1
|
Rhee A, Granville Smith I, Compte R, Vehof J, Nessa A, Wadge S, Freidin MB, Bennett DL, Williams FMK. Quantitative sensory testing and chronic pain syndromes: a cross-sectional study from TwinsUK. BMJ Open 2024; 14:e085814. [PMID: 39231552 PMCID: PMC11407192 DOI: 10.1136/bmjopen-2024-085814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
OBJECTIVE The chronic pain syndromes (CPS) include syndromes such as chronic widespread pain (CWP), dry eye disease (DED) and irritable bowel syndrome (IBS). Highly prevalent and lacking pathognomonic biomarkers, the CPS are known to cluster in individuals in part due to their genetic overlap, but patient diagnosis can be difficult. The success of quantitative sensory testing (QST) and inflammatory biomarkers as phenotyping tools in conditions such as painful neuropathies warrant their investigation in CPS. We aimed to examine whether individual QST modalities and candidate inflammatory markers were associated with CWP, DED or IBS in a large, highly phenotyped population sample. DESIGN Cross-sectional study. SETTING Community-dwelling cohort. PARTICIPANTS Twins from the TwinsUK cohort PRIMARY AND SECONDARY OUTCOME MEASURES: We compared 10 QST modalities, measured in participants with and without a CWP diagnosis between 2007 and 2012. We investigated whether inflammatory markers measured by Olink were associated with CWP, including interleukin-6 (IL-6), IL-8, IL-10, monocyte chemoattractant protein-1 and tumour necrosis factor. All analyses were repeated in DED and IBS with correction for multiple testing. RESULTS In N=3022 twins (95.8% women), no association was identified between individual QST modalities and CPS diagnoses (CWP, DED and IBS). Analyses of candidate inflammatory marker levels and CPS diagnoses in n=1368 twins also failed to meet statistical significance. CONCLUSION Our findings in a large population cohort suggest a lack of true association between singular QST modalities or candidate inflammatory markers and CPS.
Collapse
Affiliation(s)
- Amber Rhee
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | - Roger Compte
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Jelle Vehof
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- Departments of Ophthalmology and Epidemiology, University of Groningen, Groningen, The Netherlands
- Department of Ophthalmology, Vestfold Hospital Trust, Tønsberg, Norway
| | - Ayrun Nessa
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Samuel Wadge
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Maxim B Freidin
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- Department of Biology, Queen Mary University of London, London, UK
| | - David L Bennett
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Frances M K Williams
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| |
Collapse
|
2
|
Hamilton KR, McGill LS, Campbell CM, Lanzkron SM, Carroll CP, Latremoliere A, Haythornthwaite JA, Korczeniewska OA. Genetic contributions to pain modulation in sickle cell: A focus on single nucleotide polymorphisms. GENE REPORTS 2024; 36:101983. [PMID: 39219841 PMCID: PMC11361162 DOI: 10.1016/j.genrep.2024.101983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Background Despite recent advances in our knowledge of genetic contributions to the highly variable sickle cell disease (SCD) phenotype, our understanding of genetic factors associated with pain sensitivity in SCD remains limited. Previous studies investigated specific variants in single candidate genes and their association with SCD pain variability. The primary aim of the current study was to expand the genes and polymorphisms tested to discover new risk genes (polymorphisms) associated with central sensitization for individuals with SCD. Methods Adults with sickle cell disease (n = 59, Mage = 36.8 ± 11.5, 65.8 % female) underwent quantitative sensory testing to examine central sensitization and general pain sensitivity. Participants reported average crisis and non-crisis pain intensities weekly using a 0-100 scale, and provided salivary samples for genotyping. The Hardy-Weinberg equilibrium was verified for controls, and allele distributions were tested with chi-square and odds ratio tests. The Benjamini-Hochberg procedure was used to control for false discovery rate. Regression analyses and Wilcoxon tests were used to test associations for normally distributed and skewed data, respectively. Results Central sensitization and general pain sensitivity were not associated with hemoglobin genotype (Ps > 0.05). Of 4145 SNPs tested, following false discovery rate adjustments, 11 SNPs (rs11575839, rs12185625, rs12289836, rs1493383, rs2233976, rs3131787, rs3739693, rs4292454, rs4364, rs4678, rs6773307) were significantly associated with central sensitization, and one SNP (rs7778077) was significantly associated with average weekly non-crisis pain. No SNPs were associated with general pain sensitivity. Conclusions These findings provide insights into genetic variants association with average non-crisis pain and central sensitization for individuals with SCD, and may provide support for genetic predictors of heightened pain experience within SCD.
Collapse
Affiliation(s)
- Katrina R. Hamilton
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Lakeya S. McGill
- Department of Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Claudia M. Campbell
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Sophie M. Lanzkron
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - C. Patrick Carroll
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Alban Latremoliere
- Department of Neurosurgery, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Jennifer A. Haythornthwaite
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Olga A. Korczeniewska
- Center for Orofacial Pain and Temporomandibular Disorders, Department of Diagnostic Sciences, Rutgers School of Dental Medicine, Newark, NJ, USA
| |
Collapse
|
3
|
Xu F, Chen A, Pan S, Wu Y, He H, Han Z, Lu L, Orgil B, Chi X, Yang C, Jia S, Yu C, Mi J. Systems genetics analysis reveals the common genetic basis for pain sensitivity and cognitive function. CNS Neurosci Ther 2024; 30:e14557. [PMID: 38421132 PMCID: PMC10850811 DOI: 10.1111/cns.14557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/31/2023] [Accepted: 11/25/2023] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND There is growing evidence of a strong correlation between pain sensitivity and cognitive function under both physiological and pathological conditions. However, the detailed mechanisms remain largely unknown. In the current study, we sought to explore candidate genes and common molecular mechanisms underlying pain sensitivity and cognitive function with a transcriptome-wide association study using recombinant inbred mice from the BXD family. METHODS The pain sensitivity determined by Hargreaves' paw withdrawal test and cognition-related phenotypes were systematically analyzed in 60 strains of BXD mice and correlated with hippocampus transcriptomes, followed by quantitative trait locus (QTL) mapping and systems genetics analysis. RESULTS The pain sensitivity showed significant variability across the BXD strains and co-varies with cognitive traits. Pain sensitivity correlated hippocampual genes showed a significant involvement in cognition-related pathways, including glutamatergic synapse, and PI3K-Akt signaling pathway. Moreover, QTL mapping identified a genomic region on chromosome 4, potentially regulating the variation of pain sensitivity. Integrative analysis of expression QTL mapping, correlation analysis, and Bayesian network modeling identified Ring finger protein 20 (Rnf20) as the best candidate. Further pathway analysis indicated that Rnf20 may regulate the expression of pain sensitivity and cognitive function through the PI3K-Akt signaling pathway, particularly through interactions with genes Ppp2r2b, Ppp2r5c, Col9a3, Met, Rps6, Tnc, and Kras. CONCLUSIONS Our study demonstrated that pain sensitivity is associated with genetic background and Rnf20-mediated PI3K-Akt signaling may involve in the regulation of pain sensitivity and cognitive functions.
Collapse
Affiliation(s)
- Fuyi Xu
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and TreatmentBinzhou Medical UniversityYantaiChina
| | - Anran Chen
- The Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantaiChina
| | - Shuijing Pan
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and TreatmentBinzhou Medical UniversityYantaiChina
| | - Yingying Wu
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and TreatmentBinzhou Medical UniversityYantaiChina
| | - Hongjie He
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and TreatmentBinzhou Medical UniversityYantaiChina
| | - Zhe Han
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and TreatmentBinzhou Medical UniversityYantaiChina
| | - Lu Lu
- University of Tennessee Health Science CenterMemphisTennesseeUSA
| | | | - XiaoDong Chi
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and TreatmentBinzhou Medical UniversityYantaiChina
| | - Cunhua Yang
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and TreatmentBinzhou Medical UniversityYantaiChina
| | - Shushan Jia
- Department of AnesthesiologyYanTai Affiliated Hospital of BinZhou Medical UniversityYantaiChina
| | - Cuicui Yu
- The Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantaiChina
| | - Jia Mi
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and TreatmentBinzhou Medical UniversityYantaiChina
| |
Collapse
|
4
|
Fila M, Pawlowska E, Szczepanska J, Blasiak J. Epigenetic Connections of the TRPA1 Ion Channel in Pain Transmission and Neurogenic Inflammation - a Therapeutic Perspective in Migraine? Mol Neurobiol 2023; 60:5578-5591. [PMID: 37326902 PMCID: PMC10471718 DOI: 10.1007/s12035-023-03428-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
Persistent reprogramming of epigenetic pattern leads to changes in gene expression observed in many neurological disorders. Transient receptor potential cation channel subfamily A member 1 (TRPA1), a member of the TRP channels superfamily, is activated by many migraine triggers and expressed in trigeminal neurons and brain regions that are important in migraine pathogenesis. TRP channels change noxious stimuli into pain signals with the involvement of epigenetic regulation. The expression of the TRPA1 encoding gene, TRPA1, is modulated in pain-related syndromes by epigenetic alterations, including DNA methylation, histone modifications, and effects of non-coding RNAs: micro RNAs (miRNAs), long non-coding RNAs, and circular RNAs. TRPA1 may change epigenetic profile of many pain-related genes as it may modify enzymes responsible for epigenetic modifications and expression of non-coding RNAs. TRPA1 may induce the release of calcitonin gene related peptide (CGRP), from trigeminal neurons and dural tissue. Therefore, epigenetic regulation of TRPA1 may play a role in efficacy and safety of anti-migraine therapies targeting TRP channels and CGRP. TRPA1 is also involved in neurogenic inflammation, important in migraine pathogenesis. The fundamental role of TRPA1 in inflammatory pain transmission may be epigenetically regulated. In conclusion, epigenetic connections of TRPA1 may play a role in efficacy and safety of anti-migraine therapy targeting TRP channels or CGRP and they should be further explored for efficient and safe antimigraine treatment. This narrative/perspective review presents information on the structure and functions of TRPA1 as well as role of its epigenetic connections in pain transmission and potential in migraine therapy.
Collapse
Affiliation(s)
- Michal Fila
- Department of Developmental Neurology and Epileptology, Polish Mother's Memorial Hospital Research Institute, 93-338, Lodz, Poland
| | - Elzbieta Pawlowska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-217, Lodz, Poland
| | - Joanna Szczepanska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-217, Lodz, Poland
| | - Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, 90-236, Lodz, Poland.
| |
Collapse
|
5
|
Vetterlein A, Monzel M, Reuter M. Are catechol-O-methyltransferase gene polymorphisms genetic markers for pain sensitivity after all? - A review and meta-analysis. Neurosci Biobehav Rev 2023; 148:105112. [PMID: 36842714 DOI: 10.1016/j.neubiorev.2023.105112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 12/08/2022] [Accepted: 02/22/2023] [Indexed: 02/28/2023]
Abstract
The catechol-O-methyltransferase (COMT) gene has arguably been the designated pain sensitivity gene for nearly two decades. However, the literature provides inconsistent evidence. We performed several meta-analyses including k = 31 samples and n = 4631 participants thereby revealing small effects of rs4680 on pain thresholds in fibromyalgia, headache and across chronic pain conditions. Moreover, rs4680 effects were found across pain patients when affected, but not unaffected, body sites were assessed. No effect was detected for any other SNP investigated. Importantly, our results corroborate earlier findings in that we found a small effect of COMT haplotypes on pain sensitivity. Our review and meta-analysis contribute to the understanding of COMT-dependent effects on pain perception, provide insights into research issues and offer future directions. The results support the theory that rs4680 might only impact behavioural measures of pain when descending pain modulatory pathways are sufficiently challenged. After all, COMT polymorphisms are genetic markers of pain sensitivity, albeit with some limitations which are discussed with respect to their implications for research and clinical significance.
Collapse
Affiliation(s)
| | - Merlin Monzel
- Department of Psychology, University of Bonn, Germany
| | - Martin Reuter
- Department of Psychology, University of Bonn, Germany; Center for Economics and Neuroscience (CENs), Laboratory of Neurogenetics, University of Bonn, Germany
| |
Collapse
|
6
|
We need to talk: The urgent conversation on chronic pain, mental health, prescribing patterns and the opioid crisis. J Psychopharmacol 2023; 37:437-448. [PMID: 37171242 DOI: 10.1177/02698811221144635] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The opioid crisis’ pathways from first exposure onwards to eventual illnesses and fatalities are multiple, intertwined and difficult to dissect. Here, we offer a multidisciplinary appraisal of the relationships among mental health, chronic pain, prescribing patterns worldwide and the opioid crisis. Because the opioid crisis’ toll is especially harsh on young people, emphasis is given on data regarding the younger strata of the population. Because analgesic opioid prescription constitute a recognised entry point towards misuse, opioid use disorder, and ultimately overdose, prescribing patterns across different countries are examined as a modifiable hazard factor along these pathways of risk. Psychiatrists are called to play a more compelling role in this urgent conversation, as they are uniquely placed to provide synthesis and lead action among the different fields of knowledge and care that lie at the crossroads of the opioid crisis. Psychiatrists are also ideally positioned to gauge and disseminate the foundations for diagnosis and clinical management of mental conditions associated with chronic pain, including the identification of hazardous and protective factors. It is our hope to spark more interdisciplinary exchanges and encourage psychiatrists worldwide to become leaders in an urgent conversation with interlocutors from the clinical and basic sciences, policy makers and stakeholders including clients and their families.
Collapse
|
7
|
Lee LC, Chen YY, Li WC, Yang CJ, Liu CH, Low I, Chao HT, Chen LF, Hsieh JC. Adaptive neuroplasticity in the default mode network contributing to absence of central sensitization in primary dysmenorrhea. Front Neurosci 2023; 17:1094988. [PMID: 36845415 PMCID: PMC9947468 DOI: 10.3389/fnins.2023.1094988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/25/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction Primary dysmenorrhea (PDM), the most prevalent gynecological problem among women of reproductive age, presents as a regular pattern of cyclic menstrual pain. The presence or absence of central sensitization (i.e., pain hypersensitivity) in cases of PDM is a contentious issue. Among Caucasians, the presence of dysmenorrhea is associated with pain hypersensitivity throughout the menstrual cycle, indicating pain amplification mediated by the central nervous system. We previously reported on the absence of central sensitization to thermal pain among Asian PDM females. In this study, functional magnetic resonance imaging was used to reveal mechanisms underlying pain processing with the aim of explaining the absence of central sensitization in this population. Methods Brain responses to noxious heat applied to the left inner forearm of 31 Asian PDM females and 32 controls during their menstrual and periovulatory phases were analyzed. Results and discussion Among PDM females experiencing acute menstrual pain, we observed a blunted evoked response and de-coupling of the default mode network from the noxious heat stimulus. The fact that a similar response was not observed in the non-painful periovulatory phase indicates an adaptive mechanism aimed at reducing the impact of menstrual pain on the brain with an inhibitory effect on central sensitization. Here we propose that adaptive pain responses in the default mode network may contribute to the absence of central sensitization among Asian PDM females. Variations in clinical manifestations among different PDM populations can be attributed to differences in central pain processing.
Collapse
Affiliation(s)
- Lin-Chien Lee
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan,Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan,Department of Physical Medicine and Rehabilitation, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Ya-Yun Chen
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan,Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wei-Chi Li
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan,Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan,Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Ching-Ju Yang
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan,Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ching-Hsiung Liu
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan,Institute of Traditional Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan,Department of Neurology, Lotung Poh-Ai Hospital, Yilan, Taiwan
| | - Intan Low
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan,Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsiang-Tai Chao
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Li-Fen Chen
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan,Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan,Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jen-Chuen Hsieh
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan,Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan,Center for Intelligent Drug Systems and Smart Bio-Devices, National Yang Ming Chiao Tung University, Hsinchu, Taiwan,*Correspondence: Jen-Chuen Hsieh,
| |
Collapse
|
8
|
In memoriam. Pain 2021; 163:403-405. [DOI: 10.1097/j.pain.0000000000002567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Raibin K, Markus TE. Cutaneous allodynia in pediatric and adolescent patients and their mothers: A comparative study. Cephalalgia 2021; 42:579-589. [PMID: 34875881 DOI: 10.1177/03331024211062072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Allodynia in adults with migraine is related to disease duration. In pediatric patients with migraine, the same proportion reported allodynia in the first six months of migraine presentation as in prolonged disease. This study examined a possible association between migraine pediatric allodynia and maternal allodynia. METHODS We interviewed children with migraine first, and then their mothers, regarding allodynia and headache symptoms. We reviewed hospital charts on pediatric medical background and headache symptoms. Mothers and children older than 11 years filled the Strengths and Difficulties Questionnaire. RESULTS Ninety-eight children with migraine, mean age 13.49 ± 3.1 years, and their mothers, mean age 43.5 ± 6.2 years were recruited to the study. Pediatric allodynia was associated with maternal allodynia; the latter was reported in 82.8% of children with allodynia versus 35.3% of children without allodynia (p < 0.001). Maternal migraine was reported in 44 (68.7%) of children with allodynia versus 16.3% without allodynia, p < 0.001. No difference was found in Strengths and Difficulties Questionnaire scores, between children with and without allodynia. CONCLUSIONS Pediatric allodynia is associated with maternal migraine. Genetic and environmental factors such as maternal behavior may contribute to reduced pain threshold.
Collapse
Affiliation(s)
- Karine Raibin
- Pediatric Headache Clinic, Day Hospitalization Department, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel Research Ethics Committee of Rabin Medical Center (approval no. RMC-0294-18RMC)
| | - Tal Eidlitz Markus
- Pediatric Headache Clinic, Day Hospitalization Department, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel Research Ethics Committee of Rabin Medical Center (approval no. RMC-0294-18RMC)
| |
Collapse
|
10
|
Shin DA, Chang MC. A Review on Various Topics on the Thermal Grill Illusion. J Clin Med 2021; 10:jcm10163597. [PMID: 34441893 PMCID: PMC8396808 DOI: 10.3390/jcm10163597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 11/16/2022] Open
Abstract
The thermal grill illusion (TGI) is a paradoxical perception of burning heat and pain resulting from the simultaneous application of interlaced warm and cold stimuli to the skin. The TGI is considered a type of chronic centralized pain and has been used to apply nociceptive stimuli without inflicting harm to human participants in the study of pain mechanisms. In addition, the TGI is an interesting phenomenon for researchers, and various topics related to the TGI have been investigated in several studies, which we will review here. According to previous studies, the TGI is generated by supraspinal interactions. To evoke the TGI, cold and warm cutaneous stimuli should be applied within the same dermatome or across dermatomes corresponding to adjacent spinal segments, and a significant difference between cold and warm temperatures is necessary. In addition, due the presence of chronic pain, genetic factors, and sexual differences, the intensity of the TGI can differ. In addition, cold noxious stimulation, topical capsaicin, analgesics, self-touch, and the presence of psychological diseases can decrease the intensity of the TGI. Because the TGI corresponds to chronic centralized pain, we believe that the findings of previous studies can be applied to future studies to identify chronic pain mechanisms and clinical practice for pain management.
Collapse
Affiliation(s)
- Dong Ah Shin
- Department of Neurosurgery, College of Medicine, Yonsei University, Seodaemun-gu, Seoul 03722, Korea;
| | - Min Cheol Chang
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Namku, Taegu 42415, Korea
- Correspondence: ; Tel.: +82-53-620-4682
| |
Collapse
|
11
|
Aroke EN, Overstreet DS, Penn TM, Crossman DK, Jackson P, Tollefsbol TO, Quinn TL, Yi N, Goodin BR. Identification of DNA methylation associated enrichment pathways in adults with non-specific chronic low back pain. Mol Pain 2021; 16:1744806920972889. [PMID: 33169629 PMCID: PMC7658508 DOI: 10.1177/1744806920972889] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chronic low back pain (cLBP) that cannot be attributable to a specific pathoanatomical change is associated with high personal and societal costs. Still, the underlying mechanism that causes and sustains such a phenotype is largely unknown. Emerging evidence suggests that epigenetic changes play a role in chronic pain conditions. Using reduced representation bisulfite sequencing (RRBS), we evaluated DNA methylation profiles of adults with non-specific cLBP (n = 50) and pain-free controls (n = 48). We identified 28,325 hypermethylated and 36,936 hypomethylated CpG sites (p < 0.05). After correcting for multiple testing, we identified 159 DMRs (q < 0.01and methylation difference > 10%), the majority of which were located in CpG island (50%) and promoter regions (48%) on the associated genes. The genes associated with the differentially methylated regions were highly enriched in biological processes that have previously been implicated in immune signaling, endochondral ossification, and G-protein coupled transmissions. Our findings support inflammatory alterations and the role of bone maturation in cLBP. This study suggests that epigenetic regulation has an important role in the pathophysiology of non-specific cLBP and a basis for future studies in biomarker development and targeted interventions.
Collapse
Affiliation(s)
- Edwin N Aroke
- School of Nursing, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Demario S Overstreet
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Terence M Penn
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David K Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Pamela Jackson
- School of Nursing, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tammie L Quinn
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nengjun Yi
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Burel R Goodin
- School of Nursing, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
12
|
Springborg AD, Wessel CR, Andersen LPK, Werner MU. Methodology and applicability of the human contact burn injury model: A systematic review. PLoS One 2021; 16:e0254790. [PMID: 34329326 PMCID: PMC8323928 DOI: 10.1371/journal.pone.0254790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 07/06/2021] [Indexed: 11/24/2022] Open
Abstract
The contact burn injury model is an experimental contact thermode-based physiological pain model primarily applied in research of drug efficacy in humans. The employment of the contact burn injury model across studies has been inconsistent regarding essential methodological variables, challenging the validity of the model. This systematic review analyzes methodologies, outcomes, and research applications of the contact burn injury model. Based on these results, we propose an improved contact burn injury testing paradigm. A literature search was conducted (15-JUL-2020) using PubMed, EMBASE, Web of Science, and Google Scholar. Sixty-four studies were included. The contact burn injury model induced consistent levels of primary and secondary hyperalgesia. However, the analyses revealed variations in the methodology of the contact burn injury heating paradigm and the post-burn application of test stimuli. The contact burn injury model had limited testing sensitivity in demonstrating analgesic efficacy. There was a weak correlation between experimental and clinical pain intensity variables. The data analysis was limited by the methodological heterogenicity of the different studies and a high risk of bias across the studies. In conclusion, although the contact burn injury model provides robust hyperalgesia, it has limited efficacy in testing analgesic drug response. Recommendations for future use of the model are being provided, but further research is needed to improve the sensitivity of the contact burn injury method. The protocol for this review has been published in PROSPERO (ID: CRD42019133734).
Collapse
Affiliation(s)
- Anders Deichmann Springborg
- Department of Anesthesia, Multidisciplinary Pain Center, Pain and Respiratory Support, Neuroscience Center, Copenhagen University Hospital, Copenhagen, Denmark
- * E-mail:
| | - Caitlin Rae Wessel
- Department of Physiology, University of Kentucky, Lexington, KY, United States of America
| | - Lars Peter Kloster Andersen
- Department of Anaesthesia and Intensive Care, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Mads Utke Werner
- Department of Anesthesia, Multidisciplinary Pain Center, Pain and Respiratory Support, Neuroscience Center, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
13
|
Kastrati G, Rosén J, Thompson WH, Chen X, Larsson H, Nichols TE, Tracey I, Fransson P, Åhs F, Jensen KB. Genetic Influence on Nociceptive Processing in the Human Brain-A Twin Study. Cereb Cortex 2021; 32:266-274. [PMID: 34289027 PMCID: PMC8754385 DOI: 10.1093/cercor/bhab206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/28/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
Nociceptive processing in the human brain is complex and involves several brain structures and varies across individuals. Determining the structures that contribute to interindividual differences in nociceptive processing is likely to improve our understanding of why some individuals feel more pain than others. Here, we found specific parts of the cerebral response to nociception that are under genetic influence by employing a classic twin-design. We found genetic influences on nociceptive processing in the midcingulate cortex and bilateral posterior insula. In addition to brain activations, we found genetic contributions to large-scale functional connectivity (FC) during nociceptive processing. We conclude that additive genetics influence specific brain regions involved in nociceptive processing. The genetic influence on FC during nociceptive processing is not limited to core nociceptive brain regions, such as the dorsal posterior insula and somatosensory areas, but also involves cognitive and affective brain circuitry. These findings improve our understanding of human pain perception and increases chances to find new treatments for clinical pain.
Collapse
Affiliation(s)
- Gránit Kastrati
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 77, Stockholm, Sweden.,Department of Psychology and Social Work, Mid Sweden University, SE-831 25, Östersund, Sweden
| | - Jörgen Rosén
- Department of Psychology and Social Work, Mid Sweden University, SE-831 25, Östersund, Sweden
| | - William H Thompson
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Xu Chen
- Department of Biomedical Data Sciences, Leiden University Medical Center, 2300 RA, Leiden, the Netherlands
| | - Henrik Larsson
- Department of Medical Sciences, Örebro University, SE--701 82, Örebro, Sweden
| | - Thomas E Nichols
- Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Population Health, University of Oxford, OX3 7LF, Oxford, UK
| | - Irene Tracey
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
| | - Peter Fransson
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Fredrik Åhs
- Department of Psychology and Social Work, Mid Sweden University, SE-831 25, Östersund, Sweden
| | - Karin B Jensen
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| |
Collapse
|
14
|
Abstract
Pain is an immense clinical and societal challenge, and the key to understanding and treating it is variability. Robust interindividual differences are consistently observed in pain sensitivity, susceptibility to developing painful disorders, and response to analgesic manipulations. This review examines the causes of this variability, including both organismic and environmental sources. Chronic pain development is a textbook example of a gene-environment interaction, requiring both chance initiating events (e.g., trauma, infection) and more immutable risk factors. The focus is on genetic factors, since twin studies have determined that a plurality of the variance likely derives from inherited genetic variants, but sex, age, ethnicity, personality variables, and environmental factors are also considered.
Collapse
Affiliation(s)
- Jeffrey S Mogil
- Departments of Psychology and Anesthesia, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 1B1, Canada;
| |
Collapse
|
15
|
Li X, Xu YC, Tian YQ, Zhang PA, Hu SF, Wang LH, Jiang XH, Xu GY. Downregulation of GRK6 in arcuate nucleus promotes chronic visceral hypersensitivity via NF-κB upregulation in adult rats with neonatal maternal deprivation. Mol Pain 2021; 16:1744806920930858. [PMID: 32484026 PMCID: PMC7268126 DOI: 10.1177/1744806920930858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
AIMS The arcuate nucleus is a vital brain region for coursing of pain command. G protein-coupled kinase 6 (GRK6) accommodates signaling through G protein-coupled receptors. Studies have demonstrated that GRK6 is involved in inflammatory pain and neuropathic pain. The present study was designed to explore the role and the underlying mechanism of GRK6 in arcuate nucleus of chronic visceral pain. METHODS Chronic visceral pain of rats was induced by neonatal maternal deprivation and evaluated by monitoring the threshold of colorectal distension. Western blotting, immunofluorescence, real-time quantitative polymerase chain reaction techniques, and Nissl staining were employed to determine the expression and mutual effect of GRK6 with nuclear factor κB (NF-κB). RESULTS Expression of GRK6 in arcuate nucleus was significantly reduced in neonatal maternal deprivation rats when compared with control rats. GRK6 was mainly expressed in arcuate nucleus neurons, but not in astrocytes, and a little in microglial cells. Neonatal maternal deprivation reduced the percentage of GRK6-positive neurons of arcuate nucleus. Overexpression of GRK6 by Lentiviral injection into arcuate nucleus reversed chronic visceral pain in neonatal maternal deprivation rats. Furthermore, the expression of NF-κB in arcuate nucleus was markedly upregulated in neonatal maternal deprivation rats. NF-κB selective inhibitor pyrrolidine dithiocarbamate suppressed chronic visceral pain in neonatal maternal deprivation rats. GRK6 and NF-κB were expressed in the arcuate nucleus neurons. Importantly, overexpression of GRK6 reversed NF-κB expression at the protein level. In contrast, injection of pyrrolidine dithiocarbamate once daily for seven consecutive days did not alter GRK6 expression in arcuate nucleus of neonatal maternal deprivation rats. CONCLUSIONS Present data suggest that GRK6 might be a pivotal molecule participated in the central mechanisms of chronic visceral pain, which might be mediated by inhibiting NF-κB signal pathway. Overexpression of GRK6 possibly represents a potential strategy for therapy of chronic visceral pain.
Collapse
Affiliation(s)
- Xin Li
- Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, P. R. China.,Center for Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, P. R. China
| | - Yu-Cheng Xu
- Center for Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, P. R. China
| | - Yuan-Qin Tian
- Center for Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, P. R. China
| | - Ping-An Zhang
- Center for Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, P. R. China
| | - Shu-Fen Hu
- Center for Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, P. R. China
| | - Lin-Hui Wang
- Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, P. R. China
| | - Xing-Hong Jiang
- Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, P. R. China
| | - Guang-Yin Xu
- Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, P. R. China.,Center for Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, P. R. China
| |
Collapse
|
16
|
Lawn T, Aman Y, Rukavina K, Sideris-Lampretsas G, Howard M, Ballard C, Ray Chaudhuri K, Malcangio M. Pain in the neurodegenerating brain: insights into pharmacotherapy for Alzheimer disease and Parkinson disease. Pain 2021; 162:999-1006. [PMID: 33239526 PMCID: PMC7977618 DOI: 10.1097/j.pain.0000000000002111] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/18/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Timothy Lawn
- Centre for Neuroimaging Sciences, The Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Yahyah Aman
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Katarina Rukavina
- The Maurice Wohl Clinical Neuroscience Institute, The Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
- Parkinson Foundation Centre of Excellence, King's College Hospital, London, United Kingdom
| | - George Sideris-Lampretsas
- Wolfson Centre for Age Related Diseases, The Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Matthew Howard
- Centre for Neuroimaging Sciences, The Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | | | - Kallol Ray Chaudhuri
- The Maurice Wohl Clinical Neuroscience Institute, The Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
- Parkinson Foundation Centre of Excellence, King's College Hospital, London, United Kingdom
| | - Marzia Malcangio
- Wolfson Centre for Age Related Diseases, The Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
17
|
Eccleston C, Fisher E, Howard RF, Slater R, Forgeron P, Palermo TM, Birnie KA, Anderson BJ, Chambers CT, Crombez G, Ljungman G, Jordan I, Jordan Z, Roberts C, Schechter N, Sieberg CB, Tibboel D, Walker SM, Wilkinson D, Wood C. Delivering transformative action in paediatric pain: a Lancet Child & Adolescent Health Commission. THE LANCET. CHILD & ADOLESCENT HEALTH 2021; 5:47-87. [PMID: 33064998 DOI: 10.1016/s2352-4642(20)30277-7] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/30/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Christopher Eccleston
- Centre for Pain Research, University of Bath, Bath, UK; Cochrane Pain, Palliative, and Supportive Care Review Groups, Churchill Hospital, Oxford, UK; Department of Clinical-Experimental and Health Psychology, Ghent University, Ghent, Belgium.
| | - Emma Fisher
- Centre for Pain Research, University of Bath, Bath, UK; Cochrane Pain, Palliative, and Supportive Care Review Groups, Churchill Hospital, Oxford, UK
| | - Richard F Howard
- Department of Anaesthesia and Pain Medicine, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK; Clinical Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Rebeccah Slater
- Department of Paediatrics, University of Oxford, Oxford, UK; Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Paula Forgeron
- School of Nursing, Faculty of Health Sciences, University of Ottawa, ON, Canada
| | - Tonya M Palermo
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA; Center for Child Health, Behavior and Development, Seattle Children's Research Institute, Seattle, WA, USA
| | - Kathryn A Birnie
- Department of Anesthesiology, Perioperative and Pain Medicine, University of Calgary, AB, Canada
| | - Brian J Anderson
- Department of Anaesthesiology, University of Auckland, Auckland, New Zealand
| | - Christine T Chambers
- Department of Psychology and Neuroscience, and Department of Pediatrics, Dalhousie University, Halifax, NS, Canada; Centre for Pediatric Pain Research, IWK Health Centre, Halifax, NS, Canada
| | - Geert Crombez
- Department of Clinical-Experimental and Health Psychology, Ghent University, Ghent, Belgium
| | - Gustaf Ljungman
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | | | | | | | - Neil Schechter
- Division of Pain Medicine, Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, Boston, MA, USA; Department of Anesthesiology, Harvard Medical School, Boston, MA, USA
| | - Christine B Sieberg
- Division of Pain Medicine, Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, Boston, MA, USA; Department of Psychiatry, Boston Children's Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Dick Tibboel
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Suellen M Walker
- Department of Anaesthesia and Pain Medicine, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK; Clinical Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Dominic Wilkinson
- Oxford Uehiro Centre for Practical Ethics, Faculty of Philosophy, University of Oxford, Oxford, UK; John Radcliffe Hospital, Oxford, UK; Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Chantal Wood
- Department of Spine Surgery and Neuromodulation, Poitiers University Hospital, Poitiers, France
| |
Collapse
|
18
|
Hsiao FJ, Chen WT, Liu HY, Wang YF, Chen SP, Lai KL, Pan LLH, Wang SJ. Individual pain sensitivity is associated with resting-state cortical activities in healthy individuals but not in patients with migraine: a magnetoencephalography study. J Headache Pain 2020; 21:133. [PMID: 33198621 PMCID: PMC7670775 DOI: 10.1186/s10194-020-01200-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 11/10/2020] [Indexed: 11/19/2022] Open
Abstract
Background Pain sensitivity may determine the risk, severity, prognosis, and efficacy of treatment of clinical pain. Magnetic resonance imaging studies have linked thermal pain sensitivity to changes in brain structure. However, the neural correlates of mechanical pain sensitivity remain to be clarified through investigation of direct neural activities on the resting-state cortical oscillation and synchrony. Methods We recorded the resting-state magnetoencephalographic (MEG) activities of 27 healthy individuals and 30 patients with episodic migraine (EM) and analyzed the source-based oscillatory powers and functional connectivity at 2 to 59 Hz in pain-related cortical regions, which are the bilateral anterior cingulate cortex (ACC), medial orbitofrontal (MOF) cortex, lateral orbitofrontal (LOF) cortex, insula cortex, primary somatosensory cortex (SI), primary motor cortex (MI), and posterior cingulate cortex (PCC). The mechanical punctate pain threshold (MPPT) was obtained at the supraorbital area (the first branch of the trigeminal nerve dermatome, V1) and the forearm (the first thoracic nerve dermatome, T1) and further correlated with MEG measures. Results The MPPT is inversely correlated with the resting-state relative powers of gamma oscillation in healthy individuals (all corrected P < 0.05). Specifically, inverse correlation was noted between the MPPT at V1 and gamma powers in the bilateral insula (r = − 0.592 [left] and − 0.529 [right]), PCC (r = − 0.619 and − 0.541) and MI (r = − 0.497 and − 0.549) and between the MPPT at T1 and powers in the left PCC (r = − 0.561) and bilateral MI (r = − 0.509 and − 0.520). Furthermore, resting-state functional connectivity at the delta to beta bands, especially between frontal (MOF, ACC, LOF, and MI), parietal (PCC), and sensorimotor (bilateral SI and MI) regions, showed a positive correlation with the MPPT at V1 and T1 (all corrected P < 0.05). By contrast, in patients with EM, the MPPT was not associated with resting-state cortical activities. Conclusions Pain sensitivity in healthy individuals is associated with the resting-state gamma oscillation and functional connectivity in pain-related cortical regions. Further studies must be conducted in a large population to confirm whether resting-state cortical activities can be an objective measurement of pain sensitivity in individuals without clinical pain. Supplementary Information The online version contains supplementary material available at 10.1186/s10194-020-01200-8.
Collapse
Affiliation(s)
- Fu-Jung Hsiao
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan.
| | - Wei-Ta Chen
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hung-Yu Liu
- School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yen-Feng Wang
- School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Pin Chen
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kuan-Lin Lai
- School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Li-Ling Hope Pan
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Shuu-Jiun Wang
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan. .,School of Medicine, National Yang-Ming University, Taipei, Taiwan. .,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
19
|
Yeo J, Sia AT, Sultana R, Sng BL, Tan EC. Analysis of SCN9A Gene Variants for Acute and Chronic Postoperative Pain and Morphine Consumption After Total Hysterectomy. PAIN MEDICINE 2020; 21:2642-2649. [PMID: 32403129 DOI: 10.1093/pm/pnaa109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
BACKGROUND Single nucleotide polymorphisms (SNPs) of the voltage-gated sodium channel alpha subunit gene (SCN9A) have been associated with pain in various settings. The aim of this study was to investigate the association of the SNPs to evaluate the influence of common gene variants on chronic postoperative pain (CPSP) and other related pain variables in a cohort of patients who underwent a scheduled hysterectomy. METHODS DNA samples from a cohort of 1,075 patients who underwent a scheduled total hysterectomy in our hospital were genotyped for three common SCN9A SNPs using TaqMan assays. Multivariate logistic regression models were used to quantify the association between independent covariates such as pain threshold, pain endurance, pain scores, morphine use, and the presence of chronic pain. RESULTS Frequencies of the minor alleles were different between the different ethnic groups. There was a statistically significant association of rs16851799 with morphine consumption and self-reported postoperative pain for the 1,038 subjects genotyped, with the TT genotype reporting higher pain and using more morphine. For the subpopulation of 446 subjects with chronic pain data, there was a similar association with self-reported postoperative pain and tolerance of pressure pain. Univariate analysis also showed a statistically significant association of rs16851799 with CPSP, whereas multivariable analysis revealed a similar association of rs4387806 with this outcome. There were three haplotypes with different relative frequencies for the CPSP and non-CPSP groups. CONCLUSIONS Our results showed that SCN9A polymorphisms could play a role in acute pain perception and the susceptibility to chronic pain.
Collapse
Affiliation(s)
| | - Alex T Sia
- Department of Women's Anaesthesia, KK Women's and Children's Hospital, Singapore
| | - Rehana Sultana
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore
| | - Ban Leong Sng
- Department of Women's Anaesthesia, KK Women's and Children's Hospital, Singapore
| | - Ene-Choo Tan
- Research Laboratory, KK Women's and Children's Hospital and Paediatrics Academic Clinical Programme, SingHealth Duke-NUS Medical School, Singapore
| |
Collapse
|
20
|
Pinto Fiamengui LMS, Furquim BD, De la Torre Canales G, Fonseca Carvalho Soares F, Poluha RL, Palanch Repeke CE, Bonjardim LR, Garlet GP, Rodrigues Conti PC. Role of inflammatory and pain genes polymorphisms in temporomandibular disorder and pressure pain sensitivity. Arch Oral Biol 2020; 118:104854. [PMID: 32763472 DOI: 10.1016/j.archoralbio.2020.104854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 01/03/2023]
Abstract
OBJECTIVE The aim of this study was to assess the correlation of inflammatory and pain genes polymorphisms with the presence of temporomandibular disorder (TMD) patients and with pressure pain sensitivity. DESIGN Data was collected from 268 consecutive subjects at Bauru School of Dentistry. Subjects aged younger than 20 years, with dental and neuropathic pain, sinusitis, cognitive and neurologic disorder were excluded. Included subjects were evaluated using the Research Diagnostic Criteria for Temporomandibular disorders and divided into two groups: TMD cases and healthy controls. Groups were submitted to pressure pain threshold (PPT) test for the temporomandibular joint, anterior temporalis and masseter muscles and genotyped for Val158Met, IL6-174, IL-1β-3954 and TNFA-308. Student's t-test and Pearson chi-square test were used to comparisons between groups. A linear multiple regression was used to evaluate the influence of genetics variables on the PPT and a bivariate analysis was used to assesses the influence of genetics variables on pain sensitivity below the PPT cut off of the structures in TMD group. RESULTS TMD group showed significantly lower PPT values for all structures when compared with control group (p < 0.001). SNP IL6-174 predicted higher pain sensitivity in the temporomandibular joint (p < 0.005) and in anterior temporalis muscle (p < 0.044) and SNP Val158Met in the masseter muscle (p < 0.038); when TMD group was divided according to PPT cut-off values the SNP Val158Met influenced increase pain sensibility in the masseter muscle. CONCLUSION TNFA-308 was associated with TMD and SNP IL6-174 and SNP Val158Met influenced pain sensitivity of patients with TMD.
Collapse
Affiliation(s)
| | - Bruno D'Aurea Furquim
- Bauru Orofacial Pain Group, Department of Prosthodontics, Bauru School of Dentistry, University of São Paulo, Sao Paulo, Brazil
| | - Giancarlo De la Torre Canales
- Bauru Orofacial Pain Group, Department of Prosthodontics, Bauru School of Dentistry, University of São Paulo, Sao Paulo, Brazil.
| | - Flávia Fonseca Carvalho Soares
- Bauru Orofacial Pain Group, Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Sao Paulo, Brazil
| | - Rodrigo Lorenzi Poluha
- Bauru Orofacial Pain Group, Department of Prosthodontics, Bauru School of Dentistry, University of São Paulo, Sao Paulo, Brazil
| | | | - Leonardo Rigoldi Bonjardim
- Bauru Orofacial Pain Group, Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Sao Paulo, Brazil
| | | | - Paulo César Rodrigues Conti
- Bauru Orofacial Pain Group, Department of Prosthodontics, Bauru School of Dentistry, University of São Paulo, Sao Paulo, Brazil
| |
Collapse
|
21
|
Abstract
Experimental and clinical acute pain research in relation to biological sex and genetics started in the 1980s. Research methods became more powerful and sensitive with the advancement in affordable gene sequencing methods and high-throughput genetic assays. Decades of research has identified several potential pharmaceutical targets, providing insights into future research direction, and understanding of acute pain and opioid analgesic effects in the clinical setting. However, there is insufficient evidence to make generalized recommendations for using genetic tests for clinical practice of acute pain management.
Collapse
Affiliation(s)
- Albert Hyukjae Kwon
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Room H3580, Stanford, CA 94305, USA
| | - Pamela Flood
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Room H3580, Stanford, CA 94305, USA.
| |
Collapse
|
22
|
Khan WU, Michelini G, Battaglia M. Twin studies of the covariation of pain with depression and anxiety: A systematic review and re-evaluation of critical needs. Neurosci Biobehav Rev 2020; 111:135-148. [DOI: 10.1016/j.neubiorev.2020.01.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/13/2019] [Accepted: 01/15/2020] [Indexed: 01/21/2023]
|
23
|
Chidambaran V, Ashton M, Martin LJ, Jegga AG. Systems biology-based approaches to summarize and identify novel genes and pathways associated with acute and chronic postsurgical pain. J Clin Anesth 2020; 62:109738. [PMID: 32058259 DOI: 10.1016/j.jclinane.2020.109738] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/26/2019] [Accepted: 01/25/2020] [Indexed: 12/15/2022]
Abstract
STUDY OBJECTIVE To employ systems biology-based machine learning to identify biologic processes over-represented with genetic variants (gene enrichment) implicated in post-surgical pain. DESIGN Informed systems biology based integrative computational analyses. SETTING Pediatric research and teaching institution. INTERVENTIONS Pubmed search (01/01/2001-10/31/2017) was performed to identify "training" genes associated with postoperative pain in humans. Candidate genes were identified and prioritized using Toppgene suite, based on functional enrichment using several gene ontology annotations, and curated gene sets associated with mouse phenotype-knockout studies. MEASUREMENTS Computationally top-ranked candidate genes and literature-curated genes were included in pathway enrichment analyses. Hierarchical clustering was used to visualize select functional enrichment results between the two phenotypes. MAIN RESULTS Literature review identified 38 training genes associated with postoperative pain and 31 with CPSP. We identified 2610 prioritized novel candidate genes likely associated with acute and chronic postsurgical pain, the top 10th percentile jointly enriched (p 0.05; Benjamini-Hochberg correction) several pathways, topmost being cAMP response element-binding protein and ion channel pathways. Heat maps demonstrated enrichment of inflammatory/drug metabolism processes in acute postoperative pain and immune mechanisms in CPSP. CONCLUSION High interindividual variability in pain responses immediately after surgery and risk for CPSP suggests genetic susceptibility. Lack of large homogenous sample sizes have led to underpowered genetic association studies. Systems biology can be leveraged to integrate genetic-level data with biologic processes to generate prioritized candidate gene lists and understand novel biological pathways involved in acute postoperative pain and CPSP. Such data would be key to informing future polygenic studies with targeted genome wide profiling. This study demonstrates the utility of functional annotation - based prioritization and enrichment approaches and identifies novel genes and unique/shared biological processes involved in acute and chronic postoperative pain. Results provide framework for future targeted genetic profiling of CPSP risk, to enable preventive and therapeutic approaches.
Collapse
Affiliation(s)
- Vidya Chidambaran
- Department of Anesthesiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Maria Ashton
- Department of Anesthesiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Lisa J Martin
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Anil G Jegga
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
24
|
Loke MF, Wei H, Yeo J, Sng BL, Sia AT, Tan EC. Deep sequencing analysis to identify novel and rare variants in pain-related genes in patients with acute postoperative pain and high morphine use. J Pain Res 2019; 12:2755-2770. [PMID: 31571979 PMCID: PMC6756825 DOI: 10.2147/jpr.s213869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/01/2019] [Indexed: 01/04/2023] Open
Abstract
Purpose Most of the genetic variants that are reported to be associated with common pain phenotypes and analgesic use are common polymorphisms. The objective of our study was to identify new variants and investigate less common genetic variants that are usually not included in either small single-gene studies or high-throughput genotyping arrays. Patients and methods From a cohort of 1075 patients who underwent a scheduled total abdominal hysterectomy, 92 who had higher self-rated pain scores and used more morphine were selected for the re-sequencing of 105 genes. Results We identified over 2400 variants in 104 genes. Most were intronic with frequencies >5%. There were 181 novel variants, of which 30 were located in exons: 17 nonsynonymous, 10 synonymous, 2 non-coding RNA, and 1 stop-gain. For known variants that are rare (population frequency <1%), the frequencies of 54 exonic variants and eight intronic variants for the sequenced samples were higher than the weighted frequencies in the Genome Aggregation Database for East and South Asians (P-values ranging from 0.000 to 0.046). Overall, patients who had novel and/or rare variants used more morphine than those who only had common variants. Conclusion Our study uncovered novel variants in patients who reported higher pain and used more morphine. Compared with the general population, rare variants were more common in this group.
Collapse
Affiliation(s)
- Mun-Fai Loke
- Research Laboratory, KK Women's & Children's Hospital, Singapore, Singapore
| | - Heming Wei
- Research Laboratory, KK Women's & Children's Hospital, Singapore, Singapore
| | - Junjie Yeo
- Duke-NUS Medical School, Singapore, Singapore
| | - Ban-Leong Sng
- Department of Women's Anaesthesia, KK Women's & Children's Hospital, Singapore, Singapore
| | - Alex T Sia
- Department of Women's Anaesthesia, KK Women's & Children's Hospital, Singapore, Singapore
| | - Ene-Choo Tan
- Research Laboratory, KK Women's & Children's Hospital, Singapore, Singapore
| |
Collapse
|
25
|
Colloca L, Wang Y, Martinez PE, Christy Chang YP, Ryan KA, Hodgkinson C, Goldman D, Dorsey SG. OPRM1 rs1799971, COMT rs4680, and FAAH rs324420 genes interact with placebo procedures to induce hypoalgesia. Pain 2019; 160:1824-1834. [PMID: 31335650 PMCID: PMC6668362 DOI: 10.1097/j.pain.0000000000001578] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Genetics studies on the placebo hypoalgesic effect highlight a promising link between single nucleotide polymorphisms (SNPs) in the dopamine, opioid, and endocannabinoid genes and placebo hypoalgesia. However, epistasis and replication studies are missing. In this study, we expanded on previous findings related to the 3 SNPs in the opioid receptor mu subunit (OPRM1 rs1799971), catechol-O-methyltransferase (COMT rs4680), and fatty acid amide hydrolase (FAAH rs324420) genes associated with placebo hypoalgesia and tested the effect of a 3-way interaction on placebo hypoalgesia. Using 2 well-established placebo procedures (verbal suggestion and learning paradigm), we induced significant placebo hypoalgesic effects in 160 healthy participants. We found that individuals with OPRM1 AA combined with FAAH Pro/Pro and those carrying COMT met/met together with FAAH Pro/Pro showed significant placebo effects. Participants with COMT met/val alleles showed significant placebo effects independently of OPRM1 and FAAH allele combinations. Finally, the model that included the placebo procedure and genotypes predicted placebo responsiveness with a higher accuracy (area under the curve, AUC = 0.773) as compared to the SNPs alone indicating that genetic variants can only partially explain the placebo responder status. Our results suggest that the endogenous mu-opioid system with a larger activation in response to pain in the met/val allele carriers as well as the synergism between endogenous mu-opioid system and cannabinoids might play the most relevant role in driving hypoalgesic responses. Future epistasis studies with larger sample sizes will help us to fully understand the complexity of placebo effects and explain the mechanisms that underlie placebo responsiveness.
Collapse
Affiliation(s)
- Luana Colloca
- Department of Pain and Translational Symptom Science, School of Nursing, University of Maryland, Baltimore, USA
- Departments of Anesthesiology and Psychiatry, School of Medicine, University of Maryland, Baltimore, University of Maryland, Baltimore, USA
- Center to Advance Chronic Pain Research, University of Maryland, Baltimore, USA
| | - Yang Wang
- Department of Pain and Translational Symptom Science, School of Nursing, University of Maryland, Baltimore, USA
- Center to Advance Chronic Pain Research, University of Maryland, Baltimore, USA
| | | | | | | | - Colin Hodgkinson
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA
| | - David Goldman
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA
| | - Susan G. Dorsey
- Department of Pain and Translational Symptom Science, School of Nursing, University of Maryland, Baltimore, USA
- Departments of Anesthesiology and Psychiatry, School of Medicine, University of Maryland, Baltimore, University of Maryland, Baltimore, USA
- Center to Advance Chronic Pain Research, University of Maryland, Baltimore, USA
| |
Collapse
|
26
|
Mills SEE, Nicolson KP, Smith BH. Chronic pain: a review of its epidemiology and associated factors in population-based studies. Br J Anaesth 2019; 123:e273-e283. [PMID: 31079836 PMCID: PMC6676152 DOI: 10.1016/j.bja.2019.03.023] [Citation(s) in RCA: 750] [Impact Index Per Article: 150.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/22/2019] [Indexed: 12/18/2022] Open
Abstract
Chronic pain is a common, complex, and distressing problem that has a profound impact on individuals and society. It frequently presents as a result of a disease or an injury; however, it is not merely an accompanying symptom, but rather a separate condition in its own right, with its own medical definition and taxonomy. Studying the distribution and determinants of chronic pain allows us to understand and manage the problem at the individual and population levels. Targeted and appropriate prevention and management strategies need to take into account the biological, psychological, socio-demographic, and lifestyle determinants and outcomes of pain. We present a narrative review of the current understanding of these factors.
Collapse
Affiliation(s)
- Sarah E E Mills
- Population Health and Genomics Division, University of Dundee School of Medicine, Ninewells Hospital and Medical School, Dundee, Scotland, UK.
| | - Karen P Nicolson
- Population Health and Genomics Division, University of Dundee School of Medicine, Ninewells Hospital and Medical School, Dundee, Scotland, UK
| | - Blair H Smith
- Population Health and Genomics Division, University of Dundee School of Medicine, Ninewells Hospital and Medical School, Dundee, Scotland, UK
| |
Collapse
|
27
|
Chidambaran V, Zhang X, Geisler K, Stubbeman BL, Chen X, Weirauch MT, Meller J, Ji H. Enrichment of Genomic Pathways Based on Differential DNA Methylation Associated With Chronic Postsurgical Pain and Anxiety in Children: A Prospective, Pilot Study. THE JOURNAL OF PAIN 2019; 20:771-785. [PMID: 30639570 PMCID: PMC6616015 DOI: 10.1016/j.jpain.2018.12.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/23/2018] [Accepted: 12/14/2018] [Indexed: 12/13/2022]
Abstract
We have reported child anxiety sensitivity (Child Anxiety Sensitivity Index [CASI]) predicts chronic postsurgical pain (CPSP). Herein, we evaluated DNA methylation profiles to understand the gene-environment interactions underlying CPSP and CASI, to identify shared, enriched, genomic pathways. In 73 prospectively recruited adolescents undergoing spine fusion, preoperative CASI and pain data over 12 months after surgery were collected. DNA from the peripheral blood of evaluable subjects with (n = 16) and without CPSP (n = 40) were analyzed using MethylationEPIC arrays. We identified 637 and 2,445 differentially DNA methylated positions (DMPs) associated with CPSP and CASI, respectively (P ≤ .05). Ingenuity pathway analysis of 39 genes with DMPs for both CPSP and CASI revealed enrichment of several canonical pathways, including GABA receptor (P = .00016 for CPSP; P =.0008 for CASI) and dopamine-DARPP32 feedback in cyclic adenosine monophosphate (P = .004 for CPSP and P =.00003 for CASI) signaling. Gene-gene interaction network enrichment analysis revealed participation of pathways in cell signaling, molecular transport, metabolism, and neurologic diseases (P < 10-8). Bioinformatic approaches to identify histone marks and transcription factor (TF) binding events underlying DMPs, showed their location in active regulatory regions in pain pathway relevant brain cells. Using Enrichr/Pinet enrichment and Library of Integrated Network-Based Cellular Signatures knockdown signatures, we identified TFs regulating genes with DMPs in association with CPSP and CASI. In conclusion, we identified epigenetically enriched pathways associated with CPSP and anxiety sensitivity in children undergoing surgery. Our findings support GABA hypofunction and the roles of the dopamine-DARPP32 pathway in emotion/reward and pain. This pilot study provides new epigenetic insights into the pathophysiology of CPSP and a basis for future studies in biomarker development and targetable interventions. PERSPECTIVE: Differential DNA methylation in regulatory genomic regions enriching shared neural pathways were associated with CPSP and CASI in adolescents undergoing spine surgery. Our findings support GABA hypofunction and the roles of the dopamine-DARPP32 pathway in emotion/reward contributing to behavioral maintenance of pain 10 to 12 months after surgery.
Collapse
Affiliation(s)
- Vidya Chidambaran
- Department of Anesthesiology, Cincinnati Children's Hospital, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - Xue Zhang
- Pyrosequencing core for genomic and epigenomic research, Cincinnati Children's Hospital, Cincinnati, Ohio
| | - Kristie Geisler
- Department of Anesthesiology, Cincinnati Children's Hospital, Cincinnati, Ohio
| | - Bobbie L Stubbeman
- Department of Anesthesiology, Cincinnati Children's Hospital, Cincinnati, Ohio
| | - Xiaoting Chen
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jarek Meller
- Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Hong Ji
- Department of Environmental Health, University of Cincinnati; Division of Asthma Research, Cincinnati Children's Hospital, Cincinnati, Ohio
| |
Collapse
|
28
|
Engebretsen S, Frigessi A, Engø-Monsen K, Furberg AS, Stubhaug A, de Blasio BF, Nielsen CS. The peer effect on pain tolerance. Scand J Pain 2019; 18:467-477. [PMID: 29794275 DOI: 10.1515/sjpain-2018-0060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 04/04/2018] [Indexed: 11/15/2022]
Abstract
Background and aims Twin studies have found that approximately half of the variance in pain tolerance can be explained by genetic factors, while shared family environment has a negligible effect. Hence, a large proportion of the variance in pain tolerance is explained by the (non-shared) unique environment. The social environment beyond the family is a potential candidate for explaining some of the variance in pain tolerance. Numerous individual traits have previously shown to be associated with friendship ties. In this study, we investigate whether pain tolerance is associated with friendship ties. Methods We study the friendship effect on pain tolerance by considering data from the Tromsø Study: Fit Futures I, which contains pain tolerance measurements and social network information for adolescents attending first year of upper secondary school in the Tromsø area in Northern Norway. Pain tolerance was measured with the cold-pressor test (primary outcome), contact heat and pressure algometry. We analyse the data by using statistical methods from social network analysis. Specifically, we compute pairwise correlations in pain tolerance among friends. We also fit network autocorrelation models to the data, where the pain tolerance of an individual is explained by (among other factors) the average pain tolerance of the individual's friends. Results We find a significant and positive relationship between the pain tolerance of an individual and the pain tolerance of their friends. The estimated effect is that for every 1 s increase in friends' average cold-pressor tolerance time, the expected cold-pressor pain tolerance of the individual increases by 0.21 s (p-value: 0.0049, sample size n=997). This estimated effect is controlled for sex. The friendship effect remains significant when controlling for potential confounders such as lifestyle factors and test sequence among the students. Further investigating the role of sex on this friendship effect, we only find a significant peer effect of male friends on males, while there is no significant effect of friends' average pain tolerance on females in stratified analyses. Similar, but somewhat lower estimates were obtained for the other pain modalities. Conclusions We find a positive and significant peer effect in pain tolerance. Hence, there is a significant tendency for students to be friends with others with similar pain tolerance. Sex-stratified analyses show that the only significant effect is the effect of male friends on males. Implications Two different processes can explain the friendship effect in pain tolerance, selection and social transmission. Individuals might select friends directly due to similarity in pain tolerance, or indirectly through similarity in other confounding variables that affect pain tolerance. Alternatively, there is an influence effect among friends either directly in pain tolerance, or indirectly through other variables that affect pain tolerance. If there is indeed a social influence effect in pain tolerance, then the social environment can account for some of the unique environmental variance in pain tolerance. If so, it is possible to therapeutically affect pain tolerance through alteration of the social environment.
Collapse
Affiliation(s)
- Solveig Engebretsen
- Oslo Centre for Biostatistics and Epidemiology, University of Oslo, Post box 1122 Blindern, 0316 Oslo, Norway, Phone: +47 470 83 876.,Department of Infectious Disease Epidemiology and Modelling, Norwegian Institute of Public Health, Oslo, Norway
| | - Arnoldo Frigessi
- Oslo Centre for Biostatistics and Epidemiology, University of Oslo, Oslo, Norway.,Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital, Oslo, Norway
| | | | - Anne-Sofie Furberg
- Department of Community Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway.,Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Audun Stubhaug
- Department of Pain Management and Research, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Birgitte Freiesleben de Blasio
- Department of Infectious Disease Epidemiology and Modelling, Norwegian Institute of Public Health, Oslo, Norway.,Oslo Centre for Biostatistics and Epidemiology, University of Oslo, Oslo, Norway
| | - Christopher Sivert Nielsen
- Department of Pain Management and Research, Oslo University Hospital, Oslo, Norway.,Department of Ageing, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
29
|
Caroleo MC, Brizzi A, De Rosa M, Pandey A, Gallelli L, Badolato M, Carullo G, Cione E. Targeting Neuropathic Pain: Pathobiology, Current Treatment and Peptidomimetics as a New Therapeutic Opportunity. Curr Med Chem 2019; 27:1469-1500. [PMID: 31142248 DOI: 10.2174/0929867326666190530121133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 01/25/2019] [Accepted: 02/15/2019] [Indexed: 12/18/2022]
Abstract
There is a huge need for pharmaceutical agents for the treatment of chronic Neuropathic Pain (NP), a complex condition where patients can suffer from either hyperalgesia or allodynia originating from central or peripheral nerve injuries. To date, the therapeutic guidelines include the use of tricyclic antidepressants, serotonin-noradrenaline reuptake inhibitors and anticonvulsants, beside the use of natural compounds and non-pharmacological options. Unfortunately, these drugs suffer from limited efficacy and serious dose-dependent adverse effects. In the last decades, the heptapeptide SP1-7, the major bioactive metabolite produced by Substance P (SP) cleavage, has been extensively investigated as a potential target for the development of novel peptidomimetic molecules to treat NP. Although the physiological effects of this SP fragment have been studied in detail, the mechanism behind its action is not fully clarified and the target for SP1-7 has not been identified yet. Nevertheless, specific binding sites for the heptapeptide have been found in brain and spinal cord of both mouse and rats. Several Structure-Affinity Relationship (SAR) studies on SP1-7 and some of its synthetic analogues have been carried out aiming to developing more metabolically stable and effective small molecule SP1-7-related amides that could be used as research tools for a better understanding of the SP1-7 system and, in a longer perspective, as potential therapeutic agents for future treatment of NP.
Collapse
Affiliation(s)
- Maria Cristina Caroleo
- Department of Pharmacy and Health and Nutrition Sciences, University of Calabria, Edificio Polifunzionale, 87026 Rende (CS), Italy
| | - Antonella Brizzi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Polo Scientifico San Miniato, Via A. Moro 2, 53100 Siena, Italy
| | - Maria De Rosa
- Drug Discovery Unit, Ri.MED Foundation, Palermo 90133, Italy
| | - Ankur Pandey
- Department of Chemistry and Center of Advanced Studies in Chemistry, Punjab University, Chandigarh, India
| | - Luca Gallelli
- Department of Health Science, School of Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Mariateresa Badolato
- Department of Pharmacy and Health and Nutrition Sciences, University of Calabria, Edificio Polifunzionale, 87026 Rende (CS), Italy
| | - Gabriele Carullo
- Department of Pharmacy and Health and Nutrition Sciences, University of Calabria, Edificio Polifunzionale, 87026 Rende (CS), Italy
| | - Erika Cione
- Department of Pharmacy and Health and Nutrition Sciences, University of Calabria, Edificio Polifunzionale, 87026 Rende (CS), Italy
| |
Collapse
|
30
|
Chidambaran V, Gang Y, Pilipenko V, Ashton M, Ding L. Systematic Review and Meta-Analysis of Genetic Risk of Developing Chronic Postsurgical Pain. THE JOURNAL OF PAIN 2019; 21:2-24. [PMID: 31129315 DOI: 10.1016/j.jpain.2019.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/06/2019] [Accepted: 05/20/2019] [Indexed: 02/08/2023]
Abstract
Chronic postsurgical pain (CPSP) is a significant detriment to postsurgical recovery and a risk factor for prolonged opioid use. Emerging evidence suggests the estimated heritability for chronic pain is 45% and that genetic factors partially explain individual susceptibility to CPSP. The aim of this study was to systematically review, assess quality, and summarize the studies in humans that have investigated genetic factors associated with CPSP. We also conducted a meta-analysis to derive a single effect size for evaluable genetic associations with CPSP. Our comprehensive literature search included review of 21 full-text articles evaluating variants of 69 genes for association with CPSP. We found significant gene variant associations reported for variants/haplotypes of 26 genes involved in neurotransmission, pain signaling, immune responses and neuroactive ligand-receptor interaction, with CPSP. Six variants of 5 genes (COMT: rs4680 and rs6269, OPRM1: rs1799971, GCH1: rs3783641, KCNS1: rs734784 and TNFA: rs1800629), were evaluated by more than one study and were included in the meta-analysis. At rs734784 (A>G) of KCNS1, presence of G allele marginally increased risk of CPSP (Additive genetic model; Odds ratio: 1.511; 95% CI 1-2.284; P value: .050), while the other variants did not withstand meta-analyses criteria. Our findings demonstrate the role of genetic factors with different functions in CPSP, and also emphasize that single genetic factors have small effect sizes in explaining complex conditions like CPSP. Heterogeneity in surgical cohorts, population structure, and outcome definitions, as well as small number of available studies evaluating same variants, limit the meta-analysis. There is a need for large-scale, homogenous, replication studies to validate candidate genes, and understand the underlying biological networks underpinning CPSP. PERSPECTIVE: Our systematic review comprehensively describes 21 studies evaluating genetic association with CPSP, and limitations thereof. A meta-analysis of 6 variants (5 genes) found marginally increased risk for CPSP associated with rs734784 A>G of the potassium voltage-gated channel gene (KCNS1). Understanding genetic predisposition for CPSP will enable prediction and personalized management.
Collapse
Affiliation(s)
- Vidya Chidambaran
- Department of Anesthesiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio.
| | - Yang Gang
- Division of Biostatistics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Mathematical Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Valentina Pilipenko
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Maria Ashton
- Department of Anesthesiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Lili Ding
- Division of Biostatistics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
31
|
Schmid AB, Adhikari K, Ramirez-Aristeguieta LM, Chacón-Duque JC, Poletti G, Gallo C, Rothhammer F, Bedoya G, Ruiz-Linares A, Bennett DL. Genetic components of human pain sensitivity: a protocol for a genome-wide association study of experimental pain in healthy volunteers. BMJ Open 2019; 9:e025530. [PMID: 31005922 PMCID: PMC6500241 DOI: 10.1136/bmjopen-2018-025530] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Pain constitutes a major component of the global burden of diseases. Recent studies suggest a strong genetic contribution to pain susceptibility and severity. Whereas most of the available evidence relies on candidate gene association or linkage studies, research on the genetic basis of pain sensitivity using genome-wide association studies (GWAS) is still in its infancy. This protocol describes a proposed GWAS on genetic contributions to baseline pain sensitivity and nociceptive sensitisation in a sample of unrelated healthy individuals of mixed Latin American ancestry. METHODS AND ANALYSIS A GWAS on genetic contributions to pain sensitivity in the naïve state and following nociceptive sensitisation will be conducted in unrelated healthy individuals of mixed ancestry. Mechanical and thermal pain sensitivity will be evaluated with a battery of quantitative sensory tests evaluating pain thresholds. In addition, variation in mechanical and thermal sensitisation following topical application of mustard oil to the skin will be evaluated. ETHICS AND DISSEMINATION This study received ethical approval from the University College London research ethics committee (3352/001) and from the bioethics committee of the Odontology Faculty at the University of Antioquia (CONCEPTO 01-2013). Findings will be disseminated to commissioners, clinicians and service users via papers and presentations at international conferences.
Collapse
Affiliation(s)
- Annina B Schmid
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Kaustubh Adhikari
- Department of Genetics, Evolution and Environment, University College London, London, UK
- Department of Cell and Developmental Biology, University College London, London, UK
- School of Mathematics and Statistics, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, UK
| | | | - Juan-Camilo Chacón-Duque
- Department of Genetics, Evolution and Environment, University College London, London, UK
- Department of Earth Sciences, Natural History Museum, London, UK
| | - Giovanni Poletti
- Unidad de Neurobiologia Molecular y Genética, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Carla Gallo
- Unidad de Neurobiologia Molecular y Genética, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Gabriel Bedoya
- GENMOL (Genética Molecular), Universidad de Antioquia, Medellin, Colombia
| | - Andres Ruiz-Linares
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, Shanghai, China
- CNRS, EFS, ADES, Aix-Marseille Université, Marseille, France
| | - David L Bennett
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| |
Collapse
|
32
|
Tracey I, Woolf CJ, Andrews NA. Composite Pain Biomarker Signatures for Objective Assessment and Effective Treatment. Neuron 2019; 101:783-800. [PMID: 30844399 PMCID: PMC6800055 DOI: 10.1016/j.neuron.2019.02.019] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/05/2019] [Accepted: 02/13/2019] [Indexed: 02/09/2023]
Abstract
Pain is a subjective sensory experience that can, mostly, be reported but cannot be directly measured or quantified. Nevertheless, a suite of biomarkers related to mechanisms, neural activity, and susceptibility offer the possibility-especially when used in combination-to produce objective pain-related indicators with the specificity and sensitivity required for diagnosis and for evaluation of risk of developing pain and of analgesic efficacy. Such composite biomarkers will also provide improved understanding of pain pathophysiology.
Collapse
Affiliation(s)
- Irene Tracey
- Nuffield Department of Clinical Neurosciences, University of Oxford, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK.
| | - Clifford J Woolf
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, 02115 MA, USA.
| | - Nick A Andrews
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, 02115 MA, USA
| |
Collapse
|
33
|
Ribeiro C, Quinta R, Raposo A, Valentim A, Albuquerque J, Grazina M. CYP2D6 Pharmacogenetics Testing and Post-Cesarean Section Pain Scores-a Preliminary Study. PAIN MEDICINE 2019; 20:359-368. [PMID: 29546421 DOI: 10.1093/pm/pny033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Prospective observational study to analyze CYP2D6 pharmacogenetics in 55 Portuguese adult parturients undergoing elective cesarean section and to investigate the association between CYP2D6 alleles and pain score. METHODS DNA was extracted from peripheral blood by standard methods. Genetic analysis included allelic discrimination (CYP2D6*1, *2, *3, *4, *5, *6, *10, *17, and *41) and copy number determination with TaqMan probes by real-time polymerase chain reaction (PCR). Allele duplications were confirmed (long PCR and PCR-restriction fragment length polymorphism). Theoretical metabolic profiles prediction was based on genetic data and activity scores. Association was investigated between genotypes and predicted phenotypes with pain scores. Statistical analysis was performed by using a χ2 test, and significance was set at P < 0.05. RESULTS The percentage of poor, intermediate, extensive, and ultrarapid metabolizers found were 9%, 38%, 46%, and 7%, respectively. The results reveal a positive association between alleles *4, *10, and pain. CONCLUSIONS A positive association was found between predicted reduced or null activity of CYP2D6 and increased pain. It can be hypothesized that if CYP2D6 activity is reduced, tyramine metabolism will decrease, resulting in reduced formation of endogenous dopamine. Consequently, activation of the signal transduction pathways that controls pain and analgesic effect may be reduced, leading to an increase in pain. Therefore, we would recommend CYP2D6 genotyping to anticipate the needs for analgesia, which will help to adjust opioid dose and maximize clinical efficacy while reducing side effects.
Collapse
Affiliation(s)
- Carolina Ribeiro
- CNC - Center for Neuroscience and Cell Biology, Laboratory of Biochemical Genetics, University of Coimbra, Coimbra, Portugal
| | - Rosa Quinta
- CNC - Center for Neuroscience and Cell Biology, Laboratory of Biochemical Genetics, University of Coimbra, Coimbra, Portugal
| | - Ana Raposo
- CNC - Center for Neuroscience and Cell Biology, Laboratory of Biochemical Genetics, University of Coimbra, Coimbra, Portugal
| | - Ana Valentim
- CHUC EPE, Coimbra University Hospitals, Coimbra, Portugal
| | - José Albuquerque
- CNC - Center for Neuroscience and Cell Biology, Laboratory of Biochemical Genetics, University of Coimbra, Coimbra, Portugal
| | - Manuela Grazina
- CNC - Center for Neuroscience and Cell Biology, Laboratory of Biochemical Genetics, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
34
|
Boutwell BB. On variability & human consciousness. Heliyon 2018; 4:e00905. [PMID: 30417156 PMCID: PMC6218651 DOI: 10.1016/j.heliyon.2018.e00905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/27/2018] [Accepted: 10/29/2018] [Indexed: 11/16/2022] Open
Abstract
The topic of consciousness remains central across numerous academic fields ranging from philosophy to cognitive neuroscience. Scholars in all of these fields continue to debate the origins of conscious experiences. More recently, scientists have applied advanced imaging techniques to illuminate brain regions that are at least associated with our subjective feelings of conscious experience. Though much disagreement remains, one point that is generally accepted across fields is that consciousness is not the product of an immaterial substance, but rather is produced by functioning across physical substrates in the brain. This point of agreement is enough to suggest that genetically and environmentally underpinned individual variation in brain structure may contribute to individual variation in consciousness. To the extent that this is correct, it may provide insight on a host of important questions across various academic fields. Equally important, understanding sources of variability in consciousness may be a key piece of the puzzle for understanding not only how consciousness evolved but also how selection pressures might continue to act on the human experience of consciousness across subsequent generations.
Collapse
Affiliation(s)
- Brian B. Boutwell
- Saint Louis University, College for Public Health and Social Justice, Criminology & Criminal Justice, Department of Epidemiology (Secondary Appointment), United States
- Department of Family & Community Medicine, School of Medicine (Secondary Appointment), United States
| |
Collapse
|
35
|
Pan F, Jones G. Clinical Perspective on Pain and Pain Phenotypes in Osteoarthritis. Curr Rheumatol Rep 2018; 20:79. [DOI: 10.1007/s11926-018-0796-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Levitt AE, Galor A, Chowdhury AR, Felix ER, Sarantopoulos CD, Zhuang GY, Patin D, Maixner W, Smith SB, Martin ER, Levitt RC. Evidence that Dry Eye Represents a Chronic Overlapping Pain Condition. Mol Pain 2018; 13:1744806917729306. [PMID: 28814146 PMCID: PMC5584655 DOI: 10.1177/1744806917729306] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Recent data suggest that corneal somatosensory dysfunction may be the underlying cause of
severe dry eye symptoms in the absence of ocular surface pathology seen in a subset of
patients diagnosed with “dry eye syndrome.” This subset of patients tends to demonstrate a
unique constellation of symptoms that are persistent, more severe, and generally respond
poorly to current dry eye therapies targeting inadequate or dysfunctional tears. A growing
body of literature suggests that symptoms in these patients may be better characterized as
neuropathic ocular pain rather than dry eye. In these patients, dry eye symptoms are often
associated with numerous comorbid pain conditions and evidence of central pain processing
abnormalities, where eye pain is just one of multiple overlapping peripheral
manifestations. In this review, we discuss the concept and potential mechanisms of chronic
overlapping pain conditions as well as evidence for considering neuropathic ocular pain as
one of these overlapping pain conditions.
Collapse
Affiliation(s)
| | - Anat Galor
- Miami Veterans Administration Medical Center, Miami, FL
| | - Aneesa R Chowdhury
- Department of Anesthesiology, Perioperative Medicine and Pain Management, University of Miami, Miller School of Medicine, Miami, FL
| | | | | | - Gerald Y Zhuang
- Department of Anesthesiology, Perioperative Medicine and Pain Management, University of Miami, Miller School of Medicine, Miami, FL
| | - Dennis Patin
- Department of Anesthesiology, Perioperative Medicine and Pain Management, University of Miami, Miller School of Medicine, Miami, FL
| | | | | | - Eden R Martin
- John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL 7John T. Macdonald Foundation
| | | |
Collapse
|
37
|
Ho KWD, Wallace MR, Sibille KT, Bartley EJ, Cruz-Almeida Y, Glover TL, King CD, Goodin BR, Addison A, Edberg JC, Staud R, Bradley LA, Fillingim RB. Single Nucleotide Polymorphism in the COL11A2 Gene Associated with Heat Pain Sensitivity in Knee Osteoarthritis. Mol Pain 2018; 13:1744806917724259. [PMID: 28741447 PMCID: PMC5562334 DOI: 10.1177/1744806917724259] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Pain is one of the most prominent symptoms of osteoarthritis. However, there is often discordance between the pain experienced by individuals with osteoarthritis and the degree of articular pathology. This suggests that individual differences, including genetic variability in the central processing of nociceptive stimuli, may impact the presentation of osteoarthritis. Here, we show that the single nucleotide polymorphism rs16868943 in the collagen gene COL11A2 is significantly associated with lowered heat pain tolerance on the arm in participants with knee osteoarthritis (P = 1.21 × 10−6, P = 0.0053 after Bonferroni correction, beta = −3.42). A total of 161 knee osteoarthritis participants were included and evaluated for heat, punctate and pressure pain sensitivity of the affected knee and the ipsilateral arm. Each participant was genotyped for 4392 single nucleotide polymorphisms in genes implicated in pain perception, inflammation and mood and tested for association with pain sensitivity. The minor A allele of single nucleotide polymorphism rs16868943 was significantly associated with lower arm heat pain tolerance after correction for age, gender, race, and study site. This single nucleotide polymorphism was also nominally associated with other measures of heat pain sensitivity, including lowered knee heat pain tolerance (P = 1.14 × 10−5, P = 0.05 after Bonferroni correction), lowered arm heat pain threshold (P = 0.0039, uncorrected) and lowered knee heat pain threshold (P = 0.003, uncorrected). Addition of genotypes from 91 participants without knee pain produced a significant interaction between knee osteoarthritis status and the rs16868943 single nucleotide polymorphism in heat pain tolerance (P = 1.71 × 10−5), such that rs16868943 was not associated with heat pain tolerance in participants without knee pain (P = 0.12, beta = 1.3). This is the first study to show genetic association with heat pain tolerance in individuals with osteoarthritis. The association is specific to participants who have already developed knee osteoarthritis, suggesting that the COL11A2 gene, which has previously been associated with familial osteoarthritis, may play a role in pain sensitization after the development of osteoarthritis.
Collapse
Affiliation(s)
| | - Margaret R Wallace
- Department of Molecular Genetics & Microbiology, University of Florida, Gainesville, FL
| | - Kimberly T Sibille
- Department of Aging & Geriatric Research, University of Florida, Gainesville, FL
| | - Emily J Bartley
- Department of Community Dentistry and Behavioral Science, University of Florida, Gainesville, FL
| | - Yenisel Cruz-Almeida
- Department of Aging & Geriatric Research, University of Florida, Gainesville, FL
| | - Toni L Glover
- Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, FL
| | - Christopher D King
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH
| | - Burel R Goodin
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL
| | - Adriana Addison
- Division of Clinical Immunology & Rheumatotology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Jeffrey C Edberg
- Division of Clinical Immunology & Rheumatotology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Roland Staud
- Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, FL
| | - Laurence A Bradley
- Division of Clinical Immunology & Rheumatotology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Roger B Fillingim
- Department of Community Dentistry and Behavioral Science, University of Florida, Gainesville, FL
| |
Collapse
|
38
|
Abstract
Pain is an increasing clinical challenge affecting about half the population, with a substantial number of people suffering daily intense pain. Such suffering can be linked to the dramatic rise in opioid use and associated deaths in the United States. There is a pressing need for new analgesics with limited side effects. Here, we summarize what we know about the genetics of pain and implications for drug development. We make the case that chronic pain is not one but a set of disease states, with peripheral drive a key element in most. We argue that understanding redundancy and plasticity, hallmarks of the nervous system, is critical in developing analgesic drug strategies. We describe the exploitation of monogenic pain syndromes and genetic association studies to define analgesic targets, as well as issues associated with animal models of pain. We appraise present-day screening technologies and describe recent approaches to pain treatment that hold promise.
Collapse
Affiliation(s)
- Jane E Sexton
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, United Kingdom;
| | - James J Cox
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, United Kingdom;
| | - Jing Zhao
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, United Kingdom;
| | - John N Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, United Kingdom;
| |
Collapse
|
39
|
Abstract
Pain sensitivity is an inherited factor that varies strongly between individuals. We investigated whether genetic polymorphisms in the candidate genes COMT, OPRM1, OPRD1, TAOK3, TRPA1, TRPV1, and SCN9A are contributing to experimental pain variability between children. Our study included 136 children and adolescents (8-18 years). Cold and heat pain thresholds were determined with a Thermal Sensory Analyzer. Women and young children were significantly more sensitive to pain (P < 0.05). After correction for age, gender, reaction time, and correction for multiple testing, OPRM1 118A>G G-allele carriers (AG and GG) rated the hot stimulus as significantly less painful than did OPRM1 118A>G AA genotyped individuals (2[1-5] vs 7 [3-9], respectively; P = 0.00005). Additionally, OPRM1 118G allele carriers reached more frequently the minimum temperature limit (44% vs 17%, respectively; P = 0.003) and maximum temperature limit (52% vs 24%, respectively; P = 0.0052), indicative for lower pain sensitivity. The combined genotype, based on expected pain sensitivity, OPRM1 118AA/COMT 472 GA or AA genotyped children, was associated with lower pain thresholds (ie, higher pain sensitivity) than were the OPRM1 118GA or GG/COMT 472GG genotyped children. This is the first study reporting on genetic variants and experimental thermal pain in children and adolescents. OPRM1 rs1799971 and the combined OPRM1/COMT genotype could serve as biomarkers for pain sensitivity.
Collapse
|
40
|
Maixner W, Fillingim RB, Williams DA, Smith SB, Slade GD. Overlapping Chronic Pain Conditions: Implications for Diagnosis and Classification. THE JOURNAL OF PAIN 2017; 17:T93-T107. [PMID: 27586833 DOI: 10.1016/j.jpain.2016.06.002] [Citation(s) in RCA: 297] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 06/01/2016] [Accepted: 06/06/2016] [Indexed: 12/26/2022]
Abstract
UNLABELLED There is increasing recognition that many if not most common chronic pain conditions are heterogeneous with a high degree of overlap or coprevalence of other common pain conditions along with influences from biopsychosocial factors. At present, very little attention is given to the high degree of overlap of many common pain conditions when recruiting for clinical trials. As such, many if not most patients enrolled into clinical studies are not representative of most chronic pain patients. The failure to account for the heterogeneous and overlapping nature of most common pain conditions may result in treatment responses of small effect size when these treatments are administered to patients with chronic overlapping pain conditions (COPCs) represented in the general population. In this brief review we describe the concept of COPCs and the putative mechanisms underlying COPCs. Finally, we present a series of recommendations that will advance our understanding of COPCs. PERSPECTIVE This brief review describes the concept of COPCs. A mechanism-based heuristic model is presented and current knowledge and evidence for COPCs are presented. Finally, a set of recommendations is provided to advance our understanding of COPCs.
Collapse
Affiliation(s)
- William Maixner
- Center for Pain Research and Innovation, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Center for Translational Pain Medicine, Department of Anesthesiology, Duke University, Durham, North Carolina.
| | - Roger B Fillingim
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, Florida
| | - David A Williams
- Chronic Pain and Fatigue Research Center, Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan
| | - Shad B Smith
- Center for Pain Research and Innovation, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Center for Translational Pain Medicine, Department of Anesthesiology, Duke University, Durham, North Carolina
| | - Gary D Slade
- Center for Pain Research and Innovation, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Dental Ecology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
41
|
Volken T, Wieber F, Rüesch P, Huber M, Crawford RJ. Temporal change to self-rated health in the Swiss population from 1997 to 2012: the roles of age, gender, and education. Public Health 2017; 150:152-165. [PMID: 28802181 DOI: 10.1016/j.puhe.2017.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 01/19/2017] [Accepted: 07/07/2017] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Our study aimed to describe the temporal changes in self-rated health status (SRH) from 1997 to 2012 in adults aged 25 to 84 residing in Switzerland, with a view to identifying groups at risk for declining health. STUDY DESIGN Secondary analysis of population-based cross-sectional health surveys. METHODS Data were collected from the cross-sectional, population-based, five-year Swiss Health Survey, from 1997, 2002, 2007 and 2012. A total of 63,861 individuals' data were included. Multilevel mixed-effect logistic regression analysis was employed to estimate the probability of very good and good health within the framework of a hierarchical cross-classified age-period-cohort model (HAPC), adjusting for education level, gender, civil status, smoking status and body mass index. RESULTS Individuals with higher education were substantially more likely than those with primary education to report good SRH (OR = 2.12; 95% CI = 1.93-2.33 for secondary education and OR = 3.79; 95% CI = 3.39-4.23 for tertiary education). The education effect depended on birth cohort and age: higher proportions of good SRH were reported by secondary (8%-17%) and tertiary (10%-22%) compared with primary educated individuals from the 1940 birth cohort onward; the proportion of secondary/tertiary (compared to primary) educated people reporting good SRH increased with age (by 10/11% at 45-50 years and 25/36% at 80-84 years). Gender health equality was achieved by the 1955 (primary educated) and 1960 (secondary educated) birth cohorts, while these women overtook men in reporting good SRH from the 1975 birth cohort onward. Tertiary educated younger women were significantly less likely to report good SRH than men but parity was achieved at around pension age. Similarly, gender inequality in those with primary and secondary education reduced in the younger ages to not be significant at around age 55, with women overtaking men from age 65. CONCLUSIONS Younger birth cohorts with lower education levels appear most vulnerable in terms of their SRH. The education effect cumulatively increases when attaining incrementally higher education levels. While women report lower health than men, gender inequality in SRH has declined and even reversed over time and is substantially linked to differences in educational status. Swiss public health strategies should particularly target the younger adults with only primary school education of both genders; for women, to combat health burdens in their early life, and men, to mitigate issues in their later life.
Collapse
Affiliation(s)
- T Volken
- Institue for Health Sciences, Zurich University of Applied Sciences, Winterthur, Switzerland.
| | - F Wieber
- Institue for Health Sciences, Zurich University of Applied Sciences, Winterthur, Switzerland; Department of Psychology, University of Konstanz, Konstanz, Germany
| | - P Rüesch
- Institue for Health Sciences, Zurich University of Applied Sciences, Winterthur, Switzerland
| | - M Huber
- Institue for Health Sciences, Zurich University of Applied Sciences, Winterthur, Switzerland
| | - R J Crawford
- Institue for Health Sciences, Zurich University of Applied Sciences, Winterthur, Switzerland; Faculty of Health Professions, Curtin University, Perth, Australia
| |
Collapse
|
42
|
Congenital deafness is associated with specific somatosensory deficits in adolescents. Sci Rep 2017; 7:4251. [PMID: 28652589 PMCID: PMC5484691 DOI: 10.1038/s41598-017-04074-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/09/2017] [Indexed: 12/25/2022] Open
Abstract
Hearing and touch represent two distinct sensory systems that both rely on the transformation of mechanical force into electrical signals. Here we used a battery of quantitative sensory tests to probe touch, thermal and pain sensitivity in a young control population (14–20 years old) compared to age-matched individuals with congenital hearing loss. Sensory testing was performed on the dominant hand of 111 individuals with normal hearing and 36 with congenital hearing loss. Subjects with congenital deafness were characterized by significantly higher vibration detection thresholds at 10 Hz (2-fold increase, P < 0.001) and 125 Hz (P < 0.05) compared to controls. These sensory changes were not accompanied by any major change in measures of pain perception. We also observed a highly significant reduction (30% compared to controls p < 0.001) in the ability of hearing impaired individual’s ability to detect cooling which was not accompanied by changes in warm detection. At least 60% of children with non-syndromic hearing loss showed very significant loss of vibration detection ability (at 10 Hz) compared to age-matched controls. We thus propose that many pathogenic mutations that cause childhood onset deafness may also play a role in the development or functional maintenance of somatic mechanoreceptors.
Collapse
|
43
|
Liu J, Liu H, Mu J, Xu Q, Chen T, Dun W, Yang J, Tian J, Hu L, Zhang M. Altered white matter microarchitecture in the cingulum bundle in women with primary dysmenorrhea: A tract-based analysis study. Hum Brain Mapp 2017; 38:4430-4443. [PMID: 28590514 DOI: 10.1002/hbm.23670] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 04/06/2017] [Accepted: 05/19/2017] [Indexed: 12/30/2022] Open
Abstract
Primary dysmenorrhea (PD), as characterized by painful menstrual cramps without organic causes, is associated with central sensitization and brain function changes. Previous studies showed the integrated role of the default mode network (DMN) in the pain connectome and its key contribution on how an individual perceives and copes with pain disorders. Here, we aimed to investigate whether the cingulum bundle connecting hub regions of the DMN was disrupted in young women with PD. Diffusion tensor imaging was obtained in 41 PD patients and 41 matched healthy controls (HC) during their periovulatory phase. The production of prostaglandins (PGs) was obtained in PD patients during their pain-free and pain phases. As compared with HC, PD patients had similar scores of pain intensity, anxiety, and depression in their pain-free phase. However, altered white matter properties mainly located in the posterior section of the cingulum bundle were observed in PD. Besides PGs being related to menstrual pain, a close relationship was found between the white matter properties of the cingulum bundle during the pain-free phase and the severity of the menstrual pain in PD patients. Our study suggested that PD had trait changes of white matter integrities in the cingulum bundle that persisted beyond the time of menstruation. We inferred that altered anatomical connections may lead to less-flexible communication within the DMN, and/or between the DMN and other pain-related brain networks, which may result in the central susceptibility to develop chronic pain conditions in PD's later life. Hum Brain Mapp 38:4430-4443, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jixin Liu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, 710126, Peoples Republic of China.,Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, 710126, Peoples Republic of China
| | - Hongjuan Liu
- Department of Medical Imaging, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Peoples Republic of China
| | - Junya Mu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, 710126, Peoples Republic of China.,Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, 710126, Peoples Republic of China
| | - Qing Xu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, 710126, Peoples Republic of China.,Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, 710126, Peoples Republic of China
| | - Tao Chen
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, 710126, Peoples Republic of China.,Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, 710126, Peoples Republic of China
| | - Wanghuan Dun
- Department of Medical Imaging, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Peoples Republic of China
| | - Jing Yang
- Department of Medical Imaging, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Peoples Republic of China
| | - Jie Tian
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, 710126, Peoples Republic of China.,Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, 710126, Peoples Republic of China
| | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.,Faculty of Psychology, Southwest University, Chongqing, China
| | - Ming Zhang
- Department of Medical Imaging, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Peoples Republic of China
| |
Collapse
|
44
|
Sharma M, Kantorovich S, Lee C, Anand N, Blanchard J, Fung ET, Meshkin B, Brenton A, Richeimer S. An observational study of the impact of genetic testing for pain perception in the clinical management of chronic non-cancer pain. J Psychiatr Res 2017; 89:65-72. [PMID: 28182962 DOI: 10.1016/j.jpsychires.2017.01.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/26/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Pain levels are a key metric in clinical care. However, the assessment of pain is limited to basic questionnaires and physician interpretation, which yield subjective data. Genetic markers of pain sensitivity, such as single nucleotide polymorphisms in the catechol-O-methyltransferase gene, have been shown to be associated with pain perception and have been used to provide objective information about a patient's pain. The goal of this study was to determine if physician treatment adjustments based on genetic tests of pain perception resulted in improved outcomes for patients. MATERIAL AND METHODS A prospective, longitudinal study was conducted with 134 chronic non-cancer pain patients genotyped for pain perception-related catechol-O-methyltransferase haplotypes. Physicians were provided with patients' results and asked to document 1) their assessment of benefit of the genetic test; 2) treatment changes made based on the genetic test; and 3) patient clinical responses to changes implemented. RESULTS Based on genetic testing results, physicians adjusted treatment plans for 40% of patients. When medication changes were made based on genetic testing results, 72% of patients showed improvement in clinical status. When non-pharmacological actions were performed, 69% of physicians felt their patients' clinical status improved. Moreover, physicians believed the genetic test results were consistent with patient pain levels in 85% of cases. CONCLUSIONS These results demonstrate that providing personalized medicine with genetic information related to pain perception affected physician clinical decision-making for a substantial proportion of patients in this study, and that the availability and utilization of this information was a contributing factor in clinical improvement.
Collapse
Affiliation(s)
- Maneesh Sharma
- Interventional Pain Institute, Baltimore, MD, United States
| | | | - Chee Lee
- Proove Biosciences, Inc., Irvine, CA, United States
| | | | | | - Eric T Fung
- Proove Biosciences, Inc., Irvine, CA, United States
| | | | | | - Steven Richeimer
- University of Southern California Keck School of Medicine, Los Angeles, CA, United States; University of Southern California Departments of Anesthesiology and Psychiatry, Los Angeles, CA, United States
| |
Collapse
|
45
|
Bierman A, Lee Y. Chronic Pain and Psychological Distress Among Older Adults: A National Longitudinal Study. Res Aging 2017; 40:432-455. [PMID: 28421866 DOI: 10.1177/0164027517704970] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This research examines whether unobserved time-stable influences confound the association between chronic pain and psychological distress in older adults as well as how race and ethnicity combine with subjective social status (SSS) to modify the association. In a nationally representative longitudinal survey, holistically controlling for unobserved time-stable influences using fixed-effects models substantially reduces the pain-depression relationship and eliminates the overall pain-anxiety relationship. The association with depression is stronger for Black and Hispanic elders, illustrating a process of double-jeopardy. Black elders with severe pain experience lower anxiety, as do Black elders with moderate pain and low SSS, which we suggest may be due to the enervating effects of undermanaged pain. Black elders at high SSS experience greater anxiety with moderate pain. This research suggests that undermanagement of chronic pain among racial and ethnic minorities differentiates the association between pain and distress in late life and especially creates stronger associations with depression.
Collapse
Affiliation(s)
- Alex Bierman
- 1 Department of Sociology, University of Calgary, Calgary, Alberta, Canada
| | - Yeonjung Lee
- 2 Faculty of Social Work, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
46
|
Pan F, Laslett L, Tian J, Cicuttini F, Winzenberg T, Ding C, Jones G. Association Between Pain at Sites Outside the Knee and Knee Cartilage Volume Loss in Elderly People Without Knee Osteoarthritis: A Prospective Study. Arthritis Care Res (Hoboken) 2017; 69:659-666. [PMID: 27390184 DOI: 10.1002/acr.22964] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/24/2016] [Accepted: 06/21/2016] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Pain is common in the elderly. Knee pain may predict knee cartilage loss, but whether generalized pain is associated with knee cartilage loss is unclear. This study, therefore, aimed to determine whether pain at multiple sites predicts knee cartilage volume loss among community-dwelling older adults, and, if so, to explore potential mechanisms. METHODS Data from the prospective Tasmanian Older Adult Cohort study was utilized (n = 394, mean age 63 years, range 52-79 years). Experience of pain at multiple sites was assessed using a questionnaire at baseline. T1-weighted fat-saturated magnetic resonance imaging of the right knee was performed to assess the cartilage volume at baseline and after 2.6 years. Linear regression modeling was used with adjustment for potential confounders. RESULTS The median number of painful sites was 3 (range 0-7). There was a dose-response relationship between the number of painful sites and knee cartilage volume loss in the lateral and total tibiofemoral compartments (lateral β = -0.28% per annum; total β = -0.25% per annum, both P for trend < 0.05), but not in the medial compartment. These associations were stronger in participants without radiographic knee osteoarthritis (OA) (P < 0.05) and independent of age, sex, body mass index, physical activity, pain medication, and knee structural abnormalities. CONCLUSION The number of painful sites independently predicts knee cartilage volume loss, especially in people without knee OA, suggesting that widespread pain may be an early marker of more rapid knee cartilage loss in those without radiographic knee OA. The underlying mechanism is unclear, but it is independent of anthropometrics, physical activity, and knee structural abnormalities.
Collapse
Affiliation(s)
- Feng Pan
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Laura Laslett
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Jing Tian
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Flavia Cicuttini
- Monash University Medical School, Melbourne, Victoria, Australia
| | - Tania Winzenberg
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Changhai Ding
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Graeme Jones
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
47
|
Feldman EL, Nave KA, Jensen TS, Bennett DLH. New Horizons in Diabetic Neuropathy: Mechanisms, Bioenergetics, and Pain. Neuron 2017; 93:1296-1313. [PMID: 28334605 PMCID: PMC5400015 DOI: 10.1016/j.neuron.2017.02.005] [Citation(s) in RCA: 551] [Impact Index Per Article: 78.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 02/02/2017] [Accepted: 02/02/2017] [Indexed: 12/13/2022]
Abstract
Pre-diabetes and diabetes are a global epidemic, and the associated neuropathic complications create a substantial burden on both the afflicted patients and society as a whole. Given the enormity of the problem and the lack of effective therapies, there is a pressing need to understand the mechanisms underlying diabetic neuropathy (DN). In this review, we present the structural components of the peripheral nervous system that underlie its susceptibility to metabolic insults and then discuss the pathways that contribute to peripheral nerve injury in DN. We also discuss systems biology insights gleaned from the recent advances in biotechnology and bioinformatics, emerging ideas centered on the axon-Schwann cell relationship and associated bioenergetic crosstalk, and the rapid expansion of our knowledge of the mechanisms contributing to neuropathic pain in diabetes. These recent advances in our understanding of DN pathogenesis are paving the way for critical mechanism-based therapy development.
Collapse
Affiliation(s)
- Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
| | - Troels S Jensen
- Department of Neurology and Danish Pain Research Center, Aarhus University, 8000 Aarhus C, Denmark
| | - David L H Bennett
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
48
|
Hansen MS, Wetterslev J, Pipper CB, Asghar MS, Dahl JB. Heat pain detection threshold is associated with the area of secondary hyperalgesia following brief thermal sensitization: a study of healthy male volunteers. J Pain Res 2017; 10:265-274. [PMID: 28184167 PMCID: PMC5291329 DOI: 10.2147/jpr.s121189] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Introduction The area of secondary hyperalgesia following brief thermal sensitization (BTS) of the skin and heat pain detection thresholds (HPDT) may both have predictive abilities in regards to pain sensitivity and clinical pain states. The association between HPDT and secondary hyperalgesia, however, remains unsettled, and the dissimilarities in physiologic properties suggest that they may represent 2 distinctively different pain entities. The aim of this study was to investigate the association between HPDT and BTS-induced secondary hyperalgesia. Methods A sample of 121 healthy male participants was included and tested on 2 separate study days with BTS (45°C, 3 minutes), HPDT, and pain during thermal stimulation (45°C, 1 minute). Areas of secondary hyperalgesia were quantified after monofilament pinprick stimulation. The pain catastrophizing scale (PCS) and hospital anxiety and depression scale (HADS) were also applied. Results A significant association between HPDT and the size of the area of secondary hyperalgesia (p<0.0001) was found. The expected change in area of secondary hyperalgesia due to a 1-degree increase in HPDT was estimated to be −27.38 cm2, 95% confidence interval (CI) of −37.77 to −16.98 cm2, with an R2 of 0.19. Likewise, a significant association between HADS-depression subscore and area of secondary hyperalgesia (p=0.046) was found, with an estimated expected change in secondary hyperalgesia to a 1-point increase in HADS-depression subscore of 11 cm2, 95% CI (0.19–21.82), and with R2 of 0.03. We found no significant associations between secondary hyperalgesia area and PCS score or pain during thermal stimulation. Conclusion HPDT and the area of secondary hyperalgesia after BTS are significantly associated; however, with an R2 of only 19%, HPDT only offers a modest explanation of the inter-participant variation in the size of the secondary hyperalgesia area elicited by BTS.
Collapse
Affiliation(s)
- Morten Sejer Hansen
- Department of Anesthesiology, 4231, Centre of Head and Orthopedics, Rigshospitalet
| | - Jørn Wetterslev
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, Department 7812
| | | | | | - Jørgen Berg Dahl
- Department of Anesthesiology, Department Z, Bispebjerg Hospital, Copenhagen, Denmark
| |
Collapse
|
49
|
|
50
|
Abstract
Catecholamine-O-methyltransferase (COMT) is a polymorphic gene whose variants affect enzymatic activity and pain sensitivity via adrenergic pathways. Although COMT represents one of the most studied genes in human pain genetics, findings regarding its association with pain phenotypes are not always replicated. Here, we investigated if interactions among functional COMT haplotypes, stress, and sex can modify the effect of COMT genetic variants on pain sensitivity. We tested these interactions in a cross-sectional study, including 2 cohorts, one of 2972 subjects tested for thermal pain sensitivity (Orofacial Pain: Prospective Evaluation and Risk Assessment) and one of 948 subjects with clinical acute pain after motor vehicle collision (post-motor vehicle collision). In both cohorts, the COMT high-pain sensitivity (HPS) haplotype showed robust interaction with stress and number of copies of the HPS haplotype was positively associated with pain sensitivity in nonstressed individuals, but not in stressed individuals. In the post-motor vehicle collision cohort, there was additional modification by sex: the HPS-stress interaction was apparent in males, but not in females. In summary, our findings indicate that stress and sex should be evaluated in association studies aiming to investigate the effect of COMT genetic variants on pain sensitivity.
Collapse
|