1
|
Zhang G, Yao Q, Long C, Yi P, Song J, Wu L, Wan W, Rao X, Lin Y, Wei G, Ying J, Hua F. Infiltration by monocytes of the central nervous system and its role in multiple sclerosis: reflections on therapeutic strategies. Neural Regen Res 2025; 20:779-793. [PMID: 38886942 PMCID: PMC11433895 DOI: 10.4103/nrr.nrr-d-23-01508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/12/2023] [Accepted: 02/18/2024] [Indexed: 06/20/2024] Open
Abstract
Mononuclear macrophage infiltration in the central nervous system is a prominent feature of neuroinflammation. Recent studies on the pathogenesis and progression of multiple sclerosis have highlighted the multiple roles of mononuclear macrophages in the neuroinflammatory process. Monocytes play a significant role in neuroinflammation, and managing neuroinflammation by manipulating peripheral monocytes stands out as an effective strategy for the treatment of multiple sclerosis, leading to improved patient outcomes. This review outlines the steps involved in the entry of myeloid monocytes into the central nervous system that are targets for effective intervention: the activation of bone marrow hematopoiesis, migration of monocytes in the blood, and penetration of the blood-brain barrier by monocytes. Finally, we summarize the different monocyte subpopulations and their effects on the central nervous system based on phenotypic differences. As activated microglia resemble monocyte-derived macrophages, it is important to accurately identify the role of monocyte-derived macrophages in disease. Depending on the roles played by monocyte-derived macrophages at different stages of the disease, several of these processes can be interrupted to limit neuroinflammation and improve patient prognosis. Here, we discuss possible strategies to target monocytes in neurological diseases, focusing on three key aspects of monocyte infiltration into the central nervous system, to provide new ideas for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Guangyong Zhang
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Qing Yao
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Chubing Long
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Pengcheng Yi
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Jiali Song
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Luojia Wu
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Wei Wan
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Xiuqin Rao
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Yue Lin
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Gen Wei
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Jun Ying
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Fuzhou Hua
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
2
|
Bastos A, Soares M, Guimarães J. Markers of secondary progression in multiple sclerosis. Mult Scler Relat Disord 2024; 91:105881. [PMID: 39277977 DOI: 10.1016/j.msard.2024.105881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
INTRODUCTION There is no globally accepted definition of Secondary Progressive Multiple Sclerosis (SPMS) or set of unambiguous clinical, radiological, or other criteria that can accurately identify patients who transition to SPMS. Thus, the SPMS diagnosis is almost always a retrospective and frequently delayed process. OBJECTIVE The aim of this study was to elucidate the current understanding of phenotypic changes throughout MS course and provide insights into the detection of SPMS from the available literature on this diagnostic landscape. METHODS Comprehensive literature review aiming at detecting the transition from RRMS to SPMS. A search for relevant publications was conducted across different databases, scrutinizing studies that investigated tools and biomarkers for an accurate diagnosis of SPMS. RESULTS 62 studies from the past two decades were included. The EDSS-plus was shown to be more sensitive than the EDSS alone in identifying disability progression. We found some helpful indicators for diagnosing SPMS, including cognitive impairment, particularly on working memory, information processing speed, and verbal fluency; presence of slowly expanding lesions on MRI; thinning of retinal layers on OCT. Also, glial markers as Glial Fibrillary Acidic Protein and Chitinase-3-like protein 1 might be more suitable to identify the conversion to progressive disease than Neurofilament light chain. Certain subjective symptoms seem to be more prevalent in the SPMS phase, although further studies are needed to understand whether patient reported outcomes' measures (PROMs) and which ones could be useful in detecting the transition to a progressive phenotype. CONCLUSION Our review highlights the emergence of useful biomarkers in early detection of progression of MS, such as cognitive impairment, MRI, and glial markers. We are getting closer to revolutionising the SPMS diagnosis and clinical management as we get a deeper understanding of these biomarkers.
Collapse
Affiliation(s)
- André Bastos
- Faculty of Medicine of University of Porto, Porto, Portugal.
| | - Mafalda Soares
- Faculty of Medicine of University of Porto, Porto, Portugal; Department of Neurology, Saint Joseph's Local Health Unit, Lisbon, Portugal
| | - Joana Guimarães
- Faculty of Medicine of University of Porto, Porto, Portugal; Department of Neurology, Saint John's Local Health Unit, Porto, Portugal
| |
Collapse
|
3
|
Scalfari A, Traboulsee A, Oh J, Airas L, Bittner S, Calabrese M, Garcia Dominguez JM, Granziera C, Greenberg B, Hellwig K, Illes Z, Lycke J, Popescu V, Bagnato F, Giovannoni G. Smouldering-Associated Worsening in Multiple Sclerosis: An International Consensus Statement on Definition, Biology, Clinical Implications, and Future Directions. Ann Neurol 2024; 96:826-845. [PMID: 39051525 DOI: 10.1002/ana.27034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
Despite therapeutic suppression of relapses, multiple sclerosis (MS) patients often experience subtle deterioration, which extends beyond the definition of "progression independent of relapsing activity." We propose the concept of smouldering-associated-worsening (SAW), encompassing physical and cognitive symptoms, resulting from smouldering pathological processes, which remain unmet therapeutic targets. We provide a consensus-based framework of possible pathological substrates and manifestations of smouldering MS, and we discuss clinical, radiological, and serum/cerebrospinal fluid biomarkers for potentially monitoring SAW. Finally, we share considerations for optimizing disease surveillance and implications for clinical trials to promote the integration of smouldering MS into routine practice and future research efforts. ANN NEUROL 2024;96:826-845.
Collapse
Affiliation(s)
- Antonio Scalfari
- Center of Neuroscience, Department of Medicine, Charing Cross Hospital, Imperial College, London, UK
| | | | - Jiwon Oh
- Division of Neurology, Department of Medicine, St Michael's Hospital, University of Toronto, Toronto, Canada
| | - Laura Airas
- University of Turku and Turku University Hospital, Turku, Finland
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (Rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | | - Cristina Granziera
- Translational Imaging in Neurology (THiNK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University of Basel, Basel, Switzerland
- Department of Neurology and MS Center, University Hospital Basel Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), Basel, Switzerland
| | | | | | - Zsolt Illes
- Department of Neurology, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Jan Lycke
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Veronica Popescu
- University MS Centre Pelt-Hasselt, Noorderhart Hospital, Belgium Hasselt University, Pelt, Belgium
| | - Francesca Bagnato
- Neuroimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurology, VA Hospital, TN Valley Healthcare System, Nashville, TN, USA
| | - Gavin Giovannoni
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
4
|
Gadani SP, Singh S, Kim S, Hu J, Smith MD, Calabresi PA, Bhargava P. Spatial transcriptomics of meningeal inflammation reveals inflammatory gene signatures in adjacent brain parenchyma. eLife 2024; 12:RP88414. [PMID: 39475792 PMCID: PMC11524578 DOI: 10.7554/elife.88414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024] Open
Abstract
While modern high efficacy disease modifying therapies have revolutionized the treatment of relapsing-remitting multiple sclerosis, they are less effective at controlling progressive forms of the disease. Meningeal inflammation is a recognized risk factor for cortical gray matter pathology which can result in disabling symptoms such as cognitive impairment and depression, but the mechanisms linking meningeal inflammation and gray matter pathology remain unclear. Here, we performed magnetic resonance imaging (MRI)-guided spatial transcriptomics in a mouse model of autoimmune meningeal inflammation to characterize the transcriptional signature in areas of meningeal inflammation and the underlying brain parenchyma. We found broadly increased activity of inflammatory signaling pathways at sites of meningeal inflammation, but only a subset of these pathways active in the adjacent brain parenchyma. Subclustering of regions adjacent to meningeal inflammation revealed the subset of immune programs induced in brain parenchyma, notably complement signaling and antigen processing/presentation. Trajectory gene and gene set modeling analysis confirmed variable penetration of immune signatures originating from meningeal inflammation into the adjacent brain tissue. This work contributes a valuable data resource to the field, provides the first detailed spatial transcriptomic characterization in a model of meningeal inflammation, and highlights several candidate pathways in the pathogenesis of gray matter pathology.
Collapse
Affiliation(s)
- Sachin P Gadani
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Neurology, University of PittsburghPittsburghUnited States
| | - Saumitra Singh
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Sophia Kim
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Jingwen Hu
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Matthew D Smith
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Peter A Calabresi
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Solomon Snyder, Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Pavan Bhargava
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
5
|
Okutan B, Frederiksen JL, Houen G, Sellebjerg F, Kyllesbech C, Magyari M, Paunovic M, Sørensen PS, Jacobsen C, Lassmann H, Bramow S. Subcortical plaques and inflammation reflect cortical and meningeal pathologies in progressive multiple sclerosis. Brain Pathol 2024:e13314. [PMID: 39460678 DOI: 10.1111/bpa.13314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
It remains elusive whether lesions and inflammation in the sub/juxtacortical white matter reflect cortical and/or meningeal pathologies. Elucidating this could have implications for MRI monitoring as sub/juxtacortical lesions are detectable by routine MRI, while cortical lesions and meningeal inflammation are not. By large-area microscopy, we quantified total and mixed active plaque loads along with densities and sizes of perivascular mononuclear infiltrates (infiltrates) in the sub/juxtacortical white matter ≤2 mm from the cortex, intra-cortically and in the meninges. Data were related to ante-mortem clinical parameters in a false discovery rate-corrected analysis. We compared 12 patients with primary progressive multiple sclerosis (PPMS) and 15 with secondary progressive MS to 22 controls. Fifteen patients and 11 controls contributed with hemispheric sections. Sections were stained with haematoxylin-eosin, for myelin and for microglia/macrophages. B cells and T cells were confirmed in a subset. Immunoglobulin G depositions in selected cortical plaques resembled depositions described before in "slowly expanding" plaques in the white matter. We quantified plaque activity by measuring microglia-dominated and macrophage-dominated areas. Sub/juxtacortical plaques (load and activity) reflected plaque activity in the cerebral cortex. Plaque activity and infiltrates were more pronounced in the sub/juxtacortical white matter than in the cerebral cortex while conversely, the total plaque load was highest in the cortex. Infiltrates correlated trans-cortically and sub/juxtacortical plaque activity reflected cortical and meningeal infiltrates. Sub/juxtacortical infiltrate sizes correlated with shorter survival after progression onset. Two patients with PPMS and putatively fatal brain stem lesions argue against incidental findings. Trans-cortical inflammatory flares and plaque activity may be pathogenic in progressive MS. We suggest emphasis on sub/juxtacortical MRI lesions as plausible surrogates for cortical and meningeal pathologies and, when present, as indicators for cognitive testing.
Collapse
Affiliation(s)
- Betül Okutan
- Department of Neurology, Danish Multiple Sclerosis Center, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Jette L Frederiksen
- Department of Neurology, Danish Multiple Sclerosis Center, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gunnar Houen
- Department of Neurology, Danish Multiple Sclerosis Center, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
- Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Finn Sellebjerg
- Department of Neurology, Danish Multiple Sclerosis Center, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cecilie Kyllesbech
- Department of Neurology, Danish Multiple Sclerosis Center, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
- Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Melinda Magyari
- Department of Neurology, Danish Multiple Sclerosis Center, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology, Danish Multiple Sclerosis Registry, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Manuela Paunovic
- Department of Neurology, Erasmus Medical Centre, Rotterdam, The Netherlands
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Per S Sørensen
- Department of Neurology, Danish Multiple Sclerosis Center, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christina Jacobsen
- Section of Forensic Pathology, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Stephan Bramow
- Department of Neurology, Danish Multiple Sclerosis Center, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
- Department of Pathology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
6
|
Xin L, Madarasz A, Ivan DC, Weber F, Aleandri S, Luciani P, Locatelli G, Proulx ST. Impairment of spinal CSF flow precedes immune cell infiltration in an active EAE model. J Neuroinflammation 2024; 21:272. [PMID: 39444001 PMCID: PMC11520187 DOI: 10.1186/s12974-024-03247-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/28/2024] [Indexed: 10/25/2024] Open
Abstract
Accumulation of immune cells and proteins in the subarachnoid space (SAS) is found during multiple sclerosis and in the animal model experimental autoimmune encephalomyelitis (EAE). Whether the flow of cerebrospinal fluid (CSF) along the SAS of the spinal cord is impacted is yet unknown. Combining intravital near-infrared (NIR) imaging with histopathological analyses, we observed a significantly impaired bulk flow of CSF tracers within the SAS of the spinal cord prior to EAE onset, which persisted until peak stage and was only partially recovered during chronic disease. The impairment of spinal CSF flow coincided with the appearance of fibrin aggregates in the SAS, however, it preceded immune cell infiltration and breakdown of the glia limitans superficialis. Conversely, cranial CSF efflux to cervical lymph nodes was not altered during the disease course. Our study highlights an early and persistent impairment of spinal CSF flow and suggests it as a sensitive imaging biomarker for pathological changes within the leptomeninges.
Collapse
Affiliation(s)
- Li Xin
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, Bern, CH-3012, Switzerland
| | - Adrian Madarasz
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, Bern, CH-3012, Switzerland
| | - Daniela C Ivan
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, Bern, CH-3012, Switzerland
| | - Florian Weber
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Simone Aleandri
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Paola Luciani
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Giuseppe Locatelli
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, Bern, CH-3012, Switzerland
| | - Steven T Proulx
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, Bern, CH-3012, Switzerland.
| |
Collapse
|
7
|
das Neves SP, Delivanoglou N, Ren Y, Cucuzza CS, Makuch M, Almeida F, Sanchez G, Barber MJ, Rego S, Schrader R, Faroqi AH, Thomas JL, McLean PJ, Oliveira TG, Irani SR, Piehl F, Da Mesquita S. Meningeal lymphatic function promotes oligodendrocyte survival and brain myelination. Immunity 2024; 57:2328-2343.e8. [PMID: 39217987 PMCID: PMC11464205 DOI: 10.1016/j.immuni.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 04/17/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
The precise neurophysiological changes prompted by meningeal lymphatic dysfunction remain unclear. Here, we showed that inducing meningeal lymphatic vessel ablation in adult mice led to gene expression changes in glial cells, followed by reductions in mature oligodendrocyte numbers and specific lipid species in the brain. These phenomena were accompanied by altered meningeal adaptive immunity and brain myeloid cell activation. During brain remyelination, meningeal lymphatic dysfunction provoked a state of immunosuppression that contributed to delayed spontaneous oligodendrocyte replenishment and axonal loss. The deficiencies in mature oligodendrocytes and neuroinflammation due to impaired meningeal lymphatic function were solely recapitulated in immunocompetent mice. Patients diagnosed with multiple sclerosis presented reduced vascular endothelial growth factor C in the cerebrospinal fluid, particularly shortly after clinical relapses, possibly indicative of poor meningeal lymphatic function. These data demonstrate that meningeal lymphatics regulate oligodendrocyte function and brain myelination, which might have implications for human demyelinating diseases.
Collapse
Affiliation(s)
- Sofia P das Neves
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Yingxue Ren
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Chiara Starvaggi Cucuzza
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden; Centre for Neurology, Academic Specialist Center, Stockholm Health Services, Stockholm, Sweden
| | - Mateusz Makuch
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Francisco Almeida
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Guadalupe Sanchez
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Neuroscience Ph.D. Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Megan J Barber
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Shanon Rego
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Post-baccalaureate Research Education Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Racquelle Schrader
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Post-baccalaureate Research Education Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Ayman H Faroqi
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Neuroscience Ph.D. Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Jean-Leon Thomas
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA; Paris Brain Institute, Université Pierre et Marie Curie Paris 06 UMRS1127, Sorbonne Université, Paris Brain Institute, Paris, France
| | - Pamela J McLean
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Neuroscience Ph.D. Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Tiago Gil Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal; Department of Neuroradiology, Hospital de Braga, 4710-243 Braga, Portugal
| | - Sarosh R Irani
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Department of Clinical Neurology, John Radcliffe Hospital, Oxford, UK
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden; Centre for Neurology, Academic Specialist Center, Stockholm Health Services, Stockholm, Sweden
| | - Sandro Da Mesquita
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Neuroscience Ph.D. Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL 32224, USA.
| |
Collapse
|
8
|
Kalia LV, Asis A, Arbour N, Bar-Or A, Bove R, Di Luca DG, Fon EA, Fox S, Gan-Or Z, Gommerman JL, Kang UJ, Klawiter EC, Koch M, Kolind S, Lang AE, Lee KK, Lincoln MR, MacDonald PA, McKeown MJ, Mestre TA, Miron VE, Ontaneda D, Rousseaux MWC, Schlossmacher MG, Schneider R, Stoessl AJ, Oh J. Disease-modifying therapies for Parkinson disease: lessons from multiple sclerosis. Nat Rev Neurol 2024:10.1038/s41582-024-01023-0. [PMID: 39375563 DOI: 10.1038/s41582-024-01023-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/09/2024]
Abstract
The development of disease-modifying therapies (DMTs) for neurological disorders is an important goal in modern neurology, and the associated challenges are similar in many chronic neurological conditions. Major advances have been made in the multiple sclerosis (MS) field, with a range of DMTs being approved for relapsing MS and the introduction of the first DMTs for progressive MS. By contrast, people with Parkinson disease (PD) still lack such treatment options, relying instead on decades-old therapeutic approaches that provide only symptomatic relief. To address this unmet need, an in-person symposium was held in Toronto, Canada, in November 2022 for international researchers and experts in MS and PD to discuss strategies for advancing DMT development. In this Roadmap article, we highlight discussions from the symposium, which focused on therapeutic targets and preclinical models, disease spectra and subclassifications, and clinical trial design and outcome measures. From these discussions, we propose areas for novel or deeper exploration in PD using lessons learned from therapeutic development in MS. In addition, we identify challenges common to the PD and MS fields that need to be addressed to further advance the discovery and development of effective DMTs.
Collapse
Affiliation(s)
- Lorraine V Kalia
- Edmond J Safra Program in Parkinson's Disease, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada.
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | | | - Nathalie Arbour
- Department of Neurosciences, Université de Montreal, Montreal, Quebec, Canada
- Centre de Recherche du CHUM (CRCHUM), Montreal, Quebec, Canada
| | - Amit Bar-Or
- Division of MS and Related Disorders, Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
- Centre for Neuroinflammation and Experimental Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Riley Bove
- UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Daniel G Di Luca
- Edmond J Safra Program in Parkinson's Disease, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Edward A Fon
- The Neuro (Montreal Neurological Institute-Hospital), Montreal, Quebec, Canada
- Department of Neurology & Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Susan Fox
- Edmond J Safra Program in Parkinson's Disease, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ziv Gan-Or
- The Neuro (Montreal Neurological Institute-Hospital), Montreal, Quebec, Canada
- Department of Neurology & Neurosurgery, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Jennifer L Gommerman
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Un Jung Kang
- Department of Neurology, Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Parekh Center for Interdisciplinary Neurology, Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Fresco Institute for Parkinson's and Movement Disorders, Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Department of Neuroscience and Physiology, Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Eric C Klawiter
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marcus Koch
- University of Calgary MS Clinic, Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Shannon Kolind
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anthony E Lang
- Edmond J Safra Program in Parkinson's Disease, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Matthew R Lincoln
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Barlo MS Centre, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Penny A MacDonald
- Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Martin J McKeown
- Pacific Parkinson's Research Centre, Division of Neurology, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tiago A Mestre
- Parkinson's Disease and Movement Disorders Clinic, Division of Neurology, Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada
| | - Veronique E Miron
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- The United Kingdom Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA
| | - Maxime W C Rousseaux
- University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Michael G Schlossmacher
- Parkinson's Disease and Movement Disorders Clinic, Division of Neurology, Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada
| | - Raphael Schneider
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Barlo MS Centre, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - A Jon Stoessl
- Pacific Parkinson's Research Centre, Division of Neurology, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jiwon Oh
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Barlo MS Centre, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Konitsioti AM, Prüss H, Laurent S, Fink GR, Heesen C, Warnke C. Chimeric antigen receptor T-cell therapy for autoimmune diseases of the central nervous system: a systematic literature review. J Neurol 2024; 271:6526-6542. [PMID: 39276207 PMCID: PMC11446985 DOI: 10.1007/s00415-024-12642-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/16/2024]
Abstract
IMPORTANCE B-cell-targeting monoclonal antibodies have demonstrated safety and efficacy in multiple sclerosis or anti-aquaporin-4 IgG positive neuromyelitis optica spectrum disorder. However, these therapies do not facilitate drug-free remission, which may become possible with cell-based therapies, including chimeric antigen receptor (CAR) T cells. CAR T-cell therapy holds promise for addressing other antibody-mediated CNS disorders, e.g., MOG-associated disease or autoimmune encephalitis. OBJECTIVE To provide an overview of the current clinical knowledge on CAR T-cell therapy in central nervous system autoimmunity. EVIDENCE REVIEW We searched PubMed, Embase, Google Scholar, PsycINFO, and clinicaltrials.gov using the terms 'CAR T cell' and 'multiple sclerosis/MS' or 'neuromyelitis optica/spectrum diseases/NMOSD' or 'MOG-associated disease/MOGAD 'or' autoimmune encephalitis' or 'neuroimmunology'. FINDINGS An ongoing phase I clinical trial has indicated the safety and benefits of anti-BCMA CAR T cells in 12 patients with AQP4-IgG seropositive neuromyelitis optica spectrum disorder. Case reports involving two individuals with progressive multiple sclerosis and one patient with stiff-person syndrome demonstrated a manageable safety profile following treatment with anti-CD19 CAR T cells. Recruitment has commenced for two larger studies in MS, and a phase I open-label basket study is underway to evaluate BCMA-directed CAR T cells in various antibody-associated inflammatory diseases, including MOG-associated disease. Preclinical research on NMDA receptor antibody autoimmune encephalitis treated with chimeric autoantibody receptor T cells generated promising data. CONCLUSIONS AND RELEVANCE There is minimal evidence of the benefits of CAR T-cell therapy in individuals with central nervous system-directed autoimmunity. Nevertheless, multicenter controlled clinical trials with a manageable safety profile appear feasible and are warranted due to very promising case experiences.
Collapse
Affiliation(s)
- Agni M Konitsioti
- Department of Neurology, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
- Faculty of Medicine, University Hospital Cologne, Cologne, Germany.
| | - Harald Prüss
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sarah Laurent
- Department of Neurology, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Gereon R Fink
- Department of Neurology, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM3), Research Center Jülich, Jülich, Germany
- Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Christoph Heesen
- Department of Neurology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Clemens Warnke
- Department of Neurology, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
- Faculty of Medicine, University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
10
|
Marastoni D, Turano E, Tamanti A, Colato E, Pisani AI, Scartezzini A, Carotenuto S, Mazziotti V, Camera V, Anni D, Ziccardi S, Guandalini M, Pizzini FB, Virla F, Mariotti R, Magliozzi R, Bonetti B, Steinman L, Calabrese M. Association of Levels of CSF Osteopontin With Cortical Atrophy and Disability in Early Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200265. [PMID: 38917380 PMCID: PMC11203401 DOI: 10.1212/nxi.0000000000200265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/29/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND AND OBJECTIVES To evaluate CSF inflammatory markers with accumulation of cortical damage as well as disease activity in patients with early relapsing-remitting MS (RRMS). METHODS CSF levels of osteopontin (OPN) and 66 inflammatory markers were assessed using an immune-assay multiplex technique in 107 patients with RRMS (82 F/25 M, mean age 35.7 ± 11.8 years). All patients underwent regular clinical assessment and yearly 3T MRI scans for 2 years while 39 patients had a 4-year follow-up. White matter lesion number and volume, cortical lesions (CLs) and volume, and global cortical thickness (CTh) were evaluated together with the 'no evidence of disease activity' (NEDA-3) status, defined by no relapses, no disability worsening, and no MRI activity, including CLs. RESULTS The random forest algorithm selected OPN, CXCL13, TWEAK, TNF, IL19, sCD30, sTNFR1, IL35, IL16, and sCD163 as significantly associated with changes in global CTh. OPN and CXCL13 were most related to accumulation of atrophy after 2 and 4 years. In a multivariate linear regression model on CSF markers, OPN (p < 0.001), CXCL13 (p = 0.001), and sTNFR1 (p = 0.024) were increased in those patients with accumulating atrophy (adjusted R-squared 0.615). The 10 markers were added in a model that included all clinical, demographic, and MRI variables: OPN (p = 0.002) and IL19 (p = 0.022) levels were confirmed to be significantly increased in patients developing more CTh change over the follow-up (adjusted R-squared 0.619). CXCL13 and OPN also revealed the best association with NEDA-3 after 2 years, with OPN significantly linked to disability accumulation (OR 2.468 [1.46-5.034], p = 0.004) at the multivariate logistic regression model. DISCUSSION These data confirm and expand our knowledge on the prognostic role of the CSF inflammatory profile in predicting changes in cortical pathology and disease activity in early MS. The data emphasize a crucial role of OPN.
Collapse
Affiliation(s)
- Damiano Marastoni
- From the Neurology B (D.M., E.T., A.T., E.C., A.I.P., A.S., S.C., V.M., V.C., D.A., S.Z., M.G., F.V., R. Magliozzi, M.C.); Anatomy and Histology section (E.T., F.V., R. Mariotti), Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy; Department of Anatomy and Neurosciences (E.C.), MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands; Neuroradiology and Radiology Units (F.B.P.), Department of Engineering for Innovation Medicine, University of Verona, Italy; Department of Brain Sciences (R. Magliozzi), Faculty of Medicine, Imperial College London, United Kingdom; Neurology A (B.B.), Azienda Ospedaliera Universitaria Integrata di Verona, Italy; and Department of Neurology and Neurological Sciences Stanford University (L.S.), CA
| | - Ermanna Turano
- From the Neurology B (D.M., E.T., A.T., E.C., A.I.P., A.S., S.C., V.M., V.C., D.A., S.Z., M.G., F.V., R. Magliozzi, M.C.); Anatomy and Histology section (E.T., F.V., R. Mariotti), Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy; Department of Anatomy and Neurosciences (E.C.), MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands; Neuroradiology and Radiology Units (F.B.P.), Department of Engineering for Innovation Medicine, University of Verona, Italy; Department of Brain Sciences (R. Magliozzi), Faculty of Medicine, Imperial College London, United Kingdom; Neurology A (B.B.), Azienda Ospedaliera Universitaria Integrata di Verona, Italy; and Department of Neurology and Neurological Sciences Stanford University (L.S.), CA
| | - Agnese Tamanti
- From the Neurology B (D.M., E.T., A.T., E.C., A.I.P., A.S., S.C., V.M., V.C., D.A., S.Z., M.G., F.V., R. Magliozzi, M.C.); Anatomy and Histology section (E.T., F.V., R. Mariotti), Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy; Department of Anatomy and Neurosciences (E.C.), MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands; Neuroradiology and Radiology Units (F.B.P.), Department of Engineering for Innovation Medicine, University of Verona, Italy; Department of Brain Sciences (R. Magliozzi), Faculty of Medicine, Imperial College London, United Kingdom; Neurology A (B.B.), Azienda Ospedaliera Universitaria Integrata di Verona, Italy; and Department of Neurology and Neurological Sciences Stanford University (L.S.), CA
| | - Elisa Colato
- From the Neurology B (D.M., E.T., A.T., E.C., A.I.P., A.S., S.C., V.M., V.C., D.A., S.Z., M.G., F.V., R. Magliozzi, M.C.); Anatomy and Histology section (E.T., F.V., R. Mariotti), Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy; Department of Anatomy and Neurosciences (E.C.), MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands; Neuroradiology and Radiology Units (F.B.P.), Department of Engineering for Innovation Medicine, University of Verona, Italy; Department of Brain Sciences (R. Magliozzi), Faculty of Medicine, Imperial College London, United Kingdom; Neurology A (B.B.), Azienda Ospedaliera Universitaria Integrata di Verona, Italy; and Department of Neurology and Neurological Sciences Stanford University (L.S.), CA
| | - Anna Isabella Pisani
- From the Neurology B (D.M., E.T., A.T., E.C., A.I.P., A.S., S.C., V.M., V.C., D.A., S.Z., M.G., F.V., R. Magliozzi, M.C.); Anatomy and Histology section (E.T., F.V., R. Mariotti), Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy; Department of Anatomy and Neurosciences (E.C.), MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands; Neuroradiology and Radiology Units (F.B.P.), Department of Engineering for Innovation Medicine, University of Verona, Italy; Department of Brain Sciences (R. Magliozzi), Faculty of Medicine, Imperial College London, United Kingdom; Neurology A (B.B.), Azienda Ospedaliera Universitaria Integrata di Verona, Italy; and Department of Neurology and Neurological Sciences Stanford University (L.S.), CA
| | - Arianna Scartezzini
- From the Neurology B (D.M., E.T., A.T., E.C., A.I.P., A.S., S.C., V.M., V.C., D.A., S.Z., M.G., F.V., R. Magliozzi, M.C.); Anatomy and Histology section (E.T., F.V., R. Mariotti), Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy; Department of Anatomy and Neurosciences (E.C.), MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands; Neuroradiology and Radiology Units (F.B.P.), Department of Engineering for Innovation Medicine, University of Verona, Italy; Department of Brain Sciences (R. Magliozzi), Faculty of Medicine, Imperial College London, United Kingdom; Neurology A (B.B.), Azienda Ospedaliera Universitaria Integrata di Verona, Italy; and Department of Neurology and Neurological Sciences Stanford University (L.S.), CA
| | - Silvia Carotenuto
- From the Neurology B (D.M., E.T., A.T., E.C., A.I.P., A.S., S.C., V.M., V.C., D.A., S.Z., M.G., F.V., R. Magliozzi, M.C.); Anatomy and Histology section (E.T., F.V., R. Mariotti), Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy; Department of Anatomy and Neurosciences (E.C.), MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands; Neuroradiology and Radiology Units (F.B.P.), Department of Engineering for Innovation Medicine, University of Verona, Italy; Department of Brain Sciences (R. Magliozzi), Faculty of Medicine, Imperial College London, United Kingdom; Neurology A (B.B.), Azienda Ospedaliera Universitaria Integrata di Verona, Italy; and Department of Neurology and Neurological Sciences Stanford University (L.S.), CA
| | - Valentina Mazziotti
- From the Neurology B (D.M., E.T., A.T., E.C., A.I.P., A.S., S.C., V.M., V.C., D.A., S.Z., M.G., F.V., R. Magliozzi, M.C.); Anatomy and Histology section (E.T., F.V., R. Mariotti), Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy; Department of Anatomy and Neurosciences (E.C.), MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands; Neuroradiology and Radiology Units (F.B.P.), Department of Engineering for Innovation Medicine, University of Verona, Italy; Department of Brain Sciences (R. Magliozzi), Faculty of Medicine, Imperial College London, United Kingdom; Neurology A (B.B.), Azienda Ospedaliera Universitaria Integrata di Verona, Italy; and Department of Neurology and Neurological Sciences Stanford University (L.S.), CA
| | - Valentina Camera
- From the Neurology B (D.M., E.T., A.T., E.C., A.I.P., A.S., S.C., V.M., V.C., D.A., S.Z., M.G., F.V., R. Magliozzi, M.C.); Anatomy and Histology section (E.T., F.V., R. Mariotti), Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy; Department of Anatomy and Neurosciences (E.C.), MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands; Neuroradiology and Radiology Units (F.B.P.), Department of Engineering for Innovation Medicine, University of Verona, Italy; Department of Brain Sciences (R. Magliozzi), Faculty of Medicine, Imperial College London, United Kingdom; Neurology A (B.B.), Azienda Ospedaliera Universitaria Integrata di Verona, Italy; and Department of Neurology and Neurological Sciences Stanford University (L.S.), CA
| | - Daniela Anni
- From the Neurology B (D.M., E.T., A.T., E.C., A.I.P., A.S., S.C., V.M., V.C., D.A., S.Z., M.G., F.V., R. Magliozzi, M.C.); Anatomy and Histology section (E.T., F.V., R. Mariotti), Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy; Department of Anatomy and Neurosciences (E.C.), MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands; Neuroradiology and Radiology Units (F.B.P.), Department of Engineering for Innovation Medicine, University of Verona, Italy; Department of Brain Sciences (R. Magliozzi), Faculty of Medicine, Imperial College London, United Kingdom; Neurology A (B.B.), Azienda Ospedaliera Universitaria Integrata di Verona, Italy; and Department of Neurology and Neurological Sciences Stanford University (L.S.), CA
| | - Stefano Ziccardi
- From the Neurology B (D.M., E.T., A.T., E.C., A.I.P., A.S., S.C., V.M., V.C., D.A., S.Z., M.G., F.V., R. Magliozzi, M.C.); Anatomy and Histology section (E.T., F.V., R. Mariotti), Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy; Department of Anatomy and Neurosciences (E.C.), MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands; Neuroradiology and Radiology Units (F.B.P.), Department of Engineering for Innovation Medicine, University of Verona, Italy; Department of Brain Sciences (R. Magliozzi), Faculty of Medicine, Imperial College London, United Kingdom; Neurology A (B.B.), Azienda Ospedaliera Universitaria Integrata di Verona, Italy; and Department of Neurology and Neurological Sciences Stanford University (L.S.), CA
| | - Maddalena Guandalini
- From the Neurology B (D.M., E.T., A.T., E.C., A.I.P., A.S., S.C., V.M., V.C., D.A., S.Z., M.G., F.V., R. Magliozzi, M.C.); Anatomy and Histology section (E.T., F.V., R. Mariotti), Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy; Department of Anatomy and Neurosciences (E.C.), MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands; Neuroradiology and Radiology Units (F.B.P.), Department of Engineering for Innovation Medicine, University of Verona, Italy; Department of Brain Sciences (R. Magliozzi), Faculty of Medicine, Imperial College London, United Kingdom; Neurology A (B.B.), Azienda Ospedaliera Universitaria Integrata di Verona, Italy; and Department of Neurology and Neurological Sciences Stanford University (L.S.), CA
| | - Francesca B Pizzini
- From the Neurology B (D.M., E.T., A.T., E.C., A.I.P., A.S., S.C., V.M., V.C., D.A., S.Z., M.G., F.V., R. Magliozzi, M.C.); Anatomy and Histology section (E.T., F.V., R. Mariotti), Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy; Department of Anatomy and Neurosciences (E.C.), MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands; Neuroradiology and Radiology Units (F.B.P.), Department of Engineering for Innovation Medicine, University of Verona, Italy; Department of Brain Sciences (R. Magliozzi), Faculty of Medicine, Imperial College London, United Kingdom; Neurology A (B.B.), Azienda Ospedaliera Universitaria Integrata di Verona, Italy; and Department of Neurology and Neurological Sciences Stanford University (L.S.), CA
| | - Federica Virla
- From the Neurology B (D.M., E.T., A.T., E.C., A.I.P., A.S., S.C., V.M., V.C., D.A., S.Z., M.G., F.V., R. Magliozzi, M.C.); Anatomy and Histology section (E.T., F.V., R. Mariotti), Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy; Department of Anatomy and Neurosciences (E.C.), MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands; Neuroradiology and Radiology Units (F.B.P.), Department of Engineering for Innovation Medicine, University of Verona, Italy; Department of Brain Sciences (R. Magliozzi), Faculty of Medicine, Imperial College London, United Kingdom; Neurology A (B.B.), Azienda Ospedaliera Universitaria Integrata di Verona, Italy; and Department of Neurology and Neurological Sciences Stanford University (L.S.), CA
| | - Raffaella Mariotti
- From the Neurology B (D.M., E.T., A.T., E.C., A.I.P., A.S., S.C., V.M., V.C., D.A., S.Z., M.G., F.V., R. Magliozzi, M.C.); Anatomy and Histology section (E.T., F.V., R. Mariotti), Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy; Department of Anatomy and Neurosciences (E.C.), MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands; Neuroradiology and Radiology Units (F.B.P.), Department of Engineering for Innovation Medicine, University of Verona, Italy; Department of Brain Sciences (R. Magliozzi), Faculty of Medicine, Imperial College London, United Kingdom; Neurology A (B.B.), Azienda Ospedaliera Universitaria Integrata di Verona, Italy; and Department of Neurology and Neurological Sciences Stanford University (L.S.), CA
| | - Roberta Magliozzi
- From the Neurology B (D.M., E.T., A.T., E.C., A.I.P., A.S., S.C., V.M., V.C., D.A., S.Z., M.G., F.V., R. Magliozzi, M.C.); Anatomy and Histology section (E.T., F.V., R. Mariotti), Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy; Department of Anatomy and Neurosciences (E.C.), MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands; Neuroradiology and Radiology Units (F.B.P.), Department of Engineering for Innovation Medicine, University of Verona, Italy; Department of Brain Sciences (R. Magliozzi), Faculty of Medicine, Imperial College London, United Kingdom; Neurology A (B.B.), Azienda Ospedaliera Universitaria Integrata di Verona, Italy; and Department of Neurology and Neurological Sciences Stanford University (L.S.), CA
| | - Bruno Bonetti
- From the Neurology B (D.M., E.T., A.T., E.C., A.I.P., A.S., S.C., V.M., V.C., D.A., S.Z., M.G., F.V., R. Magliozzi, M.C.); Anatomy and Histology section (E.T., F.V., R. Mariotti), Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy; Department of Anatomy and Neurosciences (E.C.), MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands; Neuroradiology and Radiology Units (F.B.P.), Department of Engineering for Innovation Medicine, University of Verona, Italy; Department of Brain Sciences (R. Magliozzi), Faculty of Medicine, Imperial College London, United Kingdom; Neurology A (B.B.), Azienda Ospedaliera Universitaria Integrata di Verona, Italy; and Department of Neurology and Neurological Sciences Stanford University (L.S.), CA
| | - Lawrence Steinman
- From the Neurology B (D.M., E.T., A.T., E.C., A.I.P., A.S., S.C., V.M., V.C., D.A., S.Z., M.G., F.V., R. Magliozzi, M.C.); Anatomy and Histology section (E.T., F.V., R. Mariotti), Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy; Department of Anatomy and Neurosciences (E.C.), MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands; Neuroradiology and Radiology Units (F.B.P.), Department of Engineering for Innovation Medicine, University of Verona, Italy; Department of Brain Sciences (R. Magliozzi), Faculty of Medicine, Imperial College London, United Kingdom; Neurology A (B.B.), Azienda Ospedaliera Universitaria Integrata di Verona, Italy; and Department of Neurology and Neurological Sciences Stanford University (L.S.), CA
| | - Massimiliano Calabrese
- From the Neurology B (D.M., E.T., A.T., E.C., A.I.P., A.S., S.C., V.M., V.C., D.A., S.Z., M.G., F.V., R. Magliozzi, M.C.); Anatomy and Histology section (E.T., F.V., R. Mariotti), Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy; Department of Anatomy and Neurosciences (E.C.), MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands; Neuroradiology and Radiology Units (F.B.P.), Department of Engineering for Innovation Medicine, University of Verona, Italy; Department of Brain Sciences (R. Magliozzi), Faculty of Medicine, Imperial College London, United Kingdom; Neurology A (B.B.), Azienda Ospedaliera Universitaria Integrata di Verona, Italy; and Department of Neurology and Neurological Sciences Stanford University (L.S.), CA
| |
Collapse
|
11
|
Singh V, Zheng Y, Ontaneda D, Mahajan KR, Holloman J, Fox RJ, Nakamura K, Trapp BD. Disability independent of cerebral white matter demyelination in progressive multiple sclerosis. Acta Neuropathol 2024; 148:34. [PMID: 39217272 PMCID: PMC11365858 DOI: 10.1007/s00401-024-02796-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
The pathogenic mechanisms contributing to neurological disability in progressive multiple sclerosis (PMS) are poorly understood. Cortical neuronal loss independent of cerebral white matter (WM) demyelination in myelocortical MS (MCMS) and identification of MS patients with widespread cortical atrophy and disability progression independent of relapse activity (PIRA) support pathogenic mechanisms other than cerebral WM demyelination. The three-dimensional distribution and underlying pathology of myelinated T2 lesions were investigated in postmortem MCMS brains. Postmortem brain slices from previously characterized MCMS (10 cases) and typical MS (TMS) cases (12 cases) were co-registered with in situ postmortem T2 hyperintensities and T1 hypointensities. T1 intensity thresholds were used to establish a classifier that differentiates MCMS from TMS. The classifier was validated in 36 uncharacterized postmortem brains and applied to baseline MRIs from 255 living PMS participants enrolled in SPRINT-MS. Myelinated T2 hyperintensities in postmortem MCMS brains have a contiguous periventricular distribution that expands at the occipital poles of the lateral ventricles where a surface-in gradient of myelinated axonal degeneration was observed. The MRI classifier distinguished pathologically confirmed postmortem MCMS and TMS cases with an accuracy of 94%. For SPRINT-MS patients, the MRI classifier identified 78% as TMS, 10% as MCMS, and 12% with a paucity of cerebral T1 and T2 intensities. In SPRINT-MS, expanded disability status scale and brain atrophy measures were similar in MCMS and TMS cohorts. A paucity of cerebral WM demyelination in 22% of living PMS patients raises questions regarding a primary role for cerebral WM demyelination in disability progression in all MS patients and has implications for clinical management of MS patients and clinical trial outcomes in PMS. Periventricular myelinated fiber degeneration provides additional support for surface-in gradients of neurodegeneration in MS.
Collapse
Affiliation(s)
- Vikas Singh
- Department of Neurosciences, NC30, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Yufan Zheng
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Daniel Ontaneda
- Mellen Center for Treatment and Research in MS, Cleveland Clinic, Cleveland, OH, USA
| | - Kedar R Mahajan
- Department of Neurosciences, NC30, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
- Mellen Center for Treatment and Research in MS, Cleveland Clinic, Cleveland, OH, USA
| | - Jameson Holloman
- Department of Neurosciences, NC30, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
- Mellen Center for Treatment and Research in MS, Cleveland Clinic, Cleveland, OH, USA
| | - Robert J Fox
- Mellen Center for Treatment and Research in MS, Cleveland Clinic, Cleveland, OH, USA
| | - Kunio Nakamura
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Bruce D Trapp
- Department of Neurosciences, NC30, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
| |
Collapse
|
12
|
Stys PK, Tsutsui S, Gafson AR, ‘t Hart BA, Belachew S, Geurts JJG. New views on the complex interplay between degeneration and autoimmunity in multiple sclerosis. Front Cell Neurosci 2024; 18:1426231. [PMID: 39161786 PMCID: PMC11330826 DOI: 10.3389/fncel.2024.1426231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/14/2024] [Indexed: 08/21/2024] Open
Abstract
Multiple sclerosis (MS) is a frequently disabling neurological disorder characterized by symptoms, clinical signs and imaging abnormalities that typically fluctuate over time, affecting any level of the CNS. Prominent lymphocytic inflammation, many genetic susceptibility variants involving immune pathways, as well as potent responses of the neuroinflammatory component to immunomodulating drugs, have led to the natural conclusion that this disease is driven by a primary autoimmune process. In this Hypothesis and Theory article, we discuss emerging data that cast doubt on this assumption. After three decades of therapeutic experience, what has become clear is that potent immune modulators are highly effective at suppressing inflammatory relapses, yet exhibit very limited effects on the later progressive phase of MS. Moreover, neuropathological examination of MS tissue indicates that degeneration, CNS atrophy, and myelin loss are most prominent in the progressive stage, when lymphocytic inflammation paradoxically wanes. Finally, emerging clinical observations such as "progression independent of relapse activity" and "silent progression," now thought to take hold very early in the course, together argue that an underlying "cytodegenerative" process, likely targeting the myelinating unit, may in fact represent the most proximal step in a complex pathophysiological cascade exacerbated by an autoimmune inflammatory overlay. Parallels are drawn with more traditional neurodegenerative disorders, where a progressive proteopathy with prion-like propagation of toxic misfolded species is now known to play a key role. A potentially pivotal contribution of the Epstein-Barr virus and B cells in this process is also discussed.
Collapse
Affiliation(s)
- Peter K. Stys
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Shigeki Tsutsui
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Arie R. Gafson
- Biogen Digital Health, Biogen, Cambridge, MA, United States
| | - Bert A. ‘t Hart
- Department of Anatomy and Neurosciences, Amsterdam University Medical Centers (location VUmc), Amsterdam, Netherlands
| | - Shibeshih Belachew
- TheraPanacea, Paris, France
- Indivi (DBA of Healios AG), Basel, Switzerland
| | - Jeroen J. G. Geurts
- Department of Anatomy and Neurosciences, Amsterdam University Medical Centers (location VUmc), Amsterdam, Netherlands
| |
Collapse
|
13
|
Hemond CC, Gaitán MI, Absinta M, Reich DS. New Imaging Markers in Multiple Sclerosis and Related Disorders: Smoldering Inflammation and the Central Vein Sign. Neuroimaging Clin N Am 2024; 34:359-373. [PMID: 38942521 PMCID: PMC11213979 DOI: 10.1016/j.nic.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Concepts of multiple sclerosis (MS) biology continue to evolve, with observations such as "progression independent of disease activity" challenging traditional phenotypic categorization. Iron-sensitive, susceptibility-based imaging techniques are emerging as highly translatable MR imaging sequences that allow for visualization of at least 2 clinically useful biomarkers: the central vein sign and the paramagnetic rim lesion (PRL). Both biomarkers demonstrate high specificity in the discrimination of MS from other mimics and can be seen at 1.5 T and 3 T field strengths. Additionally, PRLs represent a subset of chronic active lesions engaged in "smoldering" compartmentalized inflammation behind an intact blood-brain barrier.
Collapse
Affiliation(s)
- Christopher C Hemond
- Department of Neurology, University of Massachusetts Memorial Medical Center and University of Massachusetts Chan Medical School, Worcester, MA, USA; National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - María I Gaitán
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Martina Absinta
- Translational Neuropathology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
14
|
Zivadinov R, Schweser F, Jakimovski D, Bergsland N, Dwyer MG. Decoding Gray Matter Involvement in Multiple Sclerosis via Imaging. Neuroimaging Clin N Am 2024; 34:453-468. [PMID: 38942527 DOI: 10.1016/j.nic.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Multiple sclerosis (MS) is increasingly understood not only as a white matter disease but also involving both the deep and cortical gray matter (GM). GM pathology in people with MS (pwMS) includes the presence of lesions, leptomeningeal inflammation, atrophy, altered iron concentration, and microstructural changes. Studies using 7T and 3T MR imaging with optimized protocols established that GM damage is a principal driver of disease progression in pwMS. Future work is needed to incorporate the assessment of these GM imaging biomarkers into the clinical workup of pwMS and the assessment of treatment efficacy.
Collapse
Affiliation(s)
- Robert Zivadinov
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA; Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA.
| | - Ferdinand Schweser
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA; Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Dejan Jakimovski
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Niels Bergsland
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Michael G Dwyer
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA; Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
15
|
Herranz E, Treaba CA, Barletta VT, Mehndiratta A, Ouellette R, Sloane JA, Ionete C, Babu S, Mastantuono M, Magon S, Loggia ML, Makary MM, Hooker JM, Catana C, Kinkel RP, Nicholas R, Klawiter EC, Magliozzi R, Mainero C. Characterization of cortico-meningeal translocator protein expression in multiple sclerosis. Brain 2024; 147:2566-2578. [PMID: 38289855 PMCID: PMC11224595 DOI: 10.1093/brain/awae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/01/2024] Open
Abstract
Compartmentalized meningeal inflammation is thought to represent one of the key players in the pathogenesis of cortical demyelination in multiple sclerosis. PET targeting the 18 kDa mitochondrial translocator protein (TSPO) is a molecular-specific approach to quantifying immune cell-mediated density in the cortico-meningeal tissue compartment in vivo. This study aimed to characterize cortical and meningeal TSPO expression in a heterogeneous cohort of multiple sclerosis cases using in vivo simultaneous MR-PET with 11C-PBR28, a second-generation TSPO radioligand, and ex vivo immunohistochemistry. Forty-nine multiple sclerosis patients (21 with secondary progressive and 28 with relapsing-remitting multiple sclerosis) with mixed or high affinity binding for 11C-PBR28 underwent 90-min 11C-PBR28 simultaneous MR-PET. Tracer binding was measured using 60-90 min normalized standardized uptake value ratios sampled at mid-cortical depth and ∼3 mm above the pial surface. Data in multiple sclerosis patients were compared to 21 age-matched healthy controls. To characterize the nature of 11C-PBR28 PET uptake, the meningeal and cortical lesion cellular expression of TSPO was further described in post-mortem brain tissue from 20 cases with secondary progressive multiple sclerosis and five age-matched healthy donors. Relative to healthy controls, patients with multiple sclerosis exhibited abnormally increased TSPO signal in the cortex and meningeal tissue, diffusively in progressive disease and more localized in relapsing-remitting multiple sclerosis. In multiple sclerosis, increased meningeal TSPO levels were associated with increased Expanded Disability Status Scale scores (P = 0.007, by linear regression). Immunohistochemistry, validated using in situ sequencing analysis, revealed increased TSPO expression in the meninges and adjacent subpial cortical lesions of post-mortem secondary progressive multiple sclerosis cases relative to control tissue. In these cases, increased TSPO expression was related to meningeal inflammation. Translocator protein immunostaining was detected on meningeal MHC-class II+ macrophages and cortical-activated MHC-class II+ TMEM119+ microglia. In vivo arterial blood data and neuropathology showed that endothelial binding did not significantly account for increased TSPO cortico-meningeal expression in multiple sclerosis. Our findings support the use of TSPO-PET in multiple sclerosis for imaging in vivo inflammation in the cortico-meningeal brain tissue compartment and provide in vivo evidence implicating meningeal inflammation in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Elena Herranz
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Constantina A Treaba
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Valeria T Barletta
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Ambica Mehndiratta
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Russell Ouellette
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Clinical Neuroscience, Karolinska Institutet, 141 86 Stockholm, Sweden
- Department of Radiology, Karolinska University Hospital, 141 86 Stockholm, Sweden
| | - Jacob A Sloane
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Carolina Ionete
- Department of Neurology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Suma Babu
- Harvard Medical School, Boston, MA 02115, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Marina Mastantuono
- Neurology Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona 53593, Italy
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel 4058, Switzerland
| | - Stefano Magon
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel 4058, Switzerland
| | - Marco L Loggia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Meena M Makary
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
- Systems and Biomedical Engineering Department, Faculty of Engineering, Cairo University, Giza 12613, Egypt
| | - Jacob M Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Ciprian Catana
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Revere P Kinkel
- University of California San Diego, Department of Neuroscience, San Diego, CA 92093, USA
| | - Richard Nicholas
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London SW7 2BX, UK
| | - Eric C Klawiter
- Harvard Medical School, Boston, MA 02115, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Roberta Magliozzi
- Neurology Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona 53593, Italy
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London SW7 2BX, UK
| | - Caterina Mainero
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
16
|
Hamano S, Yoshimizu T, Mori M, Iida A, Yamashita T. Characterization of pathological stages in a mouse model of progressive multiple sclerosis. Neurosci Res 2024; 204:46-57. [PMID: 38307349 DOI: 10.1016/j.neures.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/10/2024] [Accepted: 01/29/2024] [Indexed: 02/04/2024]
Abstract
The purpose of this study was to analyze and elucidate the mechanisms of non-obese diabetes-experimental autoimmune encephalomyelitis (NOD-EAE), an animal model of progressive multiple sclerosis (MS), and to compare the pathological features with those observed in human progressive MS. Pathological analysis, flow cytometry analysis, immunohistochemical staining, and transcriptome analysis were performed at each pathological stage of the NOD-EAE mice to characterize each pathological stage in the lesion. The NOD-EAE mice showed a biphasic pattern of disease progression once in remission. The longitudinal profile of demyelination and inflammatory cell infiltration in the spinal cord was consistent with the pathological score. In the chronic phase of the disease, fibrosis and lymph follicle formation, characteristic of progressive human MS, were observed. Here we describe the pathological profile and transcriptome analysis of the NOD-EAE mice and verify that this model has similar features to those of human progressive MS. Our findings suggest that this model recapitulates lymph follicle formation, a disease hallmark of progressive MS, and fibrosis, a feature complicating the pathogenesis of MS in the chronic phase. This model may be useful for evaluating the efficacy of therapeutic agents and for mechanistic analysis.
Collapse
Affiliation(s)
- Satoshi Hamano
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., Osaka, Japan.
| | - Toshiki Yoshimizu
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., Osaka, Japan
| | - Mutsuki Mori
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., Osaka, Japan
| | - Akio Iida
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., Osaka, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan; WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan; Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan; Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Osaka, Japan.
| |
Collapse
|
17
|
Calabrese M, Preziosa P, Scalfari A, Colato E, Marastoni D, Absinta M, Battaglini M, De Stefano N, Di Filippo M, Hametner S, Howell OW, Inglese M, Lassmann H, Martin R, Nicholas R, Reynolds R, Rocca MA, Tamanti A, Vercellino M, Villar LM, Filippi M, Magliozzi R. Determinants and Biomarkers of Progression Independent of Relapses in Multiple Sclerosis. Ann Neurol 2024; 96:1-20. [PMID: 38568026 DOI: 10.1002/ana.26913] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/04/2024] [Accepted: 02/15/2024] [Indexed: 06/20/2024]
Abstract
Clinical, pathological, and imaging evidence in multiple sclerosis (MS) suggests that a smoldering inflammatory activity is present from the earliest stages of the disease and underlies the progression of disability, which proceeds relentlessly and independently of clinical and radiological relapses (PIRA). The complex system of pathological events driving "chronic" worsening is likely linked with the early accumulation of compartmentalized inflammation within the central nervous system as well as insufficient repair phenomena and mitochondrial failure. These mechanisms are partially lesion-independent and differ from those causing clinical relapses and the formation of new focal demyelinating lesions; they lead to neuroaxonal dysfunction and death, myelin loss, glia alterations, and finally, a neuronal network dysfunction outweighing central nervous system (CNS) compensatory mechanisms. This review aims to provide an overview of the state of the art of neuropathological, immunological, and imaging knowledge about the mechanisms underlying the smoldering disease activity, focusing on possible early biomarkers and their translation into clinical practice. ANN NEUROL 2024;96:1-20.
Collapse
Affiliation(s)
- Massimiliano Calabrese
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Antonio Scalfari
- Centre of Neuroscience, Department of Medicine, Imperial College, London, UK
| | - Elisa Colato
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| | - Damiano Marastoni
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| | - Martina Absinta
- Translational Neuropathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Battaglini
- Siena Imaging S.r.l., Siena, Italy
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Massimiliano Di Filippo
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Simon Hametner
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Owain W Howell
- Institute of Life Sciences, Swansea University Medical School, Swansea, UK
| | - Matilde Inglese
- Dipartimento di neuroscienze, riabilitazione, oftalmologia, genetica e scienze materno-infantili - DINOGMI, University of Genova, Genoa, Italy
| | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Roland Martin
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Therapeutic Design Unit, Center for Molecular Medicine, Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
- Cellerys AG, Schlieren, Switzerland
| | - Richard Nicholas
- Department of Brain Sciences, Faculty of Medicine, Burlington Danes, Imperial College London, London, UK
| | - Richard Reynolds
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Agnese Tamanti
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| | - Marco Vercellino
- Multiple Sclerosis Center & Neurologia I U, Department of Neuroscience, University Hospital AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Luisa Maria Villar
- Department of Immunology, Ramon y Cajal University Hospital. IRYCIS. REI, Madrid, Spain
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roberta Magliozzi
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| |
Collapse
|
18
|
Woo MS, Engler JB, Friese MA. The neuropathobiology of multiple sclerosis. Nat Rev Neurosci 2024; 25:493-513. [PMID: 38789516 DOI: 10.1038/s41583-024-00823-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 05/26/2024]
Abstract
Chronic low-grade inflammation and neuronal deregulation are two components of a smoldering disease activity that drives the progression of disability in people with multiple sclerosis (MS). Although several therapies exist to dampen the acute inflammation that drives MS relapses, therapeutic options to halt chronic disability progression are a major unmet clinical need. The development of such therapies is hindered by our limited understanding of the neuron-intrinsic determinants of resilience or vulnerability to inflammation. In this Review, we provide a neuron-centric overview of recent advances in deciphering neuronal response patterns that drive the pathology of MS. We describe the inflammatory CNS environment that initiates neurotoxicity by imposing ion imbalance, excitotoxicity and oxidative stress, and by direct neuro-immune interactions, which collectively lead to mitochondrial dysfunction and epigenetic dysregulation. The neuronal demise is further amplified by breakdown of neuronal transport, accumulation of cytosolic proteins and activation of cell death pathways. Continuous neuronal damage perpetuates CNS inflammation by activating surrounding glia cells and by directly exerting toxicity on neighbouring neurons. Further, we explore strategies to overcome neuronal deregulation in MS and compile a selection of neuronal actuators shown to impact neurodegeneration in preclinical studies. We conclude by discussing the therapeutic potential of targeting such neuronal actuators in MS, including some that have already been tested in interventional clinical trials.
Collapse
Affiliation(s)
- Marcel S Woo
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Broder Engler
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Manuel A Friese
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
19
|
Lunemann JD, Hegen H, Villar LM, Rejdak K, Sao-Aviles A, Carbonell-Mirabent P, Sastre-Garriga J, Mongay-Ochoa N, Berek K, Martínez-Yélamos S, Pérez-Miralles F, Abdelhak A, Bachhuber F, Tumani H, Lycke JN, Rosenstein I, Alvarez-Lafuente R, Castillo-Trivino T, Otaegui D, Llufriu S, Blanco Y, Sánchez López AJ, Garcia Merino JA, Fissolo N, Gutierrez L, Villacieros-Álvarez J, Monreal E, Valls-Carbó A, Wiendl H, Montalban X, Comabella M. Association of Complement Factors With Disability Progression in Primary Progressive Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200270. [PMID: 38912898 PMCID: PMC11226316 DOI: 10.1212/nxi.0000000000200270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/26/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND AND OBJECTIVES The complement system is known to play a role in multiple sclerosis (MS) pathogenesis. However, its contribution to disease progression remains elusive. The study investigated the role of the complement system in disability progression of patients with primary progressive MS (PPMS). METHODS Sixty-eight patients with PPMS from 12 European MS centers were included in the study. Serum and CSF levels of a panel of complement components (CCs) were measured by multiplex enzyme-linked immunosorbent assay at a baseline time point (i.e., sampling). Mean (SD) follow-up time from baseline was 9.6 (4.8) years. Only one patient (1.5%) was treated during follow-up. Univariable and multivariable logistic regressions adjusted for age, sex, and albumin quotient were performed to assess the association between baseline CC levels and disability progression in short term (2 years), medium term (6 years), and long term (at the time of the last follow-up). RESULTS In short term, CC played little or no role in disability progression. In medium term, an elevated serum C3a/C3 ratio was associated with a higher risk of disability progression (adjusted OR 2.30; 95% CI 1.17-6.03; p = 0.040). By contrast, increased CSF C1q levels were associated with a trend toward reduced risk of disability progression (adjusted OR 0.43; 95% CI 0.17-0.98; p = 0.054). Similarly, in long term, an elevated serum C3a/C3 ratio was associated with higher risk of disability progression (adjusted OR 1.81; 95% CI 1.09-3.40; p = 0.037), and increased CSF C1q levels predicted lower disability progression (adjusted OR 0.41; 95% CI 0.17-0.86; p = 0.025). DISCUSSION Proteins involved in the activation of early complement cascades play a role in disability progression as risk (elevated serum C3a/C3 ratio) or protective (elevated CSF C1q) factors after 6 or more years of follow-up in patients with PPMS. The protective effects associated with C1q levels in CSF may be related to its neuroprotective and anti-inflammatory properties.
Collapse
Affiliation(s)
- Jan D Lunemann
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Harald Hegen
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Luisa María Villar
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Konrad Rejdak
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Augusto Sao-Aviles
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Pere Carbonell-Mirabent
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Jaume Sastre-Garriga
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Neus Mongay-Ochoa
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Klaus Berek
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Sergio Martínez-Yélamos
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Francisco Pérez-Miralles
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Ahmed Abdelhak
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Franziska Bachhuber
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Hayrettin Tumani
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Jan N Lycke
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Igal Rosenstein
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Roberto Alvarez-Lafuente
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Tamara Castillo-Trivino
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - David Otaegui
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Sara Llufriu
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Yolanda Blanco
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Antonio J Sánchez López
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Juan Antonio Garcia Merino
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Nicolas Fissolo
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Lucia Gutierrez
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Javier Villacieros-Álvarez
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Enric Monreal
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Adrián Valls-Carbó
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Heinz Wiendl
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Xavier Montalban
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| | - Manuel Comabella
- From the Department of Neurology with Institute of Translational Neurology (J.D.L., H.W.), University Hospital Münster; Department of Neurology (H.H., K.B.), Medical University of Innsbruck, Austria; Departments of Neurology and Immunology (L.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria; Department of Neurology (K.R.), Medical University of Lublin, Poland; Servei de Neurologia (A.S.-A., P.C.-M., J.S.-G., N.M.-O., N.F., L.G., J.V.-Á., X.M., M.C.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona; Department of Neurology (S.M.-Y.), Bellvitge University Hospital, Barcelona; Neuroimmunology Unit (F.P.-M.), València University and Polytechnic Hospital La Fe, Spain; Department of Neurology (A.A., F.B., H.T.), Ulm University, Germany; Division of Neuroinflammation and Glial Biology (A.A.), Department of Neurology, University of California, San Francisco; Department of Clinical Neuroscience (J.N.L., I.R.), Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Sweden; Environmental Factors in Degenerative Diseases Research Group (R.A.-L.), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid; Neurology Department (T.C.-T.), Hospital Universitario Donostia, San Sebastián; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) - ISCIII (T.C.-T., D.O., N.F., X.M., M.C.), Madrid, Spain; Multiple Sclerosis Unit (D.O.), Biodonostia Health Research Institute, San Sebastián; Center of Neuroimmunology (S.L., Y.B.), Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona; Neuroimmunology Unit (A.J.S.L., J.A.G.M.); Biobank (A.J.S.L.), Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain; Department of Neurology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Universidad de Alcalá; and Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain
| |
Collapse
|
20
|
Fazazi MR, Doss PMIA, Pereira R, Fudge N, Regmi A, Joly-Beauparlant C, Akbar I, Yeola AP, Mailhot B, Baillargeon J, Grenier P, Bertrand N, Lacroix S, Droit A, Moore CS, Rojas OL, Rangachari M. Myelin-reactive B cells exacerbate CD4 + T cell-driven CNS autoimmunity in an IL-23-dependent manner. Nat Commun 2024; 15:5404. [PMID: 38926356 PMCID: PMC11208426 DOI: 10.1038/s41467-024-49259-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
B cells and T cells collaborate in multiple sclerosis (MS) pathogenesis. IgH[MOG] mice possess a B cell repertoire skewed to recognize myelin oligodendrocyte glycoprotein (MOG). Here, we show that upon immunization with the T cell-obligate autoantigen, MOG[35-55], IgH[MOG] mice develop rapid and exacerbated experimental autoimmune encephalomyelitis (EAE) relative to wildtype (WT) counterparts, characterized by aggregation of T and B cells in the IgH[MOG] meninges and by CD4+ T helper 17 (Th17) cells in the CNS. Production of the Th17 maintenance factor IL-23 is observed from IgH[MOG] CNS-infiltrating and meningeal B cells, and in vivo blockade of IL-23p19 attenuates disease severity in IgH[MOG] mice. In the CNS parenchyma and dura mater of IgH[MOG] mice, we observe an increased frequency of CD4+PD-1+CXCR5- T cells that share numerous characteristics with the recently described T peripheral helper (Tph) cell subset. Further, CNS-infiltrating B and Tph cells from IgH[MOG] mice show increased reactive oxygen species (ROS) production. Meningeal inflammation, Tph-like cell accumulation in the CNS and B/Tph cell production of ROS were all reduced upon p19 blockade. Altogether, MOG-specific B cells promote autoimmune inflammation of the CNS parenchyma and meninges in an IL-23-dependent manner.
Collapse
Affiliation(s)
- Mohamed Reda Fazazi
- axe Neurosciences, Centre de recherche du Centre hospitalier universitaire (CHU) de Québec - Université Laval, Pavillon CHUL, 2705 boul Laurier, Quebec City, G1V 4G2, QC, Canada
| | - Prenitha Mercy Ignatius Arokia Doss
- axe Neurosciences, Centre de recherche du Centre hospitalier universitaire (CHU) de Québec - Université Laval, Pavillon CHUL, 2705 boul Laurier, Quebec City, G1V 4G2, QC, Canada
| | - Resel Pereira
- Krembil Research Institute, University Health Network, Toronto, M5T 0S8, ON, Canada
| | - Neva Fudge
- Division of BioMedical Sciences, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
- Department of Neurology, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
| | - Aryan Regmi
- Krembil Research Institute, University Health Network, Toronto, M5T 0S8, ON, Canada
- Department of Immunology, University of Toronto, Toronto, M5S 1A1, ON, Canada
| | - Charles Joly-Beauparlant
- axe Endocrinologie et nephrologie, Centre de recherche du Centre hospitalier universitaire (CHU) de Québec - Université Laval, Pavillon CHUL, 2705 boul Laurier, Quebec City, QC, G1V 4G2, Canada
| | - Irshad Akbar
- axe Neurosciences, Centre de recherche du Centre hospitalier universitaire (CHU) de Québec - Université Laval, Pavillon CHUL, 2705 boul Laurier, Quebec City, G1V 4G2, QC, Canada
| | - Asmita Pradeep Yeola
- axe Neurosciences, Centre de recherche du Centre hospitalier universitaire (CHU) de Québec - Université Laval, Pavillon CHUL, 2705 boul Laurier, Quebec City, G1V 4G2, QC, Canada
| | - Benoit Mailhot
- axe Neurosciences, Centre de recherche du Centre hospitalier universitaire (CHU) de Québec - Université Laval, Pavillon CHUL, 2705 boul Laurier, Quebec City, G1V 4G2, QC, Canada
| | - Joanie Baillargeon
- axe Neurosciences, Centre de recherche du Centre hospitalier universitaire (CHU) de Québec - Université Laval, Pavillon CHUL, 2705 boul Laurier, Quebec City, G1V 4G2, QC, Canada
| | - Philippe Grenier
- axe Endocrinologie et nephrologie, Centre de recherche du Centre hospitalier universitaire (CHU) de Québec - Université Laval, Pavillon CHUL, 2705 boul Laurier, Quebec City, QC, G1V 4G2, Canada
| | - Nicolas Bertrand
- axe Endocrinologie et nephrologie, Centre de recherche du Centre hospitalier universitaire (CHU) de Québec - Université Laval, Pavillon CHUL, 2705 boul Laurier, Quebec City, QC, G1V 4G2, Canada
- Faculty of Pharmacy, Laval University, 1050 ave de la Médecine, Quebec City, QC, G1V 4G2, Canada
| | - Steve Lacroix
- axe Neurosciences, Centre de recherche du Centre hospitalier universitaire (CHU) de Québec - Université Laval, Pavillon CHUL, 2705 boul Laurier, Quebec City, G1V 4G2, QC, Canada
- Department of Molecular Medicine, Faculty of Medicine, Laval University, 1050 ave de la Médecine, Quebec City, QC, G1V 4G2, Canada
| | - Arnaud Droit
- axe Endocrinologie et nephrologie, Centre de recherche du Centre hospitalier universitaire (CHU) de Québec - Université Laval, Pavillon CHUL, 2705 boul Laurier, Quebec City, QC, G1V 4G2, Canada
- Department of Molecular Medicine, Faculty of Medicine, Laval University, 1050 ave de la Médecine, Quebec City, QC, G1V 4G2, Canada
| | - Craig S Moore
- Division of BioMedical Sciences, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
- Department of Neurology, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
| | - Olga L Rojas
- Krembil Research Institute, University Health Network, Toronto, M5T 0S8, ON, Canada
- Department of Immunology, University of Toronto, Toronto, M5S 1A1, ON, Canada
| | - Manu Rangachari
- axe Neurosciences, Centre de recherche du Centre hospitalier universitaire (CHU) de Québec - Université Laval, Pavillon CHUL, 2705 boul Laurier, Quebec City, G1V 4G2, QC, Canada.
- Department of Molecular Medicine, Faculty of Medicine, Laval University, 1050 ave de la Médecine, Quebec City, QC, G1V 4G2, Canada.
| |
Collapse
|
21
|
Georgieva T, Diddens J, Friedrich V, Lepennetier G, Brand RM, Lehmann-Horn K. Single-cell profiling indicates a high similarity between immune cells in the cerebrospinal fluid and in meningeal ectopic lymphoid tissue in experimental autoimmune encephalomyelitis. Front Immunol 2024; 15:1400641. [PMID: 38933267 PMCID: PMC11199773 DOI: 10.3389/fimmu.2024.1400641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/08/2024] [Indexed: 06/28/2024] Open
Abstract
Background and objectives B cell depleting anti-CD20 monoclonal antibodies (aCD20 mAbs) are highly effective in treatment of multiple sclerosis (MS) but fail to halt the formation of meningeal ectopic lymphoid tissue (mELT) in the murine model experimental autoimmune encephalomyelitis (EAE). While mELT can be examined in EAE, it is not accessible in vivo in MS patients. Our key objectives were to compare the immune cells in cerebrospinal fluid (CSF), which is accessible in patients, with those in mELT, and to study the effects of aCD20 mAbs on CSF and mELT in EAE. Methods Applying single cell RNA sequencing, we compared gene expression profiles in immune cells from (1) CSF with mELT and (2) aCD20 mAbs treated with control treated mice in a spontaneous 2D2xTh EAE model. Results The immune cell composition in CSF and mELT was very similar. Gene expression profiles and pathway enrichment analysis revealed no striking differences between the two compartments. aCD20 mAbs led not only to a virtually complete depletion of B cells in the CSF but also to a reduction of naïve CD4+ T cells and marked increase of macrophages. No remarkable differences in regulated genes or pathways were observed. Discussion Our results suggest that immune cells in the CSF may serve as a surrogate for mELT in EAE. Future studies are required to confirm this in MS patients. The observed increase of macrophages in B cell depleted CSF is a novel finding and requires verification in CSF of aCD20 mAbs treated MS patients. Due to unresolved technical challenges, we were unable to study the effects of aCD20 mAbs on mELT. This should be addressed in future studies.
Collapse
Affiliation(s)
| | | | | | | | | | - Klaus Lehmann-Horn
- Department of Neurology, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| |
Collapse
|
22
|
Harrison DM, Allette YM, Zeng Y, Cohen A, Dahal S, Choi S, Zhuo J, Hua J. Meningeal contrast enhancement in multiple sclerosis: Assessment of field strength, acquisition delay, and clinical relevance. PLoS One 2024; 19:e0300298. [PMID: 38809920 PMCID: PMC11135724 DOI: 10.1371/journal.pone.0300298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/10/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND/PURPOSE Leptomeningeal enhancement (LME) on post-contrast FLAIR is described as a potential biomarker of meningeal inflammation in multiple sclerosis (MS). Here we report an assessment of the impact of MRI field strength and acquisition timing on meningeal contrast enhancement (MCE). METHODS This was a cross-sectional, observational study of 95 participants with MS and 17 healthy controls (HC) subjects. Each participant underwent an MRI of the brain on both a 7 Tesla (7T) and 3 Tesla (3T) MRI scanner. 7T protocols included a FLAIR image before, soon after (Gd+ Early 7T FLAIR), and 23 minutes after gadolinium (Gd+ Delayed 7T FLAIR). 3T protocol included FLAIR before and 21 minutes after gadolinium (Gd+ Delayed 3T FLAIR). RESULTS LME was seen in 23.3% of participants with MS on Gd+ Delayed 3T FLAIR, 47.4% on Gd+ Early 7T FLAIR (p = 0.002) and 57.9% on Gd+ Delayed 7T FLAIR (p < 0.001 and p = 0.008, respectively). The count and volume of LME, leptomeningeal and paravascular enhancement (LMPE), and paravascular and dural enhancement (PDE) were all highest for Gd+ Delayed 7T FLAIR and lowest for Gd+ Delayed 3T FLAIR. Non-significant trends were seen for higher proportion, counts, and volumes for LME and PDE in MS compared to HCs. The rate of LMPE was different between MS and HCs on Gd+ Delayed 7T FLAIR (98.9% vs 82.4%, p = 0.003). MS participants with LME on Gd+ Delayed 7T FLAIR were older (47.6 (10.6) years) than those without (42.0 (9.7), p = 0.008). CONCLUSION 7T MRI and a delay after contrast injection increased sensitivity for all forms of MCE. However, the lack of difference between groups for LME and its association with age calls into question its relevance as a biomarker of meningeal inflammation in MS.
Collapse
Affiliation(s)
- Daniel M. Harrison
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Neurology, Baltimore VA Medical Center, VA Maryland Healthcare System, Baltimore, Maryland, United States of America
| | - Yohance M. Allette
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Neurology, Baltimore VA Medical Center, VA Maryland Healthcare System, Baltimore, Maryland, United States of America
- Department of Neurology, Penn State University–Hershey School of Medicine, Hershey, Pennsylvania, United States of America
| | - Yuxin Zeng
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Amanda Cohen
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Shishir Dahal
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Seongjin Choi
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jiachen Zhuo
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jun Hua
- Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, United States of America
| |
Collapse
|
23
|
Tan LY, Cunliffe G, Hogan MP, Yeo XY, Oh C, Jin B, Kang J, Park J, Kwon MS, Kim M, Jung S. Emergence of the brain-border immune niches and their contribution to the development of neurodegenerative diseases. Front Immunol 2024; 15:1380063. [PMID: 38863704 PMCID: PMC11165048 DOI: 10.3389/fimmu.2024.1380063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024] Open
Abstract
Historically, the central nervous system (CNS) was regarded as 'immune-privileged', possessing its own distinct immune cell population. This immune privilege was thought to be established by a tight blood-brain barrier (BBB) and blood-cerebrospinal-fluid barrier (BCSFB), which prevented the crossing of peripheral immune cells and their secreted factors into the CNS parenchyma. However, recent studies have revealed the presence of peripheral immune cells in proximity to various brain-border niches such as the choroid plexus, cranial bone marrow (CBM), meninges, and perivascular spaces. Furthermore, emerging evidence suggests that peripheral immune cells may be able to infiltrate the brain through these sites and play significant roles in driving neuronal cell death and pathology progression in neurodegenerative disease. Thus, in this review, we explore how the brain-border immune niches may contribute to the pathogenesis of neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). We then discuss several emerging options for harnessing the neuroimmune potential of these niches to improve the prognosis and treatment of these debilitative disorders using novel insights from recent studies.
Collapse
Affiliation(s)
- Li Yang Tan
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Grace Cunliffe
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Michael Patrick Hogan
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Xin Yi Yeo
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chansik Oh
- Department of Medical Science, College of Medicine, CHA University, Seongnam, Republic of Korea
| | - Bohwan Jin
- Department of Medical Science, College of Medicine, CHA University, Seongnam, Republic of Korea
| | - Junmo Kang
- Department of Medical Science, College of Medicine, CHA University, Seongnam, Republic of Korea
| | - Junho Park
- Department of Pharmacology, Research Institute for Basic Medical Science, School of Medicine, CHA University, Seongnam, Republic of Korea
| | - Min-Soo Kwon
- Department of Pharmacology, Research Institute for Basic Medical Science, School of Medicine, CHA University, Seongnam, Republic of Korea
| | - MinYoung Kim
- Rehabilitation and Regeneration Research Center, CHA University School of Medicine, Seongnam, Republic of Korea
- Department of Biomedical Science, CHA University School of Medicine, Seongnam, Republic of Korea
- Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Sangyong Jung
- Department of Medical Science, College of Medicine, CHA University, Seongnam, Republic of Korea
| |
Collapse
|
24
|
Mokbel AY, Burns MP, Main BS. The contribution of the meningeal immune interface to neuroinflammation in traumatic brain injury. J Neuroinflammation 2024; 21:135. [PMID: 38802931 PMCID: PMC11131220 DOI: 10.1186/s12974-024-03122-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024] Open
Abstract
Traumatic brain injury (TBI) is a major cause of disability and mortality worldwide, particularly among the elderly, yet our mechanistic understanding of what renders the post-traumatic brain vulnerable to poor outcomes, and susceptible to neurological disease, is incomplete. It is well established that dysregulated and sustained immune responses elicit negative consequences after TBI; however, our understanding of the neuroimmune interface that facilitates crosstalk between central and peripheral immune reservoirs is in its infancy. The meninges serve as the interface between the brain and the immune system, facilitating important bi-directional roles in both healthy and disease settings. It has been previously shown that disruption of this system exacerbates neuroinflammation in age-related neurodegenerative disorders such as Alzheimer's disease; however, we have an incomplete understanding of how the meningeal compartment influences immune responses after TBI. In this manuscript, we will offer a detailed overview of the holistic nature of neuroinflammatory responses in TBI, including hallmark features observed across clinical and animal models. We will highlight the structure and function of the meningeal lymphatic system, including its role in immuno-surveillance and immune responses within the meninges and the brain. We will provide a comprehensive update on our current knowledge of meningeal-derived responses across the spectrum of TBI, and identify new avenues for neuroimmune modulation within the neurotrauma field.
Collapse
Affiliation(s)
- Alaa Y Mokbel
- Department of Neuroscience, Georgetown University Medical Center, New Research Building-EG11, 3970 Reservoir Rd, NW, Washington, DC, 20057, USA
| | - Mark P Burns
- Department of Neuroscience, Georgetown University Medical Center, New Research Building-EG11, 3970 Reservoir Rd, NW, Washington, DC, 20057, USA
| | - Bevan S Main
- Department of Neuroscience, Georgetown University Medical Center, New Research Building-EG11, 3970 Reservoir Rd, NW, Washington, DC, 20057, USA.
| |
Collapse
|
25
|
Li V, Binder MD, Purcell AW, Kilpatrick TJ. Antigen-specific immunotherapy via delivery of tolerogenic dendritic cells for multiple sclerosis. J Neuroimmunol 2024; 390:578347. [PMID: 38663308 DOI: 10.1016/j.jneuroim.2024.578347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/22/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system resulting from loss of immune tolerance. Many disease-modifying therapies for MS have broad immunosuppressive effects on peripheral immune cells, but this can increase risks of infection and attenuate vaccine-elicited immunity. A more targeted approach is to re-establish immune tolerance in an autoantigen-specific manner. This review discusses methods to achieve this, focusing on tolerogenic dendritic cells. Clinical trials in other autoimmune diseases also provide learnings with regards to clinical translation of this approach, including identification of autoantigen(s), selection of appropriate patients and administration route and frequency.
Collapse
Affiliation(s)
- Vivien Li
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Australia; Department of Neurology, The Royal Melbourne Hospital, Melbourne, Australia.
| | - Michele D Binder
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Australia
| | - Anthony W Purcell
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Trevor J Kilpatrick
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Australia; Department of Neurology, The Royal Melbourne Hospital, Melbourne, Australia
| |
Collapse
|
26
|
Durozard P, Maarouf A, Zaaraoui W, Stellmann JP, Boutière C, Rico A, Demortière S, Guye M, Le Troter A, Dary H, Ranjeva JP, Audoin B, Pelletier J. Cortical Lesions as an Early Hallmark of Multiple Sclerosis: Visualization by 7 T MRI. Invest Radiol 2024:00004424-990000000-00214. [PMID: 38889240 DOI: 10.1097/rli.0000000000001082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
OBJECTIVES Compelling evidence indicates a significant involvement of cortical lesions in the progressive phase of multiple sclerosis (MS), significantly contributing to late-stage disability. Despite the promise of ultra-high-field magnetic resonance imaging (MRI) in detecting cortical lesions, current evidence falls short in providing insights into the existence of such lesions during the early stages of MS or their underlying cause. This study delineated, at the early stage of MS, (1) the prevalence and spatial distribution of cortical lesions identified by 7 T MRI, (2) their relationship with white matter lesions, and (3) their clinical implications. MATERIALS AND METHODS Twenty individuals with early-stage relapsing-remitting MS (disease duration <1 year) underwent a 7 T MRI session involving T1-weighted MP2RAGE, T2*-weighted multiGRE, and T2-weighted FLAIR sequences for cortical and white matter segmentation. Disability assessments included the Expanded Disability Status Scale, the Multiple Sclerosis Functional Composite, and an extensive evaluation of cognitive function. RESULTS Cortical lesions were detected in 15 of 20 patients (75%). MP2RAGE revealed a total of 190 intracortical lesions (median, 4 lesions/case [range, 0-44]) and 216 leukocortical lesions (median, 2 lesions/case [range, 0-75]). Although the number of white matter lesions correlated with the total number of leukocortical lesions (r = 0.91, P < 0.001), no correlation was observed between the number of white matter or leukocortical lesions and the number of intracortical lesions. Furthermore, the number of leukocortical lesions but not intracortical or white-matter lesions was significantly correlated with cognitive impairment (r = 0.63, P = 0.04, corrected for multiple comparisons). CONCLUSIONS This study highlights the notable prevalence of cortical lesions at the early stage of MS identified by 7 T MRI. There may be a potential divergence in the underlying pathophysiological mechanisms driving distinct lesion types, notably between intracortical lesions and white matter/leukocortical lesions. Moreover, during the early disease phase, leukocortical lesions more effectively accounted for cognitive deficits.
Collapse
Affiliation(s)
- Pierre Durozard
- From the Aix Marseille Univ, CNRS, CRMBM, Marseille, France (P.D., A.M., W.Z., J.-P.S., A.R., M.G., A.T., H.D., J.-P.R., B.A., J.P.); Aix Marseille Univ, APHM, Pôle de Neurosciences Cliniques, MICeME, Marseille, France (A.M., C.B., A.R., S.D., B.A., J.P.); Aix Marseille Univ, APHM, Hôpital de la Timone, Pôle d'Imagerie Médicale, CEMEREM, Marseille, France (J.-P.S., M.G.); and CRC-SEP Corse, Centre Hospitalier d'Ajaccio, Ajaccio, France (P.D.)
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Beck ES, Mullins WA, dos Santos Silva J, Filippini S, Parvathaneni P, Maranzano J, Morrison M, Suto DJ, Donnay C, Dieckhaus H, Luciano NJ, Sharma K, Gaitán MI, Liu J, de Zwart JA, van Gelderen P, Cortese I, Narayanan S, Duyn JH, Nair G, Sati P, Reich DS. Contribution of new and chronic cortical lesions to disability accrual in multiple sclerosis. Brain Commun 2024; 6:fcae158. [PMID: 38818331 PMCID: PMC11137753 DOI: 10.1093/braincomms/fcae158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/22/2024] [Accepted: 04/30/2024] [Indexed: 06/01/2024] Open
Abstract
Cortical lesions are common in multiple sclerosis and are associated with disability and progressive disease. We asked whether cortical lesions continue to form in people with stable white matter lesions and whether the association of cortical lesions with worsening disability relates to pre-existing or new cortical lesions. Fifty adults with multiple sclerosis and no new white matter lesions in the year prior to enrolment (33 relapsing-remitting and 17 progressive) and a comparison group of nine adults who had formed at least one new white matter lesion in the year prior to enrolment (active relapsing-remitting) were evaluated annually with 7 tesla (T) brain MRI and 3T brain and spine MRI for 2 years, with clinical assessments for 3 years. Cortical lesions and paramagnetic rim lesions were identified on 7T images. Seven total cortical lesions formed in 3/30 individuals in the stable relapsing-remitting group (median 0, range 0-5), four total cortical lesions formed in 4/17 individuals in the progressive group (median 0, range 0-1), and 16 cortical lesions formed in 5/9 individuals in the active relapsing-remitting group (median 1, range 0-10, stable relapsing-remitting versus progressive versus active relapsing-remitting P = 0.006). New cortical lesions were not associated with greater change in any individual disability measure or in a composite measure of disability worsening (worsening Expanded Disability Status Scale or 9-hole peg test or 25-foot timed walk). Individuals with at least three paramagnetic rim lesions had a greater increase in cortical lesion volume over time (median 16 µl, range -61 to 215 versus median 1 µl, range -24 to 184, P = 0.007), but change in lesion volume was not associated with disability change. Baseline cortical lesion volume was higher in people with worsening disability (median 1010 µl, range 13-9888 versus median 267 µl, range 0-3539, P = 0.001, adjusted for age and sex) and in individuals with relapsing-remitting multiple sclerosis who subsequently transitioned to secondary progressive multiple sclerosis (median 2183 µl, range 270-9888 versus median 321 µl, range 0-6392 in those who remained relapsing-remitting, P = 0.01, adjusted for age and sex). Baseline white matter lesion volume was not associated with worsening disability or transition from relapsing-remitting to secondary progressive multiple sclerosis. Cortical lesion formation is rare in people with stable white matter lesions, even in those with worsening disability. Cortical but not white matter lesion burden predicts disability worsening, suggesting that disability progression is related to long-term effects of cortical lesions that form early in the disease, rather than to ongoing cortical lesion formation.
Collapse
Affiliation(s)
- Erin S Beck
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - W Andrew Mullins
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Stefano Filippini
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Neurosciences, Drug, and Child Health, University of Florence, Florence 50121, Italy
| | - Prasanna Parvathaneni
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Josefina Maranzano
- McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A2B4, Canada
- Department of Anatomy, University of Quebec, Trois-Rivieres, QC G9A5H7, Canada
| | - Mark Morrison
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel J Suto
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Corinne Donnay
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Henry Dieckhaus
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicholas J Luciano
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kanika Sharma
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - María Ines Gaitán
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jiaen Liu
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- Advanced Imaging Research Center and Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jacco A de Zwart
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter van Gelderen
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Irene Cortese
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sridar Narayanan
- McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A2B4, Canada
| | - Jeff H Duyn
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Govind Nair
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pascal Sati
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Daniel S Reich
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
28
|
Chomyk A, Kucinski R, Kim J, Christie E, Cyncynatus K, Gossman Z, Chen Z, Richardson B, Cameron M, Turner T, Dutta R, Trapp B. Transcript Profiles of Microglia/Macrophage Cells at the Borders of Chronic Active and Subpial Gray Matter Lesions in Multiple Sclerosis. Ann Neurol 2024; 95:907-916. [PMID: 38345145 PMCID: PMC11060930 DOI: 10.1002/ana.26877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/05/2023] [Accepted: 01/03/2024] [Indexed: 05/01/2024]
Abstract
OBJECTIVE Microglia/macrophages line the border of demyelinated lesions in both cerebral white matter and the cortex in the brains of multiple sclerosis patients. Microglia/macrophages associated with chronic white matter lesions are thought to be responsible for slow lesion expansion and disability progression in progressive multiple sclerosis, whereas those lining gray matter lesions are less studied. Profiling these microglia/macrophages could help to focus therapies on genes or pathways specific to lesion expansion and disease progression. METHODS We compared the morphology and transcript profiles of microglia/macrophages associated with borders of white matter (WM line) and subpial gray matter lesions (GM line) using laser capture microscopy. We performed RNA sequencing on isolated cells followed by immunocytochemistry to determine the distribution of translational products of transcripts increased in WM line microglia. RESULTS Cells in the WM line appear activated, with shorter processes and larger cell bodies, whereas those in the GM line appear more homeostatic, with smaller cell bodies and multiple thin processes. Transcript profiling revealed 176 genes in WM lines and 111 genes in GM lines as differentially expressed. Transcripts associated with immune activation and iron homeostasis were increased in WM line microglia, whereas genes belonging to the canonical Wnt signaling pathway were increased in GM line microglia. INTERPRETATION We propose that the mechanisms of demyelination and dynamics of lesion expansion are responsible for differential transcript expression in WM lines and GM lines, and posit that increased expression of the Fc epsilon receptor, spleen tyrosine kinase, and Bruton's tyrosine kinase, play a key role in regulating microglia/macrophage function at the border of chronic active white matter lesions. ANN NEUROL 2024;95:907-916.
Collapse
Affiliation(s)
- Anthony Chomyk
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Rikki Kucinski
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jihye Kim
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Emilie Christie
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Kaitlyn Cyncynatus
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Zachary Gossman
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Zhihong Chen
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Brian Richardson
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Mark Cameron
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | | | - Ranjan Dutta
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Bruce Trapp
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
29
|
Liston A, Pasciuto E, Fitzgerald DC, Yshii L. Brain regulatory T cells. Nat Rev Immunol 2024; 24:326-337. [PMID: 38040953 DOI: 10.1038/s41577-023-00960-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 12/03/2023]
Abstract
The brain, long thought to be isolated from the peripheral immune system, is increasingly recognized to be integrated into a systemic immunological network. These conduits of immune-brain interaction and immunosurveillance processes necessitate the presence of complementary immunoregulatory mechanisms, of which brain regulatory T cells (Treg cells) are likely a key facet. Treg cells represent a dynamic population in the brain, with continual influx, specialization to a brain-residency phenotype and relatively rapid displacement by newly incoming cells. In addition to their functions in suppressing adaptive immunity, an emerging view is that Treg cells in the brain dampen down glial reactivity in response to a range of neurological insults, and directly assist in multiple regenerative and reparative processes during tissue pathology. The utility and malleability of the brain Treg cell population make it an attractive therapeutic target across the full spectrum of neurological conditions, ranging from neuroinflammatory to neurodegenerative and even psychiatric diseases. Therapeutic modalities currently under intense development include Treg cell therapy, IL-2 therapy to boost Treg cell numbers and multiple innovative approaches to couple these therapeutics to brain delivery mechanisms for enhanced potency. Here we review the state of the art of brain Treg cell knowledge together with the potential avenues for future integration into medical practice.
Collapse
Affiliation(s)
- Adrian Liston
- Department of Pathology, University of Cambridge, Cambridge, UK.
| | - Emanuela Pasciuto
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
- Center for Molecular Neurology, VIB, Antwerp, Belgium.
| | - Denise C Fitzgerald
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK.
| | - Lidia Yshii
- Department of Neurosciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
30
|
Barakovic M, Weigel M, Cagol A, Schaedelin S, Galbusera R, Lu PJ, Chen X, Melie-Garcia L, Ocampo-Pineda M, Bahn E, Stadelmann C, Palombo M, Kappos L, Kuhle J, Magon S, Granziera C. A novel imaging marker of cortical "cellularity" in multiple sclerosis patients. Sci Rep 2024; 14:9848. [PMID: 38684744 PMCID: PMC11059177 DOI: 10.1038/s41598-024-60497-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 04/23/2024] [Indexed: 05/02/2024] Open
Abstract
Pathological data showed focal inflammation and regions of diffuse neuronal loss in the cortex of people with multiple sclerosis (MS). In this work, we applied a novel model ("soma and neurite density imaging (SANDI)") to multishell diffusion-weighted MRI data acquired in healthy subjects and people with multiple sclerosis (pwMS), in order to investigate inflammation and degeneration-related changes in the cortical tissue of pwMS. We aimed to (i) establish whether SANDI is applicable in vivo clinical data; (ii) investigate inflammatory and degenerative changes using SANDI soma fraction (fsoma)-a marker of cellularity-in both cortical lesions and in the normal-appearing-cortex and (iii) correlate SANDI fsoma with clinical and biological measures in pwMS. We applied a simplified version of SANDI to a clinical scanners. We then provided evidence that pwMS exhibited an overall decrease in cortical SANDI fsoma compared to healthy subjects, suggesting global degenerative processes compatible with neuronal loss. On the other hand, we have found that progressive pwMS showed a higher SANDI fsoma in the outer part of the cortex compared to relapsing-remitting pwMS, possibly supporting current pathological knowledge of increased innate inflammatory cells in these regions. A similar finding was obtained in subpial lesions in relapsing-remitting patients, reflecting existing pathological data in these lesion types. A significant correlation was found between SANDI fsoma and serum neurofilament light chain-a biomarker of inflammatory axonal damage-suggesting a relationship between SANDI soma fraction and inflammatory processes in pwMS again. Overall, our data show that SANDI fsoma is a promising biomarker to monitor changes in cellularity compatible with neurodegeneration and neuroinflammation in the cortex of MS patients.
Collapse
Affiliation(s)
- Muhamed Barakovic
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Matthias Weigel
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Alessandro Cagol
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Sabine Schaedelin
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Riccardo Galbusera
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Po-Jui Lu
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Xinjie Chen
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Lester Melie-Garcia
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Mario Ocampo-Pineda
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Erik Bahn
- Institute of Neuropathology, University Medical Center, Göttingen, Germany
| | | | - Marco Palombo
- School of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
- School of Computer Science and Informatics, Cardiff University, Cardiff, UK
| | - Ludwig Kappos
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Department of Neurology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Stefano Magon
- Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Cristina Granziera
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland.
- Department of Neurology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland.
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland.
| |
Collapse
|
31
|
Muzio L, Perego J. CNS Resident Innate Immune Cells: Guardians of CNS Homeostasis. Int J Mol Sci 2024; 25:4865. [PMID: 38732082 PMCID: PMC11084235 DOI: 10.3390/ijms25094865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Although the CNS has been considered for a long time an immune-privileged organ, it is now well known that both the parenchyma and non-parenchymal tissue (meninges, perivascular space, and choroid plexus) are richly populated in resident immune cells. The advent of more powerful tools for multiplex immunophenotyping, such as single-cell RNA sequencing technique and upscale multiparametric flow and mass spectrometry, helped in discriminating between resident and infiltrating cells and, above all, the different spectrum of phenotypes distinguishing border-associated macrophages. Here, we focus our attention on resident innate immune players and their primary role in both CNS homeostasis and pathological neuroinflammation and neurodegeneration, two key interconnected aspects of the immunopathology of multiple sclerosis.
Collapse
Affiliation(s)
- Luca Muzio
- Neuroimmunology Lab, IRCCS San Raffaele Scientific Institute, Institute of Experimental Neurology, 20133 Milan, Italy;
| | | |
Collapse
|
32
|
Cordano C, Werneburg S, Abdelhak A, Bennett DJ, Beaudry-Richard A, Duncan GJ, Oertel FC, Boscardin WJ, Yiu HH, Jabassini N, Merritt L, Nocera S, Sin JH, Samana IP, Condor Montes SY, Ananth K, Bischof A, Nourbakhsh B, Hauser SL, Cree BAC, Emery B, Schafer DP, Chan JR, Green AJ. Synaptic injury in the inner plexiform layer of the retina is associated with progression in multiple sclerosis. Cell Rep Med 2024; 5:101490. [PMID: 38574736 PMCID: PMC11031420 DOI: 10.1016/j.xcrm.2024.101490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 02/01/2024] [Accepted: 03/12/2024] [Indexed: 04/06/2024]
Abstract
While neurodegeneration underlies the pathological basis for permanent disability in multiple sclerosis (MS), predictive biomarkers for progression are lacking. Using an animal model of chronic MS, we find that synaptic injury precedes neuronal loss and identify thinning of the inner plexiform layer (IPL) as an early feature of inflammatory demyelination-prior to symptom onset. As neuronal domains are anatomically segregated in the retina and can be monitored longitudinally, we hypothesize that thinning of the IPL could represent a biomarker for progression in MS. Leveraging our dataset with over 800 participants enrolled for more than 12 years, we find that IPL atrophy directly precedes progression and propose that synaptic loss is predictive of functional decline. Using a blood proteome-wide analysis, we demonstrate a strong correlation between demyelination, glial activation, and synapse loss independent of neuroaxonal injury. In summary, monitoring synaptic injury is a biologically relevant approach that reflects a potential driver of progression.
Collapse
Affiliation(s)
- Christian Cordano
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Sebastian Werneburg
- Department of Neurobiology, Brudnik Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA; Department of Ophthalmology & Visual Sciences, Michigan Neuroscience Institute, University of Michigan - Michigan Medicine, Ann Arbor, MI, USA
| | - Ahmed Abdelhak
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Daniel J Bennett
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Alexandra Beaudry-Richard
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Greg J Duncan
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Frederike C Oertel
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - W John Boscardin
- Department of Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Hao H Yiu
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Nora Jabassini
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Lauren Merritt
- Department of Neurobiology, Brudnik Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Sonia Nocera
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Jung H Sin
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Isaac P Samana
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Shivany Y Condor Montes
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Kirtana Ananth
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Antje Bischof
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Bardia Nourbakhsh
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Stephen L Hauser
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Bruce A C Cree
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Ben Emery
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Dorothy P Schafer
- Department of Neurobiology, Brudnik Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jonah R Chan
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| | - Ari J Green
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
33
|
Cencioni MT, Magliozzi R, Palmisano I, Suwan K, Mensi A, Fuentes-Font L, Villar LM, Fernández-Velasco JI, Migallón NV, Costa-Frossard L, Monreal E, Ali R, Romozzi M, Mazarakis N, Reynolds R, Nicholas R, Muraro PA. Soluble CD27 is an intrathecal biomarker of T-cell-mediated lesion activity in multiple sclerosis. J Neuroinflammation 2024; 21:91. [PMID: 38609999 PMCID: PMC11015621 DOI: 10.1186/s12974-024-03077-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
OBJECTIVE Soluble CD27 is a promising cerebrospinal fluid inflammatory biomarker in multiple sclerosis. In this study, we investigate relevant immune and neuro-pathological features of soluble CD27 in multiple sclerosis. METHODS Protein levels of soluble CD27 were correlated to inflammatory cell subpopulations and inflammatory cytokines and chemokines detected in cerebrospinal fluid of 137 patients with multiple sclerosis and 47 patients with inflammatory and non-inflammatory neurological disease from three independent cohorts. Production of soluble CD27 was investigated in cell cultures of activated T and B cells and CD27-knockout T cells. In a study including matched cerebrospinal fluid and post-mortem brain tissues of patients with multiple sclerosis and control cases, levels of soluble CD27 were correlated with perivascular and meningeal infiltrates and with neuropathological features. RESULTS We demonstrate that soluble CD27 favours the differentiation of interferon-γ-producing T cells and is released through a secretory mechanism activated by TCR engagement and regulated by neutral sphingomyelinase. We also show that the levels of soluble CD27 correlate with the representation of inflammatory T cell subsets in the CSF of patients with relapsing-remitting multiple sclerosis and with the magnitude of perivascular and meningeal CD27 + CD4 + and CD8 + T cell infiltrates in post-mortem central nervous system tissue, defining a subgroup of patients with extensive active inflammatory lesions. INTERPRETATION Our results demonstrate that soluble CD27 is a biomarker of disease activity, potentially informative for personalized treatment and monitoring of treatment outcomes.
Collapse
Affiliation(s)
- Maria T Cencioni
- Department of Brain Sciences, Imperial College London, Du Cane Road 160, London, W12 0NN, UK.
| | - Roberta Magliozzi
- Department of Brain Sciences, Imperial College London, Du Cane Road 160, London, W12 0NN, UK
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Ilaria Palmisano
- Department of Brain Sciences, Imperial College London, Du Cane Road 160, London, W12 0NN, UK
- Department of Neuroscience, Department of plastic and reconstructive surgery, The Ohio State University College of Medicine, Columbus, OH, US
| | - Keittisak Suwan
- Department of Brain Sciences, Imperial College London, Du Cane Road 160, London, W12 0NN, UK
| | - Antonella Mensi
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Laura Fuentes-Font
- Department of Brain Sciences, Imperial College London, Du Cane Road 160, London, W12 0NN, UK
| | - Luisa M Villar
- Department of Immunology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Madrid, Spain
| | | | | | | | - Enric Monreal
- Department of Neurology, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Rehiana Ali
- Department of Brain Sciences, Imperial College London, Du Cane Road 160, London, W12 0NN, UK
| | - Marina Romozzi
- Department of Neuroscience, Universita'Cattolica del Sacro Cuore, Rome, Italy
- Department of Neuroscience, Organi di Senso e Torace, Fondazione Policlinico Universtario Agostino Gemelli IRCCS, Rome, Italy
| | - Nicholas Mazarakis
- Department of Brain Sciences, Imperial College London, Du Cane Road 160, London, W12 0NN, UK
| | - Richard Reynolds
- Department of Brain Sciences, Imperial College London, Du Cane Road 160, London, W12 0NN, UK
| | - Richard Nicholas
- Department of Brain Sciences, Imperial College London, Du Cane Road 160, London, W12 0NN, UK
| | - Paolo A Muraro
- Department of Brain Sciences, Imperial College London, Du Cane Road 160, London, W12 0NN, UK.
| |
Collapse
|
34
|
Lazzarotto A, Hamzaoui M, Tonietto M, Dubessy AL, Khalil M, Pirpamer L, Ropele S, Enzinger C, Battaglini M, Stromillo ML, De Stefano N, Filippi M, Rocca MA, Gallo P, Gasperini C, Stankoff B, Bodini B. Time is myelin: early cortical myelin repair prevents atrophy and clinical progression in multiple sclerosis. Brain 2024; 147:1331-1343. [PMID: 38267729 PMCID: PMC10994569 DOI: 10.1093/brain/awae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/15/2023] [Accepted: 01/13/2024] [Indexed: 01/26/2024] Open
Abstract
Cortical myelin loss and repair in multiple sclerosis (MS) have been explored in neuropathological studies, but the impact of these processes on neurodegeneration and the irreversible clinical progression of the disease remains unknown. Here, we evaluated in vivo cortical demyelination and remyelination in a large cohort of people with all clinical phenotypes of MS followed up for 5 years using magnetization transfer imaging (MTI), a technique that has been shown to be sensitive to myelin content changes in the cortex. We investigated 140 people with MS (37 clinically isolated syndrome, 71 relapsing-MS, 32 progressive-MS), who were clinically assessed at baseline and after 5 years and, along with 84 healthy controls, underwent a 3 T-MRI protocol including MTI at baseline and after 1 year. Changes in cortical volume over the radiological follow-up were computed with a Jacobian integration method. Magnetization transfer ratio was employed to calculate for each patient an index of cortical demyelination at baseline and of dynamic cortical demyelination and remyelination over the follow-up period. The three indices of cortical myelin content change were heterogeneous across patients but did not significantly differ across clinical phenotypes or treatment groups. Cortical remyelination, which tended to fail in the regions closer to CSF (-11%, P < 0.001), was extensive in half of the cohort and occurred independently of age, disease duration and clinical phenotype. Higher indices of cortical dynamic demyelination (β = 0.23, P = 0.024) and lower indices of cortical remyelination (β = -0.18, P = 0.03) were significantly associated with greater cortical atrophy after 1 year, independently of age and MS phenotype. While the extent of cortical demyelination predicted a higher probability of clinical progression after 5 years in the entire cohort [odds ratio (OR) = 1.2; P = 0.043], the impact of cortical remyelination in reducing the risk of accumulating clinical disability after 5 years was significant only in the subgroup of patients with shorter disease duration and limited extent of demyelination in cortical regions (OR = 0.86, P = 0.015, area under the curve = 0.93). In this subgroup, a 30% increase in cortical remyelination nearly halved the risk of clinical progression at 5 years, independently of clinical relapses. Overall, our results highlight the critical role of cortical myelin dynamics in the cascade of events leading to neurodegeneration and to the subsequent accumulation of irreversible disability in MS. Our findings suggest that early-stage myelin repair compensating for cortical myelin loss has the potential to prevent neuro-axonal loss and its long-term irreversible clinical consequences in people with MS.
Collapse
Affiliation(s)
- Andrea Lazzarotto
- Department of Neuroscience, Sorbonne Université, Paris Brain Institute, CNRS, Inserm, 75013 Paris, France
- AP-HP, Hôpital Universitaire Pitié-Salpêtrière, 75013 Paris, France
- Padova Neuroscience Center, University of Padua, 35122 Padua, Italy
| | - Mariem Hamzaoui
- Department of Neuroscience, Sorbonne Université, Paris Brain Institute, CNRS, Inserm, 75013 Paris, France
| | - Matteo Tonietto
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, 91400 Orsay, France
- Roche Pharma Research & Early Development, F. Hoffmann-La Roche Ltd., CH-4070 Basel, Switzerland
| | | | - Michael Khalil
- Department of Neurology, Medical University of Graz, 8036 Graz, Austria
| | - Lukas Pirpamer
- Department of Neurology, Medical University of Graz, 8036 Graz, Austria
- Medical Image Analysis Center (MIAC) and Department of Biomedical Engineering, University of Basel, CH-4051 Basel, Switzerland
| | - Stefan Ropele
- Department of Neurology, Medical University of Graz, 8036 Graz, Austria
| | | | - Marco Battaglini
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Maria Laura Stromillo
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Neurology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Maria Assunta Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Neurology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Paolo Gallo
- Padova Neuroscience Center, University of Padua, 35122 Padua, Italy
- Multiple Sclerosis Centre of Veneto Region, 35128 Padua, Italy
| | | | - Bruno Stankoff
- Department of Neuroscience, Sorbonne Université, Paris Brain Institute, CNRS, Inserm, 75013 Paris, France
- AP-HP, Hôpital Universitaire Pitié-Salpêtrière, 75013 Paris, France
| | - Benedetta Bodini
- Department of Neuroscience, Sorbonne Université, Paris Brain Institute, CNRS, Inserm, 75013 Paris, France
- AP-HP, Hôpital Universitaire Pitié-Salpêtrière, 75013 Paris, France
| |
Collapse
|
35
|
Nicholas R, Magliozzi R, Marastoni D, Howell O, Roncaroli F, Muraro P, Reynolds R, Friede T. High Levels of Perivascular Inflammation and Active Demyelinating Lesions at Time of Death Associated with Rapidly Progressive Multiple Sclerosis Disease Course: A Retrospective Postmortem Cohort Study. Ann Neurol 2024; 95:706-719. [PMID: 38149648 DOI: 10.1002/ana.26870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/23/2023] [Accepted: 12/24/2023] [Indexed: 12/28/2023]
Abstract
OBJECTIVE Analysis of postmortem multiple sclerosis (MS) tissues combined with in vivo disease milestones suggests that whereas perivascular white matter infiltrates are associated with demyelinating activity in the initial stages, leptomeningeal immune cell infiltration, enriched in B cells, and associated cortical lesions contribute to disease progression. We systematically examine the association of inflammatory features and white matter demyelination at postmortem with clinical milestones. METHODS In 269 MS brains, 20 sites were examined using immunohistochemistry for active lesions (ALs) and perivenular inflammation (PVI). In a subset of 22, a detailed count of CD20+ B cells and CD3+ T cells in PVIs was performed. RESULTS ALs were detected in 22%, whereas high levels of PVI were detected in 52% of cases. ALs were present in 35% of cases with high levels of PVI. Shorter time from onset of progression to death was associated with increased prevalence and higher levels of PVI (both p < 0.0001). Shorter time from onset of progression to wheelchair use was associated with higher prevalence of ALs (odds ratio [OR] = 0.921, 95% confidence interval [CI] = 0.858-0.989, p = 0.0230) and higher level of PVI (OR = 0.932, 95% CI = 0.886-0.981, p = 0.0071). High levels of PVI were associated with meningeal inflammation and increased cortical demyelination and significantly higher levels of B lymphocytes within the PVI. INTERPRETATION ALs, a feature of early disease stage, persist up to death in a subgroup with high levels of PVI. These features link to a rapid progressive phase and higher levels of meningeal inflammation and B-cell infiltrates, supporting the hypothesis that chronic inflammation drives progression in MS. ANN NEUROL 2024;95:706-719.
Collapse
Affiliation(s)
- Richard Nicholas
- Imperial College Healthcare NHS Trust, London, UK
- Department of Brain Sciences, UK Multiple Sclerosis Society Tissue Bank, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Roberta Magliozzi
- Department of Brain Sciences, UK Multiple Sclerosis Society Tissue Bank, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Damiano Marastoni
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Owain Howell
- Department of Brain Sciences, UK Multiple Sclerosis Society Tissue Bank, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
- Institute for Life Sciences, Swansea University, Swansea, UK
| | - Federico Roncaroli
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Paolo Muraro
- Department of Brain Sciences, UK Multiple Sclerosis Society Tissue Bank, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Richard Reynolds
- Department of Brain Sciences, UK Multiple Sclerosis Society Tissue Bank, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Tim Friede
- Department of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
36
|
Harrison DM, Allette YM, Zeng Y, Cohen A, Dahal S, Choi S, Zhuo J, Hua J. Meningeal contrast enhancement in multiple sclerosis: assessment of field strength, acquisition delay, and clinical relevance. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.04.24303491. [PMID: 38496664 PMCID: PMC10942534 DOI: 10.1101/2024.03.04.24303491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Background/Purpose Leptomeningeal enhancement (LME) on post-contrast FLAIR is described as a potential biomarker of meningeal inflammation in multiple sclerosis (MS). Here we report a comprehensive assessment of the impact of MRI field strength and acquisition timing on meningeal contrast enhancement (MCE). Methods This was a cross-sectional, observational study of 95 participants with MS and 17 healthy controls (HC) subjects. Each participant underwent an MRI of the brain on both a 7 Tesla (7T) and 3 Tesla (3T) MRI scanner. 7T protocols included a FLAIR image before, soon after (Gd+ Early 7T FLAIR), and 23 minutes after gadolinium (Gd+ Delayed 7T FLAIR). 3T protocol included FLAIR before and 21 minutes after gadolinium (Gd+ Delayed 3T FLAIR). Results LME was seen in 23.3% of participants with MS on Gd+ Delayed 3T FLAIR, 47.4% on Gd+ Early 7T FLAIR (p = 0.002) and 57.9% on Gd+ Delayed 7T FLAIR (p < 0.001 and p = 0.008, respectively). The count and volume of LME, leptomeningeal and paravascular enhancement (LMPE), and paravascular and dural enhancement (PDE) were all highest for Gd+ Delayed 7T FLAIR and lowest for Gd+ Delayed 3T FLAIR. Non-significant trends were seen for higher proportion, counts, and volumes for LME and PDE in MS compared to HCs. The rate of LMPE was different between MS and HCs on Gd+ Delayed 7T FLAIR (98.9% vs 82.4%, p = 0.003). MS participants with LME on Gd+ Delayed 7T FLAIR were older (47.6 (10.6) years) than those without (42.0 (9.7), p = 0.008). Conclusion 7T MRI and a delay after contrast injection increased sensitivity for all forms of MCE. However, the lack of difference between groups for LME and its association with age calls into question its relevance as a biomarker of meningeal inflammation in MS.
Collapse
Affiliation(s)
- Daniel M. Harrison
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Baltimore VA Medical Center, VA Maryland Healthcare System, Baltimore, Maryland, USA
| | - Yohance M. Allette
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Baltimore VA Medical Center, VA Maryland Healthcare System, Baltimore, Maryland, USA
- Department of Neurology, Penn State University – Hershey School of Medicine, Hershey, Pennsylvania, USA
| | - Yuxin Zeng
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Amanda Cohen
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Shishir Dahal
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Seongjin Choi
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jiachen Zhuo
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jun Hua
- Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
37
|
Wang AA, Luessi F, Neziraj T, Pössnecker E, Zuo M, Engel S, Hanuscheck N, Florescu A, Bugbee E, Ma XI, Rana F, Lee D, Ward LA, Kuhle J, Himbert J, Schraad M, van Puijenbroek E, Klein C, Urich E, Ramaglia V, Pröbstel AK, Zipp F, Gommerman JL. B cell depletion with anti-CD20 promotes neuroprotection in a BAFF-dependent manner in mice and humans. Sci Transl Med 2024; 16:eadi0295. [PMID: 38446903 DOI: 10.1126/scitranslmed.adi0295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 02/13/2024] [Indexed: 03/08/2024]
Abstract
Anti-CD20 therapy to deplete B cells is highly efficacious in preventing new white matter lesions in patients with relapsing-remitting multiple sclerosis (RRMS), but its protective capacity against gray matter injury and axonal damage is unclear. In a passive experimental autoimmune encephalomyelitis (EAE) model whereby TH17 cells promote brain leptomeningeal immune cell aggregates, we found that anti-CD20 treatment effectively spared myelin content and prevented myeloid cell activation, oxidative damage, and mitochondrial stress in the subpial gray matter. Anti-CD20 treatment increased B cell survival factor (BAFF) in the serum, cerebrospinal fluid, and leptomeninges of mice with EAE. Although anti-CD20 prevented gray matter demyelination, axonal loss, and neuronal atrophy, co-treatment with anti-BAFF abrogated these benefits. Consistent with the murine studies, we observed that elevated BAFF concentrations after anti-CD20 treatment in patients with RRMS were associated with better clinical outcomes. Moreover, BAFF promoted survival of human neurons in vitro. Together, our data demonstrate that BAFF exerts beneficial functions in MS and EAE in the context of anti-CD20 treatment.
Collapse
Affiliation(s)
- Angela A Wang
- Department of Immunology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Felix Luessi
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Tradite Neziraj
- Department of Neurology, University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
- Departments of Biomedicine and Clinical Research, University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
| | - Elisabeth Pössnecker
- Department of Neurology, University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
- Departments of Biomedicine and Clinical Research, University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
| | - Michelle Zuo
- Department of Immunology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Sinah Engel
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Nicholas Hanuscheck
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Alexandra Florescu
- Department of Immunology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Eryn Bugbee
- Department of Immunology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Xianjie I Ma
- Department of Immunology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Fatima Rana
- Department of Immunology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Dennis Lee
- Department of Immunology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Lesley A Ward
- Department of Immunology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Jens Kuhle
- Department of Neurology, University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
- Departments of Biomedicine and Clinical Research, University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
| | - Johannes Himbert
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Muriel Schraad
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | | | - Christian Klein
- Roche Innovation Center Zurich, Roche Glycart AG, 8952 Schlieren, Switzerland
| | - Eduard Urich
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4052 Basel, Switzerland
| | - Valeria Ramaglia
- Department of Immunology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Anne-Katrin Pröbstel
- Department of Neurology, University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
- Departments of Biomedicine and Clinical Research, University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | | |
Collapse
|
38
|
Martinovic T, Vidicevic S, Ciric D, Bumbasirevic V, Stanojevic Z, Tasic J, Petricevic S, Isakovic A, Martinovic VC, Drndarevic N, Trajkovic V, Kravic-Stevovic T. The presence of Mott cells in the lymph nodes of rats with experimental autoimmune encephalomyelitis. Histochem Cell Biol 2024; 161:287-295. [PMID: 37952208 DOI: 10.1007/s00418-023-02252-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2023] [Indexed: 11/14/2023]
Abstract
Mott cells are plasma cells that have multiple spherical Russell bodies packed in their cytoplasm. Russell bodies are dilated endoplasmic reticulum cisternae filled with aggregates of immunoglobulins that are neither secreted nor degraded. Mott cells were observed in our study by light and electron microscope in the lymph nodes of rats with experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. Mott cells were detected on hematoxylin and eosin (HE)-stained lymph node sections as vacuolated cells with eccentrically positioned nuclei and large number of faint blue spherical inclusions in the cytoplasm. Electron microscopic investigation revealed the presence of Russell bodies of the "medusa" form inside Mott cells in lymph node ultra-thin sections of EAE animals. Mott cells expressed the plasma cell marker CD138 and either kappa or lambda immunoglobulin light chains, indicating their origin from polyclonally activated B cells. Finally, Mott cells were associated with active EAE, as they were not found in the lymph nodes of EAE-resistant Albino Oxford rats. The presence of Russell bodies implies an excessive production of immunoglobulins in EAE, thus further emphasizing the role of B cells, and among them Mott cells, in the pathogenesis of this animal model of multiple sclerosis.
Collapse
Affiliation(s)
- Tamara Martinovic
- Institute of Histology and Embryology, Faculty of Medicine, University of Belgrade, Višegradska 26, 11000, Belgrade, Serbia
| | - Sasenka Vidicevic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Darko Ciric
- Institute of Histology and Embryology, Faculty of Medicine, University of Belgrade, Višegradska 26, 11000, Belgrade, Serbia.
| | - Vladimir Bumbasirevic
- Institute of Histology and Embryology, Faculty of Medicine, University of Belgrade, Višegradska 26, 11000, Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Zeljka Stanojevic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Tasic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Sasa Petricevic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Isakovic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | | | | | - Vladimir Trajkovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Tamara Kravic-Stevovic
- Institute of Histology and Embryology, Faculty of Medicine, University of Belgrade, Višegradska 26, 11000, Belgrade, Serbia
| |
Collapse
|
39
|
Knowles S, Middleton R, Cooze B, Farkas I, Leung YY, Allen K, Winslade M, Owen DRJ, Magliozzi R, Reynolds R, Neal JW, Pearson O, Nicholas R, Pickrell WO, Howell OW. Comparing the Pathology, Clinical, and Demographic Characteristics of Younger and Older-Onset Multiple Sclerosis. Ann Neurol 2024; 95:471-486. [PMID: 38061895 DOI: 10.1002/ana.26843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/13/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVE Older people with multiple sclerosis (MS) have a less active radiological and clinical presentation, but many still attain significant levels of disability; but what drives worsening disability in this group? METHODS We used data from the UK MS Register to characterize demographics and clinical features of late-onset multiple sclerosis (LOMS; symptom onset at ≥50 years), compared with adult-onset MS (AOMS; onset 18-49 years). We performed a pathology study of a separate MS cohort with a later onset (n = 18, mean age of onset 54 years) versus AOMS (n = 23, mean age of onset 29 years). RESULTS In the Register cohort, there were 1,608 (9.4%) with LOMS. When compared with AOMS, there was a lower proportion of women, a higher proportion of primary progressive MS, a higher level of disability at diagnosis (median MS impact scale 36.7 vs. 28.3, p < 0.001), and a higher proportion of gait-related initial symptoms. People with LOMS were less likely to receive a high efficacy disease-modifying treatment and attained substantial disability sooner. Controlling for age of death and sex, neuron density in the thalamus and pons decreased with onset-age, whereas actively demyelinating lesions and compartmentalized inflammation was greatest in AOMS. Only neuron density, and not demyelination or the extent of compartmentalized inflammation, correlated with disability outcomes in older-onset MS patients. INTERPRETATION The more progressive nature of older-onset MS is associated with significant neurodegeneration, but infrequent inflammatory demyelination. These findings have implications for the assessment and treatment of MS in older people. ANN NEUROL 2024;95:471-486.
Collapse
Affiliation(s)
- Sarah Knowles
- UK MS Register, Swansea University Medical School, Swansea University, Swansea, UK
| | - Rod Middleton
- UK MS Register, Swansea University Medical School, Swansea University, Swansea, UK
| | - Benjamin Cooze
- Department of Neurosciences, Swansea University Medical School, Swansea University, Swansea, UK
| | - Ildiko Farkas
- Division of Brain Sciences, Imperial College London, London, UK
| | | | - Kelsey Allen
- Department of Neurosciences, Swansea University Medical School, Swansea University, Swansea, UK
| | - Molly Winslade
- Department of Neurosciences, Swansea University Medical School, Swansea University, Swansea, UK
| | - David R J Owen
- Division of Brain Sciences, Imperial College London, London, UK
| | - Roberta Magliozzi
- Division of Brain Sciences, Imperial College London, London, UK
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | | | - James W Neal
- Department of Neurosciences, Swansea University Medical School, Swansea University, Swansea, UK
| | - Owen Pearson
- Neurology Department, Morriston Hospital, Swansea Bay University Health Board, Port Talbot, UK
| | - Richard Nicholas
- UK MS Register, Swansea University Medical School, Swansea University, Swansea, UK
- Division of Brain Sciences, Imperial College London, London, UK
| | - W Owen Pickrell
- Department of Neurosciences, Swansea University Medical School, Swansea University, Swansea, UK
- Neurology Department, Morriston Hospital, Swansea Bay University Health Board, Port Talbot, UK
| | - Owain W Howell
- Department of Neurosciences, Swansea University Medical School, Swansea University, Swansea, UK
- Division of Brain Sciences, Imperial College London, London, UK
| |
Collapse
|
40
|
Tesfagiorgis Y, Kemal EA, Craig HC, Parham KA, Kerfoot SM. Systemic administration of anti-CD20 indirectly reduces B cells in the inflamed meninges in a chronic model of central nervous system autoimmunity. J Neuroimmunol 2024; 387:578267. [PMID: 38155065 DOI: 10.1016/j.jneuroim.2023.578267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/26/2023] [Accepted: 12/12/2023] [Indexed: 12/30/2023]
Abstract
Anti-CD20 B cell depleting therapies have demonstrated that B cells are important drivers of disease progress in Multiple Sclerosis, although the pathogenic mechanisms are not well understood. A population of B cells accumulates in the inflamed meninges in MS and also some chronic animal models of disease, typically adjacent to demyelinating lesions. The role of these meningeal B cells in disease is not known, nor is their susceptibility to anti-CD20 therapy. Here, we administered anti-CD20 to 2D2 IgHMOG spontaneous experimental autoimmune encephalomyelitis mice in the chronic phase of disease, after the establishment of meningeal B cell clusters. Compared to the circulation, lymph nodes, and spleen, B cell depletion from the meninges was delayed and not evident until 7d post-administration of anti-CD20. Further, we did not find evidence that anti-CD20 accessed meningeal B cells directly, but rather that depletion was indirect and the result of ongoing turnover of the meningeal population and elimination of the peripheral pool from which it is sustained.
Collapse
Affiliation(s)
- Yodit Tesfagiorgis
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Eden A Kemal
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Heather C Craig
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Kate A Parham
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Steven M Kerfoot
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada; Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
41
|
Hoffmann O, Gold R, Meuth SG, Linker RA, Skripuletz T, Wiendl H, Wattjes MP. Prognostic relevance of MRI in early relapsing multiple sclerosis: ready to guide treatment decision making? Ther Adv Neurol Disord 2024; 17:17562864241229325. [PMID: 38332854 PMCID: PMC10851744 DOI: 10.1177/17562864241229325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/12/2024] [Indexed: 02/10/2024] Open
Abstract
Magnetic resonance imaging (MRI) of the brain and spinal cord plays a crucial role in the diagnosis and monitoring of multiple sclerosis (MS). There is conclusive evidence that brain and spinal cord MRI findings in early disease stages also provide relevant insight into individual prognosis. This includes prediction of disease activity and disease progression, the accumulation of long-term disability and the conversion to secondary progressive MS. The extent to which these MRI findings should influence treatment decisions remains a subject of ongoing discussion. The aim of this review is to present and discuss the current knowledge and scientific evidence regarding the utility of MRI at early MS disease stages for prognostic classification of individual patients. In addition, we discuss the current evidence regarding the use of MRI in order to predict treatment response. Finally, we propose a potential approach as to how MRI data may be categorized and integrated into early clinical decision making.
Collapse
Affiliation(s)
- Olaf Hoffmann
- Department of Neurology, Alexianer St. Josefs-Krankenhaus Potsdam, Allee nach Sanssouci 7, 14471 Potsdam, Germany; Medizinische Hochschule Brandenburg Theodor Fontane, Neuruppin, Germany
| | - Ralf Gold
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Sven G. Meuth
- Department of Neurology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Ralf A. Linker
- Department of Neurology, Regensburg University Hospital, Regensburg, Germany
| | | | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Mike P. Wattjes
- Department of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
42
|
Shirani A, Stuve O, Cross AH. Role of B Cells in Relapsing-Remitting and Progressive Multiple Sclerosis and Long-Term Effects of B Cell Depletion. Neurol Clin 2024; 42:137-153. [PMID: 37980111 DOI: 10.1016/j.ncl.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2023]
Abstract
Depletion of circulating B lymphocytes using anti-CD20 monoclonal antibodies (mAbs) greatly reduces inflammatory activity in relapsing multiple sclerosis (RMS); it reduces progression to a lesser extent in nonrelapsing progressive MS. Mechanisms whereby anti-CD20 mAbs reduce MRI and clinical relapse activity in people with RMS are still being elucidated. Anti-CD20 agents do not fully protect from nonrelapsing disease progression, possibly due to their inability to cross the blood-brain barrier and inability to ameliorate the full extent of biology of MS progression. Anti-CD20 mAbs have a relatively favorable safety profile, at least in the short-term. Long-term safety studies are still needed.
Collapse
Affiliation(s)
- Afsaneh Shirani
- Division of Multiple Sclerosis, Department of Neurological Sciences, University of Nebraska Medical Center, 988440 Nebraska Medical Center, Omaha, NE 68198-8440, USA
| | - Olaf Stuve
- Department of Neurology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390-8813, USA
| | - Anne H Cross
- Department of Neurology, Washington University School of Medicine in St. Louis, 660 South Euclid Avenue, CB 8111, St Louis, MO 63110, USA.
| |
Collapse
|
43
|
Ananthavarathan P, Sahi N, Chard DT. An update on the role of magnetic resonance imaging in predicting and monitoring multiple sclerosis progression. Expert Rev Neurother 2024; 24:201-216. [PMID: 38235594 DOI: 10.1080/14737175.2024.2304116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
INTRODUCTION While magnetic resonance imaging (MRI) is established in diagnosing and monitoring disease activity in multiple sclerosis (MS), its utility in predicting and monitoring disease progression is less clear. AREAS COVERED The authors consider changing concepts in the phenotypic classification of MS, including progression independent of relapses; pathological processes underpinning progression; advances in MRI measures to assess them; how well MRI features explain and predict clinical outcomes, including models that assess disease effects on neural networks, and the potential role for machine learning. EXPERT OPINION Relapsing-remitting and progressive MS have evolved from being viewed as mutually exclusive to having considerable overlap. Progression is likely the consequence of several pathological elements, each important in building more holistic prognostic models beyond conventional phenotypes. MRI is well placed to assess pathogenic processes underpinning progression, but we need to bridge the gap between MRI measures and clinical outcomes. Mapping pathological effects on specific neural networks may help and machine learning methods may be able to optimize predictive markers while identifying new, or previously overlooked, clinically relevant features. The ever-increasing ability to measure features on MRI raises the dilemma of what to measure and when, and the challenge of translating research methods into clinically useable tools.
Collapse
Affiliation(s)
- Piriyankan Ananthavarathan
- Department of Neuroinflammation, University College London Queen Square Multiple Sclerosis Centre, London, UK
| | - Nitin Sahi
- Department of Neuroinflammation, University College London Queen Square Multiple Sclerosis Centre, London, UK
| | - Declan T Chard
- Clinical Research Associate & Consultant Neurologist, Institute of Neurology - Queen Square Multiple Sclerosis Centre, London, UK
| |
Collapse
|
44
|
Miscioscia A, Treaba CA, Barletta VT, Herranz E, Sloane JA, Barbuti E, Mainero C. White matter paramagnetic rim and non-rim lesions share a periventricular gradient in multiple sclerosis: A 7-T imaging study. Mult Scler 2024; 30:166-176. [PMID: 38279672 PMCID: PMC10922980 DOI: 10.1177/13524585231224681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
BACKGROUND Paramagnetic rim white matter (WM) lesions (PRL) are thought to be a main driver of non-relapsing multiple sclerosis (MS) progression. It is unknown whether cerebrospinal fluid (CSF)-soluble factors diffusing from the ventricles contribute to PRL formation. OBJECTIVE To investigate the distribution of PRL and non-rim brain WM lesions as a function of distance from ventricular CSF, their relationship with cortical lesions, the contribution of lesion phenotype, and localization to neurological disability. METHODS Lesion count and volume of PRL, non-rim WM, leukocortical lesion (LCL), and subpial/intracortical lesions were obtained at 7-T. The brain WM was divided into 1-mm-thick concentric rings radiating from the ventricles to extract PRL and non-rim WM lesion volume from each ring. RESULTS In total, 61 MS patients with ⩾1 PRL were included in the study. Both PRL and non-rim WM lesion volumes were the highest in the periventricular WM and declined with increasing distance from ventricles. A CSF distance-independent association was found between non-rim WM lesions, PRL, and LCL, but not subpial/intracortical lesions. Periventricular non-rim WM lesion volume was the strongest predictor of neurological disability. CONCLUSIONS Non-rim and PRL share a gradient of distribution from the ventricles toward the cortex, suggesting that CSF proximity equally impacts the prevalence of both lesion phenotypes.
Collapse
Affiliation(s)
- Alessandro Miscioscia
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- University of Padova, Padova, Italy
| | - Constantina A. Treaba
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Valeria T. Barletta
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Elena Herranz
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jacob A. Sloane
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Elena Barbuti
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Ospedale Sant’Andrea, University La Sapienza, Rome, Italy
| | - Caterina Mainero
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
45
|
Lee CY, Chan KH. Personalized Use of Disease-Modifying Therapies in Multiple Sclerosis. Pharmaceutics 2024; 16:120. [PMID: 38258130 PMCID: PMC10820407 DOI: 10.3390/pharmaceutics16010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Multiple sclerosis is an important neurological disease affecting millions of young patients globally. It is encouraging that more than ten disease-modifying drugs became available for use in the past two decades. These disease-modifying therapies (DMTs) have different levels of efficacy, routes of administration, adverse effect profiles and concerns for pregnancy. Much knowledge and caution are needed for their appropriate use in MS patients who are heterogeneous in clinical features and severity, lesion load on magnetic resonance imaging and response to DMT. We aim for an updated review of the concept of personalization in the use of DMT for relapsing MS patients. Shared decision making with consideration for the preference and expectation of patients who understand the potential efficacy/benefits and risks of DMT is advocated.
Collapse
Affiliation(s)
- Chi-Yan Lee
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 405B, 4/F, Professorial Block, 102 Pokfulam Road, Hong Kong
- Neuroimmunology and Neuroinflammation Research Laboratory, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Koon-Ho Chan
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 405B, 4/F, Professorial Block, 102 Pokfulam Road, Hong Kong
- Neuroimmunology and Neuroinflammation Research Laboratory, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
- Research Center of Heart, Brain, Hormone and Healthy Aging, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
46
|
Jakimovski D, Bittner S, Zivadinov R, Morrow SA, Benedict RH, Zipp F, Weinstock-Guttman B. Multiple sclerosis. Lancet 2024; 403:183-202. [PMID: 37949093 DOI: 10.1016/s0140-6736(23)01473-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 06/08/2023] [Accepted: 07/12/2023] [Indexed: 11/12/2023]
Abstract
Multiple sclerosis remains one of the most common causes of neurological disability in the young adult population (aged 18-40 years). Novel pathophysiological findings underline the importance of the interaction between genetics and environment. Improvements in diagnostic criteria, harmonised guidelines for MRI, and globalised treatment recommendations have led to more accurate diagnosis and an earlier start of effective immunomodulatory treatment than previously. Understanding and capturing the long prodromal multiple sclerosis period would further improve diagnostic abilities and thus treatment initiation, eventually improving long-term disease outcomes. The large portfolio of currently available medications paved the way for personalised therapeutic strategies that will balance safety and effectiveness. Incorporation of cognitive interventions, lifestyle recommendations, and management of non-neurological comorbidities could further improve quality of life and outcomes. Future challenges include the development of medications that successfully target the neurodegenerative aspect of the disease and creation of sensitive imaging and fluid biomarkers that can effectively predict and monitor disease changes.
Collapse
Affiliation(s)
- Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA; Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA; Center for Biomedical Imaging at the Clinical Translational Science Institute, State University of New York at Buffalo, Buffalo, NY, USA
| | - Sarah A Morrow
- Department of Clinical Neurological Sciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Ralph Hb Benedict
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Bianca Weinstock-Guttman
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
47
|
Aspden JW, Murphy MA, Kashlan RD, Xiong Y, Poznansky MC, Sîrbulescu RF. Intruders or protectors - the multifaceted role of B cells in CNS disorders. Front Cell Neurosci 2024; 17:1329823. [PMID: 38269112 PMCID: PMC10806081 DOI: 10.3389/fncel.2023.1329823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
B lymphocytes are immune cells studied predominantly in the context of peripheral humoral immune responses against pathogens. Evidence has been accumulating in recent years on the diversity of immunomodulatory functions that B cells undertake, with particular relevance for pathologies of the central nervous system (CNS). This review summarizes current knowledge on B cell populations, localization, infiltration mechanisms, and function in the CNS and associated tissues. Acute and chronic neurodegenerative pathologies are examined in order to explore the complex, and sometimes conflicting, effects that B cells can have in each context, with implications for disease progression and treatment outcomes. Additional factors such as aging modulate the proportions and function of B cell subpopulations over time and are also discussed in the context of neuroinflammatory response and disease susceptibility. A better understanding of the multifactorial role of B cell populations in the CNS may ultimately lead to innovative therapeutic strategies for a variety of neurological conditions.
Collapse
Affiliation(s)
- James W. Aspden
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Matthew A. Murphy
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Rommi D. Kashlan
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Yueyue Xiong
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Mark C. Poznansky
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Ruxandra F. Sîrbulescu
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
48
|
Salapa HE, Thibault PA, Libner CD, Ding Y, Clarke JPWE, Denomy C, Hutchinson C, Abidullah HM, Austin Hammond S, Pastushok L, Vizeacoumar FS, Levin MC. hnRNP A1 dysfunction alters RNA splicing and drives neurodegeneration in multiple sclerosis (MS). Nat Commun 2024; 15:356. [PMID: 38191621 PMCID: PMC10774274 DOI: 10.1038/s41467-023-44658-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 12/22/2023] [Indexed: 01/10/2024] Open
Abstract
Neurodegeneration is the primary driver of disease progression in multiple sclerosis (MS) resulting in permanent disability, creating an urgent need to discover its underlying mechanisms. Herein, we establish that dysfunction of the RNA binding protein heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) results in differential of binding to RNA targets causing alternative RNA splicing, which contributes to neurodegeneration in MS and its models. Using RNAseq of MS brains, we discovered differential expression and aberrant splicing of hnRNP A1 target RNAs involved in neuronal function and RNA homeostasis. We confirmed this in vivo in experimental autoimmune encephalomyelitis employing CLIPseq specific for hnRNP A1, where hnRNP A1 differentially binds and regulates RNA, including aberrantly spliced targets identified in human samples. Additionally, dysfunctional hnRNP A1 expression in neurons caused neurite loss and identical changes in splicing, corroborating hnRNP A1 dysfunction as a cause of neurodegeneration. Collectively, these data indicate hnRNP A1 dysfunction causes altered neuronal RNA splicing, resulting in neurodegeneration in MS.
Collapse
Affiliation(s)
- Hannah E Salapa
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK, S7K 0M7, Canada
- Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7K 0M7, Canada
- Neurology Division, Department of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0X8, Canada
| | - Patricia A Thibault
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK, S7K 0M7, Canada
- Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7K 0M7, Canada
- Neurology Division, Department of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0X8, Canada
| | - Cole D Libner
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK, S7K 0M7, Canada
- Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7K 0M7, Canada
- Department of Health Sciences, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Yulian Ding
- Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
- Division of Biomedical Engineering, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5A9, Canada
| | - Joseph-Patrick W E Clarke
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK, S7K 0M7, Canada
- Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7K 0M7, Canada
- Neurology Division, Department of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0X8, Canada
| | - Connor Denomy
- Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Catherine Hutchinson
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK, S7K 0M7, Canada
- Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7K 0M7, Canada
- Neurology Division, Department of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0X8, Canada
| | - Hashim M Abidullah
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK, S7K 0M7, Canada
- Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7K 0M7, Canada
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - S Austin Hammond
- Next-Generation Sequencing Facility, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Landon Pastushok
- Advanced Diagnostics Research Laboratory, Department of Pathology and Lab Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Frederick S Vizeacoumar
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Michael C Levin
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK, S7K 0M7, Canada.
- Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7K 0M7, Canada.
- Neurology Division, Department of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0X8, Canada.
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
49
|
Silva RV, Morr AS, Herthum H, Koch SP, Mueller S, Batzdorf CS, Bertalan G, Meyer T, Tzschätzsch H, Kühl AA, Boehm-Sturm P, Braun J, Scheel M, Paul F, Infante-Duarte C, Sack I. Cortical matrix remodeling as a hallmark of relapsing-remitting neuroinflammation in MR elastography and quantitative MRI. Acta Neuropathol 2024; 147:8. [PMID: 38175305 PMCID: PMC10766667 DOI: 10.1007/s00401-023-02658-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/03/2023] [Accepted: 11/23/2023] [Indexed: 01/05/2024]
Abstract
Multiple sclerosis (MS) is a chronic neuroinflammatory disease that involves both white and gray matter. Although gray matter damage is a major contributor to disability in MS patients, conventional clinical magnetic resonance imaging (MRI) fails to accurately detect gray matter pathology and establish a clear correlation with clinical symptoms. Using magnetic resonance elastography (MRE), we previously reported global brain softening in MS and experimental autoimmune encephalomyelitis (EAE). However, it needs to be established if changes of the spatiotemporal patterns of brain tissue mechanics constitute a marker of neuroinflammation. Here, we use advanced multifrequency MRE with tomoelastography postprocessing to investigate longitudinal and regional inflammation-induced tissue changes in EAE and in a small group of MS patients. Surprisingly, we found reversible softening in synchrony with the EAE disease course predominantly in the cortex of the mouse brain. This cortical softening was associated neither with a shift of tissue water compartments as quantified by T2-mapping and diffusion-weighted MRI, nor with leukocyte infiltration as seen by histopathology. Instead, cortical softening correlated with transient structural remodeling of perineuronal nets (PNNs), which involved abnormal chondroitin sulfate expression and microgliosis. These mechanisms also appear to be critical in humans with MS, where tomoelastography for the first time demonstrated marked cortical softening. Taken together, our study shows that neuroinflammation (i) critically affects the integrity of PNNs in cortical brain tissue, in a reversible process that correlates with disease disability in EAE, (ii) reduces the mechanical integrity of brain tissue rather than leading to water accumulation, and (iii) shows similar spatial patterns in humans and mice. These results raise the prospect of leveraging MRE and quantitative MRI for MS staging and monitoring treatment in affected patients.
Collapse
Affiliation(s)
- Rafaela V Silva
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC - Experimental and Clinical Research Center, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité - Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, Berlin, Germany
| | - Anna S Morr
- Charité - Universitätsmedizin Berlin, Department of Radiology, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Helge Herthum
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Advanced Neuroimaging, Berlin, Germany
| | - Stefan P Koch
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Experimental Neurology and Center for Stroke Research Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRI, Berlin, Germany
| | - Susanne Mueller
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Experimental Neurology and Center for Stroke Research Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRI, Berlin, Germany
| | - Clara S Batzdorf
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC - Experimental and Clinical Research Center, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Gergely Bertalan
- Charité - Universitätsmedizin Berlin, Department of Radiology, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tom Meyer
- Charité - Universitätsmedizin Berlin, Department of Radiology, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Heiko Tzschätzsch
- Charité - Universitätsmedizin Berlin, Department of Radiology, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anja A Kühl
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, iPATH.Berlin, Berlin, Germany
| | - Philipp Boehm-Sturm
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Experimental Neurology and Center for Stroke Research Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRI, Berlin, Germany
| | - Jürgen Braun
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Informatics, Berlin, Germany
| | - Michael Scheel
- Charité - Universitätsmedizin Berlin Corporate, Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, NeuroCure Clinical Research Center, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Neuroradiology, Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Carmen Infante-Duarte
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC - Experimental and Clinical Research Center, Berlin, Germany.
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
| | - Ingolf Sack
- Charité - Universitätsmedizin Berlin, Department of Radiology, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
50
|
Dahal S, Allette YM, Naunton K, Harrison DM. A pilot trial of ocrelizumab for modulation of meningeal enhancement in multiple sclerosis. Mult Scler Relat Disord 2024; 81:105344. [PMID: 38035495 PMCID: PMC10843730 DOI: 10.1016/j.msard.2023.105344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 10/24/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Autopsy data suggests that meningeal inflammation in multiple sclerosis (MS) is driven by CD20+ B-cells. Ocrelizumab is an anti-CD20 monoclonal antibody, and thus could potentially ameliorate meningeal inflammation in MS. Leptomeningeal enhancement (LME) on MRI is suggested as a surrogate biomarker of meningeal inflammation in MS, and thus may be a way of monitoring for this treatment effect. OBJECTIVES To determine if ocrelizumab impacts meningeal enhancement (ME) on 7T MRI in MS. METHODS Twenty-two patients with MS started on ocrelizumab by their treating physician were enrolled into this single-center, open-label, prospective trial. Participants underwent 7T MRI of the brain prior to first infusion, with screening for the presence of LME. Fourteen patients (48 ± 11 years; 11 women) had LME on the baseline scan and were invited to return for an additional 7T MRI after 1 year of treatment. Fourteen MS patients (49 ± 10 years; 11 women) on non-CD20 treatment from a separate observational cohort of annual 7T MRIs were used for comparison - matched for LME at baseline, age, and sex. Post-contrast FLAIR and subtraction images were reviewed for LME and paravascular and dural enhancement (PDE). RESULTS All subjects in the ocrelizumab and comparison groups had LME and PDE on their baseline scan. At the beginning of the study the mean number of foci of LME and PDE in the study group were 2.3 ± 1.7 and 6.6 ± 3.9 respectively. Mean LME and PDE count for the comparison group were 1.7 ± 1.5 and 7.8 ± 5.5. Mean volume of LME in the study group was 50.5 mm3 ± 65.0 mm3 and that of the PDE was 866 mm3 ± 937.9. Mean volume of LME and PDE for comparison group were 28.4 mm3 ± 36.0 and 885 mm3 ± 947.7 respectively. At follow-up, the number of patients with LME decreased to 8 (57 %) in both groups, whereas the proportion of patients with PDE was unchanged. Minimal mean change in the number of LME after 1 year were seen in both the study group (0.07 ± 2.9, p = 0.97) and comparison group (-0.71 ± 1.5, p = 0.08). Minimal mean change was seen in the volume of LME in both the study group (-21.91 mm3 ± 77.66, p = 0.27) and comparison group (3.4 mm3 ± 32.11, p = 0.77). There was minimal change in the mean number of foci of PDE after 1 year in both the study group (-0.71 ± 2.36, p = 0.32) and in the comparison group (-0.17 ± 3.89, p = 0.15). Mean change in volume of PDE was measurable, but not significant in both the study group (-397.1 mm3 ±959.6, p = 0.80) and in the comparison group (-417.0 mm3 ± 922.7) (p = 0.80). Comparisons between the changes in foci count and volume for both LME and PDE in the study versus comparison groups showed no significant differences. CONCLUSION In this small pilot trial, ocrelizumab did not significantly reduce the number or volume of foci of LME or PDE in MS patients.
Collapse
Affiliation(s)
- Shishir Dahal
- Department of Neurology, University of Maryland School of Medicine, 110 S Paca St, 3rd Floor, Baltimore, MD 21201, United States
| | - Yohance M Allette
- Department of Neurology, University of Maryland School of Medicine, 110 S Paca St, 3rd Floor, Baltimore, MD 21201, United States; Baltimore VA Medical Center, Baltimore, MD, United States
| | - Kerry Naunton
- Department of Neurology, University of Maryland School of Medicine, 110 S Paca St, 3rd Floor, Baltimore, MD 21201, United States
| | - Daniel M Harrison
- Department of Neurology, University of Maryland School of Medicine, 110 S Paca St, 3rd Floor, Baltimore, MD 21201, United States; Baltimore VA Medical Center, Baltimore, MD, United States.
| |
Collapse
|