1
|
Couto B, Galosi S, Steel D, Kurian MA, Friedman J, Gorodetsky C, Lang AE. Severe Acute Motor Exacerbations (SAME) across Metabolic, Developmental and Genetic Disorders. Mov Disord 2024; 39:1446-1467. [PMID: 39119747 DOI: 10.1002/mds.29905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 06/08/2024] [Accepted: 06/13/2024] [Indexed: 08/10/2024] Open
Abstract
Acute presentation of severe motor disorders is a diagnostic and management challenge. We define severe acute motor exacerbations (SAME) as acute/subacute motor symptoms that persist for hours-to-days with a severity that compromise vital signs (temperature, breath, and heart rate) and bulbar function (swallowing/dysphagia). Phenomenology includes dystonia, choreoathetosis, combined movement disorders, weakness, and hemiplegic attacks. SAME can develop in diverse diseases and can be preceded by triggers or catabolic states. Recent descriptions of SAME in complex neurodevelopmental and epileptic encephalopathies have broadened appreciation of this presentation beyond inborn errors of metabolism. A high degree of clinical suspicion is required to identify appropriately targeted investigations and management. We conducted a comprehensive literature analysis of etiologies. Reported triggers are described and classified as per pathophysiological mechanism. A video of six cases displaying multiple SAME with diverse outcomes is provided. We identified 50 different conditions that manifest SAME, some associated with developmental regression. Etiologies include disorders of metabolism: energy substrate, amino acids, complex molecules, vitamins/cofactors, minerals, and neurotransmitters/synaptic vesicle cycling. Non-metabolic neurodegenerative and genetic disorders that present with movement disorders and epilepsy can additionally manifest SAME. A limited number of triggers are grouped here, together with an approach to investigations and general management strategies. Several neurogenetic and neurometabolic disorders manifest SAME. Identifying triggers can help in certain cases narrow the differential diagnosis and guide the expeditious application of targeted therapies to minimize adverse developmental and neurological consequences. This process may inform pathogenesis and eventually improve our understanding of the mechanisms that lead to the development of SAME. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Blas Couto
- Edmond J. Safra Program in Parkinson's Disease, Rossy PSP Centre and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada
- Instituto de Neurociencia Cognitiva y Traslacional, INECO-Favaloro-CONICET, Buenos Aires, Argentina
| | - Serena Galosi
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Dora Steel
- Molecular Neurosciences, Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- Department of Neurology, Great Ormond Street Hospital, London, United Kingdom
| | - Manju A Kurian
- Molecular Neurosciences, Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- Department of Neurology, Great Ormond Street Hospital, London, United Kingdom
| | - Jennifer Friedman
- Departments of Neurosciences and Pediatrics, University of California San Diego, San Diego, California, USA
- Division of Neurology, Rady Children's Hospital; Rady Children's Institute for Genomic Medicine, San Diego, California, USA
| | - Carolina Gorodetsky
- Division of Neurology, Pediatric Deep Brain Stimulation Program, Movement Disorder and Neuromodulation Program at the Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Anthony E Lang
- Edmond J. Safra Program in Parkinson's Disease, Rossy PSP Centre and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, Division of Neurology, University Health Network and the University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Rezaei M, Dourandish Z, Kiani Mehr G, Ghorbani A, Fatehi F. Cavitating leukodystrophy in a case of mitochondrial complex III deficiency due to LYRM7 mutation. Acta Neurol Belg 2024; 124:1409-1410. [PMID: 38592654 DOI: 10.1007/s13760-024-02529-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/13/2024] [Indexed: 04/10/2024]
Affiliation(s)
- Mojtaba Rezaei
- Neuromuscular Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Dourandish
- Neuromuscular Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Gilda Kiani Mehr
- Neuromuscular Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Askar Ghorbani
- Neuromuscular Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Fatehi
- Neuromuscular Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Čunátová K, Fernández-Vizarra E. Pathological variants in nuclear genes causing mitochondrial complex III deficiency: An update. J Inherit Metab Dis 2024. [PMID: 39053894 DOI: 10.1002/jimd.12751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/24/2024] [Accepted: 05/02/2024] [Indexed: 07/27/2024]
Abstract
Mitochondrial disorders are a group of clinically and biochemically heterogeneous genetic diseases within the group of inborn errors of metabolism. Primary mitochondrial diseases are mainly caused by defects in one or several components of the oxidative phosphorylation system (complexes I-V). Within these disorders, those associated with complex III deficiencies are the least common. However, thanks to a deeper knowledge about complex III biogenesis, improved clinical diagnosis and the implementation of next-generation sequencing techniques, the number of pathological variants identified in nuclear genes causing complex III deficiency has expanded significantly. This updated review summarizes the current knowledge concerning the genetic basis of complex III deficiency, and the main clinical features associated with these conditions.
Collapse
Affiliation(s)
- Kristýna Čunátová
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Erika Fernández-Vizarra
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| |
Collapse
|
4
|
Shinde A, Chandak N, Singh J, Roy M, Mane M, Tang X, Vasiyani H, Currim F, Gohel D, Shukla S, Goyani S, Saranga MV, Brindley DN, Singh R. TNF-α induced NF-κB mediated LYRM7 expression modulates the tumor growth and metastatic ability in breast cancer. Free Radic Biol Med 2024; 211:158-170. [PMID: 38104742 DOI: 10.1016/j.freeradbiomed.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/19/2023]
Abstract
Tumor microenvironment (TME) of solid tumors including breast cancer is complex and contains a distinct cytokine pattern including TNF-α, which determines the progression and metastasis of breast tumors. The metastatic potential of triple negative breast cancer subtypes is high as compared to other subtypes of breast cancer. NF-κB is key transcription factor regulating inflammation and mitochondrial bioenergetics including oxidative phosphorylation (OXPHOS) genes which determine its oxidative capacity and generating reducing equivalents for synthesis of key metabolites for proliferating breast cancer cells. The differential metabolic adaptation and OXPHOS function of breast cancer subtypes in inflammatory conditions and its contribution to metastasis is not well understood. Here we demonstrated that different subunits of NF-κB are differentially expressed in subtypes of breast cancer patients. RELA, one of the major subunits in regulation of the NF-κB pathway is positively correlated with high level of TNF-α in breast cancer patients. TNF-α induced NF-κB regulates the expression of LYRM7, an assembly factor for mitochondrial complex III. Downregulation of LYRM7 in MDA-MB-231 cells decreases mitochondrial super complex assembly and enhances ROS levels, which increases the invasion and migration potential of these cells. Further, in vivo studies using Infliximab, a monoclonal antibody against TNF-α showed decreased expression of LYRM7 in tumor tissue. Large scale breast cancer databases and human patient samples revealed that LYRM7 levels decreased in triple negative breast cancer patients compared to other subtypes and is determinant of survival outcome in patients. Our results indicate that TNF-α induced NF-κB is a critical regulator of LYRM7, a major factor for modulating mitochondrial functions under inflammatory conditions, which determines growth and survival of breast cancer cells.
Collapse
Affiliation(s)
- Anjali Shinde
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, 390002, Gujarat, India
| | - Nisha Chandak
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, 390002, Gujarat, India
| | - Jyoti Singh
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, 390002, Gujarat, India
| | - Milton Roy
- Institute for Cell Engineering, John Hopkins University School of Medicine, 733 North Broadway, MRB 731, Baltimore, MD, 21205, USA
| | - Minal Mane
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, 390002, Gujarat, India
| | - Xiaoyun Tang
- Cancer Research Institute of Northern Alberta, Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G2S2, Canada
| | - Hitesh Vasiyani
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA-23284, USA
| | - Fatema Currim
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, 390002, Gujarat, India
| | - Dhruv Gohel
- Department of Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Shatakshi Shukla
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, 390002, Gujarat, India
| | - Shanikumar Goyani
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, 390002, Gujarat, India
| | - M V Saranga
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, 390002, Gujarat, India
| | - David N Brindley
- Cancer Research Institute of Northern Alberta, Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G2S2, Canada
| | - Rajesh Singh
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, 390002, Gujarat, India; Department of Molecular and Human Genetics, Banaras Hindu University (BHU) (IoE), Varanasi, 221005, UP, India.
| |
Collapse
|
5
|
Alves CAPF, Whitehead MT. Advancing the neuroimaging diagnosis and understanding of mitochondrial disorders. Neurotherapeutics 2024; 21:e00324. [PMID: 38306952 PMCID: PMC10903090 DOI: 10.1016/j.neurot.2024.e00324] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 02/04/2024] Open
Abstract
Mitochondrial diseases, a diverse and intricate group of disorders, result from both nuclear DNA and mitochondrial DNA malfunctions, leading to a decrease in cellular energy (ATP) production. The increasing understanding of molecular, biochemical, and genetic irregularities associated with mitochondrial dysfunction has led to a wider recognition of varying mitochondrial disease phenotypes. This broadening landscape has led to a diverse array of neuroimaging findings, posing a challenge to radiologists in identifying the extensive range of possible patterns. This review meticulously describes the central imaging features of mitochondrial diseases in children, as revealed by neuroimaging. It spans from traditional imaging findings to more recent and intricate diagnoses, offering insights and highlighting advancements in neuroimaging technology that can potentially guide a more efficient and accurate diagnostic approach.
Collapse
Affiliation(s)
- César Augusto P F Alves
- Division of Neuroradiology, Department of Radiology, Boston Children's Hospital - BCH Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States.
| | - Matthew T Whitehead
- Division of Neuroradiology, Department of Radiology, The Children's Hospital of Philadelphia, PA, United States; Perelman School of Medicine, University of Pennsylvania Perelman School of Medicine of Philadelphia, United States.
| |
Collapse
|
6
|
Helman G, Orthmann-Murphy JL, Vanderver A. Approaches to diagnosis for individuals with a suspected inherited white matter disorder. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:21-35. [PMID: 39322380 DOI: 10.1016/b978-0-323-99209-1.00009-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Leukodystrophies are heritable disorders with white matter abnormalities observed on central nervous system magnetic resonance imaging. Pediatric leukodystrophies have long been known for their classically high, "unsolved" rate. Indeed, these disorders provide a diagnostic dilemma for many clinicians as over 100 genetic disorders alone may present with white matter abnormalities, with this figure not taking into account the substantial number of infectious agents, toxicities, and acquired disorders that may affect the white matter of the brain. Achieving a diagnosis may be the single most important step in the clinical course of a leukodystrophy-affected individual, with important implications for care and quality of life. For certain disorders, prompt recognition can direct therapeutic intervention with significant implications and requires urgent recognition. In this review, we cover newborn screening efforts, standard-of-care testing methodologies, and next generation sequencing approaches that continue to change the landscape of leukodystrophy diagnosis. Early studies have shown that next generation sequencing approaches, particularly exome and now genome sequencing have proven to be powerful in helping resolve many cases that were refractory to a single gene or linkage analysis approach. In addition, other methods are required for cases that remain persistently unsolved after next generation sequencing methods have been used. In the past more than half of affected individuals never achieved an etiologic diagnosis, and when they did, the reported times to diagnosis were >5 years although molecular testing has allowed this to be reduced to closer to 16 months. For affected families, next generation sequencing technologies have finally provided a way to fill gaps in diagnosis.
Collapse
Affiliation(s)
- Guy Helman
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Jennifer L Orthmann-Murphy
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Adeline Vanderver
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, United States.
| |
Collapse
|
7
|
Muñoz-Pujol G, Ugarteburu O, Segur-Bailach E, Moliner S, Jurado S, Garrabou G, Guitart-Mampel M, García-Villoria J, Artuch R, Fons C, Ribes A, Tort F. CRISPR/Cas9-based functional genomics strategy to decipher the pathogenicity of genetic variants in inherited metabolic disorders. J Inherit Metab Dis 2023; 46:1029-1042. [PMID: 37718653 DOI: 10.1002/jimd.12681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/19/2023]
Abstract
The determination of the functional impact of variants of uncertain significance (VUS) is one of the major bottlenecks in the diagnostic workflow of inherited genetic diseases. To face this problem, we set up a CRISPR/Cas9-based strategy for knock-in cellular model generation, focusing on inherited metabolic disorders (IMDs). We selected variants in seven IMD-associated genes, including seven reported disease-causing variants and four benign/likely benign variants. Overall, 11 knock-in cell models were generated via homology-directed repair in HAP1 haploid cells using CRISPR/Cas9. The functional impact of the variants was determined by analyzing the characteristic biochemical alterations of each disorder. Functional studies performed in knock-in cell models showed that our approach accurately distinguished the functional effect of pathogenic from non-pathogenic variants in a reliable manner in a wide range of IMDs. Our study provides a generic approach to assess the functional impact of genetic variants to improve IMD diagnosis and this tool could emerge as a promising alternative to invasive tests, such as muscular or skin biopsies. Although the study has been performed only in IMDs, this strategy is generic and could be applied to other genetic disorders.
Collapse
Affiliation(s)
- Gerard Muñoz-Pujol
- Secció d'Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic de Barcelona, IDIBAPS, CIBERER, Barcelona, Spain
| | - Olatz Ugarteburu
- Secció d'Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic de Barcelona, IDIBAPS, CIBERER, Barcelona, Spain
| | - Eulàlia Segur-Bailach
- Secció d'Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic de Barcelona, IDIBAPS, CIBERER, Barcelona, Spain
| | - Sonia Moliner
- Secció d'Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic de Barcelona, IDIBAPS, CIBERER, Barcelona, Spain
| | - Susana Jurado
- Secció d'Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic de Barcelona, IDIBAPS, CIBERER, Barcelona, Spain
| | - Glòria Garrabou
- Inherited Metabolic diseases and Muscle Disorder's lab, Cellex-IDIBAPS, Faculty of Medicine and Health Sciences, University of Barcelona, Internal Medicine Service-Hospital Clinic of Barcelona and CIBERER, Barcelona, Spain
| | - Mariona Guitart-Mampel
- Inherited Metabolic diseases and Muscle Disorder's lab, Cellex-IDIBAPS, Faculty of Medicine and Health Sciences, University of Barcelona, Internal Medicine Service-Hospital Clinic of Barcelona and CIBERER, Barcelona, Spain
| | - Judit García-Villoria
- Secció d'Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic de Barcelona, IDIBAPS, CIBERER, Barcelona, Spain
| | - Rafael Artuch
- Clinical Biochemistry and Molecular Medicine and Genetics Departments, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, and CIBERER, Esplúgues de Llobregat, Barcelona, Spain
| | - Carme Fons
- Neurology Department, Fetal, Neonatal Neurology and Early Epilepsy Unit, Institut de Recerca, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Antonia Ribes
- Secció d'Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic de Barcelona, IDIBAPS, CIBERER, Barcelona, Spain
| | - Frederic Tort
- Secció d'Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic de Barcelona, IDIBAPS, CIBERER, Barcelona, Spain
| |
Collapse
|
8
|
Tonduti D, Zambon AA, Ghezzi D, Lamantea E, Izzo R, Parazzini C, Baldoli C, van der Knaap MS, Fumagalli F. Expanding the Spectrum of NUBPL-Related Leukodystrophy. Neuropediatrics 2023; 54:161-166. [PMID: 36868263 DOI: 10.1055/s-0043-1764214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Mitochondrial leukodystrophies constitute a group of different conditions presenting with a wide range of clinical presentation but with some shared neuroradiological features. Genetic defects in NUBPL have been recognized as cause of a pediatric onset mitochondrial leukodystrophy characterized by onset at the end of the first year of life with motor delay or regression and cerebellar signs, followed by progressive spasticity. Early magnetic resonance imagings (MRIs) show white matter abnormalities with predominant involvement of frontoparietal regions and corpus callosum. A striking cerebellar involvement is usually observed. Later MRIs show spontaneous improvement of white matter abnormalities but worsening of the cerebellar involvement evolving to global atrophy and progressive involvement of brainstem. After the 7 cases initially described, 11 more subjects were reported. Some of them were similar to patients from the original series while few others broadened the phenotypic spectrum. We performed a literature review and report on a new patient who further expand the spectrum of NUBPL-related leukodystrophy. With our study we confirm that the association of cerebral white matter and cerebellar cortex abnormalities is a feature commonly observed in early stages of the disease but beside the original and so far prevalent presentation, there are also uncommon phenotypes: clinical onset can be earlier and more severe than previously thought and signs of extraneurological involvement can be observed. Brain white matter can be diffusely abnormal without anteroposterior gradient, can progressively worsen, and cystic degeneration can be present. Thalami can be involved. Basal ganglia can also become involved during disease evolution.
Collapse
Affiliation(s)
- Davide Tonduti
- Unit of Pediatric Neurology, C.O.A.L.A (Center for Diagnosis and Treatment of Leukodystrophies), V. Buzzi Children's Hospital, Milan, Italy.,Department of Biomedical and Clinical Sciences, L. Sacco University Hospital, Università degli Studi di Milano, Milan, Italy
| | - Alberto A Zambon
- Neuromuscular Repair Unit, Division of Neuroscience, Institute of Experimental Neurology (InSpe), IRCCS Ospedale San Raffaele, Milan, Italy
| | - Daniele Ghezzi
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Eleonora Lamantea
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Rossella Izzo
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Cecilia Parazzini
- Pediatric Radiology and Neuroradiology Unit, C.O.A.L.A (Center for Diagnosis and Treatment of Leukodystrophies), V. Buzzi Children's Hospital, Milan, Italy
| | - Cristina Baldoli
- Neuroradiology Unit and CERMAC, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Marjo S van der Knaap
- Department of Child Neurology, Emma Children's Hospital, Amsterdam Leukodystrophy Center, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, Netherlands.,Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Vrije Universiteit, Amsterdam, Netherlands.,Center for Neurogenomics and Cognitive Research, Integrative Neurophysiology, Vrije Universiteit, Amsterdam, Netherlands
| | - Francesca Fumagalli
- Units of Neurology and Neurophysiology, IRCCS San Raffaele Scientific Institute, Milan, Italy.,San Raffaele Telethon Institute for Gene Therapy (SR-Tiget) and Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
9
|
Alfattal R, Alfarhan M, Algaith AM, Albash B, Elshafie RM, Alshammari A, Alahmad A, Dashti F, Alsafi R, Alsharhan H. LYRM7-associated mitochondrial complex III deficiency with non-cavitating leukoencephalopathy and stroke-like episodes. Am J Med Genet A 2023; 191:1401-1411. [PMID: 36757047 DOI: 10.1002/ajmg.a.63143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/10/2023]
Abstract
Defects of respiratory chain complex III (CIII) result in characteristic but rare mitochondrial disorders associated with distinct neuroradiological findings. The underlying molecular defects affecting mitochondrial CIII assembly factors are few and yet to be identified. LYRM7 assembly factor is required for proper CIII assembly where it acts as a chaperone for the Rieske iron-sulfur (UQCRFS1) protein in the mitochondrial matrix and stabilizing it. We present here the seventeenth individual with LYRM7-associated mitochondrial leukoencephalopathy harboring a previously reported rare pathogenic homozygous LYRM 7 variant, c.2T>C, (p.Met1?). Like previously reported individuals, our 5-year-old male proband presented with recurrent metabolic and lactic acidosis, encephalopathy, and fatigue. Further, he has additional, previously unreported features, including an acute stroke like episode with bilateral central blindness and optic neuropathy, recurrent hyperglycemia and hypertension associated with metabolic crisis. However, he has no signs of psychomotor regression. He has been stable clinically with residual left-sided reduced visual acuity and amblyopia, and no more metabolic crises for 2-year-period while on the mitochondrial cocktail. Although the reported brain MRI findings in other affected individuals are homogenous, it is slightly different in our index, revealing evidence of bilateral almost symmetric multifocal periventricular T2 hyperintensities with hyperintensities of the optic nerves, optic chiasm, and corona radiata but with no cavitation or cystic changes. This report describes new clinical and radiological findings of LYRM7-associated disease. The report also summarizes the clinical and molecular data of previously reported individuals describing the full phenotypic spectrum.
Collapse
Affiliation(s)
- Rita Alfattal
- Department of Pediatrics, Al-Amiri Hospital, Ministry of Health, Kuwait
| | - Maryam Alfarhan
- Department of Pediatrics, Health Sciences Centre, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | | | - Buthaina Albash
- Kuwait Medical Genetics Center, Ministry of Health, Sulaibikhat, Kuwait
| | - Reem M Elshafie
- Kuwait Medical Genetics Center, Ministry of Health, Sulaibikhat, Kuwait
| | - Asma Alshammari
- Kuwait Medical Genetics Center, Ministry of Health, Sulaibikhat, Kuwait
| | - Ahmad Alahmad
- Kuwait Medical Genetics Center, Ministry of Health, Sulaibikhat, Kuwait
| | - Fatima Dashti
- Department of Radiology, Ibn Sina Hospital, Ministry of Health, Safat, Kuwait
| | - Rasha Alsafi
- Department of Pediatrics, Adan Hospital, Ministry of Health, Hadiya, Kuwait
| | - Hind Alsharhan
- Department of Pediatrics, Health Sciences Centre, Faculty of Medicine, Kuwait University, Safat, Kuwait.,Kuwait Medical Genetics Center, Ministry of Health, Sulaibikhat, Kuwait.,Department of Pediatrics, Farwaniya Hospital, Ministry of Health, Sabah Al-Nasser, Kuwait.,Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Bansept C, Gaignard P, Lebigot E, Eyer D, Delplancq G, Hoebeke C, Mazodier K, Ledoyen A, Rouzier C, Fragaki K, Ait-El-Mkadem Saadi S, Philippe C, Bruel AL, Faivre L, Feillet F, Abi Warde MT. UQCRC2-related mitochondrial complex III deficiency, about 7 patients. Mitochondrion 2023; 68:138-144. [PMID: 36509339 DOI: 10.1016/j.mito.2022.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 11/09/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Isolated complex III defect is a relatively rare cause of mitochondrial disorder. New genes involved were identified in the last two decades, with only a few cases described for each deficiency. UQCRC2, which encodes ubiquinol-cytochrome c reductase core protein 2, is one of the eleven structural subunits of complex III. We report seven French patients with UQCRC2 deficiency to complete the phenotype reported so far. We highlight the similarities with neoglucogenesis defect during decompensations - hypoglycaemias, liver failure and lactic acidosis - and point out the rapid improvement with glucose fluid infusion, which is a remarkable feature for a mitochondrial disorder. Finally, we discuss the relevance of coenzyme Q10 supplementation in this defect.
Collapse
Affiliation(s)
- Claire Bansept
- Service de Pédiatrie, GHRMSA, 69 avenue du Dr Léon Mangeney, 68100 Mulhouse, France.
| | - Pauline Gaignard
- Laboratoire de Biochimie, AP-HP, Hôpital de Bicêtre, 78 Rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France.
| | - Elise Lebigot
- Laboratoire de Biochimie, AP-HP, Hôpital de Bicêtre, 78 Rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France.
| | - Didier Eyer
- Service de Pédiatrie, Hôpital de Haguenau, 64 avenue du Professeur René Leriche, 67500 Haguenau, France.
| | - Geoffroy Delplancq
- Service de Neuropédiatrie, CHRU Besançon, 3 boulevard Alexandre Fleming, 25030 Besançon, France; Oncobiologie Génétique Bioinformatique, PCBio, CHRU Besançon, 3 boulevard Alexandre Fleming, 25030 Besançon, France.
| | - Célia Hoebeke
- Service de Neurométabolisme Pédiatrique, AP-HM, CHU Timone, 264 Rue Saint-Pierre, 13005 Marseille, France.
| | - Karin Mazodier
- Service de Médecine Interne, AP-HM, CHU Conception, 147 boulevard Baille, 13005 Marseille, France.
| | - Anaïs Ledoyen
- Service de Pédiatrie, Centre hospitalier d'Ajaccio, 27 avenue de l'Impératrice Eugénie, 20000 Ajaccio, France.
| | - Cécile Rouzier
- Centre de référence des Maladies Mitochondriales, Service de Génétique Médicale, CHU de Nice, 151 route de Saint-Antoine, 06200 Nice, France; Université Côte d'Azur, CNRS, INSERM, IRCAN, 28 avenue de Valombrose, 06107 Nice Cedex 02, France.
| | - Konstantina Fragaki
- Centre de référence des Maladies Mitochondriales, Service de Génétique Médicale, CHU de Nice, 151 route de Saint-Antoine, 06200 Nice, France; Université Côte d'Azur, CNRS, INSERM, IRCAN, 28 avenue de Valombrose, 06107 Nice Cedex 02, France.
| | - Samira Ait-El-Mkadem Saadi
- Centre de référence des Maladies Mitochondriales, Service de Génétique Médicale, CHU de Nice, 151 route de Saint-Antoine, 06200 Nice, France; Université Côte d'Azur, CNRS, INSERM, IRCAN, 28 avenue de Valombrose, 06107 Nice Cedex 02, France.
| | - Christophe Philippe
- Unité Fonctionnelle Innovation en Diagnostic Génomique des maladies rares, CHU Dijon Bourgogne, FHU TRANSLAD, 14 Rue Paul Gaffarel, 21000 Dijon, France; INSERM UMR1231 GAD, F-21000, Dijon, France.
| | - Ange-Line Bruel
- Unité Fonctionnelle Innovation en Diagnostic Génomique des maladies rares, CHU Dijon Bourgogne, FHU TRANSLAD, 14 Rue Paul Gaffarel, 21000 Dijon, France; INSERM UMR1231 GAD, F-21000, Dijon, France.
| | - Laurence Faivre
- INSERM UMR1231 GAD, F-21000, Dijon, France; Centre de Référence Maladies Rares "Anomalies du développement et syndromes malformatifs", Centre de Génétique, FHU TRANSLAD et Institut GIMI, CHU Dijon Bourgogne, 14 Rue Paul Gaffarel, 21000 Dijon, France.
| | - François Feillet
- Centre de Référence des Maladies Métaboliques, Inserm U1256 NGERE, Service de Médecine Infantile, CHRU Brabois Enfants, Rue du Morvan, 54500 Vandœuvre-lès-Nancy, France.
| | - Marie-Thérèse Abi Warde
- Service de Neuropédiatrie, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, 1 avenue Molière, 67200 Strasbourg, France.
| |
Collapse
|
11
|
Wang L, Yang Z, He X, Pu S, Yang C, Wu Q, Zhou Z, Cen X, Zhao H. Mitochondrial protein dysfunction in pathogenesis of neurological diseases. Front Mol Neurosci 2022; 15:974480. [PMID: 36157077 PMCID: PMC9489860 DOI: 10.3389/fnmol.2022.974480] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
Mitochondria are essential organelles for neuronal function and cell survival. Besides the well-known bioenergetics, additional mitochondrial roles in calcium signaling, lipid biogenesis, regulation of reactive oxygen species, and apoptosis are pivotal in diverse cellular processes. The mitochondrial proteome encompasses about 1,500 proteins encoded by both the nuclear DNA and the maternally inherited mitochondrial DNA. Mutations in the nuclear or mitochondrial genome, or combinations of both, can result in mitochondrial protein deficiencies and mitochondrial malfunction. Therefore, mitochondrial quality control by proteins involved in various surveillance mechanisms is critical for neuronal integrity and viability. Abnormal proteins involved in mitochondrial bioenergetics, dynamics, mitophagy, import machinery, ion channels, and mitochondrial DNA maintenance have been linked to the pathogenesis of a number of neurological diseases. The goal of this review is to give an overview of these pathways and to summarize the interconnections between mitochondrial protein dysfunction and neurological diseases.
Collapse
Affiliation(s)
- Liang Wang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Ziyun Yang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Xiumei He
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Shiming Pu
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Cheng Yang
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Qiong Wu
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Zuping Zhou
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Hongxia Zhao
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
12
|
Kaur P, do Rosario MC, Hebbar M, Sharma S, Kausthubham N, Nair K, Shrikiran A, Bhat Y R, Lewis LES, Nampoothiri S, Patil SJ, Suresh N, Bijarnia Mahay S, Dua Puri R, Pai S, Kaur A, KC R, Kamath N, Bajaj S, Kumble A, Shetty R, Shenoy R, Kamate M, Shah H, Muranjan MN, BL Y, Avabratha KS, Subramaniam G, Kadavigere R, Bielas S, Girisha KM, Shukla A. Clinical and genetic spectrum of 104 Indian families with central nervous system white matter abnormalities. Clin Genet 2021; 100:542-550. [PMID: 34302356 PMCID: PMC8918360 DOI: 10.1111/cge.14037] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/15/2022]
Abstract
Genetic disorders with predominant central nervous system white matter abnormalities (CNS WMAs), also called leukodystrophies, are heterogeneous entities. We ascertained 117 individuals with CNS WMAs from 104 unrelated families. Targeted genetic testing was carried out in 16 families and 13 of them received a diagnosis. Chromosomal microarray (CMA) was performed for three families and one received a diagnosis. Mendeliome sequencing was used for testing 11 families and all received a diagnosis. Whole exome sequencing (WES) was performed in 80 families and was diagnostic in 52 (65%). Singleton WES was diagnostic for 50/75 (66.67%) families. Overall, genetic diagnoses were obtained in 77 families (74.03%). Twenty-two of 47 distinct disorders observed in this cohort have not been reported in Indian individuals previously. Notably, disorders of nuclear mitochondrial pathology were most frequent (9 disorders in 20 families). Thirty-seven of 75 (49.33%) disease-causing variants are novel. To sum up, the present cohort describes the phenotypic and genotypic spectrum of genetic disorders with CNS WMAs in our population. It demonstrates WES, especially singleton WES, as an efficient tool in the diagnosis of these heterogeneous entities. It also highlights possible founder events and recurrent disease-causing variants in our population and their implications on the testing strategy.
Collapse
Affiliation(s)
- Parneet Kaur
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Michelle C do Rosario
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Malavika Hebbar
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Suvasini Sharma
- Department of Paediatrics, Lady Hardinge Medical College and Associated Kalawati Saran Children’s Hospital, New Delhi, India
| | - Neethukrishna Kausthubham
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Karthik Nair
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - A Shrikiran
- Department of Paediatrics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Ramesh Bhat Y
- Department of Paediatrics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Leslie Edward S Lewis
- Department of Paediatrics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Sheela Nampoothiri
- Department of Paediatric Genetics, Amrita Institute of Medical Sciences and Research Centre, Kochi, India
| | - SJ Patil
- Division of Genetics, Mazumdar Shaw Medical Centre, Narayana Health City, Bangalore, India
| | - Narayanaswami Suresh
- Department of Paediatrics, Lady Hardinge Medical College and Associated Kalawati Saran Children’s Hospital, New Delhi, India
| | - Sunita Bijarnia Mahay
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Ratna Dua Puri
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Shivanand Pai
- Department of Neurology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Anupriya Kaur
- Department of Paediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rakshith KC
- Department of Neurology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Nutan Kamath
- Department of Paediatrics, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Shruti Bajaj
- Jaslok Hospital and Research Centre, Mumbai, India
| | - Ali Kumble
- Department of Paediatrics, Indiana Hospital and Heart Institute, Mangalore, India
| | | | - Rathika Shenoy
- Department of Paediatrics, K.S. Hegde Medical Academy, NITTE University, Mangalore, India
| | - Mahesh Kamate
- Department of Paediatrics, Jawaharlal Nehru Medical College, Belgaum, India
| | - Hitesh Shah
- Department of Orthopaedics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Mamta N Muranjan
- Department of Pediatrics, Genetics Division, Seth Gordhandas Sunderdas Medical College and King Edward VII Memorial Hospital, Parel, Mumbai, Maharashtra, India
| | - Yatheesha BL
- Dheemahi Child Neurology and Development Center, Shimoga, India
| | | | | | - Rajagopal Kadavigere
- Department of Radiodiagnosis, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Stephanie Bielas
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Katta Mohan Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
13
|
Zanfardino P, Doccini S, Santorelli FM, Petruzzella V. Tackling Dysfunction of Mitochondrial Bioenergetics in the Brain. Int J Mol Sci 2021; 22:8325. [PMID: 34361091 PMCID: PMC8348117 DOI: 10.3390/ijms22158325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/15/2022] Open
Abstract
Oxidative phosphorylation (OxPhos) is the basic function of mitochondria, although the landscape of mitochondrial functions is continuously growing to include more aspects of cellular homeostasis. Thanks to the application of -omics technologies to the study of the OxPhos system, novel features emerge from the cataloging of novel proteins as mitochondrial thus adding details to the mitochondrial proteome and defining novel metabolic cellular interrelations, especially in the human brain. We focussed on the diversity of bioenergetics demand and different aspects of mitochondrial structure, functions, and dysfunction in the brain. Definition such as 'mitoexome', 'mitoproteome' and 'mitointeractome' have entered the field of 'mitochondrial medicine'. In this context, we reviewed several genetic defects that hamper the last step of aerobic metabolism, mostly involving the nervous tissue as one of the most prominent energy-dependent tissues and, as consequence, as a primary target of mitochondrial dysfunction. The dual genetic origin of the OxPhos complexes is one of the reasons for the complexity of the genotype-phenotype correlation when facing human diseases associated with mitochondrial defects. Such complexity clinically manifests with extremely heterogeneous symptoms, ranging from organ-specific to multisystemic dysfunction with different clinical courses. Finally, we briefly discuss the future directions of the multi-omics study of human brain disorders.
Collapse
Affiliation(s)
- Paola Zanfardino
- Department of Medical Basic Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy;
| | - Stefano Doccini
- IRCCS Fondazione Stella Maris, Calambrone, 56128 Pisa, Italy;
| | | | - Vittoria Petruzzella
- Department of Medical Basic Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy;
| |
Collapse
|
14
|
Heidari E, Rasoulinezhad M, Pak N, Reza Ashrafi M, Heidari M, Banwell B, Garshasbi M, Reza Tavasoli A. Defective complex III mitochondrial respiratory chain due to a novel variant in CYC1 gene masquerades acute demyelinating syndrome or Leber hereditary optic neuropathy. Mitochondrion 2021; 60:12-20. [PMID: 34252606 DOI: 10.1016/j.mito.2021.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/03/2021] [Accepted: 07/07/2021] [Indexed: 11/15/2022]
Abstract
Complex III (CIII) is the third out of five mitochondrial respiratory chain complexes residing at the mitochondrial inner membrane. The assembly of 10 subunits encoded by nuclear DNA and one by mitochondrial DNA result in the functional CIII which transfers electrons from ubiquinol to cytochrome c. Deficiencies of CIII are among the least investigated mitochondrial disorders and thus clinical spectrum of patients with mutations in CIII is not well defined. We report on a 10-year-old girl born to consanguineous Iranian parents presenting with recurrent visual loss episodes and optic nerve contrast enhancement in brain imaging reminiscent of an acquired demyelination syndrome (i.e. optic neuritis or multiple sclerosis), who was ultimately confirmed to have a novel homozygous missense variant of unknown significance, c.949C > T; p.(Arg317Trp) in the CYC1 gene, a nuclear DNA subunit of complex III of the mitochondrial chain. Sanger sequencing confirmed the segregation of this variant with disease in the family. The effect of this variant on the protein structure was shown in-silico. Our findings, not only expand the clinical spectrum due to defects in CYC1 gene but also highlight that mitochondrial respiratory chain disorders could be considered as a potential differential diagnosis in children who present with unusual patterns of acquired demyelination syndromes (ADS). In addition, our results support the hypothesis that mitochondrial disorders might have an overlapping presentation with ADS.
Collapse
Affiliation(s)
- Erfan Heidari
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Rasoulinezhad
- Myelin Disorders Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Pak
- Pediatric Radiology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Reza Ashrafi
- Myelin Disorders Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Heidari
- Myelin Disorders Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Brenda Banwell
- Division of Child Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Reza Tavasoli
- Myelin Disorders Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Roosendaal SD, van de Brug T, Alves CAPF, Blaser S, Vanderver A, Wolf NI, van der Knaap MS. Imaging Patterns Characterizing Mitochondrial Leukodystrophies. AJNR Am J Neuroradiol 2021; 42:1334-1340. [PMID: 34255734 PMCID: PMC8324261 DOI: 10.3174/ajnr.a7097] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/14/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND PURPOSE Achieving a specific diagnosis in leukodystrophies is often difficult due to clinical and genetic heterogeneity. Mitochondrial defects cause 5%-10% of leukodystrophies. Our objective was to define MR imaging features commonly shared by mitochondrial leukodystrophies and to distinguish MR imaging patterns related to specific genetic defects. MATERIALS AND METHODS One hundred thirty-two patients with a mitochondrial leukodystrophy with known genetic defects were identified in the data base of the Amsterdam Leukodystrophy Center. Numerous anatomic structures were systematically assessed on brain MR imaging. Additionally, lesion characteristics were scored. Statistical group analysis was performed for 57 MR imaging features by hierarchic testing on clustered genetic subgroups. RESULTS MR imaging features indicative of mitochondrial disease that were frequently found included white matter rarefaction (n = 50 patients), well-delineated cysts (n = 20 patients), T2 hyperintensity of the middle blade of the corpus callosum (n = 85 patients), and symmetric abnormalities in deep gray matter structures (n = 42 patients). Several disorders or clusters of disorders had characteristic features. The combination of T2 hyperintensity in the brain stem, middle cerebellar peduncles, and thalami was associated with complex 2 deficiency. Predominantly periventricular localization of T2 hyperintensities and cystic lesions with a distinct border was associated with defects in complexes 3 and 4. T2-hyperintense signal of the cerebellar cortex was specifically associated with variants in the gene NUBPL. T2 hyperintensities predominantly affecting the directly subcortical cerebral white matter, globus pallidus, and substantia nigra were associated with Kearns-Sayre syndrome. CONCLUSIONS In a large group of patients with a mitochondrial leukodystrophy, general MR imaging features suggestive of mitochondrial disease were found. Additionally, we identified several MR imaging patterns correlating with specific genotypes. Recognition of these patterns facilitates the diagnosis in future patients.
Collapse
Affiliation(s)
| | - T van de Brug
- Epidemiology and Biostatistics (T.v.d.B.), Amsterdam UMC, Amsterdam, the Netherlands
| | | | - S Blaser
- Division of Neuroradiology (S.B.), Department of Diagnostic Imaging, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - A Vanderver
- Department of Radiology and Division of Neurology (A.V.), The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - N I Wolf
- Department of Pediatric Neurology (M.S.v.d.K, N.I.W.), Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - M S van der Knaap
- Department of Pediatric Neurology (M.S.v.d.K, N.I.W.), Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, the Netherlands
- Department of Functional Genomics (M.S.v.d.K.), Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, the Netherlands
| |
Collapse
|
16
|
Organization of the Respiratory Supercomplexes in Cells with Defective Complex III: Structural Features and Metabolic Consequences. Life (Basel) 2021; 11:life11040351. [PMID: 33920624 PMCID: PMC8074069 DOI: 10.3390/life11040351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022] Open
Abstract
The mitochondrial respiratory chain encompasses four oligomeric enzymatic complexes (complex I, II, III and IV) which, together with the redox carrier ubiquinone and cytochrome c, catalyze electron transport coupled to proton extrusion from the inner membrane. The protonmotive force is utilized by complex V for ATP synthesis in the process of oxidative phosphorylation. Respiratory complexes are known to coexist in the membrane as single functional entities and as supramolecular aggregates or supercomplexes (SCs). Understanding the assembly features of SCs has relevant biomedical implications because defects in a single protein can derange the overall SC organization and compromise the energetic function, causing severe mitochondrial disorders. Here we describe in detail the main types of SCs, all characterized by the presence of complex III. We show that the genetic alterations that hinder the assembly of Complex III, not just the activity, cause a rearrangement of the architecture of the SC that can help to preserve a minimal energetic function. Finally, the major metabolic disturbances associated with severe SCs perturbation due to defective complex III are discussed along with interventions that may circumvent these deficiencies.
Collapse
|
17
|
Liu Z, Zhang L, Ren C, Xu M, Li S, Ban R, Wu Y, Chen L, Sun S, Elstner M, Shimura M, Ogawa-Tominaga M, Murayama K, Shi T, Prokisch H, Fang F. Whole genome and exome sequencing identify NDUFV2 mutations as a new cause of progressive cavitating leukoencephalopathy. J Med Genet 2021; 59:351-357. [PMID: 33811136 PMCID: PMC8961761 DOI: 10.1136/jmedgenet-2020-107383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 12/21/2020] [Accepted: 01/10/2021] [Indexed: 11/18/2022]
Abstract
Background Progressive cavitating leukoencephalopathy (PCL) is thought to result from mutations in nuclear genes affecting mitochondrial function and energy metabolism. To date, mutations in two subunits of complex I, NDUFS1 and NDUFV1, have been reported to be related to PCL. Methods Patients underwent clinical examinations, brain MRI, skin biopsy and muscle biopsy. Whole-genome or whole-exome sequencing was performed on the index patients from two unrelated families with PCL. The effects of the mutations were examined through complementation of the NDUFV2 mutation by cDNA expression. Results The common clinical features of the patients in this study were recurring episodes of acute or subacute developmental regression that appeared in the first years of life, followed by gradual remissions and prolonged periods of stability. MRI showed leukoencephalopathy with multiple cavities. Three novel NDUFV2 missense mutations were identified in these families. Complex I deficiency was confirmed in affected individuals’ fibroblasts and a muscle biopsy. Functional and structural analyses revealed that these mutations affect the structural stability and function of the NDUFV2 protein, indicating that defective NDUFV2 function is responsible for the phenotypes in these individuals. Conclusions Here, we report the clinical presentations, neuroimaging and molecular and functional analyses of novel mutations in NDUFV2 in two sibling pairs of two Chinese families presenting with PCL. We hereby expand the knowledge on the clinical phenotypes associated with mutations in NDUFV2 and the genotypes causative for PCL.
Collapse
Affiliation(s)
- Zhimei Liu
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Li Zhang
- Center for Bioinformatics and Computational Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China.,Key Laboratory of Advanced Theory and Application in Statistics and Data Science - MOE, School of Statistics, East China Normal University, Shanghai, China
| | - Changhong Ren
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Manting Xu
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Shufang Li
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Rui Ban
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Ye Wu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Ling Chen
- Department of Neurology, Children's Hospital of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Suzhen Sun
- Department of Neurology, Children's Hospital of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Matthias Elstner
- Department of Neurology, Technical University Munich, Munich, Germany
| | - Masaru Shimura
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, Chiba, Japan
| | - Minako Ogawa-Tominaga
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, Chiba, Japan
| | - Kei Murayama
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, Chiba, Japan
| | - Tieliu Shi
- Center for Bioinformatics and Computational Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China .,Key Laboratory of Advanced Theory and Application in Statistics and Data Science - MOE, School of Statistics, East China Normal University, Shanghai, China
| | - Holger Prokisch
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China .,Institute of Human Genetics, Technical University Munich, Munich, Germany.,Institute of Neurogenomics, Helmholtz Zentrum Munich, Neuherberg, Germany
| | - Fang Fang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
18
|
Abstract
Magnetic resonance spectroscopy (MRS), being able to identify and measure some brain components (metabolites) in pathologic lesions and in normal-appearing tissue, offers a valuable additional diagnostic tool to assess several pediatric neurological diseases. In this review we will illustrate the basic principles and clinical applications of brain proton (H1; hydrogen) MRS (H1MRS), by now the only MRS method widely available in clinical practice. Performing H1MRS in the brain is inherently less complicated than in other tissues (e.g., liver, muscle), in which spectra are heavily affected by magnetic field inhomogeneities, respiration artifacts, and dominating signals from the surrounding adipose tissues. H1MRS in pediatric neuroradiology has some advantages over acquisitions in adults (lack of motion due to children sedation and lack of brain iron deposition allow optimal results), but it requires a deep knowledge of pediatric pathologies and familiarity with the developmental changes in spectral patterns, particularly occurring in the first two years of life. Examples from our database, obtained mainly from a 1.5 Tesla clinical scanner in a time span of 15 years, will demonstrate the efficacy of H1MRS in the diagnosis of a wide range of selected pediatric pathologies, like brain tumors, infections, neonatal hypoxic-ischemic encephalopathy, metabolic and white matter disorders.
Collapse
Affiliation(s)
- Roberto Liserre
- Department of Radiology, Neuroradiology Unit, ASST Spedali Civili University Hospital, Brescia, Italy
| | - Lorenzo Pinelli
- Department of Radiology, Neuroradiology Unit, ASST Spedali Civili University Hospital, Brescia, Italy
| | - Roberto Gasparotti
- Neuroradiology Unit, Department of Medical-Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| |
Collapse
|
19
|
Natarajan S, Ramaswamy G, Kannan L, Gunasekeran V, Kathirvelu G. Acute Devastating Multifocal Cavitating Leukoencephalopathy in a Six-Year-Old Girl due to Missense Mutation in LYRM7 Gene. Pediatr Neurol 2021; 117:44-46. [PMID: 33662890 DOI: 10.1016/j.pediatrneurol.2020.12.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 10/22/2022]
|
20
|
Blackout in the powerhouse: clinical phenotypes associated with defects in the assembly of OXPHOS complexes and the mitoribosome. Biochem J 2021; 477:4085-4132. [PMID: 33151299 PMCID: PMC7657662 DOI: 10.1042/bcj20190767] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 12/26/2022]
Abstract
Mitochondria produce the bulk of the energy used by almost all eukaryotic cells through oxidative phosphorylation (OXPHOS) which occurs on the four complexes of the respiratory chain and the F1–F0 ATPase. Mitochondrial diseases are a heterogenous group of conditions affecting OXPHOS, either directly through mutation of genes encoding subunits of OXPHOS complexes, or indirectly through mutations in genes encoding proteins supporting this process. These include proteins that promote assembly of the OXPHOS complexes, the post-translational modification of subunits, insertion of cofactors or indeed subunit synthesis. The latter is important for all 13 of the proteins encoded by human mitochondrial DNA, which are synthesised on mitochondrial ribosomes. Together the five OXPHOS complexes and the mitochondrial ribosome are comprised of more than 160 subunits and many more proteins support their biogenesis. Mutations in both nuclear and mitochondrial genes encoding these proteins have been reported to cause mitochondrial disease, many leading to defective complex assembly with the severity of the assembly defect reflecting the severity of the disease. This review aims to act as an interface between the clinical and basic research underpinning our knowledge of OXPHOS complex and ribosome assembly, and the dysfunction of this process in mitochondrial disease.
Collapse
|
21
|
Ceccatelli Berti C, di Punzio G, Dallabona C, Baruffini E, Goffrini P, Lodi T, Donnini C. The Power of Yeast in Modelling Human Nuclear Mutations Associated with Mitochondrial Diseases. Genes (Basel) 2021; 12:300. [PMID: 33672627 PMCID: PMC7924180 DOI: 10.3390/genes12020300] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/17/2022] Open
Abstract
The increasing application of next generation sequencing approaches to the analysis of human exome and whole genome data has enabled the identification of novel variants and new genes involved in mitochondrial diseases. The ability of surviving in the absence of oxidative phosphorylation (OXPHOS) and mitochondrial genome makes the yeast Saccharomyces cerevisiae an excellent model system for investigating the role of these new variants in mitochondrial-related conditions and dissecting the molecular mechanisms associated with these diseases. The aim of this review was to highlight the main advantages offered by this model for the study of mitochondrial diseases, from the validation and characterisation of novel mutations to the dissection of the role played by genes in mitochondrial functionality and the discovery of potential therapeutic molecules. The review also provides a summary of the main contributions to the understanding of mitochondrial diseases emerged from the study of this simple eukaryotic organism.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Claudia Donnini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy; (C.C.B.); (G.d.P.); (C.D.); (E.B.); (P.G.); (T.L.)
| |
Collapse
|
22
|
Mitochondrial Structure and Bioenergetics in Normal and Disease Conditions. Int J Mol Sci 2021; 22:ijms22020586. [PMID: 33435522 PMCID: PMC7827222 DOI: 10.3390/ijms22020586] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are ubiquitous intracellular organelles found in almost all eukaryotes and involved in various aspects of cellular life, with a primary role in energy production. The interest in this organelle has grown stronger with the discovery of their link to various pathologies, including cancer, aging and neurodegenerative diseases. Indeed, dysfunctional mitochondria cannot provide the required energy to tissues with a high-energy demand, such as heart, brain and muscles, leading to a large spectrum of clinical phenotypes. Mitochondrial defects are at the origin of a group of clinically heterogeneous pathologies, called mitochondrial diseases, with an incidence of 1 in 5000 live births. Primary mitochondrial diseases are associated with genetic mutations both in nuclear and mitochondrial DNA (mtDNA), affecting genes involved in every aspect of the organelle function. As a consequence, it is difficult to find a common cause for mitochondrial diseases and, subsequently, to offer a precise clinical definition of the pathology. Moreover, the complexity of this condition makes it challenging to identify possible therapies or drug targets.
Collapse
|
23
|
Fernandez-Vizarra E, Zeviani M. Mitochondrial disorders of the OXPHOS system. FEBS Lett 2020; 595:1062-1106. [PMID: 33159691 DOI: 10.1002/1873-3468.13995] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/21/2020] [Accepted: 11/01/2020] [Indexed: 12/13/2022]
Abstract
Mitochondrial disorders are among the most frequent inborn errors of metabolism, their primary cause being the dysfunction of the oxidative phosphorylation system (OXPHOS). OXPHOS is composed of the electron transport chain (ETC), formed by four multimeric enzymes and two mobile electron carriers, plus an ATP synthase [also called complex V (cV)]. The ETC performs the redox reactions involved in cellular respiration while generating the proton motive force used by cV to synthesize ATP. OXPHOS biogenesis involves multiple steps, starting from the expression of genes encoded in physically separated genomes, namely the mitochondrial and nuclear DNA, to the coordinated assembly of components and cofactors building each individual complex and eventually the supercomplexes. The genetic cause underlying around half of the diagnosed mitochondrial disease cases is currently known. Many of these cases result from pathogenic variants in genes encoding structural subunits or additional factors directly involved in the assembly of the ETC complexes. Here, we review the historical and most recent findings concerning the clinical phenotypes and the molecular pathological mechanisms underlying this particular group of disorders.
Collapse
Affiliation(s)
- Erika Fernandez-Vizarra
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Massimo Zeviani
- Venetian Institute of Molecular Medicine, Padova, Italy.,Department of Neurosciences, University of Padova, Italy
| |
Collapse
|
24
|
Human Mitochondrial Pathologies of the Respiratory Chain and ATP Synthase: Contributions from Studies of Saccharomyces cerevisiae. Life (Basel) 2020; 10:life10110304. [PMID: 33238568 PMCID: PMC7700678 DOI: 10.3390/life10110304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022] Open
Abstract
The ease with which the unicellular yeast Saccharomyces cerevisiae can be manipulated genetically and biochemically has established this organism as a good model for the study of human mitochondrial diseases. The combined use of biochemical and molecular genetic tools has been instrumental in elucidating the functions of numerous yeast nuclear gene products with human homologs that affect a large number of metabolic and biological processes, including those housed in mitochondria. These include structural and catalytic subunits of enzymes and protein factors that impinge on the biogenesis of the respiratory chain. This article will review what is currently known about the genetics and clinical phenotypes of mitochondrial diseases of the respiratory chain and ATP synthase, with special emphasis on the contribution of information gained from pet mutants with mutations in nuclear genes that impair mitochondrial respiration. Our intent is to provide the yeast mitochondrial specialist with basic knowledge of human mitochondrial pathologies and the human specialist with information on how genes that directly and indirectly affect respiration were identified and characterized in yeast.
Collapse
|
25
|
Cherian A, Divya KP, Jose J, Thomas B. Multifocal cavitating leukodystrophy-A distinct image in mitochondrial LYRM7 mutations. Mult Scler Relat Disord 2020; 47:102615. [PMID: 33189022 DOI: 10.1016/j.msard.2020.102615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 10/13/2020] [Accepted: 11/02/2020] [Indexed: 10/23/2022]
Abstract
An adult woman presented with insidious onset slowly progressive symmetric spasticity and mild upper extremity dysmetria, with sparing of bowel and bladder functions. She had a distinct magnetic resonance imaging (MRI) pattern of bilateral symmetrical T2 hyperintensity involving periventricular especially parieto-occipital and deep cerebral white matter with multifocal small cavitations which were posterior predominant, sparing subcortical U fibres. Magnetic resonance spectroscopy (MRS) showed lactate peak. Her clinical exome sequencing revealed a pathogenic homozygous start-loss variation in exon 1 encoding the mitochondrial LYR motif-containing protein 7 (LYRM7 gene) which is an integral part of complex III of the mitochondrial respiratory chain. Our case was unique in the indolent adult onset leukodystrophy like presentation making her wheel chair bound by the fourth decade, while most reported patients to date had an early childhood presentation as repeated episodes of subacute leukoencephalopathy with motor regression or death by first decade. Myriad phenotypic presentation of the LYRM7 gene mutations reported till date is highlighted.
Collapse
Affiliation(s)
- Ajith Cherian
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala 695011, India
| | - K P Divya
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala 695011, India.
| | - Jithu Jose
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala 695011, India
| | - Bejoy Thomas
- Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala 695011, India
| |
Collapse
|
26
|
Strong MD, Hart MD, Tang TZ, Ojo BA, Wu L, Nacke MR, Agidew WT, Hwang HJ, Hoyt PR, Bettaieb A, Clarke SL, Smith BJ, Stoecker BJ, Lucas EA, Lin D, Chowanadisai W. Role of zinc transporter ZIP12 in susceptibility-weighted brain magnetic resonance imaging (MRI) phenotypes and mitochondrial function. FASEB J 2020; 34:10702-12725. [PMID: 32716562 DOI: 10.1096/fj.202000772r] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/01/2020] [Accepted: 07/10/2020] [Indexed: 12/16/2022]
Abstract
Brain zinc dysregulation is linked to many neurological disorders. However, the mechanisms regulating brain zinc homeostasis are poorly understood. We performed secondary analyses of brain MRI GWAS and exome sequencing data from adults in the UK Biobank. Coding ZIP12 polymorphisms in zinc transporter ZIP12 (SLC39A12) were associated with altered brain susceptibility weighted MRI (swMRI). Conditional and joint association analyses revealed independent GWAS signals in linkage disequilibrium with 2 missense ZIP12 polymorphisms, rs10764176 and rs72778328, with reduced zinc transport activity. ZIP12 rare coding variants predicted to be deleterious were associated with similar impacts on brain swMRI. In Neuro-2a cells, ZIP12 deficiency by short hairpin RNA (shRNA) depletion or CRISPR/Cas9 genome editing resulted in impaired mitochondrial function, increased superoxide presence, and detectable protein carbonylation. Inhibition of Complexes I and IV of the electron transport chain reduced neurite outgrowth in ZIP12 deficient cells. Transcriptional coactivator PGC-1α, mitochondrial superoxide dismutase (SOD2), and chemical antioxidants α-tocopherol, MitoTEMPO, and MitoQ restored neurite extension impaired by ZIP12 deficiency. Mutant forms of α-synuclein and tau linked to familial Parkinson's disease and frontotemporal dementia, respectively, reduced neurite outgrowth in cells deficient in ZIP12. Zinc and ZIP12 may confer resilience against neurological diseases or premature aging of the brain.
Collapse
Affiliation(s)
- Morgan D Strong
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Matthew D Hart
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Tony Z Tang
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Babajide A Ojo
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Lei Wu
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Mariah R Nacke
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Workneh T Agidew
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Hong J Hwang
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, USA
| | - Peter R Hoyt
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, USA
| | - Ahmed Bettaieb
- Department of Nutrition, University of Tennessee, Knoxville, TN, USA
| | - Stephen L Clarke
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Brenda J Smith
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Barbara J Stoecker
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Edralin A Lucas
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Dingbo Lin
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Winyoo Chowanadisai
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
27
|
Abstract
Mitochondrial disease presenting in childhood is characterized by clinical, biochemical and genetic complexity. Some children are affected by canonical syndromes, but the majority have nonclassical multisystemic disease presentations involving virtually any organ in the body. Each child has a unique constellation of clinical features and disease trajectory, leading to enormous challenges in diagnosis and management of these heterogeneous disorders. This review discusses the classical mitochondrial syndromes presenting most frequently in childhood and then presents an organ-based perspective including systems less frequently linked to mitochondrial disease, such as skin and hair abnormalities and immune dysfunction. An approach to diagnosis is then presented, encompassing clinical evaluation and biochemical, neuroimaging and genetic investigations, and emphasizing the problem of phenocopies. The impact of next-generation sequencing is discussed, together with the importance of functional validation of novel genetic variants never previously linked to mitochondrial disease. The review concludes with a brief discussion of currently available and emerging therapies. The field of mitochondrial medicine has made enormous strides in the last 30 years, with approaching 400 different genes across two genomes now linked to primary mitochondrial disease. However, many important questions remain unanswered, including the reasons for tissue specificity and variability of clinical presentation of individuals sharing identical gene defects, and a lack of disease-modifying therapies and biomarkers to monitor disease progression and/or response to treatment.
Collapse
Affiliation(s)
- S Rahman
- Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
28
|
Mukherjee S, Ghosh A. Molecular mechanism of mitochondrial respiratory chain assembly and its relation to mitochondrial diseases. Mitochondrion 2020; 53:1-20. [PMID: 32304865 DOI: 10.1016/j.mito.2020.04.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/28/2020] [Accepted: 04/07/2020] [Indexed: 12/17/2022]
Abstract
The mitochondrial respiratory chain (MRC) is comprised of ~92 nuclear and mitochondrial DNA-encoded protein subunits that are organized into five different multi-subunit respiratory complexes. These complexes produce 90% of the ATP required for cell sustenance. Specific sets of subunits are assembled in a modular or non-modular fashion to construct the MRC complexes. The complete assembly process is gradually chaperoned by a myriad of assembly factors that must coordinate with several other prosthetic groups to reach maturity, makingthe entire processextensively complicated. Further, the individual respiratory complexes can be integrated intovarious giant super-complexes whose functional roles have yet to be explored. Mutations in the MRC subunits and in the related assembly factors often give rise to defects in the proper assembly of the respiratory chain, which then manifests as a group of disorders called mitochondrial diseases, the most common inborn errors of metabolism. This review summarizes the current understanding of the biogenesis of individual MRC complexes and super-complexes, and explores how mutations in the different subunits and assembly factors contribute to mitochondrial disease pathology.
Collapse
Affiliation(s)
- Soumyajit Mukherjee
- Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, India
| | - Alok Ghosh
- Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, India.
| |
Collapse
|
29
|
Sarret C. Leukodystrophies and genetic leukoencephalopathies in children. Rev Neurol (Paris) 2020; 176:10-19. [DOI: 10.1016/j.neurol.2019.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 12/11/2022]
|
30
|
Masud AJ, Kastaniotis AJ, Rahman MT, Autio KJ, Hiltunen JK. Mitochondrial acyl carrier protein (ACP) at the interface of metabolic state sensing and mitochondrial function. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118540. [PMID: 31473256 DOI: 10.1016/j.bbamcr.2019.118540] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/23/2019] [Accepted: 08/27/2019] [Indexed: 12/20/2022]
Abstract
Acyl carrier protein (ACP) is a principal partner in the cytosolic and mitochondrial fatty acid synthesis (FAS) pathways. The active form holo-ACP serves as FAS platform, using its 4'-phosphopantetheine group to present covalently attached FAS intermediates to the enzymes responsible for the acyl chain elongation process. Mitochondrial unacylated holo-ACP is a component of mammalian mitoribosomes, and acylated ACP species participate as interaction partners in several ACP-LYRM (leucine-tyrosine-arginine motif)-protein heterodimers that act either as assembly factors or subunits of the electron transport chain and Fe-S cluster assembly complexes. Moreover, octanoyl-ACP provides the C8 backbone for endogenous lipoic acid synthesis. Accumulating evidence suggests that mtFAS-generated acyl-ACPs act as signaling molecules in an intramitochondrial metabolic state sensing circuit, coordinating mitochondrial acetyl-CoA levels with mitochondrial respiration, Fe-S cluster biogenesis and protein lipoylation.
Collapse
Affiliation(s)
- Ali J Masud
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | | | - M Tanvir Rahman
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Kaija J Autio
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - J Kalervo Hiltunen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.
| |
Collapse
|
31
|
Targeted next generation sequencing identifies novel pathogenic variants and provides molecular diagnoses in a cohort of pediatric and adult patients with unexplained mitochondrial dysfunction. Mitochondrion 2019; 47:309-317. [DOI: 10.1016/j.mito.2019.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/14/2019] [Accepted: 02/26/2019] [Indexed: 12/28/2022]
|
32
|
Zhang J, Liu M, Zhang Z, Zhou L, Kong W, Jiang Y, Wang J, Xiao J, Wu Y. Genotypic Spectrum and Natural History of Cavitating Leukoencephalopathies in Childhood. Pediatr Neurol 2019; 94:38-47. [PMID: 30770271 DOI: 10.1016/j.pediatrneurol.2019.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 12/26/2018] [Accepted: 01/01/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND We aimed to delineate the pattern of natural course, neuroimaging features, and the genotypic spectrum of cavitating leukoencephalopathies. METHODS Children (age of onset ≤16 years) who met the criteria for cavitating leukoencephalopathies from January 2009 to October 2018 were identified. Whole-exome sequencing and prospective follow-up study of the natural history and brain magnetic resonance imaging (MRI) were performed. RESULTS Thirty-seven children were clinically diagnosed with cavitating leukoencephalopathies. Pathogenic or likely pathogenic mutations in eight genes were identified in 31 individuals (83.78%): IBA57 (17/37), NDUFS1 (5/37), NDUFV1 (2/37), NDUFV2 (3/37), NDUFAF5 (1/37), LYRM7 (1/37), NDUFB8 (1/37), and GLRX5 (1/37). All genes were engaged in mitochondrial function. IBA57 was identified in half of children. Mutations in NDUFV2, NDUFAF5, NDUFB8, or GLRX5 were first found to be related to cavitating leukoencephalopathies. Follow-up with a median of 23.5 months (four to 107 months) was available. The median age at disease onset was 11 months. All cases presented acute or subacute onset, and the initial presentation was rapid motor regression in 35 cases. Thirty-five children (35/37) exhibited a stabilized or improved pattern. Cavities and high-intensity diffusion-weighted imaging signals were the common MRI features during the acute stage. Although clinically stable, 21 children had reserved high diffusion-weighted imaging signals for a long time. Patients with different gene mutations show different MRI patterns. CONCLUSIONS The study expands the number of genes involved in cavitating leukoencephalopathies to 22. IBA57 is the most common candidate gene. Most cases showed a stabilized or improved pattern after an acute or subacute onset, which is different from most other inherited metabolic diseases or leukodystrophies. More cases and a longer follow-up period are needed.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Ming Liu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Zhongbin Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Ling Zhou
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Weijing Kong
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yuwu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jingmin Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jiangxi Xiao
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Ye Wu
- Department of Pediatrics, Peking University First Hospital, Beijing, China.
| |
Collapse
|
33
|
Human diseases associated with defects in assembly of OXPHOS complexes. Essays Biochem 2018; 62:271-286. [PMID: 30030362 PMCID: PMC6056716 DOI: 10.1042/ebc20170099] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/13/2018] [Accepted: 05/02/2018] [Indexed: 02/02/2023]
Abstract
The structural biogenesis and functional proficiency of the multiheteromeric complexes forming the mitochondrial oxidative phosphorylation system (OXPHOS) require the concerted action of a number of chaperones and other assembly factors, most of which are specific for each complex. Mutations in a large number of these assembly factors are responsible for mitochondrial disorders, in most cases of infantile onset, typically characterized by biochemical defects of single specific complexes. In fact, pathogenic mutations in complex-specific assembly factors outnumber, in many cases, the repertoire of mutations found in structural subunits of specific complexes. The identification of patients with specific defects in assembly factors has provided an important contribution to the nosological characterization of mitochondrial disorders, and has also been a crucial means to identify a huge number of these proteins in humans, which play an essential role in mitochondrial bioenergetics. The wide use of next generation sequencing (NGS) has led to and will allow the identifcation of additional components of the assembly machinery of individual complexes, mutations of which are responsible for human disorders. The functional studies on patients' specimens, together with the creation and characterization of in vivo models, are fundamental to better understand the mechanisms of each of them. A new chapter in this field will be, in the near future, the discovery of mechanisms and actions underlying the formation of supercomplexes, molecular structures formed by the physical, and possibly functional, interaction of some of the individual respiratory complexes, particularly complex I (CI), III (CIII), and IV (CIV).
Collapse
|
34
|
Novel Homozygous Variant in TTC19 Causing Mitochondrial Complex III Deficiency with Recurrent Stroke-Like Episodes: Expanding the Phenotype. Semin Pediatr Neurol 2018; 26:16-20. [PMID: 29961508 DOI: 10.1016/j.spen.2018.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A 7-year-old boy with family history of consanguinity presented with developmental delay and recurrent hemiplegia involving both sides of the body, with variable facial and ocular involvement. Brain MRI showed bilateral striatal necrosis with cystic degeneration and lactate peaks on spectroscopy. Biochemical testing demonstrated mildly elevated lactate and pyruvate. Whole-exome sequencing revealed a novel homozygous pathogenic frameshift mutation in gene TTC19, diagnostic of mitochondrial complex III deficiency.
Collapse
|
35
|
Cavusoglu D, Hismi BO, Dundar NO, Oztekin O, Koc A, Canda E, Arican P, Gencpinar P. An unusual cause of cavitating leukoencephalopathy: ethylmalonic encephalopathy. Acta Neurol Belg 2018; 118:309-312. [PMID: 29464661 DOI: 10.1007/s13760-018-0902-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 02/13/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Dilek Cavusoglu
- Department of Pediatric Neurology, Faculty of Medicine, Afyon Kocatepe University, Afyon, Turkey
| | - Burcu Ozturk Hismi
- Department of Pediatric Metabolism and Nutrition, Tepecik Education and Research Hospital, Izmir, Turkey
| | - Nihal Olgac Dundar
- Department of Pediatric Neurology, Faculty of Medicine, Izmir Katip Celebi University, Izmir, Turkey.
| | - Ozgur Oztekin
- Department of Radiology, Tepecik Education and Research Hospital, Izmir, Turkey
| | - Altug Koc
- Department of Medical Genetics, Tepecik Education and Research Hospital, Izmir, Turkey
| | - Ebru Canda
- Department of Pediatric Metabolism and Nutrition, Ege University, Izmir, Turkey
| | - Pinar Arican
- Department of Pediatric Neurology, Tepecik Education and Research Hospital, Izmir, Turkey
| | - Pinar Gencpinar
- Department of Pediatric Neurology, Faculty of Medicine, Izmir Katip Celebi University, Izmir, Turkey
| |
Collapse
|
36
|
Fernandez-Vizarra E, Zeviani M. Mitochondrial complex III Rieske Fe-S protein processing and assembly. Cell Cycle 2018; 17:681-687. [PMID: 29243944 DOI: 10.1080/15384101.2017.1417707] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Regulation of the mitochondrial respiratory chain biogenesis is a matter of great interest because of its implications for mitochondrial disease. One of the mitochondrial disease genes recently discovered associated to encephalopathy and mitochondrial complex III (cIII) deficiency is TTC19. Our study of TTC19-deficient human and mouse models, has led us to propose a post-assembly quality control role or 'husbandry' function for this factor that is linked to Rieske Fe-S protein (UQCRFS1). UQCRFS1 is the last incorporated cIII subunit, and its presence is essential for enzymatic activity. During UQCRFS1 assembly, the precursor is cleaved and its N-terminal part remains bound to the complex, between the two core subunits (UQCRC1 and UQCRC2). In the absence of TTC19 there is a prominent accumulation of these UQCRFS1-derived N-terminal fragments that proved to be detrimental for cIII function. In this article we will discuss some ideas around the UQCRFS1 processing and assembly and its importance for the regulation of cIII activity and biogenesis.
Collapse
Affiliation(s)
- Erika Fernandez-Vizarra
- a MRC-Mitochondrial Biology Unit , University of Cambridge , Hills Road, CB2 0XY , Cambridge , UK
| | - Massimo Zeviani
- a MRC-Mitochondrial Biology Unit , University of Cambridge , Hills Road, CB2 0XY , Cambridge , UK
| |
Collapse
|
37
|
Bindu PS, Sonam K, Chiplunkar S, Govindaraj P, Nagappa M, Vekhande CC, Aravinda HR, Ponmalar JNJ, Mahadevan A, Gayathri N, Bharath MMS, Sinha S, Taly AB. Mitochondrial leukoencephalopathies: A border zone between acquired and inherited white matter disorders in children? Mult Scler Relat Disord 2018; 20:84-92. [DOI: 10.1016/j.msard.2018.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/05/2017] [Accepted: 01/04/2018] [Indexed: 12/18/2022]
|
38
|
Movement disorders in mitochondrial disease. J Neurol 2018; 265:1230-1240. [PMID: 29307008 DOI: 10.1007/s00415-017-8722-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 12/14/2022]
Abstract
Mitochondrial disease presents with a wide spectrum of clinical manifestations that may appear at any age and cause multisystem dysfunction. A broad spectrum of movement disorders can manifest in mitochondrial diseases including ataxia, Parkinsonism, myoclonus, dystonia, choreoathetosis, spasticity, tremor, tic disorders and restless legs syndrome. There is marked heterogeneity of movement disorder phenotypes, even in patients with the same genetic mutation. Moreover, the advent of new technologies, such as next-generation sequencing, is likely to identify novel causative genes, expand the phenotype of known disease genes and improve the genetic diagnosis in these patients. Identification of the underlying genetic basis of the movement disorder is also a crucial step to allow for targeted therapies to be implemented as well as provide the basis for a better understanding of the molecular pathophysiology of the disease process. The aim of this review is to discuss the spectrum of movement disorders associated with mitochondrial disease.
Collapse
|
39
|
Liu M, Zhang J, Zhang Z, Zhou L, Jiang Y, Wang J, Xiao J, Wu Y. Phenotypic spectrum of mutations in IBA57
, a candidate gene for cavitating leukoencephalopathy. Clin Genet 2017; 93:235-241. [PMID: 28671726 DOI: 10.1111/cge.13090] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/25/2017] [Accepted: 06/27/2017] [Indexed: 01/17/2023]
Affiliation(s)
- M. Liu
- Department of Paediatrics; Peking University First Hospital; Beijing China
| | - J. Zhang
- Department of Paediatrics; Peking University First Hospital; Beijing China
| | - Z. Zhang
- Department of Paediatrics; Peking University First Hospital; Beijing China
| | - L. Zhou
- Department of Paediatrics; Peking University First Hospital; Beijing China
| | - Y. Jiang
- Department of Paediatrics; Peking University First Hospital; Beijing China
| | - J. Wang
- Department of Paediatrics; Peking University First Hospital; Beijing China
| | - J. Xiao
- Department of radiology; Peking University First Hospital; Beijing China
| | - Y. Wu
- Department of Paediatrics; Peking University First Hospital; Beijing China
| |
Collapse
|
40
|
Hempel M, Kremer LS, Tsiakas K, Alhaddad B, Haack TB, Löbel U, Feichtinger RG, Sperl W, Prokisch H, Mayr JA, Santer R. LYRM7 - associated complex III deficiency: A clinical, molecular genetic, MR tomographic, and biochemical study. Mitochondrion 2017; 37:55-61. [DOI: 10.1016/j.mito.2017.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 02/18/2017] [Accepted: 07/06/2017] [Indexed: 10/19/2022]
|
41
|
Witters P, Saada A, Honzik T, Tesarova M, Kleinle S, Horvath R, Goldstein A, Morava E. Revisiting mitochondrial diagnostic criteria in the new era of genomics. Genet Med 2017; 20:444-451. [DOI: 10.1038/gim.2017.125] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/19/2017] [Indexed: 11/09/2022] Open
|
42
|
Combined Respiratory Chain Deficiency and UQCC2 Mutations in Neonatal Encephalomyopathy: Defective Supercomplex Assembly in Complex III Deficiencies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7202589. [PMID: 28804536 PMCID: PMC5540226 DOI: 10.1155/2017/7202589] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/22/2017] [Accepted: 06/04/2017] [Indexed: 11/17/2022]
Abstract
Vertebrate respiratory chain complex III consists of eleven subunits. Mutations in five subunits either mitochondrial (MT-CYB) or nuclear (CYC1, UQCRC2, UQCRB, and UQCRQ) encoded have been reported. Defects in five further factors for assembly (TTC19, UQCC2, and UQCC3) or iron-sulphur cluster loading (BCS1L and LYRM7) cause complex III deficiency. Here, we report a second patient with UQCC2 deficiency. This girl was born prematurely; pregnancy was complicated by intrauterine growth retardation and oligohydramnios. She presented with respiratory distress syndrome, developed epileptic seizures progressing to status epilepticus, and died at day 33. She had profound lactic acidosis and elevated urinary pyruvate. Exome sequencing revealed two homozygous missense variants in UQCC2, leading to a severe reduction of UQCC2 protein. Deficiency of complexes I and III was found enzymatically and on the protein level. A review of the literature on genetically distinct complex III defects revealed that, except TTC19 deficiency, the biochemical pattern was very often a combined respiratory chain deficiency. Besides complex III, typically, complex I was decreased, in some cases complex IV. In accordance with previous observations, the presence of assembled complex III is required for the stability or assembly of complexes I and IV, which might be related to respirasome/supercomplex formation.
Collapse
|
43
|
Bottani E, Cerutti R, Harbour ME, Ravaglia S, Dogan SA, Giordano C, Fearnley IM, D'Amati G, Viscomi C, Fernandez-Vizarra E, Zeviani M. TTC19 Plays a Husbandry Role on UQCRFS1 Turnover in the Biogenesis of Mitochondrial Respiratory Complex III. Mol Cell 2017; 67:96-105.e4. [PMID: 28673544 DOI: 10.1016/j.molcel.2017.06.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/03/2017] [Accepted: 06/01/2017] [Indexed: 12/29/2022]
Abstract
Loss-of-function mutations in TTC19 (tetra-tricopeptide repeat domain 19) have been associated with severe neurological phenotypes and mitochondrial respiratory chain complex III deficiency. We previously demonstrated the mitochondrial localization of TTC19 and its link with complex III biogenesis. Here we provide detailed insight into the mechanistic role of TTC19, by investigating a Ttc19?/? mouse model that shows progressive neurological and metabolic decline, decreased complex III activity, and increased production of reactive oxygen species. By using both the Ttc19?/? mouse model and a range of human cell lines, we demonstrate that TTC19 binds to the fully assembled complex III dimer, i.e., after the incorporation of the iron-sulfur Rieske protein (UQCRFS1). The in situ maturation of UQCRFS1 produces N-terminal polypeptides, which remain bound to holocomplex III. We show that, in normal conditions, these UQCRFS1 fragments are rapidly removed, but when TTC19 is absent they accumulate within complex III, causing its structural and functional impairment.
Collapse
Affiliation(s)
- Emanuela Bottani
- MRC Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building Hills Road, Cambridge CB2 0XY, UK
| | - Raffaele Cerutti
- MRC Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building Hills Road, Cambridge CB2 0XY, UK
| | - Michael E Harbour
- MRC Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building Hills Road, Cambridge CB2 0XY, UK
| | - Sabrina Ravaglia
- Istituto Neurologico "Casimiro Mondino," via Mondino 2, Pavia 27100, Italy
| | - Sukru Anil Dogan
- MRC Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building Hills Road, Cambridge CB2 0XY, UK
| | - Carla Giordano
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Ian M Fearnley
- MRC Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building Hills Road, Cambridge CB2 0XY, UK
| | - Giulia D'Amati
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Carlo Viscomi
- MRC Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building Hills Road, Cambridge CB2 0XY, UK
| | - Erika Fernandez-Vizarra
- MRC Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building Hills Road, Cambridge CB2 0XY, UK.
| | - Massimo Zeviani
- MRC Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
44
|
Sonam K, Bindu PS, Srinivas Bharath MM, Govindaraj P, Gayathri N, Arvinda HR, Chiplunkar S, Nagappa M, Sinha S, Khan NA, Nunia V, Paramasivam A, Thangaraj K, Taly AB. Mitochondrial oxidative phosphorylation disorders in children: Phenotypic, genotypic and biochemical correlations in 85 patients from South India. Mitochondrion 2016; 32:42-49. [PMID: 27826120 DOI: 10.1016/j.mito.2016.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 10/12/2016] [Accepted: 11/03/2016] [Indexed: 12/13/2022]
Abstract
Mitochondrial oxidative phosphorylation (OXPHOS) disorders account for a variety of neuromuscular disorders in children. In this study mitochondrial respiratory chain enzymes were assayed in muscle tissue in a large cohort of children with varied neuromuscular presentations from June 2011 to December 2013. The biochemical enzyme deficiencies were correlated with the phenotypes, magnetic resonance imaging, histopathology and genetic findings to reach a final diagnosis. There were 85 children (mean age: 6.9±4.7years, M:F:2:1) with respiratory chain enzyme deficiency which included: isolated complex I (n=50, 60%), multiple complexes (n=24, 27%), complex IV (n=8, 9%) and complex III deficiencies (n=3, 4%). The most common neurological findings were ataxia (59%), hypotonia (59%) and involuntary movements (49%). A known mitochondrial syndrome was diagnosed in 27 (29%) and non-syndromic presentations in 57 (71%). Genetic analysis included complete sequencing of mitochondrial genome, SURF1, POLG1&2. It revealed variations in mitochondrial DNA (n=8), SURF1 (n=5), and POLG1 (n=3). This study, the first of its kind from India, highlights the wide range of clinical and imaging phenotypes and genetic heterogeneity in children with mitochondrial oxidative phosphorylation disorders.
Collapse
Affiliation(s)
- Kothari Sonam
- Department of Clinical Neurosciences, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Parayil Sankaran Bindu
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.
| | - M M Srinivas Bharath
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Periyasamy Govindaraj
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Narayanappa Gayathri
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Hanumanthapura R Arvinda
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Shwetha Chiplunkar
- Department of Clinical Neurosciences, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Madhu Nagappa
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Sanjib Sinha
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | | | - Vandana Nunia
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | | | - Arun B Taly
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| |
Collapse
|
45
|
Torraco A, Ardissone A, Invernizzi F, Rizza T, Fiermonte G, Niceta M, Zanetti N, Martinelli D, Vozza A, Verrigni D, Di Nottia M, Lamantea E, Diodato D, Tartaglia M, Dionisi-Vici C, Moroni I, Farina L, Bertini E, Ghezzi D, Carrozzo R. Novel mutations in IBA57 are associated with leukodystrophy and variable clinical phenotypes. J Neurol 2016; 264:102-111. [PMID: 27785568 DOI: 10.1007/s00415-016-8312-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/07/2016] [Accepted: 10/09/2016] [Indexed: 10/20/2022]
Abstract
Defects of the Fe/S cluster biosynthesis represent a subgroup of diseases affecting the mitochondrial energy metabolism. In the last years, mutations in four genes (NFU1, BOLA3, ISCA2 and IBA57) have been related to a new group of multiple mitochondrial dysfunction syndromes characterized by lactic acidosis, hyperglycinemia, multiple defects of the respiratory chain complexes, and impairment of four lipoic acid-dependent enzymes: α-ketoglutarate dehydrogenase complex, pyruvic dehydrogenase, branched-chain α-keto acid dehydrogenase complex and the H protein of the glycine cleavage system. Few patients have been reported with mutations in IBA57 and with variable clinical phenotype. Herein, we describe four unrelated patients carrying novel mutations in IBA57. All patients presented with combined or isolated defect of complex I and II. Clinical features varied widely, ranging from fatal infantile onset of the disease to acute and severe psychomotor regression after the first year of life. Brain MRI was characterized by cavitating leukodystrophy. The identified mutations were never reported previously and all had a dramatic effect on IBA57 stability. Our study contributes to expand the array of the genotypic variation of IBA57 and delineates the leukodystrophic pattern of IBA57 deficient patients.
Collapse
Affiliation(s)
- Alessandra Torraco
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Anna Ardissone
- Child Neurology Unit, Foundation IRCCS Neurological Institute "C. Besta", Milan, Italy
| | - Federica Invernizzi
- Unit of Molecular Neurogenetics, Foundation IRCCS Neurological Institute "C. Besta", Milan, Italy
| | - Teresa Rizza
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giuseppe Fiermonte
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via E. Orabona 4, Bari, Italy
| | - Marcello Niceta
- Division of Genetic Disorders and Rare Diseases, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Nadia Zanetti
- Unit of Molecular Neurogenetics, Foundation IRCCS Neurological Institute "C. Besta", Milan, Italy
| | - Diego Martinelli
- Division of Metabolism, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Angelo Vozza
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via E. Orabona 4, Bari, Italy
| | - Daniela Verrigni
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Michela Di Nottia
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Eleonora Lamantea
- Unit of Molecular Neurogenetics, Foundation IRCCS Neurological Institute "C. Besta", Milan, Italy
| | - Daria Diodato
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marco Tartaglia
- Division of Genetic Disorders and Rare Diseases, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Carlo Dionisi-Vici
- Division of Metabolism, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Isabella Moroni
- Child Neurology Unit, Foundation IRCCS Neurological Institute "C. Besta", Milan, Italy
| | - Laura Farina
- Unit of Neuroradiology, Foundation IRCCS Neurological Institute "C. Besta", Milan, Italy
| | - Enrico Bertini
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Daniele Ghezzi
- Unit of Molecular Neurogenetics, Foundation IRCCS Neurological Institute "C. Besta", Milan, Italy
| | - Rosalba Carrozzo
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| |
Collapse
|
46
|
Kremer L, L 'hermitte-Stead C, Lesimple P, Gilleron M, Filaut S, Jardel C, Haack T, Strom T, Meitinger T, Azzouz H, Tebib N, Ogier De Baulny H, Touati G, Prokisch H, Lombès A. Severe respiratory complex III defect prevents liver adaptation to prolonged fasting. J Hepatol 2016; 65:377-85. [PMID: 27151179 PMCID: PMC5640785 DOI: 10.1016/j.jhep.2016.04.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 04/12/2016] [Accepted: 04/20/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS Next generation sequencing approaches have tremendously improved the diagnosis of rare genetic diseases. It may however be faced with difficult clinical interpretation of variants. Inherited enzymatic diseases provide an invaluable possibility to evaluate the function of the defective enzyme in human cell biology. This is the case for respiratory complex III, which has 11 structural subunits and requires several assembly factors. An important role of complex III in liver function is suggested by its frequent impairment in human cases of genetic complex III defects. METHODS We report the case of a child with complex III defect and acute liver dysfunction with lactic acidosis, hypoglycemia, and hyperammonemia. Mitochondrial activities were assessed in liver and fibroblasts using spectrophotometric assays. Genetic analysis was done by exome followed by Sanger sequencing. Functional complementation of defective fibroblasts was performed using lentiviral transduction followed by enzymatic analyses and expression assays. RESULTS Homozygous, truncating, mutations in LYRM7 and MTO1, two genes encoding essential mitochondrial proteins were found. Functional complementation of the complex III defect in fibroblasts demonstrated the causal role of LYRM7 mutations. Comparison of the patient's clinical history to previously reported patients with complex III defect due to nuclear DNA mutations, some actually followed by us, showed striking similarities allowing us to propose common pathophysiology. CONCLUSIONS Profound complex III defect in liver does not induce actual liver failure but impedes liver adaptation to prolonged fasting leading to severe lactic acidosis, hypoglycemia, and hyperammonemia, potentially leading to irreversible brain damage. LAY SUMMARY The diagnosis of rare genetic disease has been tremendously accelerated by the development of high throughput sequencing technology. In this paper we report the investigations that have led to identify LYRM7 mutations causing severe hepatic defect of respiratory complex III. Based on the comparison of the patient's phenotype with other cases of complex III defect, we propose that profound complex III defect in liver does not induce actual liver failure but impedes liver adaptation to prolonged fasting.
Collapse
Affiliation(s)
- Laura Kremer
- Institute of Human Genetics
Technische Universität München [München] - HelmholtzZentrum München - German Research Center for Environmental Health - 85764 Neuherberg
| | - Caroline L 'hermitte-Stead
- Institut Cochin
Université Paris Descartes - Paris 5 - Université Sorbonne Paris Cité - Institut National de la Santé et de la Recherche Médicale - U1016Centre National de la Recherche Scientifique - UMR 810422 rue Méchain, 75014 Paris
| | - Pierre Lesimple
- Institut Cochin
Université Paris Descartes - Paris 5 - Université Sorbonne Paris Cité - Institut National de la Santé et de la Recherche Médicale - U1016Centre National de la Recherche Scientifique - UMR 810422 rue Méchain, 75014 Paris
| | - Mylène Gilleron
- Institut Cochin
Université Paris Descartes - Paris 5 - Université Sorbonne Paris Cité - Institut National de la Santé et de la Recherche Médicale - U1016Centre National de la Recherche Scientifique - UMR 810422 rue Méchain, 75014 Paris,Service de Biochimie Métabolique et Centre de Génétique moléculaire et chromosomique [CHU Pitié Salpêtrière]
Assistance publique - Hôpitaux de Paris (AP-HP) - CHU Pitié-Salpêtrière [APHP] - 47-83 Boulevard de l'Hôpital 75013 Paris
| | - Sandrine Filaut
- Service de Biochimie Métabolique et Centre de Génétique moléculaire et chromosomique [CHU Pitié Salpêtrière]
Assistance publique - Hôpitaux de Paris (AP-HP) - CHU Pitié-Salpêtrière [APHP] - 47-83 Boulevard de l'Hôpital 75013 Paris
| | - Claude Jardel
- Institut Cochin
Université Paris Descartes - Paris 5 - Université Sorbonne Paris Cité - Institut National de la Santé et de la Recherche Médicale - U1016Centre National de la Recherche Scientifique - UMR 810422 rue Méchain, 75014 Paris,Service de Biochimie Métabolique et Centre de Génétique moléculaire et chromosomique [CHU Pitié Salpêtrière]
Assistance publique - Hôpitaux de Paris (AP-HP) - CHU Pitié-Salpêtrière [APHP] - 47-83 Boulevard de l'Hôpital 75013 Paris
| | - Tobias Haack
- Institute of Human Genetics
Technische Universität München [München] - HelmholtzZentrum München - German Research Center for Environmental Health - 85764 Neuherberg
| | - Tim Strom
- Institute of Human Genetics
Technische Universität München [München] - HelmholtzZentrum München - German Research Center for Environmental Health - 85764 Neuherberg
| | - Thomas Meitinger
- Institute of Human Genetics
Technische Universität München [München] - HelmholtzZentrum München - German Research Center for Environmental Health - 85764 Neuherberg
| | - Hatem Azzouz
- Service de Pédiatrie [La Rabta, Tunis]
Hopital La Rabta - Tunis - La Rabta Jebbari 1007 Tunis
| | - Neji Tebib
- Service de Pédiatrie [La Rabta, Tunis]
Hopital La Rabta - Tunis - La Rabta Jebbari 1007 Tunis
| | - Hélène Ogier De Baulny
- Service de neurologie pédiatrique et maladies métaboliques
Assistance publique - Hôpitaux de Paris (AP-HP) - Hôpital Robert Debré - Université Paris Diderot - Paris 7 - 48, boulevard Sérurier 75935 PARIS CEDEX 19
| | - Guy Touati
- Hépatologie et Maladies Héréditaires du Métabolisme
Hôpital Purpan, Toulouse - Centre de référence commun pour les maladies héréditaires du métabolisme - Hôpital des Enfants - 330, avenue de Grande-Bretagne - TSA 70034 - 31059 Toulouse cedex 9.
| | - Holger Prokisch
- Institute of Human Genetics
Technische Universität München [München] - HelmholtzZentrum München - German Research Center for Environmental Health - 85764 Neuherberg
| | - Anne Lombès
- Inserm UMR 1016, Institut Cochin, Paris, France; CNRS UMR 8104, Institut Cochin, Paris, France; Université Paris V René Descartes, Institut Cochin, Paris, France.
| |
Collapse
|