1
|
Trabacca A, Ferrante C, Oliva MC, Fanizza I, Gallo I, De Rinaldis M. Update on Inherited Pediatric Motor Neuron Diseases: Clinical Features and Outcome. Genes (Basel) 2024; 15:1346. [PMID: 39457470 PMCID: PMC11507535 DOI: 10.3390/genes15101346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Inherited pediatric motor neuron diseases (MNDs) are a group of neurodegenerative disorders characterized by the degeneration of motor neurons in the brain and the spinal cord. These diseases can manifest as early as infancy and originate from inherited pathogenic mutations in known genes. Key clinical features of MNDs include muscle weakness, hypotonia, and atrophy due to the degeneration of lower motor neurons or spasticity, hypertonia, and hyperreflexia caused by upper motor neuron dysfunction. The course of the disease varies among individuals and is influenced by the specific subtype. METHODS We performed a non-systematic, narrative clinical review, employing a systematic methodology for the literature search and article selection to delineate the features of hereditary pediatric motor neuron diseases. RESULTS The growing availability of advanced molecular testing, such as whole-exome sequencing (WES) and whole-genome sequencing (WGS), has expanded the range of identified genetic factors. These advancements provide insights into the genetic complexity and underlying mechanisms of these disorders. As more MND-related genes are discovered, the accumulating genetic data will help prioritize promising candidate genes for future research. In some cases, targeted treatments based on specific genetic mechanisms have already emerged, underscoring the critical role of early and timely diagnosis in improving patient outcomes. Common MNDs include amyotrophic lateral sclerosis, spinal muscular atrophy, and bulbar spinal muscular atrophy. CONCLUSION This narrative clinical review covers the clinical presentation, genetics, molecular features, and pathophysiology of inherited pediatric MNDs.
Collapse
Affiliation(s)
- Antonio Trabacca
- Scientific Institute IRCCS. “E. Medea”, Scientific Direction, 23842 Bosisio Parini, Italy
| | - Camilla Ferrante
- Associazione “La Nostra Famiglia”, IRCCS “E. Medea”, Scientific Hospital for Neurorehabilitation, Unit for Severe Disabilities in Developmental Age and Young Adults, Developmental Neurology and Neurorehabilitation, 72100 Brindisi, Italy; (C.F.); (M.C.O.); (I.F.); (I.G.); (M.D.R.)
| | - Maria Carmela Oliva
- Associazione “La Nostra Famiglia”, IRCCS “E. Medea”, Scientific Hospital for Neurorehabilitation, Unit for Severe Disabilities in Developmental Age and Young Adults, Developmental Neurology and Neurorehabilitation, 72100 Brindisi, Italy; (C.F.); (M.C.O.); (I.F.); (I.G.); (M.D.R.)
| | - Isabella Fanizza
- Associazione “La Nostra Famiglia”, IRCCS “E. Medea”, Scientific Hospital for Neurorehabilitation, Unit for Severe Disabilities in Developmental Age and Young Adults, Developmental Neurology and Neurorehabilitation, 72100 Brindisi, Italy; (C.F.); (M.C.O.); (I.F.); (I.G.); (M.D.R.)
| | - Ivana Gallo
- Associazione “La Nostra Famiglia”, IRCCS “E. Medea”, Scientific Hospital for Neurorehabilitation, Unit for Severe Disabilities in Developmental Age and Young Adults, Developmental Neurology and Neurorehabilitation, 72100 Brindisi, Italy; (C.F.); (M.C.O.); (I.F.); (I.G.); (M.D.R.)
| | - Marta De Rinaldis
- Associazione “La Nostra Famiglia”, IRCCS “E. Medea”, Scientific Hospital for Neurorehabilitation, Unit for Severe Disabilities in Developmental Age and Young Adults, Developmental Neurology and Neurorehabilitation, 72100 Brindisi, Italy; (C.F.); (M.C.O.); (I.F.); (I.G.); (M.D.R.)
| |
Collapse
|
2
|
Azeem A, Ahmed AN, Khan N, Voutsina N, Ullah I, Ubeyratna N, Yasin M, Baple EL, Crosby AH, Rawlins LE, Saleha S. Investigating the genetic basis of hereditary spastic paraplegia and cerebellar Ataxia in Pakistani families. BMC Neurol 2024; 24:354. [PMID: 39304850 DOI: 10.1186/s12883-024-03855-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Hereditary Spastic Paraplegias (HSPs) and Hereditary Cerebellar Ataxias (HCAs) are progressive neurodegenerative disorders encompassing a spectrum of neurogenetic conditions with significant overlaps of clinical features. Spastic ataxias are a group of conditions that have features of both cerebellar ataxia and spasticity, and these conditions are frequently clinically challenging to distinguish. Accurate genetic diagnosis is crucial but challenging, particularly in resource-limited settings. This study aims to investigate the genetic basis of HSPs and HCAs in Pakistani families. METHODS Families from Khyber Pakhtunkhwa with at least two members showing HSP or HCA phenotypes, and who had not previously been analyzed genetically, were included. Families were referred for genetic analysis by local neurologists based on the proband's clinical features and signs of a potential genetic neurodegenerative disorder. Whole Exome Sequencing (WES) and Sanger sequencing were then used to identify and validate genetic variants, and to analyze variant segregation within families to determine inheritance patterns. The mean age of onset and standard deviation were calculated to assess variability among affected individuals, and the success rate was compared with literature reports using differences in proportions and Cohen's h. RESULTS Pathogenic variants associated with these conditions were identified in five of eight families, segregating according to autosomal recessive inheritance. These variants included previously reported SACS c.2182 C > T, p.(Arg728*), FA2H c.159_176del, p.(Arg53_Ile58del) and SPG11 c.2146 C > T, p.(Gln716*) variants, and two previously unreported variants in SACS c.2229del, p.(Phe743Leufs*8) and ZFYVE26 c.1926_1941del, p.(Tyr643Metfs*2). Additionally, FA2H and SPG11 variants were found to have recurrent occurrences, suggesting a potential founder effect within the Pakistani population. Onset age among affected individuals ranged from 1 to 14 years (M = 6.23, SD = 3.96). The diagnostic success rate was 62.5%, with moderate effect sizes compared to previous studies. CONCLUSIONS The findings of this study expand the genotypic and phenotypic spectrum of HSPs and HCAs in Pakistan and emphasize the importance of utilizing exome/genome sequencing for accurate diagnosis or support accurate differential diagnosis. This approach can improve genetic counseling and clinical management, addressing the challenges of diagnosing neurodegenerative disorders in resource-limited settings.
Collapse
Affiliation(s)
- Arfa Azeem
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Asif Naveed Ahmed
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Niamat Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Nikol Voutsina
- 2Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK
| | - Irfan Ullah
- Department of Neurology, Khyber Teaching Hospital, Peshawar, 25000, Khyber Pakhtunkhwa, Pakistan
| | - Nishanka Ubeyratna
- 2Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK
| | - Muhammad Yasin
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Emma L Baple
- 2Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK
| | - Andrew H Crosby
- 2Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK
| | - Lettie E Rawlins
- 2Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK.
- Peninsula Clinical Genetics Service, Royal Devon & Exeter Hospital (Heavitree), Exeter, UK.
| | - Shamim Saleha
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
3
|
Li Z, Wen J, Wu W, Dai Z, Liang X, Zhang N, Cheng Q, Zhang H. Causal relationship and shared genes between air pollutants and amyotrophic lateral sclerosis: A large-scale genetic analysis. CNS Neurosci Ther 2024; 30:e14812. [PMID: 38970158 PMCID: PMC11226412 DOI: 10.1111/cns.14812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 05/23/2024] [Accepted: 06/02/2024] [Indexed: 07/08/2024] Open
Abstract
OBJECTIVE Air pollutants have been reported to have a potential relationship with amyotrophic lateral sclerosis (ALS). The causality and underlying mechanism remained unknown despite several existing observational studies. We aimed to investigate the potential causality between air pollutants (PM2.5, NOX, and NO2) and the risk of ALS and elucidate the underlying mechanisms associated with this relationship. METHODS The data utilized in our study were obtained from publicly available genome-wide association study data sets, in which single nucleotide polymorphisms (SNPs) were employed as the instrumental variantswith three principles. Two-sample Mendelian randomization and transcriptome-wide association (TWAS) analyses were conducted to evaluate the effects of air pollutants on ALS and identify genes associated with both pollutants and ALS, followed by regulatory network prediction. RESULTS We observed that exposure to a high level of PM2.5 (OR: 2.40 [95% CI: 1.26-4.57], p = 7.46E-3) and NOx (OR: 2.35 [95% CI: 1.32-4.17], p = 3.65E-3) genetically increased the incidence of ALS in MR analysis, while the effects of NO2 showed a similar trend but without sufficient significance. In the TWAS analysis, TMEM175 and USP35 turned out to be the genes shared between PM2.5 and ALS in the same direction. CONCLUSION Higher exposure to PM2.5 and NOX might causally increase the risk of ALS. Avoiding exposure to air pollutants and air cleaning might be necessary for ALS prevention.
Collapse
Affiliation(s)
- Zhihao Li
- Department of NeurosurgeryThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| | - Jie Wen
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Wantao Wu
- Department of Oncology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Xisong Liang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Nan Zhang
- College of Life Science and Technology, Huazhong University of Science and TechnologyWuhanChina
| | - Quan Cheng
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Hao Zhang
- Department of NeurosurgeryThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| |
Collapse
|
4
|
Mademont‐Soler I, Esteba‐Castillo S, Jiménez‐Xifra A, Alemany B, Ribas‐Vidal N, Cutillas M, Coll M, Pinsach M, Pagans S, Alcalde M, Viñas‐Jornet M, Montero‐Vale M, de Castro‐Miró M, Rodríguez J, Armengol L, Queralt X, Obón M. Unexpected complexity in the molecular diagnosis of spastic paraplegia 11. Mol Genet Genomic Med 2024; 12:e2475. [PMID: 38938072 PMCID: PMC11211614 DOI: 10.1002/mgg3.2475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/04/2024] [Accepted: 05/21/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Spastic paraplegia 11 (SPG11) is the most prevalent form of autosomal recessive hereditary spastic paraplegia, resulting from biallelic pathogenic variants in the SPG11 gene (MIM *610844). METHODS The proband is a 36-year-old female referred for genetic evaluation due to cognitive dysfunction, gait impairment, and corpus callosum atrophy (brain MRI was normal at 25-years-old). Diagnostic approaches included CGH array, next-generation sequencing, and whole transcriptome sequencing. RESULTS CGH array revealed a 180 kb deletion located upstream of SPG11. Sequencing of SPG11 uncovered two rare single nucleotide variants: the novel variant c.3143C>T in exon 17 (in cis with the deletion), and the previously reported pathogenic variant c.6409C>T in exon 34 (in trans). Whole transcriptome sequencing revealed that the variant c.3143C>T caused exon 17 skipping. CONCLUSION We report a novel sequence variant in the SPG11 gene resulting in exon 17 skipping, which, along with a nonsense variant, causes Spastic Paraplegia 11 in our proband. In addition, a deletion upstream of SPG11 was identified in the patient, whose implication in the phenotype remains uncertain. Nonetheless, the deletion apparently affects cis-regulatory elements of the gene, suggesting a potential new pathogenic mechanism underlying the disease in a subset of undiagnosed patients. Our findings further support the hypothesis that the origin of thin corpus callosum in patients with SPG11 is of progressive nature.
Collapse
Affiliation(s)
- Irene Mademont‐Soler
- Àrea de Genètica Clínica i Consell Genètic, Laboratori Clínic Territorial GironaInstitut Català de la SalutGironaSpain
- Grup de Trastorns del NeurodesenvolupamentInstitut Investigació Biomèdica de GironaGironaSpain
| | - Susanna Esteba‐Castillo
- Grup de Trastorns del NeurodesenvolupamentInstitut Investigació Biomèdica de GironaGironaSpain
- Servei Especialitzat en Salut Mental i Discapacitat Intel·LectualInstitut d'Assistència SanitàriaGironaSpain
| | | | - Berta Alemany
- Servei de NeurologiaHospital Universitari de Girona Dr. Josep TruetaGironaSpain
| | - Núria Ribas‐Vidal
- Grup de Trastorns del NeurodesenvolupamentInstitut Investigació Biomèdica de GironaGironaSpain
- Servei Especialitzat en Salut Mental i Discapacitat Intel·LectualInstitut d'Assistència SanitàriaGironaSpain
| | - Maria Cutillas
- Àrea de Genètica Clínica i Consell Genètic, Laboratori Clínic Territorial GironaInstitut Català de la SalutGironaSpain
| | - Mònica Coll
- Unitat de Genòmica i Medicina Personalitzada, Laboratori Clínic Territorial GironaInstitut Català de la SalutGironaSpain
| | - Mel·lina Pinsach
- Unitat de Genòmica i Medicina Personalitzada, Laboratori Clínic Territorial GironaInstitut Català de la SalutGironaSpain
| | - Sara Pagans
- Grup de Genètica CardiovascularInstitut d'Investigació Biomèdica de Girona Dr. Josep TruetaGironaSpain
| | - Mireia Alcalde
- Grup de Genètica CardiovascularInstitut d'Investigació Biomèdica de Girona Dr. Josep TruetaGironaSpain
| | | | | | | | | | - Lluís Armengol
- Departament de Genètica MolecularqGenomicsBarcelonaSpain
| | - Xavier Queralt
- Àrea de Genètica Clínica i Consell Genètic, Laboratori Clínic Territorial GironaInstitut Català de la SalutGironaSpain
| | - María Obón
- Àrea de Genètica Clínica i Consell Genètic, Laboratori Clínic Territorial GironaInstitut Català de la SalutGironaSpain
- Grup de Trastorns del NeurodesenvolupamentInstitut Investigació Biomèdica de GironaGironaSpain
| |
Collapse
|
5
|
Sharma S, Mahadevan A, Narayanappa G, Debnath M, Govindaraj P, Shivaram S, Seshagiri DV, Siram R, Shroti A, Bindu PS, Chickabasaviah YT, Taly AB, Nagappa M. Exploring the evidence for mitochondrial dysfunction and genetic abnormalities in the etiopathogenesis of tropical ataxic neuropathy. J Neurogenet 2024; 38:27-34. [PMID: 38975939 DOI: 10.1080/01677063.2024.2373363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/24/2024] [Indexed: 07/09/2024]
Abstract
Tropical ataxic neuropathy (TAN) is characterised by ataxic polyneuropathy, degeneration of the posterior columns and pyramidal tracts, optic atrophy, and sensorineural hearing loss. It has been attributed to nutritional/toxic etiologies, but evidence for the same has been equivocal. TAN shares common clinical features with inherited neuropathies and mitochondrial disorders, it may be hypothesised that genetic abnormalities may underlie the pathophysiology of TAN. This study aimed to establish evidence for mitochondrial dysfunction by adopting an integrated biochemical and multipronged genetic analysis. Patients (n = 65) with chronic progressive ataxic neuropathy with involvement of visual and/or auditory pathways underwent deep phenotyping, genetic studies including mitochondrial DNA (mtDNA) deletion analysis, mtDNA and clinical exome sequencing (CES), and respiratory chain complex (RCC) assay. The phenotypic characteristics included dysfunction of visual (n = 14), auditory (n = 12) and visual + auditory pathways (n = 29). Reduced RCC activity was present in 13 patients. Mitochondrial DNA deletions were noted in five patients. Sequencing of mtDNA (n = 45) identified a homoplasmic variant (MT-ND6) and a heteroplasmic variant (MT-COI) in one patient each. CES (n = 45) revealed 55 variants in nuclear genes that are associated with neuropathy (n = 27), deafness (n = 7), ataxia (n = 4), and mitochondrial phenotypes (n = 5) in 36 patients. This study provides preliminary evidence that TAN is associated with a spectrum of genetic abnormalities, including those associated with mitochondrial dysfunction, which is in contradistinction from the prevailing hypothesis that TAN is related to dietary toxins. Analysing the functional relevance of these genetic variants may improve the understanding of the pathogenesis of TAN.
Collapse
Affiliation(s)
- Shivani Sharma
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Gayathri Narayanappa
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Monojit Debnath
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Periyasamy Govindaraj
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Sumanth Shivaram
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Doniparthi V Seshagiri
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Ramesh Siram
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Akhilesh Shroti
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Parayil S Bindu
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Yasha T Chickabasaviah
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Arun B Taly
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bengaluru, India
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Madhu Nagappa
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| |
Collapse
|
6
|
Frolov A, Guzman MA, Hayat G, Martin JR. Two Cases of Sporadic Amyotrophic Lateral Sclerosis With Contrasting Clinical Phenotypes: Genetic Insights. Cureus 2024; 16:e56023. [PMID: 38606235 PMCID: PMC11008550 DOI: 10.7759/cureus.56023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 04/13/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neuromuscular disease that affects individuals of diverse racial and ethnic backgrounds. There is currently no cure for ALS, and the number of efficient disease-modifying drugs for ALS is limited to a few, despite the large number of clinical trials conducted in recent years. The latter could be attributed to the significant heterogeneity of ALS clinical phenotypes even in their familial forms. To address this issue, we conducted postmortem genetic screening of two female patients with sporadic ALS (sALS) and contrasting clinical phenotypes. The results demonstrated that despite their contrasting clinical phenotypes, both patients had rare pathologic/deleterious mutations in five genes: ACSM5, BBS12, HLA-DQB1, MUC20, and OBSCN, with mutations in three of those genes being identical: BBS12, HLA-DQB1, and MUC20. Additional groups of mutated genes linked to ALS, other neurologic disorders, and ALS-related pathologies were also identified. These data are consistent with a hypothesis that an individual could be primed for ALS via mutations in a specific set of genes not directly linked to ALS. The disease could be initiated by a concerted action of several mutated genes linked to ALS and the disease's clinical phenotype will evolve further through accessory gene mutations associated with other neurological disorders and ALS-related pathologies.
Collapse
Affiliation(s)
- Andrey Frolov
- Center for Anatomical Science and Education, Saint Louis University School of Medicine, Saint Louis, USA
| | - Miguel A Guzman
- Department of Pathology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Ghazala Hayat
- Department of Neurology, Saint Louis University School of Medicine, Saint Louis, USA
- ALS Center of Excellence, Saint Louis University School of Medicine, Saint Louis, USA
| | - John R Martin
- Center for Anatomical Science and Education, Saint Louis University School of Medicine, Saint Louis, USA
| |
Collapse
|
7
|
Awuah WA, Tan JK, Shkodina AD, Ferreira T, Adebusoye FT, Mazzoleni A, Wellington J, David L, Chilcott E, Huang H, Abdul-Rahman T, Shet V, Atallah O, Kalmanovich J, Jiffry R, Madhu DE, Sikora K, Kmyta O, Delva MY. Hereditary spastic paraplegia: Novel insights into the pathogenesis and management. SAGE Open Med 2023; 12:20503121231221941. [PMID: 38162912 PMCID: PMC10757446 DOI: 10.1177/20503121231221941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
Hereditary spastic paraplegia is a genetically heterogeneous neurodegenerative disorder characterised primarily by muscle stiffness in the lower limbs. Neurodegenerative disorders are conditions that result from cellular and metabolic abnormalities, many of which have strong genetic ties. While ageing is a known contributor to these changes, certain neurodegenerative disorders can manifest early in life, progressively affecting a person's quality of life. Hereditary spastic paraplegia is one such condition that can appear in individuals of any age. In hereditary spastic paraplegia, a distinctive feature is the degeneration of long nerve fibres in the corticospinal tract of the lower limbs. This degeneration is linked to various cellular and metabolic processes, including mitochondrial dysfunction, remodelling of the endoplasmic reticulum membrane, autophagy, abnormal myelination processes and alterations in lipid metabolism. Additionally, hereditary spastic paraplegia affects processes like endosome membrane trafficking, oxidative stress and mitochondrial DNA polymorphisms. Disease-causing genetic loci and associated genes influence the progression and severity of hereditary spastic paraplegia, potentially affecting various cellular and metabolic functions. Although hereditary spastic paraplegia does not reduce a person's lifespan, it significantly impairs their quality of life as they age, particularly with more severe symptoms. Regrettably, there are currently no treatments available to halt or reverse the pathological progression of hereditary spastic paraplegia. This review aims to explore the metabolic mechanisms underlying the pathophysiology of hereditary spastic paraplegia, emphasising the interactions of various genes identified in recent network studies. By comprehending these associations, targeted molecular therapies that address these biochemical processes can be developed to enhance treatment strategies for hereditary spastic paraplegia and guide clinical practice effectively.
Collapse
Affiliation(s)
| | | | - Anastasiia D Shkodina
- Department of Neurological Diseases, Poltava State Medical University, Poltava, Ukraine
| | - Tomas Ferreira
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | | | - Adele Mazzoleni
- Barts and the London School of Medicine and Dentistry, London, UK
| | - Jack Wellington
- Cardiff University School of Medicine, Cardiff University, Wales, UK
| | - Lian David
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Ellie Chilcott
- Cardiff University School of Medicine, Cardiff University, Wales, UK
| | - Helen Huang
- Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | | | - Vallabh Shet
- Faculty of Medicine, Bangalore Medical College and Research Institute, Karnataka, India
| | - Oday Atallah
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | | | - Riaz Jiffry
- Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | | | | | | | - Mykhailo Yu Delva
- Department of Neurological Diseases, Poltava State Medical University, Poltava, Ukraine
| |
Collapse
|
8
|
Lan ZQ, Ge ZY, Lv SK, Zhao B, Li CX. The regulatory role of lipophagy in central nervous system diseases. Cell Death Discov 2023; 9:229. [PMID: 37414782 DOI: 10.1038/s41420-023-01504-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/04/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023] Open
Abstract
Lipid droplets (LDs) are the organelles for storing neutral lipids, which are broken down when energy is insufficient. It has been suggested that excessive accumulation of LDs can affect cellular function, which is important to coordinate homeostasis of lipids in vivo. Lysosomes play an important role in the degradation of lipids, and the process of selective autophagy of LDs through lysosomes is known as lipophagy. Dysregulation of lipid metabolism has recently been associated with a variety of central nervous system (CNS) diseases, but the specific regulatory mechanisms of lipophagy in these diseases remain to be elucidated. This review summarizes various forms of lipophagy and discusses the role that lipophagy plays in the development of CNS diseases in order to reveal the related mechanisms and potential therapeutic targets for these diseases.
Collapse
Affiliation(s)
- Zhuo-Qing Lan
- Department of General practice medicine, the Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, P.R. China
| | - Zi-Yi Ge
- Department of Anesthesiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Shu-Kai Lv
- Department of General practice medicine, the Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, P.R. China
| | - Bing Zhao
- Department of Anesthesiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China.
| | - Cai-Xia Li
- Department of General practice medicine, the Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, P.R. China.
- Department of Anesthesiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China.
| |
Collapse
|
9
|
Martinello C, Panza E, Orlacchio A. Hereditary spastic paraplegias proteome: common pathways and pathogenetic mechanisms. Expert Rev Proteomics 2023; 20:171-188. [PMID: 37788157 DOI: 10.1080/14789450.2023.2260952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/31/2023] [Indexed: 10/05/2023]
Abstract
INTRODUCTION Hereditary spastic paraplegias (HSPs) are a group of inherited neurodegenerative disorders characterized by progressive spasticity and weakness of the lower limbs. These conditions are caused by lesions in the neuronal pyramidal tract and exhibit clinical and genetic variability. Ongoing research focuses on understanding the underlying mechanisms of HSP onset, which ultimately lead to neuronal degeneration. Key molecular mechanisms involved include axonal transport, cytoskeleton dynamics, myelination abnormalities, membrane trafficking, organelle morphogenesis, ER homeostasis, mitochondrial dysfunction, and autophagy deregulation. AREAS COVERED This review aims to provide an overview of the shared pathogenetic mechanisms in various forms of HSPs. By examining disease-causing gene products and their associated functional pathways, this understanding could lead to the discovery of new therapeutic targets and the development of treatments to modify the progression of the disease. EXPERT OPINION Investigating gene functionality is crucial for identifying shared pathogenetic pathways underlying different HSP subtypes. Categorizing protein function and identifying pathways aids in finding biomarkers, predicting early onset, and guiding treatment for a better quality of life. Targeting shared mechanisms enables efficient and cost-effective therapies. Prospects involve identifying new disease-causing genes, refining molecular processes, and implementing findings in diagnosis, key for advancing HSP understanding and developing effective treatments.
Collapse
Affiliation(s)
- Chiara Martinello
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Emanuele Panza
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
- Unità di Genetica Medica, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Antonio Orlacchio
- Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| |
Collapse
|
10
|
Higuchi Y, Takashima H. Clinical genetics of Charcot-Marie-Tooth disease. J Hum Genet 2023; 68:199-214. [PMID: 35304567 DOI: 10.1038/s10038-022-01031-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/02/2022] [Accepted: 03/06/2022] [Indexed: 02/08/2023]
Abstract
Recent research in the field of inherited peripheral neuropathies (IPNs) such as Charcot-Marie-Tooth (CMT) disease has helped identify the causative genes provided better understanding of the pathogenesis, and unraveled potential novel therapeutic targets. Several reports have described the epidemiology, clinical characteristics, molecular pathogenesis, and novel causative genes for CMT/IPNs in Japan. Based on the functions of the causative genes identified so far, the following molecular and cellular mechanisms are believed to be involved in the causation of CMTs/IPNs: myelin assembly, cytoskeletal structure, myelin-specific transcription factor, nuclear related, endosomal sorting and cell signaling, proteasome and protein aggregation, mitochondria-related, motor proteins and axonal transport, tRNA synthetases and RNA metabolism, and ion channel-related mechanisms. In this article, we review the epidemiology, genetic diagnosis, and clinicogenetic characteristics of CMT in Japan. In addition, we discuss the newly identified novel causative genes for CMT/IPNs in Japan, namely MME and COA7. Identification of the new causes of CMT will facilitate in-depth characterization of the underlying molecular mechanisms of CMT, leading to the establishment of therapeutic approaches such as drug development and gene therapy.
Collapse
Affiliation(s)
- Yujiro Higuchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.
| |
Collapse
|
11
|
Masingue M, Fernández-Eulate G, Debs R, Tard C, Labeyrie C, Leonard-Louis S, Dhaenens CM, Masson MA, Latour P, Stojkovic T. Strategy for genetic analysis in hereditary neuropathy. Rev Neurol (Paris) 2023; 179:10-29. [PMID: 36566124 DOI: 10.1016/j.neurol.2022.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022]
Abstract
Inherited neuropathies are a heterogeneous group of slowly progressive disorders affecting either motor, sensory, and/or autonomic nerves. Peripheral neuropathy may be the major component of a disease such as Charcot-Marie-Tooth disease or a feature of a more complex multisystemic disease involving the central nervous system and other organs. The goal of this review is to provide the clinical clues orientating the genetic diagnosis in a patient with inherited peripheral neuropathy. This review focuses on primary inherited neuropathies, amyloidosis, inherited metabolic diseases, while detailing clinical, neurophysiological and potential treatment of these diseases.
Collapse
Affiliation(s)
- M Masingue
- Centre de référence des maladies neuromusculaires Nord/Est/Île-de-France, hôpital Pitié-Salpêtrière, AP-HP, Paris, France.
| | - G Fernández-Eulate
- Centre de référence des maladies neuromusculaires Nord/Est/Île-de-France, hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - R Debs
- Service de neurophysiologie, hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - C Tard
- CHU de Lille, clinique neurologique, centre de référence des maladies neuromusculaires Nord/Est/Île-de-France, 59037 Lille cedex, France
| | - C Labeyrie
- Service de neurologie, hôpital Kremlin-Bicêtre, AP-HP, Le Kremlin-Bicêtre, France
| | - S Leonard-Louis
- Centre de référence des maladies neuromusculaires Nord/Est/Île-de-France, hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - C-M Dhaenens
- Université de Lille, Inserm, CHU de Lille, U1172-LilNCog-Lille Neuroscience & Cognition, 59000 Lille, France
| | - M A Masson
- Inserm U1127, Paris Brain Institute, ICM, Sorbonne Université, CNRS UMR 7225, hôpital Pitié-Salpêtrière, Paris, France
| | - P Latour
- Service de biochimie biologie moléculaire, CHU de Lyon, centre de biologie et pathologie Est, 69677 Bron cedex, France
| | - T Stojkovic
- Centre de référence des maladies neuromusculaires Nord/Est/Île-de-France, hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| |
Collapse
|
12
|
Nanayakkara R, Gurung R, Rodgers SJ, Eramo MJ, Ramm G, Mitchell CA, McGrath MJ. Autophagic lysosome reformation in health and disease. Autophagy 2022:1-18. [DOI: 10.1080/15548627.2022.2128019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Randini Nanayakkara
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- Monash Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, Victoria, Australia
| | - Rajendra Gurung
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Samuel J. Rodgers
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Matthew J. Eramo
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Georg Ramm
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- Monash Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, Victoria, Australia
| | - Christina A. Mitchell
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Meagan J. McGrath
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
13
|
刘 小, 段 晓, 张 朔, 孙 阿, 张 英, 樊 东. [Genetic distribution in Chinese patients with hereditary peripheral neuropathy]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2022; 54:874-883. [PMID: 36241230 PMCID: PMC9568373 DOI: 10.19723/j.issn.1671-167x.2022.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE To analyze the distribution characteristics of hereditary peripheral neuropathy (HPN) pathogenic genes in Chinese Han population, and to explore the potential pathogenesis and treatment prospects of HPN and related diseases. METHODS Six hundred and fifty-six index patients with HPN were enrolled in Peking University Third Hospital and China-Japan Friendship Hospital from January 2007 to May 2022. The PMP22 duplication and deletion mutations were screened and validated by multiplex ligation probe amplification technique. The next-generation sequencing gene panel or whole exome sequencing was used, and the suspected genes were validated by Sanger sequencing. RESULTS Charcot-Marie-Tooth (CMT) accounted for 74.3% (495/666) of the patients with HPN, of whom 69.1% (342/495) were genetically confirmed. The most common genes of CMT were PMP22 duplication, MFN2 and GJB1 mutations, which accounted for 71.3% (244/342) of the patients with genetically confirmed CMT. Hereditary motor neuropathy (HMN) accounted for 16.1% (107/666) of HPN, and 43% (46/107) of HPN was genetically confirmed. The most common genes of HMN were HSPB1, aminoacyl tRNA synthetases and SORD mutations, which accounted for 56.5% (26/46) of the patients with genetically confirmed HMN. Most genes associated with HMN could cause different phenotypes. HMN and CMT shared many genes (e.g. HSPB1, GARS, IGHMBP2). Some genes associated with dHMN-plus shared genes associated with amyotrophic lateral sclerosis (KIF5A, FIG4, DCTN1, SETX, VRK1), hereditary spastic paraplegia (KIF5A, ZFYVE26, BSCL2) and spinal muscular atrophy (MORC2, IGHMBP, DNAJB2), suggesting that HMN was a continuum rather than a distinct entity. Hereditary sensor and autosomal neuropathy (HSAN) accounted for a small proportion of 2.6% (17/666) in HPN. The most common pathogenic gene was SPTLC1 mutation. TTR was the main gene causing hereditary amyloid peripheral neuropathy. The most common types of gene mutations were p.A117S and p.V50M. The symptoms were characterized by late-onset and prominent autonomic nerve involvement. CONCLUSION CMT and HMN are the most common diseases of HPN. There is a large overlap between HMN and motor-CMT2 pathogenic genes, and some HMN pathogenic genes overlap with amyotrophic lateral sclerosis, hereditary spastic hemiplegia and spinal muscular atrophy, suggesting that there may be a potential common pathogenic pathway between different diseases.
Collapse
Affiliation(s)
- 小璇 刘
- 北京大学第三医院神经内科,北京 100191Department of Neurology, Peking University Third Hospital, Beijing 100191, China
| | - 晓慧 段
- 中日友好医院神经内科,北京 100029Department of Neurology, China-Japan Friendship Hospital, Beijing 100029, China
| | - 朔 张
- 北京大学第三医院神经内科,北京 100191Department of Neurology, Peking University Third Hospital, Beijing 100191, China
| | - 阿萍 孙
- 北京大学第三医院神经内科,北京 100191Department of Neurology, Peking University Third Hospital, Beijing 100191, China
| | - 英爽 张
- 北京大学第三医院神经内科,北京 100191Department of Neurology, Peking University Third Hospital, Beijing 100191, China
| | - 东升 樊
- 北京大学第三医院神经内科,北京 100191Department of Neurology, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
14
|
Panza E, Meyyazhagan A, Orlacchio A. Hereditary spastic paraplegia: Genetic heterogeneity and common pathways. Exp Neurol 2022; 357:114203. [PMID: 35970204 DOI: 10.1016/j.expneurol.2022.114203] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 07/11/2022] [Accepted: 08/09/2022] [Indexed: 02/07/2023]
Abstract
Hereditary Spastic Paraplegias (HSPs) are a heterogeneous group of disease, mainly characterized by progressive spasticity and weakness of the lower limbs resulting from distal degeneration of corticospinal tract axons. Although HSPs represent rare or ultra-rare conditions, with reported cases of mutated genes found in single families, overall, with 87 forms described, they are an important health and economic problem for society and patients. In fact, they are chronic and life-hindering conditions, still lacking a specific therapy. Notwithstanding the number of forms described, and 73 causative genes identified, overall, the molecular diagnostic rate varies among 29% to 61.8%, based on recent published analysis, suggesting that more genes are involved in HSP and/or that different molecular diagnostic approaches are necessary. The accumulating data in this field highlight several peculiar features of HSPs, such as genetic heterogeneity, the discovery that different mutations in a single gene can be transmitted in dominant and recessive trait in families and allelic heterogeneity, resulting in the involvement of HSP-genes in other conditions. Based on the observation of protein functions, the activity of many different proteins encoded by HSP-related genes converges into some distinct pathophysiological mechanisms. This suggests that common pathways could be a potential target for a therapy, possibly addressing several forms at once. Furthermore, the overlap of HSP genes with other neurological conditions can further expand this concept.
Collapse
Affiliation(s)
- Emanuele Panza
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Arun Meyyazhagan
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | - Antonio Orlacchio
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy; Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy.
| |
Collapse
|
15
|
Utz KS, Kohl Z, Marterstock DC, Doerfler A, Winkler J, Schmidt M, Regensburger M. Neuropsychology and MRI correlates of neurodegeneration in SPG11 hereditary spastic paraplegia. Orphanet J Rare Dis 2022; 17:301. [PMID: 35906604 PMCID: PMC9336101 DOI: 10.1186/s13023-022-02451-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/17/2022] [Indexed: 11/30/2022] Open
Abstract
Background SPG11-linked hereditary spastic paraplegia is characterized by multisystem neurodegeneration leading to a complex clinical and yet incurable phenotype of progressive spasticity and weakness. Severe cognitive symptoms are present in the majority of SPG11 patients, but a systematic and multidimensional analysis of the neuropsychological phenotype in a larger cohort is lacking. While thinning of the corpus callosum is a well-known structural hallmark observed in SPG11 patients, the neuroanatomical pattern of cortical degeneration is less understood. We here aimed to integrate neuropsychological and brain morphometric measures in SPG11. Methods We examined the neuropsychological profile in 16 SPG11 patients using a defined neuropsychological testing battery. Long-term follow up testing was performed in 7 patients. Cortical and subcortical degeneration was analyzed using an approved, artificial intelligence based magnetic resonance imaging brain morphometry, comparing patients to established reference values and to matched controls. Results In SPG11 patients, verbal fluency and memory as well as frontal-executive functions were severely impaired. Later disease stages were associated with a global pattern of impairments. Interestingly, reaction times correlated significantly with disease progression. Brain morphometry showed a significant reduction of cortical and subcortical parenchymal volume following a rostro-caudal gradient in SPG11. Whereas performance in memory tasks correlated with white matter damage, verbal fluency measures showed strong associations with frontal and parietal cortical volumes.
Conclusions The present data will help define neuropsychological and imaging read out parameters in early as well as in advanced clinical stages for future interventional trials in SPG11. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02451-1.
Collapse
Affiliation(s)
- Kathrin S Utz
- Department of Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Zacharias Kohl
- Department of Molecular Neurology, FAU, Schwabachanlage 6, 91054, Erlangen, Germany.,Center for Rare Diseases (ZSEER), University Hospital Erlangen, Erlangen, Germany.,Department of Neurology, University of Regensburg, Regensburg, Germany
| | | | - Arnd Doerfler
- Department of Neuroradiology, FAU, Erlangen, Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, FAU, Schwabachanlage 6, 91054, Erlangen, Germany.,Center for Rare Diseases (ZSEER), University Hospital Erlangen, Erlangen, Germany
| | | | - Martin Regensburger
- Department of Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany. .,Department of Molecular Neurology, FAU, Schwabachanlage 6, 91054, Erlangen, Germany. .,Center for Rare Diseases (ZSEER), University Hospital Erlangen, Erlangen, Germany.
| |
Collapse
|
16
|
Bisogni G, Romano A, Conte A, Tasca G, Bernardo D, Luigetti M, Di Paolantonio A, Fabrizi GM, Patanella AK, Meleo E, Sabatelli M. Thr124Met myelin protein zero mutation mimicking motor neuron disease. Amyotroph Lateral Scler Frontotemporal Degener 2022; 23:299-304. [PMID: 34210210 DOI: 10.1080/21678421.2021.1946086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 10/21/2022]
Abstract
Mutations in myelin protein zero (MPZ) are associated with heterogeneous manifestations. In this study, we report clinical, electrophysiological, pathological, and muscle MRI findings from two relatives with MPZ Thr124Met variants, disclosing different phenotypes. The proband was a 73-year-old female with a 12-year-story of atrophy, weakness, and fasciculations in her proximal and distal lower limbs. EMG examination showed neurogenic signs with active denervation together with reduced sensory action potentials, without sensory symptoms. The initial diagnosis was of a slowly progressive lower motor neuron disease (MND) with subclinical sensory axonal neuropathy. Two years later, the observation of her 60-year-old nephew, who had a distal sensory-motor neuropathy, prompted the analysis of inherited neuropathies-related genes and revealed a MPZ Thr124Met mutation in both cases. Our findings expand the clinical spectrum of MPZ-related neuropathy and highlight that Thr124Met mutation may cause a syndrome mimicking MND. The challenging issue to detect sensory features in the diagnostic MND work up is discussed.
Collapse
Affiliation(s)
- Giulia Bisogni
- Centro Clinico NEMO-Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italia
| | - Angela Romano
- Centro Clinico NEMO-Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italia
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Roma, Italia
| | - Amelia Conte
- Centro Clinico NEMO-Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italia
| | - Giorgio Tasca
- UOC Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italia
| | - Daniela Bernardo
- Centro Clinico NEMO-Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italia
| | - Marco Luigetti
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Roma, Italia
- UOC Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italia
| | | | - Gian Maria Fabrizi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Agata Katia Patanella
- Centro Clinico NEMO-Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italia
| | - Emiliana Meleo
- Centro Clinico NEMO-Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italia
| | - Mario Sabatelli
- Centro Clinico NEMO-Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italia
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Roma, Italia
| |
Collapse
|
17
|
Hörner M, Groh J, Klein D, Ilg W, Schöls L, Santos SD, Bergmann A, Klebe S, Cauhape M, Branchu J, El Hachimi KH, Stevanin G, Darios F, Martini R. CNS-associated T-lymphocytes in a mouse model of Hereditary Spastic Paraplegia type 11 (SPG11) are therapeutic targets for established immunomodulators. Exp Neurol 2022; 355:114119. [DOI: 10.1016/j.expneurol.2022.114119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 11/04/2022]
|
18
|
Molecular Characterization of Portuguese Patients with Hereditary Cerebellar Ataxia. Cells 2022; 11:cells11060981. [PMID: 35326432 PMCID: PMC8946949 DOI: 10.3390/cells11060981] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 01/02/2023] Open
Abstract
Hereditary cerebellar ataxia (HCA) comprises a clinical and genetic heterogeneous group of neurodegenerative disorders characterized by incoordination of movement, speech, and unsteady gait. In this study, we performed whole-exome sequencing (WES) in 19 families with HCA and presumed autosomal recessive (AR) inheritance, to identify the causal genes. A phenotypic classification was performed, considering the main clinical syndromes: spastic ataxia, ataxia and neuropathy, ataxia and oculomotor apraxia (AOA), ataxia and dystonia, and ataxia with cognitive impairment. The most frequent causal genes were associated with spastic ataxia (SACS and KIF1C) and with ataxia and neuropathy or AOA (PNKP). We also identified three families with autosomal dominant (AD) forms arising from de novo variants in KIF1A, CACNA1A, or ATP1A3, reinforcing the importance of differential diagnosis (AR vs. AD forms) in families with only one affected member. Moreover, 10 novel causal-variants were identified, and the detrimental effect of two splice-site variants confirmed through functional assays. Finally, by reviewing the molecular mechanisms, we speculated that regulation of cytoskeleton function might be impaired in spastic ataxia, whereas DNA repair is clearly associated with AOA. In conclusion, our study provided a genetic diagnosis for HCA families and proposed common molecular pathways underlying cerebellar neurodegeneration.
Collapse
|
19
|
Doleckova K, Roth J, Stellmachova J, Gescheidt T, Sigut V, Houska P, Jech R, Zech M, Vyhnalek M, Vyhnalkova E, Seeman P, Meszarosova AU. SPG11: clinical and genetic features of seven Czech patients and literature review. Neurol Res 2022; 44:379-389. [DOI: 10.1080/01616412.2021.1975224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kristyna Doleckova
- Department of Neurology and Center of Clinical Neuroscience First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague
| | - Jan Roth
- Department of Neurology and Center of Clinical Neuroscience First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague
| | - Julia Stellmachova
- Department of Medical Genetics, University Hospital Olomouc, Olomouc, Czechia
| | - Tomas Gescheidt
- Department of Neurology, St. Anne´s University Hospital, Brno, Czechia
| | | | - Pavel Houska
- Department of Neurology, Strakonice Hospital, Strakonice, Czechia
| | - Robert Jech
- Department of Neurology and Center of Clinical Neuroscience First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Martin Vyhnalek
- Department of Neurology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague
| | - Emilie Vyhnalkova
- Department of Biology and Medical Genetics, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague
| | - Pavel Seeman
- Department of Paediatric Neurology, Neurogenetic Laboratory, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague
| | - Anna Uhrova Meszarosova
- Department of Paediatric Neurology, Neurogenetic Laboratory, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague
| |
Collapse
|
20
|
Hereditary Spastic Paraplegia: An Update. Int J Mol Sci 2022; 23:ijms23031697. [PMID: 35163618 PMCID: PMC8835766 DOI: 10.3390/ijms23031697] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/21/2021] [Accepted: 01/28/2022] [Indexed: 12/12/2022] Open
Abstract
Hereditary spastic paraplegia (HSP) is a rare neurodegenerative disorder with the predominant clinical manifestation of spasticity in the lower extremities. HSP is categorised based on inheritance, the phenotypic characters, and the mode of molecular pathophysiology, with frequent degeneration in the axon of cervical and thoracic spinal cord’s lateral region, comprising the corticospinal routes. The prevalence ranges from 0.1 to 9.6 subjects per 100,000 reported around the globe. Though modern medical interventions help recognize and manage the disorder, the symptomatic measures remain below satisfaction. The present review assimilates the available data on HSP and lists down the chromosomes involved in its pathophysiology and the mutations observed in the respective genes on the chromosomes. It also sheds light on the treatment available along with the oral/intrathecal medications, physical therapies, and surgical interventions. Finally, we have discussed the related diagnostic techniques as well as the linked pharmacogenomics studies under future perspectives.
Collapse
|
21
|
Daida K, Nishioka Y, Li Y, Yoshino H, Funayama M, Hattori N, Nishioka K. A complex form of hereditary spastic paraplegia harboring a novel variant, p.W1515*, in the SPG11 gene. eNeurologicalSci 2022; 26:100391. [PMID: 35036589 PMCID: PMC8749458 DOI: 10.1016/j.ensci.2021.100391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/14/2021] [Accepted: 12/26/2021] [Indexed: 11/30/2022] Open
Abstract
Individuals with hereditary spastic paraplegia (HSP) are known to present with a variety of symptoms, including intellectual disability, cognitive decline, parkinsonism, and epilepsy. We report here our experience of treating a family with consanguinity, including three patients with HSP-related symptoms. We performed whole-exome sequencing and identified a novel pathogenic nonsense variant, c.4544G > A, p.W1515*, in the SPG11 gene. Proband and her affected sister showed the same course of gait disturbance due to spastic paraplegia from childhood and progressive cognitive decline from early adulthood. Brain MRI depicted a thinning of the corpus callosum, severe atrophic changes in the frontotemporal lobes, and ears of the lynx sign. Patients with SPG11 variants clinically present with distinctive symptoms. HSP type 11 is a rare clinical and genetic heterogeneous disorder. We present three cases in a family with a complex form of HSP type 11. We identified a novel nonsense variant, c.4544G > A, p.W1515*, in SPG11. Brain MRI is an important tool to help with the diagnosis of HSP type 11.
Collapse
Affiliation(s)
- Kensuke Daida
- Department of Neurology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yosuke Nishioka
- Nishioka Memorial Central Clinic, 375 Hasama, Isobecho, Shima-shi, Mie 517-0214, Japan
| | - Yuanzhe Li
- Department of Neurology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Hiroyo Yoshino
- Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Manabu Funayama
- Department of Neurology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.,Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.,Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kenya Nishioka
- Department of Neurology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
22
|
Hong JM, Jeon H, Choi YC, Cho H, Hong YB, Park HJ. A Compound Heterozygous Pathogenic Variant in B4GALNT1 Is Associated With Axonal Charcot-Marie-Tooth Disease. J Clin Neurol 2021; 17:534-540. [PMID: 34595861 PMCID: PMC8490901 DOI: 10.3988/jcn.2021.17.4.534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 11/17/2022] Open
Abstract
Background and Purpose Pathogenic variants in B4GALNT1 have been reported to cause hereditary spastic paraplegia 26. This study has revealed that a novel compound heterozygous pathogenic variant in B4GALNT1 is associated with axonal Charcot-Marie-Tooth disease (CMT). Methods Whole-exome sequencing (WES) was used to identify the causative factors and characterize the clinical features of a Korean family with sensorimotor polyneuropathy. Functional assessment of the mutant genes was performed using a motor neuron cell line. Results The WES revealed a compound heterozygous pathogenic variant (c.128dupC and c.451G>A) in B4GALNT1 as the causative of the present patient, a 53-year-old male who presented with axonal sensorimotor polyneuropathy and cognitive impairment without spasticity. The electrodiagnostic study showed axonal sensorimotor polyneuropathy. B4GALNT1 was critical to the proliferation of motor neuron cells. The compensation assay revealed that the pathogenic variants might affect the enzymatic activity of B4GALNT1. Conclusions This study is the first to identify a case of autosomal recessive axonal CMT associated with a compound heterozygous pathogenic variant in B4GALNT1. This finding expands the clinical and genetic spectra of peripheral neuropathy.
Collapse
Affiliation(s)
- Ji Man Hong
- Department of Neurology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Korea
| | - Hyeonjin Jeon
- Department of Biochemistry, College of Medicine, Dong-A University, Busan, Korea.,Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, Korea
| | - Young Chul Choi
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hanna Cho
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Young Bin Hong
- Department of Biochemistry, College of Medicine, Dong-A University, Busan, Korea.,Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, Korea.
| | - Hyung Jun Park
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
23
|
Pimentel SLG, Misawa MAM, Conci LS, Takahashi BS, Lima LH, Balaratnasingam C, Agarwal A, Cunha de Souza E. MYSTERY CASE: RETINAL PIGMENT EPITHELIAL DYSTROPHY IN A PATIENT WITH POLYNEUROPATHY. Retin Cases Brief Rep 2021; 15:S25-S31. [PMID: 34171904 DOI: 10.1097/icb.0000000000001148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
| | | | - Lívia S Conci
- Department of Ophthalmology, University of São Paulo (USP), SP, Brazil
| | | | - Luiz H Lima
- Department of Ophthalmology, Federal University of São Paulo (UNIFESP), SP, Brazil
| | - Chandrakumar Balaratnasingam
- Center for Ophthalmology and Visual Science, University of Western Australia, Perth, Australia
- Department of Ophthalmology, Sir Charles Gairdner Hospital, Western Australia, Australia ; and
| | | | | |
Collapse
|
24
|
Toupenet Marchesi L, Leblanc M, Stevanin G. Current Knowledge of Endolysosomal and Autophagy Defects in Hereditary Spastic Paraplegia. Cells 2021; 10:cells10071678. [PMID: 34359848 PMCID: PMC8307360 DOI: 10.3390/cells10071678] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 12/25/2022] Open
Abstract
Hereditary spastic paraplegia (HSP) refers to a group of neurological disorders involving the degeneration of motor neurons. Due to their clinical and genetic heterogeneity, finding common effective therapeutics is difficult. Therefore, a better understanding of the common pathological mechanisms is necessary. The role of several HSP genes/proteins is linked to the endolysosomal and autophagic pathways, suggesting a functional convergence. Furthermore, impairment of these pathways is particularly interesting since it has been linked to other neurodegenerative diseases, which would suggest that the nervous system is particularly sensitive to the disruption of the endolysosomal and autophagic systems. In this review, we will summarize the involvement of HSP proteins in the endolysosomal and autophagic pathways in order to clarify their functioning and decipher some of the pathological mechanisms leading to HSP.
Collapse
Affiliation(s)
- Liriopé Toupenet Marchesi
- Institut du Cerveau—Paris Brain Institute—ICM, INSERM, CNRS, APHP, Sorbonne Université, Pitié-Salpêtrière Hospital, 75013 Paris, France; (L.T.M.); (M.L.)
- Neurogenetics Team, EPHE, Paris Sciences Lettres Research University, 75000 Paris, France
| | - Marion Leblanc
- Institut du Cerveau—Paris Brain Institute—ICM, INSERM, CNRS, APHP, Sorbonne Université, Pitié-Salpêtrière Hospital, 75013 Paris, France; (L.T.M.); (M.L.)
- Neurogenetics Team, EPHE, Paris Sciences Lettres Research University, 75000 Paris, France
| | - Giovanni Stevanin
- Institut du Cerveau—Paris Brain Institute—ICM, INSERM, CNRS, APHP, Sorbonne Université, Pitié-Salpêtrière Hospital, 75013 Paris, France; (L.T.M.); (M.L.)
- Neurogenetics Team, EPHE, Paris Sciences Lettres Research University, 75000 Paris, France
- Correspondence:
| |
Collapse
|
25
|
Mori S, Honda H, Hamasaki H, Sasagasako N, Suzuki SO, Furuya H, Taniwaki T, Iwaki T. Transactivation response DNA-binding protein of 43 kDa proteinopathy and lysosomal abnormalities in spastic paraplegia type 11. Neuropathology 2021; 41:253-265. [PMID: 34031922 DOI: 10.1111/neup.12733] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/30/2020] [Accepted: 12/25/2020] [Indexed: 12/12/2022]
Abstract
Spastic paraplegia type 11 (SPG11) is the most common autosomal recessive hereditary spastic paraplegia with thinning of the corpus callosum. Spatacsin, a protein encoded by the SPG11 gene, is associated with autophagy. SPG11 patients show spastic paraplegia, intellectual disability, dementia, and parkinsonism. A previous neuropathological analysis of SPG11 cases reported neurodegeneration mimicking amyotrophic lateral sclerosis without transactivation response DNA-binding protein of 43 kDa (TDP-43) deposits and unique sequestosome 1 (SQSTM1)-positive neuronal inclusions. We performed a neuropathological examination of two Japanese patients with complicated spastic paraplegia with thinning of the corpus callosum from different families, and one was genetically diagnosed as having SPG11. Both cases showed diffuse atrophy of the brain and spinal cord. Depigmentation of the substantia nigra was also observed. Immunohistochemistry revealed widespread distribution of areas showing TDP-43 aggregation in the central nervous system. The TDP-43 deposits in the thalamus and substantia nigra especially resembled skein-like inclusions. Unique SQSTM1-positive neuronal inclusions, as previously reported, were widespread in the whole central nervous system as well as the dorsal root ganglia. Double-labeling immunofluorescence of the dorsal root ganglia revealed that the unique, large SQSTM1-positive cytoplasmic inclusions of the ganglion cells were labeled with lysosome-associated membrane protein 1 and lysosome-associated membrane protein 2. This is the first report showing TDP-43 pathology in SPG11. The common neuropathological findings of TDP-43-positive inclusions in both the cases imply a causal connection between the TDP-43 proteinopathy and autophagy dysfunction in SPG11.
Collapse
Affiliation(s)
- Shinichiro Mori
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Neurology, Division of Respirology, Neurology and Rheumatology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Hiroyuki Honda
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideomi Hamasaki
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naokazu Sasagasako
- Department of Neurology, Neuro-Muscular Center, National Omuta Hospital, Omuta, Japan
| | - Satoshi O Suzuki
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hirokazu Furuya
- Department of Neurology, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Takayuki Taniwaki
- Department of Neurology, Division of Respirology, Neurology and Rheumatology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Toru Iwaki
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
26
|
Viral Interactions with Adaptor-Protein Complexes: A Ubiquitous Trait among Viral Species. Int J Mol Sci 2021; 22:ijms22105274. [PMID: 34067854 PMCID: PMC8156722 DOI: 10.3390/ijms22105274] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/22/2022] Open
Abstract
Numerous viruses hijack cellular protein trafficking pathways to mediate cell entry or to rearrange membrane structures thereby promoting viral replication and antagonizing the immune response. Adaptor protein complexes (AP), which mediate protein sorting in endocytic and secretory transport pathways, are one of the conserved viral targets with many viruses possessing AP-interacting motifs. We present here different mechanisms of viral interference with AP complexes and the functional consequences that allow for efficient viral propagation and evasion of host immune defense. The ubiquity of this phenomenon is evidenced by the fact that there are representatives for AP interference in all major viral families, covered in this review. The best described examples are interactions of human immunodeficiency virus and human herpesviruses with AP complexes. Several other viruses, like Ebola, Nipah, and SARS-CoV-2, are pointed out as high priority disease-causative agents supporting the need for deeper understanding of virus-AP interplay which can be exploited in the design of novel antiviral therapies.
Collapse
|
27
|
Amador MDM, Muratet F, Teyssou E, Boillée S, Millecamps S. New advances in Amyotrophic Lateral Sclerosis genetics: Towards gene therapy opportunities for familial and young cases. Rev Neurol (Paris) 2021; 177:524-535. [PMID: 33810837 DOI: 10.1016/j.neurol.2021.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/04/2021] [Indexed: 10/21/2022]
Abstract
Due to novel gene therapy opportunities, genetic screening is no longer restricted to familial cases of ALS (FALS) cases but also aplies to the sporadic populations (SALS). Screening of four main genes (C9orf72, SOD1, TARDBP and FUS) identified the causes in 15% of Amyotrophic Lateral Sclerosis (ALS) patients (two third of the familial cases and 8% of the sporadic ones) but their respective contribution to ALS phenotype varies according the age of disease onset. The genetic overlap between ALS and other diseases is expanding and includes frontotemporal dementia, Paget's Disease of Bone, myopathy for adult cases, HSP and CMT for young cases highlighing the importance of retrieving the exhaustive familial history for each indivdual with ALS. Incomplete disease penetrance, diversity of the possible phenotypes, as well as the lack of confidence concerning the pathogenicity of most identified variants and/or possible oligogenic inheritance are burdens of ALS genetic counseling to be delivered to patients and at risk individuals. The multitude of rare ALS genetic causes identifed seems to converge to similar cellular pathways leading to inapropriate response to stress emphacising new potential therapeutic options for the disease.
Collapse
Affiliation(s)
- M-D-M Amador
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U1127, CNRS UMR7225, Sorbonne Université, UPMC Univ Paris 6 UMRS1127, 75013 Paris, France; Département de Neurologie, Assistance Publique Hôpitaux de Paris (APHP), Centre de référence SLA Île de France, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France.
| | - F Muratet
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U1127, CNRS UMR7225, Sorbonne Université, UPMC Univ Paris 6 UMRS1127, 75013 Paris, France.
| | - E Teyssou
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U1127, CNRS UMR7225, Sorbonne Université, UPMC Univ Paris 6 UMRS1127, 75013 Paris, France.
| | - S Boillée
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U1127, CNRS UMR7225, Sorbonne Université, UPMC Univ Paris 6 UMRS1127, 75013 Paris, France.
| | - S Millecamps
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U1127, CNRS UMR7225, Sorbonne Université, UPMC Univ Paris 6 UMRS1127, 75013 Paris, France.
| |
Collapse
|
28
|
Saputra L, Kumar KR. Challenges and Controversies in the Genetic Diagnosis of Hereditary Spastic Paraplegia. Curr Neurol Neurosci Rep 2021; 21:15. [PMID: 33646413 PMCID: PMC7921051 DOI: 10.1007/s11910-021-01099-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2021] [Indexed: 12/11/2022]
Abstract
Purpose of Review The hereditary spastic paraplegias (HSPs) are a group of disorders characterised by progressive lower limb weakness and spasticity. We address the challenges and controversies involved in the genetic diagnosis of HSP. Recent Findings There is a large and rapidly expanding list of genes implicated in HSP, making it difficult to keep gene testing panels updated. There is also a high degree of phenotypic overlap between HSP and other disorders, leading to problems in choosing the right panel to analyse. We discuss genetic testing strategies for overcoming these diagnostic hurdles, including the use of targeted sequencing gene panels, whole-exome sequencing and whole-genome sequencing. Personalised treatments for HSP are on the horizon, and a genetic diagnosis may hold the key to access these treatments. Summary Developing strategies to overcome the challenges and controversies in HSP may hold the key to a rapid and accurate genetic diagnosis.
Collapse
Affiliation(s)
- Lydia Saputra
- Northern Beaches Hospital, Frenchs Forest, New South Wales, Australia
| | - Kishore Raj Kumar
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia. .,Molecular Medicine Laboratory, Concord Repatriation General Hospital, Concord, Sydney, New South Wales, Australia. .,Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia. .,Institute of Precision Medicine & Bioinformatics, Sydney Local Health District, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia.
| |
Collapse
|
29
|
Schiavon CR, Shadel GS, Manor U. Impaired Mitochondrial Mobility in Charcot-Marie-Tooth Disease. Front Cell Dev Biol 2021; 9:624823. [PMID: 33598463 PMCID: PMC7882694 DOI: 10.3389/fcell.2021.624823] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
Charcot-Marie-Tooth (CMT) disease is a progressive, peripheral neuropathy and the most commonly inherited neurological disorder. Clinical manifestations of CMT mutations are typically limited to peripheral neurons, the longest cells in the body. Currently, mutations in at least 80 different genes are associated with CMT and new mutations are regularly being discovered. A large portion of the proteins mutated in axonal CMT have documented roles in mitochondrial mobility, suggesting that organelle trafficking defects may be a common underlying disease mechanism. This review will focus on the potential role of altered mitochondrial mobility in the pathogenesis of axonal CMT, highlighting the conceptional challenges and potential experimental and therapeutic opportunities presented by this "impaired mobility" model of the disease.
Collapse
Affiliation(s)
- Cara R. Schiavon
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, United States
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Gerald S. Shadel
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Uri Manor
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, United States
| |
Collapse
|
30
|
Pozner T, Regensburger M, Engelhorn T, Winkler J, Winner B. Janus-faced spatacsin (SPG11): involvement in neurodevelopment and multisystem neurodegeneration. Brain 2020; 143:2369-2379. [PMID: 32355960 PMCID: PMC7447516 DOI: 10.1093/brain/awaa099] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/12/2020] [Accepted: 02/05/2020] [Indexed: 12/11/2022] Open
Abstract
Hereditary spastic paraplegia (HSP) is a heterogeneous group of rare motor neuron disorders characterized by progressive weakness and spasticity of the lower limbs. HSP type 11 (SPG11-HSP) is linked to pathogenic variants in the SPG11 gene and it represents the most frequent form of complex autosomal recessive HSP. The majority of SPG11-HSP patients exhibit additional neurological symptoms such as cognitive decline, thin corpus callosum, and peripheral neuropathy. Yet, the mechanisms of SPG11-linked spectrum diseases are largely unknown. Recent findings indicate that spatacsin, the 280 kDa protein encoded by SPG11, may impact the autophagy-lysosomal machinery. In this update, we summarize the current knowledge of SPG11-HSP. In addition to clinical symptoms and differential diagnosis, our work aims to link the different clinical manifestations with the respective structural abnormalities and cellular in vitro phenotypes. Moreover, we describe the impact of localization and function of spatacsin in different neuronal systems. Ultimately, we propose a model in which spatacsin bridges between neurodevelopmental and neurodegenerative phenotypes of SPG11-linked disorders.
Collapse
Affiliation(s)
- Tatyana Pozner
- Department of Stem Cell Biology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Regensburger
- Department of Stem Cell Biology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany.,Department of Neurology, FAU Erlangen-Nürnberg, Erlangen, Germany.,Department of Molecular Neurology, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Tobias Engelhorn
- Department of Neuroradiology, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Beate Winner
- Department of Stem Cell Biology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany.,Center of Rare Diseases Erlangen (ZSEER), FAU Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
31
|
Homozygous frameshift mutation of SPG11 as a cause of progressive flaccid paralysis, ataxia and dysphagia. J Clin Neurosci 2020; 81:90-91. [PMID: 33222977 DOI: 10.1016/j.jocn.2020.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/19/2020] [Accepted: 09/06/2020] [Indexed: 11/22/2022]
Abstract
Hereditary spastic paraplegias (HSP) are phenotypically and genotypically diverse. We describe a unique case of autosomal recessive HSP (ARHSP) diagnosed at age 44 in a patient previously described as having "spinal muscular ataxia" [sic]. Predominant lower motor neuron findings and lack of clinical spasticity reduced suspicion for HSP in early life. The identified SPG11 mutation was novel and the presentation was atypical for HSP in general and SPG11 disease specifically.
Collapse
|
32
|
Lallemant-Dudek P, Durr A. Clinical and genetic update of hereditary spastic paraparesis. Rev Neurol (Paris) 2020; 177:550-556. [PMID: 32807405 DOI: 10.1016/j.neurol.2020.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023]
Abstract
Hereditary spastic paraparesis is a group of inherited neurological diseases characterized by underlying wide genetic heterogeneity. It should be suspected if there is a positive familial history, a common genetic alteration (i.e. SPG4, the most overall frequent form), or association with other signs, such as cerebellar ataxia (i.e. SPG7), early cognitive impairment or even cognitive deficit (i.e. SPG11), or peripheral neuropathy (i.e. SACS). The natural history is known for certain genetic subgroups, with genotype-phenotype correlations partially explaining childhood or late onset. However, the search for genetic modifying factors, in addition to the causal pathogenic variant or environmental influencers, is still needed. Novel approaches to provide etiological treatment are in the pipeline for SPG11. Symptomatic treatments are available but would benefit from randomized controlled trials.
Collapse
Affiliation(s)
- P Lallemant-Dudek
- Paris Brain Institute (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France.
| | - A Durr
- Paris Brain Institute (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France; Assistance Publique-Hôpitaux de Paris (AP-HP), Genetics Department, Pitié-Salpêtrière University Hospital, Paris, France
| |
Collapse
|
33
|
Bean DM, Al-Chalabi A, Dobson RJB, Iacoangeli A. A Knowledge-Based Machine Learning Approach to Gene Prioritisation in Amyotrophic Lateral Sclerosis. Genes (Basel) 2020; 11:E668. [PMID: 32575372 PMCID: PMC7349022 DOI: 10.3390/genes11060668] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis is a neurodegenerative disease of the upper and lower motor neurons resulting in death from neuromuscular respiratory failure, typically within two to five years of first symptoms. Several rare disruptive gene variants have been associated with ALS and are responsible for about 15% of all cases. Although our knowledge of the genetic landscape of this disease is improving, it remains limited. Machine learning models trained on the available protein-protein interaction and phenotype-genotype association data can use our current knowledge of the disease genetics for the prediction of novel candidate genes. Here, we describe a knowledge-based machine learning method for this purpose. We trained our model on protein-protein interaction data from IntAct, gene function annotation from Gene Ontology, and known disease-gene associations from DisGeNet. Using several sets of known ALS genes from public databases and a manual review as input, we generated a list of new candidate genes for each input set. We investigated the relevance of the predicted genes in ALS by using the available summary statistics from the largest ALS genome-wide association study and by performing functional and phenotype enrichment analysis. The predicted sets were enriched for genes associated with other neurodegenerative diseases known to overlap with ALS genetically and phenotypically, as well as for biological processes associated with the disease. Moreover, using ALS genes from ClinVar and our manual review as input, the predicted sets were enriched for ALS-associated genes (ClinVar p = 0.038 and manual review p = 0.060) when used for gene prioritisation in a genome-wide association study.
Collapse
Affiliation(s)
- Daniel M. Bean
- Department of Biostatistics & Health Informatics, King′s College London, 16 De Crespigny Park, London SE5 8AF, UK;
- Health Data Research UK London, University College London, 16 De Crespigny Park, London SE5 8AF, UK
| | - Ammar Al-Chalabi
- King′s College Hospital, Bessemer Road, Denmark Hill, Brixton, London SE5 9RS, UK;
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, King′s College London, London, 5 Cutcombe Rd, Brixton, London SE5 9RT, UK
| | - Richard J. B. Dobson
- Department of Biostatistics & Health Informatics, King′s College London, 16 De Crespigny Park, London SE5 8AF, UK;
- Health Data Research UK London, University College London, 16 De Crespigny Park, London SE5 8AF, UK
- Institute of Health Informatics, University College London, 222 Euston Rd, London NW1 2DA, UK
| | - Alfredo Iacoangeli
- Department of Biostatistics & Health Informatics, King′s College London, 16 De Crespigny Park, London SE5 8AF, UK;
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, King′s College London, London, 5 Cutcombe Rd, Brixton, London SE5 9RT, UK
| |
Collapse
|
34
|
Khani M, Shamshiri H, Fatehi F, Rohani M, Haghi Ashtiani B, Akhoundi FH, Alavi A, Moazzeni H, Taheri H, Ghani MT, Javanparast L, Hashemi SS, Haji-Seyed-Javadi R, Heidari M, Nafissi S, Elahi E. Description of combined ARHSP/JALS phenotype in some patients with SPG11 mutations. Mol Genet Genomic Med 2020; 8:e1240. [PMID: 32383541 PMCID: PMC7336765 DOI: 10.1002/mgg3.1240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/11/2020] [Accepted: 03/20/2020] [Indexed: 12/11/2022] Open
Abstract
Background SPG11 mutations can cause autosomal recessive hereditary spastic paraplegia (ARHSP) and juvenile amyotrophic lateral sclerosis (JALS). Because these diseases share some clinical presentations and both can be caused by SPG11 mutations, it was considered that definitive diagnosis may not be straight forward. Methods The DNAs of referred ARHSP and JALS patients were exome sequenced. Clinical data of patients with SPG11 mutations were gathered by interviews and neurological examinations including electrodiagnosis (EDX) and magnetic resonance imaging (MRI). Results Eight probands with SPG11 mutations were identified. Two mutations are novel. Among seven Iranian probands, six carried the p.Glu1026Argfs*4‐causing mutation. All eight patients had features known to be present in both ARHSP and JALS. Additionally and surprisingly, presence of both thin corpus callosum (TCC) on MRI and motor neuronopathy were also observed in seven patients. These presentations are, respectively, key suggestive features of ARHSP and JALS. Conclusion We suggest that rather than ARHSP or JALS, combined ARHSP/JALS is the appropriate description of seven patients studied. Criteria for ARHSP, JALS, and combined ARHSP/JALS designations among patients with SPG11 mutations are suggested. The importance of performing both EDX and MRI is emphasized. Initial screening for p.Glu1026Argfs*4 may facilitate SPG11 screenings in Iranian patients.
Collapse
Affiliation(s)
- Marzieh Khani
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Hosein Shamshiri
- Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Fatehi
- Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Rohani
- Department of Neurology, Hazrat Rasool Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Bahram Haghi Ashtiani
- Department of Neurology, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Haji Akhoundi
- Department of Neurology, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Afagh Alavi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hamidreza Moazzeni
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Hanieh Taheri
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Mina Tolou Ghani
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Leila Javanparast
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Seyyed Saleh Hashemi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | | | - Matineh Heidari
- Department of Neurology, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Shahriar Nafissi
- Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Elahi
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW Charcot-Marie-Tooth (CMT) disease and related disorders are the commonest group of inherited neuromuscular diseases and represent a heterogeneous group of disorders. This review will cover recent advances in genetic diagnosis and the evolving genetic and phenotype landscape of this disease group. We will review recent evidence of the increasingly recognized phenotypic overlap with other neurodegenerative conditions including hereditary spastic paraplegia, hereditary ataxias and mitochondrial diseases and highlight the importance of deep phenotyping to inform genetic diagnosis and prognosis. RECENT FINDINGS Through whole exome sequencing and multicentre collaboration new genes are being identified as causal for CMT expanding the genetic heterogeneity of this condition. In addition, an increasing number of variants have been identified in genes known to cause complex inherited diseases in which the peripheral neuropathy is part of the disorder and may be the presenting feature. The recent discovery of a repeat expansion in the RFC1 gene in cerebellar ataxia, neuropathy, vestibular areflexia syndrome highlights the prevalence of late-onset recessive conditions which have historically been considered to cause early-onset disease. SUMMARY CMT is an evolving field with considerable phenotypic and genetic heterogeneity and deep phenotyping remains a cornerstone in contemporary CMT diagnostics.
Collapse
|
36
|
Yarwood R, Hellicar J, Woodman PG, Lowe M. Membrane trafficking in health and disease. Dis Model Mech 2020; 13:13/4/dmm043448. [PMID: 32433026 PMCID: PMC7197876 DOI: 10.1242/dmm.043448] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Membrane trafficking pathways are essential for the viability and growth of cells, and play a major role in the interaction of cells with their environment. In this At a Glance article and accompanying poster, we outline the major cellular trafficking pathways and discuss how defects in the function of the molecular machinery that mediates this transport lead to various diseases in humans. We also briefly discuss possible therapeutic approaches that may be used in the future treatment of trafficking-based disorders. Summary: This At a Glance article and poster summarise the major intracellular membrane trafficking pathways and associated molecular machineries, and describe how defects in these give rise to disease in humans.
Collapse
Affiliation(s)
- Rebecca Yarwood
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - John Hellicar
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Philip G Woodman
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Martin Lowe
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
37
|
Pérez-Brangulí F, Buchsbaum IY, Pozner T, Regensburger M, Fan W, Schray A, Börstler T, Mishra H, Gräf D, Kohl Z, Winkler J, Berninger B, Cappello S, Winner B. Human SPG11 cerebral organoids reveal cortical neurogenesis impairment. Hum Mol Genet 2020; 28:961-971. [PMID: 30476097 PMCID: PMC6400051 DOI: 10.1093/hmg/ddy397] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/23/2018] [Accepted: 11/10/2018] [Indexed: 12/12/2022] Open
Abstract
Spastic paraplegia gene 11(SPG11)-linked hereditary spastic paraplegia is a complex monogenic neurodegenerative disease that in addition to spastic paraplegia is characterized by childhood onset cognitive impairment, thin corpus callosum and enlarged ventricles. We have previously shown impaired proliferation of SPG11 neural progenitor cells (NPCs). For the delineation of potential defect in SPG11 brain development we employ 2D culture systems and 3D human brain organoids derived from SPG11 patients’ iPSC and controls. We reveal that an increased rate of asymmetric divisions of NPCs leads to proliferation defect, causing premature neurogenesis. Correspondingly, SPG11 organoids appeared smaller than controls and had larger ventricles as well as thinner germinal wall. Premature neurogenesis and organoid size were rescued by GSK3 inhibititors including the Food and Drug Administration-approved tideglusib. These findings shed light on the neurodevelopmental mechanisms underlying disease pathology.
Collapse
Affiliation(s)
- Francesc Pérez-Brangulí
- Department of Stem Cell Biology (former IZKF junior research group III), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Isabel Y Buchsbaum
- Max-Planck Institute of Psychiatry, Munich, Germany.,Graduate School of Systemic Neurosciences (GSN), Ludwig-Maximilians University (LMU), Planegg/Martinsried, Germany
| | - Tatyana Pozner
- Department of Stem Cell Biology (former IZKF junior research group III), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Martin Regensburger
- Department of Stem Cell Biology (former IZKF junior research group III), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Department of Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Wenqiang Fan
- Adult Neurogenesis and Cellular Reprogramming, Institute of Physiological Chemistry and Focus Program Translational Neuroscience, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Annika Schray
- Department of Stem Cell Biology (former IZKF junior research group III), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Tom Börstler
- Department of Stem Cell Biology (former IZKF junior research group III), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Himanshu Mishra
- Department of Stem Cell Biology (former IZKF junior research group III), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Daniela Gräf
- Department of Stem Cell Biology (former IZKF junior research group III), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Zacharias Kohl
- Department of Molecular Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Zentrum für Seltene Erkrankungen Erlangen (ZSEER), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Zentrum für Seltene Erkrankungen Erlangen (ZSEER), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Benedikt Berninger
- Adult Neurogenesis and Cellular Reprogramming, Institute of Physiological Chemistry and Focus Program Translational Neuroscience, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany.,Institute of Psychiatry, Psychology & Neuroscience, Centre for Developmental Neurobiology and MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | | | - Beate Winner
- Department of Stem Cell Biology (former IZKF junior research group III), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Zentrum für Seltene Erkrankungen Erlangen (ZSEER), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
38
|
Darios F, Mochel F, Stevanin G. Lipids in the Physiopathology of Hereditary Spastic Paraplegias. Front Neurosci 2020; 14:74. [PMID: 32180696 PMCID: PMC7059351 DOI: 10.3389/fnins.2020.00074] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/20/2020] [Indexed: 12/12/2022] Open
Abstract
Hereditary spastic paraplegias (HSP) are a group of neurodegenerative diseases sharing spasticity in lower limbs as common symptom. There is a large clinical variability in the presentation of patients, partly underlined by the large genetic heterogeneity, with more than 60 genes responsible for HSP. Despite this large heterogeneity, the proteins with known function are supposed to be involved in a limited number of cellular compartments such as shaping of the endoplasmic reticulum or endolysosomal function. Yet, it is difficult to understand why alteration of such different cellular compartments can lead to degeneration of the axons of cortical motor neurons. A common feature that has emerged over the last decade is the alteration of lipid metabolism in this group of pathologies. This was first revealed by the identification of mutations in genes encoding proteins that have or are supposed to have enzymatic activities on lipid substrates. However, it also appears that mutations in genes affecting endoplasmic reticulum, mitochondria, or endolysosome function can lead to changes in lipid distribution or metabolism. The aim of this review is to discuss the role of lipid metabolism alterations in the physiopathology of HSP, to evaluate how such alterations contribute to neurodegenerative phenotypes, and to understand how this knowledge can help develop therapeutic strategy for HSP.
Collapse
Affiliation(s)
- Frédéric Darios
- Sorbonne Université, Paris, France.,Inserm, U1127, Paris, France.,CNRS, UMR 7225, Paris, France.,Institut du Cerveau et de la Moelle Epinière, Paris, France
| | - Fanny Mochel
- Sorbonne Université, Paris, France.,Inserm, U1127, Paris, France.,CNRS, UMR 7225, Paris, France.,Institut du Cerveau et de la Moelle Epinière, Paris, France.,National Reference Center for Neurometabolic Diseases, Pitié-Salpêtrière University Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Giovanni Stevanin
- Sorbonne Université, Paris, France.,Inserm, U1127, Paris, France.,CNRS, UMR 7225, Paris, France.,Institut du Cerveau et de la Moelle Epinière, Paris, France.,Equipe de Neurogénétique, Ecole Pratique des Hautes Etudes, PSL Research University, Paris, France
| |
Collapse
|
39
|
Estiar MA, Leveille E, Spiegelman D, Dupre N, Trempe JF, Rouleau GA, Gan-Or Z. Clinical and genetic analysis of ATP13A2 in hereditary spastic paraplegia expands the phenotype. Mol Genet Genomic Med 2020; 8:e1052. [PMID: 31944623 PMCID: PMC7057081 DOI: 10.1002/mgg3.1052] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 10/30/2019] [Indexed: 12/11/2022] Open
Abstract
Background Hereditary spastic paraplegias (HSP) are neurodegenerative disorders characterized by lower limb spasticity and weakness, with or without additional symptoms. Mutations in ATP13A2, known to cause Kufor–Rakeb syndrome (KRS), have been recently implicated in HSP. Methods Whole‐exome sequencing was done in a Canada‐wide HSP cohort. Results Three additional patients with homozygous ATP13A2 mutations were identified, representing 0.7% of all HSP families. Spastic paraplegia was the predominant feature, all patients suffered from psychiatric symptoms, and one patient had developed seizures. Of the identified mutations, c.2126G>C;(p.[Arg709Thr]) is novel, c.2158G>T;(p.[Gly720Trp]) has not been reported in ATP13A2‐related diseases, and c.2473_2474insAAdelC;p.[Leu825Asnfs*32]) has been previously reported in KRS but not in HSP. Structural analysis of the mutations suggested a disruptive effect, and enrichment analysis suggested the potential involvement of specific pathways. Conclusion Our study suggests that in HSP patients with psychiatric symptoms, ATP13A2 mutations should be suspected, especially if they also have extrapyramidal symptoms.
Collapse
Affiliation(s)
- Mehrdad A Estiar
- Department of Human Genetics, McGill University, Montréal, QC, Canada.,Montreal Neurological Institute and Hospital, McGill University, Montréal, QC, Canada
| | | | - Dan Spiegelman
- Montreal Neurological Institute and Hospital, McGill University, Montréal, QC, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Nicolas Dupre
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Jean-François Trempe
- Department of Pharmacology & Therapeutics, McGill University, Montréal, QC, Canada.,Centre for Structural Biology, McGill University, Montréal, QC, Canada
| | - Guy A Rouleau
- Department of Human Genetics, McGill University, Montréal, QC, Canada.,Montreal Neurological Institute and Hospital, McGill University, Montréal, QC, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Ziv Gan-Or
- Department of Human Genetics, McGill University, Montréal, QC, Canada.,Montreal Neurological Institute and Hospital, McGill University, Montréal, QC, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| |
Collapse
|
40
|
Martin PB, Hicks AN, Holbrook SE, Cox GA. Overlapping spectrums: The clinicogenetic commonalities between Charcot-Marie-Tooth and other neurodegenerative diseases. Brain Res 2020; 1727:146532. [PMID: 31678418 PMCID: PMC6939129 DOI: 10.1016/j.brainres.2019.146532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 12/11/2022]
Abstract
Charcot-Marie-Tooth (CMT) disease is a progressive and heterogeneous inherited peripheral neuropathy. A myriad of genetic factors have been identified that contribute to the degeneration of motor and sensory axons in a length-dependent manner. Emerging biological themes underlying disease include defects in axonal trafficking, dysfunction in RNA metabolism and protein homeostasis, as well deficits in the cellular stress response. Moreover, genetic contributions to CMT can have overlap with other neuropathies, motor neuron diseases (MNDs) and neurodegenerative disorders. Recent progress in understanding the molecular biology of CMT and overlapping syndromes aids in the search for necessary therapeutic targets.
Collapse
Affiliation(s)
- Paige B Martin
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| | - Amy N Hicks
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Sarah E Holbrook
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| | - Gregory A Cox
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA.
| |
Collapse
|
41
|
Wei L, Tian Y, Chen Y, Wei Q, Chen F, Cao B, Wu Y, Zhao B, Chen X, Xie C, Xi C, Yu X, Wang J, Lv X, Du J, Wang Y, Shen L, Wang X, Shen B, Guo Q, Guo L, Xia K, Xie P, Zhang X, Zuo X, Shang H, Wang K. Identification of TYW3/CRYZ and FGD4 as susceptibility genes for amyotrophic lateral sclerosis. NEUROLOGY-GENETICS 2019; 5:e375. [PMID: 31872054 PMCID: PMC6878836 DOI: 10.1212/nxg.0000000000000375] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/10/2019] [Indexed: 02/05/2023]
Abstract
Objective A 2-stage genome-wide association was conducted to explore the genetic etiology of amyotrophic lateral sclerosis (ALS) in the Chinese Han population. Methods Totally, 700 cases and 4,027 controls were genotyped in the discovery stage using Illumina Human660W-Quad BeadChips. Top associated single nucleotide polymorphisms from the discovery stage were then genotyped in an independent cohort with 884 cases and 5,329 controls. Combined analysis was conducted by combining all samples from the 2 stages. Results Two novel loci, 1p31 and 12p11, showed strong associations with ALS. These novel loci explained 2.2% of overall variance in disease risk. Expression quantitative trait loci searches identified TYW/CRYZ and FGD4 as risk genes at 1p13 and 12p11, respectively. Conclusions This study identifies novel susceptibility genes for ALS. Identification of TYW3/CRYZ in the current study supports the notion that insulin resistance may be involved in ALS pathogenesis, whereas FGD4 suggests an association with Charcot-Marie-Tooth disease.
Collapse
Affiliation(s)
- Ling Wei
- Department of Neurology (L.W., Y.T., C. Xie, Y. Wang, K.W.), the First Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (Y.C., Q.W., B.C., Y. Wu, B.Z., X.C., H.S.), West China Hospital of Sichuan University, Chengdu; Department of Medical Psychology (F.C., K.W.), Anhui Medical University; Department of Neurology (C. Xi), the Third Affiliated Hospital of Anhui Medical University; Institution of Neurology (X.Y.), Anhui College of Traditional Medicine; Department of Neurology (J.W.), the Second People's Hospital of Hefei; Department of Neurology (X.L.), Anhui Provincial Hospital; Department of Neurology (J.D.), the Second Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (L.S.), Xiangya Hospital of Central South University, Changsha; Department of Neurology (X.W.), Zhongshan Hospital of Fudan University, Shanghai; Department of Physiology (B.S.), School of Basic Medicine, Anhui Medical University, Hefei; Department of Neurology (Q.G.), Huashan Hospital of Fudan University, Shanghai; Department of Neurology (L.G.), the Second Hospital of Hebei Medical University, Shijiazhuang; School of Life Science (K.X.), Central South University, Changsha; Department of Neurology (P.X.), the First Affiliated Hospital of Chongqing Medical University, Chongqing; Department of Dermatology (X. Zhang, X. Zuo), the First Affiliated Hospital of Anhui Medical University; and State Key Laboratory Incubation Base of Dermatology (X. Zhang, X. Zuo), Ministry of National Science and Technology, Hefei, China
| | - Yanghua Tian
- Department of Neurology (L.W., Y.T., C. Xie, Y. Wang, K.W.), the First Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (Y.C., Q.W., B.C., Y. Wu, B.Z., X.C., H.S.), West China Hospital of Sichuan University, Chengdu; Department of Medical Psychology (F.C., K.W.), Anhui Medical University; Department of Neurology (C. Xi), the Third Affiliated Hospital of Anhui Medical University; Institution of Neurology (X.Y.), Anhui College of Traditional Medicine; Department of Neurology (J.W.), the Second People's Hospital of Hefei; Department of Neurology (X.L.), Anhui Provincial Hospital; Department of Neurology (J.D.), the Second Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (L.S.), Xiangya Hospital of Central South University, Changsha; Department of Neurology (X.W.), Zhongshan Hospital of Fudan University, Shanghai; Department of Physiology (B.S.), School of Basic Medicine, Anhui Medical University, Hefei; Department of Neurology (Q.G.), Huashan Hospital of Fudan University, Shanghai; Department of Neurology (L.G.), the Second Hospital of Hebei Medical University, Shijiazhuang; School of Life Science (K.X.), Central South University, Changsha; Department of Neurology (P.X.), the First Affiliated Hospital of Chongqing Medical University, Chongqing; Department of Dermatology (X. Zhang, X. Zuo), the First Affiliated Hospital of Anhui Medical University; and State Key Laboratory Incubation Base of Dermatology (X. Zhang, X. Zuo), Ministry of National Science and Technology, Hefei, China
| | - Yongping Chen
- Department of Neurology (L.W., Y.T., C. Xie, Y. Wang, K.W.), the First Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (Y.C., Q.W., B.C., Y. Wu, B.Z., X.C., H.S.), West China Hospital of Sichuan University, Chengdu; Department of Medical Psychology (F.C., K.W.), Anhui Medical University; Department of Neurology (C. Xi), the Third Affiliated Hospital of Anhui Medical University; Institution of Neurology (X.Y.), Anhui College of Traditional Medicine; Department of Neurology (J.W.), the Second People's Hospital of Hefei; Department of Neurology (X.L.), Anhui Provincial Hospital; Department of Neurology (J.D.), the Second Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (L.S.), Xiangya Hospital of Central South University, Changsha; Department of Neurology (X.W.), Zhongshan Hospital of Fudan University, Shanghai; Department of Physiology (B.S.), School of Basic Medicine, Anhui Medical University, Hefei; Department of Neurology (Q.G.), Huashan Hospital of Fudan University, Shanghai; Department of Neurology (L.G.), the Second Hospital of Hebei Medical University, Shijiazhuang; School of Life Science (K.X.), Central South University, Changsha; Department of Neurology (P.X.), the First Affiliated Hospital of Chongqing Medical University, Chongqing; Department of Dermatology (X. Zhang, X. Zuo), the First Affiliated Hospital of Anhui Medical University; and State Key Laboratory Incubation Base of Dermatology (X. Zhang, X. Zuo), Ministry of National Science and Technology, Hefei, China
| | - Qianqian Wei
- Department of Neurology (L.W., Y.T., C. Xie, Y. Wang, K.W.), the First Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (Y.C., Q.W., B.C., Y. Wu, B.Z., X.C., H.S.), West China Hospital of Sichuan University, Chengdu; Department of Medical Psychology (F.C., K.W.), Anhui Medical University; Department of Neurology (C. Xi), the Third Affiliated Hospital of Anhui Medical University; Institution of Neurology (X.Y.), Anhui College of Traditional Medicine; Department of Neurology (J.W.), the Second People's Hospital of Hefei; Department of Neurology (X.L.), Anhui Provincial Hospital; Department of Neurology (J.D.), the Second Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (L.S.), Xiangya Hospital of Central South University, Changsha; Department of Neurology (X.W.), Zhongshan Hospital of Fudan University, Shanghai; Department of Physiology (B.S.), School of Basic Medicine, Anhui Medical University, Hefei; Department of Neurology (Q.G.), Huashan Hospital of Fudan University, Shanghai; Department of Neurology (L.G.), the Second Hospital of Hebei Medical University, Shijiazhuang; School of Life Science (K.X.), Central South University, Changsha; Department of Neurology (P.X.), the First Affiliated Hospital of Chongqing Medical University, Chongqing; Department of Dermatology (X. Zhang, X. Zuo), the First Affiliated Hospital of Anhui Medical University; and State Key Laboratory Incubation Base of Dermatology (X. Zhang, X. Zuo), Ministry of National Science and Technology, Hefei, China
| | - Fangfang Chen
- Department of Neurology (L.W., Y.T., C. Xie, Y. Wang, K.W.), the First Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (Y.C., Q.W., B.C., Y. Wu, B.Z., X.C., H.S.), West China Hospital of Sichuan University, Chengdu; Department of Medical Psychology (F.C., K.W.), Anhui Medical University; Department of Neurology (C. Xi), the Third Affiliated Hospital of Anhui Medical University; Institution of Neurology (X.Y.), Anhui College of Traditional Medicine; Department of Neurology (J.W.), the Second People's Hospital of Hefei; Department of Neurology (X.L.), Anhui Provincial Hospital; Department of Neurology (J.D.), the Second Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (L.S.), Xiangya Hospital of Central South University, Changsha; Department of Neurology (X.W.), Zhongshan Hospital of Fudan University, Shanghai; Department of Physiology (B.S.), School of Basic Medicine, Anhui Medical University, Hefei; Department of Neurology (Q.G.), Huashan Hospital of Fudan University, Shanghai; Department of Neurology (L.G.), the Second Hospital of Hebei Medical University, Shijiazhuang; School of Life Science (K.X.), Central South University, Changsha; Department of Neurology (P.X.), the First Affiliated Hospital of Chongqing Medical University, Chongqing; Department of Dermatology (X. Zhang, X. Zuo), the First Affiliated Hospital of Anhui Medical University; and State Key Laboratory Incubation Base of Dermatology (X. Zhang, X. Zuo), Ministry of National Science and Technology, Hefei, China
| | - Bei Cao
- Department of Neurology (L.W., Y.T., C. Xie, Y. Wang, K.W.), the First Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (Y.C., Q.W., B.C., Y. Wu, B.Z., X.C., H.S.), West China Hospital of Sichuan University, Chengdu; Department of Medical Psychology (F.C., K.W.), Anhui Medical University; Department of Neurology (C. Xi), the Third Affiliated Hospital of Anhui Medical University; Institution of Neurology (X.Y.), Anhui College of Traditional Medicine; Department of Neurology (J.W.), the Second People's Hospital of Hefei; Department of Neurology (X.L.), Anhui Provincial Hospital; Department of Neurology (J.D.), the Second Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (L.S.), Xiangya Hospital of Central South University, Changsha; Department of Neurology (X.W.), Zhongshan Hospital of Fudan University, Shanghai; Department of Physiology (B.S.), School of Basic Medicine, Anhui Medical University, Hefei; Department of Neurology (Q.G.), Huashan Hospital of Fudan University, Shanghai; Department of Neurology (L.G.), the Second Hospital of Hebei Medical University, Shijiazhuang; School of Life Science (K.X.), Central South University, Changsha; Department of Neurology (P.X.), the First Affiliated Hospital of Chongqing Medical University, Chongqing; Department of Dermatology (X. Zhang, X. Zuo), the First Affiliated Hospital of Anhui Medical University; and State Key Laboratory Incubation Base of Dermatology (X. Zhang, X. Zuo), Ministry of National Science and Technology, Hefei, China
| | - Ying Wu
- Department of Neurology (L.W., Y.T., C. Xie, Y. Wang, K.W.), the First Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (Y.C., Q.W., B.C., Y. Wu, B.Z., X.C., H.S.), West China Hospital of Sichuan University, Chengdu; Department of Medical Psychology (F.C., K.W.), Anhui Medical University; Department of Neurology (C. Xi), the Third Affiliated Hospital of Anhui Medical University; Institution of Neurology (X.Y.), Anhui College of Traditional Medicine; Department of Neurology (J.W.), the Second People's Hospital of Hefei; Department of Neurology (X.L.), Anhui Provincial Hospital; Department of Neurology (J.D.), the Second Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (L.S.), Xiangya Hospital of Central South University, Changsha; Department of Neurology (X.W.), Zhongshan Hospital of Fudan University, Shanghai; Department of Physiology (B.S.), School of Basic Medicine, Anhui Medical University, Hefei; Department of Neurology (Q.G.), Huashan Hospital of Fudan University, Shanghai; Department of Neurology (L.G.), the Second Hospital of Hebei Medical University, Shijiazhuang; School of Life Science (K.X.), Central South University, Changsha; Department of Neurology (P.X.), the First Affiliated Hospital of Chongqing Medical University, Chongqing; Department of Dermatology (X. Zhang, X. Zuo), the First Affiliated Hospital of Anhui Medical University; and State Key Laboratory Incubation Base of Dermatology (X. Zhang, X. Zuo), Ministry of National Science and Technology, Hefei, China
| | - Bi Zhao
- Department of Neurology (L.W., Y.T., C. Xie, Y. Wang, K.W.), the First Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (Y.C., Q.W., B.C., Y. Wu, B.Z., X.C., H.S.), West China Hospital of Sichuan University, Chengdu; Department of Medical Psychology (F.C., K.W.), Anhui Medical University; Department of Neurology (C. Xi), the Third Affiliated Hospital of Anhui Medical University; Institution of Neurology (X.Y.), Anhui College of Traditional Medicine; Department of Neurology (J.W.), the Second People's Hospital of Hefei; Department of Neurology (X.L.), Anhui Provincial Hospital; Department of Neurology (J.D.), the Second Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (L.S.), Xiangya Hospital of Central South University, Changsha; Department of Neurology (X.W.), Zhongshan Hospital of Fudan University, Shanghai; Department of Physiology (B.S.), School of Basic Medicine, Anhui Medical University, Hefei; Department of Neurology (Q.G.), Huashan Hospital of Fudan University, Shanghai; Department of Neurology (L.G.), the Second Hospital of Hebei Medical University, Shijiazhuang; School of Life Science (K.X.), Central South University, Changsha; Department of Neurology (P.X.), the First Affiliated Hospital of Chongqing Medical University, Chongqing; Department of Dermatology (X. Zhang, X. Zuo), the First Affiliated Hospital of Anhui Medical University; and State Key Laboratory Incubation Base of Dermatology (X. Zhang, X. Zuo), Ministry of National Science and Technology, Hefei, China
| | - Xueping Chen
- Department of Neurology (L.W., Y.T., C. Xie, Y. Wang, K.W.), the First Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (Y.C., Q.W., B.C., Y. Wu, B.Z., X.C., H.S.), West China Hospital of Sichuan University, Chengdu; Department of Medical Psychology (F.C., K.W.), Anhui Medical University; Department of Neurology (C. Xi), the Third Affiliated Hospital of Anhui Medical University; Institution of Neurology (X.Y.), Anhui College of Traditional Medicine; Department of Neurology (J.W.), the Second People's Hospital of Hefei; Department of Neurology (X.L.), Anhui Provincial Hospital; Department of Neurology (J.D.), the Second Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (L.S.), Xiangya Hospital of Central South University, Changsha; Department of Neurology (X.W.), Zhongshan Hospital of Fudan University, Shanghai; Department of Physiology (B.S.), School of Basic Medicine, Anhui Medical University, Hefei; Department of Neurology (Q.G.), Huashan Hospital of Fudan University, Shanghai; Department of Neurology (L.G.), the Second Hospital of Hebei Medical University, Shijiazhuang; School of Life Science (K.X.), Central South University, Changsha; Department of Neurology (P.X.), the First Affiliated Hospital of Chongqing Medical University, Chongqing; Department of Dermatology (X. Zhang, X. Zuo), the First Affiliated Hospital of Anhui Medical University; and State Key Laboratory Incubation Base of Dermatology (X. Zhang, X. Zuo), Ministry of National Science and Technology, Hefei, China
| | - Chengjuan Xie
- Department of Neurology (L.W., Y.T., C. Xie, Y. Wang, K.W.), the First Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (Y.C., Q.W., B.C., Y. Wu, B.Z., X.C., H.S.), West China Hospital of Sichuan University, Chengdu; Department of Medical Psychology (F.C., K.W.), Anhui Medical University; Department of Neurology (C. Xi), the Third Affiliated Hospital of Anhui Medical University; Institution of Neurology (X.Y.), Anhui College of Traditional Medicine; Department of Neurology (J.W.), the Second People's Hospital of Hefei; Department of Neurology (X.L.), Anhui Provincial Hospital; Department of Neurology (J.D.), the Second Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (L.S.), Xiangya Hospital of Central South University, Changsha; Department of Neurology (X.W.), Zhongshan Hospital of Fudan University, Shanghai; Department of Physiology (B.S.), School of Basic Medicine, Anhui Medical University, Hefei; Department of Neurology (Q.G.), Huashan Hospital of Fudan University, Shanghai; Department of Neurology (L.G.), the Second Hospital of Hebei Medical University, Shijiazhuang; School of Life Science (K.X.), Central South University, Changsha; Department of Neurology (P.X.), the First Affiliated Hospital of Chongqing Medical University, Chongqing; Department of Dermatology (X. Zhang, X. Zuo), the First Affiliated Hospital of Anhui Medical University; and State Key Laboratory Incubation Base of Dermatology (X. Zhang, X. Zuo), Ministry of National Science and Technology, Hefei, China
| | - Chunhua Xi
- Department of Neurology (L.W., Y.T., C. Xie, Y. Wang, K.W.), the First Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (Y.C., Q.W., B.C., Y. Wu, B.Z., X.C., H.S.), West China Hospital of Sichuan University, Chengdu; Department of Medical Psychology (F.C., K.W.), Anhui Medical University; Department of Neurology (C. Xi), the Third Affiliated Hospital of Anhui Medical University; Institution of Neurology (X.Y.), Anhui College of Traditional Medicine; Department of Neurology (J.W.), the Second People's Hospital of Hefei; Department of Neurology (X.L.), Anhui Provincial Hospital; Department of Neurology (J.D.), the Second Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (L.S.), Xiangya Hospital of Central South University, Changsha; Department of Neurology (X.W.), Zhongshan Hospital of Fudan University, Shanghai; Department of Physiology (B.S.), School of Basic Medicine, Anhui Medical University, Hefei; Department of Neurology (Q.G.), Huashan Hospital of Fudan University, Shanghai; Department of Neurology (L.G.), the Second Hospital of Hebei Medical University, Shijiazhuang; School of Life Science (K.X.), Central South University, Changsha; Department of Neurology (P.X.), the First Affiliated Hospital of Chongqing Medical University, Chongqing; Department of Dermatology (X. Zhang, X. Zuo), the First Affiliated Hospital of Anhui Medical University; and State Key Laboratory Incubation Base of Dermatology (X. Zhang, X. Zuo), Ministry of National Science and Technology, Hefei, China
| | - Xu'en Yu
- Department of Neurology (L.W., Y.T., C. Xie, Y. Wang, K.W.), the First Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (Y.C., Q.W., B.C., Y. Wu, B.Z., X.C., H.S.), West China Hospital of Sichuan University, Chengdu; Department of Medical Psychology (F.C., K.W.), Anhui Medical University; Department of Neurology (C. Xi), the Third Affiliated Hospital of Anhui Medical University; Institution of Neurology (X.Y.), Anhui College of Traditional Medicine; Department of Neurology (J.W.), the Second People's Hospital of Hefei; Department of Neurology (X.L.), Anhui Provincial Hospital; Department of Neurology (J.D.), the Second Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (L.S.), Xiangya Hospital of Central South University, Changsha; Department of Neurology (X.W.), Zhongshan Hospital of Fudan University, Shanghai; Department of Physiology (B.S.), School of Basic Medicine, Anhui Medical University, Hefei; Department of Neurology (Q.G.), Huashan Hospital of Fudan University, Shanghai; Department of Neurology (L.G.), the Second Hospital of Hebei Medical University, Shijiazhuang; School of Life Science (K.X.), Central South University, Changsha; Department of Neurology (P.X.), the First Affiliated Hospital of Chongqing Medical University, Chongqing; Department of Dermatology (X. Zhang, X. Zuo), the First Affiliated Hospital of Anhui Medical University; and State Key Laboratory Incubation Base of Dermatology (X. Zhang, X. Zuo), Ministry of National Science and Technology, Hefei, China
| | - Juan Wang
- Department of Neurology (L.W., Y.T., C. Xie, Y. Wang, K.W.), the First Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (Y.C., Q.W., B.C., Y. Wu, B.Z., X.C., H.S.), West China Hospital of Sichuan University, Chengdu; Department of Medical Psychology (F.C., K.W.), Anhui Medical University; Department of Neurology (C. Xi), the Third Affiliated Hospital of Anhui Medical University; Institution of Neurology (X.Y.), Anhui College of Traditional Medicine; Department of Neurology (J.W.), the Second People's Hospital of Hefei; Department of Neurology (X.L.), Anhui Provincial Hospital; Department of Neurology (J.D.), the Second Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (L.S.), Xiangya Hospital of Central South University, Changsha; Department of Neurology (X.W.), Zhongshan Hospital of Fudan University, Shanghai; Department of Physiology (B.S.), School of Basic Medicine, Anhui Medical University, Hefei; Department of Neurology (Q.G.), Huashan Hospital of Fudan University, Shanghai; Department of Neurology (L.G.), the Second Hospital of Hebei Medical University, Shijiazhuang; School of Life Science (K.X.), Central South University, Changsha; Department of Neurology (P.X.), the First Affiliated Hospital of Chongqing Medical University, Chongqing; Department of Dermatology (X. Zhang, X. Zuo), the First Affiliated Hospital of Anhui Medical University; and State Key Laboratory Incubation Base of Dermatology (X. Zhang, X. Zuo), Ministry of National Science and Technology, Hefei, China
| | - Xinyi Lv
- Department of Neurology (L.W., Y.T., C. Xie, Y. Wang, K.W.), the First Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (Y.C., Q.W., B.C., Y. Wu, B.Z., X.C., H.S.), West China Hospital of Sichuan University, Chengdu; Department of Medical Psychology (F.C., K.W.), Anhui Medical University; Department of Neurology (C. Xi), the Third Affiliated Hospital of Anhui Medical University; Institution of Neurology (X.Y.), Anhui College of Traditional Medicine; Department of Neurology (J.W.), the Second People's Hospital of Hefei; Department of Neurology (X.L.), Anhui Provincial Hospital; Department of Neurology (J.D.), the Second Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (L.S.), Xiangya Hospital of Central South University, Changsha; Department of Neurology (X.W.), Zhongshan Hospital of Fudan University, Shanghai; Department of Physiology (B.S.), School of Basic Medicine, Anhui Medical University, Hefei; Department of Neurology (Q.G.), Huashan Hospital of Fudan University, Shanghai; Department of Neurology (L.G.), the Second Hospital of Hebei Medical University, Shijiazhuang; School of Life Science (K.X.), Central South University, Changsha; Department of Neurology (P.X.), the First Affiliated Hospital of Chongqing Medical University, Chongqing; Department of Dermatology (X. Zhang, X. Zuo), the First Affiliated Hospital of Anhui Medical University; and State Key Laboratory Incubation Base of Dermatology (X. Zhang, X. Zuo), Ministry of National Science and Technology, Hefei, China
| | - Jing Du
- Department of Neurology (L.W., Y.T., C. Xie, Y. Wang, K.W.), the First Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (Y.C., Q.W., B.C., Y. Wu, B.Z., X.C., H.S.), West China Hospital of Sichuan University, Chengdu; Department of Medical Psychology (F.C., K.W.), Anhui Medical University; Department of Neurology (C. Xi), the Third Affiliated Hospital of Anhui Medical University; Institution of Neurology (X.Y.), Anhui College of Traditional Medicine; Department of Neurology (J.W.), the Second People's Hospital of Hefei; Department of Neurology (X.L.), Anhui Provincial Hospital; Department of Neurology (J.D.), the Second Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (L.S.), Xiangya Hospital of Central South University, Changsha; Department of Neurology (X.W.), Zhongshan Hospital of Fudan University, Shanghai; Department of Physiology (B.S.), School of Basic Medicine, Anhui Medical University, Hefei; Department of Neurology (Q.G.), Huashan Hospital of Fudan University, Shanghai; Department of Neurology (L.G.), the Second Hospital of Hebei Medical University, Shijiazhuang; School of Life Science (K.X.), Central South University, Changsha; Department of Neurology (P.X.), the First Affiliated Hospital of Chongqing Medical University, Chongqing; Department of Dermatology (X. Zhang, X. Zuo), the First Affiliated Hospital of Anhui Medical University; and State Key Laboratory Incubation Base of Dermatology (X. Zhang, X. Zuo), Ministry of National Science and Technology, Hefei, China
| | - Yu Wang
- Department of Neurology (L.W., Y.T., C. Xie, Y. Wang, K.W.), the First Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (Y.C., Q.W., B.C., Y. Wu, B.Z., X.C., H.S.), West China Hospital of Sichuan University, Chengdu; Department of Medical Psychology (F.C., K.W.), Anhui Medical University; Department of Neurology (C. Xi), the Third Affiliated Hospital of Anhui Medical University; Institution of Neurology (X.Y.), Anhui College of Traditional Medicine; Department of Neurology (J.W.), the Second People's Hospital of Hefei; Department of Neurology (X.L.), Anhui Provincial Hospital; Department of Neurology (J.D.), the Second Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (L.S.), Xiangya Hospital of Central South University, Changsha; Department of Neurology (X.W.), Zhongshan Hospital of Fudan University, Shanghai; Department of Physiology (B.S.), School of Basic Medicine, Anhui Medical University, Hefei; Department of Neurology (Q.G.), Huashan Hospital of Fudan University, Shanghai; Department of Neurology (L.G.), the Second Hospital of Hebei Medical University, Shijiazhuang; School of Life Science (K.X.), Central South University, Changsha; Department of Neurology (P.X.), the First Affiliated Hospital of Chongqing Medical University, Chongqing; Department of Dermatology (X. Zhang, X. Zuo), the First Affiliated Hospital of Anhui Medical University; and State Key Laboratory Incubation Base of Dermatology (X. Zhang, X. Zuo), Ministry of National Science and Technology, Hefei, China
| | - Lu Shen
- Department of Neurology (L.W., Y.T., C. Xie, Y. Wang, K.W.), the First Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (Y.C., Q.W., B.C., Y. Wu, B.Z., X.C., H.S.), West China Hospital of Sichuan University, Chengdu; Department of Medical Psychology (F.C., K.W.), Anhui Medical University; Department of Neurology (C. Xi), the Third Affiliated Hospital of Anhui Medical University; Institution of Neurology (X.Y.), Anhui College of Traditional Medicine; Department of Neurology (J.W.), the Second People's Hospital of Hefei; Department of Neurology (X.L.), Anhui Provincial Hospital; Department of Neurology (J.D.), the Second Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (L.S.), Xiangya Hospital of Central South University, Changsha; Department of Neurology (X.W.), Zhongshan Hospital of Fudan University, Shanghai; Department of Physiology (B.S.), School of Basic Medicine, Anhui Medical University, Hefei; Department of Neurology (Q.G.), Huashan Hospital of Fudan University, Shanghai; Department of Neurology (L.G.), the Second Hospital of Hebei Medical University, Shijiazhuang; School of Life Science (K.X.), Central South University, Changsha; Department of Neurology (P.X.), the First Affiliated Hospital of Chongqing Medical University, Chongqing; Department of Dermatology (X. Zhang, X. Zuo), the First Affiliated Hospital of Anhui Medical University; and State Key Laboratory Incubation Base of Dermatology (X. Zhang, X. Zuo), Ministry of National Science and Technology, Hefei, China
| | - Xin Wang
- Department of Neurology (L.W., Y.T., C. Xie, Y. Wang, K.W.), the First Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (Y.C., Q.W., B.C., Y. Wu, B.Z., X.C., H.S.), West China Hospital of Sichuan University, Chengdu; Department of Medical Psychology (F.C., K.W.), Anhui Medical University; Department of Neurology (C. Xi), the Third Affiliated Hospital of Anhui Medical University; Institution of Neurology (X.Y.), Anhui College of Traditional Medicine; Department of Neurology (J.W.), the Second People's Hospital of Hefei; Department of Neurology (X.L.), Anhui Provincial Hospital; Department of Neurology (J.D.), the Second Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (L.S.), Xiangya Hospital of Central South University, Changsha; Department of Neurology (X.W.), Zhongshan Hospital of Fudan University, Shanghai; Department of Physiology (B.S.), School of Basic Medicine, Anhui Medical University, Hefei; Department of Neurology (Q.G.), Huashan Hospital of Fudan University, Shanghai; Department of Neurology (L.G.), the Second Hospital of Hebei Medical University, Shijiazhuang; School of Life Science (K.X.), Central South University, Changsha; Department of Neurology (P.X.), the First Affiliated Hospital of Chongqing Medical University, Chongqing; Department of Dermatology (X. Zhang, X. Zuo), the First Affiliated Hospital of Anhui Medical University; and State Key Laboratory Incubation Base of Dermatology (X. Zhang, X. Zuo), Ministry of National Science and Technology, Hefei, China
| | - Bin Shen
- Department of Neurology (L.W., Y.T., C. Xie, Y. Wang, K.W.), the First Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (Y.C., Q.W., B.C., Y. Wu, B.Z., X.C., H.S.), West China Hospital of Sichuan University, Chengdu; Department of Medical Psychology (F.C., K.W.), Anhui Medical University; Department of Neurology (C. Xi), the Third Affiliated Hospital of Anhui Medical University; Institution of Neurology (X.Y.), Anhui College of Traditional Medicine; Department of Neurology (J.W.), the Second People's Hospital of Hefei; Department of Neurology (X.L.), Anhui Provincial Hospital; Department of Neurology (J.D.), the Second Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (L.S.), Xiangya Hospital of Central South University, Changsha; Department of Neurology (X.W.), Zhongshan Hospital of Fudan University, Shanghai; Department of Physiology (B.S.), School of Basic Medicine, Anhui Medical University, Hefei; Department of Neurology (Q.G.), Huashan Hospital of Fudan University, Shanghai; Department of Neurology (L.G.), the Second Hospital of Hebei Medical University, Shijiazhuang; School of Life Science (K.X.), Central South University, Changsha; Department of Neurology (P.X.), the First Affiliated Hospital of Chongqing Medical University, Chongqing; Department of Dermatology (X. Zhang, X. Zuo), the First Affiliated Hospital of Anhui Medical University; and State Key Laboratory Incubation Base of Dermatology (X. Zhang, X. Zuo), Ministry of National Science and Technology, Hefei, China
| | - Qihao Guo
- Department of Neurology (L.W., Y.T., C. Xie, Y. Wang, K.W.), the First Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (Y.C., Q.W., B.C., Y. Wu, B.Z., X.C., H.S.), West China Hospital of Sichuan University, Chengdu; Department of Medical Psychology (F.C., K.W.), Anhui Medical University; Department of Neurology (C. Xi), the Third Affiliated Hospital of Anhui Medical University; Institution of Neurology (X.Y.), Anhui College of Traditional Medicine; Department of Neurology (J.W.), the Second People's Hospital of Hefei; Department of Neurology (X.L.), Anhui Provincial Hospital; Department of Neurology (J.D.), the Second Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (L.S.), Xiangya Hospital of Central South University, Changsha; Department of Neurology (X.W.), Zhongshan Hospital of Fudan University, Shanghai; Department of Physiology (B.S.), School of Basic Medicine, Anhui Medical University, Hefei; Department of Neurology (Q.G.), Huashan Hospital of Fudan University, Shanghai; Department of Neurology (L.G.), the Second Hospital of Hebei Medical University, Shijiazhuang; School of Life Science (K.X.), Central South University, Changsha; Department of Neurology (P.X.), the First Affiliated Hospital of Chongqing Medical University, Chongqing; Department of Dermatology (X. Zhang, X. Zuo), the First Affiliated Hospital of Anhui Medical University; and State Key Laboratory Incubation Base of Dermatology (X. Zhang, X. Zuo), Ministry of National Science and Technology, Hefei, China
| | - Li Guo
- Department of Neurology (L.W., Y.T., C. Xie, Y. Wang, K.W.), the First Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (Y.C., Q.W., B.C., Y. Wu, B.Z., X.C., H.S.), West China Hospital of Sichuan University, Chengdu; Department of Medical Psychology (F.C., K.W.), Anhui Medical University; Department of Neurology (C. Xi), the Third Affiliated Hospital of Anhui Medical University; Institution of Neurology (X.Y.), Anhui College of Traditional Medicine; Department of Neurology (J.W.), the Second People's Hospital of Hefei; Department of Neurology (X.L.), Anhui Provincial Hospital; Department of Neurology (J.D.), the Second Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (L.S.), Xiangya Hospital of Central South University, Changsha; Department of Neurology (X.W.), Zhongshan Hospital of Fudan University, Shanghai; Department of Physiology (B.S.), School of Basic Medicine, Anhui Medical University, Hefei; Department of Neurology (Q.G.), Huashan Hospital of Fudan University, Shanghai; Department of Neurology (L.G.), the Second Hospital of Hebei Medical University, Shijiazhuang; School of Life Science (K.X.), Central South University, Changsha; Department of Neurology (P.X.), the First Affiliated Hospital of Chongqing Medical University, Chongqing; Department of Dermatology (X. Zhang, X. Zuo), the First Affiliated Hospital of Anhui Medical University; and State Key Laboratory Incubation Base of Dermatology (X. Zhang, X. Zuo), Ministry of National Science and Technology, Hefei, China
| | - Kun Xia
- Department of Neurology (L.W., Y.T., C. Xie, Y. Wang, K.W.), the First Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (Y.C., Q.W., B.C., Y. Wu, B.Z., X.C., H.S.), West China Hospital of Sichuan University, Chengdu; Department of Medical Psychology (F.C., K.W.), Anhui Medical University; Department of Neurology (C. Xi), the Third Affiliated Hospital of Anhui Medical University; Institution of Neurology (X.Y.), Anhui College of Traditional Medicine; Department of Neurology (J.W.), the Second People's Hospital of Hefei; Department of Neurology (X.L.), Anhui Provincial Hospital; Department of Neurology (J.D.), the Second Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (L.S.), Xiangya Hospital of Central South University, Changsha; Department of Neurology (X.W.), Zhongshan Hospital of Fudan University, Shanghai; Department of Physiology (B.S.), School of Basic Medicine, Anhui Medical University, Hefei; Department of Neurology (Q.G.), Huashan Hospital of Fudan University, Shanghai; Department of Neurology (L.G.), the Second Hospital of Hebei Medical University, Shijiazhuang; School of Life Science (K.X.), Central South University, Changsha; Department of Neurology (P.X.), the First Affiliated Hospital of Chongqing Medical University, Chongqing; Department of Dermatology (X. Zhang, X. Zuo), the First Affiliated Hospital of Anhui Medical University; and State Key Laboratory Incubation Base of Dermatology (X. Zhang, X. Zuo), Ministry of National Science and Technology, Hefei, China
| | - Peng Xie
- Department of Neurology (L.W., Y.T., C. Xie, Y. Wang, K.W.), the First Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (Y.C., Q.W., B.C., Y. Wu, B.Z., X.C., H.S.), West China Hospital of Sichuan University, Chengdu; Department of Medical Psychology (F.C., K.W.), Anhui Medical University; Department of Neurology (C. Xi), the Third Affiliated Hospital of Anhui Medical University; Institution of Neurology (X.Y.), Anhui College of Traditional Medicine; Department of Neurology (J.W.), the Second People's Hospital of Hefei; Department of Neurology (X.L.), Anhui Provincial Hospital; Department of Neurology (J.D.), the Second Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (L.S.), Xiangya Hospital of Central South University, Changsha; Department of Neurology (X.W.), Zhongshan Hospital of Fudan University, Shanghai; Department of Physiology (B.S.), School of Basic Medicine, Anhui Medical University, Hefei; Department of Neurology (Q.G.), Huashan Hospital of Fudan University, Shanghai; Department of Neurology (L.G.), the Second Hospital of Hebei Medical University, Shijiazhuang; School of Life Science (K.X.), Central South University, Changsha; Department of Neurology (P.X.), the First Affiliated Hospital of Chongqing Medical University, Chongqing; Department of Dermatology (X. Zhang, X. Zuo), the First Affiliated Hospital of Anhui Medical University; and State Key Laboratory Incubation Base of Dermatology (X. Zhang, X. Zuo), Ministry of National Science and Technology, Hefei, China
| | - Xuejun Zhang
- Department of Neurology (L.W., Y.T., C. Xie, Y. Wang, K.W.), the First Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (Y.C., Q.W., B.C., Y. Wu, B.Z., X.C., H.S.), West China Hospital of Sichuan University, Chengdu; Department of Medical Psychology (F.C., K.W.), Anhui Medical University; Department of Neurology (C. Xi), the Third Affiliated Hospital of Anhui Medical University; Institution of Neurology (X.Y.), Anhui College of Traditional Medicine; Department of Neurology (J.W.), the Second People's Hospital of Hefei; Department of Neurology (X.L.), Anhui Provincial Hospital; Department of Neurology (J.D.), the Second Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (L.S.), Xiangya Hospital of Central South University, Changsha; Department of Neurology (X.W.), Zhongshan Hospital of Fudan University, Shanghai; Department of Physiology (B.S.), School of Basic Medicine, Anhui Medical University, Hefei; Department of Neurology (Q.G.), Huashan Hospital of Fudan University, Shanghai; Department of Neurology (L.G.), the Second Hospital of Hebei Medical University, Shijiazhuang; School of Life Science (K.X.), Central South University, Changsha; Department of Neurology (P.X.), the First Affiliated Hospital of Chongqing Medical University, Chongqing; Department of Dermatology (X. Zhang, X. Zuo), the First Affiliated Hospital of Anhui Medical University; and State Key Laboratory Incubation Base of Dermatology (X. Zhang, X. Zuo), Ministry of National Science and Technology, Hefei, China
| | - Xianbo Zuo
- Department of Neurology (L.W., Y.T., C. Xie, Y. Wang, K.W.), the First Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (Y.C., Q.W., B.C., Y. Wu, B.Z., X.C., H.S.), West China Hospital of Sichuan University, Chengdu; Department of Medical Psychology (F.C., K.W.), Anhui Medical University; Department of Neurology (C. Xi), the Third Affiliated Hospital of Anhui Medical University; Institution of Neurology (X.Y.), Anhui College of Traditional Medicine; Department of Neurology (J.W.), the Second People's Hospital of Hefei; Department of Neurology (X.L.), Anhui Provincial Hospital; Department of Neurology (J.D.), the Second Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (L.S.), Xiangya Hospital of Central South University, Changsha; Department of Neurology (X.W.), Zhongshan Hospital of Fudan University, Shanghai; Department of Physiology (B.S.), School of Basic Medicine, Anhui Medical University, Hefei; Department of Neurology (Q.G.), Huashan Hospital of Fudan University, Shanghai; Department of Neurology (L.G.), the Second Hospital of Hebei Medical University, Shijiazhuang; School of Life Science (K.X.), Central South University, Changsha; Department of Neurology (P.X.), the First Affiliated Hospital of Chongqing Medical University, Chongqing; Department of Dermatology (X. Zhang, X. Zuo), the First Affiliated Hospital of Anhui Medical University; and State Key Laboratory Incubation Base of Dermatology (X. Zhang, X. Zuo), Ministry of National Science and Technology, Hefei, China
| | - Huifang Shang
- Department of Neurology (L.W., Y.T., C. Xie, Y. Wang, K.W.), the First Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (Y.C., Q.W., B.C., Y. Wu, B.Z., X.C., H.S.), West China Hospital of Sichuan University, Chengdu; Department of Medical Psychology (F.C., K.W.), Anhui Medical University; Department of Neurology (C. Xi), the Third Affiliated Hospital of Anhui Medical University; Institution of Neurology (X.Y.), Anhui College of Traditional Medicine; Department of Neurology (J.W.), the Second People's Hospital of Hefei; Department of Neurology (X.L.), Anhui Provincial Hospital; Department of Neurology (J.D.), the Second Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (L.S.), Xiangya Hospital of Central South University, Changsha; Department of Neurology (X.W.), Zhongshan Hospital of Fudan University, Shanghai; Department of Physiology (B.S.), School of Basic Medicine, Anhui Medical University, Hefei; Department of Neurology (Q.G.), Huashan Hospital of Fudan University, Shanghai; Department of Neurology (L.G.), the Second Hospital of Hebei Medical University, Shijiazhuang; School of Life Science (K.X.), Central South University, Changsha; Department of Neurology (P.X.), the First Affiliated Hospital of Chongqing Medical University, Chongqing; Department of Dermatology (X. Zhang, X. Zuo), the First Affiliated Hospital of Anhui Medical University; and State Key Laboratory Incubation Base of Dermatology (X. Zhang, X. Zuo), Ministry of National Science and Technology, Hefei, China
| | - Kai Wang
- Department of Neurology (L.W., Y.T., C. Xie, Y. Wang, K.W.), the First Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (Y.C., Q.W., B.C., Y. Wu, B.Z., X.C., H.S.), West China Hospital of Sichuan University, Chengdu; Department of Medical Psychology (F.C., K.W.), Anhui Medical University; Department of Neurology (C. Xi), the Third Affiliated Hospital of Anhui Medical University; Institution of Neurology (X.Y.), Anhui College of Traditional Medicine; Department of Neurology (J.W.), the Second People's Hospital of Hefei; Department of Neurology (X.L.), Anhui Provincial Hospital; Department of Neurology (J.D.), the Second Affiliated Hospital of Anhui Medical University, Hefei; Department of Neurology (L.S.), Xiangya Hospital of Central South University, Changsha; Department of Neurology (X.W.), Zhongshan Hospital of Fudan University, Shanghai; Department of Physiology (B.S.), School of Basic Medicine, Anhui Medical University, Hefei; Department of Neurology (Q.G.), Huashan Hospital of Fudan University, Shanghai; Department of Neurology (L.G.), the Second Hospital of Hebei Medical University, Shijiazhuang; School of Life Science (K.X.), Central South University, Changsha; Department of Neurology (P.X.), the First Affiliated Hospital of Chongqing Medical University, Chongqing; Department of Dermatology (X. Zhang, X. Zuo), the First Affiliated Hospital of Anhui Medical University; and State Key Laboratory Incubation Base of Dermatology (X. Zhang, X. Zuo), Ministry of National Science and Technology, Hefei, China
| |
Collapse
|
42
|
Abstract
Protein coats are supramolecular complexes that assemble on the cytosolic face of membranes to promote cargo sorting and transport carrier formation in the endomembrane system of eukaryotic cells. Several types of protein coats have been described, including COPI, COPII, AP-1, AP-2, AP-3, AP-4, AP-5, and retromer, which operate at different stages of the endomembrane system. Defects in these coats impair specific transport pathways, compromising the function and viability of the cells. In humans, mutations in subunits of these coats cause various congenital diseases that are collectively referred to as coatopathies. In this article, we review the fundamental properties of protein coats and the diseases that result from mutation of their constituent subunits.
Collapse
Affiliation(s)
- Esteban C Dell'Angelica
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| | - Juan S Bonifacino
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
43
|
Nam SH, Choi BO. Clinical and genetic aspects of Charcot-Marie-Tooth disease subtypes. PRECISION AND FUTURE MEDICINE 2019. [DOI: 10.23838/pfm.2018.00163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
44
|
Gentile F, Scarlino S, Falzone YM, Lunetta C, Tremolizzo L, Quattrini A, Riva N. The Peripheral Nervous System in Amyotrophic Lateral Sclerosis: Opportunities for Translational Research. Front Neurosci 2019; 13:601. [PMID: 31293369 PMCID: PMC6603245 DOI: 10.3389/fnins.2019.00601] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/27/2019] [Indexed: 12/11/2022] Open
Abstract
Although amyotrophic lateral sclerosis (ALS) has been considered as a disorder of the motor neuron (MN) cell body, recent evidences show the non-cell-autonomous pathogenic nature of the disease. Axonal degeneration, loss of peripheral axons and destruction of nerve terminals are early events in the disease pathogenic cascade, anticipating MN degeneration, and the onset of clinical symptoms. Therefore, although ALS and peripheral axonal neuropathies should be differentiated in clinical practice, they also share damage to common molecular pathways, including axonal transport, RNA metabolism and proteostasis. Thus, an extensive evaluation of the molecular events occurring in the peripheral nervous system (PNS) could be fundamental to understand the pathogenic mechanisms of ALS, favoring the discovery of potential disease biomarkers, and new therapeutic targets.
Collapse
Affiliation(s)
- Francesco Gentile
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology – San Raffaele Scientific Institute, Milan, Italy
| | - Stefania Scarlino
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology – San Raffaele Scientific Institute, Milan, Italy
| | - Yuri Matteo Falzone
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology – San Raffaele Scientific Institute, Milan, Italy
- Department of Neurology, San Raffaele Scientific Institute, Milan, Italy
| | | | - Lucio Tremolizzo
- Neurology Unit, ALS Clinic, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| | - Angelo Quattrini
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology – San Raffaele Scientific Institute, Milan, Italy
| | - Nilo Riva
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology – San Raffaele Scientific Institute, Milan, Italy
- Department of Neurology, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
45
|
Elsayed LEO, Eltazi IZM, Ahmed AEM, Stevanin G. Hereditary spastic paraplegias: time for an objective case definition and a new nosology for neurogenetic disorders to facilitate biomarker/therapeutic studies. Expert Rev Neurother 2019; 19:409-415. [PMID: 31037979 DOI: 10.1080/14737175.2019.1608824] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Hereditary spastic paraplegias (HSPs) are heterogeneous neurodegenerative disorders characterized by progressive lower limb weakness and spasticity as core symptoms of the degeneration of the corticospinal motor neurons. Even after exclusion of infectious and toxic mimickers of these disorders, the definitive diagnosis remains tricky, mainly in sporadic forms, as there is significant overlap with other disorders. Since their first description, various attempts failed to reach an appropriate classification. This was due to the constant expansion of the clinical spectrum of these diseases and the discovery of new genes, a significant number of them was involved in overlapping diseases. Areas covered: In this perspective review, an extensive literature study was conducted on the historical progress of HSP research. We also revised the previous and the current classifications of HSP and the closely related neurogenetic disorders and analyzed the areas of overlap. Expert opinion: There is undeniable need for objective case definition and reclassification of all neurogenetic disorders including HSPs, a prerequisite to improve patient follow-up, biomarker identification and develop therapeutics. The challenge is to understand why mutations can give rise to multiple phenotypic presentations along this spectrum of diseases in which the corticospinal tract is affected.
Collapse
Affiliation(s)
| | - Isra Z M Eltazi
- a Faculty of Medicine , University of Khartoum , Khartoum , Sudan
| | - Ammar E M Ahmed
- a Faculty of Medicine , University of Khartoum , Khartoum , Sudan
| | - Giovanni Stevanin
- b Basic to Translational Neurogenetics team , Institut du Cerveau et de la Moelle épinière, INSERM U1127, CNRS UMR7225, Sorbonne Université UMR_S1127 , Paris , France.,c Neurogenetics team , Ecole Pratique des Hautes Etudes, EPHE, PSL Research University , Paris , France
| |
Collapse
|
46
|
Boutry M, Morais S, Stevanin G. Update on the Genetics of Spastic Paraplegias. Curr Neurol Neurosci Rep 2019; 19:18. [DOI: 10.1007/s11910-019-0930-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
47
|
Simone M, Trabacca A, Panzeri E, Losito L, Citterio A, Bassi MT. KIF5A and ALS2 Variants in a Family With Hereditary Spastic Paraplegia and Amyotrophic Lateral Sclerosis. Front Neurol 2018; 9:1078. [PMID: 30581417 PMCID: PMC6293196 DOI: 10.3389/fneur.2018.01078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 11/26/2018] [Indexed: 12/11/2022] Open
Abstract
This paper describes the clinical evolution and the novel genetic findings in a KIF5A mutated family previously reported as affected by spastic paraparesis only. The additional evidence we report here, a homozygous ALS2 mutation detected in the proband, and the clinical evolution observed in the affected members of the family, are in line with the evidence of an overlap between Hereditary Spastic Paraplegias and Amyotrophic Lateral Sclerosis associated with variants in these genes. The proband, a 14-years-old boy, started manifesting a pure form of HSP at age 14 months. The disease rapidly progressed to a juvenile form of ALS. This boy carries a heterozygous missense variant in KIF5A p.(Glu755Lys), inherited from the father, and a homozygous missense variant in the alsin protein encoded by the ALS2 gene p.(Pro192Leu). The father shows a family history of ALS. In the last few years, he has been developing signs and symptoms of both upper and lower motor neuron degeneration, with mild bulbar motor involvement and emotional lability. The patients described in this family, confirm the continuum and partial overlap of the two clinical entities, HSP and ALS, historically viewed as distinct entities. The genetic findings in this family further substantiate the genetic bases underlying the overlap, broadening the clinical spectrum associated with KIF5A mutations.
Collapse
Affiliation(s)
- Marta Simone
- Unit for Severe Disabilities in Developmental Age and Young Adults, Developmental Neurology and Neurorehabilitation, Scientific Institute IRCCS E. Medea, Brindisi, Italy
| | - Antonio Trabacca
- Unit for Severe Disabilities in Developmental Age and Young Adults, Developmental Neurology and Neurorehabilitation, Scientific Institute IRCCS E. Medea, Brindisi, Italy
| | - Elena Panzeri
- Laboratory of Molecular Biology, Scientific Institute IRCCS E. Medea, Lecco, Italy
| | - Luciana Losito
- Unit for Severe Disabilities in Developmental Age and Young Adults, Developmental Neurology and Neurorehabilitation, Scientific Institute IRCCS E. Medea, Brindisi, Italy
| | - Andrea Citterio
- Laboratory of Molecular Biology, Scientific Institute IRCCS E. Medea, Lecco, Italy
| | - Maria Teresa Bassi
- Laboratory of Molecular Biology, Scientific Institute IRCCS E. Medea, Lecco, Italy
| |
Collapse
|
48
|
Pozner T, Schray A, Regensburger M, Lie DC, Schlötzer-Schrehardt U, Winkler J, Turan S, Winner B. Tideglusib Rescues Neurite Pathology of SPG11 iPSC Derived Cortical Neurons. Front Neurosci 2018; 12:914. [PMID: 30574063 PMCID: PMC6291617 DOI: 10.3389/fnins.2018.00914] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 11/21/2018] [Indexed: 12/12/2022] Open
Abstract
Mutations in SPG11 cause a complicated autosomal recessive form of hereditary spastic paraplegia (HSP). Mechanistically, there are indications for the dysregulation of the GSK3β/βCat signaling pathway in SPG11. In this study, we tested the therapeutic potential of the GSK3β inhibitor, tideglusib, to rescue neurodegeneration associated characteristics in an induced pluripotent stem cells (iPSCs) derived neuronal model from SPG11 patients and matched healthy controls as well as a CRISPR-Cas9 mediated SPG11 knock-out line and respective control. SPG11-iPSC derived cortical neurons, as well as the genome edited neurons exhibited shorter and less complex neurites than controls. Administration of tideglusib to these lines led to the rescue of neuritic impairments. Moreover, the treatment restored increased cell death and ameliorated the membranous inclusions in iPSC derived SPG11 neurons. Our results provide a first evidence for the rescue of neurite pathology in SPG11-HSP by tideglusib. The current lack of disease-modifying treatments for SPG11 and related types of complicated HSP renders tideglusib a candidate compound for future clinical application.
Collapse
Affiliation(s)
- Tatyana Pozner
- Department of Stem Cell Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Annika Schray
- Department of Stem Cell Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Regensburger
- Department of Stem Cell Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.,Department of Neurology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.,Department of Molecular Neurology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Dieter Chichung Lie
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | | | - Jürgen Winkler
- Department of Molecular Neurology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.,Center of Rare Diseases Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Soeren Turan
- Department of Stem Cell Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.,Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Beate Winner
- Department of Stem Cell Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.,Center of Rare Diseases Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
49
|
Cortès-Saladelafont E, Lipstein N, García-Cazorla À. Presynaptic disorders: a clinical and pathophysiological approach focused on the synaptic vesicle. J Inherit Metab Dis 2018; 41:1131-1145. [PMID: 30022305 DOI: 10.1007/s10545-018-0230-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/23/2018] [Accepted: 07/02/2018] [Indexed: 12/12/2022]
Abstract
The aim of this report is to present a tentative clinical and pathophysiological approach to diseases affecting the neuronal presynaptic terminal, with a major focus on synaptic vesicles (SVs). Diseases are classified depending on which step of the neurobiology of the SV is predominantly affected: (1) biogenesis of vesicle precursors in the neuronal soma; (2) transport along the axon; (3) vesicle cycle at the presynaptic terminal (exocytosis-endocytosis cycle, with the main purpose of neurotransmitter release). Given that SVs have been defined as individual organelles, we highlight the link between the biological processes disturbed by genetic mutations and the clinical presentation of these disorders. The great majority of diseases may present as epileptic encephalopathies, intellectual disability (syndromic or nonsyndromic) with/without autism spectrum disorder (and other neuropsychiatric symptoms), and movement disorders. These symptoms may overlap and present in patients as a combination of clinical signs that results in the spectrum of the synaptopathies. A small number of diseases may also exhibit neuromuscular signs. In general, SV disorders tend to be severe, early encephalopathies that interfere with neurodevelopment. As a consequence, developmental delay and intellectual disability are constant in almost all the defects described. Considering that some of these diseases might mimic other neurometabolic conditions (and in particular treatable disorders), an initial extensive metabolic workup should always be considered. Further knowledge into pathophysiological mechanisms and biomarkers, as well as descriptions of new presynaptic disorders, will probably take place in the near future.
Collapse
Affiliation(s)
- Elisenda Cortès-Saladelafont
- Department of Neurology, Neurometabolic Unit and Synaptic Metabolism Laboratory, Institut Pediàtric de Recerca and CIBERER, ISCIII, Hospital Sant Joan de Déu, Passeig Sant Joan de Déu, 2, 08950, Esplugues, Barcelona, Spain
| | - Noa Lipstein
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Àngels García-Cazorla
- Department of Neurology, Neurometabolic Unit and Synaptic Metabolism Laboratory, Institut Pediàtric de Recerca and CIBERER, ISCIII, Hospital Sant Joan de Déu, Passeig Sant Joan de Déu, 2, 08950, Esplugues, Barcelona, Spain.
| |
Collapse
|
50
|
Akçakaya NH, Yapıcı Z, Tunca Cİ, Tektürk P, Akçimen F, Başak AN. A new splice-site mutation in SLC12A6 causing Andermann syndrome with motor neuronopathy. J Neurol Neurosurg Psychiatry 2018; 89:1123-1125. [PMID: 29269506 DOI: 10.1136/jnnp-2017-317319] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/21/2017] [Accepted: 11/21/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Nihan Hande Akçakaya
- Department of Genetics, Istanbul University, Aziz Sancar Institute of Experimental Medicine, Istanbul, Turkey.,Spastic Children's Foundation of Turkey, Istanbul, Turkey
| | - Zuhal Yapıcı
- Division of Child Neurology, Department of Neurology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Ceren İskender Tunca
- MBG Department, Suna and İnan Kıraç Foundation, Bogazici University, NDAL, Istanbul, Turkey
| | - Pınar Tektürk
- Division of Child Neurology, Department of Neurology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Fulya Akçimen
- MBG Department, Suna and İnan Kıraç Foundation, Bogazici University, NDAL, Istanbul, Turkey
| | - Ayşe Nazlı Başak
- MBG Department, Suna and İnan Kıraç Foundation, Bogazici University, NDAL, Istanbul, Turkey
| |
Collapse
|