-6 in RRMS patients.
Collapse
Affiliation(s)
| | - Luciane A Amado Leon
- Laboratory of Technological Development in Virology, Oswaldo Cruz Institute/ Fiocruz, Rio de Janeiro, Brazil
| | | | - Jéssica Vasques Raposo-Vedovi
- Laboratory of Translacional Neurosciences, Biomedical Institute, Federal University of the State of Rio de Janeiro/UNIRIO, Rio de Janeiro, Brazil
| | - Fabrícia Lima Fontes-Dantas
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, (UERJ), Rio de Janeiro, Brazil
| | - João Gabriel Dib Farinhas
- Department of Neurology/Reference and Research Center for Multiple Sclerosis and Other Central Nervous System Idiopathic Demyelinating Inflammatory Diseases, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Valéria Coelho Santa Rita Pereira
- Department of Neurology/Reference and Research Center for Multiple Sclerosis and Other Central Nervous System Idiopathic Demyelinating Inflammatory Diseases, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Soniza V Alves-Leon
- Department of Neurology/Reference and Research Center for Multiple Sclerosis and Other Central Nervous System Idiopathic Demyelinating Inflammatory Diseases, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Laboratory of Translacional Neurosciences, Biomedical Institute, Federal University of the State of Rio de Janeiro/UNIRIO, Rio de Janeiro, Brazil.
| | - Vanessa S de Paula
- Laboratory of Molecular Virology, Oswaldo Cruz Institute/ Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Kasimir F, Toomey D, Liu Z, Kaiping AC, Ariza ME, Prusty BK. Tissue specific signature of HHV-6 infection in ME/CFS. Front Mol Biosci 2022; 9:1044964. [PMID: 36589231 PMCID: PMC9795011 DOI: 10.3389/fmolb.2022.1044964] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
First exposure to various human herpesviruses (HHVs) including HHV-6, HCMV and EBV does not cause a life-threatening disease. In fact, most individuals are frequently unaware of their first exposure to such pathogens. These herpesviruses acquire lifelong latency in the human body where they show minimal genomic activity required for their survival. We hypothesized that it is not the latency itself but a timely, regionally restricted viral reactivation in a sub-set of host cells that plays a key role in disease development. HHV-6 (HHV-6A and HHV-6B) and HHV-7 are unique HHVs that acquire latency by integration of the viral genome into sub-telomeric region of human chromosomes. HHV-6 reactivation has been linked to Alzheimer's Disease, Chronic Fatigue Syndrome, and many other diseases. However, lack of viral activity in commonly tested biological materials including blood or serum strongly suggests tissue specific localization of active HHV-6 genome. Here in this paper, we attempted to analyze active HHV-6 transcripts in postmortem tissue biopsies from a small cohort of ME/CFS patients and matched controls by fluorescence in situ hybridization using a probe against HHV-6 microRNA (miRNA), miR-aU14. Our results show abundant viral miRNA in various regions of the human brain and associated neuronal tissues including the spinal cord that is only detected in ME/CFS patients and not in controls. Our findings provide evidence of tissue-specific active HHV-6 and EBV infection in ME/CFS, which along with recent work demonstrating a possible relationship between herpesvirus infection and ME/CFS, provide grounds for renewed discussion on the role of herpesviruses in ME/CFS.
Collapse
Affiliation(s)
- Francesca Kasimir
- Institute for Virology and Immunobiology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Danny Toomey
- HHV-6 Foundation, Santa Barbara, CA, United States
| | - Zheng Liu
- Institute for Virology and Immunobiology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Agnes C. Kaiping
- Institute for Virology and Immunobiology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Maria Eugenia Ariza
- Department of Cancer Biology and Genetics (CBG), Institute for Behavioral Medicine Research (IBMR), The Ohio State University, Columbus, OH, United States
| | - Bhupesh K. Prusty
- Institute for Virology and Immunobiology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| |
Collapse
|
9
|
Carneiro VCDS, Pereira JG, de Paula VS. Family Herpesviridae and neuroinfections: current status and research in progress. Mem Inst Oswaldo Cruz 2022; 117:e220200. [PMID: 36417627 PMCID: PMC9677594 DOI: 10.1590/0074-02760220200] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/10/2022] [Indexed: 11/22/2022] Open
Abstract
This article addresses the relationship between human herpesviruses (HHVs) and neuroinfections. Alphaherpesviruses, betaherpesviruses and gammaherpesviruses are neurotropic viruses that establish latency and exhibit reactivation capacity. Encephalitis and meningitis are common in cases of HHV. The condition promoted by HHV infection is a purported trigger for certain neurodegenerative diseases. Ongoing studies have identified an association between HSV-1 and the occurrence of Alzheimer's disease, multiple sclerosis and infections by HHV-6 and Epstein-Barr virus. In this review, we highlight the importance of research investigating the role of herpesviruses in the pathogenesis of diseases that affect the nervous system and describe other studies in progress.
Collapse
Affiliation(s)
| | | | - Vanessa Salete de Paula
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Virologia Molecular, Rio de Janeiro, RJ, Brasil,+ Corresponding author:
| |
Collapse
|
10
|
Lezhnyova V, Davidyuk Y, Mullakhmetova A, Markelova M, Zakharov A, Khaiboullina S, Martynova E. Analysis of herpesvirus infection and genome single nucleotide polymorphism risk factors in multiple sclerosis, Volga federal district, Russia. Front Immunol 2022; 13:1010605. [PMID: 36451826 PMCID: PMC9703080 DOI: 10.3389/fimmu.2022.1010605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/03/2022] [Indexed: 09/29/2023] Open
Abstract
Multiple sclerosis (MS) is a heterogeneous disease where herpesvirus infection and genetic predisposition are identified as the most consistent risk factors. Serum and blood samples were collected from 151 MS and 70 controls and used to analyze circulating antibodies for, and DNA of, Epstein Barr virus (EBV), human cytomegalovirus (HCMV), human herpes virus 6 (HHV6), and varicella zoster virus (VZV). The frequency of selected single nucleotide polymorphisms (SNPs) in MS and controls were studied. Herpesvirus DNA in blood samples were analyzed using qPCR. Anti-herpesvirus antibodies were detected by ELISA. SNPs were analyzed by the allele-specific PCR. For statistical analysis, Fisher exact test, odds ratio and Kruskall-Wallis test were used; p<0.05 values were considered as significant. We have found an association between circulating anti-HHV6 antibodies and MS diagnosis. We also confirmed higher frequency of A and C alleles in rs2300747 and rs12044852 of CD58 gene and G allele in rs929230 of CD6 gene in MS as compared to controls. Fatigue symptom was linked to AC and AA genotype in rs12044852 of CD58 gene. An interesting observation was finding higher frequency of GG genotype in rs12722489 of IL2RA and T allele in rs1535045 of CD40 genes in patient having anti-HHV6 antibodies. A link was found between having anti-VZV antibodies in MS and CC genotype in rs1883832 of CD40 gene.
Collapse
Affiliation(s)
- Vera Lezhnyova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Yuriy Davidyuk
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Asia Mullakhmetova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Maria Markelova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Alexander Zakharov
- Department of Neurology and Neurosurgery, Samara State Medical University, Samara, Russia
| | - Svetlana Khaiboullina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Ekaterina Martynova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| |
Collapse
|
11
|
Wang JQ, Yang HY, Shao X, Jiang XY, Li JM. Latent, Early or Late Human Herpes Virus-6B Expression in Adult Mesial Temporal Lobe Epilepsy: Association of Virus Life Cycle with Inflammatory Cytokines in Brain Tissue and Cerebral Spinal Fluid. Neuroscience 2022; 504:21-32. [PMID: 36067950 DOI: 10.1016/j.neuroscience.2022.08.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/08/2022] [Accepted: 08/25/2022] [Indexed: 10/31/2022]
Abstract
BACKGROUND Human herpes virus-6B (HHV-6B) was suggested as an important etiologic factor of mesial temporal lobe epilepsy, while the mechanism is still unknown. Here, we aimed to analyze antigens representing latent, early and late HHV-6B infection and the association with inflammatory cytokines in brain tissue and cerebral spinal fluid (CSF) from MTLE patients with HHV-6B-positivity. METHODS Nested polymerase chain reaction (nPCR), real-time PCR, immunohistochemistry (ICH) and suspension bead array for cytokines were performed. RESULTS Nested polymerase chain reaction (nPCR) in brain tissue revealed HHV-6B DNA in 19 of 49 MTLE patients (39%) and 1 of 19 controls (5%) (P < 0.001), but not in CSF. ICH showed HHV-6B early antigen (P41) positivity in 3 patients (6%), late antigen (gp116/54/64) positivity in 5 patients (10%), latent antigen (U94) positivity in 8 patients (16%), and multiple antigen (early and late or/and latent) positivity in 9 patients (18%). None of these HHV-6B related proteins were found positive in control brain tissue. PCR revealed significant up-regulation of IL-1a, IL-2 and IL-7 mRNA levels in the brain tissue from MTLE patients expressing early antigens compared to those expressing late, latent, multiple antigens, negative antigens and the controls. Suspension bead array of the CSF confirmed significant up-regulation of IL-1a and IL-7 protein expression from MTLE patients expressing early antigens compared to the other groups. CONCLUSIONS Our finding suggests HHV-6B is a common etiologic agent of MTLE. Different virus life cycle may play an important modifying role in inflammatory biology that warrants further investigation. Though virus DNA is difficult detected in CSF, up-regulation of IL-1a and IL-7 in CSF indicates the two cytokines may be taken as indirect biomarker of HHV-6B infection.
Collapse
Affiliation(s)
- Jia-Qi Wang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Hong-Yu Yang
- University of Electronic Science and Technology of China Hospital, China
| | | | - Xin-Yue Jiang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; Chengdu Second People's Hospital, Chengdu, Sichuan Province, China
| | - Jin-Mei Li
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
12
|
Sedaghat N, Etemadifar M. Revisiting the antiviral theory to explain interferon-beta's effectiveness for relapsing multiple sclerosis. Mult Scler Relat Disord 2022; 67:104155. [PMID: 36116383 DOI: 10.1016/j.msard.2022.104155] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/20/2022] [Accepted: 09/02/2022] [Indexed: 11/18/2022]
Abstract
Treatments with interferon-beta (IFNβ) - a cytokine with established antiviral effects - were initially considered for multiple sclerosis (MS), as epidemiological data pointed towards a viral etiological agent for it. Later, when no specific agent was found for MS, theories explaining IFNβ's mechanism of action (MOA) relied on anti-inflammatory mechanisms, which did not explain its ineffectiveness for disease progression independent of relapse activity (PIRA) in progressive forms of MS. Now, with new evidence backing the Epstein-Barr virus (EBV) as a conditional agent in MS etiopathogenesis as well as linking the reactivation of a wide range of other Herpesviridae with MS onset/relapse, it may be time to revisit the antiviral theory to explain IFNβ's MOA, look at the evidence from the past two decades from that perspective, and address the paucity of knowledge with new direct studies and discussions.
Collapse
Affiliation(s)
- Nahad Sedaghat
- Neurosurgery Research Department, Alzahra University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran; Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific, Education, and Research Network (USERN), Isfahan, Iran.
| | - Masoud Etemadifar
- Neurosurgery Research Department, Alzahra University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
13
|
Saez-Calveras N, Stuve O. The role of the complement system in Multiple Sclerosis: A review. Front Immunol 2022; 13:970486. [PMID: 36032156 PMCID: PMC9399629 DOI: 10.3389/fimmu.2022.970486] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
The complement system has been involved in the pathogenesis of multiple neuroinflammatory and neurodegenerative conditions. In this review, we evaluated the possible role of complement activation in multiple sclerosis (MS) with a focus in progressive MS, where the disease pathogenesis remains to be fully elucidated and treatment options are limited. The evidence for the involvement of the complement system in the white matter plaques and gray matter lesions of MS stems from immunohistochemical analysis of post-mortem MS brains, in vivo serum and cerebrospinal fluid biomarker studies, and animal models of Experimental Autoimmune Encephalomyelitis (EAE). Complement knock-out studies in these animal models have revealed that this system may have a “double-edge sword” effect in MS. On the one hand, complement proteins may aid in promoting the clearance of myelin degradation products and other debris through myeloid cell-mediated phagocytosis. On the other, its aberrant activation may lead to demyelination at the rim of progressive MS white matter lesions as well as synapse loss in the gray matter. The complement system may also interact with known risk factors of MS, including as Epstein Barr Virus (EBV) infection, and perpetuate the activation of CNS self-reactive B cell populations. With the mounting evidence for the involvement of complement in MS, the development of complement modulating therapies for this condition is appealing. Herein, we also reviewed the pharmacological complement inhibitors that have been tested in MS animal models as well as in clinical trials for other neurologic diseases. The potential use of these agents, such as the C5-binding antibody eculizumab in MS will require a detailed understanding of the role of the different complement effectors in this disease and the development of better CNS delivery strategies for these compounds.
Collapse
Affiliation(s)
- Nil Saez-Calveras
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Olaf Stuve
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Neurology Section, Veterans Affairs (VA) North Texas Health Care System, Dallas, TX, United States
- *Correspondence: Olaf Stuve,
| |
Collapse
|
14
|
Association between human herpesvirus 6 (HHV-6) and cognitive function in the elderly population in Shenzhen, China. Aging Clin Exp Res 2022; 34:2407-2415. [PMID: 35767152 DOI: 10.1007/s40520-022-02170-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/05/2022] [Indexed: 11/01/2022]
Abstract
AIM Human herpesvirus 6 (HHV-6) is neurophilic, and its relationship with Alzheimer's disease (AD) remains controversial. This study aimed to examine the relationships between HHV-6 and cognitive abilities in elderly people aged 60 years or above from communities in Shenzhen. METHODS We recruited participants from 10 community health service centers in Shenzhen. Participants were divided into case and control groups according to Mini-Mental State Examination (MMSE) scale standards and were included in this study with 1:1 matching based on sex and age (± 3 years). The HHV-6 gene was detected by real-time fluorescent quantitative PCR, and the HHV-6 copy number was quantified. RESULTS A total of 580 participants (cases, n = 290; controls, n = 290), matched for gender and age was included in this study. A positive HHV-6 test was not associated with a significant difference in global cognitive performance (ORadjusted = 1.651, 95% CI = 0.671-4.062). After adjusting for gender, age, education, Pittsburgh Sleep Quality Index (PSQI) score, homocysteine (Hcy) and glycosylated hemoglobin (HbA1c), the results of multiple linear regression showed that there was a statistically negative correlation between HHV-6 copy number and orientation (βadjusted = -0.974, p = 0.013), attention and calculation (βadjusted = -1.840, p < 0.001), and language (βadjusted = -2.267, p < 0.001). The restricted cubic spline (RCS) model results showed that there was a nonlinear dose-response relationship between HHV-6 log10-transformed copies and orientation (poverall = 0.003, pnonliner = 0.045), attention and calculation (poverall < 0.001, pnonliner < 0.001), and language (poverall < 0.001, pnonliner = 0.016). CONCLUSIONS HHV-6 infection significantly associated with orientation, attention and calculation, and language in elderly individuals.
Collapse
|
15
|
Lundström W, Gustafsson R. Human Herpesvirus 6A Is a Risk Factor for Multiple Sclerosis. Front Immunol 2022; 13:840753. [PMID: 35222435 PMCID: PMC8866567 DOI: 10.3389/fimmu.2022.840753] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
The role for human herpesvirus (HHV)-6A or HHV-6B in multiple sclerosis (MS) pathogenesis has been controversial. Possibly because the damage of the virus infection may occur before onset of clinical symptoms and because it has been difficult to detect active infection and separate serological responses to HHV-6A or 6B. Recent studies report that in MS patients the serological response against HHV-6A is increased whereas it is decreased against HHV-6B. This effect seems to be even more pronounced in MS patients prior to diagnosis and supports previous studies postulating a predomination for HHV-6A in MS disease and suggests that the infection is important at early stages of the disease. Furthermore, HHV-6A infection interacts with other factors suspected of modulating MS susceptibility and progression such as infection with Epstein-Barr virus (EBV) and Cytomegalovirus (CMV), tobacco smoking, HLA alleles, UV irradiation and vitamin D levels. The multifactorial nature of MS and pathophysiological role for HHV-6A in inflammation and autoimmunity are discussed.
Collapse
Affiliation(s)
- Wangko Lundström
- Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Rasmus Gustafsson
- Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
16
|
Herpesvirus Infections in KIR2DL2-Positive Multiple Sclerosis Patients: Mechanisms Triggering Autoimmunity. Microorganisms 2022; 10:microorganisms10030494. [PMID: 35336070 PMCID: PMC8954585 DOI: 10.3390/microorganisms10030494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/11/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023] Open
Abstract
In multiple sclerosis (MS), there is a possible relationship with viral infection, evidenced by clinical evidence of an implication of infectious events with disease onset and/or relapse. The aim of this research is to study how human herpesvirus (HHVs) infections might dysregulate the innate immune system and impact autoimmune responses in MS. We analyzed 100 MS relapsing remitting patients, in the remission phase, 100 healthy controls and 100 subjects with other inflammatory neurological diseases (OIND) (neuro-lupus) for their immune response to HHV infection. We evaluated NK cell response, levels of HHVs DNA, IgG and pro- and anti-inflammatory cytokines. The results demonstrated that the presence of KIR2DL2 expression on NK cells increased the susceptibility of MS patients to HHV infections. We showed an increased susceptibility mainly to EBV and HHV-6 infections in MS patients carrying the KIR2DL2 receptor and HLA-C1 ligand. The highest HHV-6 viral load was observed in MS patients, with an increased percentage of subjects positive for IgG against HHV-6 in KIR2DL2-positive MS and OIND subjects compared to controls. MS and OIND patients showed the highest levels of IL-8, IL-12p70, IL-10 and TNF-alpha in comparison with control subjects. Interestingly, MS and OIND patients showed similar levels of IL-8, while MS patients presented higher IL-12p70, TNF-alpha and IL-10 levels in comparison with OIND patients. We can hypothesize that HHVs’ reactivation, by inducing immune activation via also molecular mimicry, may have the ability to induce autoimmunity and cause tissue damage and consequent MS lesion development.
Collapse
|
17
|
Viral Proteins with PxxP and PY Motifs May Play a Role in Multiple Sclerosis. Viruses 2022; 14:v14020281. [PMID: 35215874 PMCID: PMC8879583 DOI: 10.3390/v14020281] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
Multiple sclerosis (MS) is a debilitating disease that arises from immune system attacks to the protective myelin sheath that covers nerve fibers and ensures optimal communication between brain and body. Although the cause of MS is unknown, a number of factors, which include viruses, have been identified as increasing the risk of displaying MS symptoms. Specifically, the ubiquitous and highly prevalent Epstein–Barr virus, human herpesvirus 6, cytomegalovirus, varicella–zoster virus, and other viruses have been identified as potential triggering agents. In this review, we examine the specific role of proline-rich proteins encoded by these viruses and their potential role in MS at a molecular level.
Collapse
|
18
|
Potential Biomarkers Associated with Multiple Sclerosis Pathology. Int J Mol Sci 2021; 22:ijms221910323. [PMID: 34638664 PMCID: PMC8508638 DOI: 10.3390/ijms221910323] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022] Open
Abstract
Multiple sclerosis (MS) is a complex disease of the central nervous system (CNS) that involves an intricate and aberrant interaction of immune cells leading to inflammation, demyelination, and neurodegeneration. Due to the heterogeneity of clinical subtypes, their diagnosis becomes challenging and the best treatment cannot be easily provided to patients. Biomarkers have been used to simplify the diagnosis and prognosis of MS, as well as to evaluate the results of clinical treatments. In recent years, research on biomarkers has advanced rapidly due to their ability to be easily and promptly measured, their specificity, and their reproducibility. Biomarkers are classified into several categories depending on whether they address personal or predictive susceptibility, diagnosis, prognosis, disease activity, or response to treatment in different clinical courses of MS. The identified members indicate a variety of pathological processes of MS, such as neuroaxonal damage, gliosis, demyelination, progression of disability, and remyelination, among others. The present review analyzes biomarkers in cerebrospinal fluid (CSF) and blood serum, the most promising imaging biomarkers used in clinical practice. Furthermore, it aims to shed light on the criteria and challenges that a biomarker must face to be considered as a standard in daily clinical practice.
Collapse
|
19
|
Jain N, Smirnovs M, Strojeva S, Murovska M, Skuja S. Chronic Alcoholism and HHV-6 Infection Synergistically Promote Neuroinflammatory Microglial Phenotypes in the Substantia Nigra of the Adult Human Brain. Biomedicines 2021; 9:biomedicines9091216. [PMID: 34572401 PMCID: PMC8472392 DOI: 10.3390/biomedicines9091216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 12/25/2022] Open
Abstract
Both chronic alcoholism and human herpesvirus-6 (HHV-6) infection have been identified as promoters of neuroinflammation and known to cause movement-related disorders. Substantia Nigra (SN), the dopaminergic neuron-rich region of the basal ganglia, is involved in regulating motor function and the reward system. Hence, we hypothesize the presence of possible synergism between alcoholism and HHV-6 infection in the SN region and report a comprehensive quantification and characterization of microglial functions and morphology in postmortem brain tissue from 44 healthy, age-matched alcoholics and chronic alcoholics. A decrease in the perivascular CD68+ microglia in alcoholics was noted in both the gray and white matter. Additionally, the CD68+/Iba1− microglial subpopulation was found to be the dominant type in the controls. Conversely, in alcoholics, dystrophic changes in microglia were seen with a significant increase in Iba1 expression and perivascular to diffuse migration. An increase in CD11b expression was noted in alcoholics, with the Iba1+/CD11b− subtype promoting inflammation. All the controls were found to be negative for HHV-6 whilst the alcoholics demonstrated HHV-6 positivity in both gray and white matter. Amongst HHV-6 positive alcoholics, all the above-mentioned changes were found to be heightened when compared with HHV-6 negative alcoholics, thereby highlighting the compounding relationship between alcoholism and HHV-6 infection that promotes microglia-mediated neuroinflammation.
Collapse
Affiliation(s)
- Nityanand Jain
- Joint Laboratory of Electron Microscopy, Institute of Anatomy and Anthropology, Rīga Stradiņš University, LV-1010 Riga, Latvia;
- Correspondence: (N.J.); (S.S.); Tel.: +371-673-204-21 (N.J. & S.S.)
| | - Marks Smirnovs
- Joint Laboratory of Electron Microscopy, Institute of Anatomy and Anthropology, Rīga Stradiņš University, LV-1010 Riga, Latvia;
| | - Samanta Strojeva
- Institute of Microbiology and Virology, Rīga Stradiņš University, LV-1067 Riga, Latvia; (S.S.); (M.M.)
| | - Modra Murovska
- Institute of Microbiology and Virology, Rīga Stradiņš University, LV-1067 Riga, Latvia; (S.S.); (M.M.)
| | - Sandra Skuja
- Joint Laboratory of Electron Microscopy, Institute of Anatomy and Anthropology, Rīga Stradiņš University, LV-1010 Riga, Latvia;
- Correspondence: (N.J.); (S.S.); Tel.: +371-673-204-21 (N.J. & S.S.)
| |
Collapse
|
20
|
Jakhmola S, Upadhyay A, Jain K, Mishra A, Jha HC. Herpesviruses and the hidden links to Multiple Sclerosis neuropathology. J Neuroimmunol 2021; 358:577636. [PMID: 34174587 DOI: 10.1016/j.jneuroim.2021.577636] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/01/2021] [Accepted: 06/17/2021] [Indexed: 01/08/2023]
Abstract
Herpesviruses like Epstein-Barr virus, human herpesvirus (HHV)-6, HHV-1, VZV, and human endogenous retroviruses, have an age-old clinical association with multiple sclerosis (MS). MS is an autoimmune disease of the nervous system wherein the myelin sheath deteriorates. The most popular mode of virus mediated immune system manipulation is molecular mimicry. Numerous herpesvirus antigens are similar to myelin proteins. Other mechanisms described here include the activity of cytokines and autoantibodies produced by the autoreactive T and B cells, respectively, viral déjà vu, epitope spreading, CD46 receptor engagement, impaired remyelination etc. Overall, this review addresses the host-parasite association of viruses with MS.
Collapse
Affiliation(s)
- Shweta Jakhmola
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India
| | - Arun Upadhyay
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology, Jodhpur, India
| | - Khushboo Jain
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology, Jodhpur, India
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India.
| |
Collapse
|
21
|
Chopra S, Myers Z, Sekhon H, Dufour A. The Nerves to Conduct a Multiple Sclerosis Crime Investigation. Int J Mol Sci 2021; 22:2498. [PMID: 33801441 PMCID: PMC7958632 DOI: 10.3390/ijms22052498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory neurodegenerative autoimmune disease characterized by the aberrant infiltration of immune cells into the central nervous system (CNS) and by the loss of myelin. Sclerotic lesions and various inhibitory factors hamper the remyelination processes within the CNS. MS patients typically experience gradual cognitive and physical disabilities as the disease progresses. The etiology of MS is still unclear and emerging evidence suggests that microbiome composition could play a much more significant role in disease pathogenesis than was initially thought. Initially believed to be isolated to the gut microenvironment, we now know that the microbiome plays a much broader role in various tissues and is essential in the development of the immune system. Here, we present some of the unexpected roles that the microbiome plays in MS and discuss approaches for the development of next-generation treatment strategies.
Collapse
Affiliation(s)
- Sameeksha Chopra
- McCaig Institute for Bone and Joint Health, Calgary, AB T2N 4N1, Canada; (S.C.); (Z.M.); (H.S.)
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 4N1, Canada
- Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Zoë Myers
- McCaig Institute for Bone and Joint Health, Calgary, AB T2N 4N1, Canada; (S.C.); (Z.M.); (H.S.)
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Henna Sekhon
- McCaig Institute for Bone and Joint Health, Calgary, AB T2N 4N1, Canada; (S.C.); (Z.M.); (H.S.)
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Antoine Dufour
- McCaig Institute for Bone and Joint Health, Calgary, AB T2N 4N1, Canada; (S.C.); (Z.M.); (H.S.)
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
22
|
Human Herpesvirus-6 and -7 in the Brain Microenvironment of Persons with Neurological Pathology and Healthy People. Int J Mol Sci 2021; 22:ijms22052364. [PMID: 33673426 PMCID: PMC7956495 DOI: 10.3390/ijms22052364] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/19/2021] [Accepted: 02/24/2021] [Indexed: 01/02/2023] Open
Abstract
During persistent human beta-herpesvirus (HHV) infection, clinical manifestations may not appear. However, the lifelong influence of HHV is often associated with pathological changes in the central nervous system. Herein, we evaluated possible associations between immunoexpression of HHV-6, -7, and cellular immune response across different brain regions. The study aimed to explore HHV-6, -7 infection within the cortical lobes in cases of unspecified encephalopathy (UEP) and nonpathological conditions. We confirmed the presence of viral DNA by nPCR and viral antigens by immunohistochemistry. Overall, we have shown a significant increase (p < 0.001) of HHV antigen expression, especially HHV-7 in the temporal gray matter. Although HHV-infected neurons were found notably in the case of HHV-7, our observations suggest that higher (p < 0.001) cell tropism is associated with glial and endothelial cells in both UEP group and controls. HHV-6, predominantly detected in oligodendrocytes (p < 0.001), and HHV-7, predominantly detected in both astrocytes and oligodendrocytes (p < 0.001), exhibit varying effects on neural homeostasis. This indicates a high number (p < 0.001) of activated microglia observed in the temporal lobe in the UEP group. The question remains of whether human HHV contributes to neurological diseases or are markers for some aspect of the disease process.
Collapse
|
23
|
Komaroff AL, Pellett PE, Jacobson S. Human Herpesviruses 6A and 6B in Brain Diseases: Association versus Causation. Clin Microbiol Rev 2020; 34:e00143-20. [PMID: 33177186 PMCID: PMC7667666 DOI: 10.1128/cmr.00143-20] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human herpesvirus 6A (HHV-6A) and human herpesvirus 6B (HHV-6B), collectively termed HHV-6A/B, are neurotropic viruses that permanently infect most humans from an early age. Although most people infected with these viruses appear to suffer no ill effects, the viruses are a well-established cause of encephalitis in immunocompromised patients. In this review, we summarize the evidence that the viruses may also be one trigger for febrile seizures (including febrile status epilepticus) in immunocompetent infants and children, mesial temporal lobe epilepsy, multiple sclerosis (MS), and, possibly, Alzheimer's disease. We propose criteria for linking ubiquitous infectious agents capable of producing lifelong infection to any neurologic disease, and then we examine to what extent these criteria have been met for these viruses and these diseases.
Collapse
Affiliation(s)
- Anthony L Komaroff
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Philip E Pellett
- Department of Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Steven Jacobson
- Virology/Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
24
|
Santpere G, Telford M, Andrés-Benito P, Navarro A, Ferrer I. The Presence of Human Herpesvirus 6 in the Brain in Health and Disease. Biomolecules 2020; 10:E1520. [PMID: 33172107 PMCID: PMC7694807 DOI: 10.3390/biom10111520] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 01/03/2023] Open
Abstract
The human herpesvirus 6 (HHV-6) -A and -B are two dsDNA beta-herpesviruses infectingalmost the entire worldwide population. These viruses have been implicated in multipleneurological conditions in individuals of various ages and immunological status, includingencephalitis, epilepsy, and febrile seizures. HHV-6s have also been suggested as playing a role inthe etiology of neurodegenerative diseases such as multiple sclerosis and Alzheimer's disease. Theapparent robustness of these suggested associations is contingent on the accuracy of HHV-6detection in the nervous system. The effort of more than three decades of researching HHV-6 in thebrain has yielded numerous observations, albeit using variable technical approaches in terms oftissue preservation, detection techniques, sample sizes, brain regions, and comorbidities. In thisreview, we aimed to summarize current knowledge about the entry routes and direct presence ofHHV-6 in the brain parenchyma at the level of DNA, RNA, proteins, and specific cell types, inhealthy subjects and in those with neurological conditions. We also discuss recent findings relatedto the presence of HHV-6 in the brains of patients with Alzheimer's disease in light of availableevidence.
Collapse
Affiliation(s)
- Gabriel Santpere
- Neurogenomics Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), DCEXS, Universitat Pompeu Fabra, 08003 Barcelona, Catalonia, Spain
| | - Marco Telford
- Institute of Evolutionary Biology (UPF-CSIC), Departament de Ciències Experimentals i la Salut, Universitat Pompeu Fabra, PRBB, 08003 Barcelona, Catalonia, Spain; (M.T.); (A.N.)
| | - Pol Andrés-Benito
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
| | - Arcadi Navarro
- Institute of Evolutionary Biology (UPF-CSIC), Departament de Ciències Experimentals i la Salut, Universitat Pompeu Fabra, PRBB, 08003 Barcelona, Catalonia, Spain; (M.T.); (A.N.)
- Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluís Companys 23, 08010 Barcelona, Spain
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Carrer del Dr. Aiguader 88, 08003 Barcelona, Spain
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005 Barcelona, Spain
| | - Isidre Ferrer
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Hospitalet de Llobregat, 08907 Barcelona, Spain
- Bellvitge University Hospital, IDIBELL (Bellvitge Biomedical Research Centre), Hospitalet de Llobregat, 08908 Barcelona, Spain
| |
Collapse
|
25
|
Keyvani H, Zahednasab H, Aljanabi HAA, Asadi M, Mirzaei R, Esghaei M, Karampoor S. The role of human herpesvirus-6 and inflammatory markers in the pathogenesis of multiple sclerosis. J Neuroimmunol 2020; 346:577313. [PMID: 32673896 DOI: 10.1016/j.jneuroim.2020.577313] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/31/2020] [Accepted: 06/29/2020] [Indexed: 10/25/2022]
Abstract
Multiple sclerosis (MS) is a destructive autoimmune neuroinflammatory and neurodegenerative disorder of the central nervous system (CNS) with unknown etiology and mechanism of pathogenesis. Pathogens, especially human herpes viruses, have been suggested as environmental factors of the MS and other neuroinflammatory disorders. This study aimed to determine the prevalence of HHV-6 antibody response in MS patients and investigate the levels of pro/anti-inflammatory cytokine and chemokines in MS patients in comparison with healthy subjects. Two hundred sixty-three patients with clinically defined MS (140 females and 123 males), along with 263 healthy subjects (140 females and 123 males), were recruited for this study. After the analysis of HHV-6 seropositivity/seronegativity, the levels of some pro/anti-inflammatory cytokines, including TNF-α, IFN-γ, IL-1β, IL-6, and IL-12 as well as two chemokines, namely CCL-2 and CCL-5 were determined by the enzyme-linked immunosorbent assay (ELISA) method in HHV-6 seropositive/seronegative MS patients and healthy subjects. Our results showed that the serum concentrations of TNF-α, IFN-γ, IL-1β, IL-6, and CCL-5 elevated in HHV-6 seropositive compared with seronegative MS patients (P < .05). Moreover, the levels of IL-12, IL-10, and CCL-2 levels were significantly lower in seropositive MS patients when compared with seronegative MS patients (P < .05). Also, our results revealed that the mean values of the expanded disability status scale (EDSS) were significantly higher in HHV-6 seropositive versus seronegative MS patients (P < .05). In conclusion, we proposed that HHV-6 infection may play a role in MS pathogenesis by changing cytokine signaling in MS patients that may lead to peripheral inflammation.
Collapse
Affiliation(s)
- Hossein Keyvani
- Department of Medical Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamid Zahednasab
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Hussain Ali Abraham Aljanabi
- Alnahrain University College of Medicine, Bagdad, Iraq; Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Muhammad Asadi
- Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Esghaei
- Department of Medical Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sajad Karampoor
- Department of Medical Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
26
|
Tarlinton RE, Martynova E, Rizvanov AA, Khaiboullina S, Verma S. Role of Viruses in the Pathogenesis of Multiple Sclerosis. Viruses 2020; 12:E643. [PMID: 32545816 PMCID: PMC7354629 DOI: 10.3390/v12060643] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/07/2020] [Accepted: 06/10/2020] [Indexed: 12/17/2022] Open
Abstract
Multiple sclerosis (MS) is an immune inflammatory disease, where the underlying etiological cause remains elusive. Multiple triggering factors have been suggested, including environmental, genetic and gender components. However, underlying infectious triggers to the disease are also suspected. There is an increasing abundance of evidence supporting a viral etiology to MS, including the efficacy of interferon therapy and over-detection of viral antibodies and nucleic acids when compared with healthy patients. Several viruses have been proposed as potential triggering agents, including Epstein-Barr virus, human herpesvirus 6, varicella-zoster virus, cytomegalovirus, John Cunningham virus and human endogenous retroviruses. These viruses are all near ubiquitous and have a high prevalence in adult populations (or in the case of the retroviruses are actually part of the genome). They can establish lifelong infections with periods of reactivation, which may be linked to the relapsing nature of MS. In this review, the evidence for a role for viral infection in MS will be discussed with an emphasis on immune system activation related to MS disease pathogenesis.
Collapse
Affiliation(s)
- Rachael E. Tarlinton
- School of Veterinary Medicine and Science, University of Nottingham, Loughborough LE12 5RD, UK;
| | - Ekaterina Martynova
- Insititute of Fundamental Medicine and Biology Kazan Federal University, 420008 Kazan, Russia; (E.M.); (A.A.R.)
| | - Albert A. Rizvanov
- Insititute of Fundamental Medicine and Biology Kazan Federal University, 420008 Kazan, Russia; (E.M.); (A.A.R.)
| | | | - Subhash Verma
- School of Medicine, University of Nevada, Reno, NV 89557, USA;
| |
Collapse
|
27
|
Inherited Chromosomally Integrated Human Herpesvirus 6 Demonstrates Tissue-Specific RNA Expression In Vivo That Correlates with an Increased Antibody Immune Response. J Virol 2019; 94:JVI.01418-19. [PMID: 31597766 PMCID: PMC6912112 DOI: 10.1128/jvi.01418-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 09/30/2019] [Indexed: 12/11/2022] Open
Abstract
HHV-6A and -6B are human herpesviruses that have the unique property of being able to integrate into the telomeric regions of human chromosomes. Approximately 1% of the world’s population carries integrated HHV-6A/B genome in every cell of their body. Whether viral genes are transcriptionally active in these individuals is unclear. By taking advantage of a unique tissue-specific gene expression data set, we showed that the majority of tissues from iciHHV-6 individuals do not show HHV-6 gene expression. Brain and testes showed the highest tissue-specific expression of HHV-6 genes in two separate data sets. Two HHV-6 genes, U90 (immediate early 1 protein) and U100 (glycoproteins Q1 and Q2), were found to be selectively and consistently expressed across several human tissues. Expression of U90 translates into an increase in antigen-specific antibody response in iciHHV-6A/B+ subjects relative to controls. Future studies will be needed to determine the mechanism of gene expression, the effects of these genes on human gene transcription networks, and the pathophysiological impact of having increased viral protein expression in tissue in conjunction with increased antigen-specific antibody production. Human herpesviruses 6A and 6B (HHV-6A and HHV-6B) are human viruses capable of chromosomal integration. Approximately 1% of the human population carries one copy of HHV-6A/B integrated into every cell in their body, referred to as inherited chromosomally integrated human herpesvirus 6A/B (iciHHV-6A/B). Whether iciHHV-6A/B is transcriptionally active in vivo and how it shapes the immunological response are still unclear. In this study, we screened DNA sequencing (DNA-seq) and transcriptome sequencing (RNA-seq) data for 650 individuals available through the Genotype-Tissue Expression (GTEx) project and identified 2 iciHHV-6A- and 4 iciHHV-6B-positive candidates. When corresponding tissue-specific gene expression signatures were analyzed, low levels HHV-6A/B gene expression was found across multiple tissues, with the highest levels of gene expression in the brain (specifically for HHV-6A), testis, esophagus, and adrenal gland. U90 and U100 were the most highly expressed HHV-6 genes in both iciHHV-6A- and iciHHV-6B-positive individuals. To assess whether tissue-specific gene expression from iciHHV-6A/B influences the immune response, a cohort of 15,498 subjects was screened and 85 iciHHV-6A/B+ subjects were identified. Plasma samples from iciHHV-6A/B+ and age- and sex-matched controls were analyzed for antibodies to control antigens (cytomegalovirus [CMV], Epstein-Barr virus [EBV], and influenza virus [FLU]) or HHV-6A/B antigens. Our results indicate that iciHHV-6A/B+ subjects have significantly more antibodies against the U90 gene product (IE1) than do non-iciHHV-6-positive individuals. Antibody responses against EBV and FLU antigens or HHV-6A/B gene products either not expressed or expressed at low levels, such as U47, U57, and U72, were identical between controls and iciHHV-6A/B+ subjects. CMV-seropositive individuals with iciHHV-6A/B+ have more antibodies against CMV pp150 than do CMV-seropositive controls. These results argue that spontaneous gene expression from integrated HHV-6A/B leads to an increase in antigenic burden that translates into a more robust HHV-6A/B-specific antibody response. IMPORTANCE HHV-6A and -6B are human herpesviruses that have the unique property of being able to integrate into the telomeric regions of human chromosomes. Approximately 1% of the world’s population carries integrated HHV-6A/B genome in every cell of their body. Whether viral genes are transcriptionally active in these individuals is unclear. By taking advantage of a unique tissue-specific gene expression data set, we showed that the majority of tissues from iciHHV-6 individuals do not show HHV-6 gene expression. Brain and testes showed the highest tissue-specific expression of HHV-6 genes in two separate data sets. Two HHV-6 genes, U90 (immediate early 1 protein) and U100 (glycoproteins Q1 and Q2), were found to be selectively and consistently expressed across several human tissues. Expression of U90 translates into an increase in antigen-specific antibody response in iciHHV-6A/B+ subjects relative to controls. Future studies will be needed to determine the mechanism of gene expression, the effects of these genes on human gene transcription networks, and the pathophysiological impact of having increased viral protein expression in tissue in conjunction with increased antigen-specific antibody production.
Collapse
|
28
|
Bartolini L, Theodore WH, Jacobson S, Gaillard WD. Infection with HHV-6 and its role in epilepsy. Epilepsy Res 2019; 153:34-39. [DOI: 10.1016/j.eplepsyres.2019.03.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/18/2019] [Accepted: 03/24/2019] [Indexed: 01/09/2023]
|
29
|
Hussein HM, Rahal EA. The role of viral infections in the development of autoimmune diseases. Crit Rev Microbiol 2019; 45:394-412. [PMID: 31145640 DOI: 10.1080/1040841x.2019.1614904] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The exact aetiology of most autoimmune diseases remains unknown, nonetheless, several factors contributing to the induction or exacerbation of autoimmune reactions have been suggested. These include the genetic profile and lifestyle of the affected individual in addition to environmental triggers such as bacterial, parasitic, fungal and viral infections. Infections caused by viruses usually trigger a potent immune response that is necessary for the containment of the infection; however, in some cases, a failure in the regulation of this immune response may lead to harmful immune reactions directed against the host's antigens. The autoimmune attack can be carried out by different arms and components of the immune system and through different possible mechanisms including molecular mimicry, bystander activation, and epitope spreading among others. In this review, we examine the data available for the involvement of viral infections in triggering or exacerbating autoimmune diseases in addition to discussing the mechanisms by which these viral infections and the immune pathways they trigger possibly contribute to the development of autoimmunity.
Collapse
Affiliation(s)
- Hadi M Hussein
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut , Beirut , Lebanon.,Center for Infectious Diseases Research (CIDR), American University of Beirut , Beirut , Lebanon
| | - Elias A Rahal
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut , Beirut , Lebanon.,Center for Infectious Diseases Research (CIDR), American University of Beirut , Beirut , Lebanon
| |
Collapse
|
30
|
Leibovitch EC, Caruso B, Ha SK, Schindler MK, Lee NJ, Luciano NJ, Billioux BJ, Guy JR, Yen C, Sati P, Silva AC, Reich DS, Jacobson S. Herpesvirus trigger accelerates neuroinflammation in a nonhuman primate model of multiple sclerosis. Proc Natl Acad Sci U S A 2018; 115:11292-11297. [PMID: 30322946 PMCID: PMC6217390 DOI: 10.1073/pnas.1811974115] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Pathogens, particularly human herpesviruses (HHVs), are implicated as triggers of disease onset/progression in multiple sclerosis (MS) and other neuroinflammatory disorders. However, the time between viral acquisition in childhood and disease onset in adulthood complicates the study of this association. Using nonhuman primates, we demonstrate that intranasal inoculations with HHV-6A and HHV-6B accelerate an MS-like neuroinflammatory disease, experimental autoimmune encephalomyelitis (EAE). Although animals inoculated intranasally with HHV-6 (virus/EAE marmosets) were asymptomatic, they exhibited significantly accelerated clinical EAE compared with control animals. Expansion of a proinflammatory CD8 subset correlated with post-EAE survival in virus/EAE marmosets, suggesting that a peripheral (viral?) antigen-driven expansion may have occurred post-EAE induction. HHV-6 viral antigen in virus/EAE marmosets was markedly elevated and concentrated in brain lesions, similar to previously reported localizations of HHV-6 in MS brain lesions. Collectively, we demonstrate that asymptomatic intranasal viral acquisition accelerates subsequent neuroinflammation in a nonhuman primate model of MS.
Collapse
Affiliation(s)
- Emily C Leibovitch
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Breanna Caruso
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Seung Kwon Ha
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Matthew K Schindler
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Nathanael J Lee
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Nicholas J Luciano
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Bridgette J Billioux
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Joseph R Guy
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Cecil Yen
- Cerebral Microcirculation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Pascal Sati
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Afonso C Silva
- Cerebral Microcirculation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Steven Jacobson
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
31
|
Bartolini L, Libbey JE, Ravizza T, Fujinami RS, Jacobson S, Gaillard WD. Viral Triggers and Inflammatory Mechanisms in Pediatric Epilepsy. Mol Neurobiol 2018; 56:1897-1907. [PMID: 29978423 DOI: 10.1007/s12035-018-1215-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/27/2018] [Indexed: 12/21/2022]
Abstract
Experimental and clinical findings suggest a crucial role for inflammation in the onset of pediatric seizures; this mechanism is not targeted by conventional antiepileptic drugs and may contribute to refractory epilepsy. Several triggers, including infection with neurotropic viruses such as human herpesvirus 6 (HHV-6), other herpesviruses, and picornaviruses, appear to induce activation of the innate and adaptive immune systems, which results in several neuroinflammatory responses, leading to enhanced neuronal excitability, and ultimately contributing to epileptogenesis. This review discusses the proposed mechanisms by which infection with herpesviruses, and particularly with HHV-6, and ensuing inflammation may lead to seizure generation, and later development of epilepsy. We also examine the evidence that links herpesvirus and picornavirus infections with acute seizures and chronic forms of epilepsy. Understanding the mechanisms by which specific viruses may trigger a cascade of alterations in the CNS ultimately leading to epilepsy appears critical for the development of therapeutic agents that may target the virus or inflammatory mechanisms early and prevent progression of epileptogenesis.
Collapse
Affiliation(s)
- Luca Bartolini
- Clinical Epilepsy Section, National Institute of Neurological Disorders and Stroke, NIH, Building 10, room 7-5680, 10 Center Drive, Bethesda, MD, 20814, USA. .,Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke, NIH, 10 Center Drive, Bethesda, MD, 20892, USA. .,Center for Neuroscience, Children's National Medical Center, George Washington University, 111 Michigan Ave NW, Washington, DC, 20010, USA.
| | - Jane E Libbey
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT, 84112, USA
| | - Teresa Ravizza
- Neuroscience Department, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156, Milan, Italy
| | - Robert S Fujinami
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT, 84112, USA
| | - Steven Jacobson
- Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - William D Gaillard
- Center for Neuroscience, Children's National Medical Center, George Washington University, 111 Michigan Ave NW, Washington, DC, 20010, USA
| |
Collapse
|
32
|
Hogestyn JM, Mock DJ, Mayer-Proschel M. Contributions of neurotropic human herpesviruses herpes simplex virus 1 and human herpesvirus 6 to neurodegenerative disease pathology. Neural Regen Res 2018; 13:211-221. [PMID: 29557362 PMCID: PMC5879884 DOI: 10.4103/1673-5374.226380] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Human herpesviruses (HVs) have developed ingenious mechanisms that enable them to traverse the defenses of the central nervous system (CNS). The ability of HVs to enter a state of latency, a defining characteristic of this viral family, allows them to persist in the human host indefinitely. As such, HVs represent the most frequently detected pathogens in the brain. Under constant immune pressure, these infections are largely asymptomatic in healthy hosts. However, many neurotropic HVs have been directly connected with CNS pathology in the context of other stressors and genetic risk factors. In this review, we discuss the potential mechanisms by which neurotropic HVs contribute to neurodegenerative disease (NDD) pathology by highlighting two prominent members of the HV family, herpes simplex virus 1 (HSV-1) and human herpesvirus 6 (HHV-6). We (i) introduce the infectious pathways and replicative cycles of HSV-1 and HHV-6 and then (ii) review the clinical evidence supporting associations between these viruses and the NDDs Alzheimer's disease (AD) and multiple sclerosis (MS), respectively. We then (iii) highlight and discuss potential mechanisms by which these viruses exert negative effects on neurons and glia. Finally, we (iv) discuss how these viruses could interact with other disease-modifying factors to contribute to the initiation and/or progression of NDDs.
Collapse
Affiliation(s)
| | - David J Mock
- Department of Biomedical Genetics, University of Rochester, Rochester, NY, USA
| | - Margot Mayer-Proschel
- Department of Neuroscience, University of Rochester; Department of Biomedical Genetics, University of Rochester, Rochester, NY, USA
| |
Collapse
|
33
|
Campbell A, Hogestyn JM, Folts CJ, Lopez B, Pröschel C, Mock D, Mayer-Pröschel M. Expression of the Human Herpesvirus 6A Latency-Associated Transcript U94A Disrupts Human Oligodendrocyte Progenitor Migration. Sci Rep 2017; 7:3978. [PMID: 28638124 PMCID: PMC5479784 DOI: 10.1038/s41598-017-04432-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/15/2017] [Indexed: 12/28/2022] Open
Abstract
Progression of demyelinating diseases is caused by an imbalance of two opposing processes: persistent destruction of myelin and myelin repair by differentiating oligodendrocyte progenitor cells (OPCs). Repair that cannot keep pace with destruction results in progressive loss of myelin. Viral infections have long been suspected to be involved in these processes but their specific role remains elusive. Here we describe a novel mechanism by which HHV-6A, a member of the human herpesvirus family, may contribute to inadequate myelin repair after injury.
Collapse
Affiliation(s)
- Andrew Campbell
- Department of Biomedical Genetics, University of Rochester, School of Medicine and Dentistry, 601 Elmwood Avenue, Box 633, NY, 14642, USA
- Environmental Health Science Center, University of Rochester, School of Medicine and Dentistry, 601 Elmwood Avenue, Box 633, Rochester, NY, 14642, USA
| | - Jessica M Hogestyn
- Department of Biomedical Genetics, University of Rochester, School of Medicine and Dentistry, 601 Elmwood Avenue, Box 633, NY, 14642, USA
- Department of Neuroscience, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Box 633, Rochester, NY, 14642, USA
| | - Christopher J Folts
- Division of Newborn Medicine, Boston Children's Hospital/Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Brittany Lopez
- Department of Biomedical Genetics, University of Rochester, School of Medicine and Dentistry, 601 Elmwood Avenue, Box 633, NY, 14642, USA
| | - Christoph Pröschel
- Department of Biomedical Genetics, University of Rochester, School of Medicine and Dentistry, 601 Elmwood Avenue, Box 633, NY, 14642, USA
| | - David Mock
- Department of Biomedical Genetics, University of Rochester, School of Medicine and Dentistry, 601 Elmwood Avenue, Box 633, NY, 14642, USA.
| | - Margot Mayer-Pröschel
- Department of Biomedical Genetics, University of Rochester, School of Medicine and Dentistry, 601 Elmwood Avenue, Box 633, NY, 14642, USA.
- Environmental Health Science Center, University of Rochester, School of Medicine and Dentistry, 601 Elmwood Avenue, Box 633, Rochester, NY, 14642, USA.
- Department of Neuroscience, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Box 633, Rochester, NY, 14642, USA.
| |
Collapse
|
34
|
Tao C, Simpson S, Taylor BV, van der Mei I. Association between human herpesvirus & human endogenous retrovirus and MS onset & progression. J Neurol Sci 2016; 372:239-249. [PMID: 28017222 DOI: 10.1016/j.jns.2016.11.060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/02/2016] [Accepted: 11/23/2016] [Indexed: 10/20/2022]
Abstract
This review discusses the role of Epstein-Barr virus (EBV), human herpesvirus 6 (HHV6) and human endogenous retroviruses (HERVs) in the onset and progression of multiple sclerosis (MS). Although EBV has been established as one of the causal factors in MS onset, its role in MS progression is still uncertain. Moreover, interactions between EBV and other risk factor on MS development still need more investment. With less consistent evidence than EBV, HHV6 has also been implicated in the pathogenesis of MS; moreover, it showed a closer connection with the disease activity. Recent studies found that HERVs were associated with the development and progression of MS. Some antiviral treatments have shown promise for clinical interventions in the future. Future studies are yet needed to fully clarify the role of these agents in MS onset and disease course and the modes by which they realise these effects.
Collapse
Affiliation(s)
- Chunrong Tao
- Menzies Institute for Medical Research, University of Tasmania, Australia
| | - Steve Simpson
- Menzies Institute for Medical Research, University of Tasmania, Australia
| | - Bruce V Taylor
- Menzies Institute for Medical Research, University of Tasmania, Australia
| | - Ingrid van der Mei
- Menzies Institute for Medical Research, University of Tasmania, Australia.
| |
Collapse
|
35
|
Chapenko S, Roga S, Skuja S, Rasa S, Cistjakovs M, Svirskis S, Zaserska Z, Groma V, Murovska M. Detection frequency of human herpesviruses-6A, -6B, and -7 genomic sequences in central nervous system DNA samples from post-mortem individuals with unspecified encephalopathy. J Neurovirol 2016; 22:488-97. [PMID: 26727906 DOI: 10.1007/s13365-015-0417-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/25/2015] [Accepted: 12/09/2015] [Indexed: 12/22/2022]
Abstract
In this autopsy-based study, human herpesvirus-6 (HHV-6) and -7 (HHV-7) genomic sequence frequency, HHV-6 variants, HHV-6 load and the expression of HHV-6 antigens in brain samples from the individuals, with and without unspecified encephalopathy (controls), using nested and real-time polymerase chain reactions, restriction endonuclease, and immunohistochemical analysis were examined. GraphPad Prism 6.0 Mann-Whitney nonparametric and chi-square test and Fisher's exact test were used for statistical analysis. The encephalopathy diagnoses were shown by magnetic resonance imaging made during their lifetime and macro- and microscopically studied autopsy tissue materials. Widespread HHV-6 and/or HHV-7 positivity was detected in the brain tissue of various individuals with encephalopathy, as well as in controls (51/57, 89.4 % and 35/51, 68.6 %, respectively; p = 0.009). Significantly higher detection frequency of single HHV-6 and concurrent HHV-6 + HHV-7 DNA was found in pia mater meninges, frontal lobe, temporal lobe, and olfactory tract DNAs in individuals with encephalopathy compared to the control group. HHV-6 load and higher frequency of the viral load >10 copies/10(6) cells significantly differed in samples from individuals with and without encephalopathy. The expression of HHV-6 antigens was revealed in different neural cell types with strong predominance in the encephalopathy group. In all HHV-6-positive autopsy samples of individuals with and without encephalopathy, HHV-6B was revealed. Significantly higher detection frequency of beta-herpesvirus DNA, more often detected HHV-6 load >10 copies/10(6) cells, as well as the expression of HHV-6 antigens in different brain tissue samples from individuals with encephalopathy in comparison with control group indicate on potential involvement of these viruses in encephalopathy development.
Collapse
Affiliation(s)
- Svetlana Chapenko
- August Kirchenstein Institute of Microbiology and Virology, Riga Stradins University, Ratsupites iela 5, Riga, Latvia.
| | - Silvija Roga
- Study Department, Riga Stradins University, Riga, Latvia.,Pathology Department, Riga 1st Hospital, Riga, Latvia
| | - Sandra Skuja
- Institute of Anatomy and Anthropology, Riga Stradins University, Riga, Latvia
| | - Santa Rasa
- August Kirchenstein Institute of Microbiology and Virology, Riga Stradins University, Ratsupites iela 5, Riga, Latvia
| | - Maksims Cistjakovs
- August Kirchenstein Institute of Microbiology and Virology, Riga Stradins University, Ratsupites iela 5, Riga, Latvia
| | - Simons Svirskis
- August Kirchenstein Institute of Microbiology and Virology, Riga Stradins University, Ratsupites iela 5, Riga, Latvia
| | - Zane Zaserska
- August Kirchenstein Institute of Microbiology and Virology, Riga Stradins University, Ratsupites iela 5, Riga, Latvia
| | - Valerija Groma
- Institute of Anatomy and Anthropology, Riga Stradins University, Riga, Latvia
| | - Modra Murovska
- August Kirchenstein Institute of Microbiology and Virology, Riga Stradins University, Ratsupites iela 5, Riga, Latvia
| |
Collapse
|
36
|
Sato F, Omura S, Jaffe S, Tsunoda I. Role of CD4+ T Cells in the Pathophysiology of Multiple Sclerosis. MULTIPLE SCLEROSIS 2016. [PMCID: PMC7150304 DOI: 10.1016/b978-0-12-800763-1.00004-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system. Although the precise etiology of MS remains unclear, CD4+ T cells have been proposed to play not only effector but also regulatory roles in MS. CD4+ T cells can be divided into four subsets: pro-inflammatory helper T (Th) 1 and Th17 cells, anti-inflammatory Th2 cells and regulatory T cells (Tregs). The roles of CD4+ T cells in MS have been clarified by either “loss-of-function” or “gain-of-function” methods, which have been carried out mainly in autoimmune and viral models of MS: experimental autoimmune encephalomyelitis and Theiler's murine encephalomyelitis virus infection, respectively. Observations in MS patients were consistent with the mechanisms found in the MS models, that is, increased pro-inflammatory Th1 and Th17 activity is associated with disease exacerbation, while anti-inflammatory Th2 cells and Tregs appear to play a protective role.
Collapse
|
37
|
D'Ambrosio A, Pontecorvo S, Colasanti T, Zamboni S, Francia A, Margutti P. Peripheral blood biomarkers in multiple sclerosis. Autoimmun Rev 2015; 14:1097-110. [PMID: 26226413 DOI: 10.1016/j.autrev.2015.07.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 07/23/2015] [Indexed: 10/23/2022]
Abstract
Multiple sclerosis is the most common autoimmune disorder affecting the central nervous system. The heterogeneity of pathophysiological processes in MS contributes to the highly variable course of the disease and unpredictable response to therapies. The major focus of the research on MS is the identification of biomarkers in biological fluids, such as cerebrospinal fluid or blood, to guide patient management reliably. Because of the difficulties in obtaining spinal fluid samples and the necessity for lumbar puncture to make a diagnosis has reduced, the research of blood-based biomarkers may provide increasingly important tools for clinical practice. However, currently there are no clearly established MS blood-based biomarkers. The availability of reliable biomarkers could radically alter the management of MS at critical phases of the disease spectrum, allowing for intervention strategies that may prevent evolution to long-term neurological disability. This article provides an overview of this research field and focuses on recent advances in blood-based biomarker research.
Collapse
Affiliation(s)
- Antonella D'Ambrosio
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Simona Pontecorvo
- Multiple Sclerosis Center of Department of Neurology and Psychiatry of "Sapienza" University of Rome, Italy
| | - Tania Colasanti
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Silvia Zamboni
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Ada Francia
- Multiple Sclerosis Center of Department of Neurology and Psychiatry of "Sapienza" University of Rome, Italy
| | - Paola Margutti
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
38
|
Morris G, Berk M, Walder K, Maes M. The Putative Role of Viruses, Bacteria, and Chronic Fungal Biotoxin Exposure in the Genesis of Intractable Fatigue Accompanied by Cognitive and Physical Disability. Mol Neurobiol 2015; 53:2550-71. [PMID: 26081141 DOI: 10.1007/s12035-015-9262-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 05/28/2015] [Indexed: 01/08/2023]
Abstract
Patients who present with severe intractable apparently idiopathic fatigue accompanied by profound physical and or cognitive disability present a significant therapeutic challenge. The effect of psychological counseling is limited, with significant but very slight improvements in psychometric measures of fatigue and disability but no improvement on scientific measures of physical impairment compared to controls. Similarly, exercise regimes either produce significant, but practically unimportant, benefit or provoke symptom exacerbation. Many such patients are afforded the exclusionary, non-specific diagnosis of chronic fatigue syndrome if rudimentary testing fails to discover the cause of their symptoms. More sophisticated investigations often reveal the presence of a range of pathogens capable of establishing life-long infections with sophisticated immune evasion strategies, including Parvoviruses, HHV6, variants of Epstein-Barr, Cytomegalovirus, Mycoplasma, and Borrelia burgdorferi. Other patients have a history of chronic fungal or other biotoxin exposure. Herein, we explain the epigenetic factors that may render such individuals susceptible to the chronic pathology induced by such agents, how such agents induce pathology, and, indeed, how such pathology can persist and even amplify even when infections have cleared or when biotoxin exposure has ceased. The presence of active, reactivated, or even latent Herpes virus could be a potential source of intractable fatigue accompanied by profound physical and or cognitive disability in some patients, and the same may be true of persistent Parvovirus B12 and mycoplasma infection. A history of chronic mold exposure is a feasible explanation for such symptoms, as is the presence of B. burgdorferi. The complex tropism, life cycles, genetic variability, and low titer of many of these pathogens makes their detection in blood a challenge. Examination of lymphoid tissue or CSF in such circumstances may be warranted.
Collapse
Affiliation(s)
- Gerwyn Morris
- Tir Na Nog, Bryn Road seaside 87, Llanelli, SA15 2LW, Wales, UK
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Australia.,Orygen, The National Centre of Excellence in Youth Mental Health, Department of Psychiatry and The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Ken Walder
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Australia
| | - Michael Maes
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Australia. .,Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
39
|
Acute disseminated encephalomyelitis progressing to multiple sclerosis: are infectious triggers involved? Immunol Res 2015; 60:16-22. [PMID: 24668297 PMCID: PMC7091333 DOI: 10.1007/s12026-014-8499-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acute disseminated encephalomyelitis (ADEM) and multiple sclerosis (MS) are demyelinating disorders affecting the central nervous system. An autoimmune aetiology has been proposed for both. ADEM principally affects adolescents following acute infection by a variety of pathogens and has also been reported to occur following vaccination. ADEM typically resolves following medical treatment, whereas MS follows a more relapsing and remitting course. The pathogenesis of MS remains unclear, but it is thought that a combination of infectious and non-infectious environmental factors and host genetics act synergistically to cause disease. A variety of viruses, including Epstein Barr virus, cytomegalovirus, herpes simplex virus and varicella zoster virus, have been implicated as possible infectious triggers. The similar clinical and pathological presentation of ADEM and MS presents a diagnostic challenge for distinguishing ADEM from a first episode of MS. Some cases of ADEM progress to MS for reasons that are not currently clear. This review examines the evidence for infectious agents as triggers for ADEM progressing to MS and suggests potential methods that may facilitate identification of infectious agents that may be responsible for the pathogenesis of ADEM to MS.
Collapse
|
40
|
Leibovitch EC, Jacobson S. Human Herpesvirus 6 as a Viral Trigger in Mesial Temporal Lobe Epilepsy. J Infect Dis 2015; 212:1011-3. [PMID: 25840442 DOI: 10.1093/infdis/jiv162] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 03/09/2015] [Indexed: 01/24/2023] Open
Affiliation(s)
- Emily C Leibovitch
- Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland Institute for Biomedical Sciences, School of Medicine and Health Sciences, The George Washington University, Washington D.C
| | - Steven Jacobson
- Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
41
|
Leibovitch EC, Jacobson S. Evidence linking HHV-6 with multiple sclerosis: an update. Curr Opin Virol 2014; 9:127-33. [PMID: 25462444 PMCID: PMC4269240 DOI: 10.1016/j.coviro.2014.09.016] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 09/25/2014] [Accepted: 09/26/2014] [Indexed: 11/17/2022]
Abstract
Following reports of elevated antiviral antibodies in MS patient sera and viral DNA detection in MS plaques nearly two decades ago, the neurovirology community has actively explored how herpesviruses such as HHV-6 might be involved in MS disease pathogenesis. Though findings across the field are non-uniform, an emerging consensus of viral correlates with disease course and evidence of HHV-6-specific immune responses in the CNS provide compelling evidence for a role, direct or indirect, of this virus in MS. Ultimately, the only way to demonstrate the involvement, or lack thereof, of HHV-6 or other herpesviruses in this disease is through a controlled clinical trial of an efficacious antiviral drug.
Collapse
Affiliation(s)
- Emily C Leibovitch
- Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Institute for Biomedical Sciences, School of Medicine and Health Sciences of The George Washington University, Washington, DC, USA
| | - Steven Jacobson
- Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
42
|
Hon GM, Erasmus RT, Matsha TE. Mini review article. Human herpesvirus-6 and the etiology of multiple sclerosis: a literature review. ASIAN BIOMED 2014. [DOI: 10.5372/1905-7415.0803.294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Abstract
Background: There is no consensus in the literature on the role of human herpes virus-6 (HHV-6) in multiple sclerosis (MS) onset or progression.
Objective: We evaluated a possible role for HHV-6 in MS onset and progression.
Methods: We conducted a literature search of PubMed and Google scholar with the following search terms: (“multiple sclerosis” OR “MS”) and (“Human Herpes Virus-6” OR “HHV-6”).
Results: A total 21 publications were retrieved, of which 19 case-control studies were included. A further 25 articles were retrieved for background information.
Conclusion: There was insufficient evidence to support a role of HHV-6 in MS onset and progression.
Collapse
Affiliation(s)
- Gloudina M. Hon
- Department of Bio-Medical Sciences, Faculty of Health and Wellness Science, Cape Peninsula University of Technology, Bellville 7530, South Africa
| | - Rajiv T. Erasmus
- Division of Chemical Pathology, University of Stellenbosch, Tygerberg 7505, South Africa
| | - Tandi E. Matsha
- Department of Bio-Medical Sciences, Faculty of Health and Wellness Science, Cape Peninsula University of Technology, Bellville 7530, South Africa
| |
Collapse
|
43
|
Human herpesvirus 6A infection in CD46 transgenic mice: viral persistence in the brain and increased production of proinflammatory chemokines via Toll-like receptor 9. J Virol 2014; 88:5421-36. [PMID: 24574405 DOI: 10.1128/jvi.03763-13] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Human herpesvirus 6 (HHV-6) is widely spread in the human population and has been associated with several neuroinflammatory diseases, including multiple sclerosis. To develop a small-animal model of HHV-6 infection, we analyzed the susceptibility of several lines of transgenic mice expressing human CD46, identified as a receptor for HHV-6. We showed that HHV-6A (GS) infection results in the expression of viral transcripts in primary brain glial cultures from CD46-expressing mice, while HHV-6B (Z29) infection was inefficient. HHV-6A DNA persisted for up to 9 months in the brain of CD46-expressing mice but not in the nontransgenic littermates, whereas HHV-6B DNA levels decreased rapidly after infection in all mice. Persistence in the brain was observed with infectious but not heat-inactivated HHV-6A. Immunohistological studies revealed the presence of infiltrating lymphocytes in periventricular areas of the brain of HHV-6A-infected mice. Furthermore, HHV-6A stimulated the production of a panel of proinflammatory chemokines in primary brain glial cultures, including CCL2, CCL5, and CXCL10, and induced the expression of CCL5 in the brains of HHV-6A-infected mice. HHV-6A-induced production of chemokines in the primary glial cultures was dependent on the stimulation of toll-like receptor 9 (TLR9). Finally, HHV-6A induced signaling through human TLR9 as well, extending observations from the murine model to human infection. Altogether, this study presents a first murine model for HHV-6A-induced brain infection and suggests a role for TLR9 in the HHV-6A-initiated production of proinflammatory chemokines in the brain, opening novel perspectives for the study of virus-associated neuropathology. IMPORTANCE HHV-6 infection has been related to neuroinflammatory diseases; however, the lack of a suitable small-animal infection model has considerably hampered further studies of HHV-6-induced neuropathogenesis. In this study, we have characterized a new model for HHV-6 infection in mice expressing the human CD46 protein. Infection of CD46 transgenic mice with HHV-6A resulted in long-term persistence of viral DNA in the brains of infected animals and was followed by lymphocyte infiltration and upregulation of the CCL5 chemokine in the absence of clinical signs of disease. The secretion of a panel of chemokines was increased after infection in primary murine brain glial cultures, and the HHV-6-induced chemokine expression was inhibited when TLR9 signaling was blocked. These results describe the first murine model for HHV-6A-induced brain infection and suggest the importance of the TLR9 pathway in HHV-6A-initiated neuroinflammation.
Collapse
|
44
|
Mahurkar S, Suppiah V, O'Doherty C. Pharmacogenomics of interferon beta and glatiramer acetate response: A review of the literature. Autoimmun Rev 2014; 13:178-86. [DOI: 10.1016/j.autrev.2013.10.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Accepted: 10/24/2013] [Indexed: 02/07/2023]
|
45
|
Abstract
We recently introduced the concept of the infectome as a means of studying all infectious factors which contribute to the development of autoimmune disease. It forms the infectious part of the exposome, which collates all environmental factors contributing to the development of disease and studies the sum total of burden which leads to the loss of adaptive mechanisms in the body. These studies complement genome-wide association studies, which establish the genetic predisposition to disease. The infectome is a component which spans the whole life and may begin at the earliest stages right up to the time when the first symptoms manifest, and may thus contribute to the understanding of the pathogenesis of autoimmunity at the prodromal/asymptomatic stages. We provide practical examples and research tools as to how we can investigate disease-specific infectomes, using laboratory approaches employed from projects studying the “immunome” and “microbiome”. It is envisioned that an understanding of the infectome and the environmental factors that affect it will allow for earlier patient-specific intervention by clinicians, through the possible treatment of infectious agents as well as other compounding factors, and hence slowing or preventing disease development.
Collapse
|
46
|
Affiliation(s)
- Joshua A Hill
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, USA.
| | - Nagagopal Venna
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
47
|
HHV-6 and Multiple Sclerosis. HUMAN HERPESVIRUSES HHV-6A, HHV-6B & HHV-7 2014. [PMCID: PMC7152315 DOI: 10.1016/b978-0-444-62703-2.00007-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease affecting the central nervous system, thought to be an autoimmune disease mediated by autoreactive lymphocytes. The pathogenesis of MS is multifactorial and is thought to be triggered by multiple environmental factors in genetically susceptible individuals. Viruses have long been postulated as potential environmental triggers in MS, and there is increasing evidence of a link between viruses and MS. Some of the most compelling data have been found in human herpesvirus 6 (HHV-6) research. HHV-6 is a ubiquitous, neurotropic herpesvirus; HHV-6 DNA has been found in MS plaques compared to healthy brain tissue. Studies have also shown that MS patients have higher viral titers and higher DNA detection in serum and CSF compared to controls, and that the virus seems to be more actively replicating in MS patients. Potential mechanisms for HHV-6 leading to autoimmunity include molecular mimicry, bystander activation, and epitope spreading, among others.
Collapse
|
48
|
Abstract
Multiple sclerosis is a chronic inflammatory condition of unknown cause. Increasing evidence suggests that the disease develops as a result of interactions between the environment and the immune system in genetically susceptible individuals. It has long been recognized that infections may serve as environmental triggers for the disease, and a large number of pathogens have been proposed to be associated with multiple sclerosis. Here, we detail the historical basis linking infections to multiple sclerosis and review the epidemiology of the disease, which suggests a possible relationship with infectious agents. We also describe pathophysiologic studies in animals and other human demyelinating diseases that have demonstrated a variety of mechanisms by which infectious agents may induce chronic, relapsing central nervous system disease with myelin damage and relative preservation of axons, similar to multiple sclerosis. In addition, we discuss recent studies in individuals with multiple sclerosis indicating enhanced immune responses to infectious antigens, though not consistently demonstrating evidence for ongoing infection. Taken together, these studies suggest a role for infectious agents in the development of multiple sclerosis. Conclusive evidence, however, remains lacking.
Collapse
Affiliation(s)
- Arun Venkatesan
- Department of Neurology, Johns Hopkins University School of Medicine and Bloomberg School of Public Health, Baltimore, MD, USA
| | - Richard T Johnson
- Department of Neurology, Johns Hopkins University School of Medicine and Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
49
|
Possible role of human herpesvirus 6 as a trigger of autoimmune disease. ScientificWorldJournal 2013; 2013:867389. [PMID: 24282390 PMCID: PMC3825270 DOI: 10.1155/2013/867389] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 09/09/2013] [Indexed: 01/08/2023] Open
Abstract
Human herpesvirus 6 (HHV-6) infection is common and has a worldwide distribution. Recently, HHV-6A and HHV-6B have been reclassified into two distinct species based on different biological features (genetic, antigenic, and cell tropism) and disease associations. A role for HHV-6A/B has been proposed in several autoimmune disorders (AD), including multiple sclerosis (MS), autoimmune connective tissue diseases, and Hashimoto's thyroiditis. The focus of this review is to discuss the above-mentioned AD associated with HHV-6 and the mechanisms proposed for HHV-6A/B-induced autoimmunity. HHV-6A/B could trigger autoimmunity by exposing high amounts of normally sequestered cell antigens, through lysis of infected cells. Another potential trigger is represented by molecular mimicry, with the synthesis of viral proteins that resemble cellular molecules, as a mechanism of immune escape. The virus could also induce aberrant expression of histocompatibility molecules thereby promoting the presentation of autoantigens. CD46-HHV-6A/B interaction is a new attractive mechanism proposed: HHV-6A/B (especially HHV-6A) could participate in neuroinflammation in the context of MS by promoting inflammatory processes through CD46 binding. Although HHV-6A/B has the ability to trigger all the above-mentioned mechanisms, more studies are required to fully elucidate the possible role of HHV-6A/B as a trigger of AD.
Collapse
|
50
|
Olival GSD, Lima BM, Sumita LM, Serafim V, Fink MC, Nali LH, Romano CM, Thomaz RB, Cavenaghi VB, Tilbery CP, Penalva-de-Oliveira AC. Multiple sclerosis and herpesvirus interaction. ARQUIVOS DE NEURO-PSIQUIATRIA 2013; 71:727-30. [DOI: 10.1590/0004-282x20130160] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multiple sclerosis is the most common autoimmune inflammatory demyelinating disease of the central nervous system, and its etiology is believed to have both genetic and environmental components. Several viruses have already been implicated as triggers and there are several studies that implicate members of the Herpesviridae family in the pathogenesis of MS. The most important characteristic of these viruses is that they have periods of latency and exacerbations within their biological sanctuary, the central nervous system. The Epstein-Barr, cytomegalovirus, human herpesvirus 6 and human herpesvirus 7 viruses are the members that are most studied as being possible triggers of multiple sclerosis. According to evidence in the literature, the herpesvirus family is strongly involved in the pathogenesis of this disease, but it is unlikely that they are the only component responsible for its development. There are probably multiple triggers and more studies are necessary to investigate and define these interactions.
Collapse
|