1
|
Alsolaiss J, Leeming G, Da Silva R, Alomran N, Casewell NR, Habib AG, Harrison RA, Modahl CM. Investigating Snake-Venom-Induced Dermonecrosis and Inflammation Using an Ex Vivo Human Skin Model. Toxins (Basel) 2024; 16:276. [PMID: 38922170 PMCID: PMC11209077 DOI: 10.3390/toxins16060276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
Snakebite envenoming is a neglected tropical disease that causes >100,000 deaths and >400,000 cases of morbidity annually. Despite the use of mouse models, severe local envenoming, defined by morbidity-causing local tissue necrosis, remains poorly understood, and human-tissue responses are ill-defined. Here, for the first time, an ex vivo, non-perfused human skin model was used to investigate temporal histopathological and immunological changes following subcutaneous injections of venoms from medically important African vipers (Echis ocellatus and Bitis arietans) and cobras (Naja nigricollis and N. haje). Histological analysis of venom-injected ex vivo human skin biopsies revealed morphological changes in the epidermis (ballooning degeneration, erosion, and ulceration) comparable to clinical signs of local envenoming. Immunostaining of these biopsies confirmed cell apoptosis consistent with the onset of necrosis. RNA sequencing, multiplex bead arrays, and ELISAs demonstrated that venom-injected human skin biopsies exhibited higher rates of transcription and expression of chemokines (CXCL5, MIP1-ALPHA, RANTES, MCP-1, and MIG), cytokines (IL-1β, IL-1RA, G-CSF/CSF-3, and GM-CSF), and growth factors (VEGF-A, FGF, and HGF) in comparison to non-injected biopsies. To investigate the efficacy of antivenom, SAIMR Echis monovalent or SAIMR polyvalent antivenom was injected one hour following E. ocellatus or N. nigricollis venom treatment, respectively, and although antivenom did not prevent venom-induced dermal tissue damage, it did reduce all pro-inflammatory chemokines, cytokines, and growth factors to normal levels after 48 h. This ex vivo skin model could be useful for studies evaluating the progression of local envenoming and the efficacy of snakebite treatments.
Collapse
Affiliation(s)
- Jaffer Alsolaiss
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (R.D.S.); (N.A.); (N.R.C.); (R.A.H.); (C.M.M.)
- Abqaiq General Hospital, Rural Health Network, Eastern Health Cluster, Ministry of Health, Abqaiq 33241, Saudi Arabia
| | - Gail Leeming
- Department of Veterinary Anatomy, Physiology and Pathology, School of Veterinary Science, University of Liverpool, Liverpool L69 7ZX, UK;
| | - Rachael Da Silva
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (R.D.S.); (N.A.); (N.R.C.); (R.A.H.); (C.M.M.)
| | - Nessrin Alomran
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (R.D.S.); (N.A.); (N.R.C.); (R.A.H.); (C.M.M.)
- Qatif Medical Fitness Center, Clinical Laboratory Department, Qatif Health Network, Eastern Health Cluster, Ministry of Health, Qatif 31911, Saudi Arabia
| | - Nicholas R. Casewell
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (R.D.S.); (N.A.); (N.R.C.); (R.A.H.); (C.M.M.)
| | - Abdulrazaq G. Habib
- African Snakebite Research Group (ASRG) Project, Bayero University, Kano 700251, Nigeria;
| | - Robert A. Harrison
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (R.D.S.); (N.A.); (N.R.C.); (R.A.H.); (C.M.M.)
| | - Cassandra M. Modahl
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (R.D.S.); (N.A.); (N.R.C.); (R.A.H.); (C.M.M.)
| |
Collapse
|
2
|
Yan J, Wang YM, Hellwig A, Bading H. TwinF interface inhibitor FP802 stops loss of motor neurons and mitigates disease progression in a mouse model of ALS. Cell Rep Med 2024; 5:101413. [PMID: 38325382 PMCID: PMC10897598 DOI: 10.1016/j.xcrm.2024.101413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 10/16/2023] [Accepted: 01/14/2024] [Indexed: 02/09/2024]
Abstract
Toxic signaling by extrasynaptic NMDA receptors (eNMDARs) is considered an important promoter of amyotrophic lateral sclerosis (ALS) disease progression. To exploit this therapeutically, we take advantage of TwinF interface (TI) inhibition, a pharmacological principle that, contrary to classical NMDAR pharmacology, allows selective elimination of eNMDAR-mediated toxicity via disruption of the NMDAR/TRPM4 death signaling complex while sparing the vital physiological functions of synaptic NMDARs. Post-disease onset treatment of the SOD1G93A ALS mouse model with FP802, a modified TI inhibitor with a safe pharmacology profile, stops the progressive loss of motor neurons in the spinal cord, resulting in a reduction in the serum biomarker neurofilament light chain, improved motor performance, and an extension of life expectancy. FP802 also effectively blocks NMDA-induced death of neurons in ALS patient-derived forebrain organoids. These results establish eNMDAR toxicity as a key player in ALS pathogenesis. TI inhibitors may provide an effective treatment option for ALS patients.
Collapse
Affiliation(s)
- Jing Yan
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| | - Yu Meng Wang
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| | - Andrea Hellwig
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| | - Hilmar Bading
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
3
|
Cao W, Fan D. Neutrophils: a subgroup of neglected immune cells in ALS. Front Immunol 2023; 14:1246768. [PMID: 37662922 PMCID: PMC10468589 DOI: 10.3389/fimmu.2023.1246768] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a chronic, progressive neurodegenerative disease characterized by the loss of motor neurons. Dysregulated peripheral immunity has been identified as a hallmark of ALS. Neutrophils, as the front-line responders of innate immunity, contribute to host defense through pathogen clearance. However, they can concurrently play a detrimental role in chronic inflammation. With the unveiling of novel functions of neutrophils in neurodegenerative diseases, it becomes essential to review our current understanding of neutrophils and to recognize the gap in our knowledge about their role in ALS. Thus, a detailed comprehension of the biological processes underlying neutrophil-induced pathogenesis in ALS may assist in identifying potential cell-based therapeutic strategies to delay disease progression.
Collapse
Affiliation(s)
- Wen Cao
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Disorders, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Disorders, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| |
Collapse
|
4
|
Jensen GS, Yu L, Iloba I, Cruickshank D, Matos JR, Newman RA. Differential Activities of the Botanical Extract PBI-05204 and Oleandrin on Innate Immune Functions under Viral Challenge Versus Inflammatory Culture Conditions. Molecules 2023; 28:4799. [PMID: 37375354 DOI: 10.3390/molecules28124799] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
The Nerium oleander extract PBI 05204 (PBI) and its cardiac glycoside constituent oleandrin have direct anti-viral properties. Their effect on the immune system, however, is largely unknown. We used an in vitro model of human peripheral blood mononuclear cells to document effects under three different culture conditions: normal, challenged with the viral mimetic polyinosinic:polycytidylic acid Poly I:C, and inflamed by lipopolysaccharide (LPS). Cells were evaluated for immune activation marks CD69, CD25, and CD107a, and culture supernatants were tested for cytokines. Both PBI and oleandrin directly activated Natural Killer (NK) cells and monocytes and triggered increased production of cytokines. Under viral mimetic challenge, PBI and oleandrin enhanced the Poly I:C-mediated immune activation of monocytes and NK cells and enhanced production of IFN-γ. Under inflammatory conditions, many cytokines were controlled at similar levels as in cultures treated with PBI and oleandrin without inflammation. PBI triggered higher levels of some cytokines than oleandrin. Both products increased T cell cytotoxic attack on malignant target cells, strongest by PBI. The results show that PBI and oleandrin directly activate innate immune cells, enhance anti-viral immune responses through NK cell activation and IFN-γ levels, and modulate immune responses under inflamed conditions. The potential clinical impact of these activities is discussed.
Collapse
Affiliation(s)
| | - Liu Yu
- NIS Labs, 807 St. George St., Port Dover, ON N0A 1N0, Canada
| | - Ifeanyi Iloba
- NIS Labs, 1437 Esplanade, Klamath Falls, OR 97601, USA
| | | | - Jose R Matos
- Phoenix Biotechnology, 8626 Tesoro Drive, Suite 801, San Antonio, TX 78217, USA
| | - Robert A Newman
- Phoenix Biotechnology, 8626 Tesoro Drive, Suite 801, San Antonio, TX 78217, USA
| |
Collapse
|
5
|
Song S, Kong X, Wang B, Sanchez-Ramos J. Recovery from Traumatic Brain Injury Following Treatment with Δ9-Tetrahydrocannabinol Is Associated with Increased Expression of Granulocyte-Colony Stimulating Factor and Other Neurotrophic Factors. Cannabis Cannabinoid Res 2022; 7:415-423. [PMID: 33998887 PMCID: PMC9418356 DOI: 10.1089/can.2020.0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: The hematopoietic cytokine granulocyte-colony stimulating factor (G-CSF) is well known to stimulate proliferation of blood stem/progenitor cells of the leukocyte lineage, but is also recognized as a neurotrophic factor involved in brain self-repair processes. G-CSF administration has been shown to promote recovery from experimental models of traumatic brain injury (TBI) and to modulate components of the endocannabinoid system (eCS). Conversely, Δ9-tetrahydrocannabinol (Δ9THC) treatment of normal mice has been shown to increase blood levels of G-CSF in the periphery. Hypothesis: Administration of the phytocannabinoid Δ9THC will enhance brain repair following controlled cortical impact (CCI) by upregulating G-CSF and other neurotrophic factors (brain-derived neurotrophic factor [BDNF] and glial-derived neurotrophic factor [GDNF]) in brain regions. Materials and Methods: C57BL/6J mice underwent CCI and were treated for 3 days with THC 3 mg/kg intraperitoneally. Motor function on a rotarod was recorded at baseline and 3, 7, and 14 days after CCI. Groups of mice were euthanized at 7 and 14 days. G-CSF, BDNF, and GDNF expression were measured at 7 and 14 days in cerebral cortex, striatum, and hippocampus on the side of the trauma. Results: Δ9THC-treated mice ran on the rotarod longer than vehicle-treated mice and recovered to normal rotarod performance levels at 2 weeks. These mice, compared to vehicle-treated animals, exhibited significant upregulation of G-CSF as well as BDNF and GDNF in cerebral cortex, striatum, and hippocampus. Conclusion: Administration of the phytocannabinoid Δ9THC promotes significant recovery from TBI and is associated with upregulation of brain G-CSF, BDNF, and GDNF, neurotrophic factors previously shown to mediate brain self-repair following TBI and stroke.
Collapse
Affiliation(s)
- Shijie Song
- James Haley VA Medical Center, Tampa, Florida, USA
- Department of Neurology, University of South Florida, Tampa, Florida, USA
| | | | - Bangmei Wang
- James Haley VA Medical Center, Tampa, Florida, USA
- Department of Neurology, University of South Florida, Tampa, Florida, USA
| | - Juan Sanchez-Ramos
- Department of Neurology, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
6
|
Durankuş F, Albayrak Y, Erdoğan F, Albayrak N, Erdoğan MA, Erbaş O. Granulocyte Colony-Stimulating Factor Has a Sex-Dependent Positive Effect in the Maternal Immune Activation-Induced Autism Model. Int J Dev Neurosci 2022; 82:716-726. [PMID: 35904498 DOI: 10.1002/jdn.10221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE The medical intervention for autism spectrum disorder (ASD) is restricted to ameliorating comorbid situations. Granulocyte colony-stimulating factor (G-CSF) is a growth factor that enhances the proliferation, differentiation and survival of hematopoietic progenitor cells. In the present study, we aimed to investigate the effects of G-CSF in a maternal immune activation-induced autism model. METHODS Sixteen female and 6 male Wistar adult rats were included in the study. After 21 days, forty-eight littermates (8 male controls, 8 female controls, 16 male lipopolysaccharide (LPS)-exposed rats and 16 female LPS-exposed rats) were divided into groups. Sixteen male LPS-exposed and 16 female LPS-exposed rats were divided into saline and G-CSF treatment groups. RESULTS In male rats, the LPS-exposed group was found to have significantly higher levels of TNF-α, IL-2, and IL-17 than the LPS-exposed G-CSF group. Levels of nerve growth factor, brain PSD-95 and brain GAD67 were higher in the LPS-exposed G-CSF group than in the LPS-exposed group in male rats. In female rats, brain NGF levels were similar between groups. There was no difference between groups in terms of brain GAD 67 levels. Brain PSD-95 levels were higher in the control group than in both the LPS-exposed and LPS-exposed G-CSF groups in female rats. Both neuronal CA1 and neuronal CA2 levels were lower, and the GFAP immunostaining index (CA1) and GFAP immunostaining index (CA3) were higher in the LPS-exposed group than in the LPS-exposed G-CSF group in male rats. However, neuronal count CA1 and Neuronal count CA3 values were found to be similar between groups in female rats. CONCLUSIONS The present research is the first to demonstrate the beneficial effects of G-CSF on core symptoms of ASD experimentally depending on male sex. G-CSF can be a good candidate for ameliorating the core symptoms of ASD without serious side effects in males.
Collapse
Affiliation(s)
- Ferit Durankuş
- Department of Pediatrics, Istanbul Medeniyet University, İstanbul, Turkey
| | - Yakup Albayrak
- Faculty of Medicine, Department of Psychiatry, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| | - Fırat Erdoğan
- Department of Pediatrics, Istanbul Medeniyet University, İstanbul, Turkey
| | | | - Mümin Alper Erdoğan
- Department of Physiology, Katip Çelebi University Medical School, İzmir, Turkey
| | - Oytun Erbaş
- Medical School, Department of Physiology, Demiroğlu Bilim University, İstanbul, Turkey
| |
Collapse
|
7
|
Vafaei Mastanabad M, Nooraei A, Hassan Zadeh Tabatabaei MS, Akbari Fakhrabadi A, Jafarzadeh F. Granulocyte-colony stimulating factor (G-CSF): an emerging therapeutic approach for amyotrophic lateral sclerosis (ALS). Acta Neurol Belg 2022:10.1007/s13760-022-01996-z. [PMID: 35737276 DOI: 10.1007/s13760-022-01996-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 06/01/2022] [Indexed: 11/29/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by neuronal degeneration and inflammation in the nerves. G-CSF is a 19.6-kDa hematopoietic growth factor which is essential for the proliferation and differentiation of granulocyte hematopoietic progenitors. G-CSF exerts neuroprotective activities by induction of neuronal regeneration, inhibition of neuronal apoptosis, mobilization of Hematopoietic stem cells (HSCs), regulation of pro and anti-inflammatory cytokines, and activation of angiogenesis. Pre-clinical studies have shown significant efficacy of G-CSF therapy in mSOD1G93A mice models. G-CSF treatments were able to increase the survival of mice. However, clinical studies on ALS patients failed to clone pre-clinical results. Considering the potential role of G-CSF in nervous system regeneration, this study aimed to comprehensively review the clinical and pre-clinical studies addressing G-CSF in ALS treatment.
Collapse
Affiliation(s)
| | - Aref Nooraei
- Comparative Anatomy and Embryology, School of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | | | - Faria Jafarzadeh
- Department of Internal Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnourd, Iran.
| |
Collapse
|
8
|
Tauroursodeoxycholic acid: a potential therapeutic tool in neurodegenerative diseases. Transl Neurodegener 2022; 11:33. [PMID: 35659112 PMCID: PMC9166453 DOI: 10.1186/s40035-022-00307-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/08/2022] [Indexed: 01/08/2023] Open
Abstract
Most neurodegenerative disorders are diseases of protein homeostasis, with misfolded aggregates accumulating. The neurodegenerative process is mediated by numerous metabolic pathways, most of which lead to apoptosis. In recent years, hydrophilic bile acids, particularly tauroursodeoxycholic acid (TUDCA), have shown important anti-apoptotic and neuroprotective activities, with numerous experimental and clinical evidence suggesting their possible therapeutic use as disease-modifiers in neurodegenerative diseases. Experimental evidence on the mechanisms underlying TUDCA's neuroprotective action derives from animal models of Alzheimer's disease, Parkinson's disease, Huntington's diseases, amyotrophic lateral sclerosis (ALS) and cerebral ischemia. Preclinical studies indicate that TUDCA exerts its effects not only by regulating and inhibiting the apoptotic cascade, but also by reducing oxidative stress, protecting the mitochondria, producing an anti-neuroinflammatory action, and acting as a chemical chaperone to maintain the stability and correct folding of proteins. Furthermore, data from phase II clinical trials have shown TUDCA to be safe and a potential disease-modifier in ALS. ALS is the first neurodegenerative disease being treated with hydrophilic bile acids. While further clinical evidence is being accumulated for the other diseases, TUDCA stands as a promising treatment for neurodegenerative diseases.
Collapse
|
9
|
Chitu V, Biundo F, Stanley ER. Colony stimulating factors in the nervous system. Semin Immunol 2021; 54:101511. [PMID: 34743926 DOI: 10.1016/j.smim.2021.101511] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/23/2021] [Indexed: 01/02/2023]
Abstract
Although traditionally seen as regulators of hematopoiesis, colony-stimulating factors (CSFs) have emerged as important players in the nervous system, both in health and disease. This review summarizes the cellular sources, patterns of expression and physiological roles of the macrophage (CSF-1, IL-34), granulocyte-macrophage (GM-CSF) and granulocyte (G-CSF) colony stimulating factors within the nervous system, with a particular focus on their actions on microglia. CSF-1 and IL-34, via the CSF-1R, are required for the development, proliferation and maintenance of essentially all CNS microglia in a temporal and regional specific manner. In contrast, in steady state, GM-CSF and G-CSF are mainly involved in regulation of microglial function. The alterations in expression of these growth factors and their receptors, that have been reported in several neurological diseases, are described and the outcomes of their therapeutic targeting in mouse models and humans are discussed.
Collapse
Affiliation(s)
- Violeta Chitu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Fabrizio Biundo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - E Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
10
|
|
11
|
Song L, Zhang Q, Zhu S, Shan X. Granulocyte Colony-Stimulating Factor Combined With Transcutaneous Electrical Acupoint Stimulation in Treatment of Unresponsive Thin Endometrium in Frozen Embryo Transfer Cycles. FRONTIERS IN REPRODUCTIVE HEALTH 2021; 3:647336. [PMID: 36304049 PMCID: PMC9580712 DOI: 10.3389/frph.2021.647336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: This trial was designed to assess the treatment effects of granulocyte colony-stimulating factor (G-CSF) and transcutaneous electrical acupoint stimulation (TEAS) on thin endometrium in frozen-thawed embryo transfer (FET) cycles. Methods: Ninety-nine patients with previous cancellations of embryo transfer were included, 56 of whom were prospectively treated with intrauterine perfusion of G-CSF in subsequent FET cycles. The selected patients were randomized into the G-CSF perfusion only group and the G-CSF perfusion combined with TEAS group. The other 43 patients were retrospectively included as controls. Results: Compared to previous cycles, endometrial thickness was statistically significantly increased in the two treatment groups (5.97 ± 0.60, 7.52 ± 0.56, 6.14 ± 0.52, and 7.66 ± 0.44; P = 0.00 and 0.00, respectively). The increases in endometrial thickness suggested that no statistically significant difference was found between the two treatment groups. The G-CSF with TEAS group suggested a higher embryo implantation rate than the G-CSF perfusion only and control groups (33.33 and 29.1% and 33.33 and 17.39%; P = 0.412 and 0.091, respectively). The G-CSF combined with TEAS group demonstrated nominally higher clinical and ongoing pregnancy rates than the G-CSF perfusion-only group and controls, though, the difference was not statistically significant. Conclusion: G-CSF has a potential role in improving endometrium thickness in patients with thin unresponsive endometrium in FET treatment cycles. In addition, when combined with TEAS, G-CSF perfusion treatment also improves the embryo implantation rate; however, randomized controlled trials are highly demanded to provide high-grade evidence regarding clinical pregnancy rate after G-CSF perfusion treatment.
Collapse
|
12
|
Neuroprotection through G-CSF: recent advances and future viewpoints. Pharmacol Rep 2021; 73:372-385. [PMID: 33389706 DOI: 10.1007/s43440-020-00201-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 12/14/2022]
Abstract
Granulocyte-colony stimulating factor (G-CSF), a member of the cytokine family of hematopoietic growth factors, is 19.6 kDa glycoprotein which is responsible for the proliferation, maturation, differentiation, and survival of neutrophilic granulocyte lineage. Apart from its proven clinical application to treat chemotherapy-associated neutropenia, recent pre-clinical studies have highlighted the neuroprotective roles of G-CSF i.e., mobilization of haemopoietic stem cells, anti-apoptotic, neuronal differentiation, angiogenesis and anti-inflammatory in animal models of neurological disorders. G-CSF is expressed by numerous cell types including neuronal, immune and endothelial cells. G-CSF is released in autocrine manner and binds to its receptor G-CSF-R which further activates numerous signaling transduction pathways including PI3K/AKT, JAK/STAT and MAP kinase, and thereby promote neuronal survival, proliferation, differentiation, mobilization of hematopoietic stem and progenitor cells. The expression of G-CSF receptors (G-CSF-R) in the different brain regions and their upregulation in response to neuronal insult indicates the autocrine protective signaling mechanism of G-CSF by inhibition of apoptosis, inflammation, and stimulation of neurogenesis. These observed neuroprotective effects of G-CSF makes it an attractive target to mitigate neurodegeneration associated with neurological disorders. The objective of the review is to highlight and summarize recent updates on G-CSF as a therapeutically versatile neuroprotective agent along with mechanisms of action as well as possible clinical applications in neurodegenerative disorders including AD, PD and HD.
Collapse
|
13
|
Zein H, Mohammad K, Leijser LM, Brundler MA, Kirton A, Esser MJ. Cord Blood Cytokine Levels Correlate With Types of Placental Pathology in Extremely Preterm Infants. Front Pediatr 2021; 9:607684. [PMID: 33777861 PMCID: PMC7991101 DOI: 10.3389/fped.2021.607684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 02/09/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Placental abnormalities are associated with inflammation and have been linked to brain injury in preterm infants. We studied the relationship between placental pathology and the temporal profiles of cytokine levels in extremely pre-term infants. Study Design: We prospectively enrolled 55 extremely preterm infants born between June 2017 and July 2018. Levels of 27 cytokines were measured in blood drawn from the umbilical artery at birth and from infants at 1-3 and 21-28 days of life. Placental pathology was grouped as normal (N), inflammation (I), vasculopathy (V), or combined vasculopathy and inflammation (V+I). Results: Complete data was available from 42 patients. Cord blood median levels of cytokines differed between groups with the highest levels observed in group V+I as compared to groups N, I and V for the following: Eotaxin (p = 0.038), G-CSF (p = 0.023), IFN-γ (p = 0.002), IL-1ra (p < 0.001), IL-4 (p = 0.005), IL-8 (p = 0.010), MCP-1 (p = 0.011), and TNFα (p = 0.002). Post-hoc analysis revealed sex differences between and within the placental pathology groups. Conclusion: Specific types of placental pathology may be associated with differential cytokine profiles in extremely pre-term infants. Sampling from cord blood may help assess the pathological status of the placenta and potentially infer outcome risks for the infant.
Collapse
Affiliation(s)
- Hussein Zein
- Section of Neonatology, Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| | - Khorshid Mohammad
- Section of Neonatology, Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| | - Lara M Leijser
- Section of Neonatology, Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| | - Marie-Anne Brundler
- Departments of Pathology and Laboratory Medicine and Pediatrics, University of Calgary, Calgary, AB, Canada
| | - Adam Kirton
- Section of Pediatric Neurology, Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| | - Michael J Esser
- Section of Pediatric Neurology, Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
14
|
Terashima T, Kobashi S, Watanabe Y, Nakanishi M, Honda N, Katagi M, Ohashi N, Kojima H. Enhancing the Therapeutic Efficacy of Bone Marrow-Derived Mononuclear Cells with Growth Factor-Expressing Mesenchymal Stem Cells for ALS in Mice. iScience 2020; 23:101764. [PMID: 33251493 PMCID: PMC7677706 DOI: 10.1016/j.isci.2020.101764] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/16/2020] [Accepted: 10/30/2020] [Indexed: 12/14/2022] Open
Abstract
Several treatments have been attempted in amyotrophic lateral sclerosis (ALS) animal models and patients. Recently, transplantation of bone marrow-derived mononuclear cells (MNCs) was investigated as a regenerative therapy for ALS, but satisfactory treatments remain to be established. To develop an effective treatment, we focused on mesenchymal stem cells (MSCs) expressing hepatocyte growth factor, glial cell line-derived neurotrophic factor, and insulin-like growth factor using human artificial chromosome vector (HAC-MSCs). Here, we demonstrated the transplantation of MNCs with HAC-MSCs in ALS mice. As per our results, the progression of motor dysfunction was significantly delayed, and their survival was prolonged dramatically. Additional analysis revealed preservation of motor neurons, suppression of gliosis, engraftment of numerous MNCs, and elevated chemotaxis-related cytokines in the spinal cord of treated mice. Therefore, growth factor-expressing MSCs enhance the therapeutic effects of bone marrow-derived MNCs for ALS and have a high potential as a novel cell therapy for patients with ALS. MNCs with growth factor-expressing MSCs is an effective cell therapy for ALS mice The MSCs enhance therapeutic effects by migration of MNCs into ALS mice spinal cord This cell therapy suppresses neuronal loss and gliosis in ALS mice spinal cord This cell therapy induces several cytokines expression in ALS mice spinal cord
Collapse
Affiliation(s)
- Tomoya Terashima
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Shuhei Kobashi
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Yasuhiro Watanabe
- Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8504, Japan
| | - Mami Nakanishi
- Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8504, Japan
| | - Naoto Honda
- Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8504, Japan
| | - Miwako Katagi
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Natsuko Ohashi
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Hideto Kojima
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| |
Collapse
|
15
|
Potential roles of telomeres and telomerase in neurodegenerative diseases. Int J Biol Macromol 2020; 163:1060-1078. [DOI: 10.1016/j.ijbiomac.2020.07.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/23/2020] [Accepted: 07/06/2020] [Indexed: 12/16/2022]
|
16
|
Torma F, Gombos Z, Jokai M, Berkes I, Takeda M, Mimura T, Radak Z, Gyori F. The roles of microRNA in redox metabolism and exercise-mediated adaptation. JOURNAL OF SPORT AND HEALTH SCIENCE 2020; 9:405-414. [PMID: 32780693 PMCID: PMC7498669 DOI: 10.1016/j.jshs.2020.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 01/03/2020] [Accepted: 02/10/2020] [Indexed: 05/10/2023]
Abstract
MicroRNAs (miRs) are small regulatory RNA transcripts capable of post-transcriptional silencing of mRNA messages by entering a cellular bimolecular apparatus called RNA-induced silencing complex. miRs are involved in the regulation of cellular processes producing, eliminating or repairing the damage caused by reactive oxygen species, and they are active players in redox homeostasis. Increased mitochondrial biogenesis, function and hypertrophy of skeletal muscle are important adaptive responses to regular exercise. In the present review, we highlight some of the redox-sensitive regulatory roles of miRs.
Collapse
Affiliation(s)
- Ferenc Torma
- Research Center of Molecular Exercise Science, University of Physical Education, Budapest 1123, Hungary
| | - Zoltan Gombos
- Research Center of Molecular Exercise Science, University of Physical Education, Budapest 1123, Hungary
| | - Matyas Jokai
- Research Center of Molecular Exercise Science, University of Physical Education, Budapest 1123, Hungary
| | - Istvan Berkes
- Research Center of Molecular Exercise Science, University of Physical Education, Budapest 1123, Hungary
| | - Masaki Takeda
- Faculty of Health and Sports Science, Doshisha University, Kyotanabe 610-0394, Japan
| | - Tatsuya Mimura
- Faculty of Sport and Health Sciences, Osaka Sangyo University, Osaka 573-1004, Japan
| | - Zsolt Radak
- Research Center of Molecular Exercise Science, University of Physical Education, Budapest 1123, Hungary; Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama 359-1192, Japan; Institute of Physical Education and Sport Science, JGYPK, University of Szeged, Szeged 6726, Hungary.
| | - Ferenc Gyori
- Institute of Physical Education and Sport Science, JGYPK, University of Szeged, Szeged 6726, Hungary
| |
Collapse
|
17
|
Volonté C, Morello G, Spampinato AG, Amadio S, Apolloni S, D’Agata V, Cavallaro S. Omics-based exploration and functional validation of neurotrophic factors and histamine as therapeutic targets in ALS. Ageing Res Rev 2020; 62:101121. [PMID: 32653439 DOI: 10.1016/j.arr.2020.101121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 05/27/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022]
Abstract
A plethora of genetic and molecular mechanisms have been implicated in the pathophysiology of the heterogeneous and multifactorial amyotrophic lateral sclerosis (ALS) disease, and hence the conventional "one target-one drug" paradigm has failed so far to provide effective therapeutic solutions, precisely because of the complex nature of ALS. This review intends to highlight how the integration of emerging "omics" approaches may provide a rational foundation for the comprehensive exploration of molecular pathways and dynamic interactions involved in ALS, for the identification of candidate targets and biomarkers that will assist in the rapid diagnosis and prognosis, lastly for the stratification of patients into different subgroups with the aim of personalized therapeutic strategies. To this purpose, particular emphasis will be placed on some potential therapeutic targets, including neurotrophic factors and histamine signaling that both have emerged as dysregulated at different omics levels in specific subgroups of ALS patients, and have already shown promising results in in vitro and in vivo models of ALS. To conclude, we will discuss about the utility of using integrated omics coupled with network-based approaches to provide additional guidance for personalization of medicine applications in ALS.
Collapse
|
18
|
Salamone P, Fuda G, Casale F, Marrali G, Lunetta C, Caponnetto C, Mazzini L, La Bella V, Mandrioli J, Simone IL, Moglia C, Calvo A, Tarella C, Chio A. G-CSF (filgrastim) treatment for amyotrophic lateral sclerosis: protocol for a phase II randomised, double-blind, placebo-controlled, parallel group, multicentre clinical study (STEMALS-II trial). BMJ Open 2020; 10:e034049. [PMID: 32209625 PMCID: PMC7202695 DOI: 10.1136/bmjopen-2019-034049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a fatal progressive neurological disorder characterised by a selective degeneration of motor neurons (MNs). Stem cell transplantation is considered as a promising strategy in neurological disorders therapy and the possibility of inducing bone marrow cells (BMCs) to circulate in the peripheral blood is suggested to investigate stem cells migration in degenerated ALS nerve tissues where potentially repair MN damage. Granulocyte-colony stimulating factor (G-CSF) is a growth factor which stimulates haematopoietic progenitor cells, mobilises BMCs into injured brain and it is itself a neurotrophic factor for MN. G-CSF safety in humans has been demonstrated and many observations suggest that it may affect neural cells. Therefore, we decided to use G-CSF to mobilise BMCs into the peripheral circulation in patients with ALS, planning a clinical trial to evaluate the effect of G-CSF administration in ALS patients compared with placebo. METHODS AND ANALYSIS STEMALS-II is a phase II multicentre, randomised double-blind, placebo-controlled, parallel group clinical trial on G-CSF (filgrastim) and mannitol in ALS patients. Specifically, we investigate safety, tolerability and efficacy of four repeated courses of intravenous G-CSF and mannitol administered in 76 ALS patients in comparison with placebo (indistinguishable glucose solution 5%). We determine increase of G-CSF levels in serum and cerebrospinal fluid as CD34+ cells and leucocyte count after treatment; reduction in ALS Functional Rating Scale-Revised Score, forced vital capacity, Scale for Testing Muscle Strength Score and quality of life; the adverse events/reactions during the treatment; changes in neuroinflammation biomarkers before and after treatment. ETHICS AND DISSEMINATION The study protocol was approved by the Ethics Committee of Azienda Ospedaliera Universitaria 'Città della Salute e della Scienza', Torino, Italy. Results will be presented during scientific symposia or published in scientific journals. TRIAL REGISTRATION NUMBER Eudract 2014-002228-28.
Collapse
Affiliation(s)
- Paolina Salamone
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Torino, Piemonte, Italy
| | - Giuseppe Fuda
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Torino, Piemonte, Italy
| | - Federico Casale
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Torino, Piemonte, Italy
| | - Giuseppe Marrali
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Torino, Piemonte, Italy
| | - Christian Lunetta
- NEuroMuscular Omnicentre (NEMO), Fondazione Serena Onlus, Milan, Italy
| | - Claudia Caponnetto
- Neurological Clinic, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Letizia Mazzini
- Department of Neurology, Maggiore della Carità Hospital, University of Piemonte Orientale, Novara, Italy
| | - Vincenzo La Bella
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Sicilia, Italy
| | - Jessica Mandrioli
- Department of Neuroscience, Azienda Ospedaliera Universitaria Modena, St. Agostino-Estense Hospital, Modena, Italy
| | - Isabella Laura Simone
- Neurology Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari, Bari, Puglia, Italy
| | - Cristina Moglia
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Torino, Piemonte, Italy
- ALS Center, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Torino, Piemonte, Italy
| | - Andrea Calvo
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Torino, Piemonte, Italy
- ALS Center, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Torino, Piemonte, Italy
| | - Corrado Tarella
- Oncohematology Division, IEO European Institute of Oncology, IRCCS, University of Milan, Milano, Lombardia, Italy
| | - Adriano Chio
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Torino, Piemonte, Italy
- ALS Center, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Torino, Piemonte, Italy
| |
Collapse
|
19
|
Pocock K, Suresh N, Suradi Y, Dang S, Harvey B, Cao C, Sutherland K, Lin X, Vu TH, Gooch C. An Open-Label, Prospective Study Evaluating the Clinical and Immunological Effects of Higher Dose Granulocyte Colony-Stimulating Factor in ALS. J Clin Neuromuscul Dis 2020; 21:127-134. [PMID: 32073458 DOI: 10.1097/cnd.0000000000000275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
OBJECTIVE We evaluated the safety and tolerability of higher-dose granulocyte colony-stimulating factor (G-CSF) in patients with amyotrophic lateral sclerosis. In addition, rates of disease progression and serum G-CSF levels and other immunological and hematological markers were measured. METHODS Three patients with advanced amyotrophic lateral sclerosis were treated with G-CSF subcutaneously at 5 μg/kg twice daily for 5 consecutive days monthly for 4-12 months. Patients were monitored for adverse effects, and disease progression was assessed with ALSFRS-R and other measures. RESULTS Patients tolerated higher-dose G-CSF well with no serious adverse events. Adverse effects were mild to moderate with musculoskeletal pain and malaise being most often reported. No significant change in the rate of disease progression was noted for ALSFRS-R or other measures. Bone marrow progenitor cells were rapidly mobilized for a duration of approximately 9 days with transient and variable effect on cytokines. CONCLUSIONS Higher-dose G-CSF was well tolerated in this cohort with no apparent effect on disease progression up to 1 year.
Collapse
Affiliation(s)
- Kristyn Pocock
- Department of Neurology, University of South Florida, Tampa, FL; and
| | - Niraja Suresh
- Department of Neurology, University of South Florida, Tampa, FL; and
| | - Yazan Suradi
- Department of Neurology, University of South Florida, Tampa, FL; and
| | - Samuel Dang
- Department of Neurology, University of South Florida, Tampa, FL; and
| | - Brittany Harvey
- Department of Neurology, University of South Florida, Tampa, FL; and
| | - Chuanhai Cao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL
| | - Kyle Sutherland
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL
| | - Xiaoyang Lin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL
| | - Tuan H Vu
- Department of Neurology, University of South Florida, Tampa, FL; and
| | - Clifton Gooch
- Department of Neurology, University of South Florida, Tampa, FL; and
| |
Collapse
|
20
|
Zhu Q, Lu P. Stem Cell Transplantation for Amyotrophic Lateral Sclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1266:71-97. [PMID: 33105496 DOI: 10.1007/978-981-15-4370-8_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a motor neuronal degeneration disease, in which the death of motor neurons causes lost control of voluntary muscles. The consequence is weakness of muscles with a wide range of disabilities and eventually death. Most patients died within 5 years after diagnosis, and there is no cure for this devastating neurodegenerative disease up to date. Stem cells, including non-neural stem cells and neural stem cells (NSCs) or neural progenitor cells (NPCs), are very attractive cell sources for potential neuroprotection and motor neuron replacement therapy which bases on the idea that transplant-derived and newly differentiated motor neurons can replace lost motor neurons to re-establish voluntary motor control of muscles in ALS. Our recent studies show that transplanted NSCs or NPCs not only survive well in injured spinal cord, but also function as neuronal relays to receive regenerated host axonal connection and extend their own axons to host for connectivity, including motor axons in ventral root. This reciprocal connection between host neurons and transplanted neurons provides a strong rationale for neuronal replacement therapy for ALS to re-establish voluntary motor control of muscles. In addition, a variety of new stem cell resources and the new methodologies to generate NSCs or motor neuron-specific progenitor cells have been discovered and developed. Together, it provides the basis for motor neuron replacement therapy with NSCs or NPCs in ALS.
Collapse
Affiliation(s)
- Qiang Zhu
- Ludwig Institute, University of California - San Diego, La Jolla, CA, USA
| | - Paul Lu
- Veterans Administration San Diego Healthcare System, San Diego, CA, USA. .,Department of Neurosciences, University of California - San Diego, La Jolla, CA, USA.
| |
Collapse
|
21
|
Antiapoptotic Effect of Granulocyte-Colony Stimulating Factor After Peripheral Nerve Trauma. World Neurosurg 2019; 129:e6-e15. [DOI: 10.1016/j.wneu.2019.04.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/05/2019] [Accepted: 04/06/2019] [Indexed: 11/18/2022]
|
22
|
Granulocyte Colony-Stimulating Factor Does Not Influence Clostridium Perfringens α-Toxin-Induced Myonecrosis in Mice. Toxins (Basel) 2019; 11:toxins11090509. [PMID: 31480318 PMCID: PMC6784116 DOI: 10.3390/toxins11090509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/20/2019] [Accepted: 08/28/2019] [Indexed: 12/04/2022] Open
Abstract
Clostridium perfringens type A causes gas gangrene characterized by myonecrosis and development of an effective therapy for treating affected patients is of clinical importance. It was recently reported that the expression of granulocyte colony-stimulating factor (G-CSF) is greatly up-regulated by C. perfringens infection. However, the role of G-CSF in C. perfringens-mediated myonecrosis is still unclear. Here, we assessed the destructive changes in C. perfringens-infected skeletal muscles and tested whether inhibition of G-CSF receptor (G-CSFR) signaling or administration of recombinant G-CSF affects the tissue injury. Severe edema, contraction of muscle fiber diameter, and increased plasma creatine kinase activity were observed in mice intramuscularly injected with C. perfringens type A, and the destructive changes were α-toxin-dependent, indicating that infection induces the destruction of skeletal muscle in an α-toxin-dependent manner. G-CSF plays important roles in the protection of tissue against damage and in the regeneration of injured tissue. However, administration of a neutralizing antibody against G-CSFR had no profound impact on the destructive changes to skeletal muscle. Moreover, administration of recombinant human G-CSF, filgrastim, imparted no inhibitory effect against the destructive changes caused by C. perfringens. Together, these results indicate that G-CSF is not beneficial for treating C. perfringens α-toxin-mediated myonecrosis, but highlight the importance of revealing the mechanism by which C. perfringens negates the protective effects of G-CSF in skeletal muscle.
Collapse
|
23
|
Gouel F, Rolland AS, Devedjian JC, Burnouf T, Devos D. Past and Future of Neurotrophic Growth Factors Therapies in ALS: From Single Neurotrophic Growth Factor to Stem Cells and Human Platelet Lysates. Front Neurol 2019; 10:835. [PMID: 31428042 PMCID: PMC6688198 DOI: 10.3389/fneur.2019.00835] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/19/2019] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that typically results in death within 3–5 years after diagnosis. To date, there is no curative treatment and therefore an urgent unmet need of neuroprotective and/or neurorestorative treatments. Due to their spectrum of capacities in the central nervous system—e.g., development, plasticity, maintenance, neurogenesis—neurotrophic growth factors (NTF) have been exploited for therapeutic strategies in ALS for decades. In this review we present the initial strategy of using single NTF by different routes of administration to the use of stem cells transplantation to express a multiple NTFs-rich secretome to finally focus on a new biotherapy based on the human platelet lysates, the natural healing system containing a mix of pleitropic NTF and having immunomodulatory function. This review highlights that this latter treatment may be crucial to power the neuroprotection and/or neurorestoration therapy requested in this devastating disease.
Collapse
Affiliation(s)
- Flore Gouel
- Department of Medical Pharmacology, Lille University, INSERM UMRS_1171, University Hospital Center, LICEND COEN Center, Lille, France
| | - Anne-Sophie Rolland
- Department of Medical Pharmacology, Lille University, INSERM UMRS_1171, University Hospital Center, LICEND COEN Center, Lille, France
| | - Jean-Christophe Devedjian
- Department of Medical Pharmacology, Lille University, INSERM UMRS_1171, University Hospital Center, LICEND COEN Center, Lille, France
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,International PhD Program in Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - David Devos
- Department of Medical Pharmacology, Lille University, INSERM UMRS_1171, University Hospital Center, LICEND COEN Center, Lille, France.,Department of Neurology, Lille University, INSERM UMRS_1171, University Hospital Center, LICEND COEN Center, Lille, France
| |
Collapse
|
24
|
Lee SW, Kang NH, Choi JW. Functional Secretion of Granulocyte Colony Stimulating Factor in Bacillus subtilis and Its Thermogenic Activity in Brown Adipocytes. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-019-0127-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Iberl S, Meyer AL, Müller G, Peters S, Johannesen S, Kobor I, Beier F, Brümmendorf TH, Hart C, Schelker R, Herr W, Bogdahn U, Grassinger J. Effects of continuous high-dose G-CSF administration on hematopoietic stem cell mobilization and telomere length in patients with amyotrophic lateral sclerosis - a pilot study. Cytokine 2019; 120:192-201. [PMID: 31100684 DOI: 10.1016/j.cyto.2019.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 04/23/2019] [Accepted: 05/05/2019] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of complex and still poorly understood etiology. Loss of upper and lower motoneurons results in death within few years after diagnosis. Recent studies have proposed neuroprotective and disease-slowing effects of granulocyte-colony stimulating factor (G-CSF) treatment in ALS mouse models as well as humans. In this study, six ALS patients were monitored up to 3.5 years during continuous high-dose G-CSF administration. Repetitive analyses were performed including blood count parameters, CD34+ hematopoietic stem and progenitor cell (HSPC) and colony forming cell (CFC) counts, serum cytokine levels and leukocyte telomere length. We demonstrate that continuous G-CSF therapy was well tolerated and safe resulting in only mild adverse events during the observation period. However, no mobilization of CD34+ HSPC was detected as compared to baseline values. CFC mobilization was equally low and even a decrease of myeloid precursors was observed in some patients. Assessment of telomere length within ALS patients' leukocytes revealed that G-CSF did not significantly shorten telomeres, while those of ALS patients were shorter compared to age-matched healthy controls, irrespective of G-CSF treatment. During G-CSF stimulation, TNF-alpha, CRP, IL-16, sVCAM-1, sICAM-1, Tie-2 and VEGF were significantly increased in serum whereas MCP-1 levels decreased. In conclusion, our data show that continuous G-CSF treatment fails to increase circulating CD34+ HSPC in ALS patients. Cytokine profiles revealed G-CSF-mediated immunomodulatory and proteolytic effects. Interestingly, despite intense G-CSF stimulation, telomere length was not significantly shortened.
Collapse
Affiliation(s)
- Sabine Iberl
- Department of Hematology and Oncology, Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.
| | - Anne-Louise Meyer
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Gunnar Müller
- Department of Hematology and Oncology, Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Sebastian Peters
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Siw Johannesen
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Ines Kobor
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Fabian Beier
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, RWTH Aachen University Medical School, Aachen, Germany
| | - Tim H Brümmendorf
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, RWTH Aachen University Medical School, Aachen, Germany
| | - Christina Hart
- Department of Hematology and Oncology, Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Roland Schelker
- Department of Hematology and Oncology, Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Wolfgang Herr
- Department of Hematology and Oncology, Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Ulrich Bogdahn
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Jochen Grassinger
- Department of Hematology and Oncology, Internal Medicine III, University Hospital Regensburg, Regensburg, Germany; Department of Oncology and Hematology, St. Elisabeth Hospital, Straubing, Germany
| |
Collapse
|
26
|
Chemotherapeutic agent 5-fluorouracil increases survival of SOD1 mouse model of ALS. PLoS One 2019; 14:e0210752. [PMID: 30640943 PMCID: PMC6331125 DOI: 10.1371/journal.pone.0210752] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/31/2018] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a lethal motor neuron disease with no cure. Currently there are only two ALS drugs approved by the FDA, both with a limited therapeutic effect. In the search for drug candidates for ALS, we studied the effect of known stem cell mobilizing agents (treatment) and antimetabolite 5-fluorouracil (5-FU) (anti-treatment) in SOD1G93A model of ALS. Surprisingly, we found that anti-cancer drug 5-FU increases lifespan, delays the disease onset and improves motor performance in ALS mice. Although we were not able to demonstrate the mechanistic basis of the beneficial 5-FU action in ALS mice, our findings suggest that 5-FU or similar drugs are possible drug candidates for the treatment of motor neuron diseases through drug repurposing.
Collapse
|
27
|
Derakhshanrad N, Saberi H, Yekaninejad MS, Joghataei MT. Subcutaneous granulocyte colony-stimulating factor administration for subacute traumatic spinal cord injuries, report of neurological and functional outcomes: a double-blind randomized controlled clinical trial. J Neurosurg Spine 2019; 30:19-30. [PMID: 30497202 DOI: 10.3171/2018.6.spine18209] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/07/2018] [Indexed: 11/06/2022]
Abstract
In BriefSpinal cord injury is among the most devastating neurological conditions affecting humans. The authors assessed the therapeutic efficacy of subcutaneous recombinant granulocyte colony-stimulating factor as an adjunct to classic surgical and rehabilitative treatments for subacute traumatic spinal cord injuries. This safe and noninvasive treatment may be helpful for better care and satisfaction of patients with this devastating condition throughout the world.
Collapse
Affiliation(s)
- Nazi Derakhshanrad
- 1Brain and Spinal cord Injury Research Center, Neuroscience Institute, and
| | - Hooshang Saberi
- 1Brain and Spinal cord Injury Research Center, Neuroscience Institute, and
- 2Department of Neurosurgery, Imam Khomeini Hospital, Tehran University of Medical Sciences
| | - Mir Saeed Yekaninejad
- 3Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences; and
| | - Mohammad Taghi Joghataei
- 4Neuroscience Department, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Yanagi KS, Wu Z, Amaya J, Chapkis N, Duffy AM, Hajdarovic KH, Held A, Mathur AD, Russo K, Ryan VH, Steinert BL, Whitt JP, Fallon JR, Fawzi NL, Lipscombe D, Reenan RA, Wharton KA, Hart AC. Meta-analysis of Genetic Modifiers Reveals Candidate Dysregulated Pathways in Amyotrophic Lateral Sclerosis. Neuroscience 2019; 396:A3-A20. [PMID: 30594291 PMCID: PMC6549511 DOI: 10.1016/j.neuroscience.2018.10.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/14/2018] [Accepted: 10/16/2018] [Indexed: 12/11/2022]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease that has significant overlap with frontotemporal dementia (FTD). Mutations in specific genes have been identified that can cause and/or predispose patients to ALS. However, the clinical variability seen in ALS patients suggests that additional genes impact pathology, susceptibility, severity, and/or progression of the disease. To identify molecular pathways involved in ALS, we undertook a meta-analysis of published genetic modifiers both in patients and in model organisms, and undertook bioinformatic pathway analysis. From 72 published studies, we generated a list of 946 genes whose perturbation (1) impacted ALS in patient populations, (2) altered defects in laboratory models, or (3) modified defects caused by ALS gene ortholog loss of function. Herein, these are all called modifier genes. We found 727 modifier genes that encode proteins with human orthologs. Of these, 43 modifier genes were identified as modifiers of more than one ALS gene/model, consistent with the hypothesis that shared genes and pathways may underlie ALS. Further, we used a gene ontology-based bioinformatic analysis to identify pathways and associated genes that may be important in ALS. To our knowledge this is the first comprehensive survey of ALS modifier genes. This work suggests that shared molecular mechanisms may underlie pathology caused by different ALS disease genes. Surprisingly, few ALS modifier genes have been tested in more than one disease model. Understanding genes that modify ALS-associated defects will help to elucidate the molecular pathways that underlie ALS and provide additional targets for therapeutic intervention.
Collapse
Affiliation(s)
- Katherine S Yanagi
- Neuroscience Graduate Program, Brown University, Providence, Rhode Island 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, United States.
| | - Zhijin Wu
- Department of Biostatistics, Brown University, Providence, Rhode Island 02912, United States.
| | - Joshua Amaya
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, United States.
| | - Natalie Chapkis
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, United States.
| | - Amanda M Duffy
- Neuroscience Graduate Program, Brown University, Providence, Rhode Island 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, United States.
| | - Kaitlyn H Hajdarovic
- Neuroscience Graduate Program, Brown University, Providence, Rhode Island 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, United States.
| | - Aaron Held
- Molecular Biology, Cell Biology, and Biochemistry Graduate Program, Brown University, Providence, Rhode Island 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, United States.
| | - Arjun D Mathur
- Molecular Biology, Cell Biology, and Biochemistry Graduate Program, Brown University, Providence, Rhode Island 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, United States.
| | - Kathryn Russo
- Neuroscience Graduate Program, Brown University, Providence, Rhode Island 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, United States.
| | - Veronica H Ryan
- Neuroscience Graduate Program, Brown University, Providence, Rhode Island 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, United States.
| | - Beatrice L Steinert
- Molecular Biology, Cell Biology, and Biochemistry Department, Brown University, Providence, Rhode Island 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, United States.
| | - Joshua P Whitt
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, United States.
| | - Justin R Fallon
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, United States.
| | - Nicolas L Fawzi
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, United States.
| | - Diane Lipscombe
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, United States.
| | - Robert A Reenan
- Molecular Biology, Cell Biology, and Biochemistry Department, Brown University, Providence, Rhode Island 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, United States.
| | - Kristi A Wharton
- Molecular Biology, Cell Biology, and Biochemistry Department, Brown University, Providence, Rhode Island 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, United States.
| | - Anne C Hart
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, United States.
| |
Collapse
|
29
|
Valko K, Ciesla L. Amyotrophic lateral sclerosis. PROGRESS IN MEDICINAL CHEMISTRY 2019; 58:63-117. [DOI: 10.1016/bs.pmch.2018.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Alrafiah AR. From Mouse Models to Human Disease: An Approach for Amyotrophic Lateral Sclerosis. In Vivo 2018; 32:983-998. [PMID: 30150420 DOI: 10.21873/invivo.11339] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 05/22/2018] [Accepted: 05/31/2018] [Indexed: 02/06/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal adult-onset neurodegenerative disorder. There are several genetic mutations that lead to ALS development, such as chromosome 9 hexanucleotide repeat 72 (C9ORF72), transactive response DNA-binding protein (TARDBP), superoxide dismutase 1 (SOD1) and fused in sarcoma (FUS). ALS is associated with disrupted gene homeostasis causing aberrant RNA processing or toxic pathology. Several animal models of ALS disease have been developed to understand whether TARDBP-mediated neurodegeneration results from a gain or a loss of function of the protein, however, none exactly mimic the pathophysiology and the phenotype of human ALS. Here, the pathophysiology of specific ALS-linked gene mutations is discussed. Furthermore, some of the generated mouse models, as well as the similarities and differences between these models, are comprehensively reviewed. Further refinement of mouse models will likely aid the development of a better form of model that mimics human ALS. However, disrupted gene homeostasis that causes mutation can result in an ALS-like syndrome, increasing concerns about whether neurodegeneration and other effects in these models are due to the mutation or to gene overexpression. Research on the pleiotropic role of different proteins present in motor neurons is also summarized. The development of better mouse models that closely mimic human ALS will help identify potential therapeutic targets for this disease.
Collapse
Affiliation(s)
- Aziza Rashed Alrafiah
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences and Neuroscience Research Unit, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
31
|
Johannesen S, Budeus B, Peters S, Iberl S, Meyer AL, Kammermaier T, Wirkert E, Bruun TH, Samara VC, Schulte-Mattler W, Herr W, Schneider A, Grassinger J, Bogdahn U. Biomarker Supervised G-CSF (Filgrastim) Response in ALS Patients. Front Neurol 2018; 9:971. [PMID: 30534107 PMCID: PMC6275232 DOI: 10.3389/fneur.2018.00971] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 10/29/2018] [Indexed: 01/16/2023] Open
Abstract
Objective: To evaluate safety, tolerability and feasibility of long-term treatment with Granulocyte-colony stimulating factor (G-CSF), a well-known hematopoietic stem cell factor, guided by assessment of mobilized bone marrow derived stem cells and cytokines in the serum of patients with amyotrophic lateral sclerosis (ALS) treated on a named patient basis. Methods: 36 ALS patients were treated with subcutaneous injections of G-CSF on a named patient basis and in an outpatient setting. Drug was dosed by individual application schemes (mean 464 Mio IU/month, range 90-2160 Mio IU/month) over a median of 13.7 months (range from 2.7 to 73.8 months). Safety, tolerability, survival and change in ALSFRS-R were observed. Hematopoietic stem cells were monitored by flow cytometry analysis of circulating CD34+ and CD34+CD38− cells, and peripheral cytokines were assessed by electrochemoluminescence throughout the intervention period. Analysis of immunological and hematological markers was conducted. Results: Long term and individually adapted treatment with G-CSF was well tolerated and safe. G-CSF led to a significant mobilization of hematopoietic stem cells into the peripheral blood. Higher mobilization capacity was associated with prolonged survival. Initial levels of serum cytokines, such as MDC, TNF-beta, IL-7, IL-16, and Tie-2 were significantly associated with survival. Continued application of G-CSF led to persistent alterations in serum cytokines and ongoing measurements revealed the multifaceted effects of G-CSF. Conclusions: G-CSF treatment is feasible and safe for ALS patients. It may exert its beneficial effects through neuroprotective and -regenerative activities, mobilization of hematopoietic stem cells and regulation of pro- and anti-inflammatory cytokines as well as angiogenic factors. These cytokines may serve as prognostic markers when measured at the time of diagnosis. Hematopoietic stem cell numbers and cytokine levels are altered by ongoing G-CSF application and may potentially serve as treatment biomarkers for early monitoring of G-CSF treatment efficacy in ALS in future clinical trials.
Collapse
Affiliation(s)
- Siw Johannesen
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | | | - Sebastian Peters
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Sabine Iberl
- Department of Hematology, Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Anne-Louise Meyer
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Tina Kammermaier
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Eva Wirkert
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Tim-Henrik Bruun
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Verena C Samara
- Stanford Neuroscience Health Center, Palo Alto, CA, United States
| | | | - Wolfgang Herr
- Department of Hematology, Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | | | - Jochen Grassinger
- Department of Hematology, Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Ulrich Bogdahn
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
32
|
Maciel-Barón LÁ, Morales-Rosales SL, Silva-Palacios A, Rodríguez-Barrera RH, García-Álvarez JA, Luna-López A, Pérez VI, Torres C, Königsberg M. The secretory phenotype of senescent astrocytes isolated from Wistar newborn rats changes with anti-inflammatory drugs, but does not have a short-term effect on neuronal mitochondrial potential. Biogerontology 2018; 19:415-433. [PMID: 30097900 DOI: 10.1007/s10522-018-9767-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/06/2018] [Indexed: 01/07/2023]
Abstract
In the central nervous system (CNS), senescent astrocytes have been associated with neurodegeneration. Senescent cells secrete a complex mixture of pro-inflammatory factors, which are collectively called Senescence Associated Secretory Phenotype (SASP). The SASP components can vary depending on the cell type, senescence inducer and time. The SASP has been mainly studied in fibroblasts and epithelial cells, but little is known in the context of the CNS. Here, the SASP profile in senescent astrocytes isolated from Wistar newborn rats induced to senescence by oxidative stress or by proteasome inhibition was analyzed. Senescent astrocytes secreted predominantly chemokines and IL-1α, but no IL-6. The effect of the anti-inflammatory drugs, sulforaphane (SFN) and dehydroepiandrosterone (DHEA), on the SASP profile was evaluated. Our results showed that SFN and DHEA decreased IL-1α secretion while increasing IL-10, thus modifying the SASP to a less anti-inflammatory profile. Primary neurons were subjected to the conditioned media obtained from drug-treated senescent astrocytes, and their mitochondrial membrane potential was evaluated.
Collapse
Affiliation(s)
- Luis Ángel Maciel-Barón
- División de Ciencias Biológicas y de la Salud, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, A.P. 55-535, C.P. 09340, Ciudad de México, Mexico.,Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, 09340, Ciudad de México, Mexico
| | - Sandra Lizbeth Morales-Rosales
- División de Ciencias Biológicas y de la Salud, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, A.P. 55-535, C.P. 09340, Ciudad de México, Mexico.,Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, 09340, Ciudad de México, Mexico
| | - Alejandro Silva-Palacios
- División de Ciencias Biológicas y de la Salud, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, A.P. 55-535, C.P. 09340, Ciudad de México, Mexico.,Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, 09340, Ciudad de México, Mexico
| | - Roxana Haydee Rodríguez-Barrera
- Centro de Investigación en Ciencias de la Salud (CICSA), Universidad Anáhuac México Campus Norte, Huixquilucan, 52786, Naucalpan de Juárez, Estado de México, Mexico
| | | | | | | | - Claudio Torres
- Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Mina Königsberg
- División de Ciencias Biológicas y de la Salud, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, A.P. 55-535, C.P. 09340, Ciudad de México, Mexico.
| |
Collapse
|
33
|
Montibeller GR, Schackmann B, Urbschat S, Oertel JMK. Effect of granulocyte colony–stimulating factor on the cochlear nuclei after creation of a partial nerve lesion: an experimental study in rats. J Neurosurg 2018; 128:296-303. [DOI: 10.3171/2016.10.jns161109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVEThe risk of injury of the cochlear nerve during angle (CPA) surgery is high. Granulocyte colony–stimulating factor (G-CSF) has been found in various experimental models of peripheral and CNS injury to have a neuroprotective effect by inhibiting apoptosis and inflammation. However, to the authors' knowledge, the influence of G-CSF on cochlear nerve regeneration has not been reported. This study investigated the neuroprotective effect of G-CSF after a partial cochlear nerve lesion in rats.METHODSA lesion of the right cochlear nerve in adult male Sprague-Dawley rats was created using a water-jet dissector with a pressure of 8 bar. In the first group (G-CSF-post), G-CSF was administrated on Days 1, 3, and 5 after the surgery. The second group (G-CSF-pre/post) was treated with G-CSF 1 day before and 1, 3, and 5 days after applying the nerve injury. The control group received sodium chloride after nerve injury at the various time points. Brainstem auditory evoked potentials (BAEPs) were measured directly before and after nerve injury and on Days 1 and 7 to evaluate the acoustic function of the cochlear nerve. The animals were sacrificed 1 week after the operation, and their brains were fixed in formalin. Nissl staining of the cochlear nuclei was performed, and histological sections were analyzed with a light microscope and an image-processing program. The numbers of neurons in the cochlear nuclei were assessed.RESULTSThe values for Waves 2 and 4 of the BAEPs decreased abruptly in all 3 groups in the direct postoperative measurement. Although the amplitude in the control group did not recover, it increased in both treatment groups. According to 2-way ANOVA, groups treated with G-CSF had a significant increase in BAEP Wave II amplitudes on the right side (p = 0.0401) after the applied cochlear nerve injury. With respect to Wave IV, a trend toward better recovery in the G-CSF groups was found, but this difference did not reach statistical significance. In the histological analysis, higher numbers of neurons were found in the G-CSF groups. In the statistical analysis, the difference in the numbers of neurons between the control and G-CSF-post groups reached significance (p = 0.0086). The difference in the numbers of neurons between the control and G-CSF-pre/post groups and between the G-CSF-post and G-CSF-pre/post groups did not reach statistical significance.CONCLUSIONSThe use of G-CSF improved the function of the eighth cranial nerve and protected cochlear nucleus cells from destruction after a controlled partial injury of the nerve. These findings might be relevant for surgery that involves CPA tumors. The use of G-CSF in patients with a lesion in the CPA might improve postoperative outcomes.
Collapse
|
34
|
Granulocyte Colony-Stimulating Factor and Its Potential Application for Skeletal Muscle Repair and Regeneration. Mediators Inflamm 2017; 2017:7517350. [PMID: 29362521 PMCID: PMC5738577 DOI: 10.1155/2017/7517350] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/10/2017] [Indexed: 01/01/2023] Open
Abstract
Granulocyte colony-stimulating factor (G-CSF) was originally discovered in the context of hematopoiesis. However, the identification of the G-CSF receptor (G-CSFR) being expressed outside the hematopoietic system has revealed wider roles for G-CSF, particularly in tissue repair and regeneration. Skeletal muscle damage, including that following strenuous exercise, induces an elevation in plasma G-CSF, implicating it as a potential mediator of skeletal muscle repair. This has been supported by preclinical studies and clinical trials investigating G-CSF as a potential therapeutic agent in relevant disease states. This review focuses on the growing literature associated with G-CSF and G-CSFR in skeletal muscle under healthy and disease conditions and highlights the current controversies.
Collapse
|
35
|
Guo J, Yang X, Gao L, Zang D. Evaluating the levels of CSF and serum factors in ALS. Brain Behav 2017; 7:e00637. [PMID: 28293476 PMCID: PMC5346523 DOI: 10.1002/brb3.637] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 12/13/2016] [Accepted: 12/18/2016] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES The aim of this study was to identify CSF and serum factors as biomarkers that may aid in distinguishing ALS patients from control subjects and predicting ALS progression as well as prognosis. METHODS Serum and CSF samples from 105 patients with ALS and 56 control subjects were analyzed for 13 factors using ELISA. The revised ALS functional rating scale (ALSFRS-r) was used to evaluate the overall functional status of ALS patients, and we also followed up with ALS patients either by phone or with clinic visits for five years after enrollment in this study. Finally, we examined the correlations between factor levels and various clinical parameters and evaluated the predictive value for prognosis through a multivariate statistic model. RESULTS A total of eight factors were obviously elevated in CSF, and twelve markers were increased in serum. In the correlation analyses, there were trends toward higher bFGF, VEGF, MIP-1α levels in ALS with a longer disease duration and slower disease progression in both CSF and serum. Higher MCP-1 levels were associated with worse disease severity and faster progression, and the IFN-γ levels were positively associated with disease progression in either CSF or serum. Finally, a better prognosis was observed with higher levels bFGF in CSF and VEGF in CSF and serum; conversely, patients with higher levels of IFN-γ in the CSF had shorter overall survival. CONCLUSIONS We demonstrated that a factor profile of ALS patients is distinct from control subjects and may be useful in clinical practice and therapeutic trials.
Collapse
Affiliation(s)
- Jie Guo
- Department of Neurology Tianjin First Center Hospital Tianjin Medical University Tianjin China
| | - Xuan Yang
- Department of Neurology Tianjin First Center Hospital Tianjin Medical University Tianjin China
| | - Lina Gao
- Department of Neurology Tianjin First Center Hospital Tianjin Medical University Tianjin China
| | - Dawei Zang
- Department of Neurology Tianjin First Center Hospital Tianjin Medical University Tianjin China
| |
Collapse
|
36
|
Rando A, Gasco S, de la Torre M, García-Redondo A, Zaragoza P, Toivonen JM, Osta R. Granulocyte Colony-Stimulating Factor Ameliorates Skeletal Muscle Dysfunction in Amyotrophic Lateral Sclerosis Mice and Improves Proliferation of SOD1-G93A Myoblasts in vitro. NEURODEGENER DIS 2017; 17:1-13. [DOI: 10.1159/000446113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
<b><i>Background:</i></b> Amyotrophic lateral sclerosis (ALS) causes loss of upper and lower motor neurons as well as skeletal muscle (SKM) dysfunction and atrophy. SKM is one of the tissues involved in the development of ALS pathology, and studies in a SOD1-G93A mouse model of ALS have demonstrated alterations in SKM degeneration/regeneration marker expression in vivo and defective mutant myoblast proliferation in vitro. Granulocyte colony-stimulating factor (G-CSF) has been shown to alleviate SOD1-G93A pathology. However, it is unknown whether G-CSF may have a direct effect on SKM or derived myoblasts. <b><i>Objective:</i></b> To investigate effects of G-CSF and its analog pegfilgrastim (PEGF) on SOD1-G93A- associated SKM markers in vivo and those of G-CSF on myoblast proliferation in vitro. <b><i>Methods:</i></b> The effect of PEGF treatment on hematopoietic stem cell mobilization, survival, and motor function was determined. RNA expression of SKM markers associated with mutant SOD1 expression was quantified in response to PEGF treatment in vivo, and the effect of G-CSF on the proliferation of myoblasts derived from mutant and control muscles was determined in vitro. <b><i>Results:</i></b> Positive effects of PEGF on hematopoietic stem cell mobilization, survival, and functional assays in SOD1-G93A animals were confirmed. In vivo PEGF treatment augmented the expression of its receptor Csf3r and alleviated typical markers for mutant SOD1 muscle. Additionally, G-CSF was found to directly increase the proliferation of SOD1-G93A, but not wild-type primary myoblasts in vitro. <b><i>Conclusion:</i></b> Our results support the beneficial role of the G-CSF analog PEGF in a SOD1-G93A model of ALS. Thus, G-CSF and<b> </b>its analogs may be directly beneficial in diseases where the SKM function is compromised.
Collapse
|
37
|
G-CSF-mobilized Bone Marrow Mesenchymal Stem Cells Replenish Neural Lineages in Alzheimer's Disease Mice via CXCR4/SDF-1 Chemotaxis. Mol Neurobiol 2016; 54:6198-6212. [PMID: 27709493 DOI: 10.1007/s12035-016-0122-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 09/12/2016] [Indexed: 10/20/2022]
Abstract
Recent studies reported granulocyte colony-stimulating factor (G-CSF) treatment can improve the cognitive function of Alzheimer's disease (AD) mice, and the mobilized hematopoietic stem cells (HSCs) or bone marrow mesenchymal stem cells (BM-MSCs) are proposed to be involved in this recovery effect. However, the exact role of mobilized HSC/BM-MSC in G-CSF-based therapeutic effects is still unknown. Here, we report that C-X-C chemokine receptor type 4 (CXCR4)/stromal cell-derived factor 1 (SDF-1) chemotaxis was a key mediator in G-CSF-based therapeutic effects, which was involved in the recruitment of repair-competent cells. Furthermore, we found both mobilized HSCs and BM-MSCs were able to infiltrate into the brain, but only BM-MSCs replenished the neural lineage cells and contributed to neurogenesis in the brains of AD mice. Together, our data show that mobilized BM-MSCs are involved in the replenishment of neural lineages following G-CSF treatment via CXCR4/SDF-1 chemotaxis and further support the potential use of BM-MSCs for further autogenically therapeutic applications.
Collapse
|
38
|
Therapeutic progress in amyotrophic lateral sclerosis-beginning to learning. Eur J Med Chem 2016; 121:903-917. [DOI: 10.1016/j.ejmech.2016.06.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 04/29/2016] [Accepted: 06/10/2016] [Indexed: 12/11/2022]
|
39
|
Yoshio T, Okamoto H, Kurasawa K, Dei Y, Hirohata S, Minota S. IL-6, IL-8, IP-10, MCP-1 and G-CSF are significantly increased in cerebrospinal fluid but not in sera of patients with central neuropsychiatric lupus erythematosus. Lupus 2016; 25:997-1003. [DOI: 10.1177/0961203316629556] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 01/07/2016] [Indexed: 12/11/2022]
Abstract
Objective To determine whether the intrathecal concentrations of cytokines/chemokines are associated with, or influenced by, serum concentrations in patients with central neuropsychiatric systemic lupus erythematosus (NPSLE), and to ascertain whether the increased production of cytokines/chemokines intrathecally relative to serum levels is associated with the presence of central NPSLE. Methods 52 SLE patients (30 with central NPSLE and 22 with non-NPSLE), for whom the CSF and serum samples were obtained at the same time, were enrolled. 27 kinds of cytokine/chemokine concentrations other than IFN-α in the cerebrospinal fluid (CSF) and serum samples were measured by Bio-Plex Pro Assays. IFN-α concentration and anti-ribosomal P protein antibody (anti-P) titres in CSF and serum samples were measured by ELISA. Results The mean concentrations of IL-6, IL-8, IP-10, MCP-1, G-CSF and GM-CSF were higher in the CSF than in the sera, respectively, while the mean concentrations of other 22 cytokines/chemokines, including RANTES and IFN-α, in the CSF were much lower than those in the sera, respectively. Furthermore, the concentrations of IL-6, IL-8, IP-10, MCP-1 and G-CSF in the CSF of the 30 patients with NPSLE were significantly higher than in the 22 patients with non-NPSLE ( p = 6.82 × 10−5, p = 0.00037, p = 0.0028, p = 0.00065, and p = 0.0001, respectively), while the concentration of GM-CSF in the CSF of the 30 patients with NPSLE was not significantly higher than in the 22 patients with non-NPSLE. Most importantly, the largest difference occurred in CSF IL-6 concentrations. A significant positive correlation between CSF anti-P titres and serum anti-P titres in 52 patients with SLE ( r = 0.6316, p = 6.44 × 10−6) was found, while no significant positive correlation was observed between CSF levels and serum levels of each cytokine/chemokine in the 52 SLE patients. Conclusion In central NPSLE the production of IL-6, IL-8, IP-10, MCP-1 and G-CSF might take place in the central nervous system (CNS). These increased CSF cytokines/chemokines along with anti-P might have a prerequisite role in the pathogenesis of central NPSLE.
Collapse
Affiliation(s)
- T Yoshio
- Division of Rheumatology and Clinical Immunology, Jichi Medical University, Tochigi, Japan
| | - H Okamoto
- Minami-Otsuka Institute of Technology, Minami-Otsuka Clinic, Tokyo, Japan
| | - K Kurasawa
- Department of Clinical Immunology, Dokkyo Medical University, Tochigi, Japan
| | - Y Dei
- Dei Clinic, Tochigi, Japan
| | - S Hirohata
- Department of Rheumatology and Infectious Disease, Kitasato University School of Medicine, Kanagawa, Japan
| | - S Minota
- Division of Rheumatology and Clinical Immunology, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
40
|
Yu JH, Seo JH, Lee JY, Lee MY, Cho SR. Induction of Neurorestoration From Endogenous Stem Cells. Cell Transplant 2016; 25:863-82. [PMID: 26787093 DOI: 10.3727/096368916x690511] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Neural stem cells (NSCs) persist in the subventricular zone lining the ventricles of the adult brain. The resident stem/progenitor cells can be stimulated in vivo by neurotrophic factors, hematopoietic growth factors, magnetic stimulation, and/or physical exercise. In both animals and humans, the differentiation and survival of neurons arising from the subventricular zone may also be regulated by the trophic factors. Since stem/progenitor cells present in the adult brain and the production of new neurons occurs at specific sites, there is a possibility for the treatment of incurable neurological diseases. It might be feasible to induce neurogenesis, which would be particularly efficacious in the treatment of striatal neurodegenerative conditions such as Huntington's disease, as well as cerebrovascular diseases such as ischemic stroke and cerebral palsy, conditions that are widely seen in the clinics. Understanding of the molecular control of endogenous NSC activation and progenitor cell mobilization will likely provide many new opportunities as therapeutic strategies. In this review, we focus on endogenous stem/progenitor cell activation that occurs in response to exogenous factors including neurotrophic factors, hematopoietic growth factors, magnetic stimulation, and an enriched environment. Taken together, these findings suggest the possibility that functional brain repair through induced neurorestoration from endogenous stem cells may soon be a clinical reality.
Collapse
Affiliation(s)
- Ji Hea Yu
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
41
|
Jeyachandran A, Mertens B, McKissick EA, Mitchell CS. Type I Vs. Type II Cytokine Levels as a Function of SOD1 G93A Mouse Amyotrophic Lateral Sclerosis Disease Progression. Front Cell Neurosci 2015; 9:462. [PMID: 26648846 PMCID: PMC4664727 DOI: 10.3389/fncel.2015.00462] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/13/2015] [Indexed: 01/01/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a fatal motoneuron disease that is characterized by the degradation of neurons throughout the central nervous system. Inflammation have been cited a key contributor to ALS neurodegeneration, but the timeline of cytokine upregulation remains unresolved. The goal of this study was to temporally examine the correlation between the varying levels of pro-inflammatory type I cytokines (IL-1β, IL-1α, IL-12, TNF-α, and GFAP) and anti-inflammatory type II cytokines (IL-4, IL-6, IL-10) throughout the progression of ALS in the SOD1 G93A mouse model. Cytokine level data from high copy SOD1 G93A transgenic mice was collected from 66 peer-reviewed studies. For each corresponding experimental time point, the ratio of transgenic to wild type (TG/WT) cytokine was calculated. One-way ANOVA and t-tests with Bonferonni correction were used to analyze the data. Meta-analysis was performed for four discrete stages: early, pre-onset, post-onset, and end stage. A significant increase in TG cytokine levels was found when compared to WT cytokine levels across the entire SOD1 G93A lifespan for majority of the cytokines. The rates of change of the individual cytokines, and type I and type II were not significantly different; however, the mean fold change of type I was expressed at significantly higher levels than type II levels across all stages with the difference between the means becoming more pronounced at the end stage. An overexpression of cytokines occurred both before and after the onset of ALS symptoms. The trend between pro-inflammatory type I and type II cytokine mean levels indicate a progressive instability of the dynamic balance between pro- and anti-inflammatory cytokines as anti-inflammatory cytokines fail to mediate the pronounced increase in pro-inflammatory cytokines. Very early immunoregulatory treatment is necessary to successfully interrupt ALS-induced neuroinflammation.
Collapse
Affiliation(s)
- Amilia Jeyachandran
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University Atlanta, GA, USA
| | - Benjamin Mertens
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University Atlanta, GA, USA
| | - Eric A McKissick
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University Atlanta, GA, USA
| | - Cassie S Mitchell
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University Atlanta, GA, USA
| |
Collapse
|
42
|
Guo Y, Liu S, Zhang X, Wang L, Gao J, Han A, Hao A. G-CSF promotes autophagy and reduces neural tissue damage after spinal cord injury in mice. J Transl Med 2015; 95:1439-49. [PMID: 26524416 DOI: 10.1038/labinvest.2015.120] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/24/2015] [Accepted: 04/28/2015] [Indexed: 12/19/2022] Open
Abstract
Granulocyte colony-stimulating factor (G-CSF) was investigated for its capacity to induce autophagy and related neuroprotective mechanisms in an acute spinal cord injury model. To accomplish this goal, we established a mouse spinal cord hemisection model to test the effects of recombinant human G-CSF. The results showed that autophagy was activated after spinal cord injury and G-CSF appears to induce a more rapid activation of autophagy within injured spinal cords as compared with that of non-treated animals. Apoptosis as induced in mechanically injured neurons with G-CSF treatment was enhanced after inhibiting autophagy by 3-methyladenine (3-MA), which partially blocked the neuroprotective effect of autophagy as induced by G-CSF. In addition, G-CSF inhibited the activity of the NF-κB signal pathway in neurons after mechanical injury. We conclude that G-CSF promotes autophagy by inhibiting the NF-κB signal pathway and protects neuronal structure after spinal cord injury. We therefore suggest that G-CSF, which rapidly induces autophagy after spinal cord injury to inhibit neuronal apoptosis, may thus provide an effective auxiliary therapeutic intervention for spinal cord injury.
Collapse
Affiliation(s)
- Yuji Guo
- Key Laboratory of the Ministry of Education for Experimental Teratology, Department of Histology and Embryology, Shandong University School of Medicine, Jinan, China
| | - Shangming Liu
- Key Laboratory of the Ministry of Education for Experimental Teratology, Department of Histology and Embryology, Shandong University School of Medicine, Jinan, China
| | - Xianghong Zhang
- Key Laboratory of the Ministry of Education for Experimental Teratology, Department of Histology and Embryology, Shandong University School of Medicine, Jinan, China
| | - Liyan Wang
- Key Laboratory of the Ministry of Education for Experimental Teratology, Department of Histology and Embryology, Shandong University School of Medicine, Jinan, China
| | - Jiangang Gao
- Institute of Developmental Biology, College of Life Science, Shandong University, Jinan, China
| | - Aiqing Han
- Department of Obstetrics, Maternal and Children Health Hospital of Jinan City, Jinan, China
| | - Aijun Hao
- Key Laboratory of the Ministry of Education for Experimental Teratology, Department of Histology and Embryology, Shandong University School of Medicine, Jinan, China
| |
Collapse
|
43
|
Adipose-derived Stem Cell Conditioned Media Extends Survival time of a mouse model of Amyotrophic Lateral Sclerosis. Sci Rep 2015; 5:16953. [PMID: 26586020 PMCID: PMC4653659 DOI: 10.1038/srep16953] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/22/2015] [Indexed: 01/02/2023] Open
Abstract
Adipose stromal cells (ASC) secrete various trophic factors that assist in the protection of neurons in a variety of neuronal death models. In this study, we tested the effects of human ASC conditional medium (ASC-CM) in human amyotrophic lateral sclerosis (ALS) transgenic mouse model expressing mutant superoxide dismutase (SOD1G93A). Treating symptomatic SOD1G93A mice with ASC-CM significantly increased post-onset survival time and lifespan. Moreover, SOD1G93A mice given ASC-CM treatment showed high motor neuron counts, less activation of microglia and astrocytes at an early symptomatic stage in the spinal cords under immunohistochemical analysis. SOD1G93A mice treated with ASC-CM for 7 days showed reduced levels of phosphorylated p38 (pp38) in the spinal cord, a mitogen-activated protein kinase that is involved in both inflammation and neuronal death. Additionally, the levels of α-II spectrin in spinal cords were also inhibited in SOD1G93A mice treated with ASC-CM for 3 days. Interestingly, nerve growth factor (NGF), a neurotrophic factor found in ASC-CM, played a significant role in the protection of neurodegeneration inSOD1G93A mouse. These results indicate that ASC-CM has the potential to develop into a novel and effective therapeutic treatment for ALS.
Collapse
|
44
|
Heinzelman P, Schoborg JA, Jewett MC. pH responsive granulocyte colony-stimulating factor variants with implications for treating Alzheimer's disease and other central nervous system disorders. Protein Eng Des Sel 2015; 28:481-9. [PMID: 25877663 PMCID: PMC4596278 DOI: 10.1093/protein/gzv022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/27/2015] [Accepted: 03/06/2015] [Indexed: 12/14/2022] Open
Abstract
Systemic injection of granulocyte colony-stimulating factor (G-CSF) has yielded encouraging results in treating Alzheimer's Disease (AD) and other central nervous system (CNS) disorders. Making G-CSF a viable AD therapeutic will, however, require increasing G-CSF's ability to stimulate neurons within the brain. This objective could be realized by increasing transcytosis of G-CSF across the blood brain barrier (BBB). An established correlation between G-CSF receptor (G-CSFR) binding pH responsiveness and increased recycling of G-CSF to the cell exterior after endocytosis motivated development of G-CSF variants with highly pH responsive G-CSFR binding affinities. These variants will be used in future validation of our hypothesis that increased BBB transcytosis can enhance G-CSF therapeutic efficacy. Flow cytometric screening of a yeast-displayed library in which G-CSF/G-CSFR interface residues were mutated to histidine yielded a G-CSF triple His mutant (L109H/D110H/Q120H) with highly pH responsive binding affinity. This variant's KD, measured by surface plasmon resonance (SPR), increases ∼20-fold as pH decreases from 7.4 to below histidine's pKa of ∼6.0; an increase 2-fold greater than for previously reported G-CSF His mutants. Cell-free protein synthesis (CFPS) enabled expression and purification of soluble, bioactive G-CSF triple His variant protein, an outcome inaccessible via Escherichia coli inclusion body refolding. This purification and bioactivity validation will enable future identification of correlations between pH responsiveness and transcytosis in BBB cell culture model and animal experiments. Furthermore, the library screening and CFPS methods employed here could be applied to developing other pH responsive hematopoietic or neurotrophic factors for treating CNS disorders.
Collapse
Affiliation(s)
- Pete Heinzelman
- Department of Chemical, Biological and Materials Engineering, University of Oklahoma, Sarkeys Energy Center, 100 East Boyd Street, Room T-301, Norman, OK 73019, USA
| | - Jennifer A Schoborg
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208-3120, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208-3120, USA
| |
Collapse
|
45
|
DeLoach A, Cozart M, Kiaei A, Kiaei M. A retrospective review of the progress in amyotrophic lateral sclerosis drug discovery over the last decade and a look at the latest strategies. Expert Opin Drug Discov 2015; 10:1099-118. [PMID: 26307158 DOI: 10.1517/17460441.2015.1067197] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Drug discovery for amyotrophic lateral sclerosis (ALS) has experienced a surge in clinical studies and remarkable preclinical milestones utilizing a variety of mutant superoxide dismutase 1 model systems. Of the drugs that were tested and showed positive preclinical effects, none demonstrated therapeutic benefits to ALS patients in clinical settings. AREAS COVERED This review discusses the advances made in drug discovery for ALS and highlights why drug development is proving to be so difficult. It also discusses how a closer look at both preclinical and clinical studies could uncover the reasons why these preclinical successes have yet to result in the availability of an effective drug for clinical use. EXPERT OPINION Valuable lessons from the numerous preclinical and clinical studies supply the biggest advantage in the monumental task of finding a cure for ALS. Obviously, a single design type for ALS clinical trials has not yielded success. The authors suggest a two-pronged approach that may prove essential to achieve clinical efficacy in the identification of novel targets and preclinical testing in multiple models to identify biomarkers that can function in diagnostic, predictive and prognostic roles, and changes to clinical trial design and patient recruitment criteria. The advancement of technology and invention of more powerful tools will further enhance the above. This will give rise to more sophisticated clinical trials with consideration of a range of criteria from: optimum dose, route of delivery, specific biomarkers, pharmacokinetics, pharmacodynamics and toxicology to biomarkers, timing for trial and patients' clinical status.
Collapse
Affiliation(s)
- Abigail DeLoach
- a 1 University of Arkansas for Medical Sciences, Department of Neurobiology and Developmental Sciences , Little Rock, AR 72205, USA
| | - Michael Cozart
- b 2 University of Arkansas for Medical Sciences, Department of Pharmacology and Toxicology , Little Rock, AR 72205, USA
| | - Arianna Kiaei
- a 1 University of Arkansas for Medical Sciences, Department of Neurobiology and Developmental Sciences , Little Rock, AR 72205, USA
| | - Mahmoud Kiaei
- a 1 University of Arkansas for Medical Sciences, Department of Neurobiology and Developmental Sciences , Little Rock, AR 72205, USA.,b 2 University of Arkansas for Medical Sciences, Department of Pharmacology and Toxicology , Little Rock, AR 72205, USA.,c 3 University of Arkansas for Medical Sciences, Department of Neurology , 4301 W. Markham St, 846, Little Rock, AR 72205 7199, USA
| |
Collapse
|
46
|
Wallner S, Peters S, Pitzer C, Resch H, Bogdahn U, Schneider A. The Granulocyte-colony stimulating factor has a dual role in neuronal and vascular plasticity. Front Cell Dev Biol 2015; 3:48. [PMID: 26301221 PMCID: PMC4528279 DOI: 10.3389/fcell.2015.00048] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 07/23/2015] [Indexed: 12/13/2022] Open
Abstract
Granulocyte-colony stimulating factor (G-CSF) is a growth factor that has originally been identified several decades ago as a hematopoietic factor required mainly for the generation of neutrophilic granulocytes, and is in clinical use for that. More recently, it has been discovered that G-CSF also plays a role in the brain as a growth factor for neurons and neural stem cells, and as a factor involved in the plasticity of the vasculature. We review and discuss these dual properties in view of the neuroregenerative potential of this growth factor.
Collapse
Affiliation(s)
- Stephanie Wallner
- Department of Traumatology and Sports Injuries, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University SalzburgSalzburg, Austria
| | - Sebastian Peters
- Department of Neurology, University Hospital RegensburgRegensburg, Germany
| | - Claudia Pitzer
- Interdisciplinary Neurobehavioral Core, Ruprecht-Karls-UniversityHeidelberg, Germany
| | - Herbert Resch
- Department of Traumatology and Sports Injuries, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University SalzburgSalzburg, Austria
- University Clinic of Traumatology and Sports Injuries Salzburg, Paracelsus Medical University SalzburgSalzburg, Austria
| | - Ulrich Bogdahn
- Department of Neurology, University Hospital RegensburgRegensburg, Germany
| | | |
Collapse
|
47
|
Furukawa T, Matsui N, Fujita K, Nodera H, Shimizu F, Miyamoto K, Takahashi Y, Kanda T, Kusunoki S, Izumi Y, Kaji R. CSF cytokine profile distinguishes multifocal motor neuropathy from progressive muscular atrophy. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2015; 2:e138. [PMID: 26280014 PMCID: PMC4529282 DOI: 10.1212/nxi.0000000000000138] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 06/15/2015] [Indexed: 12/31/2022]
Abstract
Objective: We aimed to compare the cytokine and chemokine profiles of patients with multifocal motor neuropathy (MMN) with those of patients with progressive muscular atrophy (PMA) and amyotrophic lateral sclerosis (ALS) to investigate immunologic differences in the CNS. Methods: CSF from 12 patients with MMN, 8 with PMA, 26 with sporadic ALS, and 10 with other noninflammatory neurologic disorders was analyzed for 27 cytokines and chemokines using the multiplex bead array assay. Cytokine titers of the 4 groups were compared, and correlations between the titers of relevant cytokines and clinical parameters were evaluated. Results: There were no obvious intrathecal changes except for interleukin (IL)-1 receptor antagonist in patients with MMN. In contrast, IL-4, IL-7, IL-17, eotaxin/CCL11, fibroblast growth factor-2 (FGF-2), granulocyte colony-stimulating factor (G-CSF), and platelet-derived growth factor BB titers were significantly elevated in patients with PMA and ALS; of these, FGF-2 and G-CSF titers were elevated compared with those in patients with MMN. IL-4 and IL-10 titers were high in patients with ALS, particularly patients with possible ALS presenting with a slowly progressive course or mild symptoms. Conclusions: The CSF cytokine profile of patients with MMN is distinct from that of patients with PMA and ALS. The similarity of the cytokine profiles between patients with PMA and ALS suggests that PMA shares common immunologic features with ALS in the CNS, even without clinical evidence of upper motor neuron involvement.
Collapse
Affiliation(s)
- Takahiro Furukawa
- Department of Clinical Neuroscience (T.F., N.M., K.F., H.N., Y.I., R.K.), Institute of Health Biosciences, Tokushima University, Tokushima, Japan; Department of Neurology and Clinical Neuroscience (F.S., T.K.), Yamaguchi University Graduate School of Medicine, Ube, Japan; Department of Neurology (K.M., S.K.), Kinki University School of Medicine, Osaka, Japan; and National Epilepsy Center (Y.T.), Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, Japan
| | - Naoko Matsui
- Department of Clinical Neuroscience (T.F., N.M., K.F., H.N., Y.I., R.K.), Institute of Health Biosciences, Tokushima University, Tokushima, Japan; Department of Neurology and Clinical Neuroscience (F.S., T.K.), Yamaguchi University Graduate School of Medicine, Ube, Japan; Department of Neurology (K.M., S.K.), Kinki University School of Medicine, Osaka, Japan; and National Epilepsy Center (Y.T.), Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, Japan
| | - Koji Fujita
- Department of Clinical Neuroscience (T.F., N.M., K.F., H.N., Y.I., R.K.), Institute of Health Biosciences, Tokushima University, Tokushima, Japan; Department of Neurology and Clinical Neuroscience (F.S., T.K.), Yamaguchi University Graduate School of Medicine, Ube, Japan; Department of Neurology (K.M., S.K.), Kinki University School of Medicine, Osaka, Japan; and National Epilepsy Center (Y.T.), Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, Japan
| | - Hiroyuki Nodera
- Department of Clinical Neuroscience (T.F., N.M., K.F., H.N., Y.I., R.K.), Institute of Health Biosciences, Tokushima University, Tokushima, Japan; Department of Neurology and Clinical Neuroscience (F.S., T.K.), Yamaguchi University Graduate School of Medicine, Ube, Japan; Department of Neurology (K.M., S.K.), Kinki University School of Medicine, Osaka, Japan; and National Epilepsy Center (Y.T.), Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, Japan
| | - Fumitaka Shimizu
- Department of Clinical Neuroscience (T.F., N.M., K.F., H.N., Y.I., R.K.), Institute of Health Biosciences, Tokushima University, Tokushima, Japan; Department of Neurology and Clinical Neuroscience (F.S., T.K.), Yamaguchi University Graduate School of Medicine, Ube, Japan; Department of Neurology (K.M., S.K.), Kinki University School of Medicine, Osaka, Japan; and National Epilepsy Center (Y.T.), Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, Japan
| | - Katsuichi Miyamoto
- Department of Clinical Neuroscience (T.F., N.M., K.F., H.N., Y.I., R.K.), Institute of Health Biosciences, Tokushima University, Tokushima, Japan; Department of Neurology and Clinical Neuroscience (F.S., T.K.), Yamaguchi University Graduate School of Medicine, Ube, Japan; Department of Neurology (K.M., S.K.), Kinki University School of Medicine, Osaka, Japan; and National Epilepsy Center (Y.T.), Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, Japan
| | - Yukitoshi Takahashi
- Department of Clinical Neuroscience (T.F., N.M., K.F., H.N., Y.I., R.K.), Institute of Health Biosciences, Tokushima University, Tokushima, Japan; Department of Neurology and Clinical Neuroscience (F.S., T.K.), Yamaguchi University Graduate School of Medicine, Ube, Japan; Department of Neurology (K.M., S.K.), Kinki University School of Medicine, Osaka, Japan; and National Epilepsy Center (Y.T.), Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, Japan
| | - Takashi Kanda
- Department of Clinical Neuroscience (T.F., N.M., K.F., H.N., Y.I., R.K.), Institute of Health Biosciences, Tokushima University, Tokushima, Japan; Department of Neurology and Clinical Neuroscience (F.S., T.K.), Yamaguchi University Graduate School of Medicine, Ube, Japan; Department of Neurology (K.M., S.K.), Kinki University School of Medicine, Osaka, Japan; and National Epilepsy Center (Y.T.), Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, Japan
| | - Susumu Kusunoki
- Department of Clinical Neuroscience (T.F., N.M., K.F., H.N., Y.I., R.K.), Institute of Health Biosciences, Tokushima University, Tokushima, Japan; Department of Neurology and Clinical Neuroscience (F.S., T.K.), Yamaguchi University Graduate School of Medicine, Ube, Japan; Department of Neurology (K.M., S.K.), Kinki University School of Medicine, Osaka, Japan; and National Epilepsy Center (Y.T.), Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, Japan
| | - Yuishin Izumi
- Department of Clinical Neuroscience (T.F., N.M., K.F., H.N., Y.I., R.K.), Institute of Health Biosciences, Tokushima University, Tokushima, Japan; Department of Neurology and Clinical Neuroscience (F.S., T.K.), Yamaguchi University Graduate School of Medicine, Ube, Japan; Department of Neurology (K.M., S.K.), Kinki University School of Medicine, Osaka, Japan; and National Epilepsy Center (Y.T.), Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, Japan
| | - Ryuji Kaji
- Department of Clinical Neuroscience (T.F., N.M., K.F., H.N., Y.I., R.K.), Institute of Health Biosciences, Tokushima University, Tokushima, Japan; Department of Neurology and Clinical Neuroscience (F.S., T.K.), Yamaguchi University Graduate School of Medicine, Ube, Japan; Department of Neurology (K.M., S.K.), Kinki University School of Medicine, Osaka, Japan; and National Epilepsy Center (Y.T.), Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, Japan
| |
Collapse
|
48
|
Jablonski M, Miller DS, Pasinelli P, Trotti D. ABC transporter-driven pharmacoresistance in Amyotrophic Lateral Sclerosis. Brain Res 2015; 1607:1-14. [PMID: 25175835 PMCID: PMC4344920 DOI: 10.1016/j.brainres.2014.08.060] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 08/19/2014] [Indexed: 12/12/2022]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a slowly progressing neurodegenerative disease that affects motor neurons of the nervous system. Despite the identification of many potential therapeutics targeting pathogenic mechanisms in in vitro models, there has been limited progress in translating them into a successful pharmacotherapy in the animal model of ALS. Further, efforts to translate any promising results from preclinical trials to effective pharmacotherapies for patients have been unsuccessful, with the exception of riluzole, the only FDA-approved medication, which only modestly extends survival both in the animal model and in patients. Thus, it is essential to reconsider the strategies for developing ALS pharmacotherapies. Growing evidence suggests that problems identifying highly effective ALS treatments may result from an underestimated issue of drug bioavailability and disease-driven pharmacoresistance, mediated by the ATP-binding cassette (ABC) drug efflux transporters. ABC transporters are predominately localized to the lumen of endothelial cells of the blood-brain and blood-spinal cord barriers (BBB, BSCB) where they limit the entry into the central nervous system (CNS) of a wide range of neurotoxicants and xenobiotics, but also therapeutics. In ALS, expression and function of ABC transporters is increased at the BBB/BSCB and their expression has been detected on neurons and glia in the CNS parenchyma, which may further reduce therapeutic action in target cells. Understanding and accounting for the contribution of these transporters to ALS pharmacoresistance could both improve the modest effects of riluzole and set in motion a re-evaluation of previous ALS drug disappointments. In addition, identifying pathogenic mechanisms regulating ABC transporter expression and function in ALS may lead to the development of new therapeutic strategies. It is likely that novel pharmacological approaches require counteracting pharmacoresistance to improve therapeutic efficacy. This article is part of a Special Issue entitled ALS complex pathogenesis.
Collapse
Affiliation(s)
- Michael Jablonski
- Weinberg Unit for ALS Research, Farber Institute for Neurosciences, Department of Neuroscience, Thomas Jefferson University, 900 Walnut Street, Philadelphia, PA 19004, USA.
| | - David S Miller
- Laboratory of Toxicology and Pharmacology, NIH/NIEHS, Research Triangle Park, NC 27709, USA
| | - Piera Pasinelli
- Weinberg Unit for ALS Research, Farber Institute for Neurosciences, Department of Neuroscience, Thomas Jefferson University, 900 Walnut Street, Philadelphia, PA 19004, USA
| | - Davide Trotti
- Weinberg Unit for ALS Research, Farber Institute for Neurosciences, Department of Neuroscience, Thomas Jefferson University, 900 Walnut Street, Philadelphia, PA 19004, USA.
| |
Collapse
|
49
|
Scarrott JM, Herranz-Martín S, Alrafiah AR, Shaw PJ, Azzouz M. Current developments in gene therapy for amyotrophic lateral sclerosis. Expert Opin Biol Ther 2015; 15:935-47. [DOI: 10.1517/14712598.2015.1044894] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
50
|
Amirzagar N, Nafissi S, Tafakhori A, Modabbernia A, Amirzargar A, Ghaffarpour M, Siroos B, Harirchian MH. Granulocyte colony-stimulating factor for amyotrophic lateral sclerosis: a randomized, double-blind, placebo-controlled study of Iranian patients. J Clin Neurol 2015; 11:164-71. [PMID: 25851895 PMCID: PMC4387482 DOI: 10.3988/jcn.2015.11.2.164] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/18/2014] [Accepted: 11/18/2014] [Indexed: 12/13/2022] Open
Abstract
Background and Purpose The aim of this study was to determine the efficacy and tolerability of granulocyte colony-stimulating factor (G-CSF) in subjects with amyotrophic lateral sclerosis (ALS). Methods Forty subjects with ALS were randomly assigned to two groups, which received either subcutaneous G-CSF (5 µg/kg/q12h) or placebo for 5 days. The subjects were then followed up for 3 months using the ALS Functional Rating Scale-Revised (ALSFRS-R), manual muscle testing, ALS Assessment Questionnaire-40, and nerve conduction studies. CD34+/CD133+ cell count and monocyte chemoattractant protein-1 (MCP-1) levels were evaluated at baseline. Results The rate of disease progression did not differ significantly between the two groups. The reduction in ALSFRS-R scores was greater in female subjects in the G-CSF group than in their counterparts in the placebo group. There was a trend toward a positive correlation between baseline CSF MCP-1 levels and the change in ALSFRS-R scores in both groups (Spearman's ρ=0.370, p=0.070). Conclusions With the protocol implemented in this study, G-CSF is not a promising option for the treatment of ALS. Furthermore, it may accelerate disease progression in females.
Collapse
Affiliation(s)
- Nasibeh Amirzagar
- Iranian Center of Neurological Research, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahriar Nafissi
- Neurology Department, Tehran Shariati Hospital, University of Medical Sciences, Tehran, Iran
| | - Abbas Tafakhori
- Iranian Center of Neurological Research, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Aliakbar Amirzargar
- Department of Immunology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Ghaffarpour
- Iranian Center of Neurological Research, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahaddin Siroos
- Iranian Center of Neurological Research, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Harirchian
- Iranian Center of Neurological Research, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|