1
|
Rybak IA, Shevtsova NA, Audet J, Yassine S, Markin SN, Prilutsky BI, Frigon A. Operation of spinal sensorimotor circuits controlling phase durations during tied-belt and split-belt locomotion after a lateral thoracic hemisection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.10.612376. [PMID: 39314446 PMCID: PMC11419089 DOI: 10.1101/2024.09.10.612376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Locomotion is controlled by spinal circuits that interact with supraspinal drives and sensory feedback from the limbs. These sensorimotor interactions are disrupted following spinal cord injury. The thoracic lateral hemisection represents an experimental model of an incomplete spinal cord injury, where connections between the brain and spinal cord are abolished on one side of the cord. To investigate the effects of such an injury on the operation of the spinal locomotor network, we used our computational model of cat locomotion recently published in eLife (Rybak et al., 2024) to investigate and predict changes in cycle and phase durations following a thoracic lateral hemisection during treadmill locomotion in tied-belt (equal left-right speeds) and split-belt (unequal left-right speeds) conditions. In our simulations, the "hemisection" was always applied to the right side. Based on our model, we hypothesized that following hemisection, the contralesional ("intact", left) side of the spinal network is mostly controlled by supraspinal drives, whereas the ipsilesional ("hemisected", right) side is mostly controlled by somatosensory feedback. We then compared the simulated results with those obtained during experiments in adult cats before and after a mid-thoracic lateral hemisection on the right side in the same locomotor conditions. Our experimental results confirmed many effects of hemisection on cat locomotion predicted by our simulations. We show that having the ipsilesional hindlimb step on the slow belt, but not the fast belt, during split-belt locomotion substantially reduces the effects of lateral hemisection. The model provides explanations for changes in temporal characteristics of hindlimb locomotion following hemisection based on altered interactions between spinal circuits, supraspinal drives, and somatosensory feedback.
Collapse
Affiliation(s)
- Ilya A. Rybak
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania 19129, USA
| | - Natalia A. Shevtsova
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania 19129, USA
| | - Johannie Audet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Sirine Yassine
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Sergey N. Markin
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania 19129, USA
| | - Boris I. Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| |
Collapse
|
2
|
Tang Q, Ma Y, Cheng Q, Wu Y, Chen J, Du J, Lu P, Chang EY. Longitudinal Imaging of Injured Spinal Cord Myelin and White Matter with 3D Ultrashort Echo Time Magnetization Transfer (UTE-MT) and Diffusion MRI. J Imaging 2024; 10:213. [PMID: 39330433 PMCID: PMC11433189 DOI: 10.3390/jimaging10090213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/06/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
Quantitative MRI techniques could be helpful to noninvasively and longitudinally monitor dynamic changes in spinal cord white matter following injury, but imaging and postprocessing techniques in small animals remain lacking. Unilateral C5 hemisection lesions were created in a rat model, and ultrashort echo time magnetization transfer (UTE-MT) and diffusion-weighted sequences were used for imaging following injury. Magnetization transfer ratio (MTR) measurements and preferential diffusion along the longitudinal axis of the spinal cord were calculated as fractional anisotropy or an apparent diffusion coefficient ratio over transverse directions. The area of myelinated white matter was obtained by thresholding the spinal cord using mean MTR or diffusion ratio values from the contralesional side of the spinal cord. A decrease in white matter areas was observed on the ipsilesional side caudal to the lesions, which is consistent with known myelin and axonal changes following spinal cord injury. The myelinated white matter area obtained through the UTE-MT technique and the white matter area obtained through diffusion imaging techniques showed better performance to distinguish evolution after injury (AUCs > 0.94, p < 0.001) than the mean MTR (AUC = 0.74, p = 0.01) or ADC ratio (AUC = 0.68, p = 0.05) values themselves. Immunostaining for myelin basic protein (MBP) and neurofilament protein NF200 (NF200) showed atrophy and axonal degeneration, confirming the MRI results. These compositional and microstructural MRI techniques may be used to detect demyelination or remyelination in the spinal cord after spinal cord injury.
Collapse
Affiliation(s)
- Qingbo Tang
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA; (Q.T.); (Q.C.); (Y.W.); (J.C.); (J.D.); (P.L.)
- Department of Radiology, University of California, San Diego, CA 92093, USA;
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, CA 92093, USA;
| | - Qun Cheng
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA; (Q.T.); (Q.C.); (Y.W.); (J.C.); (J.D.); (P.L.)
- Department of Neuroscience, University of California, San Diego, CA 92093, USA
| | - Yuanshan Wu
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA; (Q.T.); (Q.C.); (Y.W.); (J.C.); (J.D.); (P.L.)
- Department of Bioengineering, University of California, San Diego, CA 92093, USA
| | - Junyuan Chen
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA; (Q.T.); (Q.C.); (Y.W.); (J.C.); (J.D.); (P.L.)
- Department of Radiology, University of California, San Diego, CA 92093, USA;
- Department of Bone and Joint Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Jiang Du
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA; (Q.T.); (Q.C.); (Y.W.); (J.C.); (J.D.); (P.L.)
- Department of Radiology, University of California, San Diego, CA 92093, USA;
| | - Pengzhe Lu
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA; (Q.T.); (Q.C.); (Y.W.); (J.C.); (J.D.); (P.L.)
- Department of Neuroscience, University of California, San Diego, CA 92093, USA
| | - Eric Y. Chang
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA; (Q.T.); (Q.C.); (Y.W.); (J.C.); (J.D.); (P.L.)
- Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA
| |
Collapse
|
3
|
Behroozi Z, Rahimi B, Motamednezhad A, Ghadaksaz A, Hormozi-Moghaddam Z, Moshiri A, Jafarpour M, Hajimirzaei P, Ataie A, Janzadeh A. Combined effect of Cerium oxide nanoparticles loaded scaffold and photobiomodulation therapy on pain and neuronal regeneration following spinal cord injury: an experimental study. Photochem Photobiol Sci 2024; 23:225-243. [PMID: 38300466 DOI: 10.1007/s43630-023-00501-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/25/2023] [Indexed: 02/02/2024]
Abstract
BACKGROUND Spinal cord injury (SCI) remained one of the challenges to treat due to its complicated mechanisms. Photobiomodulation therapy (PBMT) accelerates neuronal regeneration. Cerium oxide nanoparticles (CeONPs) also eliminate free radicals in the environment. The present study aims to introduce a combined treatment method of making PCL scaffolds as microenvironments, seeded with CeONPs and the PBMT technique for SCI treatment. METHODS The surgical hemi-section was used to induce SCI. Immediately after the SCI induction, the scaffold (Sc) was loaded with CeONPs implanted. PBMT began 30 min after SCI induction and lasted for up to 4 weeks. Fifty-six male rats were randomly divided into seven groups. Glial fibrillary acidic protein (GFAP) (an astrocyte marker), Connexin 43 (Con43) (a member of the gap junction), and gap junctions (GJ) (a marker for the transfer of ions and small molecules) expressions were evaluated. The behavioral evaluation was performed by BBB, Acetone, Von Frey, and radiant heat tests. RESULT The SC + Nano + PBMT group exhibited the most remarkable recovery outcomes. Thermal hyperalgesia responses were mitigated, with the combined approach displaying the most effective relief. Mechanical allodynia and cold allodynia responses were also attenuated by treatments, demonstrating potential pain management benefits. CONCLUSION These findings highlight the potential of PBMT, combined with CeONPs-loaded scaffolds, in promoting functional motor recovery and alleviating pain-related responses following SCI. The study underscores the intricate interplay between various interventions and their cumulative effects, informing future research directions for enhancing neural repair and pain management strategies in SCI contexts.
Collapse
Affiliation(s)
- Zahra Behroozi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, 7616913555, Iran
| | - Behnaz Rahimi
- Physiology Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Ali Motamednezhad
- College of Veterinary Medicine, Islamic Azad University, Karaj, 3149968111, Alborz, Iran
| | - Alireza Ghadaksaz
- Department of Biophysics, Medical School, University of Pécs, Pécs, 7622, Hungary
| | - Zeinab Hormozi-Moghaddam
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Department of Radiation Sciences, Allied Medicine Faculty, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | | | - Maral Jafarpour
- International Campus, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Pooya Hajimirzaei
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Department of Radiation Sciences, Allied Medicine Faculty, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Ali Ataie
- Zanjan University of Medical Sciences, Zanjan, Iran
| | - Atousa Janzadeh
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran.
| |
Collapse
|
4
|
Zheng Y, Wang N, Chen Z, Shi L, Xu X. Blocking SP/NK1R signaling improves spinal cord hemisection by inhibiting the release of pro-inflammatory cytokines in rabbits. J Spinal Cord Med 2023; 46:848-858. [PMID: 35776091 PMCID: PMC10446800 DOI: 10.1080/10790268.2021.2024029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
OBJECTIVE Incomplete spinal cord injury (SCI) is the most common spinal cord injury in clinic, however its mechanism is still not fully understood. DESIGN We constructed the rabbit spinal cord hemisection (SCH) model and used RT-PCR, western blotting, immunohistochemistry, and immunofluorescence experiments to explore the potential mechanism of SCI. SETTING The sham operation (SH) group, the observation (OB, which is the SCH) group, the OB+ substance p (SP) inhibitor group, the OB + NK1R inhibitor group, the OB + NK1R agonist group and the OB + SP inhibitor + NK1R agonist group. PARTICIPANTS New Zealand white rabbits. INTERVENTIONS Use NK1R inhibitors, NK1R agonists, SP inhibitors to treat the SCH model. OUTCOME MEASURES IL-1β, IKKγ, IL-6 and NF-κB. RESULTS The results showed that nissl bodies, inflammatory cells and SP increased notably in the spinal cord cells of the rabbit SCH model. Through in vivo experiments with SP or NK1R inhibitors or NK1R agonists, we found that inhibiting SP/NK1R signaling can help improve SCH by inhibiting the release of pro-inflammatory cytokines IL-1β, IKKγ, IL-6 and NF-κB. REGISTERED TRIALS Animal experiments were approved by Ruijin Hospital, Shanghai Jiaotong University School of Medicine.
Collapse
Affiliation(s)
- Yuehuan Zheng
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China
| | - Nannan Wang
- Department of Nursing, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Zhe Chen
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China
| | - Liqiang Shi
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China
| | - Xiangyang Xu
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
5
|
Lecomte CG, Mari S, Audet J, Merlet AN, Harnie J, Beaulieu C, Abdallah K, Gendron L, Rybak IA, Prilutsky BI, Frigon A. Modulation of the gait pattern during split-belt locomotion after lateral spinal cord hemisection in adult cats. J Neurophysiol 2022; 128:1593-1616. [PMID: 36382895 PMCID: PMC9744650 DOI: 10.1152/jn.00230.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022] Open
Abstract
Most previous studies investigated the recovery of locomotion in animals and people with incomplete spinal cord injury (SCI) during relatively simple tasks (e.g., walking in a straight line on a horizontal surface or a treadmill). We know less about the recovery of locomotion after incomplete SCI in left-right asymmetric conditions, such as turning or stepping along circular trajectories. To investigate this, we collected kinematic and electromyography data during split-belt locomotion at different left-right speed differences before and after a right thoracic lateral spinal cord hemisection in nine adult cats. After hemisection, although cats still performed split-belt locomotion, we observed several changes in the gait pattern compared with the intact state at early (1-2 wk) and late (7-8 wk) time points. Cats with larger lesions showed new coordination patterns between the fore- and hindlimbs, with the forelimbs taking more steps. Despite this change in fore-hind coordination, cats maintained consistent phasing between the fore- and hindlimbs. Adjustments in cycle and phase (stance and swing) durations between the slow and fast sides allowed animals to maintain 1:1 left-right coordination. Periods of triple support involving the right (ipsilesional) hindlimb decreased in favor of quad support and triple support involving the other limbs. Step and stride lengths decreased with concurrent changes in the right fore- and hindlimbs, possibly to avoid interference. The above adjustments in the gait pattern allowed cats to retain the ability to locomote in asymmetric conditions after incomplete SCI. We discuss potential plastic neuromechanical mechanisms involved in locomotor recovery in these conditions.NEW & NOTEWORTHY Everyday locomotion often involves left-right asymmetries, when turning, walking along circular paths, stepping on uneven terrains, etc. To show how incomplete spinal cord injury affects locomotor control in asymmetric conditions, we collected data before and after a thoracic lateral spinal hemisection on a split-belt treadmill with one side stepping faster than the other. We show that adjustments in kinematics and muscle activity allowed cats to retain the ability to perform asymmetric locomotion after hemisection.
Collapse
Affiliation(s)
- Charly G Lecomte
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Stephen Mari
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Johannie Audet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Angèle N Merlet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Jonathan Harnie
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Claudie Beaulieu
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Khaled Abdallah
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Louis Gendron
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Ilya A Rybak
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania
| | - Boris I Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | - Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
6
|
7,8-Dihydroxyflavone accelerates recovery of Brown-Sequard syndrome in adult female rats with spinal cord lateral hemisection. Biomed Pharmacother 2022; 153:113397. [DOI: 10.1016/j.biopha.2022.113397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 11/21/2022] Open
|
7
|
Wu W, Nguyen T, Ordaz JD, Zhang Y, Liu NK, Hu X, Liu Y, Ping X, Han Q, Wu X, Qu W, Gao S, Shields CB, Jin X, Xu XM. Transhemispheric cortex remodeling promotes forelimb recovery after spinal cord injury. JCI Insight 2022; 7:e158150. [PMID: 35552276 PMCID: PMC9309060 DOI: 10.1172/jci.insight.158150] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/10/2022] [Indexed: 11/28/2022] Open
Abstract
Understanding the reorganization of neural circuits spared after spinal cord injury in the motor cortex and spinal cord would provide insights for developing therapeutics. Using optogenetic mapping, we demonstrated a transhemispheric recruitment of neural circuits in the contralateral cortical M1/M2 area to improve the impaired forelimb function after a cervical 5 right-sided hemisection in mice, a model mimicking the human Brown-Séquard syndrome. This cortical reorganization can be elicited by a selective cortical optogenetic neuromodulation paradigm. Areas of whisker, jaw, and neck, together with the rostral forelimb area, on the motor cortex ipsilateral to the lesion were engaged to control the ipsilesional forelimb in both stimulation and nonstimulation groups 8 weeks following injury. However, significant functional benefits were only seen in the stimulation group. Using anterograde tracing, we further revealed a robust sprouting of the intact corticospinal tract in the spinal cord of those animals receiving optogenetic stimulation. The intraspinal corticospinal axonal sprouting correlated with the forelimb functional recovery. Thus, specific neuromodulation of the cortical neural circuits induced massive neural reorganization both in the motor cortex and spinal cord, constructing an alternative motor pathway in restoring impaired forelimb function.
Collapse
Affiliation(s)
- Wei Wu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Tyler Nguyen
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Josue D. Ordaz
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yiping Zhang
- Norton Neuroscience Institute, Norton Healthcare, Louisville, Kentucky, USA
| | - Nai-Kui Liu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Xinhua Hu
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yuxiang Liu
- Mechanical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Xingjie Ping
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Qi Han
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Xiangbing Wu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Wenrui Qu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sujuan Gao
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | - Xiaoming Jin
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
8
|
Chen SQ, Chen XY, Cui YZ, Yan BX, Zhou Y, Wang ZY, Xu F, Huang YZ, Zheng YX, Man XY. Cutaneous nerve fibers participate in the progression of psoriasis by linking epidermal keratinocytes and immunocytes. Cell Mol Life Sci 2022; 79:267. [PMID: 35488965 PMCID: PMC11072315 DOI: 10.1007/s00018-022-04299-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/23/2022] [Accepted: 04/08/2022] [Indexed: 12/11/2022]
Abstract
Recent studies have illustrated that psoriatic lesions are innervated by dense sensory nerve fibers. Psoriatic plaques appeared to improve after central or peripheral nerve injury. Therefore, the nervous system may play a vital role in psoriasis. We aimed to clarify the expression of nerve fibers in psoriasis and their relationship with immune cells and keratinocytes, and to explore the effect of skin nerve impairment. Our results illustrated that nerve fibers in psoriatic lesions increased and were closely innervated around immune cells and keratinocytes. RNA-seq analysis showed that peripheral sensory nerve-related genes were disrupted in psoriasis. In spinal cord hemi-section mice, sensory impairment improved psoriasiform dermatitis and inhibited the abnormal proliferation of keratinocytes. Botulinum toxin A alleviated psoriasiform dermatitis by inhibiting the secretion of calcitonin gene-related peptide. Collectively, cutaneous nerve fibers participate in the progression of psoriasis by linking epidermal keratinocytes and immunocytes. Neurological intervention may be a new treatment strategy for psoriasis.
Collapse
Affiliation(s)
- Si-Qi Chen
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, #88 Jiefang Road, Hangzhou, China
| | - Xue-Yan Chen
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, #88 Jiefang Road, Hangzhou, China
| | - Ying-Zhe Cui
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, #88 Jiefang Road, Hangzhou, China
| | - Bing-Xi Yan
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, #88 Jiefang Road, Hangzhou, China
| | - Yuan Zhou
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, #88 Jiefang Road, Hangzhou, China
| | - Zhao-Yuan Wang
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, #88 Jiefang Road, Hangzhou, China
| | - Fan Xu
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, #88 Jiefang Road, Hangzhou, China
| | - Yan-Zhou Huang
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, #88 Jiefang Road, Hangzhou, China
| | - Yu-Xin Zheng
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, #88 Jiefang Road, Hangzhou, China
| | - Xiao-Yong Man
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, #88 Jiefang Road, Hangzhou, China.
| |
Collapse
|
9
|
Brown AR, Martinez M. Chronic inactivation of the contralesional hindlimb motor cortex after thoracic spinal cord hemisection impedes locomotor recovery in the rat. Exp Neurol 2021; 343:113775. [PMID: 34081986 DOI: 10.1016/j.expneurol.2021.113775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/13/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
After incomplete spinal cord injury (SCI), cortical plasticity is involved in hindlimb locomotor recovery. Nevertheless, whether cortical activity is required for motor map plasticity and recovery remains unresolved. Here, we combined a unilateral thoracic spinal cord injury (SCI) with a cortical inactivation protocol that uncovered a functional role of contralesional cortical activity in hindlimb recovery and ipsilesional map plasticity. In adult rats, left hindlimb paralysis was induced by sectioning half of the spinal cord at the thoracic level (hemisection) and we used a continuous infusion of muscimol (GABAA agonist, 10 mM, 0.11 µl/h) delivered via implanted osmotic pump (n = 9) to chronically inactivate the contralesional hindlimb motor cortex. Hemisected rats with saline infusion served as a SCI control group (n = 8), and intact rats with muscimol infusion served as an inactivation control group (n = 6). Locomotion was assessed in an open field, on a horizontal ladder, and on a treadmill prior to and for three weeks after hemisection. Cortical inactivation after hemisection significantly impeded hindlimb locomotor recovery in all tasks and specifically disrupted the ability of rats to generate proper flexion of the affected hindlimb during stepping compared to SCI controls, with no significant effect of inactivation in intact rats. Chronic and acute (n = 4) cortical inactivation after hemisection also significantly reduced the representation of the affected hindlimb in the ipsilesional motor cortex derived with intracortical microsimulation (ICMS). Our results provide evidence that residual activity in the contralesional hindlimb motor cortex after thoracic hemisection contributes to spontaneous locomotor recovery and map plasticity.
Collapse
Affiliation(s)
- Andrew R Brown
- Département de Neurosciences Groupe de recherche sur le système nerveux central (GRSNC) and Centre Interdisciplinaire de Recherche sur le Cerveau au service de l'Apprentissage (CIRCA), Université de Montréal, Québec, Canada; CIUSSS du Nord-de-l'Île-de-Montréal, Québec, Canada
| | - Marina Martinez
- Département de Neurosciences Groupe de recherche sur le système nerveux central (GRSNC) and Centre Interdisciplinaire de Recherche sur le Cerveau au service de l'Apprentissage (CIRCA), Université de Montréal, Québec, Canada; CIUSSS du Nord-de-l'Île-de-Montréal, Québec, Canada.
| |
Collapse
|
10
|
Engmann AK, Bizzozzero F, Schneider MP, Pfyffer D, Imobersteg S, Schneider R, Hofer AS, Wieckhorst M, Schwab ME. The Gigantocellular Reticular Nucleus Plays a Significant Role in Locomotor Recovery after Incomplete Spinal Cord Injury. J Neurosci 2020; 40:8292-8305. [PMID: 32978289 PMCID: PMC7577599 DOI: 10.1523/jneurosci.0474-20.2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 09/14/2020] [Accepted: 09/18/2020] [Indexed: 11/21/2022] Open
Abstract
Traditionally, the brainstem has been seen as hardwired and poorly capable of plastic adaptations following spinal cord injury (SCI). Data acquired over the past decades, however, suggest differently: following SCI in various animal models (lamprey, chick, rodents, nonhuman primates), different forms of spontaneous anatomic plasticity of reticulospinal projections, many of them originating from the gigantocellular reticular nucleus (NRG), have been observed. In line with these anatomic observations, animals and humans with incomplete SCI often show various degrees of spontaneous motor recovery of hindlimb/leg function. Here, we investigated the functional relevance of two different modes of reticulospinal fiber growth after cervical hemisection, local rewiring of axotomized projections at the lesion site versus compensatory outgrowth of spared axons, using projection-specific, adeno-associated virus-mediated chemogenetic neuronal silencing. Detailed assessment of joint movements and limb kinetics during overground locomotion in female adult rats showed that locally rewired as well as compensatory NRG fibers were responsible for different aspects of recovered forelimb and hindlimb functions (i.e., stability, strength, coordination, speed, or timing). During walking and swimming, both locally rewired as well as compensatory NRG plasticity were crucial for recovered function, while the contribution of locally rewired NRG plasticity to wading performance was limited. Our data demonstrate comprehensively that locally rewired as well as compensatory plasticity of reticulospinal axons functionally contribute to the observed spontaneous improvement of stepping performance after incomplete SCI and are at least partially causative to the observed recovery of function, which can also be observed in human patients with spinal hemisection lesions.SIGNIFICANCE STATEMENT Following unilateral hemisection of the spinal cord, reticulospinal projections are destroyed on the injured side, resulting in impaired locomotion. Over time, a high degree of recovery can be observed in lesioned animals, like in human hemicord patients. In the rat, recovery is accompanied by pronounced spontaneous plasticity of axotomized and spared reticulospinal axons. We demonstrate the causative relevance of locally rewired as well as compensatory reticulospinal plasticity for the recovery of locomotor functions following spinal hemisection, using chemogenetic tools to selectively silence newly formed connections in behaviorally recovered animals. Moving from a correlative to a causative understanding of the role of neuroanatomical plasticity for functional recovery is fundamental for successful translation of treatment approaches from experimental studies to the clinics.
Collapse
Affiliation(s)
- Anne K Engmann
- Department of Health Sciences and Technology, ETH Zurich, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| | - Flavio Bizzozzero
- Department of Health Sciences and Technology, ETH Zurich, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| | - Marc P Schneider
- Department of Health Sciences and Technology, ETH Zurich, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| | - Dario Pfyffer
- Department of Health Sciences and Technology, ETH Zurich, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| | - Stefan Imobersteg
- Department of Health Sciences and Technology, ETH Zurich, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| | - Regula Schneider
- Department of Health Sciences and Technology, ETH Zurich, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| | - Anna-Sophie Hofer
- Department of Health Sciences and Technology, ETH Zurich, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| | - Martin Wieckhorst
- Department of Health Sciences and Technology, ETH Zurich, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| | - Martin E Schwab
- Department of Health Sciences and Technology, ETH Zurich, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
11
|
Gomes ED, Ghosh B, Lima R, Goulão M, Moreira-Gomes T, Martins-Macedo J, Urban MW, Wright MC, Gimble JM, Sousa N, Silva NA, Lepore AC, Salgado AJ. Combination of a Gellan Gum-Based Hydrogel With Cell Therapy for the Treatment of Cervical Spinal Cord Injury. Front Bioeng Biotechnol 2020; 8:984. [PMID: 32984278 PMCID: PMC7479129 DOI: 10.3389/fbioe.2020.00984] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/28/2020] [Indexed: 12/27/2022] Open
Abstract
Cervical spinal cord trauma represents more than half of the spinal cord injury (SCI) cases worldwide. Respiratory compromise, as well as severe limb motor deficits, are among the main consequences of cervical lesions. In the present work, a Gellan Gum (GG)-based hydrogel modified with GRGDS peptide, together with adipose tissue-derived stem/stromal cells (ASCs) and olfactory ensheathing cells (OECs), was used as a therapeutic strategy after a C2 hemisection SCI in rats. Hydrogel or cells alone, and a group without treatment, were also tested. Four weeks after injury, compound muscle action potentials (CMAPs) were performed to assess functional phrenic motor neuron (PhMN) innervation of the diaphragm; no differences were observed amongst groups, confirming that the PhMN pool located between C3 and C5 was not affected by the C2 injury or by the treatments. In the same line, the vast majority of diaphragmatic neuromuscular junctions remained intact. Five weeks post-injury, inspiratory bursting of the affected ipsilateral hemidiaphragm was evaluated through EMG recordings of dorsal, medial and ventral subregions of the muscle. All treatments significantly increased EMG amplitude at the ventral portion in comparison to untreated animals, but only the combinatorial group presented increased EMG amplitude at the medial portion of the hemidiaphragm. No differences were observed in forelimb motor function, neither in markers for axonal regrowth (neuronal tracers), astrogliosis (GFAP) and inflammatory cells (CD68). Moreover, using Von Frey testing of mechanical allodynia, it was possible to find a significant effect of the group combining hydrogel and cells on hypersensitivity; rats with a SCI displayed an increased response of the contralateral forelimb to a normally innocuous mechanical stimulus, but after treatment with the combinatorial therapy this behavior was reverted almost to the levels of uninjured controls. These results suggest that our therapeutic approach may have beneficial effects on both diaphragmatic recovery and sensory function.
Collapse
Affiliation(s)
- Eduardo D Gomes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| | - Biswarup Ghosh
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Rui Lima
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| | - Miguel Goulão
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal.,Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Tiago Moreira-Gomes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| | - Joana Martins-Macedo
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| | - Mark W Urban
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Megan C Wright
- Department of Biology, Arcadia University, Glenside, PA, United States
| | - Jeffrey M Gimble
- Center for Stem Cell Research and Regenerative Medicine, Tulane University, New Orleans, LA, United States
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| | - Nuno A Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| | - Angelo C Lepore
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| |
Collapse
|
12
|
Han Q, Xie Y, Ordaz JD, Huh AJ, Huang N, Wu W, Liu N, Chamberlain KA, Sheng ZH, Xu XM. Restoring Cellular Energetics Promotes Axonal Regeneration and Functional Recovery after Spinal Cord Injury. Cell Metab 2020; 31:623-641.e8. [PMID: 32130884 PMCID: PMC7188478 DOI: 10.1016/j.cmet.2020.02.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 11/24/2019] [Accepted: 01/31/2020] [Indexed: 01/30/2023]
Abstract
Axonal regeneration in the central nervous system (CNS) is a highly energy-demanding process. Extrinsic insults and intrinsic restrictions lead to an energy crisis in injured axons, raising the question of whether recovering energy deficits facilitates regeneration. Here, we reveal that enhancing axonal mitochondrial transport by deleting syntaphilin (Snph) recovers injury-induced mitochondrial depolarization. Using three CNS injury mouse models, we demonstrate that Snph-/- mice display enhanced corticospinal tract (CST) regeneration passing through a spinal cord lesion, accelerated regrowth of monoaminergic axons across a transection gap, and increased compensatory sprouting of uninjured CST. Notably, regenerated CST axons form functional synapses and promote motor functional recovery. Administration of the bioenergetic compound creatine boosts CST regenerative capacity in Snph-/- mice. Our study provides mechanistic insights into intrinsic regeneration failure in CNS and suggests that enhancing mitochondrial transport and cellular energetics are promising strategies to promote regeneration and functional restoration after CNS injuries.
Collapse
Affiliation(s)
- Qi Han
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yuxiang Xie
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Josue D Ordaz
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Andrew J Huh
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Ning Huang
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Wu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Naikui Liu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kelly A Chamberlain
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zu-Hang Sheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
13
|
Duncan GJ, Manesh SB, Hilton BJ, Assinck P, Plemel JR, Tetzlaff W. The fate and function of oligodendrocyte progenitor cells after traumatic spinal cord injury. Glia 2019; 68:227-245. [PMID: 31433109 DOI: 10.1002/glia.23706] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 07/24/2019] [Accepted: 08/01/2019] [Indexed: 12/27/2022]
Abstract
Oligodendrocyte progenitor cells (OPCs) are the most proliferative and dispersed population of progenitor cells in the adult central nervous system, which allows these cells to rapidly respond to damage. Oligodendrocytes and myelin are lost after traumatic spinal cord injury (SCI), compromising efficient conduction and, potentially, the long-term health of axons. In response, OPCs proliferate and then differentiate into new oligodendrocytes and Schwann cells to remyelinate axons. This culminates in highly efficient remyelination following experimental SCI in which nearly all intact demyelinated axons are remyelinated in rodent models. However, myelin regeneration comprises only one role of OPCs following SCI. OPCs contribute to scar formation after SCI and restrict the regeneration of injured axons. Moreover, OPCs alter their gene expression following demyelination, express cytokines and perpetuate the immune response. Here, we review the functional contribution of myelin regeneration and other recently uncovered roles of OPCs and their progeny to repair following SCI.
Collapse
Affiliation(s)
- Greg J Duncan
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health and Science University, Portland, Oregon
| | - Sohrab B Manesh
- Graduate Program in Neuroscience, International Collaboration on Repair Discoveries (ICORD), University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Brett J Hilton
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Peggy Assinck
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Jason R Plemel
- Department of Medicine, Division of Neurology, Neuroscience and Mental Health Institute, University of Alberta, Calgary, Alberta, Canada
| | - Wolfram Tetzlaff
- Graduate Program in Neuroscience, International Collaboration on Repair Discoveries (ICORD), University of British Columbia (UBC), Vancouver, British Columbia, Canada.,Departments of Zoology and Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
14
|
Perrin FE, Noristani HN. Serotonergic mechanisms in spinal cord injury. Exp Neurol 2019; 318:174-191. [PMID: 31085200 DOI: 10.1016/j.expneurol.2019.05.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/12/2022]
Abstract
Spinal cord injury (SCI) is a tragic event causing irreversible losses of sensory, motor, and autonomic functions, that may also be associated with chronic neuropathic pain. Serotonin (5-HT) neurotransmission in the spinal cord is critical for modulating sensory, motor, and autonomic functions. Following SCI, 5-HT axons caudal to the lesion site degenerate, and the degree of axonal degeneration positively correlates with lesion severity. Rostral to the lesion, 5-HT axons sprout, irrespective of the severity of the injury. Unlike callosal fibers and cholinergic projections, 5-HT axons are more resistant to an inhibitory milieu and undergo active sprouting and regeneration after central nervous system (CNS) traumatism. Numerous studies suggest that a chronic increase in serotonergic neurotransmission promotes 5-HT axon sprouting in the intact CNS. Moreover, recent studies in invertebrates suggest that 5-HT has a pro-regenerative role in injured axons. Here we present a brief description of 5-HT discovery, 5-HT innervation of the CNS, and physiological functions of 5-HT in the spinal cord, including its role in controlling bladder function. We then present a comprehensive overview of changes in serotonergic axons after CNS damage, and discuss their plasticity upon altered 5-HT neurotransmitter levels. Subsequently, we provide an in-depth review of therapeutic approaches targeting 5-HT neurotransmission, as well as other pre-clinical strategies to promote an increase in re-growth of 5-HT axons, and their functional consequences in SCI animal models. Finally, we highlight recent findings signifying the direct role of 5-HT in axon regeneration and suggest strategies to further promote robust long-distance re-growth of 5-HT axons across the lesion site and eventually achieve functional recovery following SCI.
Collapse
Affiliation(s)
- Florence Evelyne Perrin
- University of Montpellier, Montpellier, F-34095 France; INSERM, U1198, Montpellier, F-34095 France; EPHE, Paris, F-75014 France
| | - Harun Najib Noristani
- Shriners Hospitals Pediatric Research Center, Center for Neural Repair, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
15
|
Meyer C, Killeen T, Easthope CS, Curt A, Bolliger M, Linnebank M, Zörner B, Filli L. Familiarization with treadmill walking: How much is enough? Sci Rep 2019; 9:5232. [PMID: 30914746 PMCID: PMC6435738 DOI: 10.1038/s41598-019-41721-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/12/2019] [Indexed: 11/21/2022] Open
Abstract
Treadmill-based gait analysis is widely used to investigate walking pathologies and quantify treatment effects on locomotion. Differential sensorimotor conditions during overground vs. treadmill walking necessitate initial familiarization to treadmill walking. Currently, there is no standardized treadmill acclimatization protocol and insufficient familiarization potentially confounds analyses. We monitored initial adaptations to treadmill walking in 40 healthy adults. Twenty-six walking parameters were assessed over 10 minutes with marker-based kinematic analysis and acclimatization profiles were generated. While 16 walking parameters demonstrated initial acclimatization followed by plateau performance, ten parameters remained stable. Distal lower limb control including ankle range of motion, toe trajectory and foot clearance underwent substantial adaptations. Moreover, intralimb coordination and gait variability also demonstrated acclimatization, while measures of symmetry and interlimb coordination did not. All parameters exhibiting a plateau after acclimatization did so within 6–7 minutes (425 strides). Older participants and those naïve to treadmill walking showed adaptations with higher amplitudes but over similar timescales. Our results suggest a minimum of 6 minutes treadmill acclimatization is required to reach a stable performance, and that this should suffice for both older and naïve healthy adults. The presented data aids in optimizing treadmill-based gait analysis and contributes to improving locomotor assessments in research and clinical settings.
Collapse
Affiliation(s)
- Christian Meyer
- Spinal Cord Injury Center, Balgrist University Hospital, Forchstrasse 340, Zurich, Switzerland. .,Department of Neurology, University Hospital and University of Zurich, Frauenklinikstrasse 26, Zurich, Switzerland.
| | - Tim Killeen
- Spinal Cord Injury Center, Balgrist University Hospital, Forchstrasse 340, Zurich, Switzerland
| | - Christopher S Easthope
- Spinal Cord Injury Center, Balgrist University Hospital, Forchstrasse 340, Zurich, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, Forchstrasse 340, Zurich, Switzerland
| | - Marc Bolliger
- Spinal Cord Injury Center, Balgrist University Hospital, Forchstrasse 340, Zurich, Switzerland
| | - Michael Linnebank
- Department of Neurology, University Hospital and University of Zurich, Frauenklinikstrasse 26, Zurich, Switzerland.,Department of Neurology, Helios-Klinik Hagen-Ambrock, Witten/Herdecke University, Ambrocker Weg 60, 58091, Hagen, Germany
| | - Björn Zörner
- Spinal Cord Injury Center, Balgrist University Hospital, Forchstrasse 340, Zurich, Switzerland.,Department of Neurology, University Hospital and University of Zurich, Frauenklinikstrasse 26, Zurich, Switzerland
| | - Linard Filli
- Spinal Cord Injury Center, Balgrist University Hospital, Forchstrasse 340, Zurich, Switzerland.,Department of Neurology, University Hospital and University of Zurich, Frauenklinikstrasse 26, Zurich, Switzerland
| |
Collapse
|
16
|
Myelinated axons and functional blood vessels populate mechanically compliant rGO foams in chronic cervical hemisected rats. Biomaterials 2019; 192:461-474. [DOI: 10.1016/j.biomaterials.2018.11.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/06/2018] [Accepted: 11/13/2018] [Indexed: 11/18/2022]
|
17
|
Rascoe A, Sharma P, Shah PK. Development of an Activity-Dependent Epidural Stimulation System in Freely Moving Spinal Cord Injured Rats: A Proof of Concept Study. Front Neurosci 2018; 12:472. [PMID: 30083089 PMCID: PMC6064745 DOI: 10.3389/fnins.2018.00472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 06/21/2018] [Indexed: 11/13/2022] Open
Abstract
Purpose: Extensive pre-clinical and clinical experimentation has yielded data on the robustness and versatility of epidural stimulation (ES) strategies to activate spinal neural circuitry to produce functional benefits. Increasing studies are now reporting that closed-loop electrical stimulation delivery methods significantly enhance the neuromodulation effects of stimulation, to in turn, improve physiological outcomes of the intervention. No studies have yet explored the feasibility and usage of closed-loop systems to neuromodulate the cervical spinal cord using ES. Methods: We developed an activity-dependent system that utilizes electromyography (EMG) activity to trigger epidural stimulation (tES) of the cervical spinal cord in awake, freely moving rats. Experiments were performed on rats that were implanted with chronic forelimb EMG and cervical epidural implants, with (n = 7) and without (n = 2) a complete C4 spinal hemisection. Results: Our results show that the EMG triggered activity-dependent system can be reliably applied and reproduced for: (i) stimulating multiple rats simultaneously throughout the night during free home-cage activity and (ii) use as a mobile system for testing and training during various short-term behavioral testing conditions. The system was able to consistently generate stimulation pulse trains in response to attempted EMG activity that crossed a user-defined threshold in all rats for all experiments, including the overnight experiments that lasts for 7 h/session for 6 days/week through the 3-month period. Conclusion: The developed closed-loop system can be considered to represent a class of bidirectional neural prostheses via a circuit that enables two-way interactions between neural activity (real-time processing of EMG activity) and external devices (such as a stimulator). It can operate autonomously for extended periods of time in unrestrained rats, allowing its use as a long-term therapeutic tool. It can also enable us to study the long-term physiological effects of incorporating electrical stimulation techniques into the nervous system. The system can also be experimented for connecting several neural systems into a Brainet by combining neural signals from multiple rats dynamically and in real-time so as to enhance motor performance. Studies are ongoing in our laboratory to test the usefulness of this system in the recovery of hand function after cervical spinal cord injuries.
Collapse
Affiliation(s)
- Avi Rascoe
- Division of Rehabilitation Sciences, Department of Physical Therapy, School of Health Technology and Management, Stony Brook University, Stony Brook, NY, United States.,Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, United States
| | - Pawan Sharma
- Division of Rehabilitation Sciences, Department of Physical Therapy, School of Health Technology and Management, Stony Brook University, Stony Brook, NY, United States
| | - Prithvi K Shah
- Division of Rehabilitation Sciences, Department of Physical Therapy, School of Health Technology and Management, Stony Brook University, Stony Brook, NY, United States.,Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
18
|
Filli L, Sutter T, Easthope CS, Killeen T, Meyer C, Reuter K, Lörincz L, Bolliger M, Weller M, Curt A, Straumann D, Linnebank M, Zörner B. Profiling walking dysfunction in multiple sclerosis: characterisation, classification and progression over time. Sci Rep 2018; 8:4984. [PMID: 29563533 PMCID: PMC5862880 DOI: 10.1038/s41598-018-22676-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 02/27/2018] [Indexed: 01/28/2023] Open
Abstract
Gait dysfunction is a common and relevant symptom in multiple sclerosis (MS). This study aimed to profile gait pathology in gait-impaired patients with MS using comprehensive 3D gait analysis and clinical walking tests. Thirty-seven patients with MS walked on the treadmill at their individual, sustainable speed while 20 healthy control subjects walked at all the different patient's paces, allowing for comparisons independent of walking velocity. Kinematic analysis revealed pronounced restrictions in knee and ankle joint excursion, increased gait variability and asymmetry along with impaired dynamic stability in patients. The most discriminative single gait parameter, differentiating patients from controls with an accuracy of 83.3% (χ2 test; p = 0.0001), was reduced knee range of motion. Based on hierarchical cluster and principal component analysis, three principal pathological gait patterns were identified: a spastic-paretic, an ataxia-like, and an unstable gait. Follow-up assessments after 1 year indicated deterioration of walking function, particularly in patients with spastic-paretic gait patterns. Our findings suggest that impaired knee/ankle control is common in patients with MS. Personalised gait profiles and clustering algorithms may be promising tools for stratifying patients and to inform patient-tailored exercise programs. Responsive, objective outcome measures are important for monitoring disease progression and treatment effects in MS trials.
Collapse
Affiliation(s)
- Linard Filli
- Department of Neurology, University Hospital and University of Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland.
| | - Tabea Sutter
- Department of Neurology, University Hospital and University of Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
| | - Christopher S Easthope
- Spinal Cord Injury Center, Balgrist University Hospital, Forchstrasse 340, 8008, Zurich, Switzerland
| | - Tim Killeen
- Spinal Cord Injury Center, Balgrist University Hospital, Forchstrasse 340, 8008, Zurich, Switzerland
| | - Christian Meyer
- Spinal Cord Injury Center, Balgrist University Hospital, Forchstrasse 340, 8008, Zurich, Switzerland
| | - Katja Reuter
- Department of Neurology, University Hospital and University of Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
| | - Lilla Lörincz
- Department of Neurology, University Hospital and University of Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
| | - Marc Bolliger
- Spinal Cord Injury Center, Balgrist University Hospital, Forchstrasse 340, 8008, Zurich, Switzerland
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, Forchstrasse 340, 8008, Zurich, Switzerland
| | - Dominik Straumann
- Department of Neurology, University Hospital and University of Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
| | - Michael Linnebank
- Department of Neurology, University Hospital and University of Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
- Department of Neurology, Helios-Klinik Hagen-Ambrock, /University Witten/Herdecke, Ambrocker Weg 60, 58091, Hagen, Germany
| | - Björn Zörner
- Department of Neurology, University Hospital and University of Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
- Spinal Cord Injury Center, Balgrist University Hospital, Forchstrasse 340, 8008, Zurich, Switzerland
| |
Collapse
|
19
|
Spontaneous Functional Recovery from Incomplete Spinal Cord Injury. J Neurosci 2018; 36:8535-7. [PMID: 27535901 DOI: 10.1523/jneurosci.1684-16.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 06/29/2016] [Indexed: 11/21/2022] Open
|
20
|
Walker CL, Zhang YP, Liu Y, Li Y, Walker MJ, Liu NK, Shields CB, Xu XM. Anatomical and functional effects of lateral cervical hemicontusion in adult rats. Restor Neurol Neurosci 2018; 34:389-400. [PMID: 27163248 DOI: 10.3233/rnn-150597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE Cervical injuries are the most common form of spinal cord injury (SCI), and are often complicated by pathological secondary damage. Therefore, cervical SCI is of great clinical importance for understanding pathology and potential therapies. Here we utilize a weight drop cervical hemi-contusion injury model using a NYU/MASCIS impactor that produced graded anatomical and functional deficits. METHODS Three groups of rats were established: 1) Sham (laminectomy only) (n = 6), 12.5 mm weight drop (n = 10), and 25 mm weight drop (n = 10) SCI groups. Forelimb functional assessments of grooming ability, cereal manipulation, and forepaw adhesive removal were performed weekly after injury. Using transcranial magnetic motor evoked potentials (tcMMEPs), supraspinal motor stimulations were recorded in both forelimbs and hindlimbs at 5 and 28d post-injury. Lesion volume and myelinated tissue area were assessed through histological analysis. RESULTS A 12.5 mm weight drop height produced considerable tissue damage compared to Sham animals, while a 25 mm drop induced even greater damage than the 12.5 mm drop (p < 0.05). Forelimb functional assessments showed that increased injury severity and tissue damage was correlated to the degree of forelimb functional deficits. Interestingly, the hindlimbs showed little to no motor function loss. Upon tcMMEP stimulation, surprisingly little motor signal was recorded in the hindlimbs despite outward evidence of hindlimb motor recovery. CONCLUSIONS Our findings highlight a correlation between anatomical damage and functional outcome in a graded cervical hemi-contusion model, and support a loss of descending motor control from supraspinal inputs and intraspinal plasticity that promote spontaneous hindlimb functional recovery in this model.
Collapse
Affiliation(s)
- Chandler L Walker
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Yucheng Liu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yiping Li
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Melissa J Walker
- Medical Neuroscience Program, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nai-Kui Liu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Medical Neuroscience Program, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
21
|
Mechanism of Restoration of Forelimb Motor Function after Cervical Spinal Cord Hemisection in Rats: Electrophysiological Verification. Behav Neurol 2017; 2017:7514681. [PMID: 29259352 PMCID: PMC5702418 DOI: 10.1155/2017/7514681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/21/2017] [Accepted: 09/12/2017] [Indexed: 11/25/2022] Open
Abstract
The objective of this study was to electrophysiologically assess the corticospinal tracts of adult rats and the recovery of motor function of their forelimbs after cervical cord hemisection. Of 39 adult rats used, compound muscle action potentials (CMAPs) of the forelimbs of 15 rats were evaluated, before they received left C5 segmental hemisection of the spinal cord, by stimulating the pyramid of the medulla oblongata on one side using an exciting microelectrode. All 15 rats exhibited contralateral electrical activity, but their CMAPs disappeared after hemisection. The remaining 24 rats received hemisection first, and CMAPs of 12 rats were assessed over time to study their recovery time. All of them exhibited electrical activity of the forelimbs in 4 weeks after surgery. The remaining 12 rats received additional right C2 segmental hemisection, and variation of CMAPs between before and after surgery was examined. The right side of the 12 rats that received the additional hemisection exhibited no electrical activity in response to the stimulation of the pyramids on both sides. These results suggest that changes in path between the resected and healthy sides, activation of the ventral corticospinal tracts, and propriospinal neurons were involved in the recovery of motor function after cervical cord injury.
Collapse
|
22
|
Wiersma AM, Fouad K, Winship IR. Enhancing Spinal Plasticity Amplifies the Benefits of Rehabilitative Training and Improves Recovery from Stroke. J Neurosci 2017; 37:10983-10997. [PMID: 29025926 PMCID: PMC6596489 DOI: 10.1523/jneurosci.0770-17.2017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 09/15/2017] [Accepted: 10/01/2017] [Indexed: 12/15/2022] Open
Abstract
The limited recovery that occurs following stroke happens almost entirely in the first weeks postinjury. Moreover, the efficacy of rehabilitative training is limited beyond this narrow time frame. Sprouting of spared corticospinal tract axons in the contralesional spinal cord makes a significant contribution to sensorimotor recovery, but this structural plasticity is also limited to the first few weeks after stroke. Here, we tested the hypothesis that inducing plasticity in the spinal cord during chronic stroke could improve recovery from persistent sensorimotor impairment. We potentiated spinal plasticity during chronic stroke, weeks after the initial ischemic injury, in male Sprague-Dawley rats via intraspinal injections of chondroitinase ABC. Our data show that chondroitinase injections into the contralesional gray matter of the cervical spinal cord administered 28 d after stroke induced significant sprouting of corticospinal axons originating in the peri-infarct cortex. Chondroitinase ABC injection during chronic stroke without additional training resulted in moderate improvements of sensorimotor deficits. Importantly, this therapy dramatically potentiated the efficacy of rehabilitative training delivered during chronic stroke in a skilled forelimb reaching task. These novel data suggest that spinal therapy during chronic stroke can amplify the benefits of delayed rehabilitative training with the potential to reduce permanent disability in stroke survivors.SIGNIFICANCE STATEMENT The brain and spinal cord undergo adaptive rewiring ("plasticity") following stroke. This plasticity allows for partial functional recovery from stroke induced sensorimotor impairments. However, the plasticity that underlies recovery occurs predominantly in the first weeks following stroke, and most stroke survivors are left with permanent disability even after rehabilitation. Using animal models, our data show that removal of plasticity-inhibiting signals in the spinal cord (via intraspinal injections of the enzyme chondroitinase ABC) augments rewiring of circuits connecting the brain to the spinal cord, even weeks after stroke. Moreover, this plasticity can be harnessed by rehabilitative training to significantly promote sensorimotor recovery. Thus, intraspinal therapy may augment rehabilitative training and improve recovery even in individuals living with chronic disability due to stroke.
Collapse
Affiliation(s)
| | - Karim Fouad
- Neuroscience and Mental Health Institute
- Faculty of Rehabilitation Medicine, and
| | - Ian R Winship
- Neuroscience and Mental Health Institute,
- Neurochemical Research Unit, Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| |
Collapse
|
23
|
Abstract
Spinal cord injury (SCI) lesions present diverse challenges for repair strategies. Anatomically complete injuries require restoration of neural connectivity across lesions. Anatomically incomplete injuries may benefit from augmentation of spontaneous circuit reorganization. Here, we review SCI cell biology, which varies considerably across three different lesion-related tissue compartments: (a) non-neural lesion core, (b) astrocyte scar border, and (c) surrounding spared but reactive neural tissue. After SCI, axon growth and circuit reorganization are determined by neuron-cell-autonomous mechanisms and by interactions among neurons, glia, and immune and other cells. These interactions are shaped by both the presence and the absence of growth-modulating molecules, which vary markedly in different lesion compartments. The emerging understanding of how SCI cell biology differs across lesion compartments is fundamental to developing rationally targeted repair strategies.
Collapse
|
24
|
Killeen T, Easthope CS, Filli L, Lőrincz L, Schrafl-Altermatt M, Brugger P, Linnebank M, Curt A, Zörner B, Bolliger M. Increasing cognitive load attenuates right arm swing in healthy human walking. ROYAL SOCIETY OPEN SCIENCE 2017; 4:160993. [PMID: 28280596 PMCID: PMC5319362 DOI: 10.1098/rsos.160993] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 12/22/2016] [Indexed: 06/06/2023]
Abstract
Human arm swing looks and feels highly automated, yet it is increasingly apparent that higher centres, including the cortex, are involved in many aspects of locomotor control. The addition of a cognitive task increases arm swing asymmetry during walking, but the characteristics and mechanism of this asymmetry are unclear. We hypothesized that this effect is lateralized and a Stroop word-colour naming task-primarily involving left hemisphere structures-would reduce right arm swing only. We recorded gait in 83 healthy subjects aged 18-80 walking normally on a treadmill and while performing a congruent and incongruent Stroop task. The primary measure of arm swing asymmetry-an index based on both three-dimensional wrist trajectories in which positive values indicate proportionally smaller movements on the right-increased significantly under dual-task conditions in those aged 40-59 and further still in the over-60s, driven by reduced right arm flexion. Right arm swing attenuation appears to be the norm in humans performing a locomotor-cognitive dual-task, confirming a prominent role of the brain in locomotor behaviour. Women under 60 are surprisingly resistant to this effect, revealing unexpected gender differences atop the hierarchical chain of locomotor control.
Collapse
Affiliation(s)
- Tim Killeen
- Spinal Cord Injury Center, University Hospital Balgrist, Forchstrasse 340, 8008 Zurich, Switzerland
| | - Christopher S. Easthope
- Spinal Cord Injury Center, University Hospital Balgrist, Forchstrasse 340, 8008 Zurich, Switzerland
| | - Linard Filli
- Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091 Zurich, Switzerland
| | - Lilla Lőrincz
- Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091 Zurich, Switzerland
| | - Miriam Schrafl-Altermatt
- Spinal Cord Injury Center, University Hospital Balgrist, Forchstrasse 340, 8008 Zurich, Switzerland
| | - Peter Brugger
- Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091 Zurich, Switzerland
| | - Michael Linnebank
- Department of Neurology, Helios-Klinik Hagen-Ambrock, Ambrocker Weg 60, 58091 Hagen, Germany
| | - Armin Curt
- Spinal Cord Injury Center, University Hospital Balgrist, Forchstrasse 340, 8008 Zurich, Switzerland
| | - Björn Zörner
- Spinal Cord Injury Center, University Hospital Balgrist, Forchstrasse 340, 8008 Zurich, Switzerland
| | - Marc Bolliger
- Spinal Cord Injury Center, University Hospital Balgrist, Forchstrasse 340, 8008 Zurich, Switzerland
| |
Collapse
|
25
|
Abstract
Systemic application of therapeutics to the CNS tissue often results in subtherapeutic drug levels, because of restricted and selective penetration through the blood-brain barrier (BBB). Here, we give a detailed description of a standardized technique for intrathecal drug delivery in rodents, analogous to the technique used in humans. The intrathecal drug delivery method bypasses the BBB and thereby offers key advantages over oral or intravenous administration, such as maximized local drug doses with minimal systemic side effects. We describe how to deliver antibodies or drugs over several days or weeks from a s.c. minipump and a fine catheter inserted into the subdural space over the spinal cord (20 min operative time) or into the cisterna magna (10 min operative time). Drug levels can be sampled by quick and minimally invasive cerebrospinal fluid (CSF) collection from the cisterna magna (5 min procedure time). These techniques enable targeted application of any compound to the CNS for therapeutic studies in a wide range of CNS disease rodent models. Basic surgery skills are helpful for carrying out the procedures described in this protocol.
Collapse
|
26
|
High-speed video gait analysis reveals early and characteristic locomotor phenotypes in mouse models of neurodegenerative movement disorders. Behav Brain Res 2016; 311:340-353. [DOI: 10.1016/j.bbr.2016.04.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/25/2016] [Accepted: 04/26/2016] [Indexed: 12/20/2022]
|
27
|
Friedli L, Rosenzweig ES, Barraud Q, Schubert M, Dominici N, Awai L, Nielson JL, Musienko P, Nout-Lomas Y, Zhong H, Zdunowski S, Roy RR, Strand SC, van den Brand R, Havton LA, Beattie MS, Bresnahan JC, Bézard E, Bloch J, Edgerton VR, Ferguson AR, Curt A, Tuszynski MH, Courtine G. Pronounced species divergence in corticospinal tract reorganization and functional recovery after lateralized spinal cord injury favors primates. Sci Transl Med 2016; 7:302ra134. [PMID: 26311729 DOI: 10.1126/scitranslmed.aac5811] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Experimental and clinical studies suggest that primate species exhibit greater recovery after lateralized compared to symmetrical spinal cord injuries. Although this observation has major implications for designing clinical trials and translational therapies, advantages in recovery of nonhuman primates over other species have not been shown statistically to date, nor have the associated repair mechanisms been identified. We monitored recovery in more than 400 quadriplegic patients and found that functional gains increased with the laterality of spinal cord damage. Electrophysiological analyses suggested that corticospinal tract reorganization contributes to the greater recovery after lateralized compared with symmetrical injuries. To investigate underlying mechanisms, we modeled lateralized injuries in rats and monkeys using a lateral hemisection, and compared anatomical and functional outcomes with patients who suffered similar lesions. Standardized assessments revealed that monkeys and humans showed greater recovery of locomotion and hand function than did rats. Recovery correlated with the formation of corticospinal detour circuits below the injury, which were extensive in monkeys but nearly absent in rats. Our results uncover pronounced interspecies differences in the nature and extent of spinal cord repair mechanisms, likely resulting from fundamental differences in the anatomical and functional characteristics of the motor systems in primates versus rodents. Although rodents remain essential for advancing regenerative therapies, the unique response of the primate corticospinal tract after injury reemphasizes the importance of primate models for designing clinically relevant treatments.
Collapse
Affiliation(s)
- Lucia Friedli
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
| | - Ephron S Rosenzweig
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093-0662, USA
| | - Quentin Barraud
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
| | - Martin Schubert
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, 8008 Zurich, Switzerland
| | - Nadia Dominici
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland. MOVE Research Institute Amsterdam, Faculty of Human Movement Sciences, VU University Amsterdam, 1081 BT Amsterdam, Netherlands
| | - Lea Awai
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, 8008 Zurich, Switzerland
| | - Jessica L Nielson
- Department of Neurosurgery, University of California, San Francisco (UCSF), San Francisco, CA 94122, USA
| | - Pavel Musienko
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland. Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Yvette Nout-Lomas
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80521, USA
| | - Hui Zhong
- Department of Integrative Biology and Physiology and Brain Research Center, University of California, Los Angeles (UCLA), Los Angeles, CA 900095-7246, USA
| | - Sharon Zdunowski
- Department of Integrative Biology and Physiology and Brain Research Center, University of California, Los Angeles (UCLA), Los Angeles, CA 900095-7246, USA
| | - Roland R Roy
- Department of Integrative Biology and Physiology and Brain Research Center, University of California, Los Angeles (UCLA), Los Angeles, CA 900095-7246, USA
| | - Sarah C Strand
- California National Primate Research Center, University of California, Davis, Davis, CA 95616-8542, USA
| | - Rubia van den Brand
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
| | - Leif A Havton
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095-1769, USA
| | | | | | - Erwan Bézard
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France. CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Jocelyne Bloch
- Clinical Neuroscience, University Hospital of Vaud (CHUV), 1011 Lausanne, Switzerland
| | - V Reggie Edgerton
- Department of Integrative Biology and Physiology and Brain Research Center, University of California, Los Angeles (UCLA), Los Angeles, CA 900095-7246, USA
| | - Adam R Ferguson
- Department of Neurosurgery, University of California, San Francisco (UCSF), San Francisco, CA 94122, USA
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, 8008 Zurich, Switzerland
| | - Mark H Tuszynski
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093-0662, USA. Veterans Administration Medical Center, San Diego, CA 92161, USA
| | - Grégoire Courtine
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland. Clinical Neuroscience, University Hospital of Vaud (CHUV), 1011 Lausanne, Switzerland.
| |
Collapse
|
28
|
Mechanism of Forelimb Motor Function Restoration after Cervical Spinal Cord Hemisection in Rats: A Comparison of Juveniles and Adults. Behav Neurol 2016; 2016:1035473. [PMID: 27065569 PMCID: PMC4808747 DOI: 10.1155/2016/1035473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/02/2016] [Accepted: 01/12/2016] [Indexed: 11/25/2022] Open
Abstract
The aim of this study was to investigate forelimb motor function after cervical spinal cord injury in juvenile and adult rats. Both rats received a left segmental hemisection of the spinal cord after C3-C4 laminectomy. Behavioral evaluation of motor function was monitored and assessed using the New Rating Scale (NRS) and Forelimb Locomotor Scale (FLS) and by measuring the range of motion (ROM) of both the elbow and wrist. Complete left forelimb motor paralysis was observed in both rats. The NRS showed motor function recovery restored to 50.2 ± 24.7% in juvenile rats and 34.0 ± 19.8% in adult rats. FLS was 60.4 ± 26.8% in juvenile rats and 46.5 ± 26.9% in adult rats. ROM of the elbow and wrist were 88.9 ± 20.6% and 44.4 ± 24.1% in juvenile rats and 70.0 ± 29.2% and 40.0 ± 21.1% in adult rats. Thus, the NRS and ROM of the elbow showed a significant difference between age groups. These results indicate that left hemisection of the cervical spinal cord was not related to right-sided motor functions. Moreover, while motor paralysis of the left forelimb gradually recovered in both groups, the improvement was greater in juvenile rats.
Collapse
|
29
|
Spinal Cord Hemisection Facilitates Aromatic L-Amino Acid Decarboxylase Cells to Produce Serotonin in the Subchronic but Not the Chronic Phase. Neural Plast 2015; 2015:549671. [PMID: 26504602 PMCID: PMC4609486 DOI: 10.1155/2015/549671] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/12/2015] [Accepted: 05/19/2015] [Indexed: 11/18/2022] Open
Abstract
Neuromodulators, such as serotonin (5-hydroxytryptamine, 5-HT) and noradrenalin, play an essential role in regulating the motor and sensory functions in the spinal cord. We have previously shown that in the rat spinal cord the activity of aromatic L-amino acid decarboxylase (AADC) cells to produce 5-HT from its precursor (5-hydroxytryptophan, 5-HTP) is dramatically increased following complete spinal cord transection. In this study, we investigated whether a partial loss of 5-HT innervation could similarly increase AADC activity. Adult rats with spinal cord hemisected at thoracic level (T11/T12) were used with a postoperation interval at 5 days or 60 days. Using immunohistochemistry, first, we observed a significant reduction in the density of 5-HT-immunoreactive fibers in the spinal cord below the lesion on the injured side for both groups. Second, we found that the AADC cells were similarly expressed on both injured and uninjured sides in both groups. Third, increased production of 5-HT in AADC cells following 5-HTP was seen in 5-day but not in 60-day postinjury group. These results suggest that plastic changes of the 5-HT system might happen primarily in the subchronic phase and for longer period its function could be compensated by plastic changes of other intrinsic and/or supraspinal modulation systems.
Collapse
|
30
|
Abstract
Anatomically incomplete spinal cord injuries are often followed by considerable functional recovery in patients and animal models, largely because of processes of neuronal plasticity. In contrast to the corticospinal system, where sprouting of fibers and rearrangements of circuits in response to lesions have been well studied, structural adaptations within descending brainstem pathways and intraspinal networks are poorly investigated, despite the recognized physiological significance of these systems across species. In the present study, spontaneous neuroanatomical plasticity of severed bulbospinal systems and propriospinal neurons was investigated following unilateral C4 spinal hemisection in adult rats. Injection of retrograde tracer into the ipsilesional segments C3-C4 revealed a specific increase in the projection from the ipsilesional gigantocellular reticular nucleus in response to the injury. Substantial regenerative fiber sprouting of reticulospinal axons above the injury site was demonstrated by anterograde tracing. Regrowing reticulospinal fibers exhibited excitatory, vGLUT2-positive varicosities, indicating their synaptic integration into spinal networks. Reticulospinal fibers formed close appositions onto descending, double-midline crossing C3-C4 propriospinal neurons, which crossed the lesion site in the intact half of the spinal cord and recrossed to the denervated cervical hemicord below the injury. These propriospinal projections around the lesion were significantly enhanced after injury. Our results suggest that severed reticulospinal fibers, which are part of the phylogenetically oldest motor command system, spontaneously arborize and form contacts onto a plastic propriospinal relay, thereby bypassing the lesion. These rearrangements were accompanied by substantial locomotor recovery, implying a potential physiological relevance of the detour in restoration of motor function after spinal injury.
Collapse
|
31
|
Lemmens S, Brône B, Dooley D, Hendrix S, Geurts N. Alpha-adrenoceptor modulation in central nervous system trauma: pain, spasms, and paralysis--an unlucky triad. Med Res Rev 2014; 35:653-77. [PMID: 25546087 DOI: 10.1002/med.21337] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Many researchers have attempted to pharmacologically modulate the adrenergic system to control locomotion, pain, and spasms after central nervous system (CNS) trauma, although such efforts have led to conflicting results. Despite this, multiple studies highlight that α-adrenoceptors (α-ARs) are promising therapeutic targets because in the CNS, they are involved in reactivity to stressors and regulation of locomotion, pain, and spasms. These functions can be activated by direct modulation of these receptors on neuronal networks in the brain and the spinal cord. In addition, these multifunctional receptors are also broadly expressed on immune cells. This suggests that they might play a key role in modulating immunological responses, which may be crucial in treating spinal cord injury and traumatic brain injury as both diseases are characterized by a strong inflammatory component. Reducing the proinflammatory response will create a more permissive environment for axon regeneration and may support neuromodulation in combination therapies. However, pharmacological interventions are hindered by adrenergic system complexity and the even more complicated anatomical and physiological changes in the CNS after trauma. This review is the first concise overview of the pros and cons of α-AR modulation in the context of CNS trauma.
Collapse
Affiliation(s)
- Stefanie Lemmens
- Department of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Bert Brône
- Department of Physiology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Dearbhaile Dooley
- Department of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Sven Hendrix
- Department of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Nathalie Geurts
- Department of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
32
|
Serotonergic transmission after spinal cord injury. J Neural Transm (Vienna) 2014; 122:279-95. [PMID: 24866695 DOI: 10.1007/s00702-014-1241-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 05/06/2014] [Indexed: 12/27/2022]
Abstract
Changes in descending serotonergic innervation of spinal neural activity have been implicated in symptoms of paralysis, spasticity, sensory disturbances and pain following spinal cord injury (SCI). Serotonergic neurons possess an enhanced ability to regenerate or sprout after many types of injury, including SCI. Current research suggests that serotonine (5-HT) release within the ventral horn of the spinal cord plays a critical role in motor function, and activation of 5-HT receptors mediates locomotor control. 5-HT originating from the brain stem inhibits sensory afferent transmission and associated spinal reflexes; by abolishing 5-HT innervation SCI leads to a disinhibition of sensory transmission. 5-HT denervation supersensitivity is one of the key mechanisms underlying the increased motoneuron excitability that occurs after SCI, and this hyperexcitability has been demonstrated to underlie the pathogenesis of spasticity after SCI. Moreover, emerging evidence implicates serotonergic descending facilitatory pathways from the brainstem to the spinal cord in the maintenance of pathologic pain. There are functional relevant connections between the descending serotonergic system from the rostral ventromedial medulla in the brainstem, the 5-HT receptors in the spinal dorsal horn, and the descending pain facilitation after tissue and nerve injury. This narrative review focussed on the most important studies that have investigated the above-mentioned effects of impaired 5-HT-transmission in humans after SCI. We also briefly discussed the promising therapeutical approaches with serotonergic drugs, monoclonal antibodies and intraspinal cell transplantation.
Collapse
|
33
|
Zörner B, Bachmann LC, Filli L, Kapitza S, Gullo M, Bolliger M, Starkey ML, Röthlisberger M, Gonzenbach RR, Schwab ME. Chasing central nervous system plasticity: the brainstem's contribution to locomotor recovery in rats with spinal cord injury. ACTA ACUST UNITED AC 2014; 137:1716-32. [PMID: 24736305 DOI: 10.1093/brain/awu078] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Anatomical plasticity such as fibre growth and the formation of new connections in the cortex and spinal cord is one known mechanism mediating functional recovery after damage to the central nervous system. Little is known about anatomical plasticity in the brainstem, which contains key locomotor regions. We compared changes of the spinal projection pattern of the major descending systems following a cervical unilateral spinal cord hemisection in adult rats. As in humans (Brown-Séquard syndrome), this type of injury resulted in a permanent loss of fine motor control of the ipsilesional fore- and hindlimb, but for basic locomotor functions substantial recovery was observed. Antero- and retrograde tracings revealed spontaneous changes in spinal projections originating from the reticular formation, in particular from the contralesional gigantocellular reticular nucleus: more reticulospinal fibres from the intact hemicord crossed the spinal midline at cervical and lumbar levels. The intact-side rubrospinal tract showed a statistically not significant tendency towards an increased number of midline crossings after injury. In contrast, the corticospinal and the vestibulospinal tract, as well as serotonergic projections, showed little or no side-switching in this lesion paradigm. Spinal adaptations were accompanied by modifications at higher levels of control including side-switching of the input to the gigantocellular reticular nuclei from the mesencephalic locomotor region. Electrolytic microlesioning of one or both gigantocellular reticular nuclei in behaviourally recovered rats led to the reappearance of the impairments observed acutely after the initial injury showing that anatomical plasticity in defined brainstem motor networks contributes significantly to functional recovery after injury of the central nervous system.
Collapse
Affiliation(s)
- Björn Zörner
- 1 Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091 Zurich, Switzerland
| | - Lukas C Bachmann
- 2 Brain Research Institute, University of Zurich and Department of Health Sciences and Technology, ETH Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Linard Filli
- 1 Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091 Zurich, Switzerland
| | - Sandra Kapitza
- 1 Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091 Zurich, Switzerland
| | - Miriam Gullo
- 2 Brain Research Institute, University of Zurich and Department of Health Sciences and Technology, ETH Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Marc Bolliger
- 3 Spinal Cord Injury Centre, Balgrist University Hospital, Forchstrasse 340, 8008 Zurich, Switzerland
| | - Michelle L Starkey
- 3 Spinal Cord Injury Centre, Balgrist University Hospital, Forchstrasse 340, 8008 Zurich, Switzerland
| | - Martina Röthlisberger
- 2 Brain Research Institute, University of Zurich and Department of Health Sciences and Technology, ETH Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Roman R Gonzenbach
- 1 Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091 Zurich, Switzerland
| | - Martin E Schwab
- 2 Brain Research Institute, University of Zurich and Department of Health Sciences and Technology, ETH Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
34
|
Bachmann LC, Matis A, Lindau NT, Felder P, Gullo M, Schwab ME. Deep Brain Stimulation of the Midbrain Locomotor Region Improves Paretic Hindlimb Function After Spinal Cord Injury in Rats. Sci Transl Med 2013; 5:208ra146. [DOI: 10.1126/scitranslmed.3005972] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
35
|
Das S, Kumar S, Jain S, Avelev VD, Mathur R. Exposure to ELF- magnetic field promotes restoration of sensori-motor functions in adult rats with hemisection of thoracic spinal cord. Electromagn Biol Med 2013; 31:180-94. [PMID: 22897399 DOI: 10.3109/15368378.2012.695706] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Clinically effective modalities of treatment for spinal cord injury (SCI) still remain unsatisfactory and are largely invasive in nature. There are reports of accelerated regeneration in injured peripheral nerves by extremely low-frequency pulsed electromagnetic field (ELF-EMF) in the rat. In the present study, the effect of (50 Hz), low-intensity (17.96 μT) magnetic field (MF) exposure of rats after-hemisection of T13 spinal cord (hSCI) was investigated on sensori-motor and locomotor functions. Rats were divided into hSCI (sham-exposed) and hSCI+MF (MF: 2 h/d X 6 weeks) groups. Besides their general conditions, locomotor function by Basso, Beattie, and Brenahan (BBB) score; motor responses to noxious stimuli by threshold of tail flick (TTF), simple vocalization (TSV), tail flick latency (TFL), and neuronal excitability by H-reflex were noted. It is found that, in the hSCI+MF group, a statistically significant improvement over the hSCI control group was noted in BBB score from post-SCI wk2 and TFL and TTF by post-hSCI wk1 and wk3, respectively. Correspondingly, TSV gradually restored by post-hSCI wk5.The threshold of H-reflex was reduced on ipsilateral side vs. contralateral side in hSCI and hSCI+MF group. A complete bladder control was dramatically restored on post-hSCI day4 (vs. day7 of hSCI group) and the survival rate was 100% in the hSCI+MF group (vs. 90% of hSCI group). The results of our study suggest that extremely low-frequency (50 Hz), low-intensity (17.96 μT) MF exposure for 2 h/d x 6wks promotes recovery of sensori-motor behavior including locomotion and bladder control both in terms of temporal pattern and magnitude in hemisection injury of (T13) spinal cord rats.
Collapse
Affiliation(s)
- Suman Das
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | | |
Collapse
|
36
|
López-Dolado E, Lucas-Osma AM, Collazos-Castro JE. Dynamic motor compensations with permanent, focal loss of forelimb force after cervical spinal cord injury. J Neurotrauma 2013; 30:191-210. [PMID: 23249275 PMCID: PMC3565556 DOI: 10.1089/neu.2012.2530] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Incomplete cervical lesion is the most common type of human spinal cord injury (SCI) and causes permanent paresis of arm muscles, a phenomenon still incompletely understood in physiopathological and neuroanatomical terms. We performed spinal cord hemisection in adult rats at the caudal part of the segment C6, just rostral to the bulk of triceps brachii motoneurons, and analyzed the forces and kinematics of locomotion up to 4 months postlesion to determine the nature of motor function loss and recovery. A dramatic (50%), immediate and permanent loss of extensor force occurred in the forelimb but not in the hind limb of the injured side, accompanied by elbow and wrist kinematic impairments and early adaptations of whole-body movements that initially compensated the balance but changed continuously over the follow-up period to allow effective locomotion. Overuse of both contralateral legs and ipsilateral hind leg was evidenced since 5 days postlesion. Ipsilateral foreleg deficits resulted mainly from interruption of axons that innervate the spinal cord segments caudal to the lesion, because chronic loss (about 35%) of synapses was detected at C7 while only 14% of triceps braquii motoneurons died, as assessed by synaptophysin immunohistochemistry and retrograde neural tracing, respectively. We also found a large pool of propriospinal neurons projecting from C2-C5 to C7 in normal rats, with topographical features similar to the propriospinal premotoneuronal system of cats and primates. Thus, concurrent axotomy at C6 of brain descending axons and cervical propriospinal axons likely hampered spontaneous recovery of the focal neurological impairments.
Collapse
Affiliation(s)
- Elisa López-Dolado
- Neural Repair Laboratory, Hospital Nacional de Parapléjicos, Toledo, Spain
| | | | | |
Collapse
|
37
|
Abstract
Over the past 2 decades, the biological understanding of the mechanisms underlying structural and functional repair of the injured central nervous system has strongly increased. This has resulted in the development of multiple experimental treatment strategies with the collective aim of enhancing and surpassing the limited spontaneous recovery occurring in animal models and ultimately humans suffering from spinal cord or brain injuries. Several of these experimental treatments have revealed beneficial effects in animal models of spinal cord injury. With the exception of neurorehabilitative therapies, however, therapeutic interventions that enhance recovery are currently absent within the clinical realm of spinal cord injury. The present review surveys the prospects and challenges in experimental and clinical spinal cord repair. Major shortcomings in experimental research center on the difficulty of closely modeling human traumatic spinal cord injury in animals, the small number of investigations done on cervical spinal injury and tetraplegia, and the differences in lesion models, species, and functional outcome parameters used between laboratories. The main challenges in the clinical field of spinal cord repair are associated with the standardization and sensitivity of functional outcome measures, the definition of the inclusion/exclusion criteria for patient recruitment in trials, and the accuracy and reliability of an early diagnosis to predict subsequent neurological outcome. Research and clinical networks were recently created with the goal of optimizing animal studies and human trials. Promising clinical trials are currently in progress. The time has come to translate the biologic-mechanistic knowledge from basic science into efficacious treatments able to improve the conditions of humans suffering from spinal cord injury.
Collapse
Affiliation(s)
- Linard Filli
- Brain Research Institute, University Zurich and Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
| | | |
Collapse
|
38
|
Gongora M, Peressutti C, Machado S, Teixeira S, Velasques B, Ribeiro P. Progress and prospects in neurorehabilitation: clinical applications of stem cells and brain–computer interface for spinal cord lesions. Neurol Sci 2012; 34:427-33. [DOI: 10.1007/s10072-012-1232-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 10/18/2012] [Indexed: 12/19/2022]
|
39
|
Ferguson AR, Stück ED, Nielson JL. Syndromics: a bioinformatics approach for neurotrauma research. Transl Stroke Res 2011; 2:438-54. [PMID: 22207883 PMCID: PMC3236294 DOI: 10.1007/s12975-011-0121-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 10/14/2011] [Accepted: 10/18/2011] [Indexed: 12/25/2022]
Abstract
Substantial scientific progress has been made in the past 50 years in delineating many of the biological mechanisms involved in the primary and secondary injuries following trauma to the spinal cord and brain. These advances have highlighted numerous potential therapeutic approaches that may help restore function after injury. Despite these advances, bench-to-bedside translation has remained elusive. Translational testing of novel therapies requires standardized measures of function for comparison across different laboratories, paradigms, and species. Although numerous functional assessments have been developed in animal models, it remains unclear how to best integrate this information to describe the complete translational "syndrome" produced by neurotrauma. The present paper describes a multivariate statistical framework for integrating diverse neurotrauma data and reviews the few papers to date that have taken an information-intensive approach for basic neurotrauma research. We argue that these papers can be described as the seminal works of a new field that we call "syndromics", which aim to apply informatics tools to disease models to characterize the full set of mechanistic inter-relationships from multi-scale data. In the future, centralized databases of raw neurotrauma data will enable better syndromic approaches and aid future translational research, leading to more efficient testing regimens and more clinically relevant findings.
Collapse
Affiliation(s)
- Adam R. Ferguson
- Brain and Spinal Injury Center (BASIC), Department of Neurological Surgery, University of California, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA 94110 USA
| | - Ellen D. Stück
- Brain and Spinal Injury Center (BASIC), Department of Neurological Surgery, University of California, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA 94110 USA
| | - Jessica L. Nielson
- Brain and Spinal Injury Center (BASIC), Department of Neurological Surgery, University of California, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA 94110 USA
| |
Collapse
|