1
|
Herstine JA, Chang PK, Chornyy S, Stevenson TJ, Sunshine AC, Nokhrina K, Rediger J, Wentz J, Vetter TA, Scholl E, Holaway C, Pyne NK, Bratasz A, Yeoh S, Flanigan KM, Bonkowsky JL, Bradbury AM. Evaluation of safety and early efficacy of AAV gene therapy in mouse models of vanishing white matter disease. Mol Ther 2024; 32:1701-1720. [PMID: 38549375 PMCID: PMC11184306 DOI: 10.1016/j.ymthe.2024.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/13/2024] [Accepted: 03/26/2024] [Indexed: 04/15/2024] Open
Abstract
Leukoencephalopathy with vanishing white matter (VWM) is a progressive incurable white matter disease that most commonly occurs in childhood and presents with ataxia, spasticity, neurological degeneration, seizures, and premature death. A distinctive feature is episodes of rapid neurological deterioration provoked by stressors such as infection, seizures, or trauma. VWM is caused by autosomal recessive mutations in one of five genes that encode the eukaryotic initiation factor 2B complex, which is necessary for protein translation and regulation of the integrated stress response. The majority of mutations are in EIF2B5. Astrocytic dysfunction is central to pathophysiology, thereby constituting a potential therapeutic target. Herein we characterize two VWM murine models and investigate astrocyte-targeted adeno-associated virus serotype 9 (AAV9)-mediated EIF2B5 gene supplementation therapy as a therapeutic option for VWM. Our results demonstrate significant rescue in body weight, motor function, gait normalization, life extension, and finally, evidence that gene supplementation attenuates demyelination. Last, the greatest rescue results from a vector using a modified glial fibrillary acidic protein (GFAP) promoter-AAV9-gfaABC(1)D-EIF2B5-thereby supporting that astrocytic targeting is critical for disease correction. In conclusion, we demonstrate safety and early efficacy through treatment with a translatable astrocyte-targeted gene supplementation therapy for a disease that has no cure.
Collapse
Affiliation(s)
- Jessica A Herstine
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA; Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA; Center for Clinical and Translational Science, The Ohio State University, Columbus, OH 43210, USA
| | - Pi-Kai Chang
- Department of Pediatrics, The University of Utah School of Medicine, Salt Lake City, UT 84113, USA
| | - Sergiy Chornyy
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA
| | - Tamara J Stevenson
- Department of Pediatrics, The University of Utah School of Medicine, Salt Lake City, UT 84113, USA
| | - Alex C Sunshine
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA; Department of Neurology, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Ksenia Nokhrina
- Department of Pediatrics, The University of Utah School of Medicine, Salt Lake City, UT 84113, USA
| | - Jessica Rediger
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA
| | - Julia Wentz
- Department of Pediatrics, The University of Utah School of Medicine, Salt Lake City, UT 84113, USA
| | - Tatyana A Vetter
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA; Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| | - Erika Scholl
- Department of Pediatrics, The University of Utah School of Medicine, Salt Lake City, UT 84113, USA
| | - Caleb Holaway
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA
| | - Nettie K Pyne
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA
| | - Anna Bratasz
- Small Animal Imaging Core, The Ohio State University, Columbus, OH 43210, USA
| | - Stewart Yeoh
- Preclinical Imaging Core, The University of Utah, Salt Lake City, UT 84112, USA
| | - Kevin M Flanigan
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA; Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA; Department of Neurology, The Ohio State University, Columbus, OH 43210, USA
| | - Joshua L Bonkowsky
- Department of Pediatrics, The University of Utah School of Medicine, Salt Lake City, UT 84113, USA; Center for Personalized Medicine, Primary Children's Hospital, Salt Lake City, UT 84113, USA.
| | - Allison M Bradbury
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA; Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA; Center for Clinical and Translational Science, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
2
|
Plug BC, Revers IM, Breur M, González GM, Timmerman JA, Meijns NRC, Hamberg D, Wagendorp J, Nutma E, Wolf NI, Luchicchi A, Mansvelder HD, van Til NP, van der Knaap MS, Bugiani M. Human post-mortem organotypic brain slice cultures: a tool to study pathomechanisms and test therapies. Acta Neuropathol Commun 2024; 12:83. [PMID: 38822428 PMCID: PMC11140981 DOI: 10.1186/s40478-024-01784-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/16/2024] [Indexed: 06/03/2024] Open
Abstract
Human brain experimental models recapitulating age- and disease-related characteristics are lacking. There is urgent need for human-specific tools that model the complex molecular and cellular interplay between different cell types to assess underlying disease mechanisms and test therapies. Here we present an adapted ex vivo organotypic slice culture method using human post-mortem brain tissue cultured at an air-liquid interface to also study brain white matter. We assessed whether these human post-mortem brain slices recapitulate the in vivo neuropathology and if they are suitable for pathophysiological, experimental and pre-clinical treatment development purposes, specifically regarding leukodystrophies. Human post-mortem brain tissue and cerebrospinal fluid were obtained from control, psychiatric and leukodystrophy donors. Slices were cultured up to six weeks, in culture medium with or without human cerebrospinal fluid. Human post-mortem organotypic brain slice cultures remained viable for at least six weeks ex vivo and maintained tissue structure and diversity of (neural) cell types. Supplementation with cerebrospinal fluid could improve slice recovery. Patient-derived organotypic slice cultures recapitulated and maintained known in vivo neuropathology. The cultures also showed physiologic multicellular responses to lysolecithin-induced demyelination ex vivo, indicating their suitability to study intrinsic repair mechanisms upon injury. The slice cultures were applicable for various experimental studies, as multi-electrode neuronal recordings. Finally, the cultures showed successful cell-type dependent transduction with gene therapy vectors. These human post-mortem organotypic brain slice cultures represent an adapted ex vivo model suitable for multifaceted studies of brain disease mechanisms, boosting translation from human ex vivo to in vivo. This model also allows for assessing potential treatment options, including gene therapy applications. Human post-mortem brain slice cultures are thus a valuable tool in preclinical research to study the pathomechanisms of a wide variety of brain diseases in living human tissue.
Collapse
Affiliation(s)
- Bonnie C Plug
- Department of Paediatrics and Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centre, Meibergdreef 9, Amsterdam, 1100 DD, The Netherlands
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands
| | - Ilma M Revers
- Department of Paediatrics and Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centre, Meibergdreef 9, Amsterdam, 1100 DD, The Netherlands
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands
| | - Marjolein Breur
- Department of Paediatrics and Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centre, Meibergdreef 9, Amsterdam, 1100 DD, The Netherlands
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands
| | - Gema Muñoz González
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam University Medical Centre, VU University, Amsterdam Neuroscience, De Boelelaan 1108, Amsterdam, 1081 HZ, The Netherlands
| | - Jaap A Timmerman
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam Neuroscience, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Niels R C Meijns
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam University Medical Centre, VU University, Amsterdam Neuroscience, De Boelelaan 1108, Amsterdam, 1081 HZ, The Netherlands
| | - Daniek Hamberg
- Department of Paediatrics and Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centre, Meibergdreef 9, Amsterdam, 1100 DD, The Netherlands
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands
| | - Jikke Wagendorp
- Department of Paediatrics and Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centre, Meibergdreef 9, Amsterdam, 1100 DD, The Netherlands
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands
| | - Erik Nutma
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centre, Meibergdreef 9, Amsterdam, 1100 DD, The Netherlands
| | - Nicole I Wolf
- Department of Paediatrics and Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centre, Meibergdreef 9, Amsterdam, 1100 DD, The Netherlands
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands
| | - Antonio Luchicchi
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam University Medical Centre, VU University, Amsterdam Neuroscience, De Boelelaan 1108, Amsterdam, 1081 HZ, The Netherlands
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam Neuroscience, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Niek P van Til
- Department of Paediatrics and Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centre, Meibergdreef 9, Amsterdam, 1100 DD, The Netherlands
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam Neuroscience, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Marjo S van der Knaap
- Department of Paediatrics and Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centre, Meibergdreef 9, Amsterdam, 1100 DD, The Netherlands
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam Neuroscience, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Marianna Bugiani
- Department of Paediatrics and Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centre, Meibergdreef 9, Amsterdam, 1100 DD, The Netherlands.
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands.
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centre, Meibergdreef 9, Amsterdam, 1100 DD, The Netherlands.
| |
Collapse
|
3
|
Man JHK, Zarekiani P, Mosen P, de Kok M, Debets DO, Breur M, Altelaar M, van der Knaap MS, Bugiani M. Proteomic dissection of vanishing white matter pathogenesis. Cell Mol Life Sci 2024; 81:234. [PMID: 38789799 PMCID: PMC11126554 DOI: 10.1007/s00018-024-05258-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/30/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024]
Abstract
Vanishing white matter (VWM) is a leukodystrophy caused by biallelic pathogenic variants in eukaryotic translation initiation factor 2B. To date, it remains unclear which factors contribute to VWM pathogenesis. Here, we investigated the basis of VWM pathogenesis using the 2b5ho mouse model. We first mapped the temporal proteome in the cerebellum, corpus callosum, cortex, and brainstem of 2b5ho and wild-type (WT) mice. Protein changes observed in 2b5ho mice were then cross-referenced with published proteomic datasets from VWM patient brain tissue to define alterations relevant to the human disease. By comparing 2b5ho mice with their region- and age-matched WT counterparts, we showed that the proteome in the cerebellum and cortex of 2b5ho mice was already dysregulated prior to pathology development, whereas proteome changes in the corpus callosum only occurred after pathology onset. Remarkably, protein changes in the brainstem were transient, indicating that a compensatory mechanism might occur in this region. Importantly, 2b5ho mouse brain proteome changes reflect features well-known in VWM. Comparison of the 2b5ho mouse and VWM patient brain proteomes revealed shared changes. These could represent changes that contribute to the disease or even drive its progression in patients. Taken together, we show that the 2b5ho mouse brain proteome is affected in a region- and time-dependent manner. We found that the 2b5ho mouse model partly replicates the human disease at the protein level, providing a resource to study aspects of VWM pathogenesis by highlighting alterations from early to late disease stages, and those that possibly drive disease progression.
Collapse
Affiliation(s)
- Jodie H K Man
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Molecular and Cellular Mechanisms, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Parand Zarekiani
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Peter Mosen
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
- Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Mike de Kok
- Department of Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Donna O Debets
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
- Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Marjolein Breur
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Molecular and Cellular Mechanisms, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
- Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Marjo S van der Knaap
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Molecular and Cellular Mechanisms, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Marianna Bugiani
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Elitt CM, Ross MM, Wang J, Fahrni CJ, Rosenberg PA. Developmental regulation of zinc homeostasis in differentiating oligodendrocytes. Neurosci Lett 2024; 831:137727. [PMID: 38467270 DOI: 10.1016/j.neulet.2024.137727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
Oligodendrocytes develop through sequential stages and understanding pathways regulating their differentiation remains an important area of investigation. Zinc is required for the function of enzymes, proteins and transcription factors, including those important in myelination and mitosis. Our previous studies using the ratiometric zinc sensor chromis-1 demonstrated a reduction in intracellular free zinc concentrations in mature MBP+ oligodendrocytes compared with earlier stages (Bourassa et al., 2018). We performed a more detailed developmental study to better understand the temporal course of zinc homeostasis across the oligodendrocyte lineage. Using chromis-1, we found a transient increase in free zinc after O4+,O1- pre-oligodendrocytes were switched from proliferation medium into terminal differentiation medium. To gather other evidence for dynamic regulation of free zinc during oligodendrocyte development, qPCR was used to evaluate mRNA expression of major zinc storage proteins metallothioneins (MTs) and metal regulatory transcription factor 1 (MTF1), which controls expression of MTs. MT1, MT2 and MTF1 mRNAs were increased several fold in mature oligodendrocytes compared to oligodendrocytes in proliferation medium. To assess the depth of the zinc buffer, we assayed zinc release from intracellular stores using the oxidizing thiol reagent 2,2'-dithiodipyridine (DTDP). Exposure to DTDP resulted in ∼ 100% increase in free zinc in pre-oligodendrocytes but, paradoxically more modest ∼ 60% increase in mature oligodendrocytes despite increased expression of MTs. These results suggest that zinc homeostasis is regulated during oligodendrocyte development, that oligodendrocytes are a useful model for studying zinc homeostasis in the central nervous system, and that regulation of zinc homeostasis may be important in oligodendrocyte differentiation.
Collapse
Affiliation(s)
- Christopher M Elitt
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, United States; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, United States.
| | - Madeline M Ross
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, United States; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, United States
| | - Jianlin Wang
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, United States; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, United States
| | - Christoph J Fahrni
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, United States; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Paul A Rosenberg
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, United States; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, United States
| |
Collapse
|
5
|
Böck D, Revers IM, Bomhof ASJ, Hillen AEJ, Boeijink C, Kissling L, Egli S, Moreno-Mateos MA, van der Knaap MS, van Til NP, Schwank G. In vivo base editing of a pathogenic Eif2b5 variant improves vanishing white matter phenotypes in mice. Mol Ther 2024; 32:1328-1343. [PMID: 38454603 PMCID: PMC11081866 DOI: 10.1016/j.ymthe.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/05/2024] [Accepted: 03/05/2024] [Indexed: 03/09/2024] Open
Abstract
Vanishing white matter (VWM) is a fatal leukodystrophy caused by recessive mutations in subunits of the eukaryotic translation initiation factor 2B. Currently, there are no effective therapies for VWM. Here, we assessed the potential of adenine base editing to correct human pathogenic VWM variants in mouse models. Using adeno-associated viral vectors, we delivered intein-split adenine base editors into the cerebral ventricles of newborn VWM mice, resulting in 45.9% ± 5.9% correction of the Eif2b5R191H variant in the cortex. Treatment slightly increased mature astrocyte populations and partially recovered the integrated stress response (ISR) in female VWM animals. This led to notable improvements in bodyweight and grip strength in females; however, locomotor disabilities were not rescued. Further molecular analyses suggest that more precise editing (i.e., lower rates of bystander editing) as well as more efficient delivery of the base editors to deep brain regions and oligodendrocytes would have been required for a broader phenotypic rescue. Our study emphasizes the potential, but also identifies limitations, of current in vivo base-editing approaches for the treatment of VWM or other leukodystrophies.
Collapse
Affiliation(s)
- Desirée Böck
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland
| | - Ilma M Revers
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience, Cellular & Molecular Mechanisms, 1105AZ Amsterdam, the Netherlands
| | - Anastasia S J Bomhof
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience, Cellular & Molecular Mechanisms, 1105AZ Amsterdam, the Netherlands
| | - Anne E J Hillen
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience, Cellular & Molecular Mechanisms, 1105AZ Amsterdam, the Netherlands
| | - Claire Boeijink
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience, Cellular & Molecular Mechanisms, 1105AZ Amsterdam, the Netherlands
| | - Lucas Kissling
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland
| | - Sabina Egli
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland
| | - Miguel A Moreno-Mateos
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, 41013 Seville, Spain; Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, 41013 Seville, Spain
| | - Marjo S van der Knaap
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience, Cellular & Molecular Mechanisms, 1105AZ Amsterdam, the Netherlands; Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081HV Amsterdam, the Netherlands
| | - Niek P van Til
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience, Cellular & Molecular Mechanisms, 1105AZ Amsterdam, the Netherlands; Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081HV Amsterdam, the Netherlands.
| | - Gerald Schwank
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
6
|
van der Knaap MS, Bugiani M, Abbink TEM. Vanishing white matter. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:77-94. [PMID: 39322396 DOI: 10.1016/b978-0-323-99209-1.00015-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
"Vanishing white matter" (VWM) is a leukodystrophy caused by autosomal recessive pathogenic variants in the genes encoding the subunits of eukaryotic initiation factor 2B (eIF2B). Disease onset and disease course are extremely variable. Onset varies from the antenatal period until senescence. The age of onset is predictive of disease severity. VWM is characterized by chronic neurologic deterioration and, additionally, episodes of rapid and major neurologic decline, provoked by stresses such as febrile infections and minor head trauma. The disease is dominated by degeneration of the white matter of the central nervous system due to dysfunction of oligodendrocytes and in particular astrocytes. Organs other than the brain are rarely affected, with the exception of the ovaries. The reason for the selective vulnerability of the white matter of the central nervous system and, less consistently, the ovaries is poorly understood. eIF2B is a central regulatory factor in the integrated stress response (ISR). Genetic variants decrease eIF2B activity and thereby cause constitutive activation of the ISR downstream of eIF2B. Strikingly, the ISR is specifically activated in astrocytes. Modulation of eIF2B activity and ISR activation in VWM mouse models impacts disease severity, revealing eIF2B-regulated pathways as potential druggable targets.
Collapse
Affiliation(s)
- Marjo S van der Knaap
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Center, and Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Vrije Universiteit, Amsterdam, The Netherlands.
| | - Marianna Bugiani
- Department of Pathology, Amsterdam Leukodystrophy Center, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Truus E M Abbink
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam UMC, Amsterdam, The Netherlands; Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Elitt CM, Ross MM, Wang J, Fahrni CJ, Rosenberg PA. Developmental regulation of zinc homeostasis in differentiating oligodendrocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.26.550230. [PMID: 37546881 PMCID: PMC10402100 DOI: 10.1101/2023.07.26.550230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Oligodendrocytes develop through well characterized stages and understanding pathways regulating their differentiation remains an active area of investigation. Zinc is required for the function of many enzymes, proteins and transcription factors, including those important in myelination and mitosis. Our previous studies using the ratiometric zinc sensor chromis-1 demonstrated a reduction in intracellular free zinc concentrations in mature oligodendrocytes compared with earlier stages (Bourassa et al., 2018). We performed a more detailed developmental study to better understand the temporal course of zinc homeostasis across the oligodendrocyte lineage. Using chromis-1, we found a transient increase in free zinc after developing oligodendrocytes were switched into differentiation medium. To gather other evidence for dynamic regulation of free zinc during oligodendrocyte development, qPCR was used to evaluate mRNA expression of the major zinc storage proteins metallothioneins (MTs), and metal regulatory transcription factor 1 (MTF-1) which controls expression of MTs. MT-1, MT-2 and MTF1 mRNAs were all increased several fold in mature oligodendrocytes compared to developing oligodendrocytes. To assess the depth of the zinc buffer, we assayed zinc release from intracellular stores using the oxidizing thiol reagent 2,2'-dithiodipyridine (DTDP). Exposure to DTDP resulted in a ∼100% increase in free zinc in developing oligodendrocytes but, paradoxically more modest ∼60% increase in mature oligodendrocytes despite the increased expression of MTs. These results suggest that zinc homeostasis is regulated during oligodendrocyte development, that oligodendrocytes are a useful model for studying zinc homeostasis in the central nervous system, and that regulation of zinc homeostasis may be important in oligodendrocyte differentiation.
Collapse
|
8
|
Man JHK, van Gelder CAGH, Breur M, Molenaar D, Abbink T, Altelaar M, Bugiani M, van der Knaap MS. Regional vulnerability of brain white matter in vanishing white matter. Acta Neuropathol Commun 2023; 11:103. [PMID: 37349783 PMCID: PMC10286497 DOI: 10.1186/s40478-023-01599-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/03/2023] [Indexed: 06/24/2023] Open
Abstract
Vanishing white matter (VWM) is a leukodystrophy that primarily manifests in young children. In this disease, the brain white matter is differentially affected in a predictable pattern with telencephalic brain areas being most severely affected, while others remain allegedly completely spared. Using high-resolution mass spectrometry-based proteomics, we investigated the proteome patterns of the white matter in the severely affected frontal lobe and normal appearing pons in VWM and control cases to identify molecular bases underlying regional vulnerability. By comparing VWM patients to controls, we identified disease-specific proteome patterns. We showed substantial changes in both the VWM frontal and pons white matter at the protein level. Side-by-side comparison of brain region-specific proteome patterns further revealed regional differences. We found that different cell types were affected in the VWM frontal white matter than in the pons. Gene ontology and pathway analyses identified involvement of region specific biological processes, of which pathways involved in cellular respiratory metabolism were overarching features. In the VWM frontal white matter, proteins involved in glycolysis/gluconeogenesis and metabolism of various amino acids were decreased compared to controls. By contrast, in the VWM pons white matter, we found a decrease in proteins involved in oxidative phosphorylation. Taken together, our data show that brain regions are affected in parallel in VWM, but to different degrees. We found region-specific involvement of different cell types and discovered that cellular respiratory metabolism is likely to be differentially affected across white matter regions in VWM. These region-specific changes help explain regional vulnerability to pathology in VWM.
Collapse
Affiliation(s)
- Jodie H K Man
- Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, VU University Amsterdam, Amsterdam, 1081 HV, The Netherlands
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam, 1081 HV, The Netherlands
- Molecular and Cellular Mechanisms, Amsterdam Neuroscience, Amsterdam, 1081 HV, The Netherlands
| | - Charlotte A G H van Gelder
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, 3584 CS, The Netherlands
- Netherlands Proteomics Center, Utrecht, 3584 CS, The Netherlands
| | - Marjolein Breur
- Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, VU University Amsterdam, Amsterdam, 1081 HV, The Netherlands
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam, 1081 HV, The Netherlands
- Molecular and Cellular Mechanisms, Amsterdam Neuroscience, Amsterdam, 1081 HV, The Netherlands
| | - Douwe Molenaar
- Department of Systems Bioinformatics, VU University Amsterdam, Amsterdam, 1081 HV, The Netherlands
| | - Truus Abbink
- Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, VU University Amsterdam, Amsterdam, 1081 HV, The Netherlands
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam, 1081 HV, The Netherlands
- Molecular and Cellular Mechanisms, Amsterdam Neuroscience, Amsterdam, 1081 HV, The Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, 3584 CS, The Netherlands
- Netherlands Proteomics Center, Utrecht, 3584 CS, The Netherlands
| | - Marianna Bugiani
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam, 1081 HV, The Netherlands.
- Molecular and Cellular Mechanisms, Amsterdam Neuroscience, Amsterdam, 1081 HV, The Netherlands.
- Department of Pathology, Amsterdam University Medical Centers, Amsterdam, 1081 HV, The Netherlands.
| | - Marjo S van der Knaap
- Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, VU University Amsterdam, Amsterdam, 1081 HV, The Netherlands
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam, 1081 HV, The Netherlands
- Molecular and Cellular Mechanisms, Amsterdam Neuroscience, Amsterdam, 1081 HV, The Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, 1081 HV, The Netherlands
| |
Collapse
|
9
|
Mayerl S, Heuer H. lThyroid hormone transporter Mct8/Oatp1c1 deficiency compromises proper oligodendrocyte maturation in the mouse CNS. Neurobiol Dis 2023:106195. [PMID: 37307933 DOI: 10.1016/j.nbd.2023.106195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/26/2023] [Accepted: 06/07/2023] [Indexed: 06/14/2023] Open
Abstract
Proper CNS myelination depends on the timed availability of thyroid hormone (TH) that induces differentiation of oligodendrocyte precursor cells (OPCs) to mature, myelinating oligodendrocytes. Abnormal myelination is frequently observed in Allan-Herndon-Dudley syndrome caused by inactivating mutations in the TH transporter MCT8. Likewise, persistent hypomyelination is a key CNS feature of the Mct8/Oatp1c1 double knockout (Dko) mouse model, a well-established mouse model for human MCT8 deficiency that exhibits diminished TH transport across brain barriers and thus a TH deficient CNS. Here, we explored whether decreased myelin content is caused by an impairment in oligodendrocyte maturation. To that end, we studied OPC and oligodendrocyte populations in Dko mice versus wild-type and single TH transporter knockout animals at different developmental time points (at postnatal days P12, P30, and P120) using multi-marker immunostaining and confocal microscopy. Only in Dko mice we observed a reduction in cells expressing the oligodendroglia marker Olig2, encompassing all stages between OPCs and mature oligodendrocytes. Moreover, Dko mice exhibited at all analysed time points an increased portion of OPCs and a reduced number of mature oligodendrocytes both in white and grey matter regions indicating a differentiation blockage in the absence of Mct8/Oatp1c1. We also assessed cortical oligodendrocyte structural parameters by visualizing and counting the number of mature myelin sheaths formed per oligodendrocyte. Again, only Dko mice displayed a reduced number of myelin sheaths that in turn exhibited an increase in length indicating a compensatory response to the reduced number of mature oligodendrocyte. Altogether, our studies underscore an oligodendrocyte differentiation impairment and altered oligodendrocyte structural parameters in the global absence of Mct8 and Oatp1c1. Both mechanisms most likely do not only cause the abnormal myelination state but also contribute to compromised neuronal functionality in Mct8/Oatp1c1 deficient animals.
Collapse
Affiliation(s)
- Steffen Mayerl
- Dept. of Endocrinology, Diabetes & Metabolism, University of Duisburg-Essen, Essen, Germany.
| | - Heike Heuer
- Dept. of Endocrinology, Diabetes & Metabolism, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
10
|
Bugiani M, Abbink TEM, Edridge AWD, van der Hoek L, Hillen AEJ, van Til NP, Hu‐A‐Ng GV, Breur M, Aiach K, Drevot P, Hocquemiller M, Laufer R, Wijburg FA, van der Knaap MS. Focal lesions following intracerebral gene therapy for mucopolysaccharidosis IIIA. Ann Clin Transl Neurol 2023; 10:904-917. [PMID: 37165777 PMCID: PMC10270249 DOI: 10.1002/acn3.51772] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/11/2023] [Accepted: 03/19/2023] [Indexed: 05/12/2023] Open
Abstract
OBJECTIVE Mucopolysaccharidosis type IIIA (MPSIIIA) caused by recessive SGSH variants results in sulfamidase deficiency, leading to neurocognitive decline and death. No disease-modifying therapy is available. The AAVance gene therapy trial investigates AAVrh.10 overexpressing human sulfamidase (LYS-SAF302) delivered by intracerebral injection in children with MPSIIIA. Post-treatment MRI monitoring revealed lesions around injection sites. Investigations were initiated in one patient to determine the cause. METHODS Clinical and MRI details were reviewed. Stereotactic needle biopsies of a lesion were performed; blood and CSF were sampled. All samples were used for viral studies. Immunohistochemistry, electron microscopy, and transcriptome analysis were performed on brain tissue of the patient and various controls. RESULTS MRI revealed focal lesions around injection sites with onset from 3 months after therapy, progression until 7 months post therapy with subsequent stabilization and some regression. The patient had transient slight neurological signs and is following near-normal development. No evidence of viral or immunological/inflammatory cause was found. Immunohistochemistry showed immature oligodendrocytes and astrocytes, oligodendrocyte apoptosis, strong intracellular and extracellular sulfamidase expression and hardly detectable intracellular or extracellular heparan sulfate. No activation of the unfolded protein response was found. INTERPRETATION Results suggest that intracerebral gene therapy with local sulfamidase overexpression leads to dysfunction of transduced cells close to injection sites, with extracellular spilling of lysosomal enzymes. This alters extracellular matrix composition, depletes heparan sulfate, impairs astrocyte and oligodendrocyte function, and causes cystic white matter degeneration at the site of highest gene expression. The AAVance trial results will reveal the potential benefit-risk ratio of this therapy.
Collapse
Affiliation(s)
- Marianna Bugiani
- Department of PathologyAmsterdam University Medical Centers, Vrije Universiteit and Amsterdam NeuroscienceAmsterdamThe Netherlands
- Amsterdam Leukodystrophy CenterAmsterdam University Medical CentersAmsterdamThe Netherlands
| | - Truus E. M. Abbink
- Amsterdam Leukodystrophy CenterAmsterdam University Medical CentersAmsterdamThe Netherlands
- Department of Child NeurologyEmma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam NeuroscienceAmsterdamThe Netherlands
| | - Arthur W. D. Edridge
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection PreventionAmsterdam University Medical Centers, University of AmsterdamAmsterdamThe Netherlands
- Amsterdam Centre for Global Child HealthAmsterdam University Medical CentersAmsterdamThe Netherlands
| | - Lia van der Hoek
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection PreventionAmsterdam University Medical Centers, University of AmsterdamAmsterdamThe Netherlands
| | - Anne E. J. Hillen
- Amsterdam Leukodystrophy CenterAmsterdam University Medical CentersAmsterdamThe Netherlands
- Department of Child NeurologyEmma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam NeuroscienceAmsterdamThe Netherlands
| | - Niek P. van Til
- Amsterdam Leukodystrophy CenterAmsterdam University Medical CentersAmsterdamThe Netherlands
- Department of Child NeurologyEmma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam NeuroscienceAmsterdamThe Netherlands
| | - Gino V. Hu‐A‐Ng
- Amsterdam Leukodystrophy CenterAmsterdam University Medical CentersAmsterdamThe Netherlands
- Department of Child NeurologyEmma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam NeuroscienceAmsterdamThe Netherlands
| | - Marjolein Breur
- Amsterdam Leukodystrophy CenterAmsterdam University Medical CentersAmsterdamThe Netherlands
- Department of Child NeurologyEmma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam NeuroscienceAmsterdamThe Netherlands
| | | | | | | | | | - Frits A. Wijburg
- Department of Pediatric Metabolic Diseases, Emma Children's Hospital and Amsterdam Lysosome Center “Sphinx”Amsterdam University Medical Centers, Academic Medical CenterAmsterdamThe Netherlands
| | - Marjo S. van der Knaap
- Amsterdam Leukodystrophy CenterAmsterdam University Medical CentersAmsterdamThe Netherlands
- Department of Child NeurologyEmma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam NeuroscienceAmsterdamThe Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive ResearchVU UniversityAmsterdam1081 HVThe Netherlands
| |
Collapse
|
11
|
Stellingwerff MD, van de Wiel MA, van der Knaap MS. Radiological correlates of episodes of acute decline in the leukodystrophy vanishing white matter. Neuroradiology 2023; 65:855-863. [PMID: 36574026 DOI: 10.1007/s00234-022-03097-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/25/2022] [Indexed: 12/28/2022]
Abstract
PURPOSE Patients with vanishing white matter (VWM) experience unremitting chronic neurological decline and stress-provoked episodes of rapid, partially reversible decline. Cerebral white matter abnormalities are progressive, without improvement, and are therefore unlikely to be related to the episodes. We determined which radiological findings are related to episodic decline. METHODS MRI scans of VWM patients were retrospectively analyzed. Patients were grouped into A (never episodes) and B (episodes). Signal abnormalities outside the cerebral white matter were rated as absent, mild, or severe. A sum score was developed with abnormalities only seen in group B. The temporal relationship between signal abnormalities and episodes was determined by subdividing scans into those made before, less than 3 months after, and more than 3 months after onset of an episode. RESULTS Five hundred forty-three examinations of 298 patients were analyzed. Mild and severe signal abnormalities in the caudate nucleus, putamen, globus pallidus, thalamus, midbrain, medulla oblongata, and severe signal abnormalities in the pons were only seen in group B. The sum score, constructed with these abnormalities, depended on the timing of the scan (χ2(2, 400) = 22.8; p < .001): it was least often abnormal before, most often abnormal with the highest value shortly after, and lower longer than 3 months after an episode. CONCLUSION In VWM, signal abnormalities in brainstem, thalamus, and basal ganglia are related to episodic decline and can improve. Knowledge of the natural MRI history in VWM is important for clinical interpretation of MRI findings and crucial in therapy trials.
Collapse
Affiliation(s)
- Menno D Stellingwerff
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Mark A van de Wiel
- Department of Epidemiology and Data Science, and Amsterdam School of Public Health, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
| | - Marjo S van der Knaap
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, The Netherlands.
| |
Collapse
|
12
|
Molina-Gonzalez I, Miron VE, Antel JP. Chronic oligodendrocyte injury in central nervous system pathologies. Commun Biol 2022; 5:1274. [PMID: 36402839 PMCID: PMC9675815 DOI: 10.1038/s42003-022-04248-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/10/2022] [Indexed: 11/21/2022] Open
Abstract
Myelin, the membrane surrounding neuronal axons, is critical for central nervous system (CNS) function. Injury to myelin-forming oligodendrocytes (OL) in chronic neurological diseases (e.g. multiple sclerosis) ranges from sublethal to lethal, leading to OL dysfunction and myelin pathology, and consequent deleterious impacts on axonal health that drive clinical impairments. This is regulated by intrinsic factors such as heterogeneity and age, and extrinsic cellular and molecular interactions. Here, we discuss the responses of OLs to injury, and perspectives for therapeutic targeting. We put forward that targeting mature OL health in neurological disease is a promising therapeutic strategy to support CNS function.
Collapse
Affiliation(s)
- Irene Molina-Gonzalez
- grid.4305.20000 0004 1936 7988United Kingdom Dementia Research Institute at The University of Edinburgh, Edinburgh, Scotland UK ,grid.4305.20000 0004 1936 7988Centre for Discovery Brain Sciences, Chancellor’s Building, The University of Edinburgh, Edinburgh, Scotland UK ,grid.4305.20000 0004 1936 7988Medical Research Council Centre for Reproductive Health, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, Scotland UK
| | - Veronique E. Miron
- grid.4305.20000 0004 1936 7988United Kingdom Dementia Research Institute at The University of Edinburgh, Edinburgh, Scotland UK ,grid.4305.20000 0004 1936 7988Centre for Discovery Brain Sciences, Chancellor’s Building, The University of Edinburgh, Edinburgh, Scotland UK ,grid.4305.20000 0004 1936 7988Medical Research Council Centre for Reproductive Health, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, Scotland UK ,grid.415502.7Barlo Multiple Sclerosis Centre and Keenan Research Centre for Biomedical Science, Toronto, Canada ,grid.17063.330000 0001 2157 2938Department of Immunology, University of Toronto, Toronto, Canada
| | - Jack P. Antel
- grid.14709.3b0000 0004 1936 8649Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, QC Canada
| |
Collapse
|
13
|
Man JHK, van Gelder CAGH, Breur M, Okkes D, Molenaar D, van der Sluis S, Abbink T, Altelaar M, van der Knaap MS, Bugiani M. Cortical Pathology in Vanishing White Matter. Cells 2022; 11:cells11223581. [PMID: 36429009 PMCID: PMC9688115 DOI: 10.3390/cells11223581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/24/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Vanishing white matter (VWM) is classified as a leukodystrophy with astrocytes as primary drivers in its pathogenesis. Magnetic resonance imaging has documented the progressive thinning of cortices in long-surviving patients. Routine histopathological analyses, however, have not yet pointed to cortical involvement in VWM. Here, we provide a comprehensive analysis of the VWM cortex. We employed high-resolution-mass-spectrometry-based proteomics and immunohistochemistry to gain insight into possible molecular disease mechanisms in the cortices of VWM patients. The proteome analysis revealed 268 differentially expressed proteins in the VWM cortices compared to the controls. A majority of these proteins formed a major protein interaction network. A subsequent gene ontology analysis identified enrichment for terms such as cellular metabolism, particularly mitochondrial activity. Importantly, some of the proteins with the most prominent changes in expression were found in astrocytes, indicating cortical astrocytic involvement. Indeed, we confirmed that VWM cortical astrocytes exhibit morphological changes and are less complex in structure than control cells. Our findings also suggest that these astrocytes are immature and not reactive. Taken together, we provide insights into cortical involvement in VWM, which has to be taken into account when developing therapeutic strategies.
Collapse
Affiliation(s)
- Jodie H. K. Man
- Department of Child Neurology, Emma Children’s Hospital, Amsterdam University Medical Centers, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
- Amsterdam Leukodystrophy Center, Emma Children’s Hospital, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands
- Molecular and Cellular Mechanisms, Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands
| | - Charlotte A. G. H. van Gelder
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CS Utrecht, The Netherlands
- Netherlands Proteomics Center, 3584 CS Utrecht, The Netherlands
| | - Marjolein Breur
- Department of Child Neurology, Emma Children’s Hospital, Amsterdam University Medical Centers, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
- Amsterdam Leukodystrophy Center, Emma Children’s Hospital, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands
- Molecular and Cellular Mechanisms, Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands
| | - Daniel Okkes
- Department of Child Neurology, Emma Children’s Hospital, Amsterdam University Medical Centers, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
- Amsterdam Leukodystrophy Center, Emma Children’s Hospital, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands
- Molecular and Cellular Mechanisms, Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands
| | - Douwe Molenaar
- Department of Systems Bioinformatics, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Sophie van der Sluis
- Department of Child and Adolescent Psychology and Psychiatry, Complex Trait Genetics, Amsterdam Neuroscience, VU University Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Truus Abbink
- Department of Child Neurology, Emma Children’s Hospital, Amsterdam University Medical Centers, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
- Amsterdam Leukodystrophy Center, Emma Children’s Hospital, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands
- Molecular and Cellular Mechanisms, Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CS Utrecht, The Netherlands
- Netherlands Proteomics Center, 3584 CS Utrecht, The Netherlands
| | - Marjo S. van der Knaap
- Department of Child Neurology, Emma Children’s Hospital, Amsterdam University Medical Centers, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
- Amsterdam Leukodystrophy Center, Emma Children’s Hospital, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands
- Molecular and Cellular Mechanisms, Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Marianna Bugiani
- Amsterdam Leukodystrophy Center, Emma Children’s Hospital, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands
- Molecular and Cellular Mechanisms, Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands
- Department of Pathology, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands
- Correspondence: ; Tel.: +31-6-48517239
| |
Collapse
|
14
|
Secretomics Alterations and Astrocyte Dysfunction in Human iPSC of Leukoencephalopathy with Vanishing White Matter. Neurochem Res 2022; 47:3747-3760. [PMID: 36198922 DOI: 10.1007/s11064-022-03765-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/18/2022] [Accepted: 09/22/2022] [Indexed: 10/10/2022]
Abstract
Leukoencephalopathy with vanishing white matter (VWM) is an inherited leukoencephalopathy characterized by progressive rarefaction of cerebral white matter. Dysfunction of patient astrocyte plays a central role in the pathogenesis, while the immaturity of oligodendrocyte is probably secondary. How eIF2B mutant astrocytes affect the maturation and myelination of oligodendrocyte precursor cells (OPCs) is unclear yet. We used induced pluripotent stem cells (iPSCs) derived from our patient with EIF2B5 mutations to differentiate into astrocytes (AS) and OPCs, and aimed to verify that patient astrocytes inhibited the differentiation of OPCs by abnormalities of secreted proteins. eIF2B mutant astrocytes and astrocyte-conditioned medium (ACM) both inhibited the maturation of OPCs. It was revealed that 13 promising proteins exhibited a similar up- or downregulation by the PRM method correlated well with TMT results. eIF2B mutant astrocytes may secrete abnormal extracellular matrix (HA, LAMA4, BGN, FBN1, VASN, PCOLCE, MFAP4), cytokines (IL-6, CRABP1, ISG15), growth factors (PDGF-AA, CNTF, IGF-II, sFRP1, SERPINF1) and increased FABP7, which might lead to the differentiation and maturation disorder of OPCs. We analyzed the astrocyte-conditioned medium to find the key secretory molecules affecting the differentiation and maturation of OPCs, which provides potential clues for further research on the mechanism of VWM.
Collapse
|
15
|
Yamada M, Iwase M, Sasaki B, Suzuki N. The molecular regulation of oligodendrocyte development and CNS myelination by ECM proteins. Front Cell Dev Biol 2022; 10:952135. [PMID: 36147746 PMCID: PMC9488109 DOI: 10.3389/fcell.2022.952135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022] Open
Abstract
Oligodendrocytes are myelin-forming cells in the central nervous system (CNS). The development of oligodendrocytes is regulated by a large number of molecules, including extracellular matrix (ECM) proteins that are relatively less characterized. Here, we review the molecular functions of the major ECM proteins in oligodendrocyte development and pathology. Among the ECM proteins, laminins are positive regulators in oligodendrocyte survival, differentiation, and/or myelination in the CNS. Conversely, fibronectin, tenascin-C, hyaluronan, and chondroitin sulfate proteoglycans suppress the differentiation and myelination. Tenascin-R shows either positive or negative functions in these activities. In addition, the extracellular domain of the transmembrane protein teneurin-4, which possesses the sequence homology with tenascins, promotes the differentiation of oligodendrocytes. The activities of these ECM proteins are exerted through binding to the cellular receptors and co-receptors, such as integrins and growth factor receptors, which induces the signaling to form the elaborated and functional structure of myelin. Further, the ECM proteins dynamically change their structures and functions at the pathological conditions as multiple sclerosis. The ECM proteins are a critical player to serve as a component of the microenvironment for oligodendrocytes in their development and pathology.
Collapse
|
16
|
Hillen AEJ, Leferink PS, Breeuwsma NB, Dooves S, Bergaglio T, Van der Knaap MS, Heine VM. Therapeutic potential of human stem cell transplantations for Vanishing White Matter: A quest for the Goldilocks graft. CNS Neurosci Ther 2022; 28:1315-1325. [PMID: 35778846 PMCID: PMC9344080 DOI: 10.1111/cns.13872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 12/03/2022] Open
Abstract
Introduction Vanishing white matter (VWM) is a leukodystrophy that leads to neurological dysfunction and early death. Astrocytes are indicated as therapeutic target, because of their central role in VWM pathology. Previous cell replacement therapy using primary mouse glial precursors phenotypically improved VWM mice. Aims The aim of this study was to determine the translational potential of human stem cell‐derived glial cell replacement therapy for VWM. We generated various glial cell types from human pluripotent stem cells in order to identify a human cell population that successfully ameliorates disease hallmarks of a VWM mouse model. The effects of cell grafts on motor skills and VWM brain pathology were assessed. Results Transplantation of human glial precursor populations improved the VWM phenotype. The intrinsic properties of these cells were partially reflected by cell fate post‐transplantation, but were also affected by the host microenvironment. Strikingly, the spread of transplanted cells into the white matter versus the gray matter was different when grafted into the VWM brain as compared to a healthy brain. Conclusions Transplantation of human glial cell populations can have therapeutic effects for VWM. For further translation to the clinic, the microenvironment in the VWM patient brain should be considered as an important moderator of cell replacement therapy.
Collapse
Affiliation(s)
- Anne E J Hillen
- Department of Pediatrics and Child Neurology, Amsterdam Neuroscience, Emma Children's Hospital, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Prisca S Leferink
- Department of Pediatrics and Child Neurology, Amsterdam Neuroscience, Emma Children's Hospital, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Nicole B Breeuwsma
- Department of Child and Adolescence Psychiatry, Amsterdam Neuroscience, Emma Children's Hospital, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Stephanie Dooves
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Department of Complex Trait Genetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Talia Bergaglio
- Department of Pediatrics and Child Neurology, Amsterdam Neuroscience, Emma Children's Hospital, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Marjo S Van der Knaap
- Department of Pediatrics and Child Neurology, Amsterdam Neuroscience, Emma Children's Hospital, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.,Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Vivi M Heine
- Department of Child and Adolescence Psychiatry, Amsterdam Neuroscience, Emma Children's Hospital, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Department of Complex Trait Genetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
17
|
van der Knaap MS, Bonkowsky JL, Vanderver A, Schiffmann R, Krägeloh-Mann I, Bertini E, Bernard G, Fatemi SA, Wolf NI, Saunier-Vivar E, Rauner R, Dekker H, van Bokhoven P, van de Ven P, Leferink PS. Therapy Trial Design in Vanishing White Matter: An Expert Consortium Opinion. Neurol Genet 2022; 8:e657. [PMID: 35128050 PMCID: PMC8811717 DOI: 10.1212/nxg.0000000000000657] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/21/2021] [Indexed: 01/04/2023]
Abstract
Vanishing white matter (VWM) is a leukodystrophy caused by recessive variants in the genes EIF2B1-EIF2B5. It is characterized by chronic neurologic deterioration with superimposed stress-provoked episodes of rapid decline. Disease onset spans from the antenatal period through senescence. Age at onset predicts disease evolution for patients with early onset, whereas disease evolution is unpredictable for later onset; patients with infantile and early childhood onset consistently have severe disease with rapid neurologic decline and often early death, whereas patients with later onset have highly variable disease. VWM is rare, but likely underdiagnosed, particularly in adults. Apart from measures to prevent stressors that could provoke acute deteriorations, only symptomatic care is currently offered. With increased insight into VWM disease mechanisms, opportunities for treatment have emerged. EIF2B1-EIF2B5 encode the 5-subunit eukaryotic initiation factor 2B complex, which is essential for translation of mRNAs into proteins and is a principal regulator of the integrated stress response (ISR). ISR deregulation is central to VWM pathology. Targeting components of the ISR has proven beneficial in mutant VWM mouse models, and several drugs are now in clinical development. However, clinical trials in VWM pose considerable challenges: low numbers of known patients with VWM, unpredictable disease course for patients with onset after early childhood, absence of intermediate biomarkers, and novel first-in-human molecular targets. Given these challenges and considering the critical need to offer therapies, we have formulated recommendations for enhanced diagnosis, drug trial setup, and patient selection, based on our expert evaluation of molecular, laboratory, and clinical data.
Collapse
Affiliation(s)
- Marjo S. van der Knaap
- From the Department of Pediatric Neurology (M.S.v.d.K., N.I.W.), Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers; Amsterdam Neuroscience (M.S.v.d.K., N.I.W.); Department of Functional Genomics (M.S.v.d.K.), Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, the Netherlands; Division of Pediatric Neurology (J.L.B.), Department of Pediatrics, University of Utah School of Medicine; Primary Children's Hospital (J.L.B.), Intermountain Healthcare, Salt Lake City, UT; Division of Neurology (A.V.), Children's Hospital of Philadelphia; Department of Neurology (A.V.), Perelman School of Medicine, University of Pennsylvania, PA; 4D Molecular Therapeutics (R.S.), Emeryville, CA; Department of Developmental and Child Neurology (I.K.-M.), Social Pediatrics, University Children's Hospital Tübingen, Germany; Department of Neuroscience (E.B.), Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy; Departments of Neurology and Neurosurgery (G.B.), Pediatrics and Human Genetics, McGill University; Department Specialized Medicine (G.B.), Division of Medical Genetics, McGill University Health Center; Child Health and Human Development Program (G.B.), Research Institute of the McGill University Health Center, Montreal, Canada; Kennedy Krieger Institute (S.A.F.), Johns Hopkins University, Baltimore, MD; Research Department (E.S.-V.), European Leukodystrophies Association International and European Leukodystrophies Association France, Paris, France; United Leukodystrophy Foundation (R.R.), DeKalb, IL; Vereniging Volwassenen, Kinderen en Stofwisselingsziekten (H.D.), Zwolle, the Netherlands; Industry Alliance Office (P.v.B., P.S.L.), Amsterdam Neuroscience, Amsterdam University Medical Centers; and Department of Epidemiology and Data Science (P.v.d.V.), Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, the Netherlands
| | - Joshua L. Bonkowsky
- From the Department of Pediatric Neurology (M.S.v.d.K., N.I.W.), Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers; Amsterdam Neuroscience (M.S.v.d.K., N.I.W.); Department of Functional Genomics (M.S.v.d.K.), Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, the Netherlands; Division of Pediatric Neurology (J.L.B.), Department of Pediatrics, University of Utah School of Medicine; Primary Children's Hospital (J.L.B.), Intermountain Healthcare, Salt Lake City, UT; Division of Neurology (A.V.), Children's Hospital of Philadelphia; Department of Neurology (A.V.), Perelman School of Medicine, University of Pennsylvania, PA; 4D Molecular Therapeutics (R.S.), Emeryville, CA; Department of Developmental and Child Neurology (I.K.-M.), Social Pediatrics, University Children's Hospital Tübingen, Germany; Department of Neuroscience (E.B.), Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy; Departments of Neurology and Neurosurgery (G.B.), Pediatrics and Human Genetics, McGill University; Department Specialized Medicine (G.B.), Division of Medical Genetics, McGill University Health Center; Child Health and Human Development Program (G.B.), Research Institute of the McGill University Health Center, Montreal, Canada; Kennedy Krieger Institute (S.A.F.), Johns Hopkins University, Baltimore, MD; Research Department (E.S.-V.), European Leukodystrophies Association International and European Leukodystrophies Association France, Paris, France; United Leukodystrophy Foundation (R.R.), DeKalb, IL; Vereniging Volwassenen, Kinderen en Stofwisselingsziekten (H.D.), Zwolle, the Netherlands; Industry Alliance Office (P.v.B., P.S.L.), Amsterdam Neuroscience, Amsterdam University Medical Centers; and Department of Epidemiology and Data Science (P.v.d.V.), Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, the Netherlands
| | - Adeline Vanderver
- From the Department of Pediatric Neurology (M.S.v.d.K., N.I.W.), Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers; Amsterdam Neuroscience (M.S.v.d.K., N.I.W.); Department of Functional Genomics (M.S.v.d.K.), Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, the Netherlands; Division of Pediatric Neurology (J.L.B.), Department of Pediatrics, University of Utah School of Medicine; Primary Children's Hospital (J.L.B.), Intermountain Healthcare, Salt Lake City, UT; Division of Neurology (A.V.), Children's Hospital of Philadelphia; Department of Neurology (A.V.), Perelman School of Medicine, University of Pennsylvania, PA; 4D Molecular Therapeutics (R.S.), Emeryville, CA; Department of Developmental and Child Neurology (I.K.-M.), Social Pediatrics, University Children's Hospital Tübingen, Germany; Department of Neuroscience (E.B.), Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy; Departments of Neurology and Neurosurgery (G.B.), Pediatrics and Human Genetics, McGill University; Department Specialized Medicine (G.B.), Division of Medical Genetics, McGill University Health Center; Child Health and Human Development Program (G.B.), Research Institute of the McGill University Health Center, Montreal, Canada; Kennedy Krieger Institute (S.A.F.), Johns Hopkins University, Baltimore, MD; Research Department (E.S.-V.), European Leukodystrophies Association International and European Leukodystrophies Association France, Paris, France; United Leukodystrophy Foundation (R.R.), DeKalb, IL; Vereniging Volwassenen, Kinderen en Stofwisselingsziekten (H.D.), Zwolle, the Netherlands; Industry Alliance Office (P.v.B., P.S.L.), Amsterdam Neuroscience, Amsterdam University Medical Centers; and Department of Epidemiology and Data Science (P.v.d.V.), Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, the Netherlands
| | - Raphael Schiffmann
- From the Department of Pediatric Neurology (M.S.v.d.K., N.I.W.), Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers; Amsterdam Neuroscience (M.S.v.d.K., N.I.W.); Department of Functional Genomics (M.S.v.d.K.), Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, the Netherlands; Division of Pediatric Neurology (J.L.B.), Department of Pediatrics, University of Utah School of Medicine; Primary Children's Hospital (J.L.B.), Intermountain Healthcare, Salt Lake City, UT; Division of Neurology (A.V.), Children's Hospital of Philadelphia; Department of Neurology (A.V.), Perelman School of Medicine, University of Pennsylvania, PA; 4D Molecular Therapeutics (R.S.), Emeryville, CA; Department of Developmental and Child Neurology (I.K.-M.), Social Pediatrics, University Children's Hospital Tübingen, Germany; Department of Neuroscience (E.B.), Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy; Departments of Neurology and Neurosurgery (G.B.), Pediatrics and Human Genetics, McGill University; Department Specialized Medicine (G.B.), Division of Medical Genetics, McGill University Health Center; Child Health and Human Development Program (G.B.), Research Institute of the McGill University Health Center, Montreal, Canada; Kennedy Krieger Institute (S.A.F.), Johns Hopkins University, Baltimore, MD; Research Department (E.S.-V.), European Leukodystrophies Association International and European Leukodystrophies Association France, Paris, France; United Leukodystrophy Foundation (R.R.), DeKalb, IL; Vereniging Volwassenen, Kinderen en Stofwisselingsziekten (H.D.), Zwolle, the Netherlands; Industry Alliance Office (P.v.B., P.S.L.), Amsterdam Neuroscience, Amsterdam University Medical Centers; and Department of Epidemiology and Data Science (P.v.d.V.), Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, the Netherlands
| | - Ingeborg Krägeloh-Mann
- From the Department of Pediatric Neurology (M.S.v.d.K., N.I.W.), Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers; Amsterdam Neuroscience (M.S.v.d.K., N.I.W.); Department of Functional Genomics (M.S.v.d.K.), Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, the Netherlands; Division of Pediatric Neurology (J.L.B.), Department of Pediatrics, University of Utah School of Medicine; Primary Children's Hospital (J.L.B.), Intermountain Healthcare, Salt Lake City, UT; Division of Neurology (A.V.), Children's Hospital of Philadelphia; Department of Neurology (A.V.), Perelman School of Medicine, University of Pennsylvania, PA; 4D Molecular Therapeutics (R.S.), Emeryville, CA; Department of Developmental and Child Neurology (I.K.-M.), Social Pediatrics, University Children's Hospital Tübingen, Germany; Department of Neuroscience (E.B.), Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy; Departments of Neurology and Neurosurgery (G.B.), Pediatrics and Human Genetics, McGill University; Department Specialized Medicine (G.B.), Division of Medical Genetics, McGill University Health Center; Child Health and Human Development Program (G.B.), Research Institute of the McGill University Health Center, Montreal, Canada; Kennedy Krieger Institute (S.A.F.), Johns Hopkins University, Baltimore, MD; Research Department (E.S.-V.), European Leukodystrophies Association International and European Leukodystrophies Association France, Paris, France; United Leukodystrophy Foundation (R.R.), DeKalb, IL; Vereniging Volwassenen, Kinderen en Stofwisselingsziekten (H.D.), Zwolle, the Netherlands; Industry Alliance Office (P.v.B., P.S.L.), Amsterdam Neuroscience, Amsterdam University Medical Centers; and Department of Epidemiology and Data Science (P.v.d.V.), Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, the Netherlands
| | - Enrico Bertini
- From the Department of Pediatric Neurology (M.S.v.d.K., N.I.W.), Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers; Amsterdam Neuroscience (M.S.v.d.K., N.I.W.); Department of Functional Genomics (M.S.v.d.K.), Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, the Netherlands; Division of Pediatric Neurology (J.L.B.), Department of Pediatrics, University of Utah School of Medicine; Primary Children's Hospital (J.L.B.), Intermountain Healthcare, Salt Lake City, UT; Division of Neurology (A.V.), Children's Hospital of Philadelphia; Department of Neurology (A.V.), Perelman School of Medicine, University of Pennsylvania, PA; 4D Molecular Therapeutics (R.S.), Emeryville, CA; Department of Developmental and Child Neurology (I.K.-M.), Social Pediatrics, University Children's Hospital Tübingen, Germany; Department of Neuroscience (E.B.), Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy; Departments of Neurology and Neurosurgery (G.B.), Pediatrics and Human Genetics, McGill University; Department Specialized Medicine (G.B.), Division of Medical Genetics, McGill University Health Center; Child Health and Human Development Program (G.B.), Research Institute of the McGill University Health Center, Montreal, Canada; Kennedy Krieger Institute (S.A.F.), Johns Hopkins University, Baltimore, MD; Research Department (E.S.-V.), European Leukodystrophies Association International and European Leukodystrophies Association France, Paris, France; United Leukodystrophy Foundation (R.R.), DeKalb, IL; Vereniging Volwassenen, Kinderen en Stofwisselingsziekten (H.D.), Zwolle, the Netherlands; Industry Alliance Office (P.v.B., P.S.L.), Amsterdam Neuroscience, Amsterdam University Medical Centers; and Department of Epidemiology and Data Science (P.v.d.V.), Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, the Netherlands
| | - Genevieve Bernard
- From the Department of Pediatric Neurology (M.S.v.d.K., N.I.W.), Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers; Amsterdam Neuroscience (M.S.v.d.K., N.I.W.); Department of Functional Genomics (M.S.v.d.K.), Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, the Netherlands; Division of Pediatric Neurology (J.L.B.), Department of Pediatrics, University of Utah School of Medicine; Primary Children's Hospital (J.L.B.), Intermountain Healthcare, Salt Lake City, UT; Division of Neurology (A.V.), Children's Hospital of Philadelphia; Department of Neurology (A.V.), Perelman School of Medicine, University of Pennsylvania, PA; 4D Molecular Therapeutics (R.S.), Emeryville, CA; Department of Developmental and Child Neurology (I.K.-M.), Social Pediatrics, University Children's Hospital Tübingen, Germany; Department of Neuroscience (E.B.), Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy; Departments of Neurology and Neurosurgery (G.B.), Pediatrics and Human Genetics, McGill University; Department Specialized Medicine (G.B.), Division of Medical Genetics, McGill University Health Center; Child Health and Human Development Program (G.B.), Research Institute of the McGill University Health Center, Montreal, Canada; Kennedy Krieger Institute (S.A.F.), Johns Hopkins University, Baltimore, MD; Research Department (E.S.-V.), European Leukodystrophies Association International and European Leukodystrophies Association France, Paris, France; United Leukodystrophy Foundation (R.R.), DeKalb, IL; Vereniging Volwassenen, Kinderen en Stofwisselingsziekten (H.D.), Zwolle, the Netherlands; Industry Alliance Office (P.v.B., P.S.L.), Amsterdam Neuroscience, Amsterdam University Medical Centers; and Department of Epidemiology and Data Science (P.v.d.V.), Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, the Netherlands
| | - Seyed Ali Fatemi
- From the Department of Pediatric Neurology (M.S.v.d.K., N.I.W.), Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers; Amsterdam Neuroscience (M.S.v.d.K., N.I.W.); Department of Functional Genomics (M.S.v.d.K.), Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, the Netherlands; Division of Pediatric Neurology (J.L.B.), Department of Pediatrics, University of Utah School of Medicine; Primary Children's Hospital (J.L.B.), Intermountain Healthcare, Salt Lake City, UT; Division of Neurology (A.V.), Children's Hospital of Philadelphia; Department of Neurology (A.V.), Perelman School of Medicine, University of Pennsylvania, PA; 4D Molecular Therapeutics (R.S.), Emeryville, CA; Department of Developmental and Child Neurology (I.K.-M.), Social Pediatrics, University Children's Hospital Tübingen, Germany; Department of Neuroscience (E.B.), Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy; Departments of Neurology and Neurosurgery (G.B.), Pediatrics and Human Genetics, McGill University; Department Specialized Medicine (G.B.), Division of Medical Genetics, McGill University Health Center; Child Health and Human Development Program (G.B.), Research Institute of the McGill University Health Center, Montreal, Canada; Kennedy Krieger Institute (S.A.F.), Johns Hopkins University, Baltimore, MD; Research Department (E.S.-V.), European Leukodystrophies Association International and European Leukodystrophies Association France, Paris, France; United Leukodystrophy Foundation (R.R.), DeKalb, IL; Vereniging Volwassenen, Kinderen en Stofwisselingsziekten (H.D.), Zwolle, the Netherlands; Industry Alliance Office (P.v.B., P.S.L.), Amsterdam Neuroscience, Amsterdam University Medical Centers; and Department of Epidemiology and Data Science (P.v.d.V.), Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, the Netherlands
| | - Nicole I. Wolf
- From the Department of Pediatric Neurology (M.S.v.d.K., N.I.W.), Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers; Amsterdam Neuroscience (M.S.v.d.K., N.I.W.); Department of Functional Genomics (M.S.v.d.K.), Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, the Netherlands; Division of Pediatric Neurology (J.L.B.), Department of Pediatrics, University of Utah School of Medicine; Primary Children's Hospital (J.L.B.), Intermountain Healthcare, Salt Lake City, UT; Division of Neurology (A.V.), Children's Hospital of Philadelphia; Department of Neurology (A.V.), Perelman School of Medicine, University of Pennsylvania, PA; 4D Molecular Therapeutics (R.S.), Emeryville, CA; Department of Developmental and Child Neurology (I.K.-M.), Social Pediatrics, University Children's Hospital Tübingen, Germany; Department of Neuroscience (E.B.), Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy; Departments of Neurology and Neurosurgery (G.B.), Pediatrics and Human Genetics, McGill University; Department Specialized Medicine (G.B.), Division of Medical Genetics, McGill University Health Center; Child Health and Human Development Program (G.B.), Research Institute of the McGill University Health Center, Montreal, Canada; Kennedy Krieger Institute (S.A.F.), Johns Hopkins University, Baltimore, MD; Research Department (E.S.-V.), European Leukodystrophies Association International and European Leukodystrophies Association France, Paris, France; United Leukodystrophy Foundation (R.R.), DeKalb, IL; Vereniging Volwassenen, Kinderen en Stofwisselingsziekten (H.D.), Zwolle, the Netherlands; Industry Alliance Office (P.v.B., P.S.L.), Amsterdam Neuroscience, Amsterdam University Medical Centers; and Department of Epidemiology and Data Science (P.v.d.V.), Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, the Netherlands
| | - Elise Saunier-Vivar
- From the Department of Pediatric Neurology (M.S.v.d.K., N.I.W.), Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers; Amsterdam Neuroscience (M.S.v.d.K., N.I.W.); Department of Functional Genomics (M.S.v.d.K.), Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, the Netherlands; Division of Pediatric Neurology (J.L.B.), Department of Pediatrics, University of Utah School of Medicine; Primary Children's Hospital (J.L.B.), Intermountain Healthcare, Salt Lake City, UT; Division of Neurology (A.V.), Children's Hospital of Philadelphia; Department of Neurology (A.V.), Perelman School of Medicine, University of Pennsylvania, PA; 4D Molecular Therapeutics (R.S.), Emeryville, CA; Department of Developmental and Child Neurology (I.K.-M.), Social Pediatrics, University Children's Hospital Tübingen, Germany; Department of Neuroscience (E.B.), Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy; Departments of Neurology and Neurosurgery (G.B.), Pediatrics and Human Genetics, McGill University; Department Specialized Medicine (G.B.), Division of Medical Genetics, McGill University Health Center; Child Health and Human Development Program (G.B.), Research Institute of the McGill University Health Center, Montreal, Canada; Kennedy Krieger Institute (S.A.F.), Johns Hopkins University, Baltimore, MD; Research Department (E.S.-V.), European Leukodystrophies Association International and European Leukodystrophies Association France, Paris, France; United Leukodystrophy Foundation (R.R.), DeKalb, IL; Vereniging Volwassenen, Kinderen en Stofwisselingsziekten (H.D.), Zwolle, the Netherlands; Industry Alliance Office (P.v.B., P.S.L.), Amsterdam Neuroscience, Amsterdam University Medical Centers; and Department of Epidemiology and Data Science (P.v.d.V.), Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, the Netherlands
| | - Robert Rauner
- From the Department of Pediatric Neurology (M.S.v.d.K., N.I.W.), Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers; Amsterdam Neuroscience (M.S.v.d.K., N.I.W.); Department of Functional Genomics (M.S.v.d.K.), Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, the Netherlands; Division of Pediatric Neurology (J.L.B.), Department of Pediatrics, University of Utah School of Medicine; Primary Children's Hospital (J.L.B.), Intermountain Healthcare, Salt Lake City, UT; Division of Neurology (A.V.), Children's Hospital of Philadelphia; Department of Neurology (A.V.), Perelman School of Medicine, University of Pennsylvania, PA; 4D Molecular Therapeutics (R.S.), Emeryville, CA; Department of Developmental and Child Neurology (I.K.-M.), Social Pediatrics, University Children's Hospital Tübingen, Germany; Department of Neuroscience (E.B.), Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy; Departments of Neurology and Neurosurgery (G.B.), Pediatrics and Human Genetics, McGill University; Department Specialized Medicine (G.B.), Division of Medical Genetics, McGill University Health Center; Child Health and Human Development Program (G.B.), Research Institute of the McGill University Health Center, Montreal, Canada; Kennedy Krieger Institute (S.A.F.), Johns Hopkins University, Baltimore, MD; Research Department (E.S.-V.), European Leukodystrophies Association International and European Leukodystrophies Association France, Paris, France; United Leukodystrophy Foundation (R.R.), DeKalb, IL; Vereniging Volwassenen, Kinderen en Stofwisselingsziekten (H.D.), Zwolle, the Netherlands; Industry Alliance Office (P.v.B., P.S.L.), Amsterdam Neuroscience, Amsterdam University Medical Centers; and Department of Epidemiology and Data Science (P.v.d.V.), Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, the Netherlands
| | - Hanka Dekker
- From the Department of Pediatric Neurology (M.S.v.d.K., N.I.W.), Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers; Amsterdam Neuroscience (M.S.v.d.K., N.I.W.); Department of Functional Genomics (M.S.v.d.K.), Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, the Netherlands; Division of Pediatric Neurology (J.L.B.), Department of Pediatrics, University of Utah School of Medicine; Primary Children's Hospital (J.L.B.), Intermountain Healthcare, Salt Lake City, UT; Division of Neurology (A.V.), Children's Hospital of Philadelphia; Department of Neurology (A.V.), Perelman School of Medicine, University of Pennsylvania, PA; 4D Molecular Therapeutics (R.S.), Emeryville, CA; Department of Developmental and Child Neurology (I.K.-M.), Social Pediatrics, University Children's Hospital Tübingen, Germany; Department of Neuroscience (E.B.), Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy; Departments of Neurology and Neurosurgery (G.B.), Pediatrics and Human Genetics, McGill University; Department Specialized Medicine (G.B.), Division of Medical Genetics, McGill University Health Center; Child Health and Human Development Program (G.B.), Research Institute of the McGill University Health Center, Montreal, Canada; Kennedy Krieger Institute (S.A.F.), Johns Hopkins University, Baltimore, MD; Research Department (E.S.-V.), European Leukodystrophies Association International and European Leukodystrophies Association France, Paris, France; United Leukodystrophy Foundation (R.R.), DeKalb, IL; Vereniging Volwassenen, Kinderen en Stofwisselingsziekten (H.D.), Zwolle, the Netherlands; Industry Alliance Office (P.v.B., P.S.L.), Amsterdam Neuroscience, Amsterdam University Medical Centers; and Department of Epidemiology and Data Science (P.v.d.V.), Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, the Netherlands
| | - Pieter van Bokhoven
- From the Department of Pediatric Neurology (M.S.v.d.K., N.I.W.), Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers; Amsterdam Neuroscience (M.S.v.d.K., N.I.W.); Department of Functional Genomics (M.S.v.d.K.), Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, the Netherlands; Division of Pediatric Neurology (J.L.B.), Department of Pediatrics, University of Utah School of Medicine; Primary Children's Hospital (J.L.B.), Intermountain Healthcare, Salt Lake City, UT; Division of Neurology (A.V.), Children's Hospital of Philadelphia; Department of Neurology (A.V.), Perelman School of Medicine, University of Pennsylvania, PA; 4D Molecular Therapeutics (R.S.), Emeryville, CA; Department of Developmental and Child Neurology (I.K.-M.), Social Pediatrics, University Children's Hospital Tübingen, Germany; Department of Neuroscience (E.B.), Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy; Departments of Neurology and Neurosurgery (G.B.), Pediatrics and Human Genetics, McGill University; Department Specialized Medicine (G.B.), Division of Medical Genetics, McGill University Health Center; Child Health and Human Development Program (G.B.), Research Institute of the McGill University Health Center, Montreal, Canada; Kennedy Krieger Institute (S.A.F.), Johns Hopkins University, Baltimore, MD; Research Department (E.S.-V.), European Leukodystrophies Association International and European Leukodystrophies Association France, Paris, France; United Leukodystrophy Foundation (R.R.), DeKalb, IL; Vereniging Volwassenen, Kinderen en Stofwisselingsziekten (H.D.), Zwolle, the Netherlands; Industry Alliance Office (P.v.B., P.S.L.), Amsterdam Neuroscience, Amsterdam University Medical Centers; and Department of Epidemiology and Data Science (P.v.d.V.), Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, the Netherlands
| | - Peter van de Ven
- From the Department of Pediatric Neurology (M.S.v.d.K., N.I.W.), Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers; Amsterdam Neuroscience (M.S.v.d.K., N.I.W.); Department of Functional Genomics (M.S.v.d.K.), Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, the Netherlands; Division of Pediatric Neurology (J.L.B.), Department of Pediatrics, University of Utah School of Medicine; Primary Children's Hospital (J.L.B.), Intermountain Healthcare, Salt Lake City, UT; Division of Neurology (A.V.), Children's Hospital of Philadelphia; Department of Neurology (A.V.), Perelman School of Medicine, University of Pennsylvania, PA; 4D Molecular Therapeutics (R.S.), Emeryville, CA; Department of Developmental and Child Neurology (I.K.-M.), Social Pediatrics, University Children's Hospital Tübingen, Germany; Department of Neuroscience (E.B.), Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy; Departments of Neurology and Neurosurgery (G.B.), Pediatrics and Human Genetics, McGill University; Department Specialized Medicine (G.B.), Division of Medical Genetics, McGill University Health Center; Child Health and Human Development Program (G.B.), Research Institute of the McGill University Health Center, Montreal, Canada; Kennedy Krieger Institute (S.A.F.), Johns Hopkins University, Baltimore, MD; Research Department (E.S.-V.), European Leukodystrophies Association International and European Leukodystrophies Association France, Paris, France; United Leukodystrophy Foundation (R.R.), DeKalb, IL; Vereniging Volwassenen, Kinderen en Stofwisselingsziekten (H.D.), Zwolle, the Netherlands; Industry Alliance Office (P.v.B., P.S.L.), Amsterdam Neuroscience, Amsterdam University Medical Centers; and Department of Epidemiology and Data Science (P.v.d.V.), Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, the Netherlands
| | - Prisca S. Leferink
- From the Department of Pediatric Neurology (M.S.v.d.K., N.I.W.), Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers; Amsterdam Neuroscience (M.S.v.d.K., N.I.W.); Department of Functional Genomics (M.S.v.d.K.), Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, the Netherlands; Division of Pediatric Neurology (J.L.B.), Department of Pediatrics, University of Utah School of Medicine; Primary Children's Hospital (J.L.B.), Intermountain Healthcare, Salt Lake City, UT; Division of Neurology (A.V.), Children's Hospital of Philadelphia; Department of Neurology (A.V.), Perelman School of Medicine, University of Pennsylvania, PA; 4D Molecular Therapeutics (R.S.), Emeryville, CA; Department of Developmental and Child Neurology (I.K.-M.), Social Pediatrics, University Children's Hospital Tübingen, Germany; Department of Neuroscience (E.B.), Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy; Departments of Neurology and Neurosurgery (G.B.), Pediatrics and Human Genetics, McGill University; Department Specialized Medicine (G.B.), Division of Medical Genetics, McGill University Health Center; Child Health and Human Development Program (G.B.), Research Institute of the McGill University Health Center, Montreal, Canada; Kennedy Krieger Institute (S.A.F.), Johns Hopkins University, Baltimore, MD; Research Department (E.S.-V.), European Leukodystrophies Association International and European Leukodystrophies Association France, Paris, France; United Leukodystrophy Foundation (R.R.), DeKalb, IL; Vereniging Volwassenen, Kinderen en Stofwisselingsziekten (H.D.), Zwolle, the Netherlands; Industry Alliance Office (P.v.B., P.S.L.), Amsterdam Neuroscience, Amsterdam University Medical Centers; and Department of Epidemiology and Data Science (P.v.d.V.), Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, the Netherlands
| |
Collapse
|
18
|
Bugiani M, Plug BC, Man JHK, Breur M, van der Knaap MS. Heterogeneity of white matter astrocytes in the human brain. Acta Neuropathol 2022; 143:159-177. [PMID: 34878591 DOI: 10.1007/s00401-021-02391-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/17/2021] [Accepted: 11/28/2021] [Indexed: 12/12/2022]
Abstract
Astrocytes regulate central nervous system development, maintain its homeostasis and orchestrate repair upon injury. Emerging evidence support functional specialization of astroglia, both between and within brain regions. Different subtypes of gray matter astrocytes have been identified, yet molecular and functional diversity of white matter astrocytes remains largely unexplored. Nonetheless, their important and diverse roles in maintaining white matter integrity and function are well recognized. Compelling evidence indicate that impairment of normal astrocytic function and their response to injury contribute to a wide variety of diseases, including white matter disorders. In this review, we highlight our current understanding of astrocyte heterogeneity in the white matter of the mammalian brain and how an interplay between developmental origins and local environmental cues contribute to astroglial diversification. In addition, we discuss whether, and if so, how, heterogeneous astrocytes could contribute to white matter function in health and disease and focus on the sparse human research data available. We highlight four leukodystrophies primarily due to astrocytic dysfunction, the so-called astrocytopathies. Insight into the role of astroglial heterogeneity in both healthy and diseased white matter may provide new avenues for therapies aimed at promoting repair and restoring normal white matter function.
Collapse
|
19
|
Zakusilo FT, Kerry O’Banion M, Gelbard HA, Seluanov A, Gorbunova V. Matters of size: Roles of hyaluronan in CNS aging and disease. Ageing Res Rev 2021; 72:101485. [PMID: 34634492 DOI: 10.1016/j.arr.2021.101485] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/29/2022]
Abstract
Involvement of extracellular matrix (ECM) components in aging and age-related neurodegeneration is not well understood. The role of hyaluronan (HA), a major extracellular matrix glycosaminoglycan, in malignancy and inflammation is gaining new understanding. In particular, the differential biological effects of high molecular weight (HMW-HA) and low molecular weight hyaluronan (LMW-HA), and the mechanism behind such differences are being uncovered. Tightly regulated in the brain, HA can have diverse effects on cellular development, growth and degeneration. In this review, we summarize the homeostasis and signaling of HA in healthy tissue, discuss its distribution and ontogeny in the central nervous system (CNS), summarize evidence for its involvement in age-related neurodegeneration and Alzheimer Disease (AD), and assess the potential of HA as a therapeutic target in the CNS.
Collapse
|
20
|
English AM, Green KM, Moon SL. A (dis)integrated stress response: Genetic diseases of eIF2α regulators. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1689. [PMID: 34463036 DOI: 10.1002/wrna.1689] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 01/28/2023]
Abstract
The integrated stress response (ISR) is a conserved mechanism by which eukaryotic cells remodel gene expression to adapt to intrinsic and extrinsic stressors rapidly and reversibly. The ISR is initiated when stress-activated protein kinases phosphorylate the major translation initiation factor eukaryotic translation initiation factor 2ɑ (eIF2ɑ), which globally suppresses translation initiation activity and permits the selective translation of stress-induced genes including important transcription factors such as activating transcription factor 4 (ATF4). Translationally repressed messenger RNAs (mRNAs) and noncoding RNAs assemble into cytoplasmic RNA-protein granules and polyadenylated RNAs are concomitantly stabilized. Thus, regulated changes in mRNA translation, stability, and localization to RNA-protein granules contribute to the reprogramming of gene expression that defines the ISR. We discuss fundamental mechanisms of RNA regulation during the ISR and provide an overview of a growing class of genetic disorders associated with mutant alleles of key translation factors in the ISR pathway. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA in Disease and Development > RNA in Disease Translation > Translation Regulation RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Alyssa M English
- Department of Human Genetics, Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Katelyn M Green
- Department of Chemistry, Department of Human Genetics, Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Stephanie L Moon
- Department of Human Genetics, Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
21
|
Diao S, Xiao M, Chen C. The role of hyaluronan in myelination and remyelination after white matter injury. Brain Res 2021; 1766:147522. [PMID: 34010609 DOI: 10.1016/j.brainres.2021.147522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 04/28/2021] [Accepted: 05/11/2021] [Indexed: 12/19/2022]
Abstract
Hyaluronan is one of the major components of the neural extracellular matrix (ECM) and provides structural support in physiological conditions. Altered hyaluronan regulation is implicated in the pathogenesis of white matter injury (WMI), such as perinatal WMI, multiple sclerosis (MS), traumatic brain injury (TBI). Early research reported diverse central nervous system (CNS) insults led to accumulated high-molecular-weight (HMW) hyaluronan in hypomyelinating/demyelinating lesions. Furthermore, recent findings have shown an elevated production of hyaluronan fragments in WMI, possibly resulting from HMW hyaluronan degradation. Subsequent in vitro studies identified bioactive hyaluronan fragments with a specific molecular weight (around 2x105 Da) regulating oligodendrocyte precursor cells (OPCs) maturation and myelination/remyelination in WMI. However, it is unclear about the effective hyaluronidases in generating bioactive hyaluronan fragments. Several hyaluronidases are proposed recently. Although PH20 is shown to block OPCs maturation by generating bioactive hyaluronan fragments in vitro, it seems unlikely to play a primary role in WMI with negligible expression levels in vivo. The role of other hyaluronidases on OPCs maturation and myelination/remyelination is still unknown. Other than hyaluronidases, CD44 and Toll-like receptors 2 (TLR2) are also implicated in HMW hyaluronan degradation in WMI. Moreover, recent studies elucidated bioactive hyaluronan fragments interact with TLR4, initiating signaling cascades to mediate myelin basic protein (MBP) transcription. Identifying key factors in hyaluronan actions may provide novel therapeutic targets to promote OPCs maturation and myelination/remyelination in WMI.
Collapse
Affiliation(s)
- Sihao Diao
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai 201102, China; Key Laboratory of Neonatal Diseases, National Health Commission, China
| | - Mili Xiao
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai 201102, China; Key Laboratory of Neonatal Diseases, National Health Commission, China
| | - Chao Chen
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai 201102, China; Key Laboratory of Neonatal Diseases, National Health Commission, China.
| |
Collapse
|
22
|
Su M, Soomro SH, Jie J, Fu H. Effects of the extracellular matrix on myelin development and regeneration in the central nervous system. Tissue Cell 2021; 69:101444. [PMID: 33450651 DOI: 10.1016/j.tice.2020.101444] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/23/2020] [Accepted: 10/05/2020] [Indexed: 12/25/2022]
Abstract
Extracellular matrix (ECM) is a collection of extracellular molecules secreted by cells, providing structural and biochemical support for surrounding tissues. The ECM exerts biological effects by interacting with growth factors, signal receptors or adhesion molecules. In the case of myelin formation and regeneration, the combination of ECM and its receptors (for example, integrins) modulates signaling pathways such as PI3K, MAPK, etc., which in turn induces complex biological effects throughout various stages of myelination and regeneration. Studies have also found that myelin injury would cause changes in ECM composition and thus affecting the myelin regeneration process. Research on the ECM will provide a better understanding of how myelin is formed and regenerated, which will help to develop new therapies for demyelinating diseases. Future progress in this field will provide important information on how to modify the ECM to promote proliferation and differentiation of oligodendrocyte precursor cells (OPC), thereby stimulating myelin formation and regeneration and restoring normal neural function.
Collapse
Affiliation(s)
- Min Su
- Wuhan University, School of Basic Medical Sciences, Wuhan, China.
| | | | - Jifu Jie
- Health School of Bayinguoleng Mongolian Autonomous Prefecture, Xinjiang, China.
| | - Hui Fu
- Wuhan University, School of Basic Medical Sciences, Wuhan, China.
| |
Collapse
|
23
|
de Waard DM, Bugiani M. Astrocyte-Oligodendrocyte-Microglia Crosstalk in Astrocytopathies. Front Cell Neurosci 2020; 14:608073. [PMID: 33328899 PMCID: PMC7710860 DOI: 10.3389/fncel.2020.608073] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022] Open
Abstract
Defective astrocyte function due to a genetic mutation can have major consequences for microglia and oligodendrocyte physiology, which in turn affects the white matter integrity of the brain. This review addresses the current knowledge on shared and unique pathophysiological mechanisms of astrocytopathies, including vanishing white matter, Alexander disease, megalencephalic leukoencephalopathy with subcortical cysts, Aicardi-Goutières syndrome, and oculodentodigital dysplasia. The mechanisms of disease include protein accumulation, unbalanced secretion of extracellular matrix proteins, pro- and anti-inflammatory molecules, cytokines and chemokines by astrocytes, as well as an altered gap junctional network and a changed ionic and nutrient homeostasis. Interestingly, the extent to which astrogliosis and microgliosis are present in these astrocytopathies is highly variable. An improved understanding of astrocyte-microglia-oligodendrocyte crosstalk might ultimately lead to the identification of druggable targets for these, currently untreatable, severe conditions.
Collapse
Affiliation(s)
| | - Marianna Bugiani
- Department of Pathology, VU Medical center, Amsterdam UMC, Amsterdam, Netherlands
| |
Collapse
|
24
|
Kirby L, Castelo-Branco G. Crossing boundaries: Interplay between the immune system and oligodendrocyte lineage cells. Semin Cell Dev Biol 2020; 116:45-52. [PMID: 33162336 DOI: 10.1016/j.semcdb.2020.10.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/12/2020] [Accepted: 10/26/2020] [Indexed: 01/20/2023]
Abstract
Oligodendrocytes and their progenitors are glial cells in the central nervous system, which have been mainly implicated with the homeostatic roles of axonal myelin ensheathment but serve as targets of the peripheral immune system attack in the context of diseases like multiple sclerosis. This view of oligodendroglia as passive bystanders with no immunological properties was first challenged in the 1980s when it was reported that the cytokine interferon γ could induce the gene expression of the major histocompatibility complexes (MHC) class I and II. While the physiological role of this induction was controversial for decades to follow, recent studies suggest that oligodendroglia survey their environment, respond to a larger array of cues and can indeed exert immunomodulatory functions, which are particularly relevant in the context of neurodegeneration and demyelinating diseases. The alternative functionality of oligodendroglia not only regulates immune cell responses, but also hinders remyelination, and might thereby be key to understanding MS disease pathology and promoting regeneration after immune-mediated demyelination.
Collapse
Affiliation(s)
- Leslie Kirby
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, Biomedicum, 17177 Stockholm, Sweden
| | - Gonçalo Castelo-Branco
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, Biomedicum, 17177 Stockholm, Sweden; Ming Wai Lau Centre for Reparative Medicine, Stockholm Node, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|
25
|
Garcia LM, Hacker JL, Sase S, Adang L, Almad A. Glial cells in the driver seat of leukodystrophy pathogenesis. Neurobiol Dis 2020; 146:105087. [PMID: 32977022 DOI: 10.1016/j.nbd.2020.105087] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 08/16/2020] [Accepted: 09/18/2020] [Indexed: 01/24/2023] Open
Abstract
Glia cells are often viewed as support cells in the central nervous system, but recent discoveries highlight their importance in physiological functions and in neurological diseases. Central to this are leukodystrophies, a group of progressive, neurogenetic disease affecting white matter pathology. In this review, we take a closer look at multiple leukodystrophies, classified based on the primary glial cell type that is affected. While white matter diseases involve oligodendrocyte and myelin loss, we discuss how astrocytes and microglia are affected and impinge on oligodendrocyte, myelin and axonal pathology. We provide an overview of the leukodystrophies covering their hallmark features, clinical phenotypes, diverse molecular pathways, and potential therapeutics for clinical trials. Glial cells are gaining momentum as cellular therapeutic targets for treatment of demyelinating diseases such as leukodystrophies, currently with no treatment options. Here, we bring the much needed attention to role of glia in leukodystrophies, an integral step towards furthering disease comprehension, understanding mechanisms and developing future therapeutics.
Collapse
Affiliation(s)
- Luis M Garcia
- Department of Neurology, The Children's Hospital of Philadelphia, PA, Pennsylvania, USA
| | - Julia L Hacker
- Department of Neurology, The Children's Hospital of Philadelphia, PA, Pennsylvania, USA
| | - Sunetra Sase
- Department of Neurology, The Children's Hospital of Philadelphia, PA, Pennsylvania, USA
| | - Laura Adang
- Department of Neurology, The Children's Hospital of Philadelphia, PA, Pennsylvania, USA
| | - Akshata Almad
- Department of Neurology, The Children's Hospital of Philadelphia, PA, Pennsylvania, USA.
| |
Collapse
|
26
|
Jensen G, Holloway JL, Stabenfeldt SE. Hyaluronic Acid Biomaterials for Central Nervous System Regenerative Medicine. Cells 2020; 9:E2113. [PMID: 32957463 PMCID: PMC7565873 DOI: 10.3390/cells9092113] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 12/16/2022] Open
Abstract
Hyaluronic acid (HA) is a primary component of the brain extracellular matrix and functions through cellular receptors to regulate cell behavior within the central nervous system (CNS). These behaviors, such as migration, proliferation, differentiation, and inflammation contribute to maintenance and homeostasis of the CNS. However, such equilibrium is disrupted following injury or disease leading to significantly altered extracellular matrix milieu and cell functions. This imbalance thereby inhibits inherent homeostatic processes that support critical tissue health and functionality in the CNS. To mitigate the damage sustained by injury/disease, HA-based tissue engineering constructs have been investigated for CNS regenerative medicine applications. HA's effectiveness in tissue healing and regeneration is primarily attributed to its impact on cell signaling and the ease of customizing chemical and mechanical properties. This review focuses on recent findings to highlight the applications of HA-based materials in CNS regenerative medicine.
Collapse
Affiliation(s)
- Gregory Jensen
- Chemical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85224, USA;
| | - Julianne L. Holloway
- Chemical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85224, USA;
| | - Sarah E. Stabenfeldt
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
27
|
Diverse Roles for Hyaluronan and Hyaluronan Receptors in the Developing and Adult Nervous System. Int J Mol Sci 2020; 21:ijms21175988. [PMID: 32825309 PMCID: PMC7504301 DOI: 10.3390/ijms21175988] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 02/07/2023] Open
Abstract
Hyaluronic acid (HA) plays a vital role in the extracellular matrix of neural tissues. Originally thought to hydrate tissues and provide mechanical support, it is now clear that HA is also a complex signaling molecule that can regulate cell processes in the developing and adult nervous systems. Signaling properties are determined by molecular weight, bound proteins, and signal transduction through specific receptors. HA signaling regulates processes such as proliferation, differentiation, migration, and process extension in a variety of cell types including neural stem cells, neurons, astrocytes, microglia, and oligodendrocyte progenitors. The synthesis and catabolism of HA and the expression of HA receptors are altered in disease and influence neuroinflammation and disease pathogenesis. This review discusses the roles of HA, its synthesis and breakdown, as well as receptor expression in neurodevelopment, nervous system function and disease.
Collapse
|
28
|
Molina-Gonzalez I, Miron VE. Astrocytes in myelination and remyelination. Neurosci Lett 2019; 713:134532. [PMID: 31589903 DOI: 10.1016/j.neulet.2019.134532] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/13/2019] [Accepted: 10/01/2019] [Indexed: 02/07/2023]
Abstract
Astrocytes are known to play critical roles in central nervous system development, homeostasis, and response to injury. In addition to well-defined functions in synaptic signalling and blood-brain barrier control, astrocytes are now emerging as important contributors to white matter health. Here, we review the roles of astrocytes in myelin formation and regeneration (remyelination), focusing on both direct interactions with oligodendrocyte lineage cells, and indirect influences via crosstalk with central nervous system resident macrophages, microglia.
Collapse
Affiliation(s)
- Irene Molina-Gonzalez
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Veronique E Miron
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
29
|
Abstract
Leukodystrophies are genetically determined disorders affecting the white matter of the central nervous system. The combination of MRI pattern recognition and next-generation sequencing for the definition of novel disease entities has recently demonstrated that many leukodystrophies are due to the primary involvement and/or mutations in genes selectively expressed by cell types other than the oligodendrocytes, the myelin-forming cells in the brain. This has led to a new definition of leukodystrophies as genetic white matter disorders resulting from the involvement of any white matter structural component. As a result, the research has shifted its main focus from oligodendrocytes to other types of neuroglia. Astrocytes are the housekeeping cells of the nervous system, responsible for maintaining homeostasis and normal brain physiology and to orchestrate repair upon injury. Several lines of evidence show that astrocytic interactions with the other white matter cellular constituents play a primary pathophysiologic role in many leukodystrophies. These are thus now classified as astrocytopathies. This chapter addresses how the crosstalk between astrocytes, other glial cells, axons and non-neural cells are essential for the integrity and maintenance of the white matter in health. It also addresses the current knowledge of the cellular pathomechanisms of astrocytic leukodystrophies, and specifically Alexander disease, vanishing white matter, megalencephalic leukoencephalopathy with subcortical cysts and Aicardi-Goutière Syndrome.
Collapse
Affiliation(s)
- M S Jorge
- Department of Pathology, Free University Medical Centre, Amsterdam, The Netherlands
| | - Marianna Bugiani
- Department of Pathology, Free University Medical Centre, Amsterdam, The Netherlands.
| |
Collapse
|
30
|
Stadelmann C, Timmler S, Barrantes-Freer A, Simons M. Myelin in the Central Nervous System: Structure, Function, and Pathology. Physiol Rev 2019; 99:1381-1431. [PMID: 31066630 DOI: 10.1152/physrev.00031.2018] [Citation(s) in RCA: 325] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Oligodendrocytes generate multiple layers of myelin membrane around axons of the central nervous system to enable fast and efficient nerve conduction. Until recently, saltatory nerve conduction was considered the only purpose of myelin, but it is now clear that myelin has more functions. In fact, myelinating oligodendrocytes are embedded in a vast network of interconnected glial and neuronal cells, and increasing evidence supports an active role of oligodendrocytes within this assembly, for example, by providing metabolic support to neurons, by regulating ion and water homeostasis, and by adapting to activity-dependent neuronal signals. The molecular complexity governing these interactions requires an in-depth molecular understanding of how oligodendrocytes and axons interact and how they generate, maintain, and remodel their myelin sheaths. This review deals with the biology of myelin, the expanded relationship of myelin with its underlying axons and the neighboring cells, and its disturbances in various diseases such as multiple sclerosis, acute disseminated encephalomyelitis, and neuromyelitis optica spectrum disorders. Furthermore, we will highlight how specific interactions between astrocytes, oligodendrocytes, and microglia contribute to demyelination in hereditary white matter pathologies.
Collapse
Affiliation(s)
- Christine Stadelmann
- Institute of Neuropathology, University Medical Center Göttingen , Göttingen , Germany ; Institute of Neuronal Cell Biology, Technical University Munich , Munich , Germany ; German Center for Neurodegenerative Diseases (DZNE), Munich , Germany ; Department of Neuropathology, University Medical Center Leipzig , Leipzig , Germany ; Munich Cluster of Systems Neurology (SyNergy), Munich , Germany ; and Max Planck Institute of Experimental Medicine, Göttingen , Germany
| | - Sebastian Timmler
- Institute of Neuropathology, University Medical Center Göttingen , Göttingen , Germany ; Institute of Neuronal Cell Biology, Technical University Munich , Munich , Germany ; German Center for Neurodegenerative Diseases (DZNE), Munich , Germany ; Department of Neuropathology, University Medical Center Leipzig , Leipzig , Germany ; Munich Cluster of Systems Neurology (SyNergy), Munich , Germany ; and Max Planck Institute of Experimental Medicine, Göttingen , Germany
| | - Alonso Barrantes-Freer
- Institute of Neuropathology, University Medical Center Göttingen , Göttingen , Germany ; Institute of Neuronal Cell Biology, Technical University Munich , Munich , Germany ; German Center for Neurodegenerative Diseases (DZNE), Munich , Germany ; Department of Neuropathology, University Medical Center Leipzig , Leipzig , Germany ; Munich Cluster of Systems Neurology (SyNergy), Munich , Germany ; and Max Planck Institute of Experimental Medicine, Göttingen , Germany
| | - Mikael Simons
- Institute of Neuropathology, University Medical Center Göttingen , Göttingen , Germany ; Institute of Neuronal Cell Biology, Technical University Munich , Munich , Germany ; German Center for Neurodegenerative Diseases (DZNE), Munich , Germany ; Department of Neuropathology, University Medical Center Leipzig , Leipzig , Germany ; Munich Cluster of Systems Neurology (SyNergy), Munich , Germany ; and Max Planck Institute of Experimental Medicine, Göttingen , Germany
| |
Collapse
|
31
|
Dysregulation of Hyaluronan Homeostasis During White Matter Injury. Neurochem Res 2019; 45:672-683. [PMID: 31542857 DOI: 10.1007/s11064-019-02879-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/16/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022]
Abstract
Although the extra cellular matrix (ECM) comprises a major proportion of the CNS parenchyma, new roles for the ECM in regeneration and repair responses to CNS injury have only recently been appreciated. The ECM undergoes extensive remodeling following injury to the developing or mature CNS in disorders that -include perinatal hypoxic-ischemic cerebral injury, multiple sclerosis and age-related vascular dementia. Here we focus on recently described mechanisms involving hyaluronan (HA), which negatively impact myelin repair after cerebral white matter injury. Injury induced depolymerization of hyaluronan (HA)-a component of the neural ECM-can inhibit myelin repair through the actions of specific sizes of HA fragments. These bioactive fragments selectively block the maturation of late oligodendrocyte progenitors via an immune tolerance-like pathway that suppresses pro-myelination signaling. We highlight emerging new pathophysiological roles of the neural ECM, particularly of those played by HA fragments (HAf) after injury and discuss strategies to promoter repair and regeneration of chronic myelination failure.
Collapse
|
32
|
Leferink PS, Dooves S, Hillen AEJ, Watanabe K, Jacobs G, Gasparotto L, Cornelissen-Steijger P, van der Knaap MS, Heine VM. Astrocyte Subtype Vulnerability in Stem Cell Models of Vanishing White Matter. Ann Neurol 2019; 86:780-792. [PMID: 31433864 PMCID: PMC6856690 DOI: 10.1002/ana.25585] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 07/25/2019] [Accepted: 08/18/2019] [Indexed: 01/07/2023]
Abstract
Objective Astrocytes have gained attention as important players in neurological disease. In line with their heterogeneous character, defects in specific astrocyte subtypes have been identified. Leukodystrophy vanishing white matter (VWM) shows selective vulnerability in white matter astrocytes, but the underlying mechanisms remain unclear. Induced pluripotent stem cell technology is being extensively explored in studies of pathophysiology and regenerative medicine. However, models for distinct astrocyte subtypes for VWM are lacking, thereby hampering identification of disease‐specific pathways. Methods Here, we characterize human and mouse pluripotent stem cell–derived gray and white matter astrocyte subtypes to generate an in vitro VWM model. We examined morphology and functionality, and used coculture methods, high‐content microscopy, and RNA sequencing to study VWM cultures. Results We found intrinsic vulnerability in specific astrocyte subpopulations in VWM. When comparing VWM and control cultures, white matter–like astrocytes inhibited oligodendrocyte maturation, and showed affected pathways in both human and mouse cultures, involving the immune system and extracellular matrix. Interestingly, human white matter–like astrocytes presented additional, human‐specific disease mechanisms, such as neuronal and mitochondrial functioning. Interpretation Astrocyte subtype cultures revealed disease‐specific pathways in VWM. Cross‐validation of human‐ and mouse‐derived protocols identified human‐specific disease aspects. This study provides new insights into VWM disease mechanisms, which helps the development of in vivo regenerative applications, and we further present strategies to study astrocyte subtype vulnerability in neurological disease. ANN NEUROL 2019;86:780–792
Collapse
Affiliation(s)
- Prisca S Leferink
- Department of Pediatric Neurology, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Stephanie Dooves
- Department of Pediatric Neurology, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Anne E J Hillen
- Department of Pediatric Neurology, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Kyoko Watanabe
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Gerbren Jacobs
- Department of Pediatric Neurology, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Lisa Gasparotto
- Department of Pediatric Neurology, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Paulien Cornelissen-Steijger
- Department of Pediatric Neurology, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Marjo S van der Knaap
- Department of Pediatric Neurology, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands.,Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Vivi M Heine
- Department of Pediatric Neurology, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands.,Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
33
|
Su W, Matsumoto S, Banine F, Srivastava T, Dean J, Foster S, Pham P, Hammond B, Peters A, Girish KS, Rangappa KS, Basappa, Jose J, Hennebold JD, Murphy MJ, Bennett-Toomey J, Back SA, Sherman LS. A modified flavonoid accelerates oligodendrocyte maturation and functional remyelination. Glia 2019; 68:263-279. [PMID: 31490574 DOI: 10.1002/glia.23715] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 08/06/2019] [Accepted: 08/15/2019] [Indexed: 12/19/2022]
Abstract
Myelination delay and remyelination failure following insults to the central nervous system (CNS) impede axonal conduction and lead to motor, sensory and cognitive impairments. Both myelination and remyelination are often inhibited or delayed due to the failure of oligodendrocyte progenitor cells (OPCs) to mature into myelinating oligodendrocytes (OLs). Digestion products of the glycosaminoglycan hyaluronan (HA) have been implicated in blocking OPC maturation, but how these digestion products are generated is unclear. We tested the possibility that hyaluronidase activity is directly linked to the inhibition of OPC maturation by developing a novel modified flavonoid that functions as a hyaluronidase inhibitor. This compound, called S3, blocks some but not all hyaluronidases and only inhibits matrix metalloproteinase activity at high concentrations. We find that S3 reverses HA-mediated inhibition of OPC maturation in vitro, an effect that can be overcome by excess recombinant hyaluronidase. Furthermore, we find that hyaluronidase inhibition by S3 accelerates OPC maturation in an in vitro model of perinatal white matter injury. Finally, blocking hyaluronidase activity with S3 promotes functional remyelination in mice with lysolecithin-induced demyelinating corpus callosum lesions. All together, these findings support the notion that hyaluronidase activity originating from OPCs in CNS lesions is sufficient to prevent OPC maturation, which delays myelination or blocks remyelination. These data also indicate that modified flavonoids can act as selective inhibitors of hyaluronidase activity and can promote OPC maturation, making them excellent candidates to accelerate myelination or promote remyelination following perinatal and adult CNS insults.
Collapse
Affiliation(s)
- Weiping Su
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon
| | - Steven Matsumoto
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon.,Integrative Biosciences Department, School Dentistry, Oregon Health and Science University, Portland, Oregon
| | - Fatima Banine
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon
| | - Taasin Srivastava
- Department of Pediatrics, Oregon Health and Science University, Portland, Oregon
| | - Justin Dean
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Scott Foster
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon
| | - Peter Pham
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon
| | - Brian Hammond
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon
| | - Alec Peters
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon
| | - Kesturu S Girish
- Department of Studies and Research in Biochemistry, Tumkur University, Tumakuru, India
| | | | - Basappa
- Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, India
| | - Joachim Jose
- Institute of Pharmaceutical and Medicinal Chemistry, Phytochemistry, PharmaCampus, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Jon D Hennebold
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon
| | - Melinda J Murphy
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon
| | - Jill Bennett-Toomey
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon
| | - Stephen A Back
- Department of Pediatrics, Oregon Health and Science University, Portland, Oregon.,Department of Neurology, Oregon Health and Science University, Portland, Oregon
| | - Larry S Sherman
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon.,Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
34
|
Astrocytes in multiple sclerosis and experimental autoimmune encephalomyelitis: Star-shaped cells illuminating the darkness of CNS autoimmunity. Brain Behav Immun 2019; 80:10-24. [PMID: 31125711 DOI: 10.1016/j.bbi.2019.05.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 12/18/2022] Open
Abstract
Neuropathology in the human autoimmune disease multiple sclerosis (MS) is considered to be mediated by autoreactive leukocytes, such as T cells, B cells, and macrophages. However, the inflammation and tissue damage in MS and its animal model experimental autoimmune encephalomyelitis (EAE) is also critically regulated by astrocytes, the most abundant cell population in the central nervous system (CNS). Under physiological conditions, astrocytes are integral to the development and function of the CNS, whereas in CNS autoimmunity, astrocytes influence the pathogenesis, progression, and recovery of the diseases. In this review, we summarize recent advances in astrocytic functions in the context of MS and EAE, which are categorized into two opposite aspects, one being detrimental and the other beneficial. Inhibition of the detrimental functions and/or enhancement of the beneficial functions of astrocytes might be favorable for the treatment of MS.
Collapse
|
35
|
Herrero M, Mandelboum S, Elroy-Stein O. eIF2B Mutations Cause Mitochondrial Malfunction in Oligodendrocytes. Neuromolecular Med 2019; 21:303-313. [PMID: 31134486 DOI: 10.1007/s12017-019-08551-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 05/20/2019] [Indexed: 01/02/2023]
Abstract
Vanishing white matter (VWM) disease (OMIM#306896) is an autosomal recessive neurodegenerative leukodystrophy caused by hypomorphic mutations in any of the five genes encoding the subunits of eukaryotic translation initiation factor 2B (eIF2B). The disease is manifested by loss of cerebral white matter and progressive deterioration upon exposure to environmental and physiological stressors. "Foamy" oligodendrocytes (OLG), increased numbers of oligodendrocytes precursor cells (OPC), and immature defective astrocytes are major neuropathological denominators. Our recent work using Eif2b5R132H/R132H mice uncovered a fundamental link between eIF2B and mitochondrial function. A decrease in oxidative phosphorylation capacity was observed in mutant astrocytes and fibroblasts. While an adaptive increase in mitochondria abundance corrects the phenotype of mutant fibroblasts, it is not sufficient to compensate for the high-energy demand of astrocytes, explaining their involvement in the disease. To date, astrocytes are marked as central for the disease while eIF2B-mutant OLG are currently assumed to lack a cellular phenotype on their own. Here we show a reduced capacity of eIF2B-mutant OPC isolated from Eif2b5R132H/R132H mice to conduct oxidative respiration despite the adaptive increase in their mitochondrial abundance. We also show their impaired ability to efficiently complete critical differentiation steps towards mature OLG. The concept that defective differentiation of eIF2B-mutant OPC could be a consequence of mitochondrial malfunction is in agreement with numerous studies indicating high dependency of differentiating OLG on accurate mitochondrial performance and ATP availability.
Collapse
Affiliation(s)
- Melisa Herrero
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shir Mandelboum
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Orna Elroy-Stein
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel. .,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
36
|
Cell Replacement Therapy Improves Pathological Hallmarks in a Mouse Model of Leukodystrophy Vanishing White Matter. Stem Cell Reports 2019; 12:441-450. [PMID: 30799272 PMCID: PMC6411482 DOI: 10.1016/j.stemcr.2019.01.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 12/31/2022] Open
Abstract
Stem cell therapy has great prospects for brain white matter disorders, including the genetically determined disorders called leukodystrophies. We focus on the devastating leukodystrophy vanishing white matter (VWM). Patients with VWM show severe disability and early death, and treatment options are lacking. Previous studies showed successful cell replacement therapy in rodent models for myelin defects. However, proof-of-concept studies of allogeneic cell replacement in models representative of human leukodystrophies are lacking. We tested cell replacement in a mouse model representative of VWM. We transplanted different murine glial progenitor cell populations and showed improved pathological hallmarks and motor function. Improved mice showed a higher percentage of transplanted cells that differentiated into GFAP+ astrocytes, suggesting best therapeutic prospects for replacement of astroglial lineage cells. This is a proof-of-concept study for cell transplantation in VWM and suggests that glial cell replacement therapy is a promising therapeutic strategy for leukodystrophy patients. Cell therapy improved pathology and motor skills in vanishing white matter mice Astrocyte differentiation of donor cells was associated with recovery of VWM symptoms
Collapse
|
37
|
Zhou L, Li P, Chen N, Dai LF, Gao K, Liu YN, Shen L, Wang JM, Jiang YW, Wu Y. Modeling vanishing white matter disease with patient-derived induced pluripotent stem cells reveals astrocytic dysfunction. CNS Neurosci Ther 2019; 25:759-771. [PMID: 30720246 PMCID: PMC6515702 DOI: 10.1111/cns.13107] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/30/2018] [Accepted: 01/03/2019] [Indexed: 12/19/2022] Open
Abstract
Aims Vanishing white matter disease (VWM) is an inherited leukoencephalopathy in children attributed to mutations in EIF2B1–5, encoding five subunits of eukaryotic translation initiation factor 2B (eIF2B). Although the defects are in the housekeeping genes, glial cells are selectively involved in VWM. Several studies have suggested that astrocytes are central in the pathogenesis of VWM. However, the exact pathomechanism remains unknown, and no model for VWM induced pluripotent stem cells (iPSCs) has been established. Methods Fibroblasts from two VWM children were reprogrammed into iPSCs by using a virus‐free nonintegrating episomal vector system. Control and VWM iPSCs were sequentially differentiated into neural stem cells (NSCs) and then into neural cells, including neurons, oligodendrocytes (OLs), and astrocytes. Results Vanishing white matter disease iPSC‐derived NSCs can normally differentiate into neurons, oligodendrocytes precursor cells (OPCs), and oligodendrocytes in vitro. By contrast, VWM astrocytes were dysmorphic and characterized by shorter processes. Moreover, δ‐GFAP and αB‐Crystalline were significantly increased in addition to increased early and total apoptosis. Conclusion The results provided further evidence supporting the central role of astrocytic dysfunction. The establishment of VWM‐specific iPSC models provides a platform for exploring the pathogenesis of VWM and future drug screening.
Collapse
Affiliation(s)
- Ling Zhou
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Peng Li
- Department of Cell Biology, School of Basic Medical Sciences, Stem Cell Research Center, Peking University, Beijing, China
| | - Na Chen
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Li-Fang Dai
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Kai Gao
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yi-Nan Liu
- Department of Cell Biology, School of Basic Medical Sciences, Stem Cell Research Center, Peking University, Beijing, China
| | - Li Shen
- Department of Cell Biology, School of Basic Medical Sciences, Stem Cell Research Center, Peking University, Beijing, China
| | - Jing-Min Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yu-Wu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Ye Wu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
38
|
Bugiani M, Vuong C, Breur M, van der Knaap MS. Vanishing white matter: a leukodystrophy due to astrocytic dysfunction. Brain Pathol 2019; 28:408-421. [PMID: 29740943 DOI: 10.1111/bpa.12606] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 03/07/2018] [Indexed: 12/26/2022] Open
Abstract
VWM is one of the most prevalent leukodystrophies with unique clinical, pathological and molecular features. It mostly affects children, but may develop at all ages, from birth to senescence. It is dominated by cerebellar ataxia and susceptible to stresses that act as factors provoking disease onset or episodes of rapid neurological deterioration possibly leading to death. VWM is caused by mutations in any of the genes encoding the five subunits of the eukaryotic translation initiation factor 2B (eIF2B). Although eIF2B is ubiquitously expressed, VWM primarily manifests as a leukodystrophy with increasing white matter rarefaction and cystic degeneration, meager astrogliosis with no glial scarring and dysmorphic immature astrocytes and increased numbers of oligodendrocyte progenitor cells that are restrained from maturing into myelin-forming cells. Recent findings point to a central role for astrocytes in driving the brain pathology, with secondary effects on both oligodendroglia and axons. In this, VWM belongs to the growing group of astrocytopathies, in which loss of essential astrocytic functions and gain of detrimental functions drive degeneration of the white matter. Additional disease mechanisms include activation of the unfolded protein response with constitutive predisposition to cellular stress, failure of astrocyte-microglia crosstalk and possibly secondary effects on the oxidative phosphorylation. VWM involves a translation initiation factor. The group of leukodystrophies due to defects in mRNA translation is also growing, suggesting that this may be a common disease mechanism. The combination of all these features makes VWM an intriguing natural model to understand the biology and pathology of the white matter.
Collapse
Affiliation(s)
- Marianna Bugiani
- Departments of Pathology, Child Neurology, and Functional Genomics, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Caroline Vuong
- Departments of Pathology, Child Neurology, and Functional Genomics, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Marjolein Breur
- Departments of Pathology, Child Neurology, and Functional Genomics, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Marjo S van der Knaap
- Departments of Pathology, Child Neurology, and Functional Genomics, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
39
|
Sosunov A, Olabarria M, Goldman JE. Alexander disease: an astrocytopathy that produces a leukodystrophy. Brain Pathol 2019; 28:388-398. [PMID: 29740945 DOI: 10.1111/bpa.12601] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/02/2018] [Indexed: 02/02/2023] Open
Abstract
Alexander Disease (AxD) is a degenerative disorder caused by mutations in the GFAP gene, which encodes the major intermediate filament of astrocytes. As other cells in the CNS do not express GFAP, AxD is a primary astrocyte disease. Astrocytes acquire a large number of pathological features, including changes in morphology, the loss or diminution of a number of critical astrocyte functions and the activation of cell stress and inflammatory pathways. AxD is also characterized by white matter degeneration, a pathology that has led it to be included in the "leukodystrophies." Furthermore, variable degrees of neuronal loss take place. Thus, the astrocyte pathology triggers alterations in other cell types. Here, we will review the neuropathology of AxD and discuss how a disease of astrocytes can lead to severe pathologies in non-astrocytic cells. Our knowledge of the pathophysiology of AxD will also lead to a better understanding of how astrocytes interact with other CNS cells and how astrocytes in the gliosis that accompanies many neurological disorders can damage the function and survival of other cells.
Collapse
Affiliation(s)
| | - Markel Olabarria
- Departments of Pathology and Cell Biology, Columbia University, New York, NY
| | - James E Goldman
- Departments of Pathology and Cell Biology, Columbia University, New York, NY
| |
Collapse
|
40
|
Klok MD, Bugiani M, de Vries SI, Gerritsen W, Breur M, van der Sluis S, Heine VM, Kole MHP, Baron W, van der Knaap MS. Axonal abnormalities in vanishing white matter. Ann Clin Transl Neurol 2018; 5:429-444. [PMID: 29687020 PMCID: PMC5899913 DOI: 10.1002/acn3.540] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 12/30/2017] [Indexed: 12/03/2022] Open
Abstract
Objective We aimed to study the occurrence and development of axonal pathology and the influence of astrocytes in vanishing white matter. Methods Axons and myelin were analyzed using electron microscopy and immunohistochemistry on Eif2b4 and Eif2b5 single‐ and double‐mutant mice and patient brain tissue. In addition, astrocyte‐forebrain co‐culture studies were performed. Results In the corpus callosum of Eif2b5‐mutant mice, myelin sheath thickness, axonal diameter, and G‐ratio developed normally up to 4 months. At 7 months, however, axons had become thinner, while in control mice axonal diameters had increased further. Myelin sheath thickness remained close to normal, resulting in an abnormally low G‐ratio in Eif2b5‐mutant mice. In more severely affected Eif2b4‐Eif2b5 double‐mutants, similar abnormalities were already present at 4 months, while in milder affected Eif2b4 mutants, few abnormalities were observed at 7 months. Additionally, from 2 months onward an increased percentage of thin, unmyelinated axons and increased axonal density were present in Eif2b5‐mutant mice. Co‐cultures showed that Eif2b5 mutant astrocytes induced increased axonal density, also in control forebrain tissue, and that control astrocytes induced normal axonal density, also in mutant forebrain tissue. In vanishing white matter patient brains, axons and myelin sheaths were thinner than normal in moderately and severely affected white matter. In mutant mice and patients, signs of axonal transport defects and cytoskeletal abnormalities were minimal. Interpretation In vanishing white matter, axons are initially normal and atrophy later. Astrocytes are central in this process. If therapy becomes available, axonal pathology may be prevented with early intervention.
Collapse
Affiliation(s)
- Melanie D Klok
- Department of Pediatrics/Child Neurology Amsterdam Neuroscience VU University Medical Centre Amsterdam The Netherlands
| | - Marianna Bugiani
- Department of Pathology Amsterdam Neuroscience VU University Medical Centre Amsterdam The Netherlands
| | - Sharon I de Vries
- Department of Axonal Signaling Netherlands Institute for Neuroscience Amsterdam The Netherlands
| | - Wouter Gerritsen
- Department of Pathology Amsterdam Neuroscience VU University Medical Centre Amsterdam The Netherlands
| | - Marjolein Breur
- Department of Pathology Amsterdam Neuroscience VU University Medical Centre Amsterdam The Netherlands
| | - Sophie van der Sluis
- Department of Complex Trait Genetics Center for Neurogenomics and Cognitive Research Amsterdam Neuroscience VU University Medical Centre Amsterdam The Netherlands
| | - Vivi M Heine
- Department of Pediatrics/Child Neurology Amsterdam Neuroscience VU University Medical Centre Amsterdam The Netherlands.,Department of Complex Trait Genetics Center for Neurogenomics and Cognitive Research Amsterdam Neuroscience VU University Medical Centre Amsterdam The Netherlands
| | - Maarten H P Kole
- Department of Axonal Signaling Netherlands Institute for Neuroscience Amsterdam The Netherlands.,Cell Biology Faculty of Science Utrecht University Utrecht The Netherlands
| | - Wia Baron
- Department of Cell Biology University Medical Center Groningen University of Groningen Groningen The Netherlands
| | - Marjo S van der Knaap
- Department of Pediatrics/Child Neurology Amsterdam Neuroscience VU University Medical Centre Amsterdam The Netherlands.,Department of Functional Genomics Center for Neurogenomics and Cognitive Research Amsterdam Neuroscience VU University Amsterdam The Netherlands
| |
Collapse
|
41
|
Leferink PS, Heine VM. The Healthy and Diseased Microenvironments Regulate Oligodendrocyte Properties: Implications for Regenerative Medicine. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 188:39-52. [PMID: 29024633 DOI: 10.1016/j.ajpath.2017.08.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/12/2017] [Accepted: 08/01/2017] [Indexed: 02/08/2023]
Abstract
White matter disorders are characterized by deficient myelin or myelin loss, lead to a range of neurologic dysfunctions, and can result in early death. Oligodendrocytes, which are responsible for white matter formation, are the first targets for treatment. However, many studies indicate that failure of white matter repair goes beyond the intrinsic incapacity of oligodendrocytes to (re)generate myelin and that failed interactions with neighboring cells or factors in the diseased microenvironment can underlie white matter defects. Moreover, most of the white matter disorders show specific white matter pathology caused by different disease mechanisms. Herein, we review the factors within the cellular and the extracellular microenvironment regulating oligodendrocyte properties and discuss stem cell tools to identify microenvironmental factors of importance to the development of improved regenerative medicine for patients with white matter disorders.
Collapse
Affiliation(s)
- Prisca S Leferink
- Department of Pediatrics/Child Neurology, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Vivi M Heine
- Department of Pediatrics/Child Neurology, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, the Netherlands; Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
42
|
van der Knaap MS, Bugiani M. Leukodystrophies: a proposed classification system based on pathological changes and pathogenetic mechanisms. Acta Neuropathol 2017; 134:351-382. [PMID: 28638987 PMCID: PMC5563342 DOI: 10.1007/s00401-017-1739-1] [Citation(s) in RCA: 234] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/06/2017] [Accepted: 06/06/2017] [Indexed: 12/29/2022]
Abstract
Leukodystrophies are genetically determined disorders characterized by the selective involvement of the central nervous system white matter. Onset may be at any age, from prenatal life to senescence. Many leukodystrophies are degenerative in nature, but some only impair white matter function. The clinical course is mostly progressive, but may also be static or even improving with time. Progressive leukodystrophies are often fatal, and no curative treatment is known. The last decade has witnessed a tremendous increase in the number of defined leukodystrophies also owing to a diagnostic approach combining magnetic resonance imaging pattern recognition and next generation sequencing. Knowledge on white matter physiology and pathology has also dramatically built up. This led to the recognition that only few leukodystrophies are due to mutations in myelin- or oligodendrocyte-specific genes, and many are rather caused by defects in other white matter structural components, including astrocytes, microglia, axons and blood vessels. We here propose a novel classification of leukodystrophies that takes into account the primary involvement of any white matter component. Categories in this classification are the myelin disorders due to a primary defect in oligodendrocytes or myelin (hypomyelinating and demyelinating leukodystrophies, leukodystrophies with myelin vacuolization); astrocytopathies; leuko-axonopathies; microgliopathies; and leuko-vasculopathies. Following this classification, we illustrate the neuropathology and disease mechanisms of some leukodystrophies taken as example for each category. Some leukodystrophies fall into more than one category. Given the complex molecular and cellular interplay underlying white matter pathology, recognition of the cellular pathology behind a disease becomes crucial in addressing possible treatment strategies.
Collapse
Affiliation(s)
- Marjo S van der Knaap
- Department of Pediatrics/Child Neurology, VU University Medical Centre, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Functional Genomics, Centre for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, Amsterdam, The Netherlands
| | - Marianna Bugiani
- Department of Pediatrics/Child Neurology, VU University Medical Centre, Amsterdam Neuroscience, Amsterdam, The Netherlands.
- Department of Pathology, VU University Medical Centre, Amsterdam Neuroscience, Amsterdam, The Netherlands.
| |
Collapse
|
43
|
Olabarria M, Goldman JE. Disorders of Astrocytes: Alexander Disease as a Model. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2017; 12:131-152. [PMID: 28135564 DOI: 10.1146/annurev-pathol-052016-100218] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Astrocytes undergo important phenotypic changes in many neurological disorders, including strokes, trauma, inflammatory diseases, infectious diseases, and neurodegenerative diseases. We have been studying the astrocytes of Alexander disease (AxD), which is caused by heterozygous mutations in the GFAP gene, which is the gene that encodes the major astrocyte intermediate filament protein. AxD is a primary astrocyte disease because GFAP expression is specific to astrocytes in the central nervous system (CNS). The accumulation of extremely large amounts of GFAP causes many molecular changes in astrocytes, including proteasome inhibition, stress kinase activation, mechanistic target of rapamycin (mTOR) activation, loss of glutamate and potassium buffering capacity, loss of astrocyte coupling, and changes in cell morphology. Many of these changes appear to be common to astrocyte reactions in other neurological disorders. Using AxD to illuminate common mechanisms, we discuss the molecular pathology of AxD astrocytes and compare that to astrocyte pathology in other disorders.
Collapse
Affiliation(s)
- Markel Olabarria
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032; ,
| | - James E Goldman
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032; ,
| |
Collapse
|
44
|
Dooves S, Bugiani M, Wisse LE, Abbink TEM, van der Knaap MS, Heine VM. Bergmann glia translocation: a new disease marker for vanishing white matter identifies therapeutic effects of Guanabenz treatment. Neuropathol Appl Neurobiol 2017; 44:391-403. [PMID: 28953319 DOI: 10.1111/nan.12411] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 04/18/2017] [Accepted: 05/04/2017] [Indexed: 12/24/2022]
Abstract
AIM Vanishing White Matter (VWM) is a devastating leucoencephalopathy without effective treatment options. Patients have mutations in the EIF2B1-5 genes, encoding the five subunits of eIF2B, a guanine exchange factor that is an important regulator of protein translation. We recently developed mouse models for VWM that replicate the human disease. To study disease improvement after treatment in these mice, it is essential to have sensitive biomarkers related to disease stage. The Bergmann glia of the cerebellum, an astrocytic subpopulation, translocate into the molecular layer in symptomatic VWM mice and patients. This study looked at the prospects of using Bergmann glia pathology as an objective disease marker for VWM. METHODS We defined a new quantitative measurement of Bergmann glia pathology in the cerebellum of VWM mice and patients. To test the sensitivity of this new marker for improvement, VWM mutant mice received long-term treatment with Guanabenz, an FDA-approved anti-hypertensive agent affecting eIF2B activity. RESULTS Bergmann glia translocation was significantly higher in symptomatic VWM mice and VWM patients than in controls and worsened over the disease course. Both Bergmann glia pathology and cerebellar myelin pathology improved with Guanabenz treatment in mice, showing that Bergmann glia translocation is a sensitive measurement for improvement. CONCLUSIONS Bergmann glia translocation can be used to objectively assess effects of treatment in VWM mice. Future treatment strategies involving compounds regulating eIF2 phosphorylation might benefit VWM patients.
Collapse
Affiliation(s)
- S Dooves
- Department of Pediatrics / Child Neurology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - M Bugiani
- Department of Pediatrics / Child Neurology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands.,Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - L E Wisse
- Department of Pediatrics / Child Neurology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - T E M Abbink
- Department of Pediatrics / Child Neurology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - M S van der Knaap
- Department of Pediatrics / Child Neurology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands.,Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - V M Heine
- Department of Pediatrics / Child Neurology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands.,Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
45
|
Raini G, Sharet R, Herrero M, Atzmon A, Shenoy A, Geiger T, Elroy-Stein O. Mutant eIF2B leads to impaired mitochondrial oxidative phosphorylation in vanishing white matter disease. J Neurochem 2017; 141:694-707. [PMID: 28306143 DOI: 10.1111/jnc.14024] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 03/09/2017] [Accepted: 03/13/2017] [Indexed: 12/14/2022]
Abstract
Eukaryotic translation initiation factor 2B (eIF2B) is a master regulator of protein synthesis under normal and stress conditions. Mutations in any of the five genes encoding its subunits lead to vanishing white matter (VWM) disease, a recessive genetic deadly illness caused by progressive loss of white matter in the brain. In this study we used fibroblasts, which are not involved in the disease, to demonstrate the involvement of eIF2B in mitochondrial function and abundance. Mass spectrometry of total proteome of mouse embryonic fibroblasts (MEFs) isolated from Eif2b5R132H/R132H mice revealed unbalanced stoichiometry of proteins involved in oxidative phosphorylation and of mitochondrial translation machinery components, among others. Mutant MEFs exhibit 55% decrease in oxygen consumption rate per mtDNA content and 47% increase in mitochondrial abundance (p < 0.005), reflecting adaptation to energy requirements. A more robust eIF2B-associated oxidative respiration deficiency was found in mutant primary astrocytes, which exhibit > 3-fold lower ATP-linked respiration per cell despite a 2-fold increase in mtDNA content (p < 0.03). The 2-fold increase in basal and stimulated glycolysis in mutant astrocytes (p ≤ 0.03), but not in MEFs, demonstrates their higher energetic needs and further explicates their involvement in the disease. The data demonstrate the critical role of eIF2B in tight coordination of expression from nuclear and mitochondrial genomes and illuminates the importance of mitochondrial function in VWM pathology. Further dissection of the signaling network associated with eIF2B function will help generating therapeutic strategies for VWM disease and possibly other neurodegenerative disorders.
Collapse
Affiliation(s)
- Gali Raini
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Reut Sharet
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Melisa Herrero
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Andrea Atzmon
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Anjana Shenoy
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tamar Geiger
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Orna Elroy-Stein
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
46
|
Fowke TM, Karunasinghe RN, Bai JZ, Jordan S, Gunn AJ, Dean JM. Hyaluronan synthesis by developing cortical neurons in vitro. Sci Rep 2017; 7:44135. [PMID: 28287145 PMCID: PMC5347017 DOI: 10.1038/srep44135] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 02/03/2017] [Indexed: 12/31/2022] Open
Abstract
Hyaluronan is a linear glycosaminoglycan that forms the backbone of perineuronal nets around neurons in the cerebral cortex. However, it remains controversial whether neurons are capable of independent hyaluronan synthesis. Herein, we examined the expression of hyaluronan and hyaluronan synthases (HASs) throughout cortical neuron development in vitro. Enriched cultures of cortical neurons were established from E16 rats. Neurons were collected at days in vitro (DIV) 0 (4 h), 1, 3, 7, 14, and 21 for qPCR or immunocytochemistry. In the relative absence of glia, neurons exhibited HAS1–3 mRNA at all time-points. By immunocytochemistry, puncta of HAS2–3 protein and hyaluronan were located on neuronal cell bodies, neurites, and lamellipodia/growth cones from as early as 4 h in culture. As neurons matured, hyaluronan was also detected on dendrites, filopodia, and axons, and around synapses. Percentages of hyaluronan-positive neurons increased with culture time to ~93% by DIV21, while only half of neurons at DIV21 expressed the perineuronal net marker Wisteria floribunda agglutinin. These data clearly demonstrate that neurons in vitro can independently synthesise hyaluronan throughout all maturational stages, and that hyaluronan production is not limited to neurons expressing perineuronal nets. The specific structural localisation of hyaluronan suggests potential roles in neuronal development and function.
Collapse
Affiliation(s)
- Tania M Fowke
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Rashika N Karunasinghe
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Ji-Zhong Bai
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Shawn Jordan
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Justin M Dean
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| |
Collapse
|
47
|
Song I, Dityatev A. Crosstalk between glia, extracellular matrix and neurons. Brain Res Bull 2017; 136:101-108. [PMID: 28284900 DOI: 10.1016/j.brainresbull.2017.03.003] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/05/2017] [Accepted: 03/06/2017] [Indexed: 12/29/2022]
Abstract
Extracellular matrix (ECM) molecules in the central nervous system form highly organized ECM structures around cell somata, axon initial segments, and synapses and play prominent roles in early development by guiding cell migration, neurite outgrowth and synaptogenesis, and by regulating closure of the critical period of development, synaptic plasticity and stability, cognitive flexibility, and axonal regeneration in adults. Major components of neural ECM, including chondroitin sulfate proteoglycans (CSPGs), tenascin-R and hyaluronic acid, are synthesized by both neurons and glial cells. The expression of these molecules is dynamically regulated during brain development in physiological conditions, shaping both neuronal and glial functions through multitude of molecular mechanisms. Upregulation of particular CSPGs and other ECM molecules, in particular by reactive astrocytes, after CNS injuries, during aging, neuroinflammation, and neurodegeneration on the one hand results in formation of growth-impermissive environment and impaired synaptic plasticity. On the other hand, ECM appeared to have a neuroprotective effect, at least in the form of perineuronal nets. CSPGs-degrading matrix metalloproteinases (MMPs) and several members of the disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) family of proteases are secreted by neurons and glia and may drive neural ECM remodeling in physiological conditions as well as after brain injury and other brain disorders. Thus, targeting expression of specific ECM molecules, associated glycans and degrading enzymes may lead to development of new therapeutic strategies promoting regeneration and synaptic plasticity.
Collapse
Affiliation(s)
- Inseon Song
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases, 39120 Magdeburg, Germany
| | - Alexander Dityatev
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases, 39120 Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), 39120 Magdeburg, Germany; Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany.
| |
Collapse
|
48
|
Granados-Durán P, López-Ávalos MD, Cifuentes M, Pérez-Martín M, Fernández-Arjona MDM, Hughes TR, Johnson K, Morgan BP, Fernández-Llebrez P, Grondona JM. Microbial Neuraminidase Induces a Moderate and Transient Myelin Vacuolation Independent of Complement System Activation. Front Neurol 2017; 8:78. [PMID: 28326060 PMCID: PMC5339270 DOI: 10.3389/fneur.2017.00078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/20/2017] [Indexed: 02/05/2023] Open
Abstract
AIMS Some central nervous system pathogens express neuraminidase (NA) on their surfaces. In the rat brain, a single intracerebroventricular (ICV) injection of NA induces myelin vacuolation in axonal tracts. Here, we explore the nature, the time course, and the role of the complement system in this damage. METHODS The spatiotemporal analysis of myelin vacuolation was performed by optical and electron microscopy. Myelin basic protein-positive area and oligodendrocyte transcription factor (Olig2)-positive cells were quantified in the damaged bundles. Neuronal death in the affected axonal tracts was assessed by Fluoro-Jade B and anti-caspase-3 staining. To evaluate the role of the complement, membrane attack complex (MAC) deposition on damaged bundles was analyzed using anti-C5b9. Rats ICV injected with the anaphylatoxin C5a were studied for myelin damage. In addition, NA-induced vacuolation was studied in rats with different degrees of complement inhibition: normal rats treated with anti-C5-blocking antibody and C6-deficient rats. RESULTS The stria medullaris, the optic chiasm, and the fimbria were the most consistently damaged axonal tracts. Vacuolation peaked 7 days after NA injection and reverted by day 15. Olig2+ cell number in the damaged tracts was unaltered, and neurodegeneration associated with myelin alterations was not detected. MAC was absent on damaged axonal tracts, as revealed by C5b9 immunostaining. Rats ICV injected with the anaphylatoxin C5a displayed no myelin injury. When the complement system was experimentally or constitutively inhibited, NA-induced myelin vacuolation was similar to that observed in normal rats. CONCLUSION Microbial NA induces a moderate and transient myelin vacuolation that is not caused either by neuroinflammation or complement system activation.
Collapse
Affiliation(s)
- Pablo Granados-Durán
- Laboratorio de Fisiología Animal, Facultad de Ciencias, Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga , Málaga , Spain
| | - María Dolores López-Ávalos
- Laboratorio de Fisiología Animal, Facultad de Ciencias, Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga , Málaga , Spain
| | - Manuel Cifuentes
- Laboratorio de Fisiología Animal, Facultad de Ciencias, Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain; Centro de Investigaciones Biomédicas en Red de Bioingeniería, Biomateriales y Nanomedicina, CIBER BBN, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Margarita Pérez-Martín
- Laboratorio de Fisiología Animal, Facultad de Ciencias, Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga , Málaga , Spain
| | - María Del Mar Fernández-Arjona
- Laboratorio de Fisiología Animal, Facultad de Ciencias, Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga , Málaga , Spain
| | - Timothy R Hughes
- Division of Infection and Immunity, School of Medicine, Cardiff University , Cardiff , UK
| | | | - B Paul Morgan
- Division of Infection and Immunity, School of Medicine, Cardiff University , Cardiff , UK
| | - Pedro Fernández-Llebrez
- Laboratorio de Fisiología Animal, Facultad de Ciencias, Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga , Málaga , Spain
| | - Jesús M Grondona
- Laboratorio de Fisiología Animal, Facultad de Ciencias, Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga , Málaga , Spain
| |
Collapse
|
49
|
Mehta P, Piao X. Adhesion G-protein coupled receptors and extracellular matrix proteins: Roles in myelination and glial cell development. Dev Dyn 2017; 246:275-284. [PMID: 27859941 DOI: 10.1002/dvdy.24473] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/08/2016] [Accepted: 11/10/2016] [Indexed: 01/05/2023] Open
Abstract
Adhesion G protein-coupled receptors (aGPCRs) are a large family of transmembrane proteins that play important roles in many processes during development, primarily through cell-cell and cell-extracellular matrix (ECM) interactions. In the nervous system, they have been linked to the complex process of myelination, both in the central and peripheral nervous system. GPR126 is essential in Schwann cell-mediated myelination in the peripheral nervous system (PNS), while GPR56 is involved in oligodendrocyte development central nervous system (CNS) myelination. VLGR1 is another aGPCR that is associated with the expression of myelin-associated glycoprotein (MAG) which has inhibitory effects on the process of nerve repair. The ECM is composed of a vast array of structural proteins, three of which interact specifically with aGPCRs: collagen III/GPR56, collagen IV/GPR126, and laminin-211/GPR126. As druggable targets, aGPCRs are valuable in their ability to unlock treatment for a wide variety of currently debilitating myelin disorders. Developmental Dynamics 246:275-284, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Paulomi Mehta
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Xianhua Piao
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
50
|
Ibitoye RT, Renowden SA, Faulkner HJ, Scolding NJ, Rice CM. Ovarioleukodystrophy due to EIF2B5 mutations. Pract Neurol 2016; 16:496-499. [PMID: 27651498 DOI: 10.1136/practneurol-2016-001382] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2016] [Indexed: 11/04/2022]
Abstract
Ovarioleukodystrophy-the co-occurrence of leukodystrophy and premature ovarian failure-is a rare presentation now recognised to be part of the clinical spectrum of vanishing white matter disease. We describe a woman with epilepsy and neuroimaging changes consistent with leukoencephalopathy who presented with non-convulsive status epilepticus after starting hormone replacement therapy in the context of premature ovarian failure. Genetic testing confirmed her to be a compound heterozygote for EIF2B5 mutations; the gene encodes a subunit of eukaryotic translation initiation factor 2B. Mutations in EIF2B1-5 result in vanishing white matter disease. We highlight the importance of ovarian failure as a diagnostic pointer to eukaryotic translation initiation factor 2B (eIF2B)-related ovarioleukodystrophy and present a brief literature review of ovarioleukodystrophy.
Collapse
Affiliation(s)
- R T Ibitoye
- Department of Neurology, Southmead Hospital, Bristol, UK
| | - S A Renowden
- Department of Neuroradiology, Southmead Hospital, Bristol, UK
| | - H J Faulkner
- Department of Neurology, Southmead Hospital, Bristol, UK
| | - N J Scolding
- Department of Neurology, Southmead Hospital, Bristol, UK
| | - C M Rice
- Department of Neurology, Southmead Hospital, Bristol, UK
| |
Collapse
|