1
|
Jiang C, Xie W, Zheng J, Yan B, Luo J, Zhang J. MLS-Net: An Automatic Sleep Stage Classifier Utilizing Multimodal Physiological Signals in Mice. BIOSENSORS 2024; 14:406. [PMID: 39194635 DOI: 10.3390/bios14080406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024]
Abstract
Over the past decades, feature-based statistical machine learning and deep neural networks have been extensively utilized for automatic sleep stage classification (ASSC). Feature-based approaches offer clear insights into sleep characteristics and require low computational power but often fail to capture the spatial-temporal context of the data. In contrast, deep neural networks can process raw sleep signals directly and deliver superior performance. However, their overfitting, inconsistent accuracy, and computational cost were the primary drawbacks that limited their end-user acceptance. To address these challenges, we developed a novel neural network model, MLS-Net, which integrates the strengths of neural networks and feature extraction for automated sleep staging in mice. MLS-Net leverages temporal and spectral features from multimodal signals, such as EEG, EMG, and eye movements (EMs), as inputs and incorporates a bidirectional Long Short-Term Memory (bi-LSTM) to effectively capture the spatial-temporal nonlinear characteristics inherent in sleep signals. Our studies demonstrate that MLS-Net achieves an overall classification accuracy of 90.4% and REM state precision of 91.1%, sensitivity of 84.7%, and an F1-Score of 87.5% in mice, outperforming other neural network and feature-based algorithms in our multimodal dataset.
Collapse
Affiliation(s)
- Chengyong Jiang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology and Vision Science, Eye & ENT Hospital, Fudan University, Shanghai 200032, China
| | - Wenbin Xie
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology and Vision Science, Eye & ENT Hospital, Fudan University, Shanghai 200032, China
| | - Jiadong Zheng
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology and Vision Science, Eye & ENT Hospital, Fudan University, Shanghai 200032, China
| | - Biao Yan
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology and Vision Science, Eye & ENT Hospital, Fudan University, Shanghai 200032, China
| | - Junwen Luo
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology and Vision Science, Eye & ENT Hospital, Fudan University, Shanghai 200032, China
| | - Jiayi Zhang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology and Vision Science, Eye & ENT Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
2
|
Biscarini F, Barateau L, Pizza F, Plazzi G, Dauvilliers Y. Narcolepsy and rapid eye movement sleep. J Sleep Res 2024:e14277. [PMID: 38955433 DOI: 10.1111/jsr.14277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 07/04/2024]
Abstract
Since the first description of narcolepsy at the end of the 19th Century, great progress has been made. The disease is nowadays distinguished as narcolepsy type 1 and type 2. In the 1960s, the discovery of rapid eye movement sleep at sleep onset led to improved understanding of core sleep-related disease symptoms of the disease (excessive daytime sleepiness with early occurrence of rapid eye movement sleep, sleep-related hallucinations, sleep paralysis, rapid eye movement parasomnia), as possible dysregulation of rapid eye movement sleep, and cataplexy resembling an intrusion of rapid eye movement atonia during wake. The relevance of non-sleep-related symptoms, such as obesity, precocious puberty, psychiatric and cardiovascular morbidities, has subsequently been recognized. The diagnostic tools have been improved, but sleep-onset rapid eye movement periods on polysomnography and Multiple Sleep Latency Test remain key criteria. The pathogenic mechanisms of narcolepsy type 1 have been partly elucidated after the discovery of strong HLA class II association and orexin/hypocretin deficiency, a neurotransmitter that is involved in altered rapid eye movement sleep regulation. Conversely, the causes of narcolepsy type 2, where cataplexy and orexin deficiency are absent, remain unknown. Symptomatic medications to treat patients with narcolepsy have been developed, and management has been codified with guidelines, until the recent promising orexin-receptor agonists. The present review retraces the steps of the research on narcolepsy that linked the features of the disease with rapid eye movement sleep abnormality, and those that do not appear associated with rapid eye movement sleep.
Collapse
Affiliation(s)
- Francesco Biscarini
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Lucie Barateau
- Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, Montpellier, France
- National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Montpellier, France
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Fabio Pizza
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Giuseppe Plazzi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio-Emilia, Modena, Italy
| | - Yves Dauvilliers
- Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, Montpellier, France
- National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Montpellier, France
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| |
Collapse
|
3
|
Bandarabadi M, Prouvot Bouvier PH, Corsi G, Tafti M. The paradox of REM sleep: Seven decades of evolution. Sleep Med Rev 2024; 74:101918. [PMID: 38457935 DOI: 10.1016/j.smrv.2024.101918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/10/2024]
Affiliation(s)
- Mojtaba Bandarabadi
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland.
| | | | - Giorgio Corsi
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Mehdi Tafti
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
4
|
Lambert PM, Salvatore SV, Lu X, Shu HJ, Benz A, Rensing N, Yuede CM, Wong M, Zorumski CF, Mennerick S. A role for δ subunit-containing GABA A receptors on parvalbumin positive neurons in maintaining electrocortical signatures of sleep states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.586604. [PMID: 38585911 PMCID: PMC10996536 DOI: 10.1101/2024.03.25.586604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
GABA A receptors containing δ subunits have been shown to mediate tonic/slow inhibition in the CNS. These receptors are typically found extrasynaptically and are activated by relatively low levels of ambient GABA in the extracellular space. In the mouse neocortex, δ subunits are expressed on the surface of some pyramidal cells as well as on parvalbumin positive (PV+) interneurons. An important function of PV+ interneurons is the organization of coordinated network activity that can be measured by EEG; however, it remains unclear what role tonic/slow inhibitory control of PV+ neurons may play in shaping oscillatory activity. After confirming a loss of functional δ mediated tonic currents in PV cells in cortical slices from mice lacking Gabrd in PV+ neurons (PV δcKO), we performed EEG recordings to survey network activity across wake and sleep states. PV δcKO mice showed altered spectral content of EEG during NREM and REM sleep that was a result of increased oscillatory activity in NREM and the emergence of transient high amplitude bursts of theta frequency activity during REM. Viral reintroduction of Gabrd to PV+ interneurons in PV δcKO mice rescued REM EEG phenotypes, supporting an important role for δ subunit mediated inhibition of PV+ interneurons for maintaining normal REM cortical oscillations. Significance statement The impact on cortical EEG of inhibition on PV+ neurons was studied by deleting a GABA A receptor subunit selectively from these neurons. We discovered unexpected changes at low frequencies during sleep that were rescued by viral reintroduction.
Collapse
|
5
|
Bandarabadi M, Li S, Aeschlimann L, Colombo G, Tzanoulinou S, Tafti M, Becchetti A, Boutrel B, Vassalli A. Inactivation of hypocretin receptor-2 signaling in dopaminergic neurons induces hyperarousal and enhanced cognition but impaired inhibitory control. Mol Psychiatry 2024; 29:327-341. [PMID: 38123729 PMCID: PMC11116111 DOI: 10.1038/s41380-023-02329-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023]
Abstract
Hypocretin/Orexin (HCRT/OX) and dopamine (DA) are both key effectors of salience processing, reward and stress-related behaviors and motivational states, yet their respective roles and interactions are poorly delineated. We inactivated HCRT-to-DA connectivity by genetic disruption of Hypocretin receptor-1 (Hcrtr1), Hypocretin receptor-2 (Hcrtr2), or both receptors (Hcrtr1&2) in DA neurons and analyzed the consequences on vigilance states, brain oscillations and cognitive performance in freely behaving mice. Unexpectedly, loss of Hcrtr2, but not Hcrtr1 or Hcrtr1&2, induced a dramatic increase in theta (7-11 Hz) electroencephalographic (EEG) activity in both wakefulness and rapid-eye-movement sleep (REMS). DAHcrtr2-deficient mice spent more time in an active (or theta activity-enriched) substate of wakefulness, and exhibited prolonged REMS. Additionally, both wake and REMS displayed enhanced theta-gamma phase-amplitude coupling. The baseline waking EEG of DAHcrtr2-deficient mice exhibited diminished infra-theta, but increased theta power, two hallmarks of EEG hyperarousal, that were however uncoupled from locomotor activity. Upon exposure to novel, either rewarding or stress-inducing environments, DAHcrtr2-deficient mice featured more pronounced waking theta and fast-gamma (52-80 Hz) EEG activity surges compared to littermate controls, further suggesting increased alertness. Cognitive performance was evaluated in an operant conditioning paradigm, which revealed that DAHcrtr2-ablated mice manifest faster task acquisition and higher choice accuracy under increasingly demanding task contingencies. However, the mice concurrently displayed maladaptive patterns of reward-seeking, with behavioral indices of enhanced impulsivity and compulsivity. None of the EEG changes observed in DAHcrtr2-deficient mice were seen in DAHcrtr1-ablated mice, which tended to show opposite EEG phenotypes. Our findings establish a clear genetically-defined link between monosynaptic HCRT-to-DA neurotransmission and theta oscillations, with a differential and novel role of HCRTR2 in theta-gamma cross-frequency coupling, attentional processes, and executive functions, relevant to disorders including narcolepsy, attention-deficit/hyperactivity disorder, and Parkinson's disease.
Collapse
Affiliation(s)
- Mojtaba Bandarabadi
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Sha Li
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Lea Aeschlimann
- Centre for Psychiatric Neuroscience, Department of Psychiatry, The Lausanne University Hospital, Lausanne, Switzerland
| | - Giulia Colombo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | | | - Mehdi Tafti
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Andrea Becchetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Benjamin Boutrel
- Centre for Psychiatric Neuroscience, Department of Psychiatry, The Lausanne University Hospital, Lausanne, Switzerland
| | - Anne Vassalli
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
6
|
Kazmierska-Grebowska P, Jankowski MM, MacIver MB. Missing Puzzle Pieces in Dementia Research: HCN Channels and Theta Oscillations. Aging Dis 2024; 15:22-42. [PMID: 37450922 PMCID: PMC10796085 DOI: 10.14336/ad.2023.0607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/07/2023] [Indexed: 07/18/2023] Open
Abstract
Increasing evidence indicates a role of hyperpolarization activated cation (HCN) channels in controlling the resting membrane potential, pacemaker activity, memory formation, sleep, and arousal. Their disfunction may be associated with the development of epilepsy and age-related memory decline. Neuronal hyperexcitability involved in epileptogenesis and EEG desynchronization occur in the course of dementia in human Alzheimer's Disease (AD) and animal models, nevertheless the underlying ionic and cellular mechanisms of these effects are not well understood. Some suggest that theta rhythms involved in memory formation could be used as a marker of memory disturbances in the course of neurogenerative diseases, including AD. This review focusses on the interplay between hyperpolarization HCN channels, theta oscillations, memory formation and their role(s) in dementias, including AD. While individually, each of these factors have been linked to each other with strong supportive evidence, we hope here to expand this linkage to a more inclusive picture. Thus, HCN channels could provide a molecular target for developing new therapeutic agents for preventing and/or treating dementia.
Collapse
Affiliation(s)
| | - Maciej M. Jankowski
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
- BioTechMed Center, Multimedia Systems Department, Faculty of Electronics, Telecommunications, and Informatics, Gdansk University of Technology, Gdansk, Poland.Telecommunications and Informatics, Gdansk University of Technology, Gdansk, Poland.
| | - M. Bruce MacIver
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of of Medicine, Stanford University, CA, USA.
| |
Collapse
|
7
|
Valizadeh P, Momtazmanesh S, Plazzi G, Rezaei N. Connecting the dots: An updated review of the role of autoimmunity in narcolepsy and emerging immunotherapeutic approaches. Sleep Med 2024; 113:378-396. [PMID: 38128432 DOI: 10.1016/j.sleep.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Narcolepsy type 1 (NT1) is a chronic disorder characterized by pathological daytime sleepiness and cataplexy due to the disappearance of orexin immunoreactive neurons in the hypothalamus. Genetic and environmental factors point towards a potential role for inflammation and autoimmunity in the pathogenesis of the disease. This study aims to comprehensively review the latest evidence on the autoinflammatory mechanisms and immunomodulatory treatments aimed at suspected autoimmune pathways in NT1. METHODS Recent relevant literature in the field of narcolepsy, its autoimmune hypothesis, and purposed immunomodulatory treatments were reviewed. RESULTS Narcolepsy is strongly linked to specific HLA alleles and T-cell receptor polymorphisms. Furthermore, animal studies and autopsies have found infiltration of T cells in the hypothalamus, supporting T cell-mediated immunity. However, the role of autoantibodies has yet to be definitively established. Increased risk of NT1 after H1N1 infection and vaccination supports the autoimmune hypothesis, and the potential role of coronavirus disease 2019 and vaccination in triggering autoimmune neurodegeneration is a recent finding. Alterations in cytokine levels, gut microbiota, and microglial activation indicate a potential role for inflammation in the disease's development. Reports of using immunotherapies in NT1 patients are limited and inconsistent. Early treatment with IVIg, corticosteroids, plasmapheresis, and monoclonal antibodies has seldomly shown some potential benefits in some studies. CONCLUSION The current body of literature supports that narcolepsy is an autoimmune disorder most likely caused by T-cell involvement. However, the potential for immunomodulatory treatments to reverse the autoinflammatory process remains understudied. Further clinical controlled trials may provide valuable insights into this area.
Collapse
Affiliation(s)
- Parya Valizadeh
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sara Momtazmanesh
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Giuseppe Plazzi
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy; Department of Biomedical, Metabolic, and Neural Sciences, Università Degli Studi di Modena e Reggio Emilia, Modena, Italy
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Koyama Y. The role of orexinergic system in the regulation of cataplexy. Peptides 2023; 169:171080. [PMID: 37598758 DOI: 10.1016/j.peptides.2023.171080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/06/2023] [Accepted: 08/18/2023] [Indexed: 08/22/2023]
Abstract
Loss of orexin/hypocretin causes serious sleep disorder; narcolepsy. Cataplexy is the most striking symptom of narcolepsy, characterized by abrupt muscle paralysis induced by emotional stimuli, and has been considered pathological activation of REM sleep atonia system. Clinical treatments for cataplexy/narcolepsy and early pharmacological studies in narcoleptic dogs tell us about the involvement of monoaminergic and cholinergic systems in the control of cataplexy/narcolepsy. Muscle atonia may be induced by activation of REM sleep-atonia generating system in the brainstem. Emotional stimuli may be processed in the limbic systems including the amygdala, nucleus accumbens, and medial prefrontal cortex. It is now considered that orexin/hypocretin prevents cataplexy by modulating the activity of different points of cataplexy-inducing circuit, including monoaminergic/cholinergic systems, muscle atonia-generating systems, and emotion-related systems. This review will describe the recent advances in understanding the neural mechanisms controlling cataplexy, with a focus on the involvement of orexin/hypocretin system, and will discuss future experimental strategies that will lead to further understanding and treatment of this disease.
Collapse
Affiliation(s)
- Yoshimasa Koyama
- Faculty of Symbiotic Systems Science, Fukushima University, 1 Kanaya-gawa, Fukushima 960-1296, Japan..
| |
Collapse
|
9
|
Ito H, Fukatsu N, Rahaman SM, Mukai Y, Izawa S, Ono D, Kilduff TS, Yamanaka A. Deficiency of orexin signaling during sleep is involved in abnormal REM sleep architecture in narcolepsy. Proc Natl Acad Sci U S A 2023; 120:e2301951120. [PMID: 37796986 PMCID: PMC10576136 DOI: 10.1073/pnas.2301951120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/10/2023] [Indexed: 10/07/2023] Open
Abstract
Narcolepsy is a sleep disorder caused by deficiency of orexin signaling. However, the neural mechanisms by which deficient orexin signaling causes the abnormal rapid eye movement (REM) sleep characteristics of narcolepsy, such as cataplexy and frequent transitions to REM states, are not fully understood. Here, we determined the activity dynamics of orexin neurons during sleep that suppress the abnormal REM sleep architecture of narcolepsy. Orexin neurons were highly active during wakefulness, showed intermittent synchronous activity during non-REM (NREM) sleep, were quiescent prior to the transition from NREM to REM sleep, and a small subpopulation of these cells was active during REM sleep. Orexin neurons that lacked orexin peptides were less active during REM sleep and were mostly silent during cataplexy. Optogenetic inhibition of orexin neurons established that the activity dynamics of these cells during NREM sleep regulate NREM-REM sleep transitions. Inhibition of orexin neurons during REM sleep increased subsequent REM sleep in "orexin intact" mice and subsequent cataplexy in mice lacking orexin peptides, indicating that the activity of a subpopulation of orexin neurons during the preceding REM sleep suppresses subsequent REM sleep and cataplexy. Thus, these results identify how deficient orexin signaling during sleep results in the abnormal REM sleep architecture characteristic of narcolepsy.
Collapse
Affiliation(s)
- Hiroto Ito
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya466-8550, Japan
- Japan Society for the Promotion of Science Research Fellowship for Young Scientists, Tokyo102-0083, Japan
| | - Noriaki Fukatsu
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya466-8550, Japan
| | - Sheikh Mizanur Rahaman
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya466-8550, Japan
| | - Yasutaka Mukai
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya466-8550, Japan
| | - Shuntaro Izawa
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya466-8550, Japan
| | - Daisuke Ono
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya466-8550, Japan
| | - Thomas S. Kilduff
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA94025
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya466-8550, Japan
- Chinese Institute for Brain Research, Beijing102206, China
- National Institute for Physiological Sciences, Aichi444-8585, Japan
- National Institutes of Natural Sciences, Aichi444-8585, Japan
- Division of Brain Sciences Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo160-8582, Japan
| |
Collapse
|
10
|
Szabo ST, Hopkins SC, Lew R, Loebel A, Roth T, Koblan KS. A multicenter, double-blind, placebo-controlled, randomized, Phase 1b crossover trial comparing two doses of ulotaront with placebo in the treatment of narcolepsy-cataplexy. Sleep Med 2023; 107:202-211. [PMID: 37209427 DOI: 10.1016/j.sleep.2023.04.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/09/2023] [Accepted: 04/16/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Ulotaront (SEP-363856) is a novel agonist at trace amine-associated receptor 1 and serotonin 5-HT1A receptors in clinical development for the treatment of schizophrenia. Previous studies demonstrated ulotaront suppresses rapid eye movement (REM) sleep in both rodents and healthy volunteers. We assessed acute and sustained treatments of ulotaront on REM sleep and symptoms of cataplexy and alertness in subjects with narcolepsy-cataplexy. METHODS In a multicenter, double-blind, placebo-controlled, randomized, 3-way crossover study, ulotaront was evaluated in 16 adults with narcolepsy-cataplexy. Two oral doses of ulotaront (25 mg and 50 mg) were administered daily for 2 weeks and compared with matching placebo (6-treatment sequence, 3-period, 3-treatment). RESULTS Acute treatment with both 25 mg and 50 mg of ulotaront reduced minutes spent in nighttime REM compared to placebo. A sustained 2-week administration of both doses of ulotaront reduced the mean number of short-onset REM periods (SOREMPs) during daytime multiple sleep latency test (MSLT) compared to placebo. Although cataplexy events decreased from the overall mean baseline during the 2-week treatment period, neither dose of ulotaront statistically separated from placebo (p = 0.76, 25 mg; p = 0.82, 50 mg), and no significant improvement in patient and clinician measures of sleepiness from baseline to end of the 2-week treatment period occurred in any treatment group. CONCLUSIONS Acute and sustained treatment with ulotaront reduced nighttime REM duration and daytime SOREMPs, respectively. The effect of ulotaront on suppression of REM did not demonstrate a statistical or clinically meaningful effect in narcolepsy-cataplexy. REGISTRATION ClinicalTrials.gov identifier: NCT05015673.
Collapse
Affiliation(s)
- Steven T Szabo
- Sunovion Pharmaceuticals Inc., 84 Waterford Drive, Marlborough, MA, 01752, USA.
| | - Seth C Hopkins
- Sunovion Pharmaceuticals Inc., 84 Waterford Drive, Marlborough, MA, 01752, USA.
| | - Robert Lew
- Sunovion Pharmaceuticals Inc., 84 Waterford Drive, Marlborough, MA, 01752, USA.
| | - Antony Loebel
- Sunovion Pharmaceuticals Inc., 84 Waterford Drive, Marlborough, MA, 01752, USA.
| | - Thomas Roth
- Sleep Disorders and Research Center, Henry Ford Hospital, 2799 West Grand Boulevard Detroit, MI, 48202, USA.
| | - Kenneth S Koblan
- Sunovion Pharmaceuticals Inc., 84 Waterford Drive, Marlborough, MA, 01752, USA.
| |
Collapse
|
11
|
Pintwala SK, Fraigne JJ, Belsham DD, Peever JH. Immortal orexin cell transplants restore motor-arousal synchrony during cataplexy. Curr Biol 2023; 33:1550-1564.e5. [PMID: 37044089 DOI: 10.1016/j.cub.2023.03.077] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/11/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023]
Abstract
Waking behaviors such as sitting or standing require suitable levels of muscle tone. But it is unclear how arousal and motor circuits communicate with one another so that appropriate motor tone occurs during wakefulness. Cataplexy is a peculiar condition in which muscle tone is involuntarily lost during normal periods of wakefulness. Cataplexy therefore provides a unique opportunity for identifying the signaling mechanisms that synchronize motor and arousal behaviors. Cataplexy occurs when hypothalamic orexin neurons are lost in narcolepsy; however, it is unclear if motor-arousal decoupling in cataplexy is directly or indirectly caused by orexin cell loss. Here, we used genomic, proteomic, chemogenetic, electrophysiological, and behavioral assays to determine if grafting orexin cells into the brain of cataplectic (i.e., orexin-/-) mice restores normal motor-arousal behaviors by preventing cataplexy. First, we engineered immortalized orexin cells and found that they not only produce and release orexin but also exhibit a gene profile that mimics native orexin neurons. Second, we show that engineered orexin cells thrive and integrate into host tissue when transplanted into the brain of mice. Next, we found that grafting only 200-300 orexin cells into the dorsal raphe nucleus-a region densely innervated by native orexin neurons-reduces cataplexy. Last, we show that real-time chemogenetic activation of orexin cells restores motor-arousal synchrony by preventing cataplexy. We suggest that orexin signaling is critical for arousal-motor synchrony during wakefulness and that the dorsal raphe plays a pivotal role in coupling arousal and motor behaviors.
Collapse
Affiliation(s)
- Sara K Pintwala
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Jimmy J Fraigne
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Denise D Belsham
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - John H Peever
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
12
|
Fan FF, Vetrivelan R, Yang Y, Guo ZN, Lu J. Role of pontine sub-laterodorsal tegmental nucleus (SLD) in rapid eye movement (REM) sleep, cataplexy, and emotion. CNS Neurosci Ther 2023; 29:1192-1196. [PMID: 36585816 PMCID: PMC10018081 DOI: 10.1111/cns.14074] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/30/2022] [Accepted: 12/15/2022] [Indexed: 01/01/2023] Open
Abstract
Pontine sub-laterodorsal tegmental nucleus (SLD) is crucial for REM sleep. However, the necessary role of SLD for REM sleep, cataplexy that resembles REM sleep, and emotion memory by REM sleep has remained unclear. To address these questions, we focally ablated SLD neurons using adenoviral diphtheria-toxin (DTA) approach and found that SLD lesions completely eliminated REM sleep accompanied by wake increase, significantly reduced baseline cataplexy amounts by 40% and reward (sucrose) induced cataplexy amounts by 70% and altered cataplexy EEG Fast Fourier Transform (FFT) from REM sleep-like to wake-like in orexin null (OXKO) mice. We then used OXKO animals with absence of REM sleep and OXKO controls and examined elimination of REM sleep in anxiety and fear extinction. Our resulted showed that REM sleep elimination significantly increased anxiety-like behaviors in open field test (OFT), elevated plus maze test (EPM) and defensive aggression and impaired fear extinction. The data indicate that in OXKO mice the SLD is the sole generator for REM sleep; (2) the SLD selectively mediates REM sleep cataplexy (R-cataplexy) that merges with wake cataplexy (W-cataplexy); (3) REM sleep enhances positive emotion (sucrose induced cataplexy) response, reduces negative emotion state (anxiety), and promotes fear extinction.
Collapse
Affiliation(s)
- Fang-Fang Fan
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, China.,Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, USA
| | - Ramalingam Vetrivelan
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, USA
| | - Yi Yang
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, China
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, China
| | - Jun Lu
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, China.,Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, USA
| |
Collapse
|
13
|
Thankachan S, Yang C, Kastanenka KV, Bacskai BJ, Gerashchenko D. Low frequency visual stimulation enhances slow wave activity without disrupting the sleep pattern in mice. Sci Rep 2022; 12:12278. [PMID: 35853986 PMCID: PMC9296645 DOI: 10.1038/s41598-022-16478-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 07/11/2022] [Indexed: 11/20/2022] Open
Abstract
Non-invasive stimulation technologies are emerging as potential treatment options for a range of neurodegenerative disorders. Experimental evidence suggests that stimuli-evoked changes in slow brain rhythms may mitigate or even prevent neuropathological and behavioral impairments. Slow wave activity is prevalent during sleep and can be triggered non-invasively by sensory stimulation targeting the visual system or directly via activation of neurons locally using optogenetics. Here, we developed new tools for delivering visual stimulation using light-emitting diodes in freely moving mice while awake and during sleep. We compared these tools to traditional optogenetic approaches used for local stimulation of neurons in the cerebral cortex. We then used these tools to compare the effects of low-frequency visual versus optogenetic stimulations on the slow wave activity and sleep pattern in mice. Visual stimulation effectively enhanced slow wave activity without disrupting the sleep pattern. Optogenetic stimulation of cortical GABAergic neurons increased NREM sleep. These results suggest that visual stimulation can be effective at boosting slow wave activity without having adverse effects on sleep and thus holds great potential as a non-invasive stimulation treatment strategy.
Collapse
Affiliation(s)
- Stephen Thankachan
- Veterans Affairs Boston Healthcare System, Harvard Medical School, West Roxbury, MA, 02132, USA
| | - Chun Yang
- Veterans Affairs Boston Healthcare System, Harvard Medical School, West Roxbury, MA, 02132, USA
| | - Ksenia V Kastanenka
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Brian J Bacskai
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Dmitry Gerashchenko
- Veterans Affairs Boston Healthcare System, Harvard Medical School, West Roxbury, MA, 02132, USA.
| |
Collapse
|
14
|
Piilgaard L, Rose L, Hviid CG, Kohlmeier KA, Kornum BR. Sex-related differences within sleep-wake dynamics, cataplexy, and EEG fast-delta power in a narcolepsy mouse model. Sleep 2022; 45:6546341. [PMID: 35266540 DOI: 10.1093/sleep/zsac058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/04/2022] [Indexed: 01/13/2023] Open
Abstract
Narcolepsy type 1 (NT1) is a sleep-wake disorder caused by selective loss of hypocretin (HCRT, also called orexin) neurons. Although the prevalence of NT1 is equal in men and women, sex differences in NT1 symptomatology have been reported in humans and other species. Yet, most preclinical studies fail to include females, resulting in gender bias within translational drug development. We used hcrt-tTA;TetO DTA mice (NT1 mice) that lose their HCRT neurons upon dietary doxycycline removal to examine in detail the effect of sex on NT1 symptoms and sleep-wake characteristics. We recorded 24-h electroencephalography (EEG), electromyography (EMG), and video in adult male and female NT1 mice for behavioural state quantification. While conducting this study, we recognized another type of behavioural arrest different from cataplexy: shorter lasting and with high δ power. We termed these delta attacks and propose a set of criteria for quantifying these in future research. Our findings show that both sexes exhibit high behavioural state instability, which was markedly higher in females with more behavioural arrests interrupting the wake episodes. Females exhibited increased wake at the expense of sleep during the dark phase, and decreased rapid-eye-movement (REM) sleep during the 24-h day. During the dark phase, fast-δ (2.5-4 Hz) in non-rapid-eye-movement (NREM) sleep and θ (6-10 Hz) EEG spectral power in REM sleep were lower in females compared to males. We demonstrate that biologically driven sex-related differences exist in the symptomatology of NT1 mice which calls for including both sexes in future research.
Collapse
Affiliation(s)
- Louise Piilgaard
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Laura Rose
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Camille Gylling Hviid
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristi A Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Rahbek Kornum
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Wang X, Yuan N, Chen Z, Wang Z, Liu Y. High amplitude delta rhythm related cataplexy in a boy with Niemann-Pick type C disease. Sleep Med 2021; 88:58-60. [PMID: 34731829 DOI: 10.1016/j.sleep.2021.07.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Affiliation(s)
- Xiaoli Wang
- Epilepsy and Sleep Disorders Unit, Department of Neurology, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Na Yuan
- Epilepsy and Sleep Disorders Unit, Department of Neurology, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Ze Chen
- Epilepsy and Sleep Disorders Unit, Department of Neurology, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Zezhi Wang
- Epilepsy and Sleep Disorders Unit, Department of Neurology, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Yonghong Liu
- Epilepsy and Sleep Disorders Unit, Department of Neurology, Xijing Hospital, Air Force Military Medical University, Xi'an, China.
| |
Collapse
|
16
|
Seifinejad A, Vassalli A, Tafti M. Neurobiology of cataplexy. Sleep Med Rev 2021; 60:101546. [PMID: 34607185 DOI: 10.1016/j.smrv.2021.101546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/29/2021] [Accepted: 09/06/2021] [Indexed: 11/17/2022]
Abstract
Cataplexy is the pathognomonic and the most striking symptom of narcolepsy. It has originally been, and still is now, widely considered as an abnormal manifestation of rapid eye movement (REM) sleep during wakefulness due to the typical muscle atonia. The neurocircuits of cataplexy, originally confined to the brainstem as those of REM sleep atonia, now include the hypothalamus, dorsal raphe (DR), amygdala and frontal cortex, and its neurochemistry originally focused on catecholamines and acetylcholine now extend to hypocretin (HCRT) and other neuromodulators. Here, we review the neuroanatomy and neurochemistry of cataplexy and propose that cataplexy is a distinct brain state that, despite similarities with REM sleep, involves cataplexy-specific features.
Collapse
Affiliation(s)
- Ali Seifinejad
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| | - Anne Vassalli
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| | - Mehdi Tafti
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, 1005 Lausanne, Switzerland.
| |
Collapse
|
17
|
Fronczek R, Schinkelshoek M, Shan L, Lammers GJ. The orexin/hypocretin system in neuropsychiatric disorders: Relation to signs and symptoms. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:343-358. [PMID: 34225940 DOI: 10.1016/b978-0-12-820107-7.00021-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Hypocretin-1 and 2 (or orexin A and B) are neuropeptides exclusively produced by a group of neurons in the lateral and dorsomedial hypothalamus that project throughout the brain. In accordance with this, the two different hypocretin receptors are also found throughout the brain. The hypocretin system is mainly involved in sleep-wake regulation, but also in reward mechanisms, food intake and metabolism, autonomic regulation including thermoregulation, and pain. The disorder most strongly linked to the hypocretin system is the primary sleep disorder narcolepsy type 1 caused by a lack of hypocretin signaling, which is most likely due to an autoimmune process targeting the hypocretin-producing neurons. However, the hypocretin system may also be affected, but to a lesser extent and less specifically, in various other neurological disorders. Examples are neurodegenerative diseases such as Alzheimer's, Huntington's and Parkinson's disease, immune-mediated disorders such as multiple sclerosis, neuromyelitis optica, and anti-Ma2 encephalitis, and genetic disorders such as type 1 diabetus mellitus and Prader-Willi Syndrome. A partial hypocretin deficiency may contribute to the sleep features of these disorders.
Collapse
Affiliation(s)
- Rolf Fronczek
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands; Sleep Wake Centre SEIN, Heemstede, The Netherlands.
| | - Mink Schinkelshoek
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands; Sleep Wake Centre SEIN, Heemstede, The Netherlands
| | - Ling Shan
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands; Sleep Wake Centre SEIN, Heemstede, The Netherlands; Department Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Gert Jan Lammers
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands; Sleep Wake Centre SEIN, Heemstede, The Netherlands
| |
Collapse
|
18
|
Adamantidis AR, Schmidt MH, Carter ME, Burdakov D, Peyron C, Scammell TE. A circuit perspective on narcolepsy. Sleep 2021; 43:5699663. [PMID: 31919524 PMCID: PMC7215265 DOI: 10.1093/sleep/zsz296] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/13/2019] [Indexed: 01/25/2023] Open
Abstract
The sleep disorder narcolepsy is associated with symptoms related to either boundary state control that include excessive daytime sleepiness and sleep fragmentation, or rapid eye movement (REM) sleep features including cataplexy, sleep paralysis, hallucinations, and sleep-onset REM sleep events (SOREMs). Although the loss of Hypocretin/Orexin (Hcrt/Ox) peptides or their receptors have been associated with the disease, here we propose a circuit perspective of the pathophysiological mechanisms of these narcolepsy symptoms that encompasses brain regions, neuronal circuits, cell types, and transmitters beyond the Hcrt/Ox system. We further discuss future experimental strategies to investigate brain-wide mechanisms of narcolepsy that will be essential for a better understanding and treatment of the disease.
Collapse
Affiliation(s)
- A R Adamantidis
- Department of Neurology, Centre for Experimental Neurology, Inselspital University Hospital Bern, University of Bern, Bern, Switzerland.,Department of Biomedical Research, Inselspital University Hospital Bern, University of Bern, Bern, Switzerland
| | - M H Schmidt
- Department of Neurology, Centre for Experimental Neurology, Inselspital University Hospital Bern, University of Bern, Bern, Switzerland.,Ohio Sleep Medicine Institute, Dublin, OH
| | - M E Carter
- Department of Biology, Program in Neuroscience, Williams College, Williamstown, MA
| | - D Burdakov
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - C Peyron
- Center for Research in Neuroscience of Lyon, SLEEP team, CNRS UMR5292, INSERM U1028, University Lyon 1, Bron, France
| | - Thomas E Scammell
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| |
Collapse
|
19
|
Hypocretinergic interactions with the serotonergic system regulate REM sleep and cataplexy. Nat Commun 2020; 11:6034. [PMID: 33247179 PMCID: PMC7699625 DOI: 10.1038/s41467-020-19862-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 10/30/2020] [Indexed: 12/31/2022] Open
Abstract
Loss of muscle tone triggered by emotions is called cataplexy and is the pathognomonic symptom of narcolepsy, which is caused by hypocretin deficiency. Cataplexy is classically considered to be an abnormal manifestation of REM sleep and is treated by selective serotonin (5HT) reuptake inhibitors. Here we show that deleting the 5HT transporter in hypocretin knockout mice suppressed cataplexy while dramatically increasing REM sleep. Additionally, double knockout mice showed a significant deficit in the buildup of sleep need. Deleting one allele of the 5HT transporter in hypocretin knockout mice strongly increased EEG theta power during REM sleep and theta and gamma powers during wakefulness. Deleting hypocretin receptors in the dorsal raphe neurons of adult mice did not induce cataplexy but consolidated REM sleep. Our results indicate that cataplexy and REM sleep are regulated by different mechanisms and both states and sleep need are regulated by the hypocretinergic input into 5HT neurons. Narcolepsy is characterized by a sudden loss of muscle tone (cataplexy) similar to REM sleep and is caused by hypocretin deficiency. Here, the authors show that deleting the serotonin transporter gene in hypocretin knockout mice suppresses cataplexy while dramatically increasing REM sleep, indicating that these are two different states but are both regulated by hypocretinergic input to serotonergic neurons.
Collapse
|
20
|
Lim DC, Mazzotti DR, Sutherland K, Mindel JW, Kim J, Cistulli PA, Magalang UJ, Pack AI, de Chazal P, Penzel T. Reinventing polysomnography in the age of precision medicine. Sleep Med Rev 2020; 52:101313. [PMID: 32289733 PMCID: PMC7351609 DOI: 10.1016/j.smrv.2020.101313] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 02/21/2020] [Accepted: 03/09/2020] [Indexed: 12/14/2022]
Abstract
For almost 50 years, sleep laboratories around the world have been collecting massive amounts of polysomnographic (PSG) physiological data to diagnose sleep disorders, the majority of which are not utilized in the clinical setting. Only a small fraction of the information available within these signals is utilized to generate indices. For example, the apnea-hypopnea index (AHI) remains the primary tool for diagnostic and therapeutic decision-making for obstructive sleep apnea (OSA) despite repeated studies showing it to be inadequate in predicting clinical consequences. Today, there are many novel approaches to PSG signals, making it possible to extract more complex metrics and analyses that are potentially more clinically relevant for individual patients. However, the pathway to implement novel PSG metrics/analyses into routine clinical practice is unclear. Our goal with this review is to highlight some of the novel PSG metrics/analyses that are becoming available. We suggest that stronger academic-industry relationships would facilitate the development of state-of-the-art clinical research to establish the value of novel PSG metrics/analyses in clinical sleep medicine. Collectively, as a sleep community, it is time to reinvent how we utilize the polysomnography to move us towards Precision Sleep Medicine.
Collapse
Affiliation(s)
- Diane C Lim
- Division of Sleep Medicine/Department of Medicine, University of Pennsylvania, United States.
| | - Diego R Mazzotti
- Division of Sleep Medicine/Department of Medicine, University of Pennsylvania, United States
| | - Kate Sutherland
- Charles Perkins Centre and Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Australia; Department Respiratory and Sleep Medicine, Royal North Shore Hospital, Australia
| | - Jesse W Mindel
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Wexner Medical Center, United States
| | - Jinyoung Kim
- University of Pennsylvania School of Nursing, Philadelphia, PA, United States
| | - Peter A Cistulli
- Charles Perkins Centre and Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Australia; Department Respiratory and Sleep Medicine, Royal North Shore Hospital, Australia
| | - Ulysses J Magalang
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Wexner Medical Center, United States
| | - Allan I Pack
- Division of Sleep Medicine/Department of Medicine, University of Pennsylvania, United States
| | - Philip de Chazal
- Charles Perkins Centre and School of Electrical and Information Engineering, Faculty of Engineering, University of Sydney, Australia
| | - Thomas Penzel
- Center for Sleep Medicine, Charite Universitätsmedizin, Berlin, Germany; Saratov State University, Saratov, Russia
| |
Collapse
|
21
|
Mahoney CE, Mochizuki T, Scammell TE. Dual orexin receptor antagonists increase sleep and cataplexy in wild type mice. Sleep 2020; 43:zsz302. [PMID: 31830270 PMCID: PMC7294412 DOI: 10.1093/sleep/zsz302] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/26/2019] [Indexed: 11/13/2022] Open
Abstract
Orexin receptor antagonists are clinically useful for treating insomnia, but thorough blockade of orexin signaling could cause narcolepsy-like symptoms. Specifically, while sleepiness is a desirable effect, an orexin antagonist could also produce cataplexy, sudden episodes of muscle weakness often triggered by strong, positive emotions. In this study, we examined the effects of dual orexin receptor antagonists (DORAs), lemborexant (E2006) and almorexant, on sleep-wake behavior and cataplexy during the dark period in wild-type (WT) mice and prepro-orexin knockout (OXKO) mice. In WT mice, lemborexant at 10 and 30 mg/kg quickly induced NREM sleep in a dose-dependent fashion. In contrast, lemborexant did not alter sleep-wake behavior in OXKO mice. Under the baseline condition, cataplexy was rare in lemborexant-treated WT mice, but when mice were given chocolate as a rewarding stimulus, lemborexant dose-dependently increased cataplexy. Almorexant produced similar results. Collectively, these results demonstrate that DORAs potently increase NREM and REM sleep in mice via blockade of orexin signaling, and higher doses can cause cataplexy when co-administered with a likely rewarding stimulus.
Collapse
Affiliation(s)
- Carrie E Mahoney
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Takatoshi Mochizuki
- Graduate School of Science and Engineering, University of Toyama, Gofuku, Japan
| | - Thomas E Scammell
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| |
Collapse
|
22
|
Peyron C, Arthaud S, Villalba M, Fort P. Defining and measuring paradoxical (REM) sleep in animal models of sleep disorders. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2020.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Zielinski MR, Atochin DN, McNally JM, McKenna JT, Huang PL, Strecker RE, Gerashchenko D. Somatostatin+/nNOS+ neurons are involved in delta electroencephalogram activity and cortical-dependent recognition memory. Sleep 2019; 42:zsz143. [PMID: 31328777 PMCID: PMC6783898 DOI: 10.1093/sleep/zsz143] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/18/2019] [Indexed: 11/13/2022] Open
Abstract
Slow-wave activity (SWA) is an oscillatory neocortical activity occurring in the electroencephalogram delta (δ) frequency range (~0.5-4 Hz) during nonrapid eye movement sleep. SWA is a reliable indicator of sleep homeostasis after acute sleep loss and is involved in memory processes. Evidence suggests that cortical neuronal nitric oxide synthase (nNOS) expressing neurons that coexpress somatostatin (SST) play a key role in regulating SWA. However, previous studies lacked selectivity in targeting specific types of neurons that coexpress nNOS-cells which are activated in the cortex after sleep loss. We produced a mouse model that knocks out nNOS expression in neurons that coexpress SST throughout the cortex. Mice lacking nNOS expression in SST positive neurons exhibited significant impairments in both homeostatic low-δ frequency range SWA production and a recognition memory task that relies on cortical input. These results highlight that SST+/nNOS+ neurons are involved in the SWA homeostatic response and cortex-dependent recognition memory.
Collapse
Affiliation(s)
- Mark R Zielinski
- Veterans Affairs Boston Healthcare System, West Roxbury, MA
- Department of Psychiatry, Harvard Medical School, West Roxbury, MA
| | - Dmitriy N Atochin
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA
| | - James M McNally
- Veterans Affairs Boston Healthcare System, West Roxbury, MA
- Department of Psychiatry, Harvard Medical School, West Roxbury, MA
| | - James T McKenna
- Veterans Affairs Boston Healthcare System, West Roxbury, MA
- Department of Psychiatry, Harvard Medical School, West Roxbury, MA
| | - Paul L Huang
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA
| | - Robert E Strecker
- Veterans Affairs Boston Healthcare System, West Roxbury, MA
- Department of Psychiatry, Harvard Medical School, West Roxbury, MA
| | - Dmitry Gerashchenko
- Veterans Affairs Boston Healthcare System, West Roxbury, MA
- Department of Psychiatry, Harvard Medical School, West Roxbury, MA
| |
Collapse
|
24
|
Narcolepsy — clinical spectrum, aetiopathophysiology, diagnosis and treatment. Nat Rev Neurol 2019; 15:519-539. [DOI: 10.1038/s41582-019-0226-9] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2019] [Indexed: 12/15/2022]
|
25
|
Sakai K. What single‐unit recording studies tell us about the basic mechanisms of sleep and wakefulness. Eur J Neurosci 2019; 52:3507-3530. [DOI: 10.1111/ejn.14485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/27/2019] [Accepted: 06/04/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Kazuya Sakai
- Integrative Physiology of the Brain Arousal System Lyon Neuroscience Research Center INSERM U1028 University Lyon 1 Lyon France
| |
Collapse
|
26
|
Huang B, Qian Z, Wang Z, Zhang J, Chen K, Xu T, Wang J, Cechetto DF, Zhao Z, Wu H. Fluctuation of primary motor cortex excitability during cataplexy in narcolepsy. Ann Clin Transl Neurol 2019; 6:210-221. [PMID: 30847354 PMCID: PMC6389735 DOI: 10.1002/acn3.670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/17/2018] [Indexed: 12/13/2022] Open
Abstract
Objective Cataplexy is a complicated and dynamic process in narcolepsy type 1 (NT1) patients. This study aimed to clarify the distinct stages during a cataplectic attack and identify the changes of the primary motor cortex (PMC) excitability during these stages. Methods Thirty-five patients with NT1 and 29 healthy controls were recruited to this study. Cataplectic stages were distinguished from a cataplectic attack by video-polysomnogram monitoring. Transcranial magnetic stimulation motor-evoked potential (TMS-MEP) was performed to measure the excitability of PMC during quiet wakefulness, laughter without cataplexy, and each cataplectic stage. Results Based on the video and electromyogram observations, a typical cataplectic attack (CA) process is divided into four stages: triggering (CA1), resisting (CA2), atonic (CA3), and recovering stages (CA4). Compared with healthy controls, NT1 patients showed significantly decreased intracortical facilitation during quiet wakefulness. During the laughter stage, both patients and controls showed increased MEP amplitude compared with quiet wakefulness. The MEP amplitude significantly increased even higher in CA1 and 2, and then dramatically decreased in CA3 accompanied with prolonged MEP latency compared with the laughter stage and quiet wakefulness. The MEP amplitude and latency gradually recovered during CA4. Interpretation This study identifies four stages during cataplectic attack and reveals the existence of a resisting stage that might change the process of cataplexy. The fluctuation of MEP amplitude and MEP latency shows a potential participation of PMC and motor control pathway during cataplexy, and the increased MEP amplitude during CA1 and 2 strongly implies a compensatory mechanism in motor control that may resist or avoid cataplectic attack.
Collapse
Affiliation(s)
- Bei Huang
- Department of Neurology Changzheng Hospital The Second Military Medical University Shanghai China.,Department of Psychiatry Faculty of Medicine The Chinese University of Hong Kong Shatin Hong Kong
| | - Zhenying Qian
- Department of EEG Source Imaging Shanghai Mental Health Center Shanghai China
| | - Zongwen Wang
- Department of Neurology Changzheng Hospital The Second Military Medical University Shanghai China
| | - Jihui Zhang
- Department of Psychiatry Faculty of Medicine The Chinese University of Hong Kong Shatin Hong Kong
| | - Kun Chen
- Department of Neurology Changzheng Hospital The Second Military Medical University Shanghai China
| | - Tao Xu
- Department of Neurology Changzheng Hospital The Second Military Medical University Shanghai China
| | - Jijun Wang
- Department of EEG Source Imaging Shanghai Mental Health Center Shanghai China
| | - David F Cechetto
- Department of Anatomy & Cell Biology University of Western Ontario London Ontario Canada
| | - Zhongxin Zhao
- Department of Neurology Changzheng Hospital The Second Military Medical University Shanghai China
| | - Huijuan Wu
- Department of Neurology Changzheng Hospital The Second Military Medical University Shanghai China
| |
Collapse
|
27
|
A standardized test to document cataplexy. Sleep Med 2019; 53:197-204. [DOI: 10.1016/j.sleep.2017.08.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/11/2017] [Accepted: 08/14/2017] [Indexed: 11/21/2022]
|
28
|
Stephansen JB, Olesen AN, Olsen M, Ambati A, Leary EB, Moore HE, Carrillo O, Lin L, Han F, Yan H, Sun YL, Dauvilliers Y, Scholz S, Barateau L, Hogl B, Stefani A, Hong SC, Kim TW, Pizza F, Plazzi G, Vandi S, Antelmi E, Perrin D, Kuna ST, Schweitzer PK, Kushida C, Peppard PE, Sorensen HBD, Jennum P, Mignot E. Neural network analysis of sleep stages enables efficient diagnosis of narcolepsy. Nat Commun 2018; 9:5229. [PMID: 30523329 PMCID: PMC6283836 DOI: 10.1038/s41467-018-07229-3] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 10/15/2018] [Indexed: 01/01/2023] Open
Abstract
Analysis of sleep for the diagnosis of sleep disorders such as Type-1 Narcolepsy (T1N) currently requires visual inspection of polysomnography records by trained scoring technicians. Here, we used neural networks in approximately 3,000 normal and abnormal sleep recordings to automate sleep stage scoring, producing a hypnodensity graph-a probability distribution conveying more information than classical hypnograms. Accuracy of sleep stage scoring was validated in 70 subjects assessed by six scorers. The best model performed better than any individual scorer (87% versus consensus). It also reliably scores sleep down to 5 s instead of 30 s scoring epochs. A T1N marker based on unusual sleep stage overlaps achieved a specificity of 96% and a sensitivity of 91%, validated in independent datasets. Addition of HLA-DQB1*06:02 typing increased specificity to 99%. Our method can reduce time spent in sleep clinics and automates T1N diagnosis. It also opens the possibility of diagnosing T1N using home sleep studies.
Collapse
Affiliation(s)
- Jens B Stephansen
- Center for Sleep Science and Medicine, Stanford University, Stanford, 94304, CA, USA
- Department of Electrical Engineering, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Alexander N Olesen
- Center for Sleep Science and Medicine, Stanford University, Stanford, 94304, CA, USA
- Department of Electrical Engineering, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
- Danish Center for Sleep Medicine, Rigshospitalet, Glostrup, 2600, Denmark
| | - Mads Olsen
- Center for Sleep Science and Medicine, Stanford University, Stanford, 94304, CA, USA
- Department of Electrical Engineering, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
- Danish Center for Sleep Medicine, Rigshospitalet, Glostrup, 2600, Denmark
| | - Aditya Ambati
- Center for Sleep Science and Medicine, Stanford University, Stanford, 94304, CA, USA
| | - Eileen B Leary
- Center for Sleep Science and Medicine, Stanford University, Stanford, 94304, CA, USA
| | - Hyatt E Moore
- Center for Sleep Science and Medicine, Stanford University, Stanford, 94304, CA, USA
| | - Oscar Carrillo
- Center for Sleep Science and Medicine, Stanford University, Stanford, 94304, CA, USA
| | - Ling Lin
- Center for Sleep Science and Medicine, Stanford University, Stanford, 94304, CA, USA
| | - Fang Han
- Department of Pulmonary Medicine, Peking University People's Hospital, Beijing, 100044, China
| | - Han Yan
- Department of Pulmonary Medicine, Peking University People's Hospital, Beijing, 100044, China
| | - Yun L Sun
- Department of Pulmonary Medicine, Peking University People's Hospital, Beijing, 100044, China
| | - Yves Dauvilliers
- Sleep-Wake Disorders Center, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, 34295, France
- INSERM, U1061, Université Montpellier 1, Montpellier, 34090, France
| | - Sabine Scholz
- Sleep-Wake Disorders Center, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, 34295, France
- INSERM, U1061, Université Montpellier 1, Montpellier, 34090, France
| | - Lucie Barateau
- Sleep-Wake Disorders Center, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, 34295, France
- INSERM, U1061, Université Montpellier 1, Montpellier, 34090, France
| | - Birgit Hogl
- Department of Neurology, Innsbruck Medical University, Innsbruck, 6020, Austria
| | - Ambra Stefani
- Department of Neurology, Innsbruck Medical University, Innsbruck, 6020, Austria
| | - Seung Chul Hong
- Department of Psychiatry, St. Vincent's Hospital, The Catholic University of Korea, Seoul, 16247, Korea
| | - Tae Won Kim
- Department of Psychiatry, St. Vincent's Hospital, The Catholic University of Korea, Seoul, 16247, Korea
| | - Fabio Pizza
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, 40123, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, 40139, Italy
| | - Giuseppe Plazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, 40123, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, 40139, Italy
| | - Stefano Vandi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, 40123, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, 40139, Italy
| | - Elena Antelmi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, 40123, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, 40139, Italy
| | - Dimitri Perrin
- School of Electrical Engineering and Computer Science, Queensland University of Technology, Brisbane, 4001, Australia
| | - Samuel T Kuna
- Department of Medicine and Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Paula K Schweitzer
- Sleep Medicine and Research Center, St. Luke's Hospital, Chesterfield, 63017, MO, USA
| | - Clete Kushida
- Center for Sleep Science and Medicine, Stanford University, Stanford, 94304, CA, USA
| | - Paul E Peppard
- Department of Population Health Sciences, University of Wisconsin-Madison, Madison, 53726, WI, USA
| | - Helge B D Sorensen
- Department of Electrical Engineering, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Poul Jennum
- Danish Center for Sleep Medicine, Rigshospitalet, Glostrup, 2600, Denmark
| | - Emmanuel Mignot
- Center for Sleep Science and Medicine, Stanford University, Stanford, 94304, CA, USA.
| |
Collapse
|
29
|
Bidirectional and context-dependent changes in theta and gamma oscillatory brain activity in noradrenergic cell-specific Hypocretin/Orexin receptor 1-KO mice. Sci Rep 2018; 8:15474. [PMID: 30341359 PMCID: PMC6195537 DOI: 10.1038/s41598-018-33069-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 09/21/2018] [Indexed: 11/08/2022] Open
Abstract
Noradrenaline (NA) and hypocretins/orexins (HCRT), and their receptors, dynamically modulate the circuits that configure behavioral states, and their associated oscillatory activities. Salient stimuli activate spiking of locus coeruleus noradrenergic (NALC) cells, inducing NA release and brain-wide noradrenergic signalling, thus resetting network activity, and mediating an orienting response. Hypothalamic HCRT neurons provide one of the densest input to NALC cells. To functionally address the HCRT-to-NA connection, we selectively disrupted the Hcrtr1 gene in NA neurons, and analyzed resulting (Hcrtr1Dbh-CKO) mice’, and their control littermates’ electrocortical response in several contexts of enhanced arousal. Under enforced wakefulness (EW), or after cage change (CC), Hcrtr1Dbh-CKO mice exhibited a weakened ability to lower infra-θ frequencies (1–7 Hz), and mount a robust, narrow-bandwidth, high-frequency θ rhythm (~8.5 Hz). A fast-γ (55–80 Hz) response, whose dynamics closely parallelled θ, also diminished, while β/slow-γ activity (15–45 Hz) increased. Furthermore, EW-associated locomotion was lower. Surprisingly, nestbuilding-associated wakefulness, inversely, featured enhanced θ and fast-γ activities. Thus HCRT-to-NA signalling may fine-tune arousal, up in alarming conditions, and down during self-motivated, goal-driven behaviors. Lastly, slow-wave-sleep following EW and CC, but not nestbuilding, was severely deficient in slow-δ waves (0.75–2.25 Hz), suggesting that HCRT-to-NA signalling regulates the slow-δ rebound characterizing sleep after stress-associated arousal.
Collapse
|
30
|
Bartolini I, Pizza F, Di Luzio A, Neccia G, Antelmi E, Vandi S, Plazzi G. Automatic detection of cataplexy. Sleep Med 2018; 52:7-13. [PMID: 30195199 DOI: 10.1016/j.sleep.2018.07.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/09/2018] [Accepted: 07/09/2018] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Although being the most specific symptom of narcolepsy type 1 (NT1), cataplexy is currently investigated by clinical interview only, with potential diagnostic pitfalls. Our study aimed at testing the accuracy of an automatic video detection of cataplexy in NT1 patients vs. non-cataplectic subjects undergoing a standardized test with emotional stimulation. METHODS Fifteen drug-naive NT1 patients and 15 age- and sex-balanced non-cataplectic subjects underwent a standardized video recording procedure including emotional stimulation causing laughter. Video recordings were visually inspected by human scorers to detect three typical cataplexy facial motor patterns (ptosis, mouth opening and head drop), and then analysed by SHIATSU (Semantic-based HIearchical Automatic Tagging of videos by Segmentation using cUts). Expert-based and automatic attack detection was compared in NT1 patients and non-cataplectic subjects. RESULTS All NT1 patients and none of the non-cataplectic subjects displayed cataplexy during emotional stimulation. Automatic detection correlated well with experts' assessments in NT1 with an overall accuracy of 81%. In non-cataplectic subjects, automatic detection falsely identified cataplexy in two out of 15 (13.3%) subjects who showed active eyes closure during intense laughter as a confounder with ptosis. CONCLUSIONS Automatic cataplexy detection by applying SHIATSU to a standardized test for video documentation of cataplexy is feasible, with an overall accuracy of 81% compared to human examiners. Further studies are warranted to enlarge the range of elementary motor patterns detected, analyse their temporal/spatial relations and quantify cataplexy for diagnostic purposes.
Collapse
Affiliation(s)
- Ilaria Bartolini
- Department of Computer Science and Engineering, University of Bologna, Bologna, Italy
| | - Fabio Pizza
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Andrea Di Luzio
- Department of Computer Science and Engineering, University of Bologna, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giulia Neccia
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Elena Antelmi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Stefano Vandi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Giuseppe Plazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.
| |
Collapse
|
31
|
Wang J, Zhang Y, Ma Q. Analysis of Narcolepsy Based on Single-Channel EEG Signals. BIG DATA ANALYTICS 2018. [DOI: 10.1007/978-3-030-04780-1_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
32
|
Abstract
How the brain controls vigilance state transitions remains to be fully understood. The discovery of hypocretins, also known as orexins, and their link to narcolepsy has undoubtedly allowed us to advance our knowledge on key mechanisms controlling the boundaries and transitions between sleep and wakefulness. Lack of function of hypocretin neurons (a relatively simple and non-redundant neuronal system) results in inappropriate control of sleep states without affecting the total amount of sleep or homeostatic mechanisms. Anatomical and functional evidence shows that the hypothalamic neurons that produce hypocretins/orexins project widely throughout the entire brain and interact with major neuromodulator systems in order to regulate physiological processes underlying wakefulness, attention, and emotions. Here, we review the role of hypocretins/orexins in arousal state transitions, and discuss possible mechanisms by which such a relatively small population of neurons controls fundamental brain state dynamics.
Collapse
Affiliation(s)
- Shi-Bin Li
- Department of Psychiatry and Behavioral Sciences, Stanford University, 1201 Welch Road, Stanford, CA, 94305, USA
| | - William J Giardino
- Department of Psychiatry and Behavioral Sciences, Stanford University, 1201 Welch Road, Stanford, CA, 94305, USA
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University, 1201 Welch Road, Stanford, CA, 94305, USA.
| |
Collapse
|
33
|
Hypocretin (orexin) is critical in sustaining theta/gamma-rich waking behaviors that drive sleep need. Proc Natl Acad Sci U S A 2017. [PMID: 28630298 DOI: 10.1073/pnas.1700983114] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hcrt gene inactivation in mice leads to behavioral state instability, abnormal transitions to paradoxical sleep, and cataplexy, hallmarks of narcolepsy. Sleep homeostasis is, however, considered unimpaired in patients and narcoleptic mice. We find that whereas Hcrtko/ko mice respond to 6-h sleep deprivation (SD) with a slow-wave sleep (SWS) EEG δ (1.0 to 4.0 Hz) power rebound like WT littermates, spontaneous waking fails to induce a δ power reflecting prior waking duration. This correlates with impaired θ (6.0 to 9.5 Hz) and fast-γ (55 to 80 Hz) activity in prior waking. We algorithmically identify a theta-dominated wakefulness (TDW) substate underlying motivated behaviors and typically preceding cataplexy in Hcrtko/ko mice. Hcrtko/ko mice fully implement TDW when waking is enforced, but spontaneous TDW episode duration is greatly reduced. A reformulation of the classic sleep homeostasis model, where homeostatic pressure rises exclusively in TDW rather than all waking, predicts δ power dynamics both in Hcrtko/ko and WT mouse baseline and recovery SWS. The low homeostatic impact of Hcrtko/ko mouse spontaneous waking correlates with decreased cortical expression of neuronal activity-related genes (notably Bdnf, Egr1/Zif268, and Per2). Thus, spontaneous TDW stability relies on Hcrt to sustain θ/fast-γ network activity and associated plasticity, whereas other arousal circuits sustain TDW during SD. We propose that TDW identifies a discrete global brain activity mode that is regulated by context-dependent neuromodulators and acts as a major driver of sleep homeostasis. Hcrt loss in Hcrtko/ko mice causes impaired TDW maintenance in baseline wake and blunted δ power in SWS, reproducing, respectively, narcolepsy excessive daytime sleepiness and poor sleep quality.
Collapse
|
34
|
Serotonin neurons in the dorsal raphe mediate the anticataplectic action of orexin neurons by reducing amygdala activity. Proc Natl Acad Sci U S A 2017; 114:E3526-E3535. [PMID: 28396432 DOI: 10.1073/pnas.1614552114] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Narcolepsy is a sleep disorder caused by the loss of orexin (hypocretin)-producing neurons and marked by excessive daytime sleepiness and a sudden weakening of muscle tone, or cataplexy, often triggered by strong emotions. In a mouse model for narcolepsy, we previously demonstrated that serotonin neurons of the dorsal raphe nucleus (DRN) mediate the suppression of cataplexy-like episodes (CLEs) by orexin neurons. Using an optogenetic tool, in this paper we show that the acute activation of DRN serotonin neuron terminals in the amygdala, but not in nuclei involved in regulating rapid eye-movement sleep and atonia, suppressed CLEs. Not only did stimulating serotonin nerve terminals reduce amygdala activity, but the chemogenetic inhibition of the amygdala using designer receptors exclusively activated by designer drugs also drastically decreased CLEs, whereas chemogenetic activation increased them. Moreover, the optogenetic inhibition of serotonin nerve terminals in the amygdala blocked the anticataplectic effects of orexin signaling in DRN serotonin neurons. Taken together, the results suggest that DRN serotonin neurons, as a downstream target of orexin neurons, inhibit cataplexy by reducing the activity of amygdala as a center for emotional processing.
Collapse
|
35
|
Tatum WO, DiCiaccio B, Kipta JA, Yelvington KH, Stein MA. The Texting Rhythm: A Novel EEG Waveform Using Smartphones. J Clin Neurophysiol 2017; 33:359-66. [PMID: 26744835 DOI: 10.1097/wnp.0000000000000250] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION We report a unique EEG phenomenon in patients with paroxysmal neurological events undergoing video EEG monitoring. METHODS Two epilepsy centers analyzed the interictal scalp EEG in patients using personal electronic devices during epilepsy monitoring. The texting rhythm (TR) was defined as a reproducible, stimulus-evoked, generalized frontocentral monomorphic burst of 5-6 Hz theta consistently induced by active text messaging. An independent prospective and retrospective cohort was analyzed and compared from two sites in Florida and Illinois. We assessed age, gender, diagnosis, epilepsy classification, MRI, and EEG to compare patients with a TR. Analysis was performed with statistical significance set at P < 0.05. RESULTS We identified 24 of 98 evaluable patients with a TR in a prospective arm at one center and 7 of 31 patients in a retrospective arm at another totaling 31/129 (24.0%). The waveform prevalence was similar at both centers independent of location. TR was highly specific to active texting. A similar waveform during independent cognitive, speech or language, motor activation and audio cellular telephone use was absent (P < 0.0001). It appeared to be increased in patients with epilepsy in one cohort (P = 0.03) and generalized seizures in the other (P = 0.025). Age, gender, epilepsy type, MRI results, and EEG lateralization in patients with focal epileptic seizures did not bear a relationship to the presence of a TR in either arm of the study (P = NS). CONCLUSIONS The TR is a novel waveform time-locked to text messaging and associated with active use of smartphones. Electroencephalographers should be aware of the TR to separate it from an abnormality in patients undergoing video EEG monitoring. Larger sample sizes and additional research may help define the significance of this unique cognitive-visual-cognitive-motor network that is technology-related and task-specific with implications in communication research and transportation safety.
Collapse
Affiliation(s)
- William O Tatum
- *Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic in Florida, Jacksonville, Florida, U.S.A.; †University of Florida, Gainesville, Florida, U.S.A.; and ‡Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, U.S.A
| | | | | | | | | |
Collapse
|
36
|
GABAergic Neurons of the Central Amygdala Promote Cataplexy. J Neurosci 2017; 37:3995-4006. [PMID: 28235898 DOI: 10.1523/jneurosci.4065-15.2017] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 02/03/2017] [Accepted: 02/07/2017] [Indexed: 11/21/2022] Open
Abstract
Narcolepsy is characterized by chronic sleepiness and cataplexy-sudden muscle paralysis triggered by strong, positive emotions. This condition is caused by a lack of orexin (hypocretin) signaling, but little is known about the neural mechanisms that mediate cataplexy. The amygdala regulates responses to rewarding stimuli and contains neurons active during cataplexy. In addition, lesions of the amygdala reduce cataplexy. Because GABAergic neurons of the central nucleus of the amygdala (CeA) target brainstem regions known to regulate muscle tone, we hypothesized that these cells promote emotion-triggered cataplexy. We injected adeno-associated viral vectors coding for Cre-dependent DREADDs or a control vector into the CeA of orexin knock-out mice crossed with vGAT-Cre mice, resulting in selective expression of the excitatory hM3 receptor or the inhibitory hM4 receptor in GABAergic neurons of the CeA. We measured sleep/wake behavior and cataplexy after injection of saline or the hM3/hM4 ligand clozapine-N-oxide (CNO) under baseline conditions and under conditions that should elicit positive emotions. In mice expressing hM3, CNO approximately doubled the amount of cataplexy in the first 3 h after dosing under baseline conditions. Rewarding stimuli (chocolate or running wheels) also increased cataplexy, but CNO produced no further increase. In mice expressing hM4, CNO reduced cataplexy in the presence of chocolate or running wheels. These results demonstrate that GABAergic neurons of the CeA are sufficient and necessary for the production of cataplexy in mice, and they likely are a key part of the mechanism through which positive emotions trigger cataplexy.SIGNIFICANCE STATEMENT Cataplexy is one of the major symptoms of narcolepsy, but little is known about how strong, positive emotions trigger these episodes of muscle paralysis. Prior research shows that amygdala neurons are active during cataplexy and cataplexy is reduced by lesions of the amygdala. We found that cataplexy is substantially increased by selective activation of GABAergic neurons in the central nucleus of the amygdala (CeA). We also demonstrate that inhibition of these neurons reduces reward-promoted cataplexy. These results build upon prior work to establish the CeA as a crucial element in the neural mechanisms of cataplexy. These results demonstrate the importance of the CeA in regulating responses to rewarding stimuli, shedding light on the broader neurobiology of emotions and motor control.
Collapse
|
37
|
GABA Cells in the Central Nucleus of the Amygdala Promote Cataplexy. J Neurosci 2017; 37:4007-4022. [PMID: 28209737 DOI: 10.1523/jneurosci.4070-15.2017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/20/2017] [Accepted: 01/31/2017] [Indexed: 11/21/2022] Open
Abstract
Cataplexy is a hallmark of narcolepsy characterized by the sudden uncontrollable onset of muscle weakness or paralysis during wakefulness. It can occur spontaneously, but is typically triggered by positive emotions such as laughter. Although cataplexy was identified >130 years ago, its neural mechanism remains unclear. Here, we show that a newly identified GABA circuit within the central nucleus of the amygdala (CeA) promotes cataplexy. We used behavioral, electrophysiological, immunohistochemical, and chemogenetic strategies to target and manipulate CeA activity selectively in narcoleptic (orexin-/-) mice to determine its functional role in controlling cataplexy. First, we show that chemogenetic activation of the entire CeA produces a marked increase in cataplexy attacks. Then, we show that GABA cells within the CeA are responsible for mediating this effect. To manipulate GABA cells specifically, we developed a new mouse line that enables genetic targeting of GABA cells in orexin-/- mice. We found that chemogenetic activation of GABA CeA cells triggered a 253% increase in the number of cataplexy attacks without affecting their duration, suggesting that GABA cells play a functional role in initiating but not maintaining cataplexy. We show that GABA cell activation only promotes cataplexy attacks associated with emotionally rewarding stimuli, not those occurring spontaneously. However, we found that chemogenetic inhibition of GABA CeA cells does not prevent cataplexy, suggesting these cells are not required for initiating cataplexy attacks. Our results indicate that the CeA promotes cataplexy onset and that emotionally rewarding stimuli may trigger cataplexy by activating GABA cells in the CeA.SIGNIFICANCE STATEMENT Although cataplexy has been closely linked to positive emotions for >130 years, the neural circuitry that underlies this relationship is poorly understood. Recent work suggests that the amygdala, a brain area important for processing emotion, may be part of this circuit. This study provides the first functional evidence to implicate GABA cells in the amygdala as regulators of cataplexy triggered by positive emotions and identifies the amygdala as the brain region important more for gating the entrance into rather than the exit from cataplexy. We also generated a new mouse model for studying GABA neurons in narcoleptic mice, which could serve as a useful tool for studying the neurobiological underpinnings of narcolepsy.
Collapse
|
38
|
Abstract
Narcolepsy is a chronic sleep disorder that has a typical onset in adolescence and is characterized by excessive daytime sleepiness, which can have severe consequences for the patient. Problems faced by patients with narcolepsy include social stigma associated with this disease, difficulties in obtaining an education and keeping a job, a reduced quality of life and socioeconomic consequences. Two subtypes of narcolepsy have been described (narcolepsy type 1 and narcolepsy type 2), both of which have similar clinical profiles, except for the presence of cataplexy, which occurs only in patients with narcolepsy type 1. The pathogenesis of narcolepsy type 1 is hypothesized to be the autoimmune destruction of the hypocretin-producing neurons in the hypothalamus; this hypothesis is supported by immune-related genetic and environmental factors associated with the disease. However, direct evidence in support of the autoimmune hypothesis is currently unavailable. Diagnosis of narcolepsy encompasses clinical, electrophysiological and biological evaluations, but simpler and faster procedures are needed. Several medications are available for the symptomatic treatment of narcolepsy, all of which have quite good efficacy and safety profiles. However, to date, no treatment hinders or slows disease development. Improved diagnostic tools and increased understanding of the pathogenesis of narcolepsy type 1 are needed and might lead to therapeutic or even preventative interventions.
Collapse
Affiliation(s)
- Birgitte R Kornum
- Molecular Sleep Laboratory, Department of Clinical Biochemistry, Rigshospitalet, Forskerparken, Nordre Ringvej 69, 2600 Glostrup, Denmark.,Danish Center for Sleep Medicine, Department of Clinical Neurophysiology, Rigshospitalet, Glostrup, Denmark
| | - Stine Knudsen
- Norwegian Centre of Expertise for Neurodevelopmental Disorders and Hypersomnias, Oslo University Hospital, Oslo, Norway
| | - Hanna M Ollila
- Department of Psychiatry and Behavioral Sciences, Center for Sleep Sciences, Stanford University, Stanford, California, USA
| | - Fabio Pizza
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, AUSL di Bologna, Bologna, Italy
| | - Poul J Jennum
- Danish Center for Sleep Medicine, Department of Clinical Neurophysiology, Rigshospitalet, Glostrup, Denmark
| | - Yves Dauvilliers
- Sleep Unit, Narcolepsy Reference Center, Department of Neurology, Gui de Chauliac Hospital, INSERM 1061, Montpellier, France
| | - Sebastiaan Overeem
- Sleep Medicine Center Kempenhaeghe, Heeze, The Netherlands.,Department of Industrial Design, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
39
|
Prerau MJ, Brown RE, Bianchi MT, Ellenbogen JM, Purdon PL. Sleep Neurophysiological Dynamics Through the Lens of Multitaper Spectral Analysis. Physiology (Bethesda) 2017; 32:60-92. [PMID: 27927806 PMCID: PMC5343535 DOI: 10.1152/physiol.00062.2015] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
During sleep, cortical and subcortical structures within the brain engage in highly structured oscillatory dynamics that can be observed in the electroencephalogram (EEG). The ability to accurately describe changes in sleep state from these oscillations has thus been a major goal of sleep medicine. While numerous studies over the past 50 years have shown sleep to be a continuous, multifocal, dynamic process, long-standing clinical practice categorizes sleep EEG into discrete stages through visual inspection of 30-s epochs. By representing sleep as a coarsely discretized progression of stages, vital neurophysiological information on the dynamic interplay between sleep and arousal is lost. However, by using principled time-frequency spectral analysis methods, the rich dynamics of the sleep EEG are immediately visible-elegantly depicted and quantified at time scales ranging from a full night down to individual microevents. In this paper, we review the neurophysiology of sleep through this lens of dynamic spectral analysis. We begin by reviewing spectral estimation techniques traditionally used in sleep EEG analysis and introduce multitaper spectral analysis, a method that makes EEG spectral estimates clearer and more accurate than traditional approaches. Through the lens of the multitaper spectrogram, we review the oscillations and mechanisms underlying the traditional sleep stages. In doing so, we will demonstrate how multitaper spectral analysis makes the oscillatory structure of traditional sleep states instantaneously visible, closely paralleling the traditional hypnogram, but with a richness of information that suggests novel insights into the neural mechanisms of sleep, as well as novel clinical and research applications.
Collapse
Affiliation(s)
- Michael J Prerau
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Ritchie E Brown
- Department of Psychiatry, Laboratory of Neuroscience, VA Boston Healthcare System and Harvard Medical School, Brockton, Massachusetts
| | - Matt T Bianchi
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts; and
| | | | - Patrick L Purdon
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Charlestown, Massachusetts
| |
Collapse
|
40
|
Angelakos CC, Watson AJ, O'Brien WT, Krainock KS, Nickl-Jockschat T, Abel T. Hyperactivity and male-specific sleep deficits in the 16p11.2 deletion mouse model of autism. Autism Res 2016; 10:572-584. [PMID: 27739237 DOI: 10.1002/aur.1707] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 07/20/2016] [Accepted: 08/18/2016] [Indexed: 12/11/2022]
Abstract
Sleep disturbances and hyperactivity are prevalent in several neurodevelopmental disorders, including autism spectrum disorders (ASDs) and attention deficit-hyperactivity disorder (ADHD). Evidence from genome-wide association studies indicates that chromosomal copy number variations (CNVs) are associated with increased prevalence of these neurodevelopmental disorders. In particular, CNVs in chromosomal region 16p11.2 profoundly increase the risk for ASD and ADHD, disorders that are more common in males than females. We hypothesized that mice hemizygous for the 16p11.2 deletion (16p11.2 del/+) would exhibit sex-specific sleep and activity alterations. To test this hypothesis, we recorded activity patterns using infrared beam breaks in the home-cage of adult male and female 16p11.2 del/+ and wildtype (WT) littermates. In comparison to controls, we found that both male and female 16p11.2 del/+ mice exhibited robust home-cage hyperactivity. In additional experiments, sleep was assessed by polysomnography over a 24-hr period. 16p11.2 del/+ male, but not female mice, exhibited significantly more time awake and significantly less time in non-rapid-eye-movement (NREM) sleep during the 24-hr period than wildtype littermates. Analysis of bouts of sleep and wakefulness revealed that 16p11.2 del/+ males, but not females, spent a significantly greater proportion of wake time in long bouts of consolidated wakefulness (greater than 42 min in duration) compared to controls. These changes in hyperactivity, wake time, and wake time distribution in the males resemble sleep disturbances observed in human ASD and ADHD patients, suggesting that the 16p11.2 del/+ mouse model may be a useful genetic model for studying sleep and activity problems in human neurodevelopmental disorders. Autism Res 2016. © 2016 International Society for Autism Research, Wiley Periodicals, Inc. Autism Res 2017, 10: 572-584. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Christopher C Angelakos
- Department of Neuroscience, Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA, 19104
| | - Adam J Watson
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104
| | - W Timothy O'Brien
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, 19104
| | - Kyle S Krainock
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104
| | - Thomas Nickl-Jockschat
- Department of Psychiatry Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany.,Jülich Aachen Research Alliance - Translational Brain Medicine, Jülich, Germany Germany and Aachen
| | - Ted Abel
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104
| |
Collapse
|
41
|
Tatum WO, DiCiaccio B, Yelvington KH. Cortical processing during smartphone text messaging. Epilepsy Behav 2016; 59:117-21. [PMID: 27131913 DOI: 10.1016/j.yebeh.2016.03.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/08/2016] [Accepted: 03/10/2016] [Indexed: 10/21/2022]
Abstract
OBJECTIVE The objective of this study was to report the EEG features of text messaging using smartphones. METHODS One hundred twenty-nine patients were prospectively evaluated during video-EEG monitoring (VEM) over 16months. A reproducible texting rhythm (TR) present during active text messaging with a smartphone was compared with passive and forced audio telephone use, thumb/finger movements, cognitive testing/calculation, scanning eye movements, and speech/language tasks in patients with and without epilepsy. Statistical significance was set at p<0.05. RESULTS Twenty-seven patients with a TR were identified from a cohort of 129 (93 female, mean age: 36; range: 18-71) unselected VEM patients. Fifty-three out of 129 patients had epileptic seizures (ES), 74/129 had nonepileptic seizures (NES), and 2/129 were dual-diagnosed. A reproducible TR was present in 27/129 (20.9%) specific to text messaging (p<0.0001) and present in 28% of patients with ES and 16% of patients with NES (p=NS). The TR was absent during independent tasks and audio cellular telephone use (p<0.0001). Age, gender, epilepsy type, MRI results, and EEG lateralization in patients with focal seizures were unrelated (p=NS). CONCLUSIONS Our results suggest that the TR on scalp EEG represents a novel technology-specific neurophysiological alteration of brain networks. We propose that cortical processing in the contemporary brain is uniquely activated by the use of PEDs. SIGNIFICANCE These findings have practical implications that could impact industry and research in nonverbal communication.
Collapse
Affiliation(s)
- William O Tatum
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic in Florida, Jacksonville, FL, USA.
| | | | - Kirsten H Yelvington
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic in Florida, Jacksonville, FL, USA
| |
Collapse
|
42
|
Bastianini S, Lo Martire V, Berteotti C, Silvani A, Ohtsu H, Lin JS, Zoccoli G. High-amplitude theta wave bursts characterizing narcoleptic mice and patients are also produced by histamine deficiency in mice. J Sleep Res 2016; 25:591-595. [DOI: 10.1111/jsr.12404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/13/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Stefano Bastianini
- Laboratory of Physiological Regulations in Sleeping Mice (PRISM); Department of Biomedical and Neuromotor Sciences; University of Bologna; Bologna Italy
| | - Viviana Lo Martire
- Laboratory of Physiological Regulations in Sleeping Mice (PRISM); Department of Biomedical and Neuromotor Sciences; University of Bologna; Bologna Italy
| | - Chiara Berteotti
- Laboratory of Physiological Regulations in Sleeping Mice (PRISM); Department of Biomedical and Neuromotor Sciences; University of Bologna; Bologna Italy
| | - Alessandro Silvani
- Laboratory of Physiological Regulations in Sleeping Mice (PRISM); Department of Biomedical and Neuromotor Sciences; University of Bologna; Bologna Italy
| | - Hiroshi Ohtsu
- Applied Quantum Medical Engineering; Graduate School of Engineering; Tohoku University; Sendai Japan
| | - Jian-Sheng Lin
- Physiologie intégrée du système d'éveil; Centre de recherche en neurosciences de Lyon; INSERM U1028-CNRS UMR 5292 Faculté de Médecine; Université Claude Bernard; Lyon France
| | - Giovanna Zoccoli
- Laboratory of Physiological Regulations in Sleeping Mice (PRISM); Department of Biomedical and Neuromotor Sciences; University of Bologna; Bologna Italy
| |
Collapse
|
43
|
Antelmi E, Plazzi G, Erro R, Tinuper P, Balint B, Liguori R, Bhatia KP. Intermittent head drops: the differential spectrum. J Neurol Neurosurg Psychiatry 2016; 87:414-9. [PMID: 26085650 DOI: 10.1136/jnnp-2015-310864] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/27/2015] [Indexed: 01/18/2023]
Abstract
Intermittent Head Drops are episodic head flexion movements that can occur in a number of conditions. Typically, the term has mainly been related to epileptic episodes, but the spectrum of clinical conditions associated with this feature is wide-ranging even if never discussed in detail. By searching the electronic database, we may find that apart from the epileptic conditions, Intermittent Head Drops have been in fact reported in the setting of movement disorders, sleep disorders and even internal medicine disorders, such as Sandifer syndrome. We render an in-depth description of this characteristic phenomenon in different diseases, describing the clinical clues and neurophysiological patterns that may help the clinician to distinguish between the different settings of occurrence.
Collapse
Affiliation(s)
- Elena Antelmi
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy Sobell Department of Motor Neuroscience and Movement Disorders, University College London (UCL) Institute of Neurology, London, UK
| | - Giuseppe Plazzi
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Roberto Erro
- Sobell Department of Motor Neuroscience and Movement Disorders, University College London (UCL) Institute of Neurology, London, UK
| | - Paolo Tinuper
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Bettina Balint
- Sobell Department of Motor Neuroscience and Movement Disorders, University College London (UCL) Institute of Neurology, London, UK
| | - Rocco Liguori
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Kailash P Bhatia
- Sobell Department of Motor Neuroscience and Movement Disorders, University College London (UCL) Institute of Neurology, London, UK
| |
Collapse
|
44
|
Abstract
The hypocretins (Hcrts), also known as orexins, have been among the most intensely studied neuropeptide systems since their discovery about two decades ago. Anatomical evidence shows that the hypothalamic neurons that produce hypocretins/orexins project widely throughout the entire brain, innervating the noradrenergic locus coeruleus, the cholinergic basal forebrain, the dopaminergic ventral tegmental area, the serotonergic raphe nuclei, the histaminergic tuberomammillary nucleus, and many other brain regions. By interacting with other neural systems, the Hcrt system profoundly modulates versatile physiological processes including arousal, food intake, emotion, attention, and reward. Importantly, interruption of the interactions between these systems has the potential to cause neurological and psychiatric diseases. Here, we review the modulation of diverse neural systems by Hcrts and summarize potential therapeutic strategies based on our understanding of the Hcrt system's role in physiology and pathophysiological processes.
Collapse
|
45
|
Black SW, Yamanaka A, Kilduff TS. Challenges in the development of therapeutics for narcolepsy. Prog Neurobiol 2015; 152:89-113. [PMID: 26721620 DOI: 10.1016/j.pneurobio.2015.12.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 11/14/2015] [Accepted: 12/04/2015] [Indexed: 01/19/2023]
Abstract
Narcolepsy is a neurological disorder that afflicts 1 in 2000 individuals and is characterized by excessive daytime sleepiness and cataplexy-a sudden loss of muscle tone triggered by positive emotions. Features of narcolepsy include dysregulation of arousal state boundaries as well as autonomic and metabolic disturbances. Disruption of neurotransmission through the hypocretin/orexin (Hcrt) system, usually by degeneration of the HCRT-producing neurons in the posterior hypothalamus, results in narcolepsy. The cause of Hcrt neurodegeneration is unknown but thought to be related to autoimmune processes. Current treatments for narcolepsy are symptomatic, including wake-promoting therapeutics that increase presynaptic dopamine release and anticataplectic agents that activate monoaminergic neurotransmission. Sodium oxybate is the only medication approved by the US Food and Drug Administration that alleviates both sleep/wake disturbances and cataplexy. Development of therapeutics for narcolepsy has been challenged by historical misunderstanding of the disease, its many disparate symptoms and, until recently, its unknown etiology. Animal models have been essential to elucidating the neuropathology underlying narcolepsy. These models have also aided understanding the neurobiology of the Hcrt system, mechanisms of cataplexy, and the pharmacology of narcolepsy medications. Transgenic rodent models will be critical in the development of novel therapeutics for the treatment of narcolepsy, particularly efforts directed to overcome challenges in the development of hypocretin replacement therapy.
Collapse
Affiliation(s)
- Sarah Wurts Black
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA 94025, USA
| | - Akihiro Yamanaka
- Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
| | - Thomas S Kilduff
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA 94025, USA.
| |
Collapse
|
46
|
Baiardi S, Vandi S, Pizza F, Alvisi L, Toscani L, Zambrelli E, Tinuper P, Mayer G, Plazzi G. Narcolepsy Type 1 and Idiopathic Generalized Epilepsy: Diagnostic and Therapeutic Challenges in Dual Cases. J Clin Sleep Med 2015; 11:1257-62. [PMID: 26156948 PMCID: PMC4623123 DOI: 10.5664/jcsm.5180] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/11/2015] [Indexed: 02/03/2023]
Abstract
STUDY OBJECTIVES The aim of this study is to describe the possible co-occurrence of narcolepsy type 1 and generalized epilepsy, focusing on diagnostic challenge and safety of dual treatments. METHODS AND RESULTS Four patients with comorbidity for narcolepsy type 1 and idiopathic generalized epilepsy are reported: in three cases the onset of epilepsy preceded narcolepsy type 1 appearance, whereas in one case epileptic spells onset was subsequent. Patients presented with absences, myoclonic and tonic-clonic seizure type: in the patient with tonic-clonic seizures the dual pathology was easily recognized, in the other cases the first diagnosis caused the comorbid disease to be overlooked, independent of the time-course sequence. All four patients underwent neurological examination, video-electroencephalogram during which ictal and interictal epileptic discharges were recorded, and sleep polysomnographic studies. Repeated sleep onset rapid eye movement periods (SOREMPs) were documented with the multiple sleep latency test (MLST) in all the four cases. All patients had unremarkable brain magnetic resonance imaging studies and cerebrospinal hypocretin-1 was assessed in two patients, revealing undetectable levels. The association of antiepileptic drugs and substances currently used to treat narcolepsy type 1, including sodium oxybate, was effective in improving seizures, sleep disturbance, and cataplexy. CONCLUSIONS Narcolepsy type 1 may occur in association with idiopathic generalized epilepsy, leading to remarkable diagnostic and therapeutic challenges. Electrophysiological studies as well as a comprehensive somnologic interview can help confirm the diagnosis in patients with ambiguous neurological history. Sodium oxybate in combination with antiepileptic drugs is safe and effective in treating cataplexy and excessive daytime sleepiness.
Collapse
Affiliation(s)
- Simone Baiardi
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Stefano Vandi
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche, Bologna, Italy
| | - Fabio Pizza
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche, Bologna, Italy
| | - Lara Alvisi
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche, Bologna, Italy
| | | | - Elena Zambrelli
- Regional Epilepsy Center–Sleep Medicine Center, San Paolo Hospital, Milan, Italy
| | - Paolo Tinuper
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche, Bologna, Italy
| | - Geert Mayer
- Hephata Klinik, Schwalmstadt-Treysa, Germany; Department of Neurology, Philipps-Universität Marburg, Marburg, Germany
| | - Giuseppe Plazzi
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche, Bologna, Italy
| |
Collapse
|
47
|
Abstract
UNLABELLED The brain suprapontine mechanisms associated with human cataplexy have not been clarified. Animal data suggest that the amygdala and the ventromedial prefrontal cortex are key regions in promoting emotion-induced cataplectic attacks. Twenty-one drug-naive children/adolescent (13 males, mean age 11 years) with recent onset of narcolepsy type 1 (NT1) were studied with fMRI while viewing funny videos using a "naturalistic" paradigm. fMRI data were acquired synchronously with EEG, mylohyoid muscle activity, and the video of the patient's face. Whole-brain hemodynamic correlates of (1) a sign of fun and amusement (laughter) and of (2) cataplexy were analyzed and compared. Correlations analyses between these contrasts and disease-related variables and behavioral findings were performed. SIGNIFICANCE STATEMENT In this study we reported for the first time in humans the brain structures whose neural activity is specifically and consistently associated with emotion-induced cataplexy. To reach this goal drug-naive children and adolescents with recent onset narcolepsy type 1 were investigated. In narcolepsy caused by hypocretin/orexin deficiency, cataplexy is associated with a marked increase in neural activity in the amygdala, the nucleus accumbens, and the ventromedial prefrontal cortex, which represent suprapontine centers that physiologically process emotions and reward. These findings confirm recent data obtained in the hypocretin knock-out mice and suggest that the absence of hypothalamic hypocretin control on mesolimbic reward centers is crucial in determining cataplexy induced by emotions. Emotion-induced laughter occurred in 16 patients, and of these 10 showed cataplexy for a total of 77 events (mean duration = 4.4 s). Cataplexy was marked by brief losses of mylohyoid muscle tone and by the observation of episodes of facial hypotonia, jaw drop, and ptosis. During laughter (without cataplexy) an increased hemodynamic response occurred in a bilateral network involving the motor/premotor cortex and anterior cingulate gyrus. During cataplexy, suprapontine BOLD signal increase was present in the amygdala, frontal operculum-anterior insular cortex, ventromedial prefrontal cortex, and the nucleus accumbens; BOLD signal increases were also observed at locus ceruleus and in anteromedial pons. The comparison of cataplexy versus laugh episodes revealed the involvement of a corticolimbic network that processes reward and emotion encompassing the anterior insular cortex, the nucleus accumbens, and the amygdala.
Collapse
|
48
|
Liu X, Yanagawa T, Leopold DA, Chang C, Ishida H, Fujii N, Duyn JH. Arousal transitions in sleep, wakefulness, and anesthesia are characterized by an orderly sequence of cortical events. Neuroimage 2015; 116:222-31. [PMID: 25865143 DOI: 10.1016/j.neuroimage.2015.04.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/20/2015] [Accepted: 04/01/2015] [Indexed: 11/30/2022] Open
Abstract
Many aspects of brain function are influenced by modulatory processes, including arousal. The most abrupt changes in arousal occur at the wake-sleep transition and at the induction of anesthetic conditions. They are accompanied by major electrophysiological changes, including an emergence of low-frequency (sleep-like) activity and a loss of mid-frequency (wake-like) activity that has been linked to feedback processes of the brain. Nevertheless, the causal relationship between these two types of electrophysiological changes, as well as the cortical mechanisms underlying changes in arousal and consciousness, remain poorly understood. To address this, we studied spontaneous electro-cortical activity during arousal changes in macaques. During sleep and at loss of consciousness induced by propofol anesthesia, we identified a prototypical sequence of cortical events in which the loss of mid-frequency activity preceded, by seconds, the increases in low-frequency activity. Furthermore, in visual areas, an influence of mid-frequency change onto high-frequency activity was observed across visual hierarchy. These results are consistent with the notion that drops in arousal and consciousness are facilitated by a release of feedback cortical inhibition.
Collapse
Affiliation(s)
- Xiao Liu
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Toru Yanagawa
- Laboratory for Adaptive Intelligence, Brain Science Institute, RIKEN, Saitama, Japan
| | - David A Leopold
- Section on Cognitive Neurophysiology and Imaging, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA; Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Eye Institute, Bethesda, MD, 20892, USA
| | - Catie Chang
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Hiroaki Ishida
- Frontal Lobe Function Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Naotaka Fujii
- Laboratory for Adaptive Intelligence, Brain Science Institute, RIKEN, Saitama, Japan
| | - Jeff H Duyn
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
49
|
Sasai-Sakuma T, Inoue Y. Differences in electroencephalographic findings among categories of narcolepsy-spectrum disorders. Sleep Med 2015; 16:999-1005. [PMID: 26026626 DOI: 10.1016/j.sleep.2015.01.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 12/08/2014] [Accepted: 01/17/2015] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To clarify the differences in quantitative electroencephalographic (EEG) measures and their relation to clinical symptoms among narcolepsy-spectrum disorders. METHODS The enrolled patients were: 28 with narcolepsy with cataplexy (NA-CA); 16 with NA without cataplexy (NA w/o CA) and HLA-DRB1*1501/DQB1*0602 positive (NA w/o CA HLA+); 22 with NA w/o CA and HLA negative (NA w/o CA HLA-); and 22 with idiopathic hypersomnia without long sleep time (IHS w/o LST). Nocturnal polysomnography (n-PSG) and quantitative EEG evaluation, as well as the Multiple Sleep Latency test (MSLT), were conducted for all patients. RESULTS Patients with NA-CA or NA w/o CA HLA+ showed lower alpha power, higher delta and theta power during wakefulness, and higher alpha and beta power during rapid eye movement (REM) sleep, compared to those with NA w/o CA HLA- or IHS w/o LST. The former two groups also showed lower sleep efficiency and a higher rate of positivity of REM-related symptoms than the other two groups. CONCLUSIONS In narcolepsy, the presence of cataplexy and HLA positivity are associated with EEG slowing during wakefulness and increased fast EEG activity during REM sleep, REM-related symptoms and disrupted nocturnal sleep in narcolepsy.
Collapse
Affiliation(s)
- Taeko Sasai-Sakuma
- Department of Somnology, Tokyo Medical University, Tokyo, Japan; Department of Life Sciences and Bio-informatics, Division of Biomedical Laboratory Sciences, Graduate School of Health Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Yuichi Inoue
- Department of Somnology, Tokyo Medical University, Tokyo, Japan; Japan Somnology Center, Neuropsychiatric Research Institute, Tokyo, Japan
| |
Collapse
|
50
|
He C, Chen QH, Ye JN, Li C, Yang L, Zhang J, Xia JX, Hu ZA. Functional inactivation of hypocretin 1 receptors in the medial prefrontal cortex affects the pyramidal neuron activity and gamma oscillations: An in vivo multiple-channel single-unit recording study. Neuroscience 2015; 297:1-10. [PMID: 25838117 DOI: 10.1016/j.neuroscience.2015.03.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/06/2015] [Accepted: 03/19/2015] [Indexed: 01/18/2023]
Abstract
The hypocretin signaling is thought to play a critical role in maintaining wakefulness via stimulating the subcortical arousal pathways. Although the cortical areas, including the medial prefrontal cortex (mPFC), receive dense hypocretinergic fibers and express its receptors, it remains unclear whether the hypocretins can directly regulate the neural activity of the mPFC in vivo. In the present study, using multiple-channel single-unit recording study, we found that infusion of the SB-334867, a blocker for the Hcrtr1, beside the recording sites within the mPFC substantially exerted an inhibitory effect on the putative pyramidal neuron (PPN) activity in naturally behaving rats. In addition, functional blockade of the Hcrtr1 also selectively reduced the power of the gamma oscillations. The PPN activity and the power of the neural oscillations were not affected after microinjection of the TCS-OX2-29, a blocker for the Hcrtr2, within the mPFC. Together, these data indicate that endogenous hypocretins acting on the Hcrtr1 are required for the normal neural activity in the mPFC in vivo, and thus might directly contribute cortical arousal and mPFC-dependent cognitive processes.
Collapse
Affiliation(s)
- C He
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038, PR China
| | - Q-H Chen
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038, PR China
| | - J-N Ye
- Department of Neurology, Xinqiao Hospital, Chongqing 400037, PR China
| | - C Li
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038, PR China
| | - L Yang
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038, PR China
| | - J Zhang
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038, PR China
| | - J-X Xia
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038, PR China.
| | - Z-A Hu
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038, PR China.
| |
Collapse
|