1
|
Quinet G, Paz-Cabrera MC, Freire R. Biochemical analysis to study wild-type and polyglutamine-expanded ATXN3 species. PLoS One 2024; 19:e0315868. [PMID: 39715253 DOI: 10.1371/journal.pone.0315868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 12/02/2024] [Indexed: 12/25/2024] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3) is a cureless neurodegenerative disease recognized as the most prevalent form of dominantly inherited ataxia worldwide. The main hallmark of SCA3 is the expansion of a polyglutamine tract located in the C-terminal of Ataxin-3 (or ATXN3) protein, that triggers the mis-localization and toxic aggregation of ATXN3 in neuronal cells. The propensity of wild type and polyglutamine-expanded ATXN3 proteins to aggregate has been extensively studied over the last decades. In vitro studies with mass spectrometry techniques revealed a time-dependent aggregation of polyglutamine-expanded ATXN3 that occurs in several steps, leading to fibrils formation, a high status of aggregation. For in vivo experiments though, the techniques commonly used to demonstrate aggregation of polyglutamine proteins, such as filter trap assays, SDS-PAGE and SDS-AGE, are unable to unequivocally show all the stages of aggregation of wild type and polyglutamine-expanded ATXN3 proteins. Here we describe a systematic and detailed analysis of different known techniques to detect the various forms of both wild type and pathologic ATXN3 aggregates, and we discuss the power and limitation of each strategy.
Collapse
Affiliation(s)
- Grégoire Quinet
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Investigación Sanitaria de Canarias (IISC), La Laguna, Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - María Cristina Paz-Cabrera
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Investigación Sanitaria de Canarias (IISC), La Laguna, Tenerife, Spain
| | - Raimundo Freire
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Investigación Sanitaria de Canarias (IISC), La Laguna, Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, La Laguna, Tenerife, Spain
- Universidad Fernando Pessoa Canarias, Santa María de Guía, Gran Canaria, Spain
| |
Collapse
|
2
|
Henriques C, Lopes MM, Silva AC, Lobo DD, Badin RA, Hantraye P, Pereira de Almeida L, Nobre RJ. Viral-based animal models in polyglutamine disorders. Brain 2024; 147:1166-1189. [PMID: 38284949 DOI: 10.1093/brain/awae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/26/2023] [Accepted: 12/30/2023] [Indexed: 01/30/2024] Open
Abstract
Polyglutamine disorders are a complex group of incurable neurodegenerative disorders caused by an abnormal expansion in the trinucleotide cytosine-adenine-guanine tract of the affected gene. To better understand these disorders, our dependence on animal models persists, primarily relying on transgenic models. In an effort to complement and deepen our knowledge, researchers have also developed animal models of polyglutamine disorders employing viral vectors. Viral vectors have been extensively used to deliver genes to the brain, not only for therapeutic purposes but also for the development of animal models, given their remarkable flexibility. In a time- and cost-effective manner, it is possible to use different transgenes, at varying doses, in diverse targeted tissues, at different ages, and in different species, to recreate polyglutamine pathology. This paper aims to showcase the utility of viral vectors in disease modelling, share essential considerations for developing animal models with viral vectors, and provide a comprehensive review of existing viral-based animal models for polyglutamine disorders.
Collapse
Affiliation(s)
- Carina Henriques
- Center for Neuroscience and Cell Biology (CNC), Gene and Stem Cell Therapies for the Brain Group, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal
- ViraVector-Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Miguel M Lopes
- Center for Neuroscience and Cell Biology (CNC), Gene and Stem Cell Therapies for the Brain Group, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal
- ViraVector-Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research (III), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Ana C Silva
- Center for Neuroscience and Cell Biology (CNC), Gene and Stem Cell Therapies for the Brain Group, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal
- ViraVector-Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research (III), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Diana D Lobo
- Center for Neuroscience and Cell Biology (CNC), Gene and Stem Cell Therapies for the Brain Group, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal
- ViraVector-Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research (III), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Romina Aron Badin
- CEA, DRF, Institute of Biology François Jacob, Molecular Imaging Research Center (MIRCen), 92265 Fontenay-aux-Roses, France
- CNRS, CEA, Paris-Sud University, Université Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), 92265 Fontenay-aux-Roses, France
| | - Philippe Hantraye
- CEA, DRF, Institute of Biology François Jacob, Molecular Imaging Research Center (MIRCen), 92265 Fontenay-aux-Roses, France
- CNRS, CEA, Paris-Sud University, Université Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), 92265 Fontenay-aux-Roses, France
| | - Luís Pereira de Almeida
- Center for Neuroscience and Cell Biology (CNC), Gene and Stem Cell Therapies for the Brain Group, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal
- ViraVector-Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Rui Jorge Nobre
- Center for Neuroscience and Cell Biology (CNC), Gene and Stem Cell Therapies for the Brain Group, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal
- ViraVector-Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research (III), University of Coimbra, 3030-789 Coimbra, Portugal
| |
Collapse
|
3
|
Koppenol R, Conceição A, Afonso IT, Afonso-Reis R, Costa RG, Tomé S, Teixeira D, da Silva JP, Côdesso JM, Brito DVC, Mendonça L, Marcelo A, Pereira de Almeida L, Matos CA, Nóbrega C. The stress granule protein G3BP1 alleviates spinocerebellar ataxia-associated deficits. Brain 2023; 146:2346-2363. [PMID: 36511898 PMCID: PMC10232246 DOI: 10.1093/brain/awac473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 11/04/2022] [Accepted: 11/25/2022] [Indexed: 09/09/2023] Open
Abstract
Polyglutamine diseases are a group of neurodegenerative disorders caused by an abnormal expansion of CAG repeat tracts in the codifying regions of nine, otherwise unrelated, genes. While the protein products of these genes are suggested to play diverse cellular roles, the pathogenic mutant proteins bearing an expanded polyglutamine sequence share a tendency to self-assemble, aggregate and engage in abnormal molecular interactions. Understanding the shared paths that link polyglutamine protein expansion to the nervous system dysfunction and the degeneration that takes place in these disorders is instrumental to the identification of targets for therapeutic intervention. Among polyglutamine diseases, spinocerebellar ataxias (SCAs) share many common aspects, including the fact that they involve dysfunction of the cerebellum, resulting in ataxia. Our work aimed at exploring a putative new therapeutic target for the two forms of SCA with higher worldwide prevalence, SCA type 2 (SCA2) and type 3 (SCA3), which are caused by expanded forms of ataxin-2 (ATXN2) and ataxin-3 (ATXN3), respectively. The pathophysiology of polyglutamine diseases has been described to involve an inability to properly respond to cell stress. We evaluated the ability of GTPase-activating protein-binding protein 1 (G3BP1), an RNA-binding protein involved in RNA metabolism regulation and stress responses, to counteract SCA2 and SCA3 pathology, using both in vitro and in vivo disease models. Our results indicate that G3BP1 overexpression in cell models leads to a reduction of ATXN2 and ATXN3 aggregation, associated with a decrease in protein expression. This protective effect of G3BP1 against polyglutamine protein aggregation was reinforced by the fact that silencing G3bp1 in the mouse brain increases human expanded ATXN2 and ATXN3 aggregation. Moreover, a decrease of G3BP1 levels was detected in cells derived from patients with SCA2 and SCA3, suggesting that G3BP1 function is compromised in the context of these diseases. In lentiviral mouse models of SCA2 and SCA3, G3BP1 overexpression not only decreased protein aggregation but also contributed to the preservation of neuronal cells. Finally, in an SCA3 transgenic mouse model with a severe ataxic phenotype, G3BP1 lentiviral delivery to the cerebellum led to amelioration of several motor behavioural deficits. Overall, our results indicate that a decrease in G3BP1 levels may be a contributing factor to SCA2 and SCA3 pathophysiology, and that administration of this protein through viral vector-mediated delivery may constitute a putative approach to therapy for these diseases, and possibly other polyglutamine disorders.
Collapse
Affiliation(s)
- Rebekah Koppenol
- ABC-RI, Algarve Biomedical Center Research Institute, 8005-139 Faro, Portugal
- PhD Program in Biomedial Sciences, Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, 8005-139 Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, 8005-139 Faro, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - André Conceição
- ABC-RI, Algarve Biomedical Center Research Institute, 8005-139 Faro, Portugal
- PhD Program in Biomedial Sciences, Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, 8005-139 Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Inês T Afonso
- ABC-RI, Algarve Biomedical Center Research Institute, 8005-139 Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Ricardo Afonso-Reis
- ABC-RI, Algarve Biomedical Center Research Institute, 8005-139 Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Rafael G Costa
- ABC-RI, Algarve Biomedical Center Research Institute, 8005-139 Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Sandra Tomé
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Diogo Teixeira
- ABC-RI, Algarve Biomedical Center Research Institute, 8005-139 Faro, Portugal
| | | | - José Miguel Côdesso
- ABC-RI, Algarve Biomedical Center Research Institute, 8005-139 Faro, Portugal
- PhD Program in Biomedial Sciences, Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, 8005-139 Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, 8005-139 Faro, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - David V C Brito
- ABC-RI, Algarve Biomedical Center Research Institute, 8005-139 Faro, Portugal
| | - Liliana Mendonça
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Adriana Marcelo
- ABC-RI, Algarve Biomedical Center Research Institute, 8005-139 Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, 8005-139 Faro, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Luís Pereira de Almeida
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Carlos A Matos
- ABC-RI, Algarve Biomedical Center Research Institute, 8005-139 Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Clévio Nóbrega
- ABC-RI, Algarve Biomedical Center Research Institute, 8005-139 Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, 8005-139 Faro, Portugal
- Champalimaud Research Program, Champalimaud Center for the Unknown, 1400-038 Lisbon, Portugal
| |
Collapse
|
4
|
Hong JY, Wang JY, Yue HW, Zhang XL, Zhang SX, Jiang LL, Hu HY. Coaggregation of polyglutamine (polyQ) proteins is mediated by polyQ-tract interactions and impairs cellular proteostasis. Acta Biochim Biophys Sin (Shanghai) 2023. [PMID: 37171184 DOI: 10.3724/abbs.2023081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
Nine polyglutamine (polyQ) proteins have already been identified that are considered to be associated with the pathologies of neurodegenerative disorders called polyQ diseases, but whether these polyQ proteins mutually interact and synergize in proteinopathies remains to be elucidated. In this study, 4 polyQ-containing proteins, androgen receptor (AR), ataxin-7 (Atx7), huntingtin (Htt) and ataxin-3 (Atx3), are used as model molecules to investigate their heterologous coaggregation and consequent impact on cellular proteostasis. Our data indicate that the N-terminal fragment of polyQ-expanded (PQE) Atx7 or Htt can coaggregate with and sequester AR and Atx3 into insoluble aggregates or inclusions through their respective polyQ tracts. In vitro coprecipitation and NMR titration experiments suggest that this specific coaggregation depends on polyQ lengths and is probably mediated by polyQ-tract interactions. Luciferase reporter assay shows that these coaggregation and sequestration effects can deplete the cellular availability of AR and consequently impair its transactivation function. This study provides valid evidence supporting the viewpoint that coaggregation of polyQ proteins is mediated by polyQ-tract interactions and benefits our understanding of the molecular mechanism underlying the accumulation of different polyQ proteins in inclusions and their copathological causes of polyQ diseases.
Collapse
Affiliation(s)
- Jun-Ye Hong
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Yang Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Wei Yue
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang-Le Zhang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shu-Xian Zhang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei-Lei Jiang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hong-Yu Hu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
5
|
Santana MM, Gaspar LS, Pinto MM, Silva P, Adão D, Pereira D, Ribeiro JA, Cunha I, Huebener‐Schmid J, Raposo M, Ferreira AF, Faber J, Kuhs S, Garcia‐Moreno H, Reetz K, Thieme A, Infante J, van de Warrenburg BPC, Giunti P, Riess O, Schöls L, Lima M, Klockgether T, Januário C, de Almeida LP. A standardised protocol for blood and cerebrospinal fluid collection and processing for biomarker research in ataxia. Neuropathol Appl Neurobiol 2023; 49:e12892. [PMID: 36798010 PMCID: PMC10947376 DOI: 10.1111/nan.12892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/07/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023]
Abstract
The European Spinocerebellar Ataxia Type 3/Machado-Joseph Disease Initiative (ESMI) is a consortium established with the ambition to set up the largest European longitudinal trial-ready cohort of Spinocerebellar Ataxia Type 3/Machado-Joseph Disease (SCA3/MJD), the most common autosomal dominantly inherited ataxia worldwide. A major focus of ESMI has been the identification of SCA3/MJD biomarkers to enable future interventional studies. As biosample collection and processing variables significantly impact the outcomes of biomarkers studies, biosampling procedures standardisation was done previously to study visit initiation. Here, we describe the ESMI consensus biosampling protocol, developed within the scope of ESMI, that ultimately might be translated to other neurodegenerative disorders, particularly ataxias, being the first step to protocol harmonisation in the field.
Collapse
Affiliation(s)
- Magda M. Santana
- Center for Neuroscience and Cell Biology (CNC)University of CoimbraCoimbraPortugal
- Center for Innovative Biomedicine and Biotechnology (CIBB)University of CoimbraCoimbraPortugal
- Institute for Interdisciplinary ResearchUniversity of Coimbra (IIIUC)CoimbraPortugal
| | - Laetitia S. Gaspar
- Center for Neuroscience and Cell Biology (CNC)University of CoimbraCoimbraPortugal
- Center for Innovative Biomedicine and Biotechnology (CIBB)University of CoimbraCoimbraPortugal
- Institute for Interdisciplinary ResearchUniversity of Coimbra (IIIUC)CoimbraPortugal
| | - Maria M. Pinto
- Center for Neuroscience and Cell Biology (CNC)University of CoimbraCoimbraPortugal
- Center for Innovative Biomedicine and Biotechnology (CIBB)University of CoimbraCoimbraPortugal
- Faculty of PharmacyUniversity of Coimbra (FFUC)CoimbraPortugal
| | - Patrick Silva
- Center for Neuroscience and Cell Biology (CNC)University of CoimbraCoimbraPortugal
- Center for Innovative Biomedicine and Biotechnology (CIBB)University of CoimbraCoimbraPortugal
- Institute for Interdisciplinary ResearchUniversity of Coimbra (IIIUC)CoimbraPortugal
- Faculty of PharmacyUniversity of Coimbra (FFUC)CoimbraPortugal
| | - Diana Adão
- Center for Neuroscience and Cell Biology (CNC)University of CoimbraCoimbraPortugal
- Center for Innovative Biomedicine and Biotechnology (CIBB)University of CoimbraCoimbraPortugal
| | - Dina Pereira
- Center for Neuroscience and Cell Biology (CNC)University of CoimbraCoimbraPortugal
- Center for Innovative Biomedicine and Biotechnology (CIBB)University of CoimbraCoimbraPortugal
- Institute for Interdisciplinary ResearchUniversity of Coimbra (IIIUC)CoimbraPortugal
| | - Joana Afonso Ribeiro
- Neurology Department, Child Development CentreCoimbra's Hospital and University Centre (CHUC)CoimbraPortugal
| | - Inês Cunha
- Department of NeurologyCoimbra University Hospital Center (CHUC)CoimbraPortugal
| | - Jeannette Huebener‐Schmid
- Institute of Medical Genetics and Applied GenomicsUniversity of TübingenTübingenGermany
- Centre for Rare DiseasesUniversity of TübingenTübingenGermany
| | - Mafalda Raposo
- Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S)Universidade do PortoPortoPortugal
- Faculdade de Ciências e Tecnologia (FCT)Universidade dos Açores (UAc)Ponta DelgadaPortugal
| | - Ana F. Ferreira
- Faculdade de Ciências e Tecnologia (FCT)Universidade dos Açores (UAc)Ponta DelgadaPortugal
| | - Jennifer Faber
- DZNE, German Center for Neurodegenerative DiseasesBonnGermany
- Department of NeurologyUniversity Hospital BonnBonnGermany
| | - Sandra Kuhs
- DZNE, German Center for Neurodegenerative DiseasesBonnGermany
| | - Hector Garcia‐Moreno
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
- Department of Neurogenetics, National Hospital for Neurology and NeurosurgeryUniversity College London Hospitals NHS Foundation TrustLondonUK
| | - Kathrin Reetz
- Department of NeurologyRWTH Aachen UniversityAachenGermany
- JARA‐BRAIN Institute Molecular Neuroscience and NeuroimagingForschungszentrum Jülich GmbH and RWTH Aachen UniversityAachenGermany
| | - Andreas Thieme
- Department of NeurologyEssen University HospitalEssenGermany
- Center for Translational Neuro‐ and Behavioral Sciences (C‐TNBS), Essen University HospitalUniversity of Duisburg‐EssenEssenGermany
| | - Jon Infante
- Service of NeurologyUniversity Hospital Marqués de Valdecilla (IDIVAL), University of Cantabria (UC), Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)SantanderSpain
| | - Bart P. C. van de Warrenburg
- Department of Neurology, Radboud University Medical CentreDonders Institute for Brain, Cognition and BehaviourNijmegenThe Netherlands
| | - Paola Giunti
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
- Department of Neurogenetics, National Hospital for Neurology and NeurosurgeryUniversity College London Hospitals NHS Foundation TrustLondonUK
| | - Olaf Riess
- Institute of Medical Genetics and Applied GenomicsUniversity of TübingenTübingenGermany
- Centre for Rare DiseasesUniversity of TübingenTübingenGermany
| | - Ludger Schöls
- Department of Neurodegenerative Diseases and Hertie‐Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
- German Centre for Neurodegenerative Diseases (DZNE)TübingenGermany
| | - Manuela Lima
- Faculdade de Ciências e Tecnologia (FCT)Universidade dos Açores (UAc)Ponta DelgadaPortugal
| | - Thomas Klockgether
- DZNE, German Center for Neurodegenerative DiseasesBonnGermany
- Department of NeurologyUniversity Hospital BonnBonnGermany
| | - Cristina Januário
- Department of NeurologyCoimbra University Hospital Center (CHUC)CoimbraPortugal
| | - Luís Pereira de Almeida
- Center for Neuroscience and Cell Biology (CNC)University of CoimbraCoimbraPortugal
- Center for Innovative Biomedicine and Biotechnology (CIBB)University of CoimbraCoimbraPortugal
- Faculty of PharmacyUniversity of Coimbra (FFUC)CoimbraPortugal
| |
Collapse
|
6
|
Piasecki P, Wiatr K, Ruszkowski M, Marczak Ł, Trottier Y, Figiel M. Impaired interactions of ataxin-3 with protein complexes reveals their specific structure and functions in SCA3 Ki150 model. Front Mol Neurosci 2023; 16:1122308. [PMID: 37033372 PMCID: PMC10080164 DOI: 10.3389/fnmol.2023.1122308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/01/2023] [Indexed: 04/11/2023] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3/MJD) is a neurodegenerative disease caused by CAG expansion in mutant ATXN3 gene. The resulting PolyQ tract in mutant ataxin-3 protein is toxic to neurons and currently no effective treatment exists. Function of both normal and mutant ataxin-3 is pleiotropic by their interactions and the influence on protein level. Our new preclinical Ki150 model with over 150 CAG/Q in ataxin-3 has robust aggregates indicating the presence of a process that enhances the interaction between proteins. Interactions in large complexes may resemble the real-life inclusion interactions and was never examined before for mutant and normal ataxin-3 and in homozygous mouse model with long polyQ tract. We fractionated ataxin-3-positive large complexes and independently we pulled-down ataxin-3 from brain lysates, and both were followed by proteomics. Among others, mutant ataxin-3 abnormally interacted with subunits of large complexes such as Cct5 and 6, Tcp1, and Camk2a and Camk2b. Surprisingly, the complexes exhibit circular molecular structure which may be linked to the process of aggregates formation where annular aggregates are intermediate stage to fibrils which may indicate novel ataxin-3 mode of interactions. The protein complexes were involved in transport of mitochondria in axons which was confirmed by altered motility of mitochondria along SCA3 Ki150 neurites.
Collapse
Affiliation(s)
- Piotr Piasecki
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Kalina Wiatr
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Milosz Ruszkowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Łukasz Marczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Yvon Trottier
- Institute of Genetics and Molecular and Cellular Biology, University of Strasbourg, Illkirch, France
| | - Maciej Figiel
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
- *Correspondence: Maciej Figiel,
| |
Collapse
|
7
|
KPNB1 modulates the Machado-Joseph disease protein ataxin-3 through activation of the mitochondrial protease CLPP. Cell Mol Life Sci 2022; 79:401. [PMID: 35794401 PMCID: PMC9259533 DOI: 10.1007/s00018-022-04372-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/25/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022]
Abstract
Machado–Joseph disease (MJD) is characterized by a pathological expansion of the polyglutamine (polyQ) tract within the ataxin-3 protein. Despite its primarily cytoplasmic localization, polyQ-expanded ataxin-3 accumulates in the nucleus and forms intranuclear aggregates in the affected neurons. Due to these histopathological hallmarks, the nucleocytoplasmic transport machinery has garnered attention as an important disease relevant mechanism. Here, we report on MJD cell model-based analysis of the nuclear transport receptor karyopherin subunit beta-1 (KPNB1) and its implications in the molecular pathogenesis of MJD. Although directly interacting with both wild-type and polyQ-expanded ataxin-3, modulating KPNB1 did not alter the intracellular localization of ataxin-3. Instead, overexpression of KPNB1 reduced ataxin-3 protein levels and the aggregate load, thereby improving cell viability. On the other hand, its knockdown and inhibition resulted in the accumulation of soluble and insoluble ataxin-3. Interestingly, the reduction of ataxin-3 was apparently based on protein fragmentation independent of the classical MJD-associated proteolytic pathways. Label-free quantitative proteomics and knockdown experiments identified mitochondrial protease CLPP as a potential mediator of the ataxin-3-degrading effect induced by KPNB1. We confirmed reduction of KPNB1 protein levels in MJD by analyzing two MJD transgenic mouse models and induced pluripotent stem cells (iPSCs) derived from MJD patients. Our results reveal a yet undescribed regulatory function of KPNB1 in controlling the turnover of ataxin-3, thereby highlighting a new potential target of therapeutic value for MJD.
Collapse
|
8
|
Weber JJ, Anger SC, Pereira Sena P, Incebacak Eltemur RD, Huridou C, Fath F, Gross C, Casadei N, Riess O, Nguyen HP. Calpains as novel players in the molecular pathogenesis of spinocerebellar ataxia type 17. Cell Mol Life Sci 2022; 79:262. [PMID: 35482253 PMCID: PMC9050766 DOI: 10.1007/s00018-022-04274-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 03/07/2022] [Accepted: 03/25/2022] [Indexed: 11/23/2022]
Abstract
Spinocerebellar ataxia type 17 (SCA17) is a neurodegenerative disease caused by a polyglutamine-encoding trinucleotide repeat expansion in the gene of transcription factor TATA box-binding protein (TBP). While its underlying pathomechanism is elusive, polyglutamine-expanded TBP fragments of unknown origin mediate the mutant protein’s toxicity. Calcium-dependent calpain proteases are protagonists in neurodegenerative disorders. Here, we demonstrate that calpains cleave TBP, and emerging C-terminal fragments mislocalize to the cytoplasm. SCA17 cell and rat models exhibited calpain overactivation, leading to excessive fragmentation and depletion of neuronal proteins in vivo. Transcriptome analysis of SCA17 cells revealed synaptogenesis and calcium signaling perturbations, indicating the potential cause of elevated calpain activity. Pharmacological or genetic calpain inhibition reduced TBP cleavage and aggregation, consequently improving cell viability. Our work underlines the general significance of calpains and their activating pathways in neurodegenerative disorders and presents these proteases as novel players in the molecular pathogenesis of SCA17.
Collapse
Affiliation(s)
- Jonasz Jeremiasz Weber
- Department of Human Genetics, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany.,Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076, Tübingen, Germany
| | - Stefanie Cari Anger
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076, Tübingen, Germany
| | - Priscila Pereira Sena
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076, Tübingen, Germany.,Graduate School of Cellular Neuroscience, University of Tübingen, 72074, Tübingen, Germany
| | - Rana Dilara Incebacak Eltemur
- Department of Human Genetics, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany.,Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076, Tübingen, Germany
| | - Chrisovalantou Huridou
- Department of Human Genetics, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany.,Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076, Tübingen, Germany
| | - Florian Fath
- Department of Human Genetics, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany.,Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076, Tübingen, Germany
| | - Caspar Gross
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076, Tübingen, Germany.,NGS Competence Center Tübingen, 72076, Tübingen, Germany
| | - Nicolas Casadei
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076, Tübingen, Germany.,NGS Competence Center Tübingen, 72076, Tübingen, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076, Tübingen, Germany.,NGS Competence Center Tübingen, 72076, Tübingen, Germany
| | - Huu Phuc Nguyen
- Department of Human Genetics, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany.
| |
Collapse
|
9
|
Jansen-West K, Todd TW, Daughrity LM, Yue M, Tong J, Carlomagno Y, Del Rosso G, Kurti A, Jones CY, Dunmore JA, Castanedes-Casey M, Dickson DW, Wszolek ZK, Fryer JD, Petrucelli L, Prudencio M. Plasma PolyQ-ATXN3 Levels Associate With Cerebellar Degeneration and Behavioral Abnormalities in a New AAV-Based SCA3 Mouse Model. Front Cell Dev Biol 2022; 10:863089. [PMID: 35386195 PMCID: PMC8977414 DOI: 10.3389/fcell.2022.863089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3) is a dominantly inherited cerebellar ataxia caused by the expansion of a polyglutamine (polyQ) repeat in the gene encoding ATXN3. The polyQ expansion induces protein inclusion formation in the neurons of patients and results in neuronal degeneration in the cerebellum and other brain regions. We used adeno-associated virus (AAV) technology to develop a new mouse model of SCA3 that recapitulates several features of the human disease, including locomotor defects, cerebellar-specific neuronal loss, polyQ-expanded ATXN3 inclusions, and TDP-43 pathology. We also found that neurofilament light is elevated in the cerebrospinal fluid (CSF) of the SCA3 animals, and the expanded polyQ-ATXN3 protein can be detected in the plasma. Interestingly, the levels of polyQ-ATXN3 in plasma correlated with measures of cerebellar degeneration and locomotor deficits in 6-month-old SCA3 mice, supporting the hypothesis that this factor could act as a biomarker for SCA3.
Collapse
Affiliation(s)
- Karen Jansen-West
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Tiffany W. Todd
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
- Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN, United States
| | | | - Mei Yue
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Jimei Tong
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Yari Carlomagno
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
- Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Giulia Del Rosso
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
- Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Aishe Kurti
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Caroline Y. Jones
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Judith A. Dunmore
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | | | - Dennis W. Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
- Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN, United States
| | | | - John D. Fryer
- Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN, United States
- Department of Neuroscience, Mayo Clinic, Scottsdale, AZ, United States
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
- Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Mercedes Prudencio
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
- Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN, United States
| |
Collapse
|
10
|
Anti-Excitotoxic Effects of N-Butylidenephthalide Revealed by Chemically Insulted Purkinje Progenitor Cells Derived from SCA3 iPSCs. Int J Mol Sci 2022; 23:ijms23031391. [PMID: 35163312 PMCID: PMC8836169 DOI: 10.3390/ijms23031391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 12/04/2022] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3) is characterized by the over-repetitive CAG codon in the ataxin-3 gene (ATXN3), which encodes the mutant ATXN3 protein. The pathological defects of SCA3 such as the impaired aggresomes, autophagy, and the proteasome have been reported previously. To date, no effective treatment is available for SCA3 disease. This study aimed to study anti-excitotoxic effects of n-butylidenephthalide by chemically insulted Purkinje progenitor cells derived from SCA3 iPSCs. We successfully generated Purkinje progenitor cells (PPs) from SCA3 patient-derived iPSCs. The PPs, expressing both neural and Purkinje progenitor's markers, were acquired after 35 days of differentiation. In comparison with the PPs derived from control iPSCs, SCA3 iPSCs-derived PPs were more sensitive to the excitotoxicity induced by quinolinic acid (QA). The observations of QA-treated SCA3 PPs showing neural degeneration including neurite shrinkage and cell number decrease could be used to quickly and efficiently identify drug candidates. Given that the QA-induced neural cell death of SCA3 PPs was established, the activity of calpain in SCA3 PPs was revealed. Furthermore, the expression of cleaved poly (ADP-ribose) polymerase 1 (PARP1), a marker of apoptotic pathway, and the accumulation of ATXN3 proteolytic fragments were observed. When SCA3 PPs were treated with n-butylidenephthalide (n-BP), upregulated expression of calpain 2 and concurrent decreased level of calpastatin could be reversed, and the overall calpain activity was accordingly suppressed. Such findings reveal that n-BP could not only inhibit the cleavage of ATXN3 but also protect the QA-induced excitotoxicity from the Purkinje progenitor loss.
Collapse
|
11
|
Vasconcelos-Ferreira A, Martins IM, Lobo D, Pereira D, Lopes MM, Faro R, Lopes SM, Verbeek D, Schmidt T, Nóbrega C, Pereira de Almeida L. ULK overexpression mitigates motor deficits and neuropathology in mouse models of Machado-Joseph disease. Mol Ther 2022; 30:370-387. [PMID: 34298131 PMCID: PMC8753369 DOI: 10.1016/j.ymthe.2021.07.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 05/15/2021] [Accepted: 07/14/2021] [Indexed: 01/07/2023] Open
Abstract
Machado-Joseph disease (MJD) is a fatal neurodegenerative disorder clinically characterized by prominent ataxia. It is caused by an expansion of a CAG trinucleotide in ATXN3, translating into an expanded polyglutamine (polyQ) tract in the ATXN3 protein, that becomes prone to misfolding and aggregation. The pathogenesis of the disease has been associated with the dysfunction of several cellular mechanisms, including autophagy and transcription regulation. In this study, we investigated the transcriptional modifications of the autophagy pathway in models of MJD and assessed whether modulating the levels of the affected autophagy-associated transcripts (AATs) would alleviate MJD-associated pathology. Our results show that autophagy is impaired at the transcriptional level in MJD, affecting multiple AATs, including Unc-51 like autophagy activating kinase 1 and 2 (ULK1 and ULK2), two homologs involved in autophagy induction. Reinstating ULK1/2 levels by adeno-associated virus (AAV)-mediated gene transfer significantly improved motor performance while preventing neuropathology in two in vivo models of MJD. Moreover, in vitro studies showed that the observed positive effects may be mainly attributed to ULK1 activity. This study provides strong evidence of the beneficial effect of overexpression of ULK homologs, suggesting these as promising instruments for the treatment of MJD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Ana Vasconcelos-Ferreira
- CNC – Center for Neuroscience and Cell Biology, Molecular Therapy of Brain Disorders Group, University of Coimbra, Faculty of Medicine, Rua Larga, Pólo 1, 3004-504 Coimbra, Portugal,CIBB – Center for Innovative Biomedicine and Biotechnology, Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal,Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, Pólo das Ciências da Saúde, 3000-548, Coimbra, Portugal
| | - Inês Morgado Martins
- CNC – Center for Neuroscience and Cell Biology, Molecular Therapy of Brain Disorders Group, University of Coimbra, Faculty of Medicine, Rua Larga, Pólo 1, 3004-504 Coimbra, Portugal,CIBB – Center for Innovative Biomedicine and Biotechnology, Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal,IIIUC – Institute for Interdisciplinary Research, University of Coimbra, Casa Costa Alemão – Pólo II, Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal
| | - Diana Lobo
- CNC – Center for Neuroscience and Cell Biology, Molecular Therapy of Brain Disorders Group, University of Coimbra, Faculty of Medicine, Rua Larga, Pólo 1, 3004-504 Coimbra, Portugal,CIBB – Center for Innovative Biomedicine and Biotechnology, Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal,IIIUC – Institute for Interdisciplinary Research, University of Coimbra, Casa Costa Alemão – Pólo II, Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal
| | - Dina Pereira
- CNC – Center for Neuroscience and Cell Biology, Molecular Therapy of Brain Disorders Group, University of Coimbra, Faculty of Medicine, Rua Larga, Pólo 1, 3004-504 Coimbra, Portugal,CIBB – Center for Innovative Biomedicine and Biotechnology, Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Miguel M. Lopes
- CNC – Center for Neuroscience and Cell Biology, Molecular Therapy of Brain Disorders Group, University of Coimbra, Faculty of Medicine, Rua Larga, Pólo 1, 3004-504 Coimbra, Portugal,CIBB – Center for Innovative Biomedicine and Biotechnology, Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal,IIIUC – Institute for Interdisciplinary Research, University of Coimbra, Casa Costa Alemão – Pólo II, Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal
| | - Rosário Faro
- CNC – Center for Neuroscience and Cell Biology, Molecular Therapy of Brain Disorders Group, University of Coimbra, Faculty of Medicine, Rua Larga, Pólo 1, 3004-504 Coimbra, Portugal,CIBB – Center for Innovative Biomedicine and Biotechnology, Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Sara M. Lopes
- CNC – Center for Neuroscience and Cell Biology, Molecular Therapy of Brain Disorders Group, University of Coimbra, Faculty of Medicine, Rua Larga, Pólo 1, 3004-504 Coimbra, Portugal,CIBB – Center for Innovative Biomedicine and Biotechnology, Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal,IIIUC – Institute for Interdisciplinary Research, University of Coimbra, Casa Costa Alemão – Pólo II, Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal
| | - Dineke Verbeek
- Department of Genetics, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9700 RB, Groningen, the Netherlands
| | - Thorsten Schmidt
- Institute of Medical Genetics & Applied Genomics, University of Tübingen, 72076 Tübingen, Germany,Center for Rare Diseases (ZSE Tübingen), 72076 Tübingen, Germany
| | - Clévio Nóbrega
- CNC – Center for Neuroscience and Cell Biology, Molecular Therapy of Brain Disorders Group, University of Coimbra, Faculty of Medicine, Rua Larga, Pólo 1, 3004-504 Coimbra, Portugal,CIBB – Center for Innovative Biomedicine and Biotechnology, Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Luís Pereira de Almeida
- CNC – Center for Neuroscience and Cell Biology, Molecular Therapy of Brain Disorders Group, University of Coimbra, Faculty of Medicine, Rua Larga, Pólo 1, 3004-504 Coimbra, Portugal,CIBB – Center for Innovative Biomedicine and Biotechnology, Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal,Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, Pólo das Ciências da Saúde, 3000-548, Coimbra, Portugal,Corresponding author: Luís Pereira de Almeida, PhD, CNC – Center for Neuroscience and Cell Biology, Molecular Therapy of Brain Disorders Group, University of Coimbra, Faculty of Medicine, Rua Larga, Pólo 1, 3004-504 Coimbra, Portugal.
| |
Collapse
|
12
|
Calpain Inhibitors as Potential Therapeutic Modulators in Neurodegenerative Diseases. Neurochem Res 2022; 47:1125-1149. [PMID: 34982393 DOI: 10.1007/s11064-021-03521-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 02/07/2023]
Abstract
It is considered a significant challenge to understand the neuronal cell death mechanisms with a suitable cure for neurodegenerative disorders in the coming years. Calpains are one of the best-considered "cysteine proteases activated" in brain disorders. Calpain is an important marker and mediator in the pathophysiology of neurodegeneration. Calpain activation being the essential neurodegenerative factor causing apoptotic machinery activation, it is crucial to develop reliable and effective approaches to prevent calpain-mediated apoptosis in degenerating neurons. It has been recently seen that the "inhibition of calpain activation" has appeared as a possible therapeutic target for managing neurodegenerative diseases. A systematic literature review of PubMed, Medline, Bentham, Scopus, and EMBASE (Elsevier) databases was conducted. The present article reviews the basic pathobiology and role of selective calpain inhibitors used in various neurodegenerative diseases as a therapeutic target.
Collapse
|
13
|
Moreira R, Mendonça LS, Pereira de Almeida L. Extracellular Vesicles Physiological Role and the Particular Case of Disease-Spreading Mechanisms in Polyglutamine Diseases. Int J Mol Sci 2021; 22:ijms222212288. [PMID: 34830171 PMCID: PMC8621536 DOI: 10.3390/ijms222212288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
Recent research demonstrated pathological spreading of the disease-causing proteins from one focal point across other brain regions for some neurodegenerative diseases, such as Parkinson's and Alzheimer's disease. Spreading mediated by extracellular vesicles is one of the proposed disease-spreading mechanisms. Extracellular vesicles are cell membrane-derived vesicles, used by cells for cell-to-cell communication and excretion of toxic components. Importantly, extracellular vesicles carrying pathological molecules, when internalized by "healthy" cells, may trigger pathological pathways and, consequently, promote disease spreading to neighboring cells. Polyglutamine diseases are a group of genetic neurodegenerative disorders characterized by the accumulation of mutant misfolded proteins carrying an expanded tract of glutamines, including Huntington's and Machado-Joseph disease. The pathological spread of the misfolded proteins or the corresponding mutant mRNA has been explored. The understanding of the disease-spreading mechanism that plays a key role in the pathology progression of these diseases can result in the development of effective therapeutic approaches to stop disease progression, arresting the spread of the toxic components and disease aggravation. Therefore, the present review's main focus is the disease-spreading mechanisms with emphasis on polyglutamine diseases and the putative role played by extracellular vesicles in this process.
Collapse
Affiliation(s)
- Ricardo Moreira
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Liliana S. Mendonça
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Correspondence: (L.S.M.); (L.P.d.A.); Tel.: +351-239-820-190 (L.S.M.)
| | - Luís Pereira de Almeida
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Correspondence: (L.S.M.); (L.P.d.A.); Tel.: +351-239-820-190 (L.S.M.)
| |
Collapse
|
14
|
Robinson KJ, Yuan K, Plenderleith SK, Watchon M, Laird AS. A Novel Calpain Inhibitor Compound Has Protective Effects on a Zebrafish Model of Spinocerebellar Ataxia Type 3. Cells 2021; 10:cells10102592. [PMID: 34685571 PMCID: PMC8533844 DOI: 10.3390/cells10102592] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 01/18/2023] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3) is a hereditary ataxia caused by inheritance of a mutated form of the human ATXN3 gene containing an expanded CAG repeat region, encoding a human ataxin-3 protein with a long polyglutamine (polyQ) repeat region. Previous studies have demonstrated that ataxin-3 containing a long polyQ length is highly aggregation prone. Cleavage of the ataxin-3 protein by calpain proteases has been demonstrated to be enhanced in SCA3 models, leading to an increase in the aggregation propensity of the protein. Here, we tested the therapeutic potential of a novel calpain inhibitor BLD-2736 for the treatment of SCA3 by testing its efficacy on a transgenic zebrafish model of SCA3. We found that treatment with BLD-2736 from 1 to 6 days post-fertilisation (dpf) improves the swimming of SCA3 zebrafish larvae and decreases the presence of insoluble protein aggregates. Furthermore, delaying the commencement of treatment with BLD-2736, until a timepoint when protein aggregates were already known to be present in the zebrafish larvae, was still successful at removing enhanced green fluorescent protein (EGFP) fused-ataxin-3 aggregates and improving the zebrafish swimming. Finally, we demonstrate that treatment with BLD-2736 increased the synthesis of LC3II, increasing the activity of the autophagy protein quality control pathway. Together, these findings suggest that BLD-2736 warrants further investigation as a treatment for SCA3 and related neurodegenerative diseases.
Collapse
|
15
|
CRISPR/Cas9 mediated gene correction ameliorates abnormal phenotypes in spinocerebellar ataxia type 3 patient-derived induced pluripotent stem cells. Transl Psychiatry 2021; 11:479. [PMID: 34535635 PMCID: PMC8448778 DOI: 10.1038/s41398-021-01605-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 08/13/2021] [Accepted: 08/26/2021] [Indexed: 12/25/2022] Open
Abstract
Spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD) is a progressive autosomal dominant neurodegenerative disease caused by abnormal CAG repeats in the exon 10 of ATXN3. The accumulation of the mutant ataxin-3 proteins carrying expanded polyglutamine (polyQ) leads to selective degeneration of neurons. Since the pathogenesis of SCA3 has not been fully elucidated, and no effective therapies have been identified, it is crucial to investigate the pathogenesis and seek new therapeutic strategies of SCA3. Induced pluripotent stem cells (iPSCs) can be used as the ideal cell model for the molecular pathogenesis of polyQ diseases. Abnormal CAG expansions mediated by CRISPR/Cas9 genome engineering technologies have shown promising potential for the treatment of polyQ diseases, including SCA3. In this study, SCA3-iPSCs can be corrected by the replacement of the abnormal CAG expansions (74 CAG) with normal repeats (17 CAG) using CRISPR/Cas9-mediated homologous recombination (HR) strategy. Besides, corrected SCA3-iPSCs retained pluripotent and normal karyotype, which can be differentiated into a neural stem cell (NSCs) and neuronal cells, and maintained electrophysiological characteristics. The expression of differentiation markers and electrophysiological characteristics were similar among the neuronal differentiation from normal control iPSCs (Ctrl-iPSCs), SCA3-iPSCs, and isogenic control SCA3-iPSCs. Furthermore, this study proved that the phenotypic abnormalities in SCA3 neurons, including aggregated IC2-polyQ protein, decreased mitochondrial membrane potential (MMP) and glutathione expressions, increased reactive oxygen species (ROS), intracellular Ca2+ concentrations, and lipid peroxidase malondialdehyde (MDA) levels, all were rescued in the corrected SCA3-NCs. For the first time, this study demonstrated the feasibility of CRISPR/Cas9-mediated HR strategy to precisely repair SCA3-iPSCs, and reverse the corresponding abnormal disease phenotypes. In addition, the importance of genetic control using CRISPR/Cas9-mediated iPSCs for disease modeling. Our work may contribute to providing a potential ideal model for molecular mechanism research and autologous stem cell therapy of SCA3 or other polyQ diseases, and offer a good gene therapy strategy for future treatment.
Collapse
|
16
|
Vasconcelos-Ferreira A, Carmo-Silva S, Codêsso JM, Silva P, Martinez ARM, França MC, Nóbrega C, Pereira de Almeida L. The autophagy-enhancing drug carbamazepine improves neuropathology and motor impairment in mouse models of Machado-Joseph disease. Neuropathol Appl Neurobiol 2021; 48:e12763. [PMID: 34432315 DOI: 10.1111/nan.12763] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 08/04/2021] [Indexed: 11/28/2022]
Abstract
AIMS Machado-Joseph disease (MJD), or spinocerebellar ataxia type 3 (SCA3), is the most common autosomal dominantly-inherited ataxia worldwide and is characterised by the accumulation of mutant ataxin-3 (mutATXN3) in different brain regions, leading to neurodegeneration. Currently, there are no available treatments able to block disease progression. In this study, we investigated whether carbamazepine (CBZ) would activate autophagy and mitigate MJD pathology. METHODS The autophagy-enhancing activity of CBZ and its effects on clearance of mutATXN3 were evaluated using in vitro and in vivo models of MJD. To investigate the optimal treatment regimen, a daily or intermittent CBZ administration was applied to MJD transgenic mice expressing a truncated human ATXN3 with 69 glutamine repeats. Motor behaviour tests and immunohistology was performed to access the alleviation of MJD-associated motor deficits and neuropathology. A retrospective study was conducted to evaluate the CBZ effect in MJD patients. RESULTS We found that CBZ promoted the activation of autophagy and the degradation of mutATXN3 in MJD models upon short or intermittent, but not daily prolonged, treatment regimens. CBZ up-regulated autophagy through activation of AMPK, which was dependent on the myo-inositol levels. In addition, intermittent CBZ treatment improved motor performance, as well as prevented neuropathology in MJD transgenic mice. However, in patients, no evident differences in SARA scale were found, which was not unexpected given the small number of patients included in the study. CONCLUSIONS Our data support the autophagy-enhancing activity of CBZ in the brain and suggest this pharmacological approach as a promising therapy for MJD and other polyglutamine disorders.
Collapse
Affiliation(s)
- Ana Vasconcelos-Ferreira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Sara Carmo-Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - José Miguel Codêsso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Patrick Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | | | | | - Clévio Nóbrega
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Luís Pereira de Almeida
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
17
|
Simões AT, Carmona V, Duarte-Neves J, Cunha-Santos J, Pereira de Almeida L. Identification of the calpain-generated toxic fragment of ataxin-3 protein provides new avenues for therapy of Machado-Joseph disease| Spinocerebellar ataxia type 3. Neuropathol Appl Neurobiol 2021; 48:e12748. [PMID: 34273111 DOI: 10.1111/nan.12748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 06/26/2021] [Accepted: 07/11/2021] [Indexed: 12/14/2022]
Abstract
AIMS Machado-Joseph disease (MJD) is the most frequent dominantly inherited cerebellar ataxia worldwide. Expansion of a CAG trinucleotide in the MJD1 gene translates into a polyglutamine tract within ataxin-3, which upon proteolysis may lead to MJD. The aim of this work was to understand the in vivo contribution of calpain proteases to the pathogenesis of MJD. Therefore, we investigated (a) the calpain cleavage sites in ataxin-3 protein, (b) the most toxic ataxin-3 fragment generated by calpain cleavage and (c) whether targeting calpain cleavage sites of mutant ataxin-3 could be a therapeutic strategy for MJD. METHODS We generated truncated and calpain-resistant constructs at the predicted cleavage sites of ataxin-3 using inverse PCR mutagenesis. Lentiviral vectors encoding these constructs were transduced in the adult mouse brain prior to western blot and immunohistochemical analysis 5 and 8 weeks later. RESULTS We identified the putative calpain cleavage sites for both wild-type and mutant ataxin-3 proteins. The mutation of these sites eliminated the formation of the toxic fragments, namely, the 26-kDa fragment, the major contributor for striatal degeneration. Nonetheless, reducing the formation of both the 26- and 34-kDa fragments was required to preclude the intranuclear localisation of ataxin-3. A neuroprotective effect was observed upon mutagenesis of calpain cleavage sites within mutant ataxin-3 protein. CONCLUSIONS These findings suggest that the calpain system should be considered a target for MJD therapy. The identified calpain cleavage sites will contribute to the design of targeted drugs and genome editing systems for those specific locations.
Collapse
Affiliation(s)
- Ana Teresa Simões
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Vítor Carmona
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Joana Duarte-Neves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Janete Cunha-Santos
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Luís Pereira de Almeida
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
18
|
Weber JJ, Haas E, Maringer Y, Hauser S, Casadei NLP, Chishti AH, Riess O, Hübener-Schmid J. Calpain-1 ablation partially rescues disease-associated hallmarks in models of Machado-Joseph disease. Hum Mol Genet 2021; 29:892-906. [PMID: 31960910 DOI: 10.1093/hmg/ddaa010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/13/2022] Open
Abstract
Proteolytic fragmentation of polyglutamine-expanded ataxin-3 is a concomitant and modifier of the molecular pathogenesis of Machado-Joseph disease (MJD), the most common autosomal dominant cerebellar ataxia. Calpains, a group of calcium-dependent cysteine proteases, are important mediators of ataxin-3 cleavage and implicated in multiple neurodegenerative conditions. Pharmacologic and genetic approaches lowering calpain activity showed beneficial effects on molecular and behavioural disease characteristics in MJD model organisms. However, specifically targeting one of the calpain isoforms by genetic means has not yet been evaluated as a potential therapeutic strategy. In our study, we tested whether calpains are overactivated in the MJD context and if reduction or ablation of calpain-1 expression ameliorates the disease-associated phenotype in MJD cells and mice. In all analysed MJD models, we detected an elevated calpain activity at baseline. Lowering or removal of calpain-1 in cells or mice counteracted calpain system overactivation and led to reduced cleavage of ataxin-3 without affecting its aggregation. Moreover, calpain-1 knockout in YAC84Q mice alleviated excessive fragmentation of important synaptic proteins. Despite worsening some motor characteristics, YAC84Q mice showed a rescue of body weight loss and extended survival upon calpain-1 knockout. Together, our findings emphasize the general potential of calpains as a therapeutic target in MJD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Jonasz J Weber
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen 72076, Germany.,Centre for Rare Diseases, University of Tübingen, Tübingen 72076, Germany.,Department of Human Genetics, Ruhr-University Bochum, Bochum 44801, Germany
| | - Eva Haas
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen 72076, Germany.,Centre for Rare Diseases, University of Tübingen, Tübingen 72076, Germany
| | - Yacine Maringer
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen 72076, Germany.,Centre for Rare Diseases, University of Tübingen, Tübingen 72076, Germany
| | - Stefan Hauser
- German Center for Neurodegenerative Diseases, Tübingen 72076, Germany
| | - Nicolas L P Casadei
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen 72076, Germany.,Centre for Rare Diseases, University of Tübingen, Tübingen 72076, Germany
| | - Athar H Chishti
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen 72076, Germany.,Centre for Rare Diseases, University of Tübingen, Tübingen 72076, Germany
| | - Jeannette Hübener-Schmid
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen 72076, Germany.,Centre for Rare Diseases, University of Tübingen, Tübingen 72076, Germany
| |
Collapse
|
19
|
Raj K, Akundi RS. Mutant Ataxin-3-Containing Aggregates (MATAGGs) in Spinocerebellar Ataxia Type 3: Dynamics of the Disorder. Mol Neurobiol 2021; 58:3095-3118. [PMID: 33629274 DOI: 10.1007/s12035-021-02314-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/25/2021] [Indexed: 11/25/2022]
Abstract
Spinocerebellar ataxia type 3 (SCA3) is the most common type of SCA worldwide caused by abnormal polyglutamine expansion in the coding region of the ataxin-3 gene. Ataxin-3 is a multi-faceted protein involved in various cellular processes such as deubiquitination, cytoskeletal organisation, and transcriptional regulation. The presence of an expanded poly(Q) stretch leads to altered processing and misfolding of the protein culminating in the production of insoluble protein aggregates in the cell. Various post-translational modifications affect ataxin-3 fibrillation and aggregation. This review provides an exhaustive assessment of the various pathogenic mechanisms undertaken by the mutant ataxin-3-containing aggregates (MATAGGs) for disease induction and neurodegeneration. This includes in-depth discussion on MATAGG dynamics including their formation, role in neuronal pathogenesis, and the debate over the toxic v/s protective nature of the MATAGGs in disease progression. Additionally, the currently available therapeutic strategies against SCA3 have been reviewed. The shift in the focus of such strategies, from targeting the steps that lead to or reduce aggregate formation to targeting the expression of mutant ataxin-3 itself via RNA-based therapeutics, has also been presented. We also discuss the intriguing promise that various growth and neurotrophic factors, especially the insulin pathway, hold in the modulation of SCA3 progression. These emerging areas show the newer directions through which SCA3 can be targeted including various preclinical and clinical trials. All these advances made in the last three decades since the discovery of the ataxin-3 gene have been critically reviewed here.
Collapse
Affiliation(s)
- Kritika Raj
- Neuroinflammation Research Lab, Faculty of Life Sciences and Biotechnology, South Asian University, Chanakyapuri, New Delhi, 110021, India
| | - Ravi Shankar Akundi
- Neuroinflammation Research Lab, Faculty of Life Sciences and Biotechnology, South Asian University, Chanakyapuri, New Delhi, 110021, India.
| |
Collapse
|
20
|
Martins AC, Rieck M, Leotti VB, Saraiva-Pereira ML, Jardim LB. Variants in Genes of Calpain System as Modifiers of Spinocerebellar Ataxia Type 3 Phenotype. J Mol Neurosci 2021; 71:1906-1913. [PMID: 34191270 DOI: 10.1007/s12031-021-01877-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/21/2021] [Indexed: 10/21/2022]
Abstract
Calpain-mediated proteolysis has been proposed to modulate the pathogenesis of spinocerebellar ataxia type 3, also known as Machado-Joseph disease (SCA3/MJD), a disorder due to a CAG repeat expansion (CAGexp) at ATXN3. We aimed to investigate if single-nucleotide polymorphisms (SNPs) at calpain gene CAPN2 and at calpastatin gene CAST modulate the age at onset (AO) and disease progression in SCA3/MJD. A total of 287 SCA3/MJD symptomatic subjects (151 families) were included. AO was analyzed and controlled by the CAG repeat length of expanded allele and family. Candidate polymorphisms were chosen based on the literature and on a priori criteria. The CAG repeat length and SNPs were genotyped according to standard methods. AO of carriers of AA and AG + GGrs1559085 genotypes in CAST and with the median value of 75 repeats at the expanded allele were 34.23 (33.07-35.38) and 36.42 years (34.50-38.34), respectively (p = 0.049, mixed model treating the expanded CAG repeat size as fixed effect and family as random effect). Carriers of haplotype Crs27852/Grs1559085 had mean AO of 37.23 (12.76) and 33.42 years (12.20) (p = 0.047, Student's t test). Our data suggest an association between allele Grs1559085 and haplotype Crs27852/Grs1559085 at CAST and variations in the AO of SCA3/MJD subjects, independent from the effects of the CAGexp and family. The present results support the potential role of calpain cleavage pathway over modulation of SCA3/MJD phenotype.
Collapse
Affiliation(s)
- Ana Carolina Martins
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Laboratório de Identificação Genética, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Mariana Rieck
- Laboratório de Identificação Genética, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Vanessa Bielefeldt Leotti
- Departamento de Estatística, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Epidemiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Maria Luiza Saraiva-Pereira
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Laboratório de Identificação Genética, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Porto Alegre, 90035-003, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Laura Bannach Jardim
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil. .,Laboratório de Identificação Genética, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil. .,Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Porto Alegre, 90035-003, Brazil. .,Departamento de Medicina Interna, FAMED, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
21
|
Lee JH, Lin SY, Liu JW, Lin SZ, Harn HJ, Chiou TW. n-Butylidenephthalide Modulates Autophagy to Ameliorate Neuropathological Progress of Spinocerebellar Ataxia Type 3 through mTOR Pathway. Int J Mol Sci 2021; 22:6339. [PMID: 34199295 PMCID: PMC8231882 DOI: 10.3390/ijms22126339] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3), a hereditary and lethal neurodegenerative disease, is attributed to the abnormal accumulation of undegradable polyglutamine (polyQ), which is encoded by mutated ataxin-3 gene (ATXN3). The toxic fragments processed from mutant ATXN3 can induce neuronal death, leading to the muscular incoordination of the human body. Some treatment strategies of SCA3 are preferentially focused on depleting the abnormal aggregates, which led to the discovery of small molecule n-butylidenephthalide (n-BP). n-BP-promoted autophagy protected the loss of Purkinje cell in the cerebellum that regulates the network associated with motor functions. We report that the n-BP treatment may be effective in treating SCA3 disease. n-BP treatment led to the depletion of mutant ATXN3 with the expanded polyQ chain and the toxic fragments resulting in increased metabolic activity and alleviated atrophy of SCA3 murine cerebellum. Furthermore, n-BP treated animal and HEK-293GFP-ATXN3-84Q cell models could consistently show the depletion of aggregates through mTOR inhibition. With its unique mechanism, the two autophagic inhibitors Bafilomycin A1 and wortmannin could halt the n-BP-induced elimination of aggregates. Collectively, n-BP shows promising results for the treatment of SCA3.
Collapse
Affiliation(s)
- Jui-Hao Lee
- Everfront Biotech Inc., New Taipei City 22180, Taiwan; (J.-H.L.); (S.-Y.L.); (J.-W.L.)
- Department of Life Science, Graduate Institute of Biotechnology, National Dong-Hwa University, Hualien 97447, Taiwan
| | - Si-Yin Lin
- Everfront Biotech Inc., New Taipei City 22180, Taiwan; (J.-H.L.); (S.-Y.L.); (J.-W.L.)
- Department of Life Science, Graduate Institute of Biotechnology, National Dong-Hwa University, Hualien 97447, Taiwan
| | - Jen-Wei Liu
- Everfront Biotech Inc., New Taipei City 22180, Taiwan; (J.-H.L.); (S.-Y.L.); (J.-W.L.)
- Department of Life Science, Graduate Institute of Biotechnology, National Dong-Hwa University, Hualien 97447, Taiwan
| | - Shinn-Zong Lin
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan;
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 97002, Taiwan
| | - Horng-Jyh Harn
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan;
- Department of Pathology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 97002, Taiwan
| | - Tzyy-Wen Chiou
- Department of Life Science, Graduate Institute of Biotechnology, National Dong-Hwa University, Hualien 97447, Taiwan
| |
Collapse
|
22
|
Hommersom MP, Buijsen RAM, van Roon-Mom WMC, van de Warrenburg BPC, van Bokhoven H. Human Induced Pluripotent Stem Cell-Based Modelling of Spinocerebellar Ataxias. Stem Cell Rev Rep 2021; 18:441-456. [PMID: 34031815 PMCID: PMC8930896 DOI: 10.1007/s12015-021-10184-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2021] [Indexed: 12/13/2022]
Abstract
Abstract Dominant spinocerebellar ataxias (SCAs) constitute a large group of phenotypically and genetically heterogeneous disorders that mainly present with dysfunction of the cerebellum as their main hallmark. Although animal and cell models have been highly instrumental for our current insight into the underlying disease mechanisms of these neurodegenerative disorders, they do not offer the full human genetic and physiological context. The advent of human induced pluripotent stem cells (hiPSCs) and protocols to differentiate these into essentially every cell type allows us to closely model SCAs in a human context. In this review, we systematically summarize recent findings from studies using hiPSC-based modelling of SCAs, and discuss what knowledge has been gained from these studies. We conclude that hiPSC-based models are a powerful tool for modelling SCAs as they contributed to new mechanistic insights and have the potential to serve the development of genetic therapies. However, the use of standardized methods and multiple clones of isogenic lines are essential to increase validity and reproducibility of the insights gained. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Marina P Hommersom
- Department of Human Genetics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
| | - Ronald A M Buijsen
- Department of Human Genetics, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Willeke M C van Roon-Mom
- Department of Human Genetics, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Bart P C van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands.
| | - Hans van Bokhoven
- Department of Human Genetics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands. .,Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 HB, Nijmegen, Netherlands.
| |
Collapse
|
23
|
Current Status of Gene Therapy Research in Polyglutamine Spinocerebellar Ataxias. Int J Mol Sci 2021; 22:ijms22084249. [PMID: 33921915 PMCID: PMC8074016 DOI: 10.3390/ijms22084249] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 12/26/2022] Open
Abstract
Polyglutamine spinocerebellar ataxias (PolyQ SCAs) are a group of 6 rare autosomal dominant diseases, which arise from an abnormal CAG repeat expansion in the coding region of their causative gene. These neurodegenerative ataxic disorders are characterized by progressive cerebellar degeneration, which translates into progressive ataxia, the main clinical feature, often accompanied by oculomotor deficits and dysarthria. Currently, PolyQ SCAs treatment is limited only to symptomatic mitigation, and no therapy is available to stop or delay the disease progression, which culminates with death. Over the last years, many promising gene therapy approaches were investigated in preclinical studies and could lead to a future treatment to stop or delay the disease development. Here, we summed up the most promising of these therapies, categorizing them in gene augmentation therapy, gene silencing strategies, and gene edition approaches. While several of the reviewed strategies are promising, there is still a gap from the preclinical results obtained and their translation to clinical studies. However, there is an increase in the number of approved gene therapies, as well as a constant development in their safety and efficacy profiles. Thus, it is expected that in a near future some of the promising strategies reviewed here could be tested in a clinical setting and if successful provide hope for SCAs patients.
Collapse
|
24
|
PolyQ-expanded proteins impair cellular proteostasis of ataxin-3 through sequestering the co-chaperone HSJ1 into aggregates. Sci Rep 2021; 11:7815. [PMID: 33837238 PMCID: PMC8035147 DOI: 10.1038/s41598-021-87382-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/26/2021] [Indexed: 12/13/2022] Open
Abstract
Polyglutamine (polyQ) expansion of proteins can trigger protein misfolding and amyloid-like aggregation, which thus lead to severe cytotoxicities and even the respective neurodegenerative diseases. However, why polyQ aggregation is toxic to cells is not fully elucidated. Here, we took the fragments of polyQ-expanded (PQE) ataxin-7 (Atx7) and huntingtin (Htt) as models to investigate the effect of polyQ aggregates on the cellular proteostasis of endogenous ataxin-3 (Atx3), a protein that frequently appears in diverse inclusion bodies. We found that PQE Atx7 and Htt impair the cellular proteostasis of Atx3 by reducing its soluble as well as total Atx3 level but enhancing formation of the aggregates. Expression of these polyQ proteins promotes proteasomal degradation of endogenous Atx3 and accumulation of its aggregated form. Then we verified that the co-chaperone HSJ1 is an essential factor that orchestrates the balance of cellular proteostasis of Atx3; and further discovered that the polyQ proteins can sequester HSJ1 into aggregates or inclusions in a UIM domain-dependent manner. Thereby, the impairment of Atx3 proteostasis may be attributed to the sequestration and functional loss of cellular HSJ1. This study deciphers a potential mechanism underlying how PQE protein triggers proteinopathies, and also provides additional evidence in supporting the hijacking hypothesis that sequestration of cellular interacting partners by protein aggregates leads to cytotoxicity or neurodegeneration.
Collapse
|
25
|
Neves-Carvalho A, Duarte-Silva S, Teixeira-Castro A, Maciel P. Polyglutamine spinocerebellar ataxias: emerging therapeutic targets. Expert Opin Ther Targets 2020; 24:1099-1119. [PMID: 32962458 DOI: 10.1080/14728222.2020.1827394] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Six of the most frequent dominantly inherited spinocerebellar ataxias (SCAs) worldwide - SCA1, SCA2, SCA3, SCA6, SCA7, and SCA17 - are caused by an expansion of a polyglutamine (polyQ) tract in the corresponding proteins. While the identification of the causative mutation has advanced knowledge on the pathogenesis of polyQ SCAs, effective therapeutics able to mitigate the severe clinical manifestation of these highly incapacitating disorders are not yet available. AREAS COVERED This review provides a comprehensive and critical perspective on well-established and emerging therapeutic targets for polyQ SCAs; it aims to inspire prospective drug discovery efforts. EXPERT OPINION The landscape of polyQ SCAs therapeutic targets and strategies includes (1) the mutant genes and proteins themselves, (2) enhancement of endogenous protein quality control responses, (3) abnormal protein-protein interactions of the mutant proteins, (4) disturbed neuronal function, (5) mitochondrial function, energy availability and oxidative stress, and (6) glial dysfunction, growth factor or hormone imbalances. Challenges include gaining a clearer definition of therapeutic targets for the drugs in clinical development, the discovery of novel drug-like molecules for challenging key targets, and the attainment of a stronger translation of preclinical findings to the clinic.
Collapse
Affiliation(s)
- Andreia Neves-Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho , Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory , Braga, Guimarães, Portugal
| | - Sara Duarte-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho , Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory , Braga, Guimarães, Portugal
| | - Andreia Teixeira-Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho , Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory , Braga, Guimarães, Portugal
| | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho , Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory , Braga, Guimarães, Portugal
| |
Collapse
|
26
|
Duarte Lobo D, Nobre RJ, Oliveira Miranda C, Pereira D, Castelhano J, Sereno J, Koeppen A, Castelo-Branco M, Pereira de Almeida L. The blood-brain barrier is disrupted in Machado-Joseph disease/spinocerebellar ataxia type 3: evidence from transgenic mice and human post-mortem samples. Acta Neuropathol Commun 2020; 8:152. [PMID: 32867861 PMCID: PMC7457506 DOI: 10.1186/s40478-020-00955-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 05/25/2020] [Indexed: 12/20/2022] Open
Abstract
Blood-brain barrier (BBB) disruption is a common feature in neurodegenerative diseases. However, BBB integrity has not been assessed in spinocerebellar ataxias (SCAs) such as Machado-Joseph disease/SCA type 3 (MJD/SCA3), a genetic disorder, triggered by polyglutamine-expanded ataxin-3. To investigate that, BBB integrity was evaluated in a transgenic mouse model of MJD and in human post-mortem brain tissues. Firstly, we investigated the BBB permeability in MJD mice by: i) assessing the extravasation of the Evans blue (EB) dye and blood-borne proteins (e.g fibrinogen) in the cerebellum by immunofluorescence, and ii) in vivo Dynamic Contrast Enhanced-Magnetic Resonance Imaging (DCE-MRI). The presence of ataxin-3 aggregates in brain blood vessels and the levels of tight junction (TJ)-associated proteins were also explored by immunofluorescence and western blotting. Human brain samples were used to confirm BBB permeability by evaluating fibrinogen extravasation, co-localization of ataxin-3 aggregates with brain blood vessels and neuroinflammation. In the cerebellum of the mouse model of MJD, there was a 5-fold increase in EB accumulation when compared to age-matched controls. Moreover, vascular permeability displayed a 13-fold increase demonstrated by DCE-MRI. These results were validated by the 2-fold increase in fibrinogen extravasation in transgenic animals comparing to controls. Interestingly, mutant ataxin-3 aggregates were detected in cerebellar blood vessels of transgenic mice, accompanied by alterations of TJ-associated proteins in cerebellar endothelial cells, namely a 29% decrease in claudin-5 oligomers and a 10-fold increase in an occludin cleavage fragment. These results were validated in post-mortem brain samples from MJD patients as we detected fibrinogen extravasation across BBB, the presence of ataxin-3 aggregates in blood vessels and associated microgliosis. Altogether, our results prove BBB impairment in MJD/SCA3. These findings contribute for a better understanding of the disease mechanisms and opens the opportunity to treat MJD with medicinal products that in normal conditions would not cross the BBB.
Collapse
|
27
|
Robinson KJ, Watchon M, Laird AS. Aberrant Cerebellar Circuitry in the Spinocerebellar Ataxias. Front Neurosci 2020; 14:707. [PMID: 32765211 PMCID: PMC7378801 DOI: 10.3389/fnins.2020.00707] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022] Open
Abstract
The spinocerebellar ataxias (SCAs) are a heterogeneous group of neurodegenerative diseases that share convergent disease features. A common symptom of these diseases is development of ataxia, involving impaired balance and motor coordination, usually stemming from cerebellar dysfunction and neurodegeneration. For most spinocerebellar ataxias, pathology can be attributed to an underlying gene mutation and the impaired function of the encoded protein through loss or gain-of-function effects. Strikingly, despite vast heterogeneity in the structure and function of disease-causing genes across the SCAs and the cellular processes affected, the downstream effects have considerable overlap, including alterations in cerebellar circuitry. Interestingly, aberrant function and degeneration of Purkinje cells, the major output neuronal population present within the cerebellum, precedes abnormalities in other neuronal populations within many SCAs, suggesting that Purkinje cells have increased vulnerability to cellular perturbations. Factors that are known to contribute to perturbed Purkinje cell function in spinocerebellar ataxias include altered gene expression resulting in altered expression or functionality of proteins and channels that modulate membrane potential, downstream impairments in intracellular calcium homeostasis and changes in glutamatergic input received from synapsing climbing or parallel fibers. This review will explore this enhanced vulnerability and the aberrant cerebellar circuitry linked with it in many forms of SCA. It is critical to understand why Purkinje cells are vulnerable to such insults and what overlapping pathogenic mechanisms are occurring across multiple SCAs, despite different underlying genetic mutations. Enhanced understanding of disease mechanisms will facilitate the development of treatments to prevent or slow progression of the underlying neurodegenerative processes, cerebellar atrophy and ataxic symptoms.
Collapse
Affiliation(s)
| | | | - Angela S. Laird
- Centre for Motor Neuron Disease Research, Department of Biomedical Science, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
28
|
Mendonça LS, Nóbrega C, Tavino S, Brinkhaus M, Matos C, Tomé S, Moreira R, Henriques D, Kaspar BK, Pereira de Almeida L. Ibuprofen enhances synaptic function and neural progenitors proliferation markers and improves neuropathology and motor coordination in Machado-Joseph disease models. Hum Mol Genet 2020; 28:3691-3703. [PMID: 31127937 DOI: 10.1093/hmg/ddz097] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 04/22/2019] [Accepted: 05/07/2019] [Indexed: 01/09/2023] Open
Abstract
Machado-Joseph disease or spinocerebellar ataxia type 3 is an inherited neurodegenerative disease associated with an abnormal glutamine over-repetition within the ataxin-3 protein. This mutant ataxin-3 protein affects several cellular pathways, leading to neuroinflammation and neuronal death in specific brain regions resulting in severe clinical manifestations. Presently, there is no therapy able to modify the disease progression. Nevertheless, anti-inflammatory pharmacological intervention has been associated with positive outcomes in other neurodegenerative diseases. Thus, the present work aimed at investigating whether ibuprofen treatment would alleviate Machado-Joseph disease. We found that ibuprofen-treated mouse models presented a significant reduction in the neuroinflammation markers, namely Il1b and TNFa mRNA and IKB-α protein phosphorylation levels. Moreover, these mice exhibited neuronal preservation, cerebellar atrophy reduction, smaller mutant ataxin-3 inclusions and motor performance improvement. Additionally, neural cultures of Machado-Joseph disease patients' induced pluripotent stem cells-derived neural stem cells incubated with ibuprofen showed increased levels of neural progenitors proliferation and synaptic markers such as MSI1, NOTCH1 and SYP. These findings were further confirmed in ibuprofen-treated mice that display increased neural progenitor numbers (Ki67 positive) in the subventricular zone. Furthermore, interestingly, ibuprofen treatment enhanced neurite total length and synaptic function of human neurons. Therefore, our results indicate that ibuprofen reduces neuroinflammation and induces neuroprotection, alleviating Machado-Joseph disease-associated neuropathology and motor impairments. Thus, our findings demonstrate that ibuprofen treatment has the potential to be used as a neuroprotective therapeutic approach in Machado-Joseph disease.
Collapse
Affiliation(s)
- Liliana S Mendonça
- Vectors and Gene Therapy Group, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Clévio Nóbrega
- Vectors and Gene Therapy Group, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Silvia Tavino
- Vectors and Gene Therapy Group, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Maximilian Brinkhaus
- Vectors and Gene Therapy Group, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Carlos Matos
- Vectors and Gene Therapy Group, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Sandra Tomé
- Vectors and Gene Therapy Group, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ricardo Moreira
- Vectors and Gene Therapy Group, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Daniel Henriques
- Vectors and Gene Therapy Group, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Brian K Kaspar
- The Research Institute at Nationwide Children's Hospital, Ohio State University School of Medicine, Columbus, Ohio 43205, USA
| | - Luís Pereira de Almeida
- Vectors and Gene Therapy Group, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
29
|
Kornspan JD, Kosower NS, Vaisid T, Katzhandler J, Rottem S. Novel synthetic lipopeptides derived from Mycoplasma hyorhinis upregulate calpastatin in SH-SY5Y neuroblastoma cells and induce a neuroprotective effect against amyloid-β-peptide toxicity. FEMS Microbiol Lett 2020; 367:5824629. [PMID: 32329786 DOI: 10.1093/femsle/fnaa073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 04/22/2020] [Indexed: 11/14/2022] Open
Abstract
Previously, we showed that contamination of SH-SY5Y neuroblastoma cells by Mycoplasma hyorhinis strains NDMh and MCLD leads to increased levels of calpastatin (the endogenous, specific inhibitor of the Ca2+-dependent protease calpain), resulting in inhibition of calpain activation. We have found that the increased calpastatin level is promoted by the lipoprotein fraction (MhLpp) of the mycoplasmal membrane. Here, we present MhLpp-based novel synthetic lipopeptides that induce upregulation of calpastatin in SH-SY5Y neuroblastoma cells, leading to protection of the treated cells against Ca2+/amyloid-β-peptide toxicity. These lipopeptides present a new class of promising agents against calpain-induced cell toxicity.
Collapse
Affiliation(s)
- Jonathan D Kornspan
- Department of Microbiology and Molecular Genetics, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Nechama S Kosower
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tali Vaisid
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | - Shlomo Rottem
- Department of Microbiology and Molecular Genetics, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| |
Collapse
|
30
|
Chen YS, Hong ZX, Lin SZ, Harn HJ. Identifying Therapeutic Targets for Spinocerebellar Ataxia Type 3/Machado-Joseph Disease through Integration of Pathological Biomarkers and Therapeutic Strategies. Int J Mol Sci 2020; 21:ijms21093063. [PMID: 32357546 PMCID: PMC7246822 DOI: 10.3390/ijms21093063] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 12/13/2022] Open
Abstract
Spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD) is a progressive motor disease with no broadly effective treatment. However, most current therapies are based on symptoms rather than the underlying disease mechanisms. In this review, we describe potential therapeutic strategies based on known pathological biomarkers and related pathogenic processes. The three major conclusions from the current studies are summarized as follows: (i) for the drugs currently being tested in clinical trials; a weak connection was observed between drugs and SCA3/MJD biomarkers. The only two exceptions are the drugs suppressing glutamate-induced calcium influx and chemical chaperon. (ii) For most of the drugs that have been tested in animal studies, there is a direct association with pathological biomarkers. We further found that many drugs are associated with inducing autophagy, which is supported by the evidence of deficient autophagy biomarkers in SCA3/MJD, and that there may be more promising therapeutics. (iii) Some reported biomarkers lack relatively targeted drugs. Low glucose utilization, altered amino acid metabolism, and deficient insulin signaling are all implicated in SCA3/MJD, but there have been few studies on treatment strategies targeting these abnormalities. Therapeutic strategies targeting multiple pathological SCA3/MJD biomarkers may effectively block disease progression and preserve neurological function.
Collapse
Affiliation(s)
- Yu-Shuan Chen
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan
- Correspondence: (Y.-S.C.); (H.-J.H.); Tel.: +886-3-856-1825 (Y.-S.C. & H.-J.H.); Fax: +886-3-856-0977 (H.-J.H.)
| | - Zhen-Xiang Hong
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan
| | - Shinn-Zong Lin
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan
| | - Horng-Jyh Harn
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan
- Department of Pathology, Hualien Tzu Chi Hospital, Tzu Chi University, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan
- Correspondence: (Y.-S.C.); (H.-J.H.); Tel.: +886-3-856-1825 (Y.-S.C. & H.-J.H.); Fax: +886-3-856-0977 (H.-J.H.)
| |
Collapse
|
31
|
Dantuma NP, Herzog LK. Machado-Joseph Disease: A Stress Combating Deubiquitylating Enzyme Changing Sides. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:237-260. [PMID: 32274760 DOI: 10.1007/978-3-030-38266-7_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Machado-Joseph disease (MJD), also known as Spinocerebellar ataxia type 3 (SCA3), is an autosomal dominant inheritable neurodegenerative disorder. After a long pre-symptomatic period, this late-onset disease progressively disables patients and typically leads to premature death. Neuronal loss in specific regions of the cerebellum, brainstem and basal ganglia as well as the spinal cord explains the spectra of debilitating neurological symptoms, most strikingly progressive limb, and gait ataxia. The genetic cause of MJD is a polyglutamine (polyQ) repeat expansion in the gene that encodes ataxin-3. This polyQ-containing protein displays a well-defined catalytic activity as ataxin-3 is a deubiquitylating enzyme that removes and disassembles ubiquitin chains from specific substrates. While mutant ataxin-3 with an expanded polyQ repeat induces cellular stress due to its propensity to aggregate, the native functions of wild-type ataxin-3 are linked to the cellular countermeasures against the very same stress conditions inflicted by polyQ-containing and other aggregation-prone proteins. Hence, a mixture of gain-of-function and loss-of-function mechanisms are likely to contribute to the neuronal demise observed in MJD. In this review, we discuss the intimate link between ataxin-3 and cellular stress and its relevance for therapeutic intervention in MJD.
Collapse
Affiliation(s)
- Nico P Dantuma
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden.
| | - Laura K Herzog
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
32
|
Da Silva JD, Teixeira-Castro A, Maciel P. From Pathogenesis to Novel Therapeutics for Spinocerebellar Ataxia Type 3: Evading Potholes on the Way to Translation. Neurotherapeutics 2019; 16:1009-1031. [PMID: 31691128 PMCID: PMC6985322 DOI: 10.1007/s13311-019-00798-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease (MJD), is a neurodegenerative disorder caused by a polyglutamine expansion in the ATXN3 gene. In spite of the identification of a clear monogenic cause 25 years ago, the pathological process still puzzles researchers, impairing prospects for an effective therapy. Here, we propose the disruption of protein homeostasis as the hub of SCA3 pathogenesis, being the molecular mechanisms and cellular pathways that are deregulated in SCA3 downstream consequences of the misfolding and aggregation of ATXN3. Moreover, we attempt to provide a realistic perspective on how the translational/clinical research in SCA3 should evolve. This was based on molecular findings, clinical and epidemiological characteristics, studies of proposed treatments in other conditions, and how that information is essential for their (re-)application in SCA3. This review thus aims i) to critically evaluate the current state of research on SCA3, from fundamental to translational and clinical perspectives; ii) to bring up the current key questions that remain unanswered in this disorder; and iii) to provide a frame on how those answers should be pursued.
Collapse
Affiliation(s)
- Jorge Diogo Da Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Andreia Teixeira-Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
33
|
Hsieh M, Hsieh BY, Ma CY, Li YT, Liu CS, Lo CM. Protective roles of carbonic anhydrase 8 in Machado-Joseph Disease. J Neurosci Res 2019; 97:1278-1297. [PMID: 31157458 DOI: 10.1002/jnr.24474] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 03/27/2019] [Accepted: 05/14/2019] [Indexed: 12/16/2022]
Abstract
Machado-Joseph disease (MJD)/Spinocerebellar ataxia type 3 (SCA3) is an inherited neurodegenerative disease that can lead to a regression of motor coordination and muscle control in the extremities. It is known that expansion of CAG repeats encodes abnormally long polyQ in mutant ataxin-3, the disease protein. It is also noted that mutant ataxin-3 interacts with 1,4,5-trisphosphate receptor type 1 (IP3R1) and induces abnormal Ca2+ release. Previously, we have shown a significant increase in the expression of carbonic anhydrase VIII (CA8) in SK-N-SH-MJD78 cells, which are human neuroblastoma cells overexpressing mutant ataxin-3 with 78 glutamine repeats. In the current study, we showed the presence of significantly increased CA8 expression in MJD mouse cerebellum in either early or late disease stage, with a gradual decrease in CA8 expression as the MJD mice naturally aged. By immunofluorescence and immunoprecipitation analysis, we also found that CA8 co-localized and interacted with mutant ataxin-3 in SK-N-SH-MJD78 cells harboring overexpressed CA8 (SK-MJD78-CA8). In addition, we found that SK-MJD78-CA8 cells, as well as cerebellar granule neurons (CGNs) of MJD transgenic (Tg) mouse with overexpressed CA8, were more resistant to reactive oxygen species (ROS) stress than the control cells. Importantly, overexpression of CA8 in SK-MJD78-CA8 cells and in MJD CGNs rescued abnormal Ca2+ release and caused an increase in cell survival. In summary, we demonstrate the protective function of CA8 in MJD disease models and speculate that the declining expression of CA8 following an initial increased expression may be related to the late onset phenomenon of MJD.
Collapse
Affiliation(s)
- Mingli Hsieh
- Department of Life Science, Tunghai University, Taichung, Taiwan, Republic of China.,Life Science Research Center, Tunghai University, Taichung, Taiwan, Republic of China
| | - Benjamin Y Hsieh
- Department of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Chung-Yung Ma
- Department of Life Science, Tunghai University, Taichung, Taiwan, Republic of China
| | - Yi-Ting Li
- Department of Life Science, Tunghai University, Taichung, Taiwan, Republic of China
| | - Chin-San Liu
- Vascular and Genomic Research Center, Changhua Christian Hospital, Changhua, Taiwan, Republic of China.,Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan, Republic of China.,Graduate Institute of Integrative Chinese and Western Medicine, China Medical University Hospital, Taichung, Taiwan, Republic of China
| | - Che-Min Lo
- Department of Life Science, Tunghai University, Taichung, Taiwan, Republic of China
| |
Collapse
|
34
|
Buijsen RAM, Toonen LJA, Gardiner SL, van Roon-Mom WMC. Genetics, Mechanisms, and Therapeutic Progress in Polyglutamine Spinocerebellar Ataxias. Neurotherapeutics 2019; 16:263-286. [PMID: 30607747 PMCID: PMC6554265 DOI: 10.1007/s13311-018-00696-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Autosomal dominant cerebellar ataxias (ADCAs) are a group of neurodegenerative disorders characterized by degeneration of the cerebellum and its connections. All ADCAs have progressive ataxia as their main clinical feature, frequently accompanied by dysarthria and oculomotor deficits. The most common spinocerebellar ataxias (SCAs) are 6 polyglutamine (polyQ) SCAs. These diseases are all caused by a CAG repeat expansion in the coding region of a gene. Currently, no curative treatment is available for any of the polyQ SCAs, but increasing knowledge on the genetics and the pathological mechanisms of these polyQ SCAs has provided promising therapeutic targets to potentially slow disease progression. Potential treatments can be divided into pharmacological and gene therapies that target the toxic downstream effects, gene therapies that target the polyQ SCA genes, and stem cell replacement therapies. Here, we will provide a review on the genetics, mechanisms, and therapeutic progress in polyglutamine spinocerebellar ataxias.
Collapse
Affiliation(s)
- Ronald A M Buijsen
- Department of Human Genetics, LUMC, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.
| | - Lodewijk J A Toonen
- Department of Human Genetics, LUMC, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Sarah L Gardiner
- Department of Human Genetics, LUMC, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
- Department of Neurology, LUMC, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | | |
Collapse
|
35
|
Polymorphisms in DNA methylation–related genes are linked to the phenotype of Machado-Joseph disease. Neurobiol Aging 2019; 75:225.e1-225.e8. [DOI: 10.1016/j.neurobiolaging.2018.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 09/06/2018] [Accepted: 11/08/2018] [Indexed: 12/16/2022]
|
36
|
Killing Two Angry Birds with One Stone: Autophagy Activation by Inhibiting Calpains in Neurodegenerative Diseases and Beyond. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4741252. [PMID: 30895192 PMCID: PMC6393885 DOI: 10.1155/2019/4741252] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/27/2019] [Indexed: 12/21/2022]
Abstract
Proteolytic machineries execute vital cellular functions and their disturbances are implicated in diverse medical conditions, including neurodegenerative diseases. Interestingly, calpains, a class of Ca2+-dependent regulatory proteases, can modulate the degradational system of autophagy by cleaving proteins involved in this pathway. Moreover, both machineries are common players in many molecular pathomechanisms and have been targeted individually or together, as a therapeutic strategy in experimental setups. In this review, we briefly introduce calpains and autophagy, with their roles in health and disease, and focus on their direct pathologically relevant interplay in neurodegeneration and beyond. The modulation of calpain activity may comprise a promising treatment approach to attenuate the deregulation of these two essential mechanisms.
Collapse
|
37
|
Krauss S, Nalavade R, Weber S, Carter K, Evert BO. Upregulation of miR-25 and miR-181 Family Members Correlates with Reduced Expression of ATXN3 in Lymphocytes from SCA3 Patients. Microrna 2019; 8:76-85. [PMID: 30147021 DOI: 10.2174/2211536607666180821162403] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/03/2018] [Accepted: 08/20/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND Spinocerebellar ataxia type 3 (SCA3), the most common spinocerebellar ataxia, is caused by a polyglutamine (polyQ) expansion in the protein ataxin-3 (ATXN3). Silencing the expression of polyQ-expanded ATXN3 rescues the cellular disease phenotype. OBJECTIVE This study investigated the differential expression of microRNAs (miRNAs), small noncoding RNAs targeting gene expression, in lymphoblastoid cells (LCs) from SCA3 patients and the capability of identified deregulated miRNAs to target and alter ATXN3 expression. METHODS MiRNA profiling was performed by microarray hybridization of total RNA from control and SCA3-LCs. The capability of the identified miRNAs and their target sites to suppress ATXN3 expression was analyzed using mutagenesis, reverse transcription PCR, immunoblotting, luciferase reporter assays, mimics and precursors of the identified miRNAs. RESULTS SCA3-LCs showed significantly decreased expression levels of ATXN3 and a significant upregulation of the ATXN3-3'UTR targeting miRNAs, miR-32 and miR-181c and closely related members of the miR-25 and miR-181 family, respectively. MiR-32 and miR-181c effectively targeted the 3'UTR of ATXN3 and suppressed the expression of ATXN3. CONCLUSIONS The simultaneous upregulation of closely related miRNAs targeting the 3'UTR of ATXN3 and the significantly reduced ATXN3 expression levels in SCA3-LCs suggests that miR-25 and miR-181 family members cooperatively bind to the 3'UTR to suppress the expression of ATXN3. The findings further suggest that the upregulation of miR-25 and miR-181 family members in SCA3- LCs reflects a cell type-specific, protective mechanism to diminish polyQ-mediated cytotoxic effects. Thus, miRNA mimics of miR-25 and miR-181 family members may prove useful for the treatment of SCA3.
Collapse
Affiliation(s)
- Sybille Krauss
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Street 27, 53127 Bonn, Germany
| | - Rohit Nalavade
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Street 27, 53127 Bonn, Germany
| | - Stephanie Weber
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Street 27, 53127 Bonn, Germany
| | - Katlynn Carter
- Department of Neurology, University of Bonn, Sigmund-Freud-Street 25, 53127 Bonn, Germany
| | - Bernd O Evert
- Department of Neurology, University of Bonn, Sigmund-Freud-Street 25, 53127 Bonn, Germany
| |
Collapse
|
38
|
Weber JJ, Kloock SJ, Nagel M, Ortiz-Rios MM, Hofmann J, Riess O, Nguyen HP. Calpastatin ablation aggravates the molecular phenotype in cell and animal models of Huntington disease. Neuropharmacology 2018; 133:94-106. [PMID: 29355642 DOI: 10.1016/j.neuropharm.2018.01.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/21/2017] [Accepted: 01/16/2018] [Indexed: 12/15/2022]
Abstract
Deciphering the molecular pathology of Huntington disease is of particular importance, not only for a better understanding of this neurodegenerative disease, but also to identify potential therapeutic targets. The polyglutamine-expanded disease protein huntingtin was shown to undergo proteolysis, which results in the accumulation of toxic and aggregation-prone fragments. Amongst several classes of proteolytic enzymes responsible for huntingtin processing, the group of calcium-activated calpains has been found to be a significant mediator of the disease protein toxicity. To confirm the impact of calpain-mediated huntingtin cleavage in Huntington disease, we analysed the effect of depleting or overexpressing the endogenous calpain inhibitor calpastatin in HEK293T cells transfected with wild-type or polyglutamine-expanded huntingtin. Moreover, we crossbred huntingtin knock-in mice with calpastatin knockout animals to assess its effect not only on huntingtin cleavage and aggregation but also additional molecular markers. We demonstrated that a reduced or ablated expression of calpastatin triggers calpain overactivation and a consequently increased mutant huntingtin cleavage in cells and in vivo. These alterations were accompanied by an elevated formation of predominantly cytoplasmic huntingtin aggregates. On the other hand, overexpression of calpastatin in cells attenuated huntingtin fragmentation and aggregation. In addition, we observed an enhanced cleavage of DARPP-32, p35 and synapsin-1 in neuronal tissue upon calpain overactivation. Our results corroborate the important role of calpains in the molecular pathogenesis of Huntington disease and endorse targeting these proteolytic enzymes as a therapeutic approach.
Collapse
Affiliation(s)
- Jonasz Jeremiasz Weber
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Calwerstraße 7, 72076, Tübingen, Germany; Centre for Rare Diseases, University of Tübingen, Calwerstraße 7, 72076, Tübingen, Germany.
| | - Simon Johannes Kloock
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Calwerstraße 7, 72076, Tübingen, Germany; Centre for Rare Diseases, University of Tübingen, Calwerstraße 7, 72076, Tübingen, Germany.
| | - Maike Nagel
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Calwerstraße 7, 72076, Tübingen, Germany; Centre for Rare Diseases, University of Tübingen, Calwerstraße 7, 72076, Tübingen, Germany.
| | - Midea Malena Ortiz-Rios
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Calwerstraße 7, 72076, Tübingen, Germany; Centre for Rare Diseases, University of Tübingen, Calwerstraße 7, 72076, Tübingen, Germany.
| | - Julian Hofmann
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Calwerstraße 7, 72076, Tübingen, Germany; Centre for Rare Diseases, University of Tübingen, Calwerstraße 7, 72076, Tübingen, Germany.
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Calwerstraße 7, 72076, Tübingen, Germany; Centre for Rare Diseases, University of Tübingen, Calwerstraße 7, 72076, Tübingen, Germany.
| | - Huu Phuc Nguyen
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Calwerstraße 7, 72076, Tübingen, Germany; Centre for Rare Diseases, University of Tübingen, Calwerstraße 7, 72076, Tübingen, Germany.
| |
Collapse
|
39
|
Acosta JR, Watchon M, Yuan KC, Fifita JA, Svahn AJ, Don EK, Winnick CG, Blair IP, Nicholson GA, Cole NJ, Goldsbury C, Laird AS. Neuronal cell culture from transgenic zebrafish models of neurodegenerative disease. Biol Open 2018; 7:bio.036475. [PMID: 30190267 PMCID: PMC6215410 DOI: 10.1242/bio.036475] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We describe a protocol for culturing neurons from transgenic zebrafish embryos to investigate the subcellular distribution and protein aggregation status of neurodegenerative disease-causing proteins. The utility of the protocol was demonstrated on cell cultures from zebrafish that transgenically express disease-causing variants of human fused in sarcoma (FUS) and ataxin-3 proteins, in order to study amyotrophic lateral sclerosis (ALS) and spinocerebellar ataxia type-3 (SCA3), respectively. A mixture of neuronal subtypes, including motor neurons, exhibited differentiation and neurite outgrowth in the cultures. As reported previously, mutant human FUS was found to be mislocalized from nuclei to the cytosol, mimicking the pathology seen in human ALS and the zebrafish FUS model. In contrast, neurons cultured from zebrafish expressing human ataxin-3 with disease-associated expanded polyQ repeats did not accumulate within nuclei in a manner often reported to occur in SCA3. Despite this, the subcellular localization of the human ataxin-3 protein seen in cell cultures was similar to that found in the SCA3 zebrafish themselves. The finding of similar protein localization and aggregation status in the neuronal cultures and corresponding transgenic zebrafish models confirms that this cell culture model is a useful tool for investigating the cell biology and proteinopathy signatures of mutant proteins for the study of neurodegenerative disease. Summary: This article describes the optimization and validation of a protocol for culturing of neurons from transgenic zebrafish for the study of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jamie R Acosta
- The Brain & Mind Centre, University of Sydney, Sydney, New South Wales 2050, Australia.,The Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia.,Discipline of Anatomy and Histology, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Maxinne Watchon
- Discipline of Anatomy and Histology, University of Sydney, Sydney, New South Wales 2006, Australia.,Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia.,Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Kristy C Yuan
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Jennifer A Fifita
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Adam J Svahn
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Emily K Don
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Claire G Winnick
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Ian P Blair
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Garth A Nicholson
- Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia.,Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia.,ANZAC Research Institute, Concord Repatriation Hospital, Sydney, New South Wales 2139, Australia
| | - Nicholas J Cole
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Claire Goldsbury
- The Brain & Mind Centre, University of Sydney, Sydney, New South Wales 2050, Australia.,The Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia.,Discipline of Anatomy and Histology, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Angela S Laird
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
40
|
Matos CA, de Almeida LP, Nóbrega C. Machado-Joseph disease/spinocerebellar ataxia type 3: lessons from disease pathogenesis and clues into therapy. J Neurochem 2018; 148:8-28. [PMID: 29959858 DOI: 10.1111/jnc.14541] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/05/2018] [Accepted: 06/27/2018] [Indexed: 12/25/2022]
Abstract
Machado-Joseph disease (MJD), also known as spinocerebellar ataxia type 3 (SCA3), is an incurable disorder, widely regarded as the most common form of spinocerebellar ataxia in the world. MJD/SCA3 arises from mutation of the ATXN3 gene, but this simple monogenic cause contrasts with the complexity of the pathogenic mechanisms that are currently admitted to underlie neuronal dysfunction and death. The aberrantly expanded protein product - ataxin-3 - is known to aggregate and generate toxic species that disrupt several cell systems, including autophagy, proteostasis, transcription, mitochondrial function and signalling. Over the years, research into putative therapeutic approaches has often been devoted to the development of strategies that counteract disease at different stages of cellular pathogenesis. Silencing the pathogenic protein, blocking aggregation, inhibiting toxic proteolytic processing and counteracting dysfunctions of the cellular systems affected have yielded promising ameliorating results in studies with cellular and animal models. The current review analyses the available studies dedicated to the investigation of MJD/SCA3 pathogenesis and the exploration of possible therapeutic strategies, focusing primarily on gene therapy and pharmacological approaches rooted on the molecular and cellular mechanisms of disease.
Collapse
Affiliation(s)
- Carlos A Matos
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Luís Pereira de Almeida
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Clévio Nóbrega
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Department of Biomedical Sciences and Medicine, University of Algarve, Coimbra, Portugal.,Centre for Biomedical Research (CBMR), University of Algarve, Coimbra, Portugal.,Algarve Biomedical Center (ABC), University of Algarve, Faro, Portugal
| |
Collapse
|
41
|
Wan L, Xu K, Chen Z, Tang B, Jiang H. Roles of Post-translational Modifications in Spinocerebellar Ataxias. Front Cell Neurosci 2018; 12:290. [PMID: 30283301 PMCID: PMC6156280 DOI: 10.3389/fncel.2018.00290] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 08/13/2018] [Indexed: 12/17/2022] Open
Abstract
Post-translational modifications (PTMs), including phosphorylation, acetylation, ubiquitination, SUMOylation, etc., of proteins can modulate protein properties such as intracellular distribution, activity, stability, aggregation, and interactions. Therefore, PTMs are vital regulatory mechanisms for multiple cellular processes. Spinocerebellar ataxias (SCAs) are hereditary, heterogeneous, neurodegenerative diseases for which the primary manifestation involves ataxia. Because the pathogenesis of most SCAs is correlated with mutant proteins directly or indirectly, the PTMs of disease-related proteins might functionally affect SCA development and represent potential therapeutic interventions. Here, we review multiple PTMs related to disease-causing proteins in SCAs pathogenesis and their effects. Furthermore, we discuss these PTMs as potential targets for treating SCAs and describe translational therapies targeting PTMs that have been published.
Collapse
Affiliation(s)
- Linlin Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Keqin Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhao Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- Laboratory of Medical Genetics, Central South University, Changsha, China
- Parkinson’s Disease Center of Beijing Institute for Brain Disorders, Beijing, China
- Collaborative Innovation Center for Brain Science, Shanghai, China
- Collaborative Innovation Center for Genetics and Development, Shanghai, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- Laboratory of Medical Genetics, Central South University, Changsha, China
- Department of Neurology, Xinjiang Medical University, Ürümqi, China
| |
Collapse
|
42
|
Wang L, Gao J, Liu J, Siedlak SL, Torres S, Fujioka H, Huntley ML, Jiang Y, Ji H, Yan T, Harland M, Termsarasab P, Zeng S, Jiang Z, Liang J, Perry G, Hoppel C, Zhang C, Li H, Wang X. Mitofusin 2 Regulates Axonal Transport of Calpastatin to Prevent Neuromuscular Synaptic Elimination in Skeletal Muscles. Cell Metab 2018; 28:400-414.e8. [PMID: 30017354 PMCID: PMC6125186 DOI: 10.1016/j.cmet.2018.06.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/08/2018] [Accepted: 06/14/2018] [Indexed: 01/06/2023]
Abstract
Skeletal muscles undergo atrophy in response to diseases and aging. Here we report that mitofusin 2 (Mfn2) acts as a dominant suppressor of neuromuscular synaptic loss to preserve skeletal muscles. Mfn2 is reduced in spinal cords of transgenic SOD1G93A and aged mice. Through preserving neuromuscular synapses, increasing neuronal Mfn2 prevents skeletal muscle wasting in both SOD1G93A and aged mice, whereas deletion of neuronal Mfn2 produces neuromuscular synaptic dysfunction and skeletal muscle atrophy. Neuromuscular synaptic loss after sciatic nerve transection can also be alleviated by Mfn2. Mfn2 coexists with calpastatin largely in mitochondria-associated membranes (MAMs) to regulate its axonal transport. Genetic inactivation of calpastatin abolishes Mfn2-mediated protection of neuromuscular synapses. Our results suggest that, as a potential key component of a novel and heretofore unrecognized mechanism of cytoplasmic protein transport, Mfn2 may play a general role in preserving neuromuscular synapses and serve as a common therapeutic target for skeletal muscle atrophy.
Collapse
Affiliation(s)
- Luwen Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Ju Gao
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Jingyi Liu
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Sandra L Siedlak
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Sandy Torres
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Hisashi Fujioka
- Electron Microscopy Core Facility, Case Western Reserve University, Cleveland, OH, USA
| | - Mikayla L Huntley
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Yinfei Jiang
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Haiyan Ji
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Tingxiang Yan
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Micah Harland
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Pichet Termsarasab
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Sophia Zeng
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Zhen Jiang
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Jingjing Liang
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, USA
| | - George Perry
- College of Sciences, University of Texas at San Antonio, San Antonio, TX, USA
| | - Charles Hoppel
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Cheng Zhang
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Hu Li
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Xinglong Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA; Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
43
|
Ashraf NS, Duarte-Silva S, Shaw ED, Maciel P, Paulson HL, Teixeira-Castro A, Costa MDC. Citalopram Reduces Aggregation of ATXN3 in a YAC Transgenic Mouse Model of Machado-Joseph Disease. Mol Neurobiol 2018; 56:3690-3701. [PMID: 30187384 DOI: 10.1007/s12035-018-1331-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/22/2018] [Indexed: 01/20/2023]
Abstract
Machado-Joseph disease, also known as spinocerebellar ataxia type 3, is a fatal polyglutamine disease with no disease-modifying treatment. The selective serotonin reuptake inhibitor citalopram was shown in nematode and mouse models to be a compelling repurposing candidate for Machado-Joseph disease therapeutics. We sought to confirm the efficacy of citalopram to decrease ATXN3 aggregation in an unrelated mouse model of Machado-Joseph disease. Four-week-old YACMJD84.2 mice and non-transgenic littermates were given citalopram 8 mg/kg in drinking water or water for 10 weeks. At the end of treatment, brains were collected for biochemical and pathological analyses. Brains of citalopram-treated YACMJD84.2 mice showed an approximate 50% decrease in the percentage of cells containing ATXN3-positive inclusions in the substantia nigra and three examined brainstem nuclei compared to controls. No differences in ATXN3 inclusion load were observed in deep cerebellar nuclei of mice. Citalopram effect on ATXN3 aggregate burden was corroborated by immunoblotting analysis. While lysates from the brainstem and cervical spinal cord of citalopram-treated mice showed a decrease in all soluble forms of ATXN3 and a trend toward reduction of insoluble ATXN3, no differences in ATXN3 levels were found between cerebella of citalopram-treated and vehicle-treated mice. Citalopram treatment altered levels of select components of the cellular protein homeostatic machinery that may be expected to enhance the capacity to refold and/or degrade mutant ATXN3. The results here obtained in a second independent mouse model of Machado-Joseph disease further support citalopram as a potential drug to be repurposed for this fatal disorder.
Collapse
Affiliation(s)
- Naila S Ashraf
- Department of Neurology, Michigan Medicine, University of Michigan, A. Alfred Taubman Biomedical Sciences Research Building, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Sara Duarte-Silva
- School of Medicine, University of Minho, Campus de Gualtar, Life and Health Sciences Research Institute (ICVS), Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Emily D Shaw
- Department of Neurology, Michigan Medicine, University of Michigan, A. Alfred Taubman Biomedical Sciences Research Building, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Patrícia Maciel
- School of Medicine, University of Minho, Campus de Gualtar, Life and Health Sciences Research Institute (ICVS), Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Henry L Paulson
- Department of Neurology, Michigan Medicine, University of Michigan, A. Alfred Taubman Biomedical Sciences Research Building, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Andreia Teixeira-Castro
- School of Medicine, University of Minho, Campus de Gualtar, Life and Health Sciences Research Institute (ICVS), Braga, Portugal. .,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal. .,Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA.
| | - Maria do Carmo Costa
- Department of Neurology, Michigan Medicine, University of Michigan, A. Alfred Taubman Biomedical Sciences Research Building, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA.
| |
Collapse
|
44
|
Hsieh J, Liu JW, Harn HJ, Hsueh KW, Rajamani K, Deng YC, Chia CM, Shyu WC, Lin SZ, Chiou TW. Human Olfactory Ensheathing Cell Transplantation Improves Motor Function in a Mouse Model of Type 3 Spinocerebellar Ataxia. Cell Transplant 2018; 26:1611-1621. [PMID: 29251109 PMCID: PMC5753984 DOI: 10.1177/0963689717732578] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Spinocerebellar ataxia (SCA) is a progressive neurodegenerative disease that affects the cerebellum and spinal cord. Among the 40 types of SCA, SCA type 3 (SCA3), also referred to as Machado–Joseph disease, is the most common. In the present study, we investigated the therapeutic effects of intracranial transplantation of human olfactory ensheathing cells (hOECs) in the ATXN3-84Q mouse model of SCA3. Motor function begins to decline in ATXN3-84Q transgenic mice at approximately 13 weeks of age. ATXN3-84Q mice that received intracranial hOEC transplantation into the dorsal raphe nucleus of the brain exhibited significant improvements in motor function, as measured by the rotarod performance test and footprint pattern analysis. In addition, intracranial hOEC transplantation alleviated cerebellar inflammation, prohibited Purkinje cells from dying, and enhanced the neuroplasticity of cerebellar Purkinje cells. The protein levels of tryptophan hydroxylase 2, the rate-limiting enzyme for serotonin synthesis in the cerebellum, and ryanodine receptor (RYR) increased in mice that received intracranial hOEC transplantation. Because both serotonin and RYR can enhance Purkinje cell maturation, these effects may account for the therapeutic benefits mediated by intracranial hOEC transplantation in SCA3 mice. These results indicate that intracranial hOEC transplantation has potential value as a novel strategy for treating SCA3.
Collapse
Affiliation(s)
- Jeanne Hsieh
- 1 Molecular Medicine Program, National Taiwan University, Taipei, Taiwan, Republic of China.,2 Everfront Biotech Inc., New Taipei City, Taiwan, Republic of China
| | - Jen-Wei Liu
- 2 Everfront Biotech Inc., New Taipei City, Taiwan, Republic of China.,3 Department of Life Science and Graduate Institute of Biotechnology, National Dong-Hwa University, Hualien, Taiwan, Republic of China
| | - Horng-Jyh Harn
- 4 Bioinnovation center, Buddhist Tzu Chi foundation, Hualien, Taiwan, Republic of China.,5 Department of Pathology, Buddhist Tzu Chi General hospital, Tzu Chi University, Hualien, Taiwan, Republic of China
| | - Kuo-Wei Hsueh
- 4 Bioinnovation center, Buddhist Tzu Chi foundation, Hualien, Taiwan, Republic of China.,6 Department of Department of Medical Research, Buddhist Hualien Tzu Chi General Hospital, Hualien, Taiwan, Republic of China
| | - Karthyayani Rajamani
- 3 Department of Life Science and Graduate Institute of Biotechnology, National Dong-Hwa University, Hualien, Taiwan, Republic of China
| | - Yu-Chen Deng
- 2 Everfront Biotech Inc., New Taipei City, Taiwan, Republic of China
| | - Chih-Min Chia
- 2 Everfront Biotech Inc., New Taipei City, Taiwan, Republic of China
| | - Woei-Cheang Shyu
- 7 Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan, Republic of China
| | - Shinn-Zong Lin
- 4 Bioinnovation center, Buddhist Tzu Chi foundation, Hualien, Taiwan, Republic of China.,8 Department of Neurosurgery, Buddhist Tzu Chi General hospital, Tzu Chi University, Hualien, Taiwan, Republic of China
| | - Tzyy-Wen Chiou
- 3 Department of Life Science and Graduate Institute of Biotechnology, National Dong-Hwa University, Hualien, Taiwan, Republic of China
| |
Collapse
|
45
|
Oliveira Miranda C, Marcelo A, Silva TP, Barata J, Vasconcelos-Ferreira A, Pereira D, Nóbrega C, Duarte S, Barros I, Alves J, Sereno J, Petrella LI, Castelhano J, Paiva VH, Rodrigues-Santos P, Alves V, Nunes-Correia I, Nobre RJ, Gomes C, Castelo-Branco M, Pereira de Almeida L. Repeated Mesenchymal Stromal Cell Treatment Sustainably Alleviates Machado-Joseph Disease. Mol Ther 2018; 26:2131-2151. [PMID: 30087083 DOI: 10.1016/j.ymthe.2018.07.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 06/19/2018] [Accepted: 07/03/2018] [Indexed: 12/16/2022] Open
Abstract
Machado-Joseph disease (MJD) or spinocerebellar ataxia type 3, the most common dominant spinocerebellar ataxia (SCA) worldwide, is caused by over-repetition of a CAG repeat in the ATXN3/MJD1 gene, which translates into a polyglutamine tract within the ataxin-3 protein. There is no treatment for this fatal disorder. Despite evidence of the safety and efficacy of mesenchymal stromal cells (MSCs) in delaying SCA disease progression in exploratory clinical trials, unanticipated regression of patients to the status prior to treatment makes the investigation of causes and solutions urgent and imperative. In the present study, we compared the efficacy of a single intracranial injection with repeated systemic MSC administration in alleviating the MJD phenotype of two strongly severe genetic rodent models. We found that a single MSC transplantation only produces transient effects, whereas periodic administration promotes sustained motor behavior and neuropathology alleviation, suggesting that MSC therapies should be re-designed to get sustained beneficial results in clinical practice. Furthermore, MSC promoted neuroprotection, increased the levels of GABA and glutamate, and decreased the levels of Myo-inositol, which correlated with motor improvements, indicating that these metabolites may serve as valid neurospectroscopic biomarkers of disease and treatment. This study makes important contributions to the design of new clinical approaches for MJD and other SCAs/polyglutamine disorders.
Collapse
Affiliation(s)
- Catarina Oliveira Miranda
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Faculdade de Medicina, Rua Larga, Pólo I, 1° andar, 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, Casa Costa Alemão - Pólo II, Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal; Centre for Neuroscience and Cell Biology - Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Adriana Marcelo
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Faculdade de Medicina, Rua Larga, Pólo I, 1° andar, 3004-504 Coimbra, Portugal; Centre for Neuroscience and Cell Biology - Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Teresa Pereira Silva
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Faculdade de Medicina, Rua Larga, Pólo I, 1° andar, 3004-504 Coimbra, Portugal; Centre for Neuroscience and Cell Biology - Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - João Barata
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Faculdade de Medicina, Rua Larga, Pólo I, 1° andar, 3004-504 Coimbra, Portugal; Centre for Neuroscience and Cell Biology - Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Ana Vasconcelos-Ferreira
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Faculdade de Medicina, Rua Larga, Pólo I, 1° andar, 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, Casa Costa Alemão - Pólo II, Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal; Centre for Neuroscience and Cell Biology - Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Doctoral Programme of Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Dina Pereira
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Faculdade de Medicina, Rua Larga, Pólo I, 1° andar, 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, Casa Costa Alemão - Pólo II, Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal; Centre for Neuroscience and Cell Biology - Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Doctoral Programme in Experimental Biology and Biomedicine, CNC - University of Coimbra, Rua Larga, Faculdade de Medicina, Pólo I, 1° andar, 3004-504 Coimbra, Portugal
| | - Clévio Nóbrega
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Faculdade de Medicina, Rua Larga, Pólo I, 1° andar, 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, Casa Costa Alemão - Pólo II, Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal; Centre for Neuroscience and Cell Biology - Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Sónia Duarte
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Faculdade de Medicina, Rua Larga, Pólo I, 1° andar, 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, Casa Costa Alemão - Pólo II, Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal; Centre for Neuroscience and Cell Biology - Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Inês Barros
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Faculdade de Medicina, Rua Larga, Pólo I, 1° andar, 3004-504 Coimbra, Portugal; Centre for Neuroscience and Cell Biology - Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Joana Alves
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Faculdade de Medicina, Rua Larga, Pólo I, 1° andar, 3004-504 Coimbra, Portugal; Centre for Neuroscience and Cell Biology - Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - José Sereno
- Centre for Neuroscience and Cell Biology - Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Coimbra Institute for Biomedical Imaging and Translational Research, Edifício do ICNAS, Polo 3, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Institute of Nuclear Science Applied to Health, University of Coimbra, Polo 3, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Lorena Itatí Petrella
- Centre for Neuroscience and Cell Biology - Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Coimbra Institute for Biomedical Imaging and Translational Research, Edifício do ICNAS, Polo 3, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Institute of Nuclear Science Applied to Health, University of Coimbra, Polo 3, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - João Castelhano
- Centre for Neuroscience and Cell Biology - Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Coimbra Institute for Biomedical Imaging and Translational Research, Edifício do ICNAS, Polo 3, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Institute of Nuclear Science Applied to Health, University of Coimbra, Polo 3, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Vitor Hugo Paiva
- Institute for Interdisciplinary Research, University of Coimbra, Casa Costa Alemão - Pólo II, Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal; MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Paulo Rodrigues-Santos
- Immunology Institute, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal; Immunology and Oncology Laboratory, Center for Neurosciences and Cell Biology (CNC), University of Coimbra, Rua Larga, 3004-504, Portugal; Center of Investigation in Environment, Genetics and Oncobiology, Apartado 9015, 3001-301, Coimbra, Portugal
| | - Vera Alves
- Immunology Institute, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal; Immunology and Oncology Laboratory, Center for Neurosciences and Cell Biology (CNC), University of Coimbra, Rua Larga, 3004-504, Portugal; Center of Investigation in Environment, Genetics and Oncobiology, Apartado 9015, 3001-301, Coimbra, Portugal
| | - Isabel Nunes-Correia
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Faculdade de Medicina, Rua Larga, Pólo I, 1° andar, 3004-504 Coimbra, Portugal; Centre for Neuroscience and Cell Biology - Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Rui Jorge Nobre
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Faculdade de Medicina, Rua Larga, Pólo I, 1° andar, 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, Casa Costa Alemão - Pólo II, Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal; Centre for Neuroscience and Cell Biology - Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Célia Gomes
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Polo 3, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Miguel Castelo-Branco
- Centre for Neuroscience and Cell Biology - Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Coimbra Institute for Biomedical Imaging and Translational Research, Edifício do ICNAS, Polo 3, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Institute of Nuclear Science Applied to Health, University of Coimbra, Polo 3, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Luís Pereira de Almeida
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Faculdade de Medicina, Rua Larga, Pólo I, 1° andar, 3004-504 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Polo 3, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| |
Collapse
|
46
|
Abstract
Polyglutamine diseases are hereditary degenerative disorders of the nervous system that have remained, to this date, untreatable. Promisingly, investigation into their molecular etiology and the development of increasingly perfected tools have contributed to the design of novel strategies with therapeutic potential. Encouraging studies have explored gene therapy as a means to counteract cell demise and loss in this context. The current chapter addresses the two main focuses of research in the area: the characteristics of the systems used to deliver nucleic acids to cells and the molecular and cellular actions of the therapeutic agents. Vectors used in gene therapy have to satisfyingly reach the tissues and cell types of interest, while eliciting the lowest toxicity possible. Both viral and non-viral systems have been developed for the delivery of nucleic acids to the central nervous system, each with its respective advantages and shortcomings. Since each polyglutamine disease is caused by mutation of a single gene, many gene therapy strategies have tried to halt degeneration by silencing the corresponding protein products, usually recurring to RNA interference. The potential of small interfering RNAs, short hairpin RNAs and microRNAs has been investigated. Overexpression of protective genes has also been evaluated as a means of decreasing mutant protein toxicity and operate beneficial alterations. Recent gene editing tools promise yet other ways of interfering with the disease-causing genes, at the most upstream points possible. Results obtained in both cell and animal models encourage further delving into this type of therapeutic strategies and support the future use of gene therapy in the treatment of polyglutamine diseases.
Collapse
|
47
|
Tolö J, Taschenberger G, Leite K, Stahlberg MA, Spehlbrink G, Kues J, Munari F, Capaldi S, Becker S, Zweckstetter M, Dean C, Bähr M, Kügler S. Pathophysiological Consequences of Neuronal α-Synuclein Overexpression: Impacts on Ion Homeostasis, Stress Signaling, Mitochondrial Integrity, and Electrical Activity. Front Mol Neurosci 2018; 11:49. [PMID: 29563864 PMCID: PMC5845890 DOI: 10.3389/fnmol.2018.00049] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/06/2018] [Indexed: 11/13/2022] Open
Abstract
α-Synuclein (α-Syn) is intimately linked to the etiology of Parkinson's Disease, as mutations and even subtle increases in gene dosage result in early onset of the disease. However, how this protein causes neuronal dysfunction and neurodegeneration is incompletely understood. We thus examined a comprehensive range of physiological parameters in cultured rat primary neurons overexpressing α-Syn at levels causing a slowly progressive neurodegeneration. In contradiction to earlier reports from non-neuronal assay systems we demonstrate that α-Syn does not interfere with essential ion handling capacities, mitochondrial capability of ATP production or basic electro-physiological properties like resting membrane potential or the general ability to generate action potentials. α-Syn also does not activate canonical stress kinase Signaling converging on SAPK/Jun, p38 MAPK or Erk kinases. Causative for α-Syn-induced neurodegeneration are mitochondrial thiol oxidation and activation of caspases downstream of mitochondrial outer membrane permeabilization, leading to apoptosis-like cell death execution with some unusual aspects. We also aimed to elucidate neuroprotective strategies counteracting the pathophysiological processes caused by α-Syn. Neurotrophic factors, calpain inhibition and increased lysosomal protease capacity showed no protective effects against α-Syn overexpression. In contrast, the major watchdog of outer mitochondrial membrane integrity, Bcl-Xl, was capable of almost completely preventing neuron death, but did not prevent mitochondrial thiol oxidation. Importantly, independent from the quite mono-causal induction of neurotoxicity, α-Syn causes diminished excitability of neurons by external stimuli and robust impairments in endogenous neuronal network activity by decreasing the frequency of action potentials generated without external stimulation. This latter finding suggests that α-Syn can induce neuronal dysfunction independent from its induction of neurotoxicity and might serve as an explanation for functional deficits that precede neuronal cell loss in synucleopathies like Parkinson's disease or dementia with Lewy bodies.
Collapse
Affiliation(s)
- Johan Tolö
- Department of Physiology, The Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden
| | - Grit Taschenberger
- Department of Neurology, University Medical Center Goettingen, Göttingen, Germany.,Center Nanoscale Microscopy and Physiology of the Brain, Göttingen, Germany
| | - Kristian Leite
- Department of Neurology, University Medical Center Goettingen, Göttingen, Germany
| | - Markus A Stahlberg
- European Neuroscience Institute, Department of Transsynaptic Signaling, Göttingen, Germany
| | - Gesche Spehlbrink
- Department of Neurology, University Medical Center Goettingen, Göttingen, Germany
| | - Janina Kues
- Department of Neurology, University Medical Center Goettingen, Göttingen, Germany
| | - Francesca Munari
- German Center for Neurodegenerative Diseases, Göttingen, Germany.,Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Stefano Capaldi
- Biocrystallography Laboratory, Department of Biotechnology, University of Verona, Verona, Italy
| | - Stefan Becker
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Markus Zweckstetter
- Department of Neurology, University Medical Center Goettingen, Göttingen, Germany.,Center Nanoscale Microscopy and Physiology of the Brain, Göttingen, Germany.,German Center for Neurodegenerative Diseases, Göttingen, Germany.,Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Camin Dean
- Center Nanoscale Microscopy and Physiology of the Brain, Göttingen, Germany.,European Neuroscience Institute, Department of Transsynaptic Signaling, Göttingen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medical Center Goettingen, Göttingen, Germany.,Center Nanoscale Microscopy and Physiology of the Brain, Göttingen, Germany
| | - Sebastian Kügler
- Department of Neurology, University Medical Center Goettingen, Göttingen, Germany.,Center Nanoscale Microscopy and Physiology of the Brain, Göttingen, Germany
| |
Collapse
|
48
|
Molecular Mechanisms and Cellular Pathways Implicated in Machado-Joseph Disease Pathogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1049:349-367. [PMID: 29427113 DOI: 10.1007/978-3-319-71779-1_18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Machado-Joseph disease (MJD) is a dominantly inherited disorder originally described in people of Portuguese descent, and associated with the expansion of a CAG tract in the coding region of the causative gene MJD1/ATX3. The CAG repeats range from 10 to 51 in the normal population and from 55 to 87 in SCA3/MJD patients. MJD1 encodes ataxin-3, a protein whose physiological function has been linked to ubiquitin-mediated proteolysis. Despite the identification of the causative mutation, the pathogenic process leading to the neurodegeneration observed in the disease is not yet completely understood. In the past years, several studies identified different molecular mechanisms and cellular pathways as being impaired or deregulated in MJD. Autophagy, proteolysis or post-translational modifications, among other processes, were implicated in MJD pathogenesis. From these studies it was possible to identify new targets for therapeutic intervention, which in some cases proved successful in models of disease.
Collapse
|
49
|
Wang Z. Experimental and Clinical Strategies for Treating Spinocerebellar Ataxia Type 3. Neuroscience 2017; 371:138-154. [PMID: 29229556 DOI: 10.1016/j.neuroscience.2017.11.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/28/2017] [Accepted: 11/30/2017] [Indexed: 01/02/2023]
Abstract
Spinocerebellar ataxia type 3 (SCA3), or Machado-Joseph disease (MJD), is an autosomal dominant neurodegenerative disorder caused by the expansion of a polyglutamine (polyQ) tract in the ataxin-3 protein. To date, there is no effective therapy available to prevent progression of this disease. However, clinical strategies for alleviating various symptoms are imperative to promote a better quality of life for SCA3/MJD patients. Furthermore, experimental therapeutic strategies, including gene silencing or mutant protein clearance, mutant polyQ protein modification, stabilizing the native protein conformation, rescue of cellular dysfunction and neuromodulation to slow the progression of SCA3/MJD, have been developed. In this study, based on the current knowledge, I detail the clinical and experimental therapeutic strategies for treating SCA3/MJD, paying particular attention to drug discovery.
Collapse
Affiliation(s)
- Zijian Wang
- Genetic Engineering Laboratory, College of Biological and Environmental Engineering, Xi'an University, Xi'an, Shaanxi 710065, China.
| |
Collapse
|
50
|
Costa MDC, Ashraf NS, Fischer S, Yang Y, Schapka E, Joshi G, McQuade TJ, Dharia RM, Dulchavsky M, Ouyang M, Cook D, Sun D, Larsen MJ, Gestwicki JE, Todi SV, Ivanova MI, Paulson HL. Unbiased screen identifies aripiprazole as a modulator of abundance of the polyglutamine disease protein, ataxin-3. Brain 2017; 139:2891-2908. [PMID: 27645800 DOI: 10.1093/brain/aww228] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/24/2016] [Indexed: 11/14/2022] Open
Abstract
No disease-modifying treatment exists for the fatal neurodegenerative polyglutamine disease known both as Machado-Joseph disease and spinocerebellar ataxia type 3. As a potential route to therapy, we identified small molecules that reduce levels of the mutant disease protein, ATXN3. Screens of a small molecule collection, including 1250 Food and Drug Administration-approved drugs, in a novel cell-based assay, followed by secondary screens in brain slice cultures from transgenic mice expressing the human disease gene, identified the atypical antipsychotic aripiprazole as one of the hits. Aripiprazole increased longevity in a Drosophila model of Machado-Joseph disease and effectively reduced aggregated ATXN3 species in flies and in brains of transgenic mice treated for 10 days. The aripiprazole-mediated decrease in ATXN3 abundance may reflect a complex response culminating in the modulation of specific components of cellular protein homeostasis. Aripiprazole represents a potentially promising therapeutic drug for Machado-Joseph disease and possibly other neurological proteinopathies.
Collapse
Affiliation(s)
| | - Naila S Ashraf
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Svetlana Fischer
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Yemen Yang
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Emily Schapka
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Gnanada Joshi
- Department of Pharmacology, Wayne State University, Detroit, MI, USA
| | - Thomas J McQuade
- Center for Chemical Genomics, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Rahil M Dharia
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Mark Dulchavsky
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Michelle Ouyang
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - David Cook
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Duxin Sun
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Martha J Larsen
- Center for Chemical Genomics, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry, Institute for Neurodegenerative Diseases, University of California at San Francisco, San Francisco, CA, USA
| | - Sokol V Todi
- Department of Pharmacology, Wayne State University, Detroit, MI, USA.,Department of Neurology, Wayne State University, Detroit, MI, USA
| | - Magdalena I Ivanova
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.,Department of Biophysics, University of Michigan, Ann Arbor, MI, USA
| | - Henry L Paulson
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|