1
|
Petrosyan HA, Alessi V, Lasek K, Gumudavelli S, Muffaletto R, Liang L, Collins WF, Levine J, Arvanian VL. AAV Vector Mediated Delivery of NG2 Function Neutralizing Antibody and Neurotrophin NT-3 Improves Synaptic Transmission, Locomotion, and Urinary Tract Function after Spinal Cord Contusion Injury in Adult Rats. J Neurosci 2023; 43:1492-1508. [PMID: 36653191 PMCID: PMC10008066 DOI: 10.1523/jneurosci.1276-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
NG2 is a structurally unique transmembrane chondroitin sulfate proteoglycan (CSPG). Its role in damaged spinal cord is dual. NG2 is considered one of key inhibitory factors restricting axonal growth following spinal injury. Additionally, we have recently detected its novel function as a blocker of axonal conduction. Some studies, however, indicate the importance of NG2 presence in the formation of synaptic contacts. We hypothesized that the optimal treatment would be neutralization of inhibitory functions of NG2 without its physical removal. Acute intraspinal injections of anti-NG2 monoclonal antibodies reportedly prevented an acute block of axonal conduction by exogenous NG2. For prolonged delivery of NG2 function neutralizing antibody, we have developed a novel gene therapy: adeno-associated vector (AAV) construct expressing recombinant single-chain variable fragment anti-NG2 antibody (AAV-NG2Ab). We examined effects of AAV-NG2Ab alone or in combination with neurotrophin NT-3 in adult female rats with thoracic T10 contusion injuries. A battery of behavioral tests was used to evaluate locomotor function. In vivo single-cell electrophysiology was used to evaluate synaptic transmission. Lower urinary tract function was assessed during the survival period using metabolic chambers. Terminal cystometry, with acquisition of external urethral sphincter activity and bladder pressure, was used to evaluate bladder function. Both the AAV-NG2Ab and AAV-NG2Ab combined with AAV-NT3 treatment groups demonstrated significant improvements in transmission, locomotion, and bladder function compared with the control (AAV-GFP) group. These functional improvements associated with improved remyelination and plasticity of 5-HT fibers. The best results were observed in the group that received combinational AAV-NG2Ab+AAV-NT3 treatment.SIGNIFICANCE STATEMENT We recently demonstrated beneficial, but transient, effects of neutralization of the NG2 proteoglycan using monoclonal antibodies delivered intrathecally via osmotic mini-pumps after spinal cord injury. Currently, we have developed a novel gene therapy tool for prolonged and clinically relevant delivery of a recombinant single-chain variable fragment anti-NG2 antibody: AAV-rh10 serotype expressing scFv-NG2 (AAV-NG2Ab). Here, we examined effects of AAV-NG2Ab combined with transgene delivery of Neurotrophin-3 (AAV-NT3) in adult rats with thoracic contusion injuries. The AAV-NG2Ab and AAV-NG2Ab+AAV-NT3 treatment groups demonstrated significant improvements of locomotor function and lower urinary tract function. Beneficial effects of this novel gene therapy on locomotion and bladder function associated with improved transmission to motoneurons and plasticity of axons in damaged spinal cord.
Collapse
Affiliation(s)
- Hayk A Petrosyan
- Northport Veterans Affairs Medical Center, Northport, New York 11768
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794
| | - Valentina Alessi
- Northport Veterans Affairs Medical Center, Northport, New York 11768
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794
| | - Kristin Lasek
- Northport Veterans Affairs Medical Center, Northport, New York 11768
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794
| | - Sricharan Gumudavelli
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794
| | - Robert Muffaletto
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794
| | - Li Liang
- Northport Veterans Affairs Medical Center, Northport, New York 11768
| | - William F Collins
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794
| | - Joel Levine
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794
| | - Victor L Arvanian
- Northport Veterans Affairs Medical Center, Northport, New York 11768
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794
| |
Collapse
|
2
|
Collongues N, Becker G, Jolivel V, Ayme-Dietrich E, de Seze J, Binamé F, Patte-Mensah C, Monassier L, Mensah-Nyagan AG. A Narrative Review on Axonal Neuroprotection in Multiple Sclerosis. Neurol Ther 2022; 11:981-1042. [PMID: 35610531 PMCID: PMC9338208 DOI: 10.1007/s40120-022-00363-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/03/2022] [Indexed: 01/08/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) resulting in demyelination and neurodegeneration. The therapeutic strategy is now largely based on reducing inflammation with immunosuppressive drugs. Unfortunately, when disease progression is observed, no drug offers neuroprotection apart from its anti-inflammatory effect. In this review, we explore current knowledge on the assessment of neurodegeneration in MS and look at putative targets that might prove useful in protecting the axon from degeneration. Among them, Bruton's tyrosine kinase inhibitors, anti-apoptotic and antioxidant agents, sex hormones, statins, channel blockers, growth factors, and molecules preventing glutamate excitotoxicity have already been studied. Some of them have reached phase III clinical trials and carry a great message of hope for our patients with MS.
Collapse
Affiliation(s)
- Nicolas Collongues
- Department of Neurology, University Hospital of Strasbourg, Strasbourg, France. .,Center for Clinical Investigation, INSERM U1434, Strasbourg, France. .,Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France. .,University Department of Pharmacology, Addictology, Toxicology and Therapeutic, Strasbourg University, Strasbourg, France.
| | - Guillaume Becker
- University Department of Pharmacology, Addictology, Toxicology and Therapeutic, Strasbourg University, Strasbourg, France.,NeuroCardiovascular Pharmacology and Toxicology Laboratory, UR7296, University Hospital of Strasbourg, Strasbourg, France
| | - Valérie Jolivel
- Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
| | - Estelle Ayme-Dietrich
- University Department of Pharmacology, Addictology, Toxicology and Therapeutic, Strasbourg University, Strasbourg, France.,NeuroCardiovascular Pharmacology and Toxicology Laboratory, UR7296, University Hospital of Strasbourg, Strasbourg, France
| | - Jérôme de Seze
- Department of Neurology, University Hospital of Strasbourg, Strasbourg, France.,Center for Clinical Investigation, INSERM U1434, Strasbourg, France.,Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
| | - Fabien Binamé
- Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
| | - Christine Patte-Mensah
- Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
| | - Laurent Monassier
- University Department of Pharmacology, Addictology, Toxicology and Therapeutic, Strasbourg University, Strasbourg, France.,NeuroCardiovascular Pharmacology and Toxicology Laboratory, UR7296, University Hospital of Strasbourg, Strasbourg, France
| | - Ayikoé Guy Mensah-Nyagan
- Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
| |
Collapse
|
3
|
Alsaloum M, Waxman SG. iPSCs and DRGs: stepping stones to new pain therapies. Trends Mol Med 2022; 28:110-122. [PMID: 34933815 PMCID: PMC8810720 DOI: 10.1016/j.molmed.2021.11.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 02/03/2023]
Abstract
There is a pressing need for more effective nonaddictive treatment options for pain. Pain signals are transmitted from the periphery into the spinal cord via dorsal root ganglion (DRG) neurons, whose excitability is driven by voltage-gated sodium (NaV) channels. Three NaV channels (NaV1.7, NaV1.8, and NaV1.9), preferentially expressed in DRG neurons, play important roles in pain signaling in humans. Blockade of these channels may provide a novel approach to the treatment of pain, but clinical translation of preclinical results has been challenging, in part due to differences between rodent and human DRG neurons. Human DRG neurons and iPSC-derived sensory neurons (iPSC-SNs) provide new preclinical platforms that may facilitate the development of novel pain therapeutics.
Collapse
Affiliation(s)
- Matthew Alsaloum
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA; Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA; Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT, USA; Yale Medical Scientist Training Program, Yale School of Medicine, New Haven, CT, USA; Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA; Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA; Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT, USA.
| |
Collapse
|
4
|
Sardella-Silva G, Mietto BS, Ribeiro-Resende VT. Four Seasons for Schwann Cell Biology, Revisiting Key Periods: Development, Homeostasis, Repair, and Aging. Biomolecules 2021; 11:1887. [PMID: 34944531 PMCID: PMC8699407 DOI: 10.3390/biom11121887] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 01/28/2023] Open
Abstract
Like the seasons of the year, all natural things happen in stages, going through adaptations when challenged, and Schwann cells are a great example of that. During maturation, these cells regulate several steps in peripheral nervous system development. The Spring of the cell means the rise and bloom through organized stages defined by time-dependent regulation of factors and microenvironmental influences. Once matured, the Summer of the cell begins: a high energy stage focused on maintaining adult homeostasis. The Schwann cell provides many neuron-glia communications resulting in the maintenance of synapses. In the peripheral nervous system, Schwann cells are pivotal after injuries, balancing degeneration and regeneration, similarly to when Autumn comes. Their ability to acquire a repair phenotype brings the potential to reconnect axons to targets and regain function. Finally, Schwann cells age, not only by growing old, but also by imposed environmental cues, like loss of function induced by pathologies. The Winter of the cell presents as reduced activity, especially regarding their role in repair; this reflects on the regenerative potential of older/less healthy individuals. This review gathers essential information about Schwann cells in different stages, summarizing important participation of this intriguing cell in many functions throughout its lifetime.
Collapse
Affiliation(s)
- Gabriela Sardella-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
- Núcleo Multidisciplinar de Pesquisa em Biologia (Numpex-Bio), Campus de Duque de Caxias Geraldo Guerra Cidade, Universidade Federal do Rio de Janeiro, Duque de Caxias 25255-030, RJ, Brazil
| | - Bruno Siqueira Mietto
- Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil;
| | - Victor Túlio Ribeiro-Resende
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
- Núcleo Multidisciplinar de Pesquisa em Biologia (Numpex-Bio), Campus de Duque de Caxias Geraldo Guerra Cidade, Universidade Federal do Rio de Janeiro, Duque de Caxias 25255-030, RJ, Brazil
| |
Collapse
|
5
|
Tan C, Yang C, Liu H, Tang C, Huang S. Effect of Schwann cell transplantation combined with electroacupuncture on axonal regeneration and remyelination in rats with spinal cord injury. Anat Rec (Hoboken) 2021; 304:2506-2520. [PMID: 34319000 DOI: 10.1002/ar.24721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/26/2021] [Accepted: 06/16/2021] [Indexed: 11/08/2022]
Abstract
Axonal impairment and demyelination after compressed spinal cord injury lead to serious neurological dysfunction. Increasing studies have suggested that Schwann cells (SCs) transplantation is a reliable, effective, and promising method for treating spinal cord injury. However, single SCs transplantation is insufficient to promote the full recovery of neurological function. Additional approaches are required to support SCs transplantation as a treatment for spinal cord injury. In the study, we investigated whether the combination of electroacupuncture (EA) and SCs transplantation was a reliable intervention for spinal cord injury. We found that rats in the combination group had significantly higher functional locomotor scores than those received single treatment. By immunostaining, we found EA can not only improve survival and proliferation of transplanted SCs but also inhibit SC apoptosis and block the formation of an astrocytic scar. Additionally, EA promoted regenerated axons extending "bullet-shaped" growth cones into the lesion. Remarkably, EA can modify astrogliosis to promote axonal regeneration following SCs transplantation through inducing extension of astrocytic processes in the SCs graft interface. More importantly, the combination of SCs engraftment and EA can enhance corticospinal-tract axonal regeneration and remyelination after spinal cord injury through up-regulating neuregulin 1 type III in SCs and its downstream signaling mediators. Thus, it is concluded that SCs effectively promote axonal recovery after spinal cord injury when combined with EA stimulation. The experimental results have reinforced the theoretical basis of EA for its clinical efficacy in patients with spinal cord injury and merited further investigation for potential clinical application.
Collapse
Affiliation(s)
- Chengfang Tan
- Traditional Chinese Medicine College, Chongqing Medical University, Chongqing, China
| | - Cheng Yang
- Traditional Chinese Medicine College, Chongqing Medical University, Chongqing, China
| | - Hui Liu
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Chenglin Tang
- Traditional Chinese Medicine College, Chongqing Medical University, Chongqing, China
| | - Siqin Huang
- Traditional Chinese Medicine College, Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Ion Channels as New Attractive Targets to Improve Re-Myelination Processes in the Brain. Int J Mol Sci 2021; 22:ijms22147277. [PMID: 34298893 PMCID: PMC8305962 DOI: 10.3390/ijms22147277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 12/20/2022] Open
Abstract
Multiple sclerosis (MS) is the most demyelinating disease of the central nervous system (CNS) characterized by neuroinflammation. Oligodendrocyte progenitor cells (OPCs) are cycling cells in the developing and adult CNS that, under demyelinating conditions, migrate to the site of lesions and differentiate into mature oligodendrocytes to remyelinate damaged axons. However, this process fails during disease chronicization due to impaired OPC differentiation. Moreover, OPCs are crucial players in neuro-glial communication as they receive synaptic inputs from neurons and express ion channels and neurotransmitter/neuromodulator receptors that control their maturation. Ion channels are recognized as attractive therapeutic targets, and indeed ligand-gated and voltage-gated channels can both be found among the top five pharmaceutical target groups of FDA-approved agents. Their modulation ameliorates some of the symptoms of MS and improves the outcome of related animal models. However, the exact mechanism of action of ion-channel targeting compounds is often still unclear due to the wide expression of these channels on neurons, glia, and infiltrating immune cells. The present review summarizes recent findings in the field to get further insights into physio-pathophysiological processes and possible therapeutic mechanisms of drug actions.
Collapse
|
7
|
Chen CZ, Neumann B, Förster S, Franklin RJM. Schwann cell remyelination of the central nervous system: why does it happen and what are the benefits? Open Biol 2021; 11:200352. [PMID: 33497588 PMCID: PMC7881176 DOI: 10.1098/rsob.200352] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/07/2021] [Indexed: 12/18/2022] Open
Abstract
Myelin sheaths, by supporting axonal integrity and allowing rapid saltatory impulse conduction, are of fundamental importance for neuronal function. In response to demyelinating injuries in the central nervous system (CNS), oligodendrocyte progenitor cells (OPCs) migrate to the lesion area, proliferate and differentiate into new oligodendrocytes that make new myelin sheaths. This process is termed remyelination. Under specific conditions, demyelinated axons in the CNS can also be remyelinated by Schwann cells (SCs), the myelinating cell of the peripheral nervous system. OPCs can be a major source of these CNS-resident SCs-a surprising finding given the distinct embryonic origins, and physiological compartmentalization of the peripheral and central nervous system. Although the mechanisms and cues governing OPC-to-SC differentiation remain largely undiscovered, it might nevertheless be an attractive target for promoting endogenous remyelination. This article will (i) review current knowledge on the origins of SCs in the CNS, with a particular focus on OPC to SC differentiation, (ii) discuss the necessary criteria for SC myelination in the CNS and (iii) highlight the potential of using SCs for myelin regeneration in the CNS.
Collapse
Affiliation(s)
| | | | | | - Robin J. M. Franklin
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0AH, UK
| |
Collapse
|
8
|
Cellular senescence and failure of myelin repair in multiple sclerosis. Mech Ageing Dev 2020; 192:111366. [DOI: 10.1016/j.mad.2020.111366] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 08/10/2020] [Accepted: 09/23/2020] [Indexed: 01/10/2023]
|
9
|
Hart CG, Karimi-Abdolrezaee S. Bone morphogenetic proteins: New insights into their roles and mechanisms in CNS development, pathology and repair. Exp Neurol 2020; 334:113455. [PMID: 32877654 DOI: 10.1016/j.expneurol.2020.113455] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/18/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023]
Abstract
Bone morphogenetic proteins (BMPs) are a highly conserved and diverse family of proteins that play essential roles in various stages of development including the formation and patterning of the central nervous system (CNS). Bioavailability and function of BMPs are regulated by input from a plethora of transcription factors and signaling pathways. Intriguingly, recent literature has uncovered novel roles for BMPs in regulating homeostatic and pathological responses in the adult CNS. Basal levels of BMP ligands and receptors are widely expressed in the adult brain and spinal cord with differential expression patterns across CNS regions, cell types and subcellular locations. Recent evidence indicates that several BMP isoforms are transiently or chronically upregulated in the aged or pathological CNS. Genetic knockout and pharmacological studies have elucidated that BMPs regulate several aspects of CNS injury and repair including cell survival and differentiation, reactive astrogliosis and glial scar formation, axon regeneration, and myelin preservation and repair. Several BMP isoforms can be upregulated in the injured or diseased CNS simultaneously yet exert complementary or opposing effects on the endogenous cell responses after injury. Emerging studies also show that dysregulation of BMPs is associated with various CNS pathologies. Interestingly, modulation of BMPs can lead to beneficial or detrimental effects on CNS injury and repair mechanisms in a ligand, temporally or spatially specific manner, which reflect the complexity of BMP signaling. Given the significance of BMPs in neurodevelopment, a better understanding of their role in the context of injury may provide new therapeutic targets for the pathologic CNS. This review will provide a timely overview on the foundation and recent advancements in knowledge regarding the role and mechanisms of BMP signaling in the developing and adult CNS, and their implications in pathological responses and repair processes after injury or diseases.
Collapse
Affiliation(s)
- Christopher G Hart
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
10
|
Hopf A, Schaefer DJ, Kalbermatten DF, Guzman R, Madduri S. Schwann Cell-Like Cells: Origin and Usability for Repair and Regeneration of the Peripheral and Central Nervous System. Cells 2020; 9:E1990. [PMID: 32872454 PMCID: PMC7565191 DOI: 10.3390/cells9091990] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/06/2020] [Accepted: 08/22/2020] [Indexed: 12/14/2022] Open
Abstract
Functional recovery after neurotmesis, a complete transection of the nerve fiber, is often poor and requires a surgical procedure. Especially for longer gaps (>3 mm), end-to-end suturing of the proximal to the distal part is not possible, thus requiring nerve graft implantation. Artificial nerve grafts, i.e., hollow fibers, hydrogels, chitosan, collagen conduits, and decellularized scaffolds hold promise provided that these structures are populated with Schwann cells (SC) that are widely accepted to promote peripheral and spinal cord regeneration. However, these cells must be collected from the healthy peripheral nerves, resulting in significant time delay for treatment and undesired morbidities for the donors. Therefore, there is a clear need to explore the viable source of cells with a regenerative potential similar to SC. For this, we analyzed the literature for the generation of Schwann cell-like cells (SCLC) from stem cells of different origins (i.e., mesenchymal stem cells, pluripotent stem cells, and genetically programmed somatic cells) and compared their biological performance to promote axonal regeneration. Thus, the present review accounts for current developments in the field of SCLC differentiation, their applications in peripheral and central nervous system injury, and provides insights for future strategies.
Collapse
Affiliation(s)
- Alois Hopf
- Department of Biomedical Engineering, University of Basel, Gewerbestrasse 14, 4123 Allschwil, Switzerland; (A.H.); (D.F.K.)
- Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (D.J.S.); (R.G.)
| | - Dirk J. Schaefer
- Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (D.J.S.); (R.G.)
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, University of Basel, Spitalstrasse 21, 4031 Basel, Switzerland
| | - Daniel F. Kalbermatten
- Department of Biomedical Engineering, University of Basel, Gewerbestrasse 14, 4123 Allschwil, Switzerland; (A.H.); (D.F.K.)
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, University of Basel, Spitalstrasse 21, 4031 Basel, Switzerland
| | - Raphael Guzman
- Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (D.J.S.); (R.G.)
- Department of Neurosurgery, University Hospital Basel, Spitalstrasse 21, 4031 Basel, Switzerland
| | - Srinivas Madduri
- Department of Biomedical Engineering, University of Basel, Gewerbestrasse 14, 4123 Allschwil, Switzerland; (A.H.); (D.F.K.)
- Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (D.J.S.); (R.G.)
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, University of Basel, Spitalstrasse 21, 4031 Basel, Switzerland
| |
Collapse
|
11
|
Garcia-Diaz B, Baron-Van Evercooren A. Schwann cells: Rescuers of central demyelination. Glia 2020; 68:1945-1956. [PMID: 32027054 DOI: 10.1002/glia.23788] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/15/2020] [Accepted: 01/23/2020] [Indexed: 12/31/2022]
Abstract
The presence of peripheral myelinating cells in the central nervous system (CNS) has gained the neurobiologist attention over the years. Despite the confirmed presence of Schwann cells in the CNS in pathological conditions, and the long list of their beneficial effects on central remyelination, the cues that impede or allow Schwann cells to successfully conquer and remyelinate central axons remain partially undiscovered. A better knowledge of these factors stands out as crucial to foresee a rational therapeutic approach for the use of Schwann cells in CNS repair. Here, we review the diverse origins of Schwann cells into the CNS, both peripheral and central, as well as the CNS components that inhibit Schwann survival and migration into the central parenchyma. Namely, we analyze the astrocyte- and the myelin-derived components that restrict Schwann cells into the CNS. Finally, we highlight the unveiled mode of invasion of these peripheral cells through the central environment, using blood vessels as scaffolds to pave their ways toward demyelinated lesions. In short, this review presents the so far uncovered knowledge of this complex CNS-peripheral nervous system (PNS) relationship.
Collapse
Affiliation(s)
- Beatriz Garcia-Diaz
- Unidad de Gestión Clínica de Neurociencias, IBIMA, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain.,Institut du Cerveau et de la Moelle Epinière-Groupe Hospitalier Pitié-Salpêtrière, INSERM, U1127, CNRS, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Paris, France
| | - Anne Baron-Van Evercooren
- Institut du Cerveau et de la Moelle Epinière-Groupe Hospitalier Pitié-Salpêtrière, INSERM, U1127, CNRS, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Paris, France
| |
Collapse
|
12
|
Duchesne A, Vaiman A, Frah M, Floriot S, Legoueix-Rodriguez S, Desmazières A, Fritz S, Beauvallet C, Albaric O, Venot E, Bertaud M, Saintilan R, Guatteo R, Esquerré D, Branchu J, Fleming A, Brice A, Darios F, Vilotte JL, Stevanin G, Boichard D, El Hachimi KH. Progressive ataxia of Charolais cattle highlights a role of KIF1C in sustainable myelination. PLoS Genet 2018; 14:e1007550. [PMID: 30067756 PMCID: PMC6089448 DOI: 10.1371/journal.pgen.1007550] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 08/13/2018] [Accepted: 07/04/2018] [Indexed: 12/11/2022] Open
Abstract
Hereditary spastic paraplegias (HSPs) are clinically and genetically heterogeneous human neurodegenerative diseases. Amongst the identified genetic causes, mutations in genes encoding motor proteins such as kinesins have been involved in various HSP clinical isoforms. Mutations in KIF1C are responsible for autosomal recessive spastic paraplegia type 58 (SPG58) and spastic ataxia 2 (SPAX2). Bovines also develop neurodegenerative diseases, some of them having a genetic aetiology. Bovine progressive ataxia was first described in the Charolais breed in the early 1970s in England and further cases in this breed were subsequently reported worldwide. We can now report that progressive ataxia of Charolais cattle results from a homozygous single nucleotide polymorphism in the coding region of the KIF1C gene. In this study, we show that the mutation at the heterozygous state is associated with a better score for muscular development, explaining its balancing selection for several decades, and the resulting high frequency (13%) of the allele in the French Charolais breed. We demonstrate that the KIF1C bovine mutation leads to a functional knock-out, therefore mimicking mutations in humans affected by SPG58/SPAX2. The functional consequences of KIF1C loss of function in cattle were also histologically reevaluated. We showed by an immunochemistry approach that demyelinating plaques were due to altered oligodendrocyte membrane protrusion, and we highlight an abnormal accumulation of actin in the core of demyelinating plaques, which is normally concentrated at the leading edge of oligodendrocytes during axon wrapping. We also observed that the lesions were associated with abnormal extension of paranodal sections. Moreover, this model highlights the role of KIF1C protein in preserving the structural integrity and function of myelin, since the clinical signs and lesions arise in young-adult Charolais cattle. Finally, this model provides useful information for SPG58/SPAX2 disease and other demyelinating lesions. Hereditary spastic paraplegias (HSPs) are human neurodegenerative diseases mainly associated with lower extremity weakness and spasticity. Motor-sensory axons degeneration, implying heterogeneous cellular and molecular mechanisms and various genetic causes, is the neuropathological hallmark of this disease. Recently, mutations in KIF1C were associated with human spastic paraplegia type 58 (SPG58) and spastic ataxia 2 (SPAX2), where the radiological brain examination showed demyelination features. We report herein that progressive ataxia of Charolais cattle, a neurodegenerative disease with autosomal recessive inheritance, is caused by a substitution in the KIF1C gene, which leads to a functional knock-out. Interestingly this mutation is associated, in a heterozygous state, with a better muscular development, and thus a zootechnic advantage. Identification of the mutation will therefore be helpful to eradicate this disease. Further study of the lesions in ataxic bovine central nervous system highlighted a peculiar link to oligodendrocytes which were hypertrophied and harbored many membrane protrusions. The demyelinating plaques were enriched by these membranes and actin accumulation indicating close relationship between KIF1C, actin transport and axonal wrapping by oligodendrocyte tongues. Since kif1c knock-out mouse do not display any neurological symptoms, progressive ataxia of Charolais cattle thus provides a useful model for studying SPG58/SPAX2 and other demyelinating diseases.
Collapse
Affiliation(s)
- Amandine Duchesne
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
- * E-mail: (AD); (KHEH)
| | - Anne Vaiman
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Magali Frah
- Sorbonne Université UMR S 1127, Paris, France
- Inserm, U1127, Paris, France
- CNRS, UMR 7225, Paris, France
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Sandrine Floriot
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Sabrina Legoueix-Rodriguez
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
- TWB, Université de Toulouse, INRA, INSA, CNRS, Ramonville-Saint-Agne, France
| | - Anne Desmazières
- Sorbonne Université UMR S 1127, Paris, France
- Inserm, U1127, Paris, France
- CNRS, UMR 7225, Paris, France
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Sébastien Fritz
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
- Allice, Paris, France
| | | | - Olivier Albaric
- LHA, Oniris, Université Nantes Angers Le Mans, Nantes, France
| | - Eric Venot
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Maud Bertaud
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Romain Saintilan
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
- Allice, Paris, France
| | | | - Diane Esquerré
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | - Julien Branchu
- Sorbonne Université UMR S 1127, Paris, France
- Inserm, U1127, Paris, France
- CNRS, UMR 7225, Paris, France
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Anaïs Fleming
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Alexis Brice
- Sorbonne Université UMR S 1127, Paris, France
- Inserm, U1127, Paris, France
- CNRS, UMR 7225, Paris, France
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
- Centre de référence de Neurogénétique, Fédération de génétique, APHP, GHU Pitié-Salpêtrière, Paris, France
| | - Frédéric Darios
- Sorbonne Université UMR S 1127, Paris, France
- Inserm, U1127, Paris, France
- CNRS, UMR 7225, Paris, France
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Jean-Luc Vilotte
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Giovanni Stevanin
- Sorbonne Université UMR S 1127, Paris, France
- Inserm, U1127, Paris, France
- CNRS, UMR 7225, Paris, France
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
- Centre de référence de Neurogénétique, Fédération de génétique, APHP, GHU Pitié-Salpêtrière, Paris, France
- EPHE, PSL Research University, Laboratoire de Neurogénétique, Paris, France
| | - Didier Boichard
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Khalid Hamid El Hachimi
- Sorbonne Université UMR S 1127, Paris, France
- Inserm, U1127, Paris, France
- CNRS, UMR 7225, Paris, France
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
- EPHE, PSL Research University, Laboratoire de Neurogénétique, Paris, France
- * E-mail: (AD); (KHEH)
| |
Collapse
|
13
|
Sun J, Zhou H, Bai F, Zhang Z, Ren Q. Remyelination: A Potential Therapeutic Strategy for Alzheimer's Disease? J Alzheimers Dis 2018; 58:597-612. [PMID: 28453483 DOI: 10.3233/jad-170036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Myelin is a lipid-rich multilamellar membrane that wraps around long segments of neuronal axons and it increases the conduction of action potentials, transports the necessary trophic support to the neuronal axons, and reduces the energy consumed by the neuronal axons. Together with axons, myelin is a prerequisite for the higher functions of the central nervous system and complex forms of network integration. Myelin impairments have been suggested to lead to neuronal dysfunction and cognitive decline. Accumulating evidence, including brain imaging and postmortem and genetic association studies, has implicated myelin impairments in Alzheimer's disease (AD). Increasing data link myelin impairments with amyloid-β (Aβ) plaques and tau hyperphosphorylation, which are both present in patients with AD. Moreover, aging and apolipoprotein E (ApoE) may be involved in the myelin impairments observed in patients with AD. Decreased neuronal activity, increased Aβ levels, and inflammation further damage myelin in patients with AD. Furthermore, treatments that promote myelination contribute to the recovery of neuronal function and improve cognition. Therefore, strategies targeting myelin impairment may provide therapeutic opportunities for patients with AD.
Collapse
|
14
|
Myelin-Associated Glycoprotein Inhibits Schwann Cell Migration and Induces Their Death. J Neurosci 2017; 37:5885-5899. [PMID: 28522736 DOI: 10.1523/jneurosci.1822-16.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 04/24/2017] [Accepted: 04/28/2017] [Indexed: 11/21/2022] Open
Abstract
Remyelination of CNS axons by Schwann cells (SCs) is not efficient, in part due to the poor migration of SCs into the adult CNS. Although it is known that migrating SCs avoid white matter tracts, the molecular mechanisms underlying this exclusion have never been elucidated. We now demonstrate that myelin-associated glycoprotein (MAG), a well known inhibitor of neurite outgrowth, inhibits rat SC migration and induces their death via γ-secretase-dependent regulated intramembrane proteolysis of the p75 neurotrophin receptor (also known as p75 cleavage). Blocking p75 cleavage using inhibitor X (Inh X), a compound that inhibits γ-secretase activity before exposing to MAG or CNS myelin improves SC migration and survival in vitro Furthermore, mouse SCs pretreated with Inh X migrate extensively in the demyelinated mouse spinal cord and remyelinate axons. These results suggest a novel role for MAG/myelin in poor SC-myelin interaction and identify p75 cleavage as a mechanism that can be therapeutically targeted to enhance SC-mediated axon remyelination in the adult CNS.SIGNIFICANCE STATEMENT Numerous studies have used Schwann cells, the myelin-making cells of the peripheral nervous system to remyelinate adult CNS axons. Indeed, these transplanted cells successfully remyelinate axons, but unfortunately they do not migrate far and so remyelinate only a few axons in the vicinity of the transplant site. It is believed that if Schwann cells could be induced to migrate further and survive better, they may represent a valid therapy for remyelination. We show that myelin-associated glycoprotein or CNS myelin, in general, inhibit rodent Schwann cell migration and induce their death via cleavage of the neurotrophin receptor p75. Blockade of p75 cleavage using a specific inhibitor significantly improves migration and survival of the transplanted Schwann cells in vivo.
Collapse
|
15
|
Hamada MS, Popovic MA, Kole MHP. Loss of Saltation and Presynaptic Action Potential Failure in Demyelinated Axons. Front Cell Neurosci 2017; 11:45. [PMID: 28289377 PMCID: PMC5326753 DOI: 10.3389/fncel.2017.00045] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/09/2017] [Indexed: 01/09/2023] Open
Abstract
In cortical pyramidal neurons the presynaptic terminals controlling transmitter release are located along unmyelinated axon collaterals, far from the original action potential (AP) initiation site, the axon initial segment (AIS). Once initiated, APs will need to reliably propagate over long distances and regions of geometrical inhomogeneity like branch points (BPs) to rapidly depolarize the presynaptic terminals and confer temporally precise synaptic transmission. While axon pathologies such as demyelinating diseases are well established to impede the fidelity of AP propagation along internodes, to which extent myelin loss affects propagation along BPs and axon collaterals is not well understood. Here, using the cuprizone demyelination model, we performed optical voltage-sensitive dye (VSD) imaging from control and demyelinated layer 5 pyramidal neuron axons. In the main axon, we find that myelin loss switches the modality of AP propagation from rapid saltation towards a slow continuous wave. The duration of single AP waveforms at BPs or nodes was, however, only slightly briefer. In contrast, by using two-photon microscopy-guided loose-seal patch recordings from axon collaterals we revealed a presynaptic AP broadening in combination with a reduced velocity and frequency-dependent failure. Finally, internodal myelin loss was also associated with de novo sprouting of axon collaterals starting from the primary (demyelinated) axon. Thus, the loss of oligodendrocytes and myelin sheaths bears functional consequences beyond the main axon, impeding the temporal fidelity of presynaptic APs and affecting the functional and structural organization of synaptic connectivity within the neocortex.
Collapse
Affiliation(s)
- Mustafa S Hamada
- Department of Axonal Signaling, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and SciencesAmsterdam, Netherlands; Cell Biology, Faculty of Science, Utrecht UniversityUtrecht, Netherlands
| | - Marko A Popovic
- Department of Axonal Signaling, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences Amsterdam, Netherlands
| | - Maarten H P Kole
- Department of Axonal Signaling, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and SciencesAmsterdam, Netherlands; Cell Biology, Faculty of Science, Utrecht UniversityUtrecht, Netherlands
| |
Collapse
|
16
|
Adult skin-derived precursor Schwann cells exhibit superior myelination and regeneration supportive properties compared to chronically denervated nerve-derived Schwann cells. Exp Neurol 2016; 278:127-42. [DOI: 10.1016/j.expneurol.2016.02.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 02/01/2016] [Accepted: 02/04/2016] [Indexed: 01/09/2023]
|
17
|
Bartus K, Galino J, James ND, Hernandez-Miranda LR, Dawes JM, Fricker FR, Garratt AN, McMahon SB, Ramer MS, Birchmeier C, Bennett DLH, Bradbury EJ. Neuregulin-1 controls an endogenous repair mechanism after spinal cord injury. Brain 2016; 139:1394-416. [PMID: 26993800 PMCID: PMC5477508 DOI: 10.1093/brain/aww039] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 01/24/2016] [Indexed: 12/16/2022] Open
Abstract
Spontaneous remyelination after spinal cord injury is mediated largely by Schwann cells
of unknown origin. Bartus et al. show that neuregulin-1 promotes
differentiation of spinal cord-resident precursor cells into PNS-like Schwann cells, which
remyelinate central axons and promote functional recovery. Targeting the neuregulin-1
system could enhance endogenous regenerative processes. Following traumatic spinal cord injury, acute demyelination of spinal axons is followed
by a period of spontaneous remyelination. However, this endogenous repair response is
suboptimal and may account for the persistently compromised function of surviving axons.
Spontaneous remyelination is largely mediated by Schwann cells, where demyelinated central
axons, particularly in the dorsal columns, become associated with peripheral myelin. The
molecular control, functional role and origin of these central remyelinating Schwann cells
is currently unknown. The growth factor neuregulin-1 (Nrg1, encoded by
NRG1) is a key signalling factor controlling myelination in the
peripheral nervous system, via signalling through ErbB tyrosine kinase receptors. Here we
examined whether Nrg1 is required for Schwann cell-mediated remyelination of central
dorsal column axons and whether Nrg1 ablation influences the degree of spontaneous
remyelination and functional recovery following spinal cord injury. In contused adult mice
with conditional ablation of Nrg1, we found an absence of Schwann cells within the spinal
cord and profound demyelination of dorsal column axons. There was no compensatory increase
in oligodendrocyte remyelination. Removal of peripheral input to the spinal cord and
proliferation studies demonstrated that the majority of remyelinating Schwann cells
originated within the injured spinal cord. We also examined the role of specific Nrg1
isoforms, using mutant mice in which only the immunoglobulin-containing isoforms of Nrg1
(types I and II) were conditionally ablated, leaving the type III Nrg1 intact. We found
that the immunoglobulin Nrg1 isoforms were dispensable for Schwann cell-mediated
remyelination of central axons after spinal cord injury. When functional effects were
examined, both global Nrg1 and immunoglobulin-specific Nrg1 mutants demonstrated reduced
spontaneous locomotor recovery compared to injured controls, although global Nrg1 mutants
were more impaired in tests requiring co-ordination, balance and proprioception.
Furthermore, electrophysiological assessments revealed severely impaired axonal conduction
in the dorsal columns of global Nrg1 mutants (where Schwann cell-mediated remyelination is
prevented), but not immunoglobulin-specific mutants (where Schwann cell-mediated
remyelination remains intact), providing robust evidence that the profound demyelinating
phenotype observed in the dorsal columns of Nrg1 mutant mice is related to conduction
failure. Our data provide novel mechanistic insight into endogenous regenerative processes
after spinal cord injury, demonstrating that Nrg1 signalling regulates central axon
remyelination and functional repair and drives the trans-differentiation of central
precursor cells into peripheral nervous system-like Schwann cells that remyelinate spinal
axons after injury. Manipulation of the Nrg1 system could therefore be exploited to
enhance spontaneous repair after spinal cord injury and other central nervous system
disorders with a demyelinating pathology.
Collapse
Affiliation(s)
- Katalin Bartus
- The Wolfson Centre for Age-Related Diseases, Regeneration Group, King's College London, Guy's Campus, London Bridge, London, UK
| | - Jorge Galino
- Nuffield Department of Clinical Neurosciences, West Wing, John Radcliffe Hospital, Oxford, UK
| | - Nicholas D James
- The Wolfson Centre for Age-Related Diseases, Regeneration Group, King's College London, Guy's Campus, London Bridge, London, UK
| | | | - John M Dawes
- Nuffield Department of Clinical Neurosciences, West Wing, John Radcliffe Hospital, Oxford, UK
| | - Florence R Fricker
- Nuffield Department of Clinical Neurosciences, West Wing, John Radcliffe Hospital, Oxford, UK
| | - Alistair N Garratt
- Max Delbrück Center for Molecular Medicine, Berlin, Germany Charité Universitätsmedizin Berlin, Charitéplatz, Berlin, Germany
| | - Stephen B McMahon
- The Wolfson Centre for Age-Related Diseases, Regeneration Group, King's College London, Guy's Campus, London Bridge, London, UK
| | - Matt S Ramer
- International Collaboration on Repair Discoveries, The University of British Columbia, Vancouver, Canada
| | | | - David L H Bennett
- Nuffield Department of Clinical Neurosciences, West Wing, John Radcliffe Hospital, Oxford, UK
| | - Elizabeth J Bradbury
- The Wolfson Centre for Age-Related Diseases, Regeneration Group, King's College London, Guy's Campus, London Bridge, London, UK
| |
Collapse
|
18
|
Vidal M, Maniglier M, Deboux C, Bachelin C, Zujovic V, Baron-Van Evercooren A. Adult DRG Stem/Progenitor Cells Generate Pericytes in the Presence of Central Nervous System (CNS) Developmental Cues, and Schwann Cells in Response to CNS Demyelination. Stem Cells 2015; 33:2011-24. [DOI: 10.1002/stem.1997] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 01/30/2015] [Accepted: 02/10/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Marie Vidal
- Inserm, U 1127; F-75013 Paris France
- CNRS, UMR 7225; F-75013 Paris France
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127; F-75013 Paris France
- Institut du Cerveau et de la Moelle épinière, ICM; F-75013 Paris France
| | - Madlyne Maniglier
- Inserm, U 1127; F-75013 Paris France
- CNRS, UMR 7225; F-75013 Paris France
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127; F-75013 Paris France
- Institut du Cerveau et de la Moelle épinière, ICM; F-75013 Paris France
| | - Cyrille Deboux
- Inserm, U 1127; F-75013 Paris France
- CNRS, UMR 7225; F-75013 Paris France
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127; F-75013 Paris France
- Institut du Cerveau et de la Moelle épinière, ICM; F-75013 Paris France
| | - Corinne Bachelin
- Inserm, U 1127; F-75013 Paris France
- CNRS, UMR 7225; F-75013 Paris France
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127; F-75013 Paris France
- Institut du Cerveau et de la Moelle épinière, ICM; F-75013 Paris France
| | - Violetta Zujovic
- Inserm, U 1127; F-75013 Paris France
- CNRS, UMR 7225; F-75013 Paris France
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127; F-75013 Paris France
- Institut du Cerveau et de la Moelle épinière, ICM; F-75013 Paris France
| | - Anne Baron-Van Evercooren
- Inserm, U 1127; F-75013 Paris France
- CNRS, UMR 7225; F-75013 Paris France
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127; F-75013 Paris France
- Institut du Cerveau et de la Moelle épinière, ICM; F-75013 Paris France
| |
Collapse
|
19
|
Combination of electroacupuncture and grafted mesenchymal stem cells overexpressing TrkC improves remyelination and function in demyelinated spinal cord of rats. Sci Rep 2015; 5:9133. [PMID: 25779025 PMCID: PMC5390924 DOI: 10.1038/srep09133] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 02/16/2015] [Indexed: 12/13/2022] Open
Abstract
This study attempted to graft neurotrophin-3 (NT-3) receptor (TrkC) gene modified mesenchymal stem cells (TrkC-MSCs) into the demyelinated spinal cord and to investigate whether electroacupuncture (EA) treatment could promote NT-3 secretion in the demyelinated spinal cord as well as further enhance grafted TrkC-MSCs to differentiate into oligodendrocytes, remyelination and functional recovery. Ethidium bromide (EB) was microinjected into the spinal cord of rats at T10 to establish a demyelinated model. Six groups of animals were prepared for the experiment: the sham, PBS, MSCs, MSCs+EA, TrkC-MSCs and TrkC-MSCs+EA groups. The results showed that TrkC-MSCs graft combined with EA treatment (TrkC-MSCs+EA group) significantly increased the number of OPCs and oligodendrocyte-like cells differentiated from MSCs. Immunoelectron microscopy showed that the oligodendrocyte-like cells differentiated from TrkC-MSCs formed myelin sheaths. Immunofluorescence histochemistry and Western blot analysis indicated that TrkC-MSCs+EA treatment could promote the myelin basic protein (MBP) expression and Kv1.2 arrangement trending towards the normal level. Furthermore, behavioural test and cortical motor evoked potentials detection demonstrated a significant functional recovery in the TrkC-MSCs+EA group. In conclusion, our results suggest that EA treatment can increase NT-3 expression, promote oligodendrocyte-like cell differentiation from TrkC-MSCs, remyelination and functional improvement of demyelinated spinal cord.
Collapse
|
20
|
Papastefanaki F, Matsas R. From demyelination to remyelination: the road toward therapies for spinal cord injury. Glia 2015; 63:1101-25. [PMID: 25731941 DOI: 10.1002/glia.22809] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 12/14/2022]
Abstract
Myelin integrity is crucial for central nervous system (CNS) physiology while its preservation and regeneration after spinal cord injury (SCI) is key to functional restoration. Disturbance of nodal organization acutely after SCI exposes the axon and triggers conduction block in the absence of overt demyelination. Oligodendrocyte (OL) loss and myelin degradation follow as a consequence of secondary damage. Here, we provide an overview of the major biological events and underlying mechanisms leading to OL death and demyelination and discuss strategies to restrain these processes. Another aspect which is critical for SCI repair is the enhancement of endogenously occurring spontaneous remyelination. Recent findings have unveiled the complex roles of innate and adaptive immune responses in remyelination and the immunoregulatory potential of the glial scar. Moreover, the intimate crosstalk between neuronal activity, oligodendrogenesis and myelination emphasizes the contribution of rehabilitation to functional recovery. With a view toward clinical applications, several therapeutic strategies have been devised to target SCI pathology, including genetic manipulation, administration of small therapeutic molecules, immunomodulation, manipulation of the glial scar and cell transplantation. The implementation of new tools such as cellular reprogramming for conversion of one somatic cell type to another or the use of nanotechnology and tissue engineering products provides additional opportunities for SCI repair. Given the complexity of the spinal cord tissue after injury, it is becoming apparent that combinatorial strategies are needed to rescue OLs and myelin at early stages after SCI and support remyelination, paving the way toward clinical translation.
Collapse
Affiliation(s)
- Florentia Papastefanaki
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, Athens, 11521, Greece
| | | |
Collapse
|
21
|
Abstract
Three theories of regeneration dominate neuroscience today, all purporting to explain why the adult central nervous system (CNS) cannot regenerate. One theory proposes that Nogo, a molecule expressed by myelin, prevents axonal growth. The second theory emphasizes the role of glial scars. The third theory proposes that chondroitin sulfate proteoglycans (CSPGs) prevent axon growth. Blockade of Nogo, CSPG, and their receptors indeed can stop axon growth in vitro and improve functional recovery in animal spinal cord injury (SCI) models. These therapies also increase sprouting of surviving axons and plasticity. However, many investigators have reported regenerating spinal tracts without eliminating Nogo, glial scar, or CSPG. For example, many motor and sensory axons grow spontaneously in contused spinal cords, crossing gliotic tissue and white matter surrounding the injury site. Sensory axons grow long distances in injured dorsal columns after peripheral nerve lesions. Cell transplants and treatments that increase cAMP and neurotrophins stimulate motor and sensory axons to cross glial scars and to grow long distances in white matter. Genetic studies deleting all members of the Nogo family and even the Nogo receptor do not always improve regeneration in mice. A recent study reported that suppressing the phosphatase and tensin homolog (PTEN) gene promotes prolific corticospinal tract regeneration. These findings cannot be explained by the current theories proposing that Nogo and glial scars prevent regeneration. Spinal axons clearly can and will grow through glial scars and Nogo-expressing tissue under some circumstances. The observation that deleting PTEN allows corticospinal tract regeneration indicates that the PTEN/AKT/mTOR pathway regulates axonal growth. Finally, many other factors stimulate spinal axonal growth, including conditioning lesions, cAMP, glycogen synthetase kinase inhibition, and neurotrophins. To explain these disparate regenerative phenomena, I propose that the spinal cord has evolved regenerative mechanisms that are normally suppressed by multiple extrinsic and intrinsic factors but can be activated by injury, mediated by the PTEN/AKT/mTOR, cAMP, and GSK3b pathways, to stimulate neural growth and proliferation.
Collapse
Affiliation(s)
- Wise Young
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
22
|
Zhao HW, Gu XQ, Chailangkarn T, Perkins G, Callacondo D, Appenzeller O, Poulsen O, Zhou D, Muotri AR, Haddad GG. Altered iPSC-derived neurons' sodium channel properties in subjects with Monge's disease. Neuroscience 2015; 288:187-99. [PMID: 25559931 DOI: 10.1016/j.neuroscience.2014.12.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/22/2014] [Accepted: 12/23/2014] [Indexed: 12/17/2022]
Abstract
Monge's disease, also known as chronic mountain sickness (CMS), is a disease that potentially threatens more than 140 million highlanders during extended time living at high altitudes (over 2500m). The prevalence of CMS in Andeans is about 15-20%, suggesting that the majority of highlanders (non-CMS) are rather healthy at high altitudes; however, CMS subjects experience severe hypoxemia, erythrocytosis and many neurologic manifestations including migraine, headache, mental fatigue, confusion, and memory loss. The underlying mechanisms of CMS neuropathology are not well understood and no ideal treatment is available to prevent or cure CMS, except for phlebotomy. In the current study, we reprogrammed fibroblast cells from both CMS and non-CMS subjects' skin biopsies into the induced pluripotent stem cells (iPSCs), then differentiated into neurons and compared their neuronal properties. We discovered that CMS neurons were much less excitable (higher rheobase) than non-CMS neurons. This decreased excitability was not caused by differences in passive neuronal properties, but instead by a significantly lowered Na(+) channel current density and by a shift of the voltage-conductance curve in the depolarization direction. Our findings provide, for the first time, evidence of a neuronal abnormality in CMS subjects as compared to non-CMS subjects, hoping that such studies can pave the way to a better understanding of the neuropathology in CMS.
Collapse
Affiliation(s)
- H W Zhao
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - X Q Gu
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - T Chailangkarn
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - G Perkins
- National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA, USA
| | - D Callacondo
- Laboratorios de Investigación y Desarrollo, Universidad Peruana Cayetano Heredia, Lima 36, Peru
| | - O Appenzeller
- New Mexico Health Enhancement and Marathon Clinics Research Foundation, Albuquerque, NM 87122, USA
| | - O Poulsen
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - D Zhou
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - A R Muotri
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA; The Rady Children's Hospital, San Diego, CA 92123, USA
| | - G G Haddad
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA; Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA; The Rady Children's Hospital, San Diego, CA 92123, USA.
| |
Collapse
|
23
|
Crawford A, Stockley J, Tripathi R, Richardson W, Franklin R. Oligodendrocyte progenitors: Adult stem cells of the central nervous system? Exp Neurol 2014; 260:50-5. [DOI: 10.1016/j.expneurol.2014.04.027] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 04/29/2014] [Indexed: 11/28/2022]
|
24
|
Deng LX, Walker C, Xu XM. Schwann cell transplantation and descending propriospinal regeneration after spinal cord injury. Brain Res 2014; 1619:104-14. [PMID: 25257034 DOI: 10.1016/j.brainres.2014.09.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/08/2014] [Accepted: 09/15/2014] [Indexed: 01/15/2023]
Abstract
After spinal cord injury (SCI), poor ability of damaged axons of the central nervous system (CNS) to regenerate causes very limited functional recovery. Schwann cells (SCs) have been widely explored as promising donors for transplantation to promote axonal regeneration in the CNS including the spinal cord. Compared with other CNS axonal pathways, injured propriospinal tracts display the strongest regenerative response to SC transplantation. Even without providing additional neurotrophic factors, propriospinal axons can grow into the SC environment which is rarely seen in supraspinal tracts. Propriospinal tract has been found to respond to several important neurotrophic factors secreted by SCs. Therefore, the SC is considered to be one of the most promising candidates for cell-based therapies for SCI. Since many reviews have already appeared on topics of SC transplantation in SCI repair, this review will focus particularly on the rationale of SC transplantation in mediating descending propriospinal axonal regeneration as well as optimizing such regeneration by using different combinatorial strategies. This article is part of a Special Issue entitled SI: Spinal cord injury.
Collapse
Affiliation(s)
- Ling-Xiao Deng
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Chandler Walker
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Xiao-Ming Xu
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
25
|
Luo S, Jaegle M, Li R, Ehring GR, Meijer D, Levinson SR. The sodium channel isoform transition at developing nodes of ranvier in the peripheral nervous system: Dependence on a Genetic program and myelination-induced cluster formation. J Comp Neurol 2014; 522:4057-73. [DOI: 10.1002/cne.23656] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/18/2014] [Accepted: 07/18/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Songjiang Luo
- Department of Comprehensive Dentistry; University of Texas Health Science Center; San Antonio Texas 78229
| | - Martine Jaegle
- Department of Cell Biology and Genetics; Erasmus University Rotterdam; 3000DR Rotterdam The Netherlands
| | - Roy Li
- Allergan; Irvine California 92612
| | | | - Dies Meijer
- Department of Cell Biology and Genetics; Erasmus University Rotterdam; 3000DR Rotterdam The Netherlands
- Centre for Neuroregeneration; University of Edinburgh; Edinburgh EH16 4SB United Kingdom
| | - Simon R. Levinson
- Department of Physiology and Biophysics; School of Medicine, University of Colorado Anschutz Medical Campus; Aurora Colorado 80045
| |
Collapse
|
26
|
Schwann cells but not olfactory ensheathing cells inhibit CNS myelination via the secretion of connective tissue growth factor. J Neurosci 2014; 33:18686-97. [PMID: 24259589 DOI: 10.1523/jneurosci.3233-13.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cell transplantation is a promising strategy to promote CNS repair and has been studied for several decades with a focus on glial cells. Promising candidates include Schwann cells (SCs) and olfactory ensheathing cells (OECs). Both cell types are thought to be neural crest derived and share many properties in common, although OECs appear to be a better candidate for transplantation by evoking less astrogliosis. Using CNS mixed myelinating rat cultures plated on to a monolayer of astrocytes, we demonstrated that SCs, but not OECs, secrete a heat labile factor(s) that inhibits oligodendrocyte myelination. Comparative qRT-PCR and ELISA showed that SCs expressed higher levels of mRNA and protein for connective tissue growth factor (CTGF) than OECs. Anti-CTGF reversed the SCM-mediated effects on myelination. Both SCM and CTGF inhibited the differentiation of purified rat oligodendrocyte precursor cells (OPCs). Furthermore, pretreatment of astrocyte monolayers with SCM inhibited CNS myelination and led to transcriptional changes in the astrocyte, corresponding to upregulation of bone morphogenic protein 4 mRNA and CTGF mRNA (inhibitors of OPC differentiation) and the downregulation of insulin-like growth factor 2 mRNA (promoter of OPC differentiation). CTGF pretreatment of astrocytes increased their expression of CTGF, suggesting that this inhibitory factor can be positively regulated in astrocytes. These data provide evidence for the advantages of using OECs, and not mature SCs, for transplant-mediated repair and provide more evidence that they are a distinct and unique glial cell type.
Collapse
|
27
|
Myelin recovery in multiple sclerosis: the challenge of remyelination. Brain Sci 2013; 3:1282-324. [PMID: 24961530 PMCID: PMC4061877 DOI: 10.3390/brainsci3031282] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/12/2013] [Accepted: 08/12/2013] [Indexed: 12/26/2022] Open
Abstract
Multiple sclerosis (MS) is the most common demyelinating and an autoimmune disease of the central nervous system characterized by immune-mediated myelin and axonal damage, and chronic axonal loss attributable to the absence of myelin sheaths. T cell subsets (Th1, Th2, Th17, CD8+, NKT, CD4+CD25+ T regulatory cells) and B cells are involved in this disorder, thus new MS therapies seek damage prevention by resetting multiple components of the immune system. The currently approved therapies are immunoregulatory and reduce the number and rate of lesion formation but are only partially effective. This review summarizes current understanding of the processes at issue: myelination, demyelination and remyelination—with emphasis upon myelin composition/architecture and oligodendrocyte maturation and differentiation. The translational options target oligodendrocyte protection and myelin repair in animal models and assess their relevance in human. Remyelination may be enhanced by signals that promote myelin formation and repair. The crucial question of why remyelination fails is approached is several ways by examining the role in remyelination of available MS medications and avenues being actively pursued to promote remyelination including: (i) cytokine-based immune-intervention (targeting calpain inhibition), (ii) antigen-based immunomodulation (targeting glycolipid-reactive iNKT cells and sphingoid mediated inflammation) and (iii) recombinant monoclonal antibodies-induced remyelination.
Collapse
|
28
|
Neutralization of inhibitory molecule NG2 improves synaptic transmission, retrograde transport, and locomotor function after spinal cord injury in adult rats. J Neurosci 2013; 33:4032-43. [PMID: 23447612 DOI: 10.1523/jneurosci.4702-12.2013] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
NG2 belongs to the family of chondroitin sulfate proteoglycans that are upregulated after spinal cord injury (SCI) and are major inhibitory factors restricting the growth of fibers after SCI. Neutralization of NG2's inhibitory effect on axon growth by anti-NG2 monoclonal antibodies (NG2-Ab) has been reported. In addition, recent studies show that exogenous NG2 induces a block of axonal conduction. In this study, we demonstrate that acute intraspinal injections of NG2-Ab prevented an acute block of conduction by NG2. Chronic intrathecal infusion of NG2-Ab improved the following deficits induced by chronic midthoracic lateral hemisection (HX) injury: (1) synaptic transmission to lumbar motoneurons, (2) retrograde transport of fluororuby anatomical tracer from L5 to L1, and (3) locomotor function assessed by automated CatWalk gait analysis. We collected data in an attempt to understand the cellular and molecular mechanisms underlying the NG2-Ab-induced improvement of synaptic transmission in HX-injured spinal cord. These data showed the following: (1) that chronic NG2-Ab infusion improved conduction and axonal excitability in chronically HX-injured rats, (2) that antibody treatment increased the density of serotonergic axons with ventral regions of spinal segments L1-L5, (3) and that NG2-positive processes contact nodes of Ranvier within the nodal gap at the location of nodal Na(+) channels, which are known to be critical for propagation of action potentials along axons. Together, these results demonstrate that treatment with NG2-Ab partially improves both synaptic and anatomical plasticity in damaged spinal cord and promotes functional recovery after HX SCI. Neutralizing antibodies against NG2 may be an excellent way to promote axonal conduction after SCI.
Collapse
|
29
|
Rangasamy SB. Locomotor recovery after spinal cord hemisection/contusion injures in bonnet monkeys: footprint testing--a minireview. Synapse 2013; 67:427-53. [PMID: 23401170 DOI: 10.1002/syn.21645] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 02/01/2013] [Indexed: 12/12/2022]
Abstract
Spinal cord injuries usually produce loss or impairment of sensory, motor and reflex function below the level of damage. In the absence of functional regeneration or manipulations that promote regeneration, spontaneous improvements in motor functions occur due to the activation of multiple compensatory mechanisms in animals and humans following the partial spinal cord injury. Many studies were performed on quantitative evaluation of locomotor recovery after induced spinal cord injury in animals using behavioral tests and scoring techniques. Although few studies on rodents have led to clinical trials, it would appear imperative to use nonhuman primates such as macaque monkeys in order to relate the research outcomes to recovery of functions in humans. In this review, we will discuss some of our research evidences concerning the degree of spontaneous recovery in bipedal locomotor functions of bonnet monkeys that underwent spinal cord hemisection/contusion lesions. To our knowledge, this is the first report to discuss on the extent of spontaneous recovery in bipedal locomotion of macaque monkeys through the application of footprint analyzing technique. In addition, the results obtained were compared with the published data on recovery of quadrupedal locomotion of spinally injured rodents. We propose that the mechanisms underlying spontaneous recovery of functions in spinal cord lesioned monkeys may be correlated to the mature function of spinal pattern generator for locomotion under the impact of residual descending and afferent connections. Moreover, based on analysis of motor functions observed in locomotion in these subjected monkeys, we understand that spinal automatism and development of responses by afferent stimuli from outside the cord could possibly contribute to recovery of paralyzed hindlimbs. This report also emphasizes the functional contribution of progressive strengthening of undamaged nerve fibers through a collateral sprouts/synaptic plasticity formed in partially lesioned cord of monkeys.
Collapse
Affiliation(s)
- Suresh Babu Rangasamy
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, 60612, USA.
| |
Collapse
|
30
|
Modulation of voltage-gated K+ channels by the sodium channel β1 subunit. Proc Natl Acad Sci U S A 2012; 109:18577-82. [PMID: 23090990 DOI: 10.1073/pnas.1209142109] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium (Na(V)) and potassium (K(V)) channels are critical components of neuronal action potential generation and propagation. Here, we report that Na(V)β1 encoded by SCN1b, an integral subunit of Na(V) channels, coassembles with and modulates the biophysical properties of K(V)1 and K(V)7 channels, but not K(V)3 channels, in an isoform-specific manner. Distinct domains of Na(V)β1 are involved in modulation of the different K(V) channels. Studies with channel chimeras demonstrate that Na(V)β1-mediated changes in activation kinetics and voltage dependence of activation require interaction of Na(V)β1 with the channel's voltage-sensing domain, whereas changes in inactivation and deactivation require interaction with the channel's pore domain. A molecular model based on docking studies shows Na(V)β1 lying in the crevice between the voltage-sensing and pore domains of K(V) channels, making significant contacts with the S1 and S5 segments. Cross-modulation of Na(V) and K(V) channels by Na(V)β1 may promote diversity and flexibility in the overall control of cellular excitability and signaling.
Collapse
|
31
|
Strength-duration time constant in peripheral nerve: no abnormality in multiple sclerosis. Mult Scler Int 2012; 2012:390157. [PMID: 22645684 PMCID: PMC3356942 DOI: 10.1155/2012/390157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 03/13/2012] [Accepted: 03/20/2012] [Indexed: 11/23/2022] Open
Abstract
Objectives. To investigate the properties of the strength-duration time constant (SDTC) in multiple sclerosis (MS) patients. Methods. The SDTC and rheobase in 16 MS patients and 19 healthy controls were obtained following stimulation of the right median nerve at the wrist. Results. SDTC and rheobase values were 408.3 ± 60.0 μs and 4.0 ± 1.8 mA in MS patients, versus 408.0 ± 62.4 μs and 3.8 ± 2.1 mA in controls. The differences were not significant in SDTC or rheobase values between the patients and controls (P = 0.988 for SDTC and P = 0.722 for rheobase). Conclusion. Our study showed no abnormality in relapsing remitting MS patients in terms of SDTC, which gives some indirect information about peripheral Na+ channel function. This may indicate that alterations in the Na+ channel pattern in central nervous system (CNS) couldnot be shown in the peripheral nervous system (PNS) in the MS patients by SDTC. The opinion that MS can be a kind of channelopathy might be proven by performing other axonal excitability tests or SDTC in progressive forms of MS.
Collapse
|
32
|
Bittner S, Höhn K, Göbel K, Kleinschnitz C, Wiendl H, Meuth SG. [Pregabalin and gabapentin in multiple sclerosis: clinical experiences and therapeutic implications]. DER NERVENARZT 2011; 82:1273-1280. [PMID: 21647743 DOI: 10.1007/s00115-011-3321-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
BACKGROUND Due to a plethora of additional symptoms patients with multiple sclerosis (MS) receive symptomatic treatment besides disease-modifying therapies. Among the substances which are commonly used are ion channel modulators (e. g. pregabalin, gabapentin, carbamazepine). The aim of this study was to investigate the use of these drugs in clinical practice in a larger patient cohort. PATIENTS Data from 533 MS patients [439 without and 94 patients with add-on therapy (treatment group)] were evaluated retrospectively. All patients received a detailed neurological examination including evaluation of EDSS scores. RESULTS Pregabalin and gabapentin are used most commonly. Abnormal sensations are the most frequent reason for therapy initiation. Patients with higher EDSS values and/or under mitoxantrone treatment most frequently receive additional therapy. CONCLUSION So far, it is not known whether the investigated agents exert a beneficial influence on the disease course of MS itself beyond a mere symptomatic treatment. Further research efforts and clinical studies are necessary to address this question.
Collapse
Affiliation(s)
- S Bittner
- Abteilung für entzündliche Erkrankungen des Nervensystems und Neuroonkologie, Klinik und Poliklinik für Neurologie, Universitätsklinikum Münster, Domagkstr. 13, 48149 Münster, Deutschland
| | | | | | | | | | | |
Collapse
|
33
|
Boundary cap cells are peripheral nervous system stem cells that can be redirected into central nervous system lineages. Proc Natl Acad Sci U S A 2011; 108:10714-9. [PMID: 21670295 DOI: 10.1073/pnas.1018687108] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Boundary cap cells (BC), which express the transcription factor Krox20, participate in the formation of the boundary between the central nervous system and the peripheral nervous system. To study BC stemness, we developed a method to purify and amplify BC in vitro from Krox20(Cre/+), R26R(YFP/+) mouse embryos. We show that BC progeny are EGF/FGF2-responsive, form spheres, and express neural crest markers. Upon growth factor withdrawal, BC progeny gave rise to multiple neural crest and CNS lineages. Transplanted into the developing murine forebrain, they successfully survived, migrated, and integrated within the host environment. Surprisingly, BC progeny generated exclusively CNS cells, including neurons, astrocytes, and myelin-forming oligodendrocytes. In vitro experiments indicated that a sequential combination of ventralizing morphogens and glial growth factors was necessary to reprogram BC into oligodendrocytes. Thus, BC progeny are endowed with differentiation plasticity beyond the peripheral nervous system. The demonstration that CNS developmental cues can reprogram neural crest-derived stem cells into CNS derivatives suggests that BC could serve as a source of cell type-specific lineages, including oligodendrocytes, for cell-based therapies to treat CNS disorders.
Collapse
|
34
|
Sasaki M, Lankford KL, Radtke C, Honmou O, Kocsis JD. Remyelination after olfactory ensheathing cell transplantation into diverse demyelinating environments. Exp Neurol 2011; 229:88-98. [DOI: 10.1016/j.expneurol.2011.01.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 01/10/2011] [Accepted: 01/16/2011] [Indexed: 01/07/2023]
|
35
|
Ion channels in autoimmune neurodegeneration. FEBS Lett 2011; 585:3836-42. [DOI: 10.1016/j.febslet.2011.03.065] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 03/26/2011] [Accepted: 03/28/2011] [Indexed: 11/23/2022]
|
36
|
Hunanyan AS, Alessi V, Patel S, Pearse DD, Matthews G, Arvanian VL. Alterations of action potentials and the localization of Nav1.6 sodium channels in spared axons after hemisection injury of the spinal cord in adult rats. J Neurophysiol 2010; 105:1033-44. [PMID: 21177993 DOI: 10.1152/jn.00810.2010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previously, we reported a pronounced reduction in transmission through surviving axons contralateral to chronic hemisection (HX) of adult rat spinal cord. To examine the cellular and molecular mechanisms responsible for this diminished transmission, we recorded intracellularly from lumbar lateral white matter axons in deeply anesthetized adult rats in vivo and measured the propagation of action potentials (APs) through rubrospinal/reticulospinal tract (RST/RtST) axons contralateral to chronic HX at T10. We found decreased excitability in these axons, manifested by an increased rheobase to trigger APs and longer latency for AP propagation passing the injury level, without significant differences in axonal resting membrane potential and input resistance. These electrophysiological changes were associated with altered spatial localization of Nav1.6 sodium channels along axons: a subset of axons contralateral to the injury exhibited a diffuse localization (>10 μm spread) of Nav1.6 channels, a pattern characteristic of demyelinated axons (Craner MJ, Newcombe J, Black JA, Hartle C, Cuzner ML, Waxman SG. Proc Natl Acad Sci USA 101: 8168-8173, 2004b). This result was substantiated by ultrastructural changes seen with electron microscopy, in which an increased number of large-caliber, demyelinated RST axons were found contralateral to the chronic HX. Therefore, an increased rheobase, pathological changes in the distribution of Nav1.6 sodium channels, and the demyelination of contralateral RST axons are likely responsible for their decreased conduction chronically after HX and thus may provide novel targets for strategies to improve function following incomplete spinal cord injury.
Collapse
Affiliation(s)
- Arsen S Hunanyan
- Northport Veterans Affairs Medical Center, 79 Middleville Road, Bld. 62, Northport, NY 11768, USA
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
Chronic unilateral hemisection (HX) of the adult rat spinal cord diminishes conduction through intact fibers in the ventrolateral funiculus (VLF) contralateral to HX. This is associated with a partial loss of myelination from fibers in the VLF (Arvanian et al., 2009). Here, we again measured conduction through the VLF using electrical stimulation while recording the resulting volley and synaptic potentials in target motoneurons. We found that intraspinal injection of chondroitinase-ABC, known to digest chondroitin sulfate proteoglycans (CSPGs), prevented the decline of axonal conduction through intact VLF fibers across from chronic T10 HX. Chondroitinase treatment was also associated with behavior suggestive of an improvement of locomotor function after chronic HX. To further study the role of CSPGs in axonal conduction, we injected three purified CSPGs, NG2 and neurocan, which increase in the vicinity of a spinal injury, and aggrecan, which decreases, into the lateral column of the uninjured cord at T10 in separate experiments. Intraspinal injection of NG2 acutely depressed axonal conduction through the injected region in a dose-dependent manner. Similar injections of saline, aggrecan, or neurocan had no significant effect. Immunofluorescence staining experiments revealed the presence of endogenous and exogenous NG2 at some nodes of Ranvier. These results identify a novel acute action of CSPGs on axonal conduction in the spinal cord and suggest that antagonism of proteoglycans reverses or prevents the decline of axonal conduction, in addition to stimulating axonal growth.
Collapse
|
38
|
Zujovic V, Thibaud J, Bachelin C, Vidal M, Coulpier F, Charnay P, Topilko P, Baron-Van Evercooren A. Boundary cap cells are highly competitive for CNS remyelination: fast migration and efficient differentiation in PNS and CNS myelin-forming cells. Stem Cells 2010; 28:470-9. [PMID: 20039366 DOI: 10.1002/stem.290] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
During development, boundary cap cells (BC) and neural crest cell (NCC) derivatives generate Schwann cells (SC) of the spinal roots and a subpopulation of neurons and satellite cells in the dorsal root ganglia. Despite their stem-like properties, their therapeutic potential in the diseased central nervous system (CNS) was never explored. The aim of this work was to explore BC therapeutic potential for CNS remyelination. We derived BC from Krox20(Cre) x R26R(Yfp) embryos at E12.5, when Krox20 is exclusively expressed by BC. Combining microdissection and cell fate mapping, we show that acutely isolated BC are a unique population closely related but distinct from NCC and SC precursors. Moreover, when grafted in the demyelinated spinal cord, BC progeny expands in the lesion through a combination of time-regulated processes including proliferation and differentiation. Furthermore, when grafted away from the lesion, BC progeny, in contrast to committed SC, show a high migratory potential mediated through enhanced interactions with astrocytes and white matter, and possibly with polysialylated neural cell adhesion molecule expression. In response to demyelinated axons of the CNS, BC progeny generates essentially myelin-forming SC. However, in contact with axons and astrocytes, some of them generate also myelin-forming oligodendrocytes. There are two primary outcomes of this study. First, the high motility of BC and their progeny, in addition to their capacity to remyelinate CNS axons, supports the view that BC are a reservoir of interest to promote CNS remyelination. Second, from a developmental point of view, BC behavior in the demyelinated CNS raises the question of the boundary between central and peripheral myelinating cells.
Collapse
Affiliation(s)
- V Zujovic
- Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière, UMR-S975, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Bachelin C, Zujovic V, Buchet D, Mallet J, Baron-Van Evercooren A. Ectopic expression of polysialylated neural cell adhesion molecule in adult macaque Schwann cells promotes their migration and remyelination potential in the central nervous system. ACTA ACUST UNITED AC 2009; 133:406-20. [PMID: 19843650 PMCID: PMC2822629 DOI: 10.1093/brain/awp256] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent findings suggested that inducing neural cell adhesion molecule polysialylation in rodents is a promising strategy for promoting tissue repair in the injured central nervous system. Since autologous grafting of Schwann cells is one potential strategy to promote central nervous system remyelination, it is essential to show that such a strategy can be translated to adult primate Schwann cells and is of interest for myelin diseases. Adult macaque Schwann cells were transduced with a lentiviral vector encoding sialyltransferase, an enzyme responsible for neural cell adhesion molecule polysialylation. In vitro, we found that ectopic expression of polysialylate promoted adult macaque Schwann cell migration and improved their integration among astrocytes in vitro without modifying their antigenic properties as either non-myelinating or pro-myelinating. In addition, forced expression of polysialylate in adult macaque Schwann cells decreased their adhesion with sister cells. To investigate the ability of adult macaque Schwann cells to integrate and migrate in vivo, focally induced demyelination was targeted to the spinal cord dorsal funiculus of nude mice, and both control and sialyltransferase expressing Schwann cells overexpressing green fluorescein protein were grafted remotely from the lesion site. Analysis of the spatio-temporal distribution of the grafted Schwann cells performed in toto and in situ, showed that in both groups, Schwann cells migrated towards the lesion site. However, migration of sialyltransferase expressing Schwann cells was more efficient than that of control Schwann cells, leading to their accelerated recruitment by the lesion. Moreover, ectopic expression of polysialylated neural cell adhesion molecule promoted adult macaque Schwann cell interaction with reactive astrocytes when exiting the graft, and their ‘chain-like’ migration along the dorsal midline. The accelerated migration of sialyltransferase expressing Schwann cells to the lesion site enhanced their ability to compete for myelin repair with endogenous cells, while control Schwann cells were unable to do so. Finally, remyelination by the exogenous sialyltransferase expressing Schwann cells restored the normal distribution of paranodal and nodal elements on the host axons. These greater performances of sialyltransferase expressing Schwann cell correlated with their sustained expression of polysialylated neural cell adhesion molecule at early times when migrating from the graft to the lesion, and its progressive downregulation at later times during remyelination. These results underline the potential therapeutic benefit to genetically modify Schwann cells to overcome their poor migration capacity and promote their repair potential in demyelinating disorders of the central nervous system.
Collapse
Affiliation(s)
- C Bachelin
- Centre de Recherche de l'Institut du Cerveau et de la Moelle Epiniere, Universite Pierre et Marie Curie-Paris 6, UMR-S975, Paris, France
| | | | | | | | | |
Collapse
|
40
|
Chou CH, Gong CL, Chao CC, Lin CH, Kwan CY, Hsieh CL, Leung YM. Rhynchophylline from Uncaria rhynchophylla functionally turns delayed rectifiers into A-Type K+ channels. JOURNAL OF NATURAL PRODUCTS 2009; 72:830-834. [PMID: 19331340 DOI: 10.1021/np800729q] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Rhynchophylline (1), a neuroprotective agent isolated from the traditional Chinese medicinal herb Uncaria rhynchophylla, was shown to affect voltage-gated K(+) (Kv) channel slow inactivation in mouse neuroblastoma N2A cells. Extracellular 1 (30 microM) accelerated the slow decay of Kv currents and shifted the steady-state inactivation curve to the left. Intracellular dialysis of 1 did not accelerate the slow current decay, suggesting that this compound acts extracellularly. In addition, the percent blockage of Kv currents by this substance was independent of the degree of depolarization and the intracellular K(+) concentration. Therefore, 1 did not appear to directly block the outer channel pore, with the results obtained suggesting that it drastically accelerated Kv channel slow inactivation. Interestingly, 1 also shifted the activation curve to the left. This alkaloid also strongly accelerated slow inactivation and caused a left shift of the activation curve of Kv1.2 channels heterologously expressed in HEK293 cells. Thus, this compound functionally turned delayed rectifiers into A-type K(+) channels.
Collapse
Affiliation(s)
- Chun-Hsiao Chou
- Department of Physiology, Graduate Institute of Neural and Cognitive Sciences, China Medical University, Taichung 40402, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
41
|
Lavdas AA, Matsas R. Towards personalized cell-replacement therapies for brain repair. Per Med 2009; 6:293-313. [DOI: 10.2217/pme.09.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The inability of the CNS to efficiently repair damage caused by trauma and neurodegenerative or demyelinating diseases has underlined the necessity for developing novel therapeutic strategies. Cell transplantation to replace lost neurons and the grafting of myelinating cells to repair demyelinating lesions are promising approaches for treating CNS injuries and demyelination. In this review, we will address the prospects of using stem cells or myelinating glial cells of the PNS, as well as olfactory ensheathing cells, in cell-replacement therapies. The recent generation of induced pluripotent stem cells from adult somatic cells by introduction of three or four genes controlling ‘stemness’ and their subsequent differentiation to desired phenotypes, constitutes a significant advancement towards personalized cell-replacement therapies.
Collapse
Affiliation(s)
- Alexandros A Lavdas
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, 127 Vassilissis Sofias Avenue, 11521 Athens, Greece
| | - Rebecca Matsas
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, 127 Vassilissis Sofias Avenue, 11521 Athens, Greece
| |
Collapse
|
42
|
Arvanian VL, Schnell L, Lou L, Golshani R, Hunanyan A, Ghosh A, Pearse DD, Robinson JK, Schwab ME, Fawcett JW, Mendell LM. Chronic spinal hemisection in rats induces a progressive decline in transmission in uninjured fibers to motoneurons. Exp Neurol 2009; 216:471-80. [PMID: 19320005 DOI: 10.1016/j.expneurol.2009.01.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although most spinal cord injuries are anatomically incomplete, only limited functional recovery has been observed in people and rats with partial lesions. To address why surviving fibers cannot mediate more complete recovery, we evaluated the physiological and anatomical status of spared fibers after unilateral hemisection (HX) of thoracic spinal cord in adult rats. We made intracellular and extracellular recordings at L5 (below HX) in response to electrical stimulation of contralateral white matter above (T6) and below (L1) HX. Responses from T6 displayed reduced amplitude, increased latency and elevated stimulus threshold in the fibers across from HX, beginning 1-2 weeks after HX. Ultrastructural analysis revealed demyelination of intact axons contralateral to the HX, with a time course similar to the conduction changes. Behavioral studies indicated partial recovery which arrested when conduction deficits began. In conclusion, this study is the first demonstration of the delayed decline of transmission through surviving axons to individual lumbar motoneurons during chronic stage of incomplete spinal cord injury in adult rats. These findings suggest a chronic pathological state in intact fibers and necessity for prompt treatment to minimize it.
Collapse
Affiliation(s)
- Victor L Arvanian
- Department of Neurobiology and Behavior, SUNY at Stony Brook, Life Sciences Building Room 550, Stony Brook, NY 11794-5230, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Lyons DA, Talbot WS. Axonal domains: role for paranodal junction in node of Ranvier assembly. Curr Biol 2008; 18:R876-9. [PMID: 18812088 DOI: 10.1016/j.cub.2008.07.070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A new study shows that communication between axons and glia at the paranodal junction can orchestrate the formation of the node of Ranvier.
Collapse
Affiliation(s)
- David A Lyons
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA.
| | | |
Collapse
|
44
|
Spinal cord injury: plasticity, regeneration and the challenge of translational drug development. Trends Neurosci 2008; 32:41-7. [PMID: 18977039 DOI: 10.1016/j.tins.2008.09.008] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 09/12/2008] [Accepted: 09/15/2008] [Indexed: 12/19/2022]
Abstract
Over the past three decades, multiple mechanisms limiting central nervous system regeneration have been identified. Here, we address plasticity arising from spared systems as a particularly important and often unrecognized mechanism that potentially contributes to functional recovery in studies of 'regeneration' after spinal cord injury. We then discuss complexities involved in translating findings from animal models to human clinical trials in spinal cord injury; current strategies might be too limited in scope to yield detectable benefits in the complex and variable arena of human injury. Our animal models are imperfect, and the very variability that we attempt to control in the course of conducting rigorous research might, ironically, limit our ability to identify the most promising therapies in the human arena. Therapeutic candidates are most likely to have a detectable effect in human trials if they elicit benefits in severe contusion and larger animal models and pass the test of independent replication.
Collapse
|
45
|
Dubois-Dalcq M, Williams A, Stadelmann C, Stankoff B, Zalc B, Lubetzki C. From fish to man: understanding endogenous remyelination in central nervous system demyelinating diseases. Brain 2008; 131:1686-700. [PMID: 18474520 PMCID: PMC2516372 DOI: 10.1093/brain/awn076] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In the central nervous system (CNS) of man, evolutionary pressure has preserved some capability for remyelination while axonal regeneration is very limited. In contrast, two efficient programmes of regeneration exist in the adult fish CNS, neurite regrowth and remyelination. The rapidity of CNS remyelination is critical since it not only restores fast conduction of nerve impulses but also maintains axon integrity. If myelin repair fails, axons degenerate, leading to increased disability. In the human CNS demyelinating disease multiple sclerosis (MS), remyelination often takes place in the midst of inflammation. Here, we discuss recent studies that address the innate repair capabilities of the axon-glia unit from fish to man. We propose that expansion of this research field will help find ways to maintain or enhance spontaneous remyelination in man.
Collapse
Affiliation(s)
- Monique Dubois-Dalcq
- National Institute of Neurological Disorders and Stroke, Porter Neuroscience Research Center, Bethesda, MD 20892-3706, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Hemmer B, Hartung HP. Toward the development of rational therapies in multiple sclerosis: what is on the horizon? Ann Neurol 2007; 62:314-26. [DOI: 10.1002/ana.21289] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
47
|
Abstract
Myelination is critical for the normal functioning of the vertebrate nervous system. In the CNS, myelin is produced by oligodendrocytes, and the loss of oligodendrocytes and myelin results in severe functional impairment. Although spontaneous remyelination occurs in chronic demyelinating diseases such as multiple sclerosis, the repair process eventually fails, often resulting in long-term disability. Two distinct general approaches can be considered to promote myelin repair. In one the target is stimulation of the endogenous myelin repair process through delivery of growth factors, and in the second the target is augmentation of the repair process through the delivery of exogenous cells with myelination potential. In both cases, effective treatment of diseases such as multiple sclerosis requires modulation of the immune system, since demyelination is associated with specific immunological activation. Recent studies have shown that some populations of stem cells, including mesenchymal stem cells, have the capacity of promoting endogenous myelin repair and modulating the immune response, prompting an assessment of their use as therapy in demyelinating diseases such as MS. Other types of demyelinating disorders, such as the leukodystrophies, may require multiple repair strategies including both replacement of dysfunctional cells and delivery or supplementation of growth factors, immune modulators or metabolic enzymes. Here we discuss the use of stem cells for the treatment of demyelinating diseases. While the current number of stem cell-based clinical trials for demyelinating diseases is limited, this is likely to increase significantly in the next few years, and a clear understanding of the applicability, limitations and underlying mechanisms mediating stem cell repair is critical.
Collapse
Affiliation(s)
- Robert H Miller
- Center for Translational Neuroscience, Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | | |
Collapse
|
48
|
Zujovic V, Bachelin C, Baron-Van Evercooren A. Remyelination of the central nervous system: a valuable contribution from the periphery. Neuroscientist 2007; 13:383-91. [PMID: 17644768 DOI: 10.1177/10738584070130041001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The loss of myelin, a major element involved in the saltatory conduction of the electrical impulse of the nervous system, is a major target of current research. Serious long-term disabilities are observed in patients with demyelinating disease of the central nervous system, such as multiple sclerosis. New therapeutic strategies aimed at overcoming myelin damage and axonal loss focus on the repair potential of myelin-forming cells. This review examines the use of peripheral myelin-forming cells, the Schwann cells, to promote myelin repair.
Collapse
Affiliation(s)
- Violetta Zujovic
- Institut National de la Santé et de la Recherche Médicale, Université Pierre et Marie Curie, and AP-HP Hôpital Pitié-Salpêtrière, Fédération de Neurologie, Paris, France
| | | | | |
Collapse
|
49
|
Abstract
Our understanding of the potential role of sodium channels in multiple sclerosis (MS) has grown substantially in recent years. The channels have long had a recognized role in the symptomatology of the disease, but now also have suspected roles in causing permanent axonal destruction, and a potential role in modulating the intensity of immune activity. Sodium channels might also provide an avenue to achieve axonal and neuronal protection in MS, thereby impeding the otherwise relentless advance of permanent neurological deficit. The symptoms of MS are largely determined by the conduction properties of axons and these, in turn, are largely determined by sodium channels. The number, subtype and distribution of the sodium channels are all important, together with the way that channel function is modified by local factors, such as those resulting from inflammation (eg, nitric oxide). Suspicion is growing that sodium channels may also contribute to the axonal degeneration primarily responsible for permanent neurological deficits. The proposed mechanism involves intra-axonal sodium accumulation which promotes reverse action of the sodium/calcium exchanger and thereby a lethal rise in intra-axonal calcium. Partial blockade of sodium channels protects axons from degeneration in experimental models of MS, and therapy based on this approach is currently under investigation in clinical trials. Some recent findings suggest that such systemic inhibition of sodium channels may also promote axonal protection by suppressing inflammation within the brain.
Collapse
Affiliation(s)
- Kenneth J Smith
- Department of Clinical Neurosciences, Institute of Psychiatry, King's College London, London, UK.
| |
Collapse
|
50
|
Eftekharpour E, Karimi-Abdolrezaee S, Wang J, El Beheiry H, Morshead C, Fehlings MG. Myelination of congenitally dysmyelinated spinal cord axons by adult neural precursor cells results in formation of nodes of Ranvier and improved axonal conduction. J Neurosci 2007; 27:3416-28. [PMID: 17392458 PMCID: PMC6672112 DOI: 10.1523/jneurosci.0273-07.2007] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Emerging evidence suggests that cell-based remyelination strategies may be a feasible therapeutic approach for CNS diseases characterized by myelin deficiency as a result of trauma, congenital anomalies, or diseases. Although experimental demyelination models targeted at the transient elimination of oligodendrocytes have suggested that transplantation-based remyelination can partially restore axonal molecular structure and function, it is not clear whether such therapeutic approaches can be used to achieve functional remyelination in models associated with long-term, irreversible myelin deficiency. In this study, we transplanted adult neural precursor cells (aNPCs) from the brain of adult transgenic mice into the spinal cords of adult Shiverer (shi/shi) mice, which lack compact CNS myelin. Six weeks after transplantation, the transplanted aNPCs expressed oligodendrocyte markers, including MBP, migrated extensively along the white matter tracts of the spinal cord, and formed compact myelin. Conventional and three-dimensional confocal and electron microscopy revealed axonal ensheathment, establishment of paranodal junctional complexes leading to de novo formation of nodes of Ranvier, and partial reconstruction of the juxtaparanodal and paranodal molecular regions of axons based on Kv1.2 and Caspr (contactin-associated protein) expression by the transplanted aNPCs. Electrophysiological recordings revealed improved axonal conduction along the transplanted segments of spinal cords. We conclude that myelination of congenitally dysmyelinated adult CNS axons by grafted aNPCs results in the formation of compact myelin, reconstruction of nodes of Ranvier, and enhanced axonal conduction. These data suggest the therapeutic potential of aNPCs to promote functionally significant myelination in CNS disorders characterized by longstanding myelin deficiency.
Collapse
Affiliation(s)
- Eftekhar Eftekharpour
- Division of Cell and Molecular Biology, Toronto Western Research Institute, Krembil Neuroscience Center, Toronto, Ontario, Canada M5T 2S8, and
| | - Soheila Karimi-Abdolrezaee
- Division of Cell and Molecular Biology, Toronto Western Research Institute, Krembil Neuroscience Center, Toronto, Ontario, Canada M5T 2S8, and
- Department of Surgery
- Division of Neurosurgery, University of Toronto, Ontario, Canada M5S 1A8
| | - Jian Wang
- Division of Cell and Molecular Biology, Toronto Western Research Institute, Krembil Neuroscience Center, Toronto, Ontario, Canada M5T 2S8, and
| | - Hossam El Beheiry
- Division of Cell and Molecular Biology, Toronto Western Research Institute, Krembil Neuroscience Center, Toronto, Ontario, Canada M5T 2S8, and
| | | | - Michael G. Fehlings
- Division of Cell and Molecular Biology, Toronto Western Research Institute, Krembil Neuroscience Center, Toronto, Ontario, Canada M5T 2S8, and
- Department of Surgery
- Institute of Medical Sciences, and
- Division of Neurosurgery, University of Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|