1
|
Di Camillo F, Grimaldi DA, Cattarinussi G, Di Giorgio A, Locatelli C, Khuntia A, Enrico P, Brambilla P, Koutsouleris N, Sambataro F. Magnetic resonance imaging-based machine learning classification of schizophrenia spectrum disorders: a meta-analysis. Psychiatry Clin Neurosci 2024. [PMID: 39290174 DOI: 10.1111/pcn.13736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/31/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Recent advances in multivariate pattern recognition have fostered the search for reliable neuroimaging-based biomarkers in psychiatric conditions, including schizophrenia. These approaches consider the complex pattern of alterations in brain function and structure, overcoming the limitations of traditional univariate methods. To assess the reliability of neuroimaging-based biomarkers and the contribution of study characteristics in distinguishing individuals with schizophrenia spectrum disorder (SSD) from healthy controls (HCs), we conducted a systematic review of the studies that used multivariate pattern recognition for this objective. METHODS We systematically searched PubMed, Scopus, and Web of Science for studies on SSD classification using multivariate pattern analysis on magnetic resonance imaging data. We employed a bivariate random-effects meta-analytic model to explore the classification of sensitivity (SE) and specificity (SP) across studies while also evaluating the moderator effects of clinical and non-clinical variables. RESULTS A total of 119 studies (with 12,723 patients with SSD and 13,196 HCs) were identified. The meta-analysis estimated a SE of 79.1% (95% confidence interval [CI], 77.1%-81.0%) and a SP of 80.0% (95% CI, 77.8%-82.0%). In particular, the Positive and Negative Syndrome Scale and the Global Assessment of Functioning scores, age, age of onset, duration of untreated psychosis, deep learning, algorithm type, features selection, and validation methods had significant effects on classification performance. CONCLUSIONS Multivariate pattern analysis reliably identifies neuroimaging-based biomarkers of SSD, achieving ∼80% SE and SP. Despite clinical heterogeneity, discernible brain modifications effectively differentiate SSD from HCs. Classification performance depends on patient-related and methodological factors crucial for the development, validation, and application of prospective models in clinical settings.
Collapse
Affiliation(s)
- Fabio Di Camillo
- Department of Neuroscience (DNS), University of Padova, Padua, Italy
| | | | - Giulia Cattarinussi
- Department of Neuroscience (DNS), University of Padova, Padua, Italy
- Padova Neuroscience Center, University of Padova, Padua, Italy
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Annabella Di Giorgio
- Department of Mental Health and Addictions, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Clara Locatelli
- Department of Mental Health and Addictions, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Adyasha Khuntia
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
- Max-Planck-Institute of Psychiatry, Munich, Germany
| | - Paolo Enrico
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University, Munich, Germany
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Department of Neurosciences and Mental Health, Fondazione IRCSS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paolo Brambilla
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Department of Neurosciences and Mental Health, Fondazione IRCSS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Nikolaos Koutsouleris
- Max-Planck-Institute of Psychiatry, Munich, Germany
- Department of Psychiatry, Munich University Hospital, Munich, Germany
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Fabio Sambataro
- Department of Neuroscience (DNS), University of Padova, Padua, Italy
- Padova Neuroscience Center, University of Padova, Padua, Italy
| |
Collapse
|
2
|
Wang X, Yan C, Yang PY, Xia Z, Cai XL, Wang Y, Kwok SC, Chan RCK. Unveiling the potential of machine learning in schizophrenia diagnosis: A meta-analytic study of task-based neuroimaging data. Psychiatry Clin Neurosci 2024; 78:157-168. [PMID: 38013639 DOI: 10.1111/pcn.13625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 11/01/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
The emergence of machine learning (ML) techniques has opened up new avenues for identifying biomarkers associated with schizophrenia (SCZ) using task-related fMRI (t-fMRI) designs. To evaluate the effectiveness of this approach, we conducted a comprehensive meta-analysis of 31 t-fMRI studies using a bivariate model. Our findings revealed a high overall sensitivity of 0.83 and specificity of 0.82 for t-fMRI studies. Notably, neuropsychological domains modulated the classification performance, with selective attention demonstrating a significantly higher specificity than working memory (β = 0.98, z = 2.11, P = 0.04). Studies involving older, chronic patients with SCZ reported higher sensitivity (P <0.015) and specificity (P <0.001) than those involving younger, first-episode patients or high-risk individuals for psychosis. Additionally, we found that the severity of negative symptoms was positively associated with the specificity of the classification model (β = 7.19, z = 2.20, P = 0.03). Taken together, these results support the potential of using task-based fMRI data in combination with machine learning techniques to identify biomarkers related to symptom outcomes in SCZ, providing a promising avenue for improving diagnostic accuracy and treatment efficacy. Future attempts to deploy ML classification should consider the factors of algorithm choice, data quality and quantity, as well as issues related to generalization.
Collapse
Affiliation(s)
- Xuan Wang
- Key Laboratory of Brain Functional Genomics (MOE&STCSM), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
- Shanghai Changning Mental Health Center, Shanghai, China
- Neuropsychology and Applied Cognitive Neuroscience Laboratory; CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Chao Yan
- Key Laboratory of Brain Functional Genomics (MOE&STCSM), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
- Shanghai Changning Mental Health Center, Shanghai, China
| | | | - Zheng Xia
- Key Laboratory of Brain Functional Genomics (MOE&STCSM), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Xin-Lu Cai
- Institute of Brain Science and Department of Physiology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yi Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory; CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Sze Chai Kwok
- Key Laboratory of Brain Functional Genomics (MOE&STCSM), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
- Shanghai Changning Mental Health Center, Shanghai, China
- Phylo-Cognition Laboratory, Division of Natural and Applied Sciences, Data Science Research Center, Duke Kunshan University, Kunshan, China
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China
| | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory; CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Mao X, Zhang Z, Yang Y, Chen Y, Wang Y, Wang W. Characteristics of different Mandarin pronunciation element perception: evidence based on a multifeature paradigm for recording MMN and P3a components of phonemic changes in speech sounds. Front Neurosci 2024; 17:1277129. [PMID: 38264493 PMCID: PMC10804857 DOI: 10.3389/fnins.2023.1277129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024] Open
Abstract
Background As a tonal language, Mandarin Chinese has the following pronunciation elements for each syllable: the vowel, consonant, tone, duration, and intensity. Revealing the characteristics of auditory-related cortical processing of these different pronunciation elements is interesting. Methods A Mandarin pronunciation multifeature paradigm was designed, during which a standard stimulus and five different phonemic deviant stimuli were presented. The electroencephalogram (EEG) data were recorded with 256-electrode high-density EEG equipment. Time-domain and source localization analyses were conducted to demonstrate waveform characteristics and locate the sources of the cortical processing of mismatch negativity (MMN) and P3a components following different stimuli. Results Vowel and consonant differences elicited distinct MMN and P3a components, but tone and duration differences did not. Intensity differences elicited distinct MMN components but not P3a components. For MMN and P3a components, the activated cortical areas were mainly in the frontal-temporal lobe. However, the regions and intensities of the cortical activation were significantly different among the components for the various deviant stimuli. The activated cortical areas of the MMN and P3a components elicited by vowels and consonants seemed to be larger and show more intense activation. Conclusion The auditory processing centers use different auditory-related cognitive resources when processing different Mandarin pronunciation elements. Vowels and consonants carry more information for speech comprehension; moreover, more neurons in the cortex may be involved in the recognition and cognitive processing of these elements.
Collapse
Affiliation(s)
- Xiang Mao
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, Tianjin, China
- Institute of Otolaryngology of Tianjin, Tianjin, China
- Key Laboratory of Auditory Speech and Balance Medicine, Tianjin, China
- Key Medical Discipline of Tianjin (Otolaryngology), Tianjin, China
- Otolaryngology Clinical Quality Control Centre, Tianjin, China
| | - Ziyue Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, Tianjin, China
- Institute of Otolaryngology of Tianjin, Tianjin, China
- Key Laboratory of Auditory Speech and Balance Medicine, Tianjin, China
- Key Medical Discipline of Tianjin (Otolaryngology), Tianjin, China
- Otolaryngology Clinical Quality Control Centre, Tianjin, China
| | - Yijing Yang
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, Tianjin, China
- Institute of Otolaryngology of Tianjin, Tianjin, China
- Key Laboratory of Auditory Speech and Balance Medicine, Tianjin, China
- Key Medical Discipline of Tianjin (Otolaryngology), Tianjin, China
- Otolaryngology Clinical Quality Control Centre, Tianjin, China
| | - Yu Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, Tianjin, China
- Institute of Otolaryngology of Tianjin, Tianjin, China
- Key Laboratory of Auditory Speech and Balance Medicine, Tianjin, China
- Key Medical Discipline of Tianjin (Otolaryngology), Tianjin, China
- Otolaryngology Clinical Quality Control Centre, Tianjin, China
| | - Yue Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, Tianjin, China
- Institute of Otolaryngology of Tianjin, Tianjin, China
- Key Laboratory of Auditory Speech and Balance Medicine, Tianjin, China
- Key Medical Discipline of Tianjin (Otolaryngology), Tianjin, China
- Otolaryngology Clinical Quality Control Centre, Tianjin, China
| | - Wei Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, Tianjin, China
- Institute of Otolaryngology of Tianjin, Tianjin, China
- Key Laboratory of Auditory Speech and Balance Medicine, Tianjin, China
- Key Medical Discipline of Tianjin (Otolaryngology), Tianjin, China
- Otolaryngology Clinical Quality Control Centre, Tianjin, China
| |
Collapse
|
4
|
Bastos G, Holmes JT, Ross JM, Rader AM, Gallimore CG, Peterka DS, Hamm JP. A frontosensory circuit for visual context processing is synchronous in the theta/alpha band. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.25.530044. [PMID: 36865311 PMCID: PMC9980180 DOI: 10.1101/2023.02.25.530044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Visual processing is strongly influenced by context. Stimuli that deviate from contextual regularities elicit augmented responses in primary visual cortex (V1). These heightened responses, known as "deviance detection," require both inhibition local to V1 and top-down modulation from higher areas of cortex. Here we investigated the spatiotemporal mechanisms by which these circuit elements interact to support deviance detection. Local field potential recordings in mice in anterior cingulate area (ACa) and V1 during a visual oddball paradigm showed that interregional synchrony peaks in the theta/alpha band (6-12 Hz). Two-photon imaging in V1 revealed that mainly pyramidal neurons exhibited deviance detection, while vasointestinal peptide-positive interneurons (VIPs) increased activity and somatostatin-positive interneurons (SSTs) decreased activity (adapted) to redundant stimuli (prior to deviants). Optogenetic drive of ACa-V1 inputs at 6-12 Hz activated V1-VIPs but inhibited V1-SSTs, mirroring the dynamics present during the oddball paradigm. Chemogenetic inhibition of VIP interneurons disrupted ACa-V1 synchrony and deviance detection responses in V1. These results outline spatiotemporal and interneuron-specific mechanisms of top-down modulation that support visual context processing.
Collapse
Affiliation(s)
- Georgia Bastos
- Neuroscience Institute, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303
| | - Jacob T Holmes
- Neuroscience Institute, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303
| | - Jordan M Ross
- Neuroscience Institute, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303
- Center for Behavioral Neuroscience, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303
| | - Anna M Rader
- Neuroscience Institute, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303
| | - Connor G Gallimore
- Neuroscience Institute, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303
| | - Darcy S Peterka
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Jordan P Hamm
- Neuroscience Institute, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303
- Center for Behavioral Neuroscience, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303
| |
Collapse
|
5
|
Functional connectivity signatures of NMDAR dysfunction in schizophrenia-integrating findings from imaging genetics and pharmaco-fMRI. Transl Psychiatry 2023; 13:59. [PMID: 36797233 PMCID: PMC9935542 DOI: 10.1038/s41398-023-02344-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Both, pharmacological and genome-wide association studies suggest N-methyl-D-aspartate receptor (NMDAR) dysfunction and excitatory/inhibitory (E/I)-imbalance as a major pathophysiological mechanism of schizophrenia. The identification of shared fMRI brain signatures of genetically and pharmacologically induced NMDAR dysfunction may help to define biomarkers for patient stratification. NMDAR-related genetic and pharmacological effects on functional connectivity were investigated by integrating three different datasets: (A) resting state fMRI data from 146 patients with schizophrenia genotyped for the disease-associated genetic variant rs7191183 of GRIN2A (encoding the NMDAR 2 A subunit) as well as 142 healthy controls. (B) Pharmacological effects of the NMDAR antagonist ketamine and the GABA-A receptor agonist midazolam were obtained from a double-blind, crossover pharmaco-fMRI study in 28 healthy participants. (C) Regional gene expression profiles were estimated using a postmortem whole-brain microarray dataset from six healthy donors. A strong resemblance was observed between the effect of the genetic variant in schizophrenia and the ketamine versus midazolam contrast of connectivity suggestive for an associated E/I-imbalance. This similarity became more pronounced for regions with high density of NMDARs, glutamatergic neurons, and parvalbumin-positive interneurons. From a functional perspective, increased connectivity emerged between striato-pallido-thalamic regions and cortical regions of the auditory-sensory-motor network, while decreased connectivity was observed between auditory (superior temporal gyrus) and visual processing regions (lateral occipital cortex, fusiform gyrus, cuneus). Importantly, these imaging phenotypes were associated with the genetic variant, the differential effect of ketamine versus midazolam and schizophrenia (as compared to healthy controls). Moreover, the genetic variant was associated with language-related negative symptomatology which correlated with disturbed connectivity between the left posterior superior temporal gyrus and the superior lateral occipital cortex. Shared genetic and pharmacological functional connectivity profiles were suggestive of E/I-imbalance and associated with schizophrenia. The identified brain signatures may help to stratify patients with a common molecular disease pathway providing a basis for personalized psychiatry.
Collapse
|
6
|
Mahmoud AMA, Eissa MAE, Kolkaila EA, Amer RAR, Kotait MA. Mismatch negativity as an early biomarker of cognitive impairment in schizophrenia. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2023. [DOI: 10.1186/s41983-023-00627-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Abstract
Background
Due to its disturbance in schizophrenic patients, mismatch negativity (MMN) generation is believed to be a potential biomarker for recognizing primary impairments in auditory sensory processing during the course of the disease. However, great controversy exists regarding the type and onset of MMN-related impairments, with the deficits to frequency deviants is more debatable. This cross-sectional, case–control study was conducted to assess the cognitive functions among 33 eligible Egyptian schizophrenics (15 early and 18 chronic), and 30 matched healthy controls by assessing their psychometric tests and correlating them to the coexisting frequency deviant MMN responses (using both tone and speech stimuli).
Results
Deficits in frequency MMN and neuropsychological tests were evident among early and chronic schizophrenics compared to their matched control counterparts, and also between early versus chronic schizophrenia in favor of the later. MMN deficits to speech stimuli were more elicited than tone stimuli among schizophrenics. Moreover, significant correlations were identified between MMN parameters and the results of psychiatric cognitive scales.
Conclusions
We demonstrated that frequency-deviant MMN deficits are evident feature among the enrolled Egyptian schizophrenics. The cognitive functions as indexed by MMN seem affected early, with the striking decrease of MMN amplitude and delay of latency point towards the progression of the illness. The normal lateralization of MMN was absent in chronic schizophrenia. These findings could be helpful in using the MMN as an additional objective tool for confirming cognitive impairments among schizophrenics and to differentiate between early- and chronic-schizophrenic patients for medico-legal purposes and clinical implication for medications.
Collapse
|
7
|
Torrens WA, Pablo JN, Shires J, Haigh SM, Berryhill ME. People with high schizotypy experience more illusions in the Pattern Glare Test: Consistent with the hyperexcitability hypothesis. Eur J Neurosci 2023; 57:388-399. [PMID: 36484768 PMCID: PMC9847329 DOI: 10.1111/ejn.15886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
Individuals diagnosed with schizophrenia spectrum disorders (SSD) exhibit a constellation of sensory and perceptual impairments, including hyporeactivity to external input. However, individuals with SSD also report subjective experiences of sensory flooding, suggesting sensory hyperexcitability. To identify the extent to which behavioural indices of hyperexcitability are related to non-psychotic symptoms of schizophrenia, we tested a non-clinical population measured for schizophrenia-like traits (schizotypy), and a behavioural measure of sensory hyperexcitability, specifically the number of illusions seen in the Pattern Glare Test. Two samples totaling 913 individuals completed an online version of the Schizotypal Personality Questionnaire - Brief Revised (SPQ-BR) and the Pattern Glare Test. Individuals with higher schizotypy traits reported more illusions in the Pattern Glare Test. Additionally, one of the three SPQ-BR factors, the disorganized factor, significantly predicted the number of illusions reported. These data illustrate the potential for research in non-clinical samples to inform clinically relevant research.
Collapse
Affiliation(s)
- Wendy A Torrens
- Department of Psychology, University of Nevada, Reno, Reno, Nevada, USA
| | - Jenna N Pablo
- Department of Psychology, University of Nevada, Reno, Reno, Nevada, USA
| | - Jorja Shires
- Department of Psychology, University of Nevada, Reno, Reno, Nevada, USA
| | - Sarah M Haigh
- Department of Psychology, University of Nevada, Reno, Reno, Nevada, USA
| | | |
Collapse
|
8
|
Batta I, Abrol A, Fu Z, Preda A, van Erp TG, Calhoun VD. Building Models of Functional Interactions Among Brain Domains that Encode Varying Information Complexity: A Schizophrenia Case Study. Neuroinformatics 2022; 20:777-791. [PMID: 35267145 PMCID: PMC9463406 DOI: 10.1007/s12021-022-09563-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2022] [Indexed: 12/31/2022]
Abstract
Revealing associations among various structural and functional patterns of the brain can yield highly informative results about the healthy and disordered brain. Studies using neuroimaging data have more recently begun to utilize the information within as well as across various functional and anatomical domains (i.e., groups of brain networks). However, most whole-brain approaches assume similar complexity of interactions throughout the brain. Here we investigate the hypothesis that interactions between brain networks capture varying amounts of complexity, and that we can better capture this information by varying the complexity of the model subspace structure based on available training data. To do this, we employ a Bayesian optimization-based framework known as the Tree Parzen Estimator (TPE) to identify, exploit and analyze patterns of variation in the information encoded by temporal information extracted from functional magnetic resonance imaging (fMRI) subdomains of the brain. Using a repeated cross-validation procedure on a schizophrenia classification task, we demonstrate evidence that interactions between specific functional subdomains are better characterized by more sophisticated model architectures compared to less complicated ones required by the others for optimally contributing towards classification and understanding the brain's functional interactions. We show that functional subdomains known to be involved in schizophrenia require more complex architectures to optimally unravel discriminatory information about the disorder. Our study points to the need for adaptive, hierarchical learning frameworks that cater differently to the features from different subdomains, not only for a better prediction but also for enabling the identification of features predicting the outcome of interest.
Collapse
Affiliation(s)
- Ishaan Batta
- Center for Translational Research in Neuroimaging and Data Science (TReNDS): Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, USA,Dept. of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, USA,Corresponding Author: Ishaan Batta,
| | - Anees Abrol
- Center for Translational Research in Neuroimaging and Data Science (TReNDS): Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, USA
| | - Zening Fu
- Center for Translational Research in Neuroimaging and Data Science (TReNDS): Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, USA
| | - Adrian Preda
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, California, USA
| | - Theo G.M. van Erp
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, California, USA
| | - Vince D. Calhoun
- Center for Translational Research in Neuroimaging and Data Science (TReNDS): Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, USA,Dept. of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, USA
| |
Collapse
|
9
|
The Interplay between Vitamin D, Exposure of Anticholinergic Antipsychotics and Cognition in Schizophrenia. Biomedicines 2022; 10:biomedicines10051096. [PMID: 35625833 PMCID: PMC9138360 DOI: 10.3390/biomedicines10051096] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/01/2022] [Accepted: 05/04/2022] [Indexed: 01/21/2023] Open
Abstract
Vitamin D deficiency is a frequent finding in schizophrenia and may contribute to neurocognitive dysfunction, a core element of the disease. However, there is limited knowledge about the neuropsychological profile of vitamin D deficiency-related cognitive deficits and their underlying molecular mechanisms. As an inductor of cytochrome P450 3A4, a lack of vitamin D might aggravate cognitive deficits by increased exposure to anticholinergic antipsychotics. This cross-sectional study aims to assess the relationship between 25-OH-vitamin D-serum concentrations, anticholinergic drug exposure and neurocognitive functioning (Brief Assessment of Cognition in Schizophrenia, BACS, and Trail Making Test, TMT) in 141 patients with schizophrenia. The anticholinergic drug exposure was estimated by adjusting the concentration of each drug for its individual muscarinic receptor affinity. Using regression analysis, we observed a positive relationship between vitamin D levels and processing speed (TMT-A and BACS Symbol Coding) as well as executive functioning (TMT-B and BACS Tower of London). Moreover, a negative impact of vitamin D on anticholinergic drug exposure emerged, but the latter did not significantly affect cognition. When other cognitive items were included as regressors, the impact of vitamin D remained only significant for the TMT-A. Among the different cognitive impairments in schizophrenia, vitamin D deficiency may most directly affect processing speed, which in turn may aggravate deficits in executive functioning. This finding is not explained by a cytochrome P450-mediated increased exposure to anticholinergic antipsychotics.
Collapse
|
10
|
Zhao L, Bo Q, Zhang Z, Chen Z, Wang Y, Zhang D, Li T, Yang N, Zhou Y, Wang C. Altered Dynamic Functional Connectivity in Early Psychosis Between the Salience Network and Visual Network. Neuroscience 2022; 491:166-175. [DOI: 10.1016/j.neuroscience.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 11/29/2022]
|
11
|
mGluR5 binding changes during a mismatch negativity task in a multimodal protocol with [ 11C]ABP688 PET/MR-EEG. Transl Psychiatry 2022; 12:6. [PMID: 35013095 PMCID: PMC8748790 DOI: 10.1038/s41398-021-01763-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 02/08/2023] Open
Abstract
Currently, the metabotropic glutamate receptor 5 (mGluR5) is the subject of several lines of research in the context of neurology and is of high interest as a target for positron-emission tomography (PET). Here, we assessed the feasibility of using [11C]ABP688, a specific antagonist radiotracer for an allosteric site on the mGluR5, to evaluate changes in glutamatergic neurotransmission through a mismatch-negativity (MMN) task as a part of a simultaneous and synchronized multimodal PET/MR-EEG study. We analyzed the effect of MMN by comparing the changes in nondisplaceable binding potential (BPND) prior to (baseline) and during the task in 17 healthy subjects by applying a bolus/infusion protocol. Anatomical and functional regions were analyzed. A small change in BPND was observed in anatomical regions (posterior cingulate cortex and thalamus) and in a functional network (precuneus) after the start of the task. The effect size was quantified using Kendall's W value and was 0.3. The motor cortex was used as a control region for the task and did not show any significant BPND changes. There was a significant ΔBPND between acquisition conditions. On average, the reductions in binding across the regions were - 8.6 ± 3.2% in anatomical and - 6.4 ± 0.5% in the functional network (p ≤ 0.001). Correlations between ΔBPND and EEG latency for both anatomical (p = 0.008) and functional (p = 0.022) regions were found. Exploratory analyses suggest that the MMN task played a role in the glutamatergic neurotransmission, and mGluR5 may be indirectly modulated by these changes.
Collapse
|
12
|
Abstract
Neural processing of sensory information is strongly influenced by context. For instance, cortical responses are reduced to predictable stimuli, while responses are increased to novel stimuli that deviate from contextual regularities. Such bidirectional modulation based on preceding sensory context is likely a critical component or manifestation of attention, learning, and behavior, yet how it arises in cortical circuits remains unclear. Using volumetric two-photon calcium imaging and local field potentials in primary visual cortex (V1) from awake mice presented with visual "oddball" paradigms, we identify both reductions and augmentations of stimulus-evoked responses depending, on whether the stimulus was redundant or deviant, respectively. Interestingly, deviance-augmented responses were limited to a specific subset of neurons mostly in supragranular layers. These deviance-detecting cells were spatially intermixed with other visually responsive neurons and were functionally correlated, forming a neuronal ensemble. Optogenetic suppression of prefrontal inputs to V1 reduced the contextual selectivity of deviance-detecting ensembles, demonstrating a causal role for top-down inputs. The presence of specialized context-selective ensembles in primary sensory cortex, modulated by higher cortical areas, provides a circuit substrate for the brain's construction and selection of prediction errors, computations which are key for survival and deficient in many psychiatric disorders.
Collapse
|
13
|
Koshiyama D, Thomas ML, Miyakoshi M, Joshi YB, Molina JL, Tanaka-Koshiyama K, Sprock J, Braff DL, Swerdlow NR, Light GA. Hierarchical Pathways from Sensory Processing to Cognitive, Clinical, and Functional Impairments in Schizophrenia. Schizophr Bull 2021; 47:373-385. [PMID: 32856089 PMCID: PMC7965084 DOI: 10.1093/schbul/sbaa116] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cognitive impairment is a hallmark of schizophrenia and a robust predictor of functional outcomes. Impairments are found in all phases of the illness and are only moderately attenuated by currently approved therapeutics. Neurophysiological indices of sensory discrimination (ie, mismatch negativity (MMN) and P3a amplitudes) and gamma-band auditory steady-state response (ASSR; power and phase locking) are translational biomarkers widely used in the development of novel therapeutics for neuropsychiatric disorders. It is unclear whether laboratory-based EEG measures add explanatory power to well-established models that use only cognitive, clinical, and functional outcome measures. Moreover, it is unclear if measures of sensory discrimination and gamma-band ASSR uniquely contribute to putative causal pathways linking sensory discrimination, neurocognition, negative symptoms, and functional outcomes in schizophrenia. To answer these questions, hierarchical associations among sensory processing, neurocognition, clinical symptoms, and functional outcomes were assessed via structural equation modeling in a large sample of schizophrenia patients (n = 695) and healthy comparison subjects (n = 503). The results showed that the neurophysiologic indices of sensory discrimination and gamma-band ASSR both significantly contribute to and yield unique hierarchical, "bottom-up" effects on neurocognition, symptoms, and functioning. Measures of sensory discrimination showed direct effects on neurocognition and negative symptoms, while gamma-band ASSR had a direct effect on neurocognition in patients. Continued investigation of the neural mechanisms underlying abnormal networks of MMN/P3a and gamma-band ASSR is needed to clarify the pathophysiology of schizophrenia and the development of novel therapeutic interventions.
Collapse
Affiliation(s)
- Daisuke Koshiyama
- Department of Psychiatry, University of California San Diego, La Jolla, CA
| | - Michael L Thomas
- Department of Psychiatry, University of California San Diego, La Jolla, CA
- Department of Psychology, Colorado State University, Fort Collins, CO
| | - Makoto Miyakoshi
- Swartz Center for Neural Computation, University of California San Diego, La Jolla, CA
| | - Yash B Joshi
- Department of Psychiatry, University of California San Diego, La Jolla, CA
- VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, CA
| | - Juan L Molina
- Department of Psychiatry, University of California San Diego, La Jolla, CA
| | | | - Joyce Sprock
- Department of Psychiatry, University of California San Diego, La Jolla, CA
| | - David L Braff
- Department of Psychiatry, University of California San Diego, La Jolla, CA
| | - Neal R Swerdlow
- Department of Psychiatry, University of California San Diego, La Jolla, CA
| | - Gregory A Light
- Department of Psychiatry, University of California San Diego, La Jolla, CA
- VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, CA
| |
Collapse
|
14
|
Ni G, Zheng Q, Liu Y, Zhao Y, Yue T, Han S, Liu H, Ming D. Objective electroencephalography-based assessment for auditory rehabilitation of pediatric cochlear implant users. Hear Res 2021; 404:108211. [PMID: 33684887 DOI: 10.1016/j.heares.2021.108211] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
The cochlear implant (CI) has an effective habilitation modality for hearing-impaired children by promoting sound perception, vocalization, and language ability. However, the major challenge that remained was the lack of assessment standards for pediatric CI users, especially prelingually deaf children, to evaluate hearing rehabilitation effectiveness. In the present study, we conducted an oddball paradigm with stimuli varying in pure-tone, syllable, and tonal sounds. After implantation, we utilized cortical auditory evoked potential (CAEP) and mismatch negativity (MMN) to obtain time-domain analysis; meanwhile, the source localization was investigated to obtain spatial accuracy of the plasticity in the auditory cortex. P1 started to emerge at the third month after implantation, but its peak level was not significant until the sixth month. The temporal lobe was activated between the third and sixth months after implantation. The MMN waveform was basically normal approximately after 12 months. These results suggest that the auditory system goes through a critical period of rapid development between three and six months and enters a maturation period after 12 months. This work indicates that CAEPs are more suitable for assessing the early auditory system reconstruction, while MMN performs better in evaluating the advanced auditory function. Furthermore, source localization has proven to be an efficient tool in exploring auditory cortex plasticity, especially for pediatric CI users.
Collapse
Affiliation(s)
- Guangjian Ni
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, 300072, China; Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072, China.
| | - Qi Zheng
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, 300072, China
| | - Yidi Liu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University National Center for Children's Health, 100045, China
| | - Yawen Zhao
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University National Center for Children's Health, 100045, China
| | - Tao Yue
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072, China
| | - Siyang Han
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072, China
| | - Haihong Liu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University National Center for Children's Health, 100045, China.
| | - Dong Ming
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, 300072, China; Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072, China.
| |
Collapse
|
15
|
Sehatpour P, Avissar M, Kantrowitz JT, Corcoran CM, De Baun HM, Patel GH, Girgis RR, Brucato G, Lopez-Calderon J, Silipo G, Dias E, Martinez A, Javitt DC. Deficits in Pre-attentive Processing of Spatial Location and Negative Symptoms in Subjects at Clinical High Risk for Schizophrenia. Front Psychiatry 2021; 11:629144. [PMID: 33603682 PMCID: PMC7884473 DOI: 10.3389/fpsyt.2020.629144] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/28/2020] [Indexed: 12/11/2022] Open
Abstract
Deficits in mismatch negativity (MMN) generation are among the best-established biomarkers for cognitive dysfunction in schizophrenia and predict conversion to schizophrenia (Sz) among individuals at symptomatic clinical high risk (CHR). Impairments in MMN index dysfunction at both subcortical and cortical components of the early auditory system. To date, the large majority of studies have been conducted using deviants that differ from preceding standards in either tonal frequency (pitch) or duration. By contrast, MMN to sound location deviation has been studied to only a limited degree in Sz and has not previously been examined in CHR populations. Here, we evaluated location MMN across Sz and CHR using an optimized, multi-deviant pattern that included a location-deviant, as defined using interaural time delay (ITD) stimuli along with pitch, duration, frequency modulation (FM) and intensity deviants in a sample of 42 Sz, 33 CHR and 28 healthy control (HC) subjects. In addition, we obtained resting state functional connectivity (rsfMRI) on CHR subjects. Sz showed impaired MMN performance across all deviant types, along with strong correlation between MMN deficits and impaired neurocognitive function. In this sample of largely non-converting CHR subjects, no deficits were observed in either pitch or duration MMN. By contrast, CHR subjects showed significant impairments in location MMN generation particularly over right hemisphere and significant correlation between impaired location MMN and negative symptoms including deterioration of role function. In addition, significant correlations were observed between location MMN and rsfMRI involving brainstem circuits. In general, location detection using ITD stimuli depends upon precise processing within midbrain regions and provides a rapid and robust reorientation of attention. Present findings reinforce the utility of MMN as a pre-attentive index of auditory cognitive dysfunction in Sz and suggest that location MMN may index brain circuits distinct from those indexed by other deviant types.
Collapse
Affiliation(s)
- Pejman Sehatpour
- College of Physicians and Surgeons, New York State Psychiatric Institute, Columbia University, New York, NY, United States
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - Michael Avissar
- College of Physicians and Surgeons, New York State Psychiatric Institute, Columbia University, New York, NY, United States
| | - Joshua T. Kantrowitz
- College of Physicians and Surgeons, New York State Psychiatric Institute, Columbia University, New York, NY, United States
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | | | - Heloise M. De Baun
- College of Physicians and Surgeons, New York State Psychiatric Institute, Columbia University, New York, NY, United States
| | - Gaurav H. Patel
- College of Physicians and Surgeons, New York State Psychiatric Institute, Columbia University, New York, NY, United States
| | - Ragy R. Girgis
- College of Physicians and Surgeons, New York State Psychiatric Institute, Columbia University, New York, NY, United States
| | - Gary Brucato
- College of Physicians and Surgeons, New York State Psychiatric Institute, Columbia University, New York, NY, United States
| | - Javier Lopez-Calderon
- Centro de Investigaciones Médicas, Escuela de Medicina, Universidad de Talca, Talca, Chile
| | - Gail Silipo
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - Elisa Dias
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - Antigona Martinez
- College of Physicians and Surgeons, New York State Psychiatric Institute, Columbia University, New York, NY, United States
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - Daniel C. Javitt
- College of Physicians and Surgeons, New York State Psychiatric Institute, Columbia University, New York, NY, United States
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| |
Collapse
|
16
|
Sources of the frontocentral mismatch negativity and P3a responses in schizophrenia patients and healthy comparison subjects. Int J Psychophysiol 2021; 161:76-85. [PMID: 33453303 DOI: 10.1016/j.ijpsycho.2021.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/06/2021] [Accepted: 01/06/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Mismatch negativity (MMN) and P3a are event-related potential measures of early auditory information processing that are increasingly used as translational biomarkers in the development of treatments for neuropsychiatric disorders. These responses are reduced in schizophrenia patients over the frontocentral scalp electrodes and are associated with important domains of cognitive and psychosocial functioning. While MMN and P3a responses are generated by a dynamic network of cortical sources distributed across the temporal and frontal brain regions, it is not clear how these sources independently contribute to MMN and P3a at the primary frontocentral scalp electrode or to abnormalities observed in schizophrenia. This study aimed to determine the independent source contributions and characterize the magnitude of impairment in source-level MMN and P3a responses in schizophrenia patients. METHODS A novel method was applied to back-project the contributions of 11 independent cortical source components to Fz, the primary scalp sensor that is used in clinical studies, in n = 589 schizophrenia patients and n = 449 healthy comparison subjects. RESULTS The groups showed comparable individual source contributions underlying both MMN and P3a responses at Fz. Source-level responses revealed an increasing magnitude of impairment in schizophrenia patients from the temporal to more frontal sources. CONCLUSIONS Schizophrenia patients have a normal architecture of source contributions that are accompanied by widespread abnormalities in source resolved mismatch and P3a responses, with more prominent deficits detected from the frontal sources. Quantification of source contributions and source-level responses accelerates clarification of the neural networks underlying MMN reduction at Fz in schizophrenia patients.
Collapse
|
17
|
Garcés MS, Alústiza I, Albajes-Eizagirre A, Goena J, Molero P, Radua J, Ortuño F. An fMRI Study Using a Combined Task of Interval Discrimination and Oddball Could Reveal Common Brain Circuits of Cognitive Change. Front Psychiatry 2021; 12:786113. [PMID: 34987432 PMCID: PMC8721204 DOI: 10.3389/fpsyt.2021.786113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/02/2021] [Indexed: 12/04/2022] Open
Abstract
Recent functional neuroimaging studies suggest that the brain networks responsible for time processing are involved during other cognitive processes, leading to a hypothesis that time-related processing is needed to perform a range of tasks across various cognitive functions. To examine this hypothesis, we analyze whether, in healthy subjects, the brain structures activated or deactivated during performance of timing and oddball-detection type tasks coincide. To this end, we conducted two independent signed differential mapping (SDM) meta-analyses of functional magnetic resonance imaging (fMRI) studies assessing the cerebral generators of the responses elicited by tasks based on timing and oddball-detection paradigms. Finally, we undertook a multimodal meta-analysis to detect brain regions common to the findings of the two previous meta-analyses. We found that healthy subjects showed significant activation in cortical areas related to timing and salience networks. The patterns of activation and deactivation corresponding to each task type partially coincided. We hypothesize that there exists a time and change-detection network that serves as a common underlying resource used in a broad range of cognitive processes.
Collapse
Affiliation(s)
- María Sol Garcés
- Department of Psychiatry and Clinical Psychology, Clínica Universidad de Navarra, Pamplona, Spain.,Colegio de Ciencias Sociales y Humanidades, Universidad San Francisco de Quito USFQ, Quito, Ecuador.,Instituto de Neurociencias, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Irene Alústiza
- Department of Psychiatry and Clinical Psychology, Clínica Universidad de Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain
| | - Anton Albajes-Eizagirre
- Imaging of Mood and Anxiety Related Disorders (IMARD) Group, d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBERSAM ES, Barcelona, Spain
| | - Javier Goena
- Instituto de Neurociencias, Universidad San Francisco de Quito USFQ, Quito, Ecuador.,Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain
| | - Patricio Molero
- Department of Psychiatry and Clinical Psychology, Clínica Universidad de Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain
| | - Joaquim Radua
- Imaging of Mood and Anxiety Related Disorders (IMARD) Group, d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBERSAM ES, Barcelona, Spain.,Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Department of Clinical Neuroscience, Centre for Psychiatric Research and Education, Karolinska Institutet SE, Solna, Sweden
| | - Felipe Ortuño
- Department of Psychiatry and Clinical Psychology, Clínica Universidad de Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain
| |
Collapse
|
18
|
Charpentier J, Latinus M, Andersson F, Saby A, Cottier JP, Bonnet-Brilhault F, Houy-Durand E, Gomot M. Brain correlates of emotional prosodic change detection in autism spectrum disorder. NEUROIMAGE-CLINICAL 2020; 28:102512. [PMID: 33395999 PMCID: PMC8481911 DOI: 10.1016/j.nicl.2020.102512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 11/30/2022]
Abstract
We used an oddball paradigm with vocal stimuli to record hemodynamic responses. Brain processing of vocal change relies on STG, insula and lingual area. Activity of the change processing network can be modulated by saliency and emotion. Brain processing of vocal deviancy/novelty appears typical in adults with autism.
Autism Spectrum Disorder (ASD) is currently diagnosed by the joint presence of social impairments and restrictive, repetitive patterns of behaviors. While the co-occurrence of these two categories of symptoms is at the core of the pathology, most studies investigated only one dimension to understand underlying physiopathology. In this study, we analyzed brain hemodynamic responses in neurotypical adults (CTRL) and adults with autism spectrum disorder during an oddball paradigm allowing to explore brain responses to vocal changes with different levels of saliency (deviancy or novelty) and different emotional content (neutral, angry). Change detection relies on activation of the supratemporal gyrus and insula and on deactivation of the lingual area. The activity of these brain areas involved in the processing of deviancy with vocal stimuli was modulated by saliency and emotion. No group difference between CTRL and ASD was reported for vocal stimuli processing or for deviancy/novelty processing, regardless of emotional content. Findings highlight that brain processing of voices and of neutral/ emotional vocal changes is typical in adults with ASD. Yet, at the behavioral level, persons with ASD still experience difficulties with those cues. This might indicate impairments at latter processing stages or simply show that alterations present in childhood might have repercussions at adult age.
Collapse
Affiliation(s)
| | | | | | - Agathe Saby
- Centre universitaire de pédopsychiatrie, CHRU de Tours, Tours, France
| | | | | | - Emmanuelle Houy-Durand
- UMR 1253 iBrain, Inserm, Université de Tours, Tours, France; Centre universitaire de pédopsychiatrie, CHRU de Tours, Tours, France
| | - Marie Gomot
- UMR 1253 iBrain, Inserm, Université de Tours, Tours, France.
| |
Collapse
|
19
|
Auditory mismatch processing: Role of paradigm and stimulus characteristics as detected by fMRI. Biol Psychol 2020; 154:107887. [DOI: 10.1016/j.biopsycho.2020.107887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 01/14/2020] [Accepted: 04/06/2020] [Indexed: 11/23/2022]
|
20
|
Abnormal Effective Connectivity Underlying Auditory Mismatch Negativity Impairments in Schizophrenia. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 5:1028-1039. [PMID: 32830097 DOI: 10.1016/j.bpsc.2020.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Auditory mismatch negativity (MMN) is a translatable event-related potential biomarker, and its reduction in schizophrenia is associated with the severity of clinical symptoms. While MMN recorded at the scalp is generated by a distributed network of temporofrontal neural sources, the primary contributing sources and the dynamic interactions among sources underlying MMN impairments in schizophrenia have not been previously characterized. METHODS A novel data-driven analytic framework was applied to large cohorts of healthy comparison subjects (n = 449) and patients with schizophrenia (n = 589) to identify the independent contributing sources of MMN, characterize the patterns of effective connectivity underlying reduced MMN in patients, and explore the clinical significance of these abnormal source dynamics in schizophrenia. RESULTS A network of 11 independent contributing sources underlying MMN distributed across temporofrontal cortices was identified. Orderly shifts in peak source activity were detected in a steplike manner, starting at temporal structures and progressing across frontal brain regions. MMN reduction in patients was predominantly associated with reduced contributions from 3 frontal midline sources: orbitofrontal, anterior cingulate, and middle cingulate cortices. Patients showed increased connectivity from temporal to prefrontal regions in conjunction with decreased cross-hemispheric connectivity to prefrontal regions. The decreased connectivity strength of precentral to prefrontal regions in patients with schizophrenia was associated with greater severity of negative symptoms. CONCLUSIONS Alterations in the dynamic interactions among temporofrontal sources underlie MMN abnormalities in schizophrenia. These results advance our understanding of the neural substrates and temporal dynamics of normal and impaired information processing with novel applications for translatable biomarkers of neuropsychiatric disorders.
Collapse
|
21
|
Gaebler AJ, Zweerings J, Koten JW, König AA, Turetsky BI, Zvyagintsev M, Mathiak K. Impaired Subcortical Detection of Auditory Changes in Schizophrenia but Not in Major Depression. Schizophr Bull 2020; 46:193-201. [PMID: 31220318 PMCID: PMC6942154 DOI: 10.1093/schbul/sbz027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The mismatch negativity is a cortical response to auditory changes and its reduction is a consistent finding in schizophrenia. Recent evidence revealed that the human brain detects auditory changes already at subcortical stages of the auditory pathway. This finding, however, raises the question where in the auditory hierarchy the schizophrenic deficit first evolves and whether the well-known cortical deficit may be a consequence of dysfunction at lower hierarchical levels. Finally, it should be resolved whether mismatch profiles differ between schizophrenia and affective disorders which exhibit auditory processing deficits as well. We used functional magnetic resonance imaging to assess auditory mismatch processing in 29 patients with schizophrenia, 27 patients with major depression, and 31 healthy control subjects. Analysis included whole-brain activation, region of interest, path and connectivity analysis. In schizophrenia, mismatch deficits emerged at all stages of the auditory pathway including the inferior colliculus, thalamus, auditory, and prefrontal cortex. In depression, deficits were observed in the prefrontal cortex only. Path analysis revealed that activation deficits propagated from subcortical to cortical nodes in a feed-forward mechanism. Finally, both patient groups exhibited reduced connectivity along this processing stream. Auditory mismatch impairments in schizophrenia already manifest at the subcortical level. Moreover, subcortical deficits contribute to the well-known cortical deficits and show specificity for schizophrenia. In contrast, depression is associated with cortical dysfunction only. Hence, schizophrenia and major depression exhibit different neural profiles of sensory processing deficits. Our findings add to a converging body of evidence for brainstem and thalamic dysfunction as a hallmark of schizophrenia.
Collapse
Affiliation(s)
- Arnim Johannes Gaebler
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Aachen, Germany
- JARA (Translational Brain Medicine), Aachen, Germany
- To whom correspondence should be addressed; Pauwels str. 30, 52074 Aachen, Germany; tel: +49-241-8088650, fax: +49-241-8082401: e-mail:
| | - Jana Zweerings
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Aachen, Germany
- JARA (Translational Brain Medicine), Aachen, Germany
| | | | - Andrea Anna König
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Aachen, Germany
- JARA (Translational Brain Medicine), Aachen, Germany
| | - Bruce I Turetsky
- Neuropsychiatry Section, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Mikhail Zvyagintsev
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Aachen, Germany
- JARA (Translational Brain Medicine), Aachen, Germany
- Brain Imaging Facility, Interdisciplinary Centre for Clinical Studies (IZKF), Medical Faculty, RWTH Aachen, Aachen, Germany
| | - Klaus Mathiak
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Aachen, Germany
- JARA (Translational Brain Medicine), Aachen, Germany
| |
Collapse
|
22
|
Persson J, Szalisznyó K, Antoni G, Wall A, Fällmar D, Zora H, Bodén R. Phosphodiesterase 10A levels are related to striatal function in schizophrenia: a combined positron emission tomography and functional magnetic resonance imaging study. Eur Arch Psychiatry Clin Neurosci 2020; 270:451-459. [PMID: 31119377 PMCID: PMC7210243 DOI: 10.1007/s00406-019-01021-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/15/2019] [Indexed: 12/11/2022]
Abstract
Pharmacological inhibition of phosphodiesterase 10A (PDE10A) is being investigated as a treatment option in schizophrenia. PDE10A acts postsynaptically on striatal dopamine signaling by regulating neuronal excitability through its inhibition of cyclic adenosine monophosphate (cAMP), and we recently found it to be reduced in schizophrenia compared to controls. Here, this finding of reduced PDE10A in schizophrenia was followed up in the same sample to investigate the effect of reduced striatal PDE10A on the neural and behavioral function of striatal and downstream basal ganglia regions. A positron emission tomography (PET) scan with the PDE10A ligand [11C]Lu AE92686 was performed, followed by a 6 min resting-state magnetic resonance imaging (MRI) scan in ten patients with schizophrenia. To assess the relationship between striatal function and neurophysiological and behavioral functioning, salience processing was assessed using a mismatch negativity paradigm, an auditory event-related electroencephalographic measure, episodic memory was assessed using the Rey auditory verbal learning test (RAVLT) and executive functioning using trail-making test B. Reduced striatal PDE10A was associated with increased amplitude of low-frequency fluctuations (ALFF) within the putamen and substantia nigra, respectively. Higher ALFF in the substantia nigra, in turn, was associated with lower episodic memory performance. The findings are in line with a role for PDE10A in striatal functioning, and suggest that reduced striatal PDE10A may contribute to cognitive symptoms in schizophrenia.
Collapse
Affiliation(s)
- Jonas Persson
- Department of Neuroscience, Psychiatry, Uppsala University, Uppsala, Sweden.
| | - K. Szalisznyó
- Department of Neuroscience, Psychiatry, Uppsala University, Uppsala, Sweden
| | - G. Antoni
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden ,PET-Centre, Uppsala University Hospital, Uppsala, Sweden
| | - A. Wall
- PET-Centre, Uppsala University Hospital, Uppsala, Sweden ,Department of Surgical Sciences, Nuclear medicine and PET, Uppsala University, Uppsala, Sweden
| | - D. Fällmar
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
| | - H. Zora
- Department of Linguistics, Stockholm University, Stockholm, Sweden
| | - R. Bodén
- Department of Neuroscience, Psychiatry, Uppsala University, Uppsala, Sweden
| |
Collapse
|
23
|
Tada M, Kirihara K, Mizutani S, Uka T, Kunii N, Koshiyama D, Fujioka M, Usui K, Nagai T, Araki T, Kasai K. Mismatch negativity (MMN) as a tool for translational investigations into early psychosis: A review. Int J Psychophysiol 2019; 145:5-14. [DOI: 10.1016/j.ijpsycho.2019.02.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/09/2019] [Accepted: 02/25/2019] [Indexed: 12/14/2022]
|
24
|
Gross ME, Araujo DB, Zedelius CM, Schooler JW. Is perception the missing link between creativity, curiosity and schizotypy? Evidence from spontaneous eye-movements and responses to auditory oddball stimuli. Neuroimage 2019; 202:116125. [DOI: 10.1016/j.neuroimage.2019.116125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/01/2019] [Accepted: 08/23/2019] [Indexed: 11/25/2022] Open
|
25
|
Sellami L, Bocchetta M, Masellis M, Cash DM, Dick KM, van Swieten J, Borroni B, Galimberti D, Tartaglia MC, Rowe JB, Graff C, Tagliavini F, Frisoni G, Finger E, de Mendonça A, Sorbi S, Warren JD, Rohrer JD, Laforce R. Distinct Neuroanatomical Correlates of Neuropsychiatric Symptoms in the Three Main Forms of Genetic Frontotemporal Dementia in the GENFI Cohort. J Alzheimers Dis 2019; 65:147-163. [PMID: 30010122 PMCID: PMC6087430 DOI: 10.3233/jad-180053] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background: The overlap between frontotemporal dementia (FTD) and primary psychiatric disorders has been brought to light by reports of prominent neuropsychiatric symptoms (NPS) in FTD-related genetic mutations, particularly among C9orf72 and GRN carriers. It has been recently demonstrated that early neuroanatomical changes in genetic FTD may be different across the major disease-causing mutations. Objective: We aimed to identify whether NPS could be driven by distinct structural correlates. Methods: One hundred and sixty-seven mutation carriers (75 GRN, 60 C9orf72, and 32 MAPT) were included from the Genetic FTD Initiative (GENFI) study, a large international cohort of genetic FTD. Neuropsychiatric symptoms including delusions, hallucinations (visual, auditory, and tactile), depression, and anxiety were investigated using a structured interview. Voxel-based morphometry was performed to identify neuroanatomical correlates of NPS. Results: Psychotic symptoms correlated mainly with grey matter (GM) atrophy in the anterior insula, left thalamus, cerebellum, and cortical regions including frontal, parietal, and occipital lobes in GRN mutations carriers. GM atrophy in posterior structures of the default-mode network was associated with anxiety in the GRN group. Delusions in C9orf72 expansion carriers were mainly associated with left frontal cortical atrophy. Cerebellar atrophy was found to be correlated only with anxiety in C9orf72 carriers. NPS in the MAPT group were mainly associated with volume loss in the temporal lobe. Conclusion: Neuroanatomical correlates of NPS appear to be distinct across the main forms of genetic FTD. Overall, our findings support overlapping brain structural changes between FTD and primary psychiatric disorders.
Collapse
Affiliation(s)
- Leila Sellami
- Clinique Interdisciplinaire de Mémoire(CIME), Université Laval, QC, Canada
| | - Martina Bocchetta
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, UK
| | - Mario Masellis
- Cognitive Neurology Research Unit, Sunnybrook Health Sciences Centre; Hurvitz Brain Sciences ResearchProgram, Sunnybrook Research Institute; Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - David M Cash
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, UK.,Centre for Medical Image Computing, UCL, UK
| | - Katrina M Dick
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, UK
| | | | | | - Daniela Galimberti
- Department of Pathophysiologyand Transplantation, "Dino Ferrari" Center, University of Milan, Fondazione Cá Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Maria Carmela Tartaglia
- TanzCentre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | | | - Caroline Graff
- Karolinska Institutet, Stockholm, Sweden; Department NVS, Center for Alzheimer Research, Division of Neurogeriatrics, Sweden.,Department of Geriatric Medicine, Karolinska University Hospital, Stockholm, Sweden
| | | | | | - Elizabeth Finger
- Clinique Interdisciplinaire de Mémoire (CIME), Université Laval, QC, Canada
| | | | - Sandro Sorbi
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy.,IRCCS Don Carlo Gnocchi, Florence, Italy
| | - Jason D Warren
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, UK
| | - Jonathan D Rohrer
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, UK
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire(CIME), Université Laval, QC, Canada
| | | |
Collapse
|
26
|
Zweerings J, Zvyagintsev M, Turetsky BI, Klasen M, König AA, Roecher E, Gaebler AJ, Mathiak K. Fronto-parietal and temporal brain dysfunction in depression: A fMRI investigation of auditory mismatch processing. Hum Brain Mapp 2019; 40:3657-3668. [PMID: 31081231 DOI: 10.1002/hbm.24623] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 12/22/2022] Open
Abstract
Mismatch responses reflect neural mechanisms of early cognitive processing in the auditory domain. Disturbances of these mechanisms on multiple levels of neural processing may contribute to clinical symptoms in major depression (MD). A functional magnetic resonance imaging (fMRI) study was conducted to identify neurobiological foundations of altered mismatch processing in MD. Twenty-five patients with major depression and 25 matched healthy individuals completed an auditory mismatch paradigm optimized for fMRI. Brain activity during mismatch processing was compared between groups. Moreover, seed-based connectivity analyses investigated depression-specific brain networks. In patients, mismatch processing was associated with reduced activation in the right auditory cortex as well as in a fronto-parietal attention network. Moreover, functional coupling between the right auditory cortex and frontal areas was reduced in patients. Seed-to voxel analysis on the whole-brain level revealed reduced connectivity between the auditory cortex and the thalamus as well as posterior cingulate. The present study indicates deficits in sensory processing on the level of the auditory cortex in depression. Hyposensitivity in a fronto-parietal network presumably reflects altered attention mechanisms in depression. The observed impairments may contribute to psychopathology by reducing the ability of the affected individuals to orient attention toward important environmental cues.
Collapse
Affiliation(s)
- Jana Zweerings
- Department of Psychiatry, Psychotherapy and Psychosomatics, School of Medicine, RWTH Aachen University, Aachen, Germany.,Institute for Neuroscience and Medicine (INM-10): JARA Institute Brain Structure Function, Research Center Jülich, Jülich, Germany
| | - Mikhail Zvyagintsev
- Department of Psychiatry, Psychotherapy and Psychosomatics, School of Medicine, RWTH Aachen University, Aachen, Germany.,Institute for Neuroscience and Medicine (INM-10): JARA Institute Brain Structure Function, Research Center Jülich, Jülich, Germany.,Brain Imaging Facility, Interdisciplinary Centre for Clinical Studies (IZKF), School of Medicine, RWTH Aachen University, Aachen, Germany
| | - Bruce I Turetsky
- Neuropsychiatry Section, Department of Psychiatry, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Martin Klasen
- Department of Psychiatry, Psychotherapy and Psychosomatics, School of Medicine, RWTH Aachen University, Aachen, Germany.,Institute for Neuroscience and Medicine (INM-10): JARA Institute Brain Structure Function, Research Center Jülich, Jülich, Germany
| | - Andrea A König
- Department of Psychiatry, Psychotherapy and Psychosomatics, School of Medicine, RWTH Aachen University, Aachen, Germany
| | - Erik Roecher
- Department of Psychiatry, Psychotherapy and Psychosomatics, School of Medicine, RWTH Aachen University, Aachen, Germany.,Institute for Neuroscience and Medicine (INM-10): JARA Institute Brain Structure Function, Research Center Jülich, Jülich, Germany
| | - Arnim J Gaebler
- Department of Psychiatry, Psychotherapy and Psychosomatics, School of Medicine, RWTH Aachen University, Aachen, Germany.,Institute for Neuroscience and Medicine (INM-10): JARA Institute Brain Structure Function, Research Center Jülich, Jülich, Germany
| | - Klaus Mathiak
- Department of Psychiatry, Psychotherapy and Psychosomatics, School of Medicine, RWTH Aachen University, Aachen, Germany.,Institute for Neuroscience and Medicine (INM-10): JARA Institute Brain Structure Function, Research Center Jülich, Jülich, Germany
| |
Collapse
|
27
|
Abnormal development of early auditory processing in 22q11.2 Deletion Syndrome. Transl Psychiatry 2019; 9:138. [PMID: 30992427 PMCID: PMC6467880 DOI: 10.1038/s41398-019-0473-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/25/2019] [Accepted: 03/23/2019] [Indexed: 12/12/2022] Open
Abstract
The 22q11.2 Deletion Syndrome (22q11.2 DS) is one of the highest genetic risk factors for the development of schizophrenia spectrum disorders. In schizophrenia, reduced amplitude of the frequency mismatch negativity (fMMN) has been proposed as a promising neurophysiological marker for progressive brain pathology. In this longitudinal study in 22q11.2 DS, we investigate the progression of fMMN between childhood and adolescence, a vulnerable period for brain maturation. We measured evoked potentials to auditory oddball stimuli in the same sample of 16 patients with 22q11.2 DS and 14 age-matched controls in childhood and adolescence. In addition, we cross-sectionally compared an increased sample of 51 participants with 22q11.2 DS and 50 controls divided into two groups (8-14 and 14-20 years). The reported results are obtained using the fMMN difference waveforms. In the longitudinal design, the 22q11.2 deletion carriers exhibit a significant reduction in amplitude and a change in topographic patterns of the mismatch negativity response from childhood to adolescence. The same effect, reduced mismatch amplitude in adolescence, while preserved during childhood, is observed in the cross-sectional study. These results point towards functional changes within the brain network responsible for the fMMN. In addition, the adolescents with 22q11.2 DS displayed a significant increase in amplitude over central electrodes during the auditory N1 component. No such differences, reduced mismatch response nor increased N1, were observed in the typically developing group. These findings suggest different developmental trajectories of early auditory sensory processing in 22q11.2 DS and functional changes that emerge during the critical period of increased risk for schizophrenia spectrum disorders.
Collapse
|
28
|
Randau M, Oranje B, Miyakoshi M, Makeig S, Fagerlund B, Glenthøj B, Bak N. Attenuated mismatch negativity in patients with first-episode antipsychotic-naive schizophrenia using a source-resolved method. Neuroimage Clin 2019; 22:101760. [PMID: 30927608 PMCID: PMC6444292 DOI: 10.1016/j.nicl.2019.101760] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/06/2019] [Accepted: 03/10/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Mismatch negativity (MMN) is a measure of pre-attentive auditory information processing related to change detection. Traditional scalp-level EEG methods consistently find attenuated MMN in patients with chronic but not first-episode schizophrenia. In the current paper, we use a source-resolved method to assess MMN and hypothesize that more subtle changes can be identified with this analysis method. METHOD Fifty-six first-episode antipsychotic-naïve schizophrenia (FEANS) patients (31 males, 25 females, mean age 24.6) and 64 matched controls (37 males, 27 females, mean age 24.8) were assessed for duration-, frequency- and combined-type MMN and P3a as well as 4 clinical, 3 cognitive and 3 psychopathological measures. To evaluate and correlate MMN at source-level, independent component analysis (ICA) was applied to the continuous EEG data to derive equivalent current dipoles which were clustered into 19 clusters based on cortical location. RESULTS No scalp channel group MMN or P3a amplitude differences were found. Of the localized clusters, several were in or near brain areas previously suggested to be involved in the MMN response, including frontal and anterior cingulate cortices and superior temporal and inferior frontal gyri. For duration deviants, MMN was attenuated at the right superior temporal gyrus in patients compared to healthy controls (p = 0.01), as was P3a at the superior frontal cortex (p = 0.01). No individual patient correlations with clinical, cognitive, or psychopathological measures survived correction for multiple comparisons. CONCLUSION Attenuated source-localized MMN and P3a peak contributions can be identified in FEANS patients using a method based on independent component analysis (ICA). This indicates that deficits in pre-attentive auditory information processing are present at this early stage of schizophrenia and are not the result of disease chronicity or medication. This is to our knowledge the first study on FEANS patients using this more detailed method.
Collapse
Affiliation(s)
- M Randau
- Centre for Neuropsychiatric Schizophrenia Research and Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Denmark
| | - B Oranje
- Centre for Neuropsychiatric Schizophrenia Research and Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Denmark; Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands; Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - M Miyakoshi
- Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, CA, USA
| | - S Makeig
- Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, CA, USA
| | - B Fagerlund
- Centre for Neuropsychiatric Schizophrenia Research and Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Denmark; Department of Psychology, University of Copenhagen, Denmark
| | - B Glenthøj
- Centre for Neuropsychiatric Schizophrenia Research and Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Denmark; Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - N Bak
- Centre for Neuropsychiatric Schizophrenia Research and Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Denmark
| |
Collapse
|
29
|
Do theta oscillations explain the somatosensory change detection mechanism? Biol Psychol 2019; 143:103-112. [PMID: 30771407 DOI: 10.1016/j.biopsycho.2019.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 12/13/2018] [Accepted: 02/03/2019] [Indexed: 11/20/2022]
Abstract
Recent research has indicated that the mismatch negativity (MMN) is elicited in response to a discernible small change of a somatosensory stimulus applied on the hand. However, the neural mechanism for detecting small change of somatosensory stimulus remains unknown. In the present study, we developed a novel pressure stimulation device using air jet applied on the index finger pad, and determined the just noticeable differences (JNDs) of pressure discrimination for each subject. Using the deviant-standard-reversed oddball paradigm, we analyzed the average dynamic changes in MMN amplitude and changes of evoked spectral power. We found a clear MMN component at the frontal and central regions at 100-300 msec after deviant stimulus presentation. Statistical tests showed that theta band activity played pivotal roles in the generation of the MMN elicited by a change in somatosensory pressure stimulation. Our results indicate that the somatosensory discriminatory process reflected on MMN is accompanied by phase-locked oscillation at the theta frequency.
Collapse
|
30
|
Said Yekta-Michael S, Schüppen A, Gaebler AJ, Ellrich J, Koten JW. Expertise Modulates Students' Perception of Pain From a Self-Perspective: Quasi-Experimental Study. J Med Internet Res 2019; 21:e10885. [PMID: 30674449 PMCID: PMC6364199 DOI: 10.2196/10885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 11/08/2018] [Accepted: 12/12/2018] [Indexed: 11/18/2022] Open
Abstract
Background Perception of stimuli presented in a virtual dentistry environment affects regions of the brain that are related to pain perception. Objective We investigated whether neural correlates of virtual pain perception are affected by education in dentistry. Methods In this functional magnetic resonance imaging study, a sample of 20 dental students and 20 age-matched controls viewed and listened to video clips presenting a dental treatment from the first‐person perspective. An anxiety questionnaire was used to assess the level of dental anxiety. Neural correlates of pain perception were investigated through classic general linear model analysis and in-house classification methods. Results Dental students and naïve controls exhibited similar anxiety levels for invasive stimuli. Invasive dentistry scenes evoked a less affective component of pain in dental students compared with naïve controls (P<.001). Reduced affective pain perception went along with suppressed brain activity in pain matrix regions including the insula, anterior cingulate cortex, and basal ganglia. Furthermore, a substantial reduction of brain activity was observed in motor-related regions, particularly the supplementary motor area, premotor cortex, and basal ganglia. Within this context, a classifier analysis based on neural activity in the nucleus lentiformis could identify dental students and controls on the individual subject level in 85% of the cases (34 out of 40 participants, sensitivity=90%, specificity=80%). Conclusions Virtual dental treatment activates pain-related brain regions in controls. By contrast, dental students suppress affective and motor-related aspects of pain. We speculate that dental students learn to control motoric aspects of pain perception during their education because it is a prerequisite for the professional manual treatment of patients. We discuss that a specific set of learning mechanisms might affect perceived self-efficacy of dental students, which in turn might reduce their affective component of pain perception.
Collapse
Affiliation(s)
- Sareh Said Yekta-Michael
- Department of Conservative Dentistry, Periodontology and Preventive Dentistry, RWTH Aachen University, Aachen, Germany
| | - André Schüppen
- Interdisciplinary Center for Clinical Research, RWTH Aachen University, Aachen, Germany
| | - Arnim Johannes Gaebler
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Aachen, Germany
| | - Jens Ellrich
- Medical Faculty, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen-Nuremberg, Germany
| | | |
Collapse
|
31
|
Alústiza I, Garcés MS, Solanes A, Goena J, Ortuño M, Molero P, Radua J, Ortuño F. Aberrant timing and oddball detection in Schizophrenia: findings from a signed differential mapping meta-analysis. Heliyon 2018; 4:e01004. [PMID: 30582035 PMCID: PMC6287083 DOI: 10.1016/j.heliyon.2018.e01004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/29/2018] [Accepted: 11/29/2018] [Indexed: 11/17/2022] Open
Abstract
Schizophrenia (SZ) is associated with deficits in both temporal and salience processing. The underlying neurological dysfunctions in both processes, which are interrelated and share neuroanatomical bases, remain poorly understood. The principal objective of this study was to elucidate whether there are any brain regions that show abnormal response during timing and oddball tasks in patients with SZ. To this end, we conducted a signed differential mapping (SDM) meta-analysis of functional magnetic resonance imaging (fMRI) studies assessing abnormal responses elicited by tasks based on the oddball paradigm in patients with SZ. We conducted a similar SDM meta-analysis of neuroimaging studies of timing tasks in SZ. Finally, we undertook a multimodal meta-analysis to detect the common findings of the two previous meta-analyses. We found that SZ patients showed hypoactivation in cortical and subcortical areas related to timing. The dysfunction observed during timing tasks partially coincided with deficiencies in change-detection functions (particularly in the case of preattentional processing in the mismatch negativity response). We hypothesize that a dysfunctional timing/change detection network underlies the cognitive impairment observed in SZ.
Collapse
Affiliation(s)
- Irene Alústiza
- Department of Psychiatry and Clinical Psychology, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Navarra, Spain
- Corresponding author.
| | - María Sol Garcés
- Department of Psychiatry and Clinical Psychology, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Aleix Solanes
- Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
- FIDMAG Germanes Hospitalaries, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Saint Boi de Llobregat, Barcelona, Spain
| | - Javier Goena
- Department of Psychiatry and Clinical Psychology, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Marta Ortuño
- Department of Psychiatry and Clinical Psychology, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Patricio Molero
- Department of Psychiatry and Clinical Psychology, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Navarra, Spain
| | - Joaquim Radua
- Early Psychosis: Interventions & Clinical-detection (EPIC) Laboratory, King's College London, Institute of Psychiatry Psychology and Neuroscience, London, United Kingdom
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
- Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
- FIDMAG Germanes Hospitalaries, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Saint Boi de Llobregat, Barcelona, Spain
| | - Felipe Ortuño
- Department of Psychiatry and Clinical Psychology, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Navarra, Spain
| |
Collapse
|
32
|
Gurtubay-Antolin A, León-Cabrera P, Rodríguez-Fornells A. Neural Evidence of Hierarchical Cognitive Control during Haptic Processing: An fMRI Study. eNeuro 2018; 5:ENEURO.0295-18.2018. [PMID: 30627631 PMCID: PMC6325533 DOI: 10.1523/eneuro.0295-18.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/29/2018] [Accepted: 10/02/2018] [Indexed: 12/04/2022] Open
Abstract
Interacting with our immediate surroundings requires constant manipulation of objects. Dexterous manipulation depends on comparison between actual and predicted sensory input, with these predictions calculated by means of lower- and higher-order corollary discharge signals. However, there is still scarce knowledge about the hierarchy in the neural architecture supporting haptic monitoring during manipulation. The present study aimed to assess this issue focusing on the cross talk between lower-order sensory and higher-order associative regions. We used functional magnetic resonance imaging in humans during a haptic discrimination task in which participants had to judge whether a touched shape or texture corresponded to an expected stimulus whose name was previously presented. Specialized haptic regions identified with an independent localizer task did not differ between expected and unexpected conditions, suggesting their lack of involvement in tactile monitoring. When presented stimuli did not match previous expectations, the left supramarginal gyrus (SMG), middle temporal, and medial prefrontal cortices were activated regardless of the nature of the haptic mismatch (shape/texture). The left primary somatosensory area (SI) responded differently to unexpected shapes and textures in line with a specialized detection of haptic mismatch. Importantly, connectivity analyses revealed that the left SMG and SI were more functionally coupled during unexpected trials, emphasizing their interaction. The results point for the first time to a hierarchical organization in the neural substrates underlying haptic monitoring during manipulation with the SMG as a higher-order hub comparing actual and predicted somatosensory input, and SI as a lower-order site involved in the detection of more specialized haptic mismatch.
Collapse
Affiliation(s)
- Ane Gurtubay-Antolin
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona 08097, Spain
- Department of Cognition, Development and Education Psychology, Campus Bellvitge, University of Barcelona, Barcelona 08907, Spain
- Institute of Research in Psychology (IPSY) and in Neuroscience (IoNS), Université catholique de Louvain, 1348, Louvain la Neuve, Belgium
| | - Patricia León-Cabrera
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona 08097, Spain
- Department of Cognition, Development and Education Psychology, Campus Bellvitge, University of Barcelona, Barcelona 08907, Spain
| | - Antoni Rodríguez-Fornells
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona 08097, Spain
- Department of Cognition, Development and Education Psychology, Campus Bellvitge, University of Barcelona, Barcelona 08907, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona 08010, Spain
| |
Collapse
|
33
|
Chen JC, Macerollo A, Sadnicka A, Lu MK, Tsai CH, Korlipara P, Bhatia K, Rothwell JC, Edwards MJ. Cervical dystonia: Normal auditory mismatch negativity and abnormal somatosensory mismatch negativity. Clin Neurophysiol 2018; 129:1947-1954. [PMID: 30015084 DOI: 10.1016/j.clinph.2018.05.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 05/16/2018] [Accepted: 05/28/2018] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Previous electrophysiological and psychophysical tests have suggested that somatosensory integration is abnormal in dystonia. Here, we hypothesised that this abnormality could relate to a more general deficit in pre-attentive error/deviant detection in patients with dystonia. We therefore tested patients with dystonia and healthy subjects using a mismatch negativity paradigm (MMN), where evoked potentials generated in response to a standard repeated stimulus are subtracted from the responses to a rare "odd ball" stimulus. METHODS We assessed MMN for somatosensory and auditory stimuli in patients with cervical dystonia and healthy age matched controls. RESULTS We found a significant group ∗ oddball type interaction effect (F (1, 34) = 4.5, p = 0.04, ρI = 0.63). A follow up independent t-test for sMMN data, showed a smaller sMMN amplitude in dystonic patients compared to controls (mean difference control-dystonia: -1.0 µV ± 0.3, p < 0.00, t = -3.1). However the amplitude of aMMN did not differ between groups (mean difference control-dystonia: -0.2 µV ± 0.2, p = 0.24, t = -1.2). We found a positive correlation between somatosensory MMN and somatosensory temporal discrimination threshold. CONCLUSION These results suggest that pre-attentive error/deviant detection, specifically in the somatosensory domain, is abnormal in dystonia. This could underlie some previously reported electrophysiological and psychophysical abnormalities of somatosensory integration in dystonia. SIGNIFICANCE One could hypothesize a deficit in pre-conscious orientation towards potentially salient signals might lead to a more conservative threshold for decision-making in dystonia.
Collapse
Affiliation(s)
- Jui-Cheng Chen
- Neuroscience Laboratory, Department of Neurology, China Medical University Hospital, Taichung, Taiwan; School of Medicine, China Medical University, Taichung, Taiwan.
| | - Antonella Macerollo
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Anna Sadnicka
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Min-Kuei Lu
- Neuroscience Laboratory, Department of Neurology, China Medical University Hospital, Taichung, Taiwan; School of Medicine, China Medical University, Taichung, Taiwan
| | - Chon-Haw Tsai
- Neuroscience Laboratory, Department of Neurology, China Medical University Hospital, Taichung, Taiwan; School of Medicine, China Medical University, Taichung, Taiwan
| | - Prasad Korlipara
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Kailash Bhatia
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - John C Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Mark J Edwards
- Department of Molecular and Clinical Sciences, St George's University of London, London
| |
Collapse
|
34
|
Hashimoto RI, Itahashi T, Okada R, Hasegawa S, Tani M, Kato N, Mimura M. Linked functional network abnormalities during intrinsic and extrinsic activity in schizophrenia as revealed by a data-fusion approach. NEUROIMAGE-CLINICAL 2018. [PMID: 29527474 PMCID: PMC5842548 DOI: 10.1016/j.nicl.2017.09.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abnormalities in functional brain networks in schizophrenia have been studied by examining intrinsic and extrinsic brain activity under various experimental paradigms. However, the identified patterns of abnormal functional connectivity (FC) vary depending on the adopted paradigms. Thus, it is unclear whether and how these patterns are inter-related. In order to assess relationships between abnormal patterns of FC during intrinsic activity and those during extrinsic activity, we adopted a data-fusion approach and applied partial least square (PLS) analyses to FC datasets from 25 patients with chronic schizophrenia and 25 age- and sex-matched normal controls. For the input to the PLS analyses, we generated a pair of FC maps during the resting state (REST) and the auditory deviance response (ADR) from each participant using the common seed region in the left middle temporal gyrus, which is a focus of activity associated with auditory verbal hallucinations (AVHs). PLS correlation (PLS-C) analysis revealed that patients with schizophrenia have significantly lower loadings of a component containing positive FCs in default-mode network regions during REST and a component containing positive FCs in the auditory and attention-related networks during ADR. Specifically, loadings of the REST component were significantly correlated with the severities of positive symptoms and AVH in patients with schizophrenia. The co-occurrence of such altered FC patterns during REST and ADR was replicated using PLS regression, wherein FC patterns during REST are modeled to predict patterns during ADR. These findings provide an integrative understanding of altered FCs during intrinsic and extrinsic activity underlying core schizophrenia symptoms. A new fMRI analysis method for data fusion was applied to schizophrenia fMRI data. Multiple patterns of abnormal functional connectivity were linked in schizophrenia. Abnormal networks included the auditory language and saliency networks and DMN. The identified patterns of connectivity abnormalities were correlated with symptoms.
Collapse
Affiliation(s)
- Ryu-Ichiro Hashimoto
- Medical Institute of Developmental Disabilities Research, Showa University Karasuyama Hospital, 6-11-11 Kita-karasuyama, Setagaya-ku, Tokyo, Japan; Department of Language Sciences, Graduate School of Humanities, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo, Japan.
| | - Takashi Itahashi
- Medical Institute of Developmental Disabilities Research, Showa University Karasuyama Hospital, 6-11-11 Kita-karasuyama, Setagaya-ku, Tokyo, Japan
| | - Rieko Okada
- Medical Institute of Developmental Disabilities Research, Showa University Karasuyama Hospital, 6-11-11 Kita-karasuyama, Setagaya-ku, Tokyo, Japan
| | - Sayaka Hasegawa
- Department of Psychiatry, Showa University School of Medicine, 6-11-11 Kita-karasuyama, Setagaya-ku, Tokyo, Japan
| | - Masayuki Tani
- Department of Psychiatry, Showa University School of Medicine, 6-11-11 Kita-karasuyama, Setagaya-ku, Tokyo, Japan
| | - Nobumasa Kato
- Medical Institute of Developmental Disabilities Research, Showa University Karasuyama Hospital, 6-11-11 Kita-karasuyama, Setagaya-ku, Tokyo, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku, Tokyo, Japan
| |
Collapse
|
35
|
Spagna A, He G, Jin S, Gao L, Mackie MA, Tian Y, Wang K, Fan J. Deficit of supramodal executive control of attention in schizophrenia. J Psychiatr Res 2018; 97:22-29. [PMID: 29172174 DOI: 10.1016/j.jpsychires.2017.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/21/2017] [Accepted: 11/02/2017] [Indexed: 01/30/2023]
Abstract
Although a deficit in executive control of attention is one of the hallmarks in schizophrenia that has significant impact on everyday functioning due to its relationship with thought processing, whether this deficit occurs across modalities, i.e., is supramodal, remains unclear. To investigate the supramodal mechanism in SZ, we examined cross-modal correlations between visual and auditory executive control of attention in a group of patients with schizophrenia (SZ, n = 55) compared to neurotypical controls (NC, n = 55). While the executive control effects were significantly correlated between the two modalities in the NC group, these effects were not correlated in the SZ group, with a significant group difference in the correlation. Further, the inconsistency and magnitude of the cross-modal executive control effects were significantly larger in the SZ group compared to the NC group. Together, these results suggest that there is a disruption of a common supramodal executive control mechanism in patients with schizophrenia, which may be related to the thought processing disorder characterizing the disorder.
Collapse
Affiliation(s)
- Alfredo Spagna
- Department of Psychology, Queens College, The City University of New York, Queens, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Genxia He
- Department of Neurology, The First Hospital of Anhui Medical University, Hefei, Anhui Province, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui Province, China; Department of Neurology, The Second Hospital of Anhui Province, Hefei, Anhui Province, China
| | - Shengchun Jin
- Department of Neurology, The First Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Liling Gao
- Anhui Mental Health Center, Hefei, Anhui Province, China
| | - Melissa-Ann Mackie
- Department of Psychology, Queens College, The City University of New York, Queens, NY, USA
| | - Yanghua Tian
- Department of Neurology, The First Hospital of Anhui Medical University, Hefei, Anhui Province, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui Province, China.
| | - Kai Wang
- Department of Neurology, The First Hospital of Anhui Medical University, Hefei, Anhui Province, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui Province, China.
| | - Jin Fan
- Department of Psychology, Queens College, The City University of New York, Queens, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
36
|
Randeniya R, Oestreich LKL, Garrido MI. Sensory prediction errors in the continuum of psychosis. Schizophr Res 2018; 191:109-122. [PMID: 28457774 DOI: 10.1016/j.schres.2017.04.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/07/2017] [Accepted: 04/10/2017] [Indexed: 11/26/2022]
Abstract
Sensory prediction errors are fundamental brain responses that signal a violation of expectation in either the internal or external sensory environment, and are therefore crucial for survival and adaptive behaviour. Patients with schizophrenia show deficits in these internal and external sensory prediction errors, which can be measured using electroencephalography (EEG) components such as N1 and mismatch negativity (MMN), respectively. New evidence suggests that these deficits in sensory prediction errors are more widely distributed on a continuum of psychosis, whereas psychotic experiences exist to varying degrees throughout the general population. In this paper, we review recent findings in sensory prediction errors in the auditory domain across the continuum of psychosis, and discuss these in light of the predictive coding hypothesis.
Collapse
Affiliation(s)
- R Randeniya
- Queensland Brain Institute, The University of Queensland, Australia
| | - L K L Oestreich
- Queensland Brain Institute, The University of Queensland, Australia; Centre for Advanced Imaging, The University of Queensland, Australia; ARC Centre for Integrative Brain Function, Australia
| | - M I Garrido
- Queensland Brain Institute, The University of Queensland, Australia; Centre for Advanced Imaging, The University of Queensland, Australia; School of Mathematics and Physics, The University of Queensland, Australia; ARC Centre for Integrative Brain Function, Australia.
| |
Collapse
|
37
|
Stephan KE, Petzschner FH, Kasper L, Bayer J, Wellstein KV, Stefanics G, Pruessmann KP, Heinzle J. Laminar fMRI and computational theories of brain function. Neuroimage 2017; 197:699-706. [PMID: 29104148 DOI: 10.1016/j.neuroimage.2017.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/29/2017] [Accepted: 11/01/2017] [Indexed: 12/20/2022] Open
Abstract
Recently developed methods for functional MRI at the resolution of cortical layers (laminar fMRI) offer a novel window into neurophysiological mechanisms of cortical activity. Beyond physiology, laminar fMRI also offers an unprecedented opportunity to test influential theories of brain function. Specifically, hierarchical Bayesian theories of brain function, such as predictive coding, assign specific computational roles to different cortical layers. Combined with computational models, laminar fMRI offers a unique opportunity to test these proposals noninvasively in humans. This review provides a brief overview of predictive coding and related hierarchical Bayesian theories, summarises their predictions with regard to layered cortical computations, examines how these predictions could be tested by laminar fMRI, and considers methodological challenges. We conclude by discussing the potential of laminar fMRI for clinically useful computational assays of layer-specific information processing.
Collapse
Affiliation(s)
- K E Stephan
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, 8032 Zurich, Switzerland; Wellcome Trust Centre for Neuroimaging, University College London, London, WC1N 3BG, UK.
| | - F H Petzschner
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, 8032 Zurich, Switzerland
| | - L Kasper
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, 8032 Zurich, Switzerland; Institute for Biomedical Engineering, ETH Zurich and University of Zurich, 8092 Zurich, Switzerland
| | - J Bayer
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, 8032 Zurich, Switzerland; Institute for Biomedical Engineering, ETH Zurich and University of Zurich, 8092 Zurich, Switzerland
| | - K V Wellstein
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, 8032 Zurich, Switzerland
| | - G Stefanics
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, 8032 Zurich, Switzerland; Laboratory for Social and Neural Systems Research (SNS), Dept. of Economics, University of Zurich, 8006 Zurich, Switzerland
| | - K P Pruessmann
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, 8092 Zurich, Switzerland
| | - J Heinzle
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, 8032 Zurich, Switzerland
| |
Collapse
|
38
|
Seol JJ, Kim M, Lee KH, Hur JW, Cho KIK, Lee TY, Chung CK, Kwon JS. Is There an Association Between Mismatch Negativity and Cortical Thickness in Schizophrenia Patients? Clin EEG Neurosci 2017; 48:383-392. [PMID: 28612661 DOI: 10.1177/1550059417714705] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Mismatch negativity (MMN) is thought to reflect preattentive, automatic auditory processing. Reduced MMN amplitude is among the most robust findings in schizophrenia research. MMN generators have been shown to be located in the temporal and frontal cortices, which are key areas in the pathophysiology of schizophrenia. This study investigated whether frontotemporal cortical thickness was associated with reduced MMN current source density (CSD) strength in patients with schizophrenia. METHODS Sixteen schizophrenia patients and 18 healthy controls (HCs) were examined using magnetoencephalography while they performed a passive auditory oddball paradigm. All participants underwent a T1 structural magnetic resonance imaging scan in a separate session. We evaluated MMN CSD and cortical thickness, and their associations, in the superior and transverse temporal gyri, as well as in the inferior and middle frontal gyri. RESULTS Patients exhibited significantly reduced CSD strength in all temporal and frontal areas of interest relative to HCs. There was a positive correlation between CSD strength and cortical thickness in both temporal and frontal areas in HCs. However, schizophrenia patients showed negative correlations between CSD strength and cortical thickness in the bilateral inferior frontal gyri. Additionally, we found positive correlations between frontal cortical thickness and negative and total scores on the Positive and Negative Syndrome Scale (PANSS). CONCLUSIONS Our findings provide evidence for deficient temporal and frontal MMN generators and a disruption of normal structure-function relationship in patients with schizophrenia.
Collapse
Affiliation(s)
- Jiyoon J Seol
- 1 Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Minah Kim
- 2 Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kwang Hyuk Lee
- 1 Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Ji-Won Hur
- 3 Department of Psychology, Chung-Ang University, Seoul, Republic of Korea
| | - Kang Ik K Cho
- 1 Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Tae Young Lee
- 2 Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chun Kee Chung
- 4 Magnetoencephalography Center, Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jun Soo Kwon
- 1 Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea.,2 Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.,5 Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Republic of Korea
| |
Collapse
|
39
|
Combination of volume and perfusion parameters reveals different types of grey matter changes in schizophrenia. Sci Rep 2017; 7:435. [PMID: 28348393 PMCID: PMC5428274 DOI: 10.1038/s41598-017-00352-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 02/22/2017] [Indexed: 01/10/2023] Open
Abstract
Diverse brain structural and functional changes have been reported in schizophrenia. Identifying different types of brain changes may help to understand the neural mechanisms and to develop reliable biomarkers in schizophrenia. We aimed to categorize different grey matter changes in schizophrenia based on grey matter volume (GMV) and cerebral blood flow (CBF). Structural and perfusion magnetic resonance imaging data were acquired in 100 schizophrenia patients and 95 healthy comparison subjects. Voxel-based GMV comparison was used to show structural changes, CBF analysis was used to demonstrate functional changes. We identified three types of grey matter changes in schizophrenia: structural and functional impairments in the anterior cingulate cortex and insular cortex, displaying reduction in both GMV and CBF; structural impairment with preserved function in the frontal and temporal cortices, demonstrating decreased GMV with normal CBF; pure functional abnormality in the anterior cingulate cortex and lateral prefrontal cortex and putamen, showing altered CBF with normal GMV. By combination of GMV and CBF, we identified three types of grey matter changes in schizophrenia. These findings may help to understand the complex manifestations and to develop reliable biomarkers in schizophrenia.
Collapse
|
40
|
Deconstructing Bipolar Disorder and Schizophrenia: A cross-diagnostic cluster analysis of cognitive phenotypes. J Affect Disord 2017; 209:71-79. [PMID: 27888723 PMCID: PMC6655479 DOI: 10.1016/j.jad.2016.11.030] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 11/10/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Bipolar disorder (BD) and schizophrenia (SZ) show substantial overlap. It has been suggested that a subgroup of patients might contribute to these overlapping features. This study employed a cross-diagnostic cluster analysis to identify subgroups of individuals with shared cognitive phenotypes. METHOD 143 participants (68 BD patients, 39 SZ patients and 36 healthy controls) completed a battery of EEG and performance assessments on perception, nonsocial cognition and social cognition. A K-means cluster analysis was conducted with all participants across diagnostic groups. Clinical symptoms, functional capacity, and functional outcome were assessed in patients. RESULTS A two-cluster solution across 3 groups was the most stable. One cluster including 44 BD patients, 31 controls and 5 SZ patients showed better cognition (High cluster) than the other cluster with 24 BD patients, 35 SZ patients and 5 controls (Low cluster). BD patients in the High cluster performed better than BD patients in the Low cluster across cognitive domains. Within each cluster, participants with different clinical diagnoses showed different profiles across cognitive domains. LIMITATIONS All patients are in the chronic phase and out of mood episode at the time of assessment and most of the assessment were behavioral measures. CONCLUSIONS This study identified two clusters with shared cognitive phenotype profiles that were not proxies for clinical diagnoses. The finding of better social cognitive performance of BD patients than SZ patients in the Lowe cluster suggest that relatively preserved social cognition may be important to identify disease process distinct to each disorder.
Collapse
|
41
|
Kim M, Cho KIK, Yoon YB, Lee TY, Kwon JS. Aberrant temporal behavior of mismatch negativity generators in schizophrenia patients and subjects at clinical high risk for psychosis. Clin Neurophysiol 2016; 128:331-339. [PMID: 28056388 DOI: 10.1016/j.clinph.2016.11.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/23/2016] [Accepted: 11/26/2016] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Although disconnection syndrome has been considered a core pathophysiologic mechanism of schizophrenia, little is known about the temporal behavior of mismatch negativity (MMN) generators in individuals with schizophrenia or clinical high risk (CHR) for psychosis. METHODS MMN was assessed in 29 schizophrenia patients, 40 CHR subjects, and 47 healthy controls (HCs). Individual realistic head models and the minimum L2 norm algorithm were used to generate a current source density (CSD) model of MMN. The strength and time course of MMN CSD activity were calculated separately for the frontal and temporal cortices and were compared across brain regions and groups. RESULTS Schizophrenia patients and CHR subjects displayed lower MMN CSD strength than HCs in both the temporal and frontal cortices. We found a significant time delay in MMN generator activity in the frontal cortex relative to that in the temporal cortex in HCs. However, the sequential temporo-frontal activities of MMN generators were disrupted in both the schizophrenia and CHR groups. CONCLUSIONS Impairments and altered temporal behavior of MMN multiple generators were observed even in individuals at risk for psychosis. SIGNIFICANCE These findings suggest that aberrant MMN generator activity might be helpful in revealing the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Minah Kim
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kang Ik Kevin Cho
- Department of Brain and Cognitive Science, Seoul National University College of Natural Science, Seoul, Republic of Korea
| | - Youngwoo Bryan Yoon
- Department of Brain and Cognitive Science, Seoul National University College of Natural Science, Seoul, Republic of Korea
| | - Tae Young Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jun Soo Kwon
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Brain and Cognitive Science, Seoul National University College of Natural Science, Seoul, Republic of Korea; Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Republic of Korea.
| |
Collapse
|
42
|
Fu M, Wang L, Zhang M, Yang Y, Sun X. A mismatch negativity study in Mandarin-speaking children with sensorineural hearing loss. Int J Pediatr Otorhinolaryngol 2016; 91:128-140. [PMID: 27863627 DOI: 10.1016/j.ijporl.2016.10.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/16/2016] [Accepted: 10/21/2016] [Indexed: 01/02/2023]
Abstract
OBJECTIVE a) To examine the effects of sensorineural hearing loss on the discriminability of linguistic and non-linguistic stimuli at the cortical level, and b) to examine whether the cortical responses differ based on the chronological age at intervention, the degree of hearing loss, or the acoustic stimulation mode in children with severe and profound hearing loss. METHODS Mismatch negativity (MMN) responses were collected from 43 children with severe and profound bilateral sensorineural hearing loss, and 20 children with normal hearing (age: 3-6 years). In the non-verbal stimulation condition, pure tones with frequencies of 1 kHz and 1.1 kHz were used as the standard and the deviant respectively. In the verbal stimulation condition, the Chinese mandarin tokens/ba2/and/ba4/were used as the standard and the deviant respectively. Latency and amplitude of the MMN responses were collected and analyzed. RESULTS Overall, children with hearing loss showed longer latencies and lower amplitudes of the MMN responses to both non-verbal and verbal stimulations. The latency of the verbal/ba2/-/ba4/pair was longer than that of the nonverbal 1 kHz-1.1 kHz pair in both groups of children. CONCLUSIONS Children with hearing loss, especially those who received intervention after 2 years of age, showed substantial weakness in the neural responses to lexical tones and pure tones. Thus, the chronological age when the children receive hearing intervention may have an impact on the effectiveness of discriminating between verbal and non-verbal signals.
Collapse
Affiliation(s)
- Mingfu Fu
- Department of Orthopaedics, Yantaishan Hospital, Yantai, Shandong 264000, China
| | - Liyan Wang
- Department of Auditory Center, China Rehabilitation Research Center for Deaf Children, Beijing 100029, China
| | - Mengchao Zhang
- Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Ying Yang
- Department of Special Education, Binzhou Medical University, Yantai, Shandong 264003, China.
| | - Xibin Sun
- Department of Auditory Center, China Rehabilitation Research Center for Deaf Children, Beijing 100029, China.
| |
Collapse
|
43
|
Haigh SM, Gupta A, Barb SM, Glass SAF, Minshew NJ, Dinstein I, Heeger DJ, Eack SM, Behrmann M. Differential sensory fMRI signatures in autism and schizophrenia: Analysis of amplitude and trial-to-trial variability. Schizophr Res 2016; 175:12-19. [PMID: 27083780 PMCID: PMC4958557 DOI: 10.1016/j.schres.2016.03.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 03/24/2016] [Accepted: 03/30/2016] [Indexed: 01/06/2023]
Abstract
Autism and schizophrenia share multiple phenotypic and genotypic markers, and there is ongoing debate regarding the relationship of these two disorders. To examine whether cortical dynamics are similar across these disorders, we directly compared fMRI responses to visual, somatosensory and auditory stimuli in adults with autism (N=15), with schizophrenia (N=15), and matched controls (N=15). All participants completed a one-back letter detection task presented at fixation (to control attention) while task-irrelevant sensory stimulation was delivered to the different modalities. We focused specifically on the response amplitudes and the variability in sensory fMRI responses of the two groups, given the evidence of greater trial-to-trial variability in adults with autism. Both autism and schizophrenia individuals showed weaker signal-to-noise ratios (SNR) in sensory-evoked responses compared to controls (d>0.42), but for different reasons. For the autism group, the fMRI response amplitudes were indistinguishable from controls but were more variable trial-to-trial (d=0.47). For the schizophrenia group, response amplitudes were smaller compared to autism (d=0.44) and control groups (d=0.74), but were not significantly more variable (d<0.29). These differential group profiles suggest (1) that greater trial-to-trial variability in cortical responses may be specific to autism and is not a defining characteristic of schizophrenia, and (2) that blunted response amplitudes may be characteristic of schizophrenia. The relationship between the amplitude and the variability of cortical activity might serve as a specific signature differentiating these neurodevelopmental disorders. Identifying the neural basis of these responses and their relationship to the underlying genetic bases may substantially enlighten the understanding of both disorders.
Collapse
Affiliation(s)
- Sarah M. Haigh
- Department of Psychology, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA.,Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Akshat Gupta
- Department of Psychology, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
| | - Scott M. Barb
- School of Social Work, University of Pittsburgh, 2117 Cathedral of Learning, Pittsburgh, PA 15260, USA
| | - Summer A. F. Glass
- School of Social Work, University of Pittsburgh, 2117 Cathedral of Learning, Pittsburgh, PA 15260, USA
| | - Nancy J. Minshew
- Departments of Psychiatry & Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ilan Dinstein
- Psychology Department, Ben-Gurion University of the Negev, 653, Beer-Sheva, 84105, Israel
| | - David J. Heeger
- Department of Psychology and Center for Neural Science, New York University, 6 Washington Place, New York, NY 10003, USA
| | - Shaun M. Eack
- School of Social Work, University of Pittsburgh, 2117 Cathedral of Learning, Pittsburgh, PA 15260, USA.,Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Marlene Behrmann
- Department of Psychology, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
| |
Collapse
|
44
|
Catts VS, Lai YL, Weickert CS, Weickert TW, Catts SV. A quantitative review of the postmortem evidence for decreased cortical N-methyl-d-aspartate receptor expression levels in schizophrenia: How can we link molecular abnormalities to mismatch negativity deficits? Biol Psychol 2016; 116:57-67. [DOI: 10.1016/j.biopsycho.2015.10.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 10/19/2015] [Accepted: 10/30/2015] [Indexed: 02/06/2023]
|
45
|
Pankow A, Katthagen T, Diner S, Deserno L, Boehme R, Kathmann N, Gleich T, Gaebler M, Walter H, Heinz A, Schlagenhauf F. Aberrant Salience Is Related to Dysfunctional Self-Referential Processing in Psychosis. Schizophr Bull 2016; 42. [PMID: 26194892 PMCID: PMC4681553 DOI: 10.1093/schbul/sbv098] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND A dysfunctional differentiation between self-relevant and irrelevant information may affect the perception of environmental stimuli as abnormally salient. The aberrant salience hypothesis assumes that positive symptoms arise from an attribution of salience to irrelevant stimuli accompanied by the feeling of self-relevance. Self-referential processing relies on the activation of cortical midline structures which was demonstrated to be impaired in psychosis. We investigated the neural correlates of self-referential processing, aberrant salience attribution, and the relationship between these 2 measures across the psychosis continuum. METHODS Twenty-nine schizophrenia patients, 24 healthy individuals with subclinical delusional ideation, and 50 healthy individuals participated in this study. Aberrant salience was assessed behaviorally in terms of reaction times to task irrelevant cues. Participants performed a self-reference task during fMRI in which they had to apply neutral trait words to them or to a public figure. The correlation between self-referential processing and aberrant salience attribution was tested. RESULTS Schizophrenia patients displayed increased aberrant salience attribution compared with healthy controls and individuals with subclinical delusional ideation, while the latter exhibited intermediate aberrant salience scores. In the self-reference task, schizophrenia patients showed reduced activation in the ventromedial prefrontal cortex (vmPFC), but individuals with subclinical delusional ideation did not differ from healthy controls. In schizophrenia patients, vmPFC activation correlated negatively with implicit aberrant salience attribution. CONCLUSIONS Higher aberrant salience attribution in schizophrenia patients is related to reduced vmPFC activation during self-referential judgments suggesting that aberrant relevance coding is reflected in decreased neural self-referential processing as well as in aberrant salience attribution.
Collapse
Affiliation(s)
- Anne Pankow
- Department of Psychiatry and Psychotherapy, Charité Campus Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany;
| | - Teresa Katthagen
- Department of Psychiatry and Psychotherapy, Charité Campus Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sarah Diner
- Department of Psychiatry and Psychotherapy, Charité Campus Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Rebecca Boehme
- Department of Psychiatry and Psychotherapy, Charité Campus Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Nobert Kathmann
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tobias Gleich
- Department of Psychiatry and Psychotherapy, Charité Campus Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Gaebler
- Department of Psychiatry and Psychotherapy, Charité Campus Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Faculty of Medicine, Universität Leipzig, Leipzig, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy, Charité Campus Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, Charité Campus Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Florian Schlagenhauf
- Department of Psychiatry and Psychotherapy, Charité Campus Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany; Max Planck Fellow Group 'Cognitive and Affective Control of Behavioral Adaption', Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
46
|
Hanlon FM, Shaff NA, Dodd AB, Ling JM, Bustillo JR, Abbott CC, Stromberg SF, Abrams S, Lin DS, Mayer AR. Hemodynamic response function abnormalities in schizophrenia during a multisensory detection task. Hum Brain Mapp 2015; 37:745-55. [PMID: 26598791 DOI: 10.1002/hbm.23063] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/20/2015] [Accepted: 11/12/2015] [Indexed: 11/07/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) of the blood oxygen level dependent (BOLD) response has commonly been used to investigate the neuropathology underlying cognitive and sensory deficits in patients with schizophrenia (SP) by examining the positive phase of the BOLD response, assuming a fixed shape for the hemodynamic response function (HRF). However, the individual phases (positive and post-stimulus undershoot (PSU)) of the HRF may be differentially affected by a variety of underlying pathologies. The current experiment used a multisensory detection task with a rapid event-related fMRI paradigm to investigate both the positive and PSU phases of the HRF in SP and healthy controls (HC). Behavioral results indicated no significant group differences during task performance. Analyses that examined the shape of the HRF indicated two distinct group differences. First, SP exhibited a reduced and/or prolonged PSU following normal task-related positive BOLD activation in secondary auditory and visual sensory areas relative to HC. Second, SP did not show task-induced deactivation in the anterior node of the default-mode network (aDMN) relative to HC. In contrast, when performing traditional analyses that focus on the positive phase, there were no group differences. Interestingly, the magnitude of the PSU in secondary auditory and visual areas was positively associated with the magnitude of task-induced deactivation within the aDMN, suggesting a possible common neural mechanism underlying both of these abnormalities (failure in neural inhibition). Results are consistent with recent views that separate neural processes underlie the two phases of the HRF and that they are differentially affected in SP. Hum Brain Mapp 37:745-755, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Faith M Hanlon
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico
| | - Nicholas A Shaff
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico
| | - Andrew B Dodd
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico
| | - Josef M Ling
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico
| | - Juan R Bustillo
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, New Mexico.,Department of Neuroscience, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Christopher C Abbott
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Shannon F Stromberg
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Swala Abrams
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Denise S Lin
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Andrew R Mayer
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico.,Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, New Mexico.,Department of Neurology, University of New Mexico School of Medicine, Albuquerque, New Mexico.,Department of Psychology, University of New Mexico, Albuquerque, New Mexico
| |
Collapse
|
47
|
Neural Processing of Emotional Prosody across the Adult Lifespan. BIOMED RESEARCH INTERNATIONAL 2015; 2015:590216. [PMID: 26583118 PMCID: PMC4637042 DOI: 10.1155/2015/590216] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 08/17/2015] [Accepted: 08/30/2015] [Indexed: 11/17/2022]
Abstract
Emotion recognition deficits emerge with the increasing age, in particular, a decline in the identification of sadness. However, little is known about the age-related changes of emotion processing in sensory, affective, and executive brain areas. This functional magnetic resonance imaging (fMRI) study investigated neural correlates of auditory processing of prosody across adult lifespan. Unattended detection of emotional prosody changes was assessed in 21 young (age range: 18-35 years), 19 middle-aged (age range: 36-55 years), and 15 older (age range: 56-75 years) adults. Pseudowords uttered with neutral prosody were standards in an oddball paradigm with angry, sad, happy, and gender deviants (total 20% deviants). Changes in emotional prosody and voice gender elicited bilateral superior temporal gyri (STG) responses reflecting automatic encoding of prosody. At the right STG, responses to sad deviants decreased linearly with age, whereas happy events exhibited a nonlinear relationship. In contrast to behavioral data, no age by sex interaction emerged on the neural networks. The aging decline of emotion processing of prosodic cues emerges already at an early automatic stage of information processing at the level of the auditory cortex. However, top-down modulation may lead to an additional perceptional bias, for example, towards positive stimuli, and may depend on context factors such as the listener's sex.
Collapse
|
48
|
Bharadwaj RA, Kleinman JE. Pathologic Implications for Microtubule-Associated Protein 2 in Schizophrenia Primary Auditory Cortex. Biol Psychiatry 2015; 78:359-60. [PMID: 26296425 DOI: 10.1016/j.biopsych.2015.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 07/23/2015] [Accepted: 07/23/2015] [Indexed: 10/23/2022]
Affiliation(s)
- Rahul A Bharadwaj
- Lieber Institute for Brain Development Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Joel E Kleinman
- Lieber Institute for Brain Development Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Psychiatry & Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland.
| |
Collapse
|
49
|
Javitt DC, Sweet RA. Auditory dysfunction in schizophrenia: integrating clinical and basic features. Nat Rev Neurosci 2015; 16:535-50. [PMID: 26289573 PMCID: PMC4692466 DOI: 10.1038/nrn4002] [Citation(s) in RCA: 252] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Schizophrenia is a complex neuropsychiatric disorder that is associated with persistent psychosocial disability in affected individuals. Although studies of schizophrenia have traditionally focused on deficits in higher-order processes such as working memory and executive function, there is an increasing realization that, in this disorder, deficits can be found throughout the cortex and are manifest even at the level of early sensory processing. These deficits are highly amenable to translational investigation and represent potential novel targets for clinical intervention. Deficits, moreover, have been linked to specific structural abnormalities in post-mortem auditory cortex tissue from individuals with schizophrenia, providing unique insights into underlying pathophysiological mechanisms.
Collapse
Affiliation(s)
- Daniel C Javitt
- Division of Experimental Therapeutics, Departments of Psychiatry and Neuroscience, Columbia University College of Physicians and Surgeons, 1051 Riverside Drive, Unit 21, New York, New York 10032, USA
- Program in Cognitive Neuroscience and Schizophrenia, Nathan S. Kline Institute, 140 Old Orangeburg Rd, Orangeburg, New York 10962, USA
| | - Robert A Sweet
- Departments of Psychiatry and Neurology, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, Pennsylvania 15213, USA
- VISN 4 Mental Illness Research, Education and Clinical Center (MIRECC), VA Pittsburgh Healthcare System, Research Office Building (151R), University Drive C, Pittsburgh, Pennsylvania 15240, USA
| |
Collapse
|
50
|
Yoon YB, Yun JY, Jung WH, Cho KIK, Kim SN, Lee TY, Park HY, Kwon JS. Altered Fronto-Temporal Functional Connectivity in Individuals at Ultra-High-Risk of Developing Psychosis. PLoS One 2015; 10:e0135347. [PMID: 26267069 PMCID: PMC4534425 DOI: 10.1371/journal.pone.0135347] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 07/21/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The superior temporal gyrus (STG) is one of the key regions implicated in psychosis, given that abnormalities in this region are associated with an increased risk of conversion from an at-risk mental state to psychosis. However, inconsistent results regarding the functional connectivity strength of the STG have been reported, and the regional heterogeneous characteristics of the STG should be considered. METHODS To investigate the distinctive functional connection of each subregion in the STG, we parcellated the STG of each hemisphere into three regions: the planum temporale, Heschl's gyrus, and planum polare. Resting-state functional magnetic resonance imaging was obtained from 22 first-episode psychosis (FEP) patients, 41 individuals at ultra-high-risk for psychosis (UHR), and 47 demographically matched healthy controls. RESULTS Significant group differences (in seed-based connectivity) were demonstrated in the left planum temporale and from both the right and left Heschl's gyrus seeds. From the left planum temporale seed, the FEP and UHR groups exhibited increased connectivity to the bilateral dorsolateral prefrontal cortex. In contrast, the FEP and UHR groups demonstrated decreased connectivity from the bilateral Heschl's gyrus seeds to the dorsal anterior cingulate cortex. The enhanced connectivity between the left planum temporale and right dorsolateral prefrontal cortex was positively correlated with positive symptom severity in individuals at UHR (r = .34, p = .03). CONCLUSIONS These findings corroborate the fronto-temporal connectivity disruption hypothesis in schizophrenia by providing evidence supporting the altered fronto-temporal intrinsic functional connection at earlier stages of psychosis. Our data indicate that subregion-specific aberrant fronto-temporal interactions exist in the STG at the early stage of psychosis, thus suggesting that these aberrancies are the neural underpinning of proneness to psychosis.
Collapse
Affiliation(s)
- Youngwoo Bryan Yoon
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Je-Yeon Yun
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Wi Hoon Jung
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Institute of Human Behavioral Medicine, Seoul National University-Medical Research Center, Seoul, Republic of Korea
| | - Kang Ik K. Cho
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sung Nyun Kim
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Tae Young Lee
- Institute of Human Behavioral Medicine, Seoul National University-Medical Research Center, Seoul, Republic of Korea
| | - Hye Yoon Park
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jun Soo Kwon
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Human Behavioral Medicine, Seoul National University-Medical Research Center, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|