1
|
Verduzco-Mendoza A, Mota-Rojas D, Olmos-Hernández A, Avila-Luna A, García-García K, Gálvez-Rosas A, Hidalgo-Bravo A, Ríos C, Parra-Cid C, Montes S, García-López J, Ramos-Languren LE, Pérez-Severiano F, González-Piña R, Bueno-Nava A. Changes in Noradrenergic Synthesis and Dopamine Beta-Hydroxylase Activity in Response to Oxidative Stress after Iron-induced Brain Injury. Neurochem Res 2024; 49:3043-3059. [PMID: 39105899 DOI: 10.1007/s11064-024-04222-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/07/2024]
Abstract
Noradrenaline (NA) levels are altered during the first hours and several days after cortical injury. NA modulates motor functional recovery. The present study investigated whether iron-induced cortical injury modulated noradrenergic synthesis and dopamine beta-hydroxylase (DBH) activity in response to oxidative stress in the brain cortex, pons and cerebellum of the rat. Seventy-eight rats were divided into two groups: (a) the sham group, which received an intracortical injection of a vehicle solution; and (b) the injured group, which received an intracortical injection of ferrous chloride. Motor deficits were evaluated for 20 days post-injury. On the 3rd and 20th days, the rats were euthanized to measure oxidative stress indicators (reactive oxygen species (ROS), reduced glutathione (GSH) and oxidized glutathione (GSSG)) and catecholamines (NA, dopamine (DA)), plus DBH mRNA and protein levels. Our results showed that iron-induced brain cortex injury increased noradrenergic synthesis and DBH activity in the brain cortex, pons and cerebellum at 3 days post-injury, predominantly on the ipsilateral side to the injury, in response to oxidative stress. A compensatory increase in contralateral noradrenergic activity was observed, but without changes in the DBH mRNA and protein levels in the cerebellum and pons. In conclusion, iron-induced cortical injury increased the noradrenergic response in the brain cortex, pons and cerebellum, particularly on the ipsilateral side, accompanied by a compensatory response on the contralateral side. The oxidative stress was countered by antioxidant activity, which favored functional recovery following motor deficits.
Collapse
Affiliation(s)
- Antonio Verduzco-Mendoza
- Programa de Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de México, Mexico
- Dirección de Investigación, Arenal de Guadalupe, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, SSa, Calzada México-Xochimilco 289, Arenal de Guadalupe, Ciudad de México, Mexico
| | - Daniel Mota-Rojas
- División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana CBS, Unidad Xochimilco, Ciudad de México, Mexico
| | - Adriana Olmos-Hernández
- Dirección de Investigación, Arenal de Guadalupe, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, SSa, Calzada México-Xochimilco 289, Arenal de Guadalupe, Ciudad de México, Mexico
| | - Alberto Avila-Luna
- Dirección de Investigación, Arenal de Guadalupe, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, SSa, Calzada México-Xochimilco 289, Arenal de Guadalupe, Ciudad de México, Mexico
| | - Karla García-García
- Dirección de Investigación, Arenal de Guadalupe, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, SSa, Calzada México-Xochimilco 289, Arenal de Guadalupe, Ciudad de México, Mexico
| | - Arturo Gálvez-Rosas
- Dirección de Investigación, Arenal de Guadalupe, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, SSa, Calzada México-Xochimilco 289, Arenal de Guadalupe, Ciudad de México, Mexico
| | - Alberto Hidalgo-Bravo
- Dirección de Investigación, Arenal de Guadalupe, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, SSa, Calzada México-Xochimilco 289, Arenal de Guadalupe, Ciudad de México, Mexico
| | - Camilo Ríos
- Dirección de Investigación, Arenal de Guadalupe, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, SSa, Calzada México-Xochimilco 289, Arenal de Guadalupe, Ciudad de México, Mexico
- División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana CBS, Unidad Xochimilco, Ciudad de México, Mexico
| | - Carmen Parra-Cid
- Dirección de Investigación, Arenal de Guadalupe, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, SSa, Calzada México-Xochimilco 289, Arenal de Guadalupe, Ciudad de México, Mexico
| | - Sergio Montes
- Unidad Académica Multidisciplinaria Reynosa-Aztlán, Universidad Autónoma de Tamaulipas, calle 16 y lago de Chapala, Aztlán, Tamaulipas, Mexico
| | - Julieta García-López
- Dirección de Investigación, Arenal de Guadalupe, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, SSa, Calzada México-Xochimilco 289, Arenal de Guadalupe, Ciudad de México, Mexico
| | - Laura E Ramos-Languren
- Facultad de Psicología, División de Estudios Profesionales, Universidad Nacional Autónoma de Mexico, Av. Universidad 3040, Col, Copilco Universidad Alcaldía Coyoacán, Ciudad de México, Mexico
| | - Francisca Pérez-Severiano
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, SSa, Insurgentes Sur 3877, Ciudad de México, Mexico
| | - Rigoberto González-Piña
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Salvador Díaz Mirón esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, 11340, Ciudad de México, Mexico
- Clínica de Rehabilitación del Daño Cerebral CLIREDACE "Dr. Hugo Iván González Gutiérrez", Monterrey 243, Col. Roma Sur, Alcaldía Cuauhtémoc, Ciudad de México, Mexico
| | - Antonio Bueno-Nava
- Dirección de Investigación, Arenal de Guadalupe, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, SSa, Calzada México-Xochimilco 289, Arenal de Guadalupe, Ciudad de México, Mexico.
- Laboratorio de Neurofisiología Química de la Discapacidad, Coordinación de Neurociencias Básica, Arenal de Guadalupe, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, SSa, Calz. México-Xochimilco 289, Ciudad de México, 14389, Mexico.
| |
Collapse
|
2
|
Ferrazzoli D, Ortelli P, Versace V, Stolz J, Dezi S, Vos P, Giladi N, Saltuari L, Sebastianelli L. Post-traumatic parkinsonism: The intricate twist between trauma, inflammation and neurodegeneration. A narrative review. J Neurol Sci 2024; 466:123242. [PMID: 39303348 DOI: 10.1016/j.jns.2024.123242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/10/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Post-traumatic Parkinsonism (PTP) is a complex neurological disorder that is often associated with the occurrence of a traumatic brain injury (TBI). PTP can occur either in the acute or chronic phase of TBI. There is still uncertainty about the mechanisms provoking PTP, which can be the result of the acute blast itself or secondary neurodegenerative process occurring months to years post the acute trauma. Currently there is an underestimation of the clinical importance of PTP and lack of specific and proven therapeutic interventions, both in the pharmacological and the neurorehabilitation field. This narrative review aims to summarize the actual knowledge about PTP in terms of its pathophysiology, clinical aspects, treatments and perspective of care in the neurorehabilitative setting.
Collapse
Affiliation(s)
- Davide Ferrazzoli
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Teaching Hospital of the Paracelsus Medical Private University (PMU), Vipiteno-Sterzing, Italy.
| | - Paola Ortelli
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Teaching Hospital of the Paracelsus Medical Private University (PMU), Vipiteno-Sterzing, Italy
| | - Viviana Versace
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Teaching Hospital of the Paracelsus Medical Private University (PMU), Vipiteno-Sterzing, Italy; Department of Neurology, Neurocritical Care and Neurorehabilitation, Christian Doppler University Hospital, Centre for Cognitive Neuroscience, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Jakob Stolz
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Teaching Hospital of the Paracelsus Medical Private University (PMU), Vipiteno-Sterzing, Italy
| | - Sabrina Dezi
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Teaching Hospital of the Paracelsus Medical Private University (PMU), Vipiteno-Sterzing, Italy
| | - Pieter Vos
- Department of Neurology, Slingeland Hospital, Doetinchem, the Netherlands
| | - Nir Giladi
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; Department of Neurology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Leopold Saltuari
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Teaching Hospital of the Paracelsus Medical Private University (PMU), Vipiteno-Sterzing, Italy
| | - Luca Sebastianelli
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Teaching Hospital of the Paracelsus Medical Private University (PMU), Vipiteno-Sterzing, Italy
| |
Collapse
|
3
|
Horvat L, Foschini A, Grinias JP, Waterhouse BD, Devilbiss DM. Repetitive mild traumatic brain injury impairs norepinephrine system function and psychostimulant responsivity. Brain Res 2024; 1839:149040. [PMID: 38815643 DOI: 10.1016/j.brainres.2024.149040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Traumatic brain injury (TBI) is a complex pathophysiological process that results in a variety of neurotransmitter, behavioral, and cognitive deficits. The locus coeruleus-norepinephrine (LC-NE) system is a critical regulator of arousal levels and higher executive processes affected by TBI including attention, working memory, and decision making. LC-NE axon injury and impaired signaling within the prefrontal cortex (PFC) is a potential contributor to the neuropsychiatric symptoms after single, moderate to severe TBI. The majority of TBIs are mild, yet long-term cognitive deficits and increased susceptibility for further injury can accumulate after each repetitive mild TBI. As a potential treatment for restoring cognitive function and daytime sleepiness after injury psychostimulants, including methylphenidate (MPH) that increase levels of NE within the PFC, are being prescribed "off-label". The impact of mild and repetitive mild TBI on the LC-NE system remains limited. Therefore, we determined the extent of LC-NE and arousal dysfunction and response to therapeutic doses of MPH in rats following experimentally induced single and repetitive mild TBI. Microdialysis measures of basal NE efflux from the medial PFC and arousal measures were significantly lower after repetitive mild TBI. Females showed higher baseline PFC-NE efflux than males following single and repetitive mild TBI. In response to MPH challenge, males exhibited a blunted PFC-NE response and persistent arousal levels following repetitive mild TBI. These results provide critical insight into the role of catecholamine system dysfunction associated with cognitive deficits following repeated injury, outcome differences between sex/gender, and lack of success of MPH as an adjunctive therapy to improve cognitive function following injury.
Collapse
Affiliation(s)
- Leah Horvat
- Rowan University, Department of Chemistry and Biochemistry, Science Hall 301G, 230 Meditation Walk, Glassboro, NJ 08028, USA
| | - Alexis Foschini
- Rowan University, Department of Cell Biology and Neuroscience, Science Center 220, 2 Medical Center Drive, Stratford, NJ, 08084, USA
| | - James P Grinias
- Rowan University, Department of Chemistry and Biochemistry, Science Hall 301G, 230 Meditation Walk, Glassboro, NJ 08028, USA
| | - Barry D Waterhouse
- Rowan University, Department of Cell Biology and Neuroscience, Science Center 220, 2 Medical Center Drive, Stratford, NJ, 08084, USA
| | - David M Devilbiss
- Rowan University, Department of Cell Biology and Neuroscience, Science Center 220, 2 Medical Center Drive, Stratford, NJ, 08084, USA.
| |
Collapse
|
4
|
Mata-Bermudez A, Trejo-Chávez R, Martínez-Vargas M, Pérez-Arredondo A, Martínez-Cardenas MDLÁ, Diaz-Ruiz A, Rios C, Navarro L. Dysregulation of the dopaminergic system secondary to traumatic brain injury: implications for mood and anxiety disorders. Front Neurosci 2024; 18:1447688. [PMID: 39176379 PMCID: PMC11338874 DOI: 10.3389/fnins.2024.1447688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
Traumatic brain injury (TBI) represents a public health issue with a high mortality rate and severe neurological and psychiatric consequences. Mood and anxiety disorders are some of the most frequently reported. Primary and secondary damage can cause a loss of neurons and glial cells, leading to dysfunction of neuronal circuits, which can induce imbalances in many neurotransmitter systems. Monoaminergic systems, especially the dopaminergic system, are some of the most involved in the pathogenesis of neuropsychiatric and cognitive symptoms after TBI. In this work, we summarize the studies carried out in patients who have suffered TBI and describe alterations in the dopaminergic system, highlighting (1) dysfunction of the dopaminergic neuronal circuits caused by TBI, where modifications are shown in the dopamine transporter (DAT) and alterations in the expression of dopamine receptor 2 (D2R) in brain areas with dopaminergic innervation, thus establishing a hypodopaminergic state and (2) variations in the concentration of dopamine and its metabolites in biological fluids of post-TBI patients, such as elevated dopamine (DA) and alterations in homovanillic acid (HVA). On the other hand, we show a large number of reports of alterations in the dopaminergic system after a TBI in animal models, in which modifications in the levels of DA, DAT, and HVA have been reported, as well as alterations in the expression of tyrosine hydroxylase (TH). We also describe the biological pathways, neuronal circuits, and molecular mechanisms potentially involved in mood and anxiety disorders that occur after TBI and are associated with alterations of the dopaminergic system in clinical studies and animal models. We describe the changes that occur in the clinical picture of post-TBI patients, such as alterations in mood and anxiety associated with DAT activity in the striatum, the relationship between post-TBI major depressive disorders (MDD) with lower availability of the DA receptors D2R and D3R in the caudate and thalamus, as well as a decrease in the volume of the substantia nigra (SN) associated with anxiety symptoms. With these findings, we discuss the possible relationship between the disorders caused by alterations in the dopaminergic system in patients with TBI.
Collapse
Affiliation(s)
- Alfonso Mata-Bermudez
- Departamento de Fisiología Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Ricardo Trejo-Chávez
- Departamento de Fisiología Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Doctorado en Ciencias Biomedicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Marina Martínez-Vargas
- Departamento de Fisiología Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Adán Pérez-Arredondo
- Departamento de Fisiología Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - Araceli Diaz-Ruiz
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez, Ciudad de México, Mexico
| | - Camilo Rios
- Laboratorio de Neurofarmacología Molecular, Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco, Ciudad de México, Mexico
- Dirección de Investigación, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra, Ciudad de México, Mexico
| | - Luz Navarro
- Departamento de Fisiología Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
5
|
Zuurbier KR, Solano Fonseca R, Arneaud SL, Tatge L, Otuzoglu G, Wall JM, Douglas PM. Cytosolic dopamine determines hypersensitivity to blunt force trauma. iScience 2024; 27:110094. [PMID: 38883817 PMCID: PMC11179581 DOI: 10.1016/j.isci.2024.110094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/07/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024] Open
Abstract
The selective vulnerability of dopaminergic neurons to trauma-induced neurodegeneration is conserved across species, from nematodes to humans. However, the molecular mechanisms underlying this hypersensitivity to blunt force trauma remain elusive. We find that extravesicular dopamine, a key driver of Parkinson's disease, extends its toxic role to the acute challenges associated with injury. Ectopic dopamine synthesis in serotonergic neurons sensitizes this resilient neuronal subtype to trauma-induced degeneration. While dopaminergic neurons normally maintain dopamine in a functional and benign state, trauma-induced subcellular redox imbalances elicit dopamine-dependent cytotoxicity. Cytosolic dopamine accumulation, through perturbations to its synthesis, metabolism, or packaging, is necessary and sufficient to drive neurodegeneration upon injury and during aging. Additionally, degeneration is further exacerbated by rapid upregulation of the rate-limiting enzyme in dopamine synthesis, cat-2, via the FOS-1 transcription factor. Fundamentally, our study in C. elegans unravels the molecular intricacies rendering dopaminergic neurons uniquely prone to physical perturbation across evolutionary lines.
Collapse
Affiliation(s)
- Kielen R. Zuurbier
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- O’Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rene Solano Fonseca
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sonja L.B. Arneaud
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lexus Tatge
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gupse Otuzoglu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jordan M. Wall
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Peter M. Douglas
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- O’Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
6
|
Orr TJ, Lesha E, Kramer AH, Cecia A, Dugan JE, Schwartz B, Einhaus SL. Traumatic Brain Injury: A Comprehensive Review of Biomechanics and Molecular Pathophysiology. World Neurosurg 2024; 185:74-88. [PMID: 38272305 DOI: 10.1016/j.wneu.2024.01.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024]
Abstract
Traumatic brain injury (TBI) is a critical public health concern with profound consequences for affected individuals. This comprehensive literature review delves into TBI intricacies, encompassing primary injury biomechanics and the molecular pathophysiology of the secondary injury cascade. Primary TBI involves a complex interplay of forces, including impact loading, blast overpressure, and impulsive loading, leading to diverse injury patterns. These forces can be categorized into inertial (e.g., rotational acceleration causing focal and diffuse injuries) and contact forces (primarily causing focal injuries like skull fractures). Understanding their interactions is crucial for effective injury management. The secondary injury cascade in TBI comprises multifaceted molecular and cellular responses, including altered ion concentrations, dysfunctional neurotransmitter networks, oxidative stress, and cellular energy disturbances. These disruptions impair synaptic function, neurotransmission, and neuroplasticity, resulting in cognitive and behavioral deficits. Moreover, neuroinflammatory responses play a pivotal role in exacerbating damage. As we endeavor to bridge the knowledge gap between biomechanics and molecular pathophysiology, further research is imperative to unravel the nuanced interplay between mechanical forces and their consequences at the molecular and cellular levels, ultimately guiding the development of targeted therapeutic strategies to mitigate the debilitating effects of TBI. In this study, we aim to provide a concise review of the bridge between biomechanical processes causing primary injury and the ensuing molecular pathophysiology of secondary injury, while detailing the subsequent clinical course for this patient population. This knowledge is crucial for advancing our understanding of TBI and developing effective interventions to improve outcomes for those affected.
Collapse
Affiliation(s)
- Taylor J Orr
- College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee.
| | - Emal Lesha
- Department of Neurological Surgery, University of Tennessee Health Science Center, Memphis, Tennessee; Semmes Murphey Clinic, Memphis, Tennessee
| | - Alexandra H Kramer
- College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Arba Cecia
- School of Medicine, Loyola University Chicago, Chicago, Illinois
| | - John E Dugan
- College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Barrett Schwartz
- Department of Neurological Surgery, University of Tennessee Health Science Center, Memphis, Tennessee; Semmes Murphey Clinic, Memphis, Tennessee
| | - Stephanie L Einhaus
- Department of Neurological Surgery, University of Tennessee Health Science Center, Memphis, Tennessee; Semmes Murphey Clinic, Memphis, Tennessee
| |
Collapse
|
7
|
Moloney RA, Palliser HK, Dyson RM, Pavy CL, Berry M, Hirst JJ, Shaw JC. Ongoing effects of preterm birth on the dopaminergic and noradrenergic pathways in the frontal cortex and hippocampus of guinea pigs. Dev Neurobiol 2024; 84:93-110. [PMID: 38526217 DOI: 10.1002/dneu.22937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024]
Abstract
Children born preterm have an increased likelihood of developing neurobehavioral disorders such as attention-deficit hyperactivity disorder (ADHD) and anxiety. These disorders have a sex bias, with males having a higher incidence of ADHD, whereas anxiety disorder tends to be more prevalent in females. Both disorders are underpinned by imbalances to key neurotransmitter systems, with dopamine and noradrenaline in particular having major roles in attention regulation and stress modulation. Preterm birth disturbances to neurodevelopment may affect this neurotransmission in a sexually dimorphic manner. Time-mated guinea pig dams were allocated to deliver by preterm induction of labor (gestational age 62 [GA62]) or spontaneously at term (GA69). The resultant offspring were randomized to endpoints as neonates (24 h after term-equivalence age) or juveniles (corrected postnatal day 40, childhood equivalence). Relative mRNA expressions of key dopamine and noradrenaline pathway genes were examined in the frontal cortex and hippocampus and quantified with real-time PCR. Myelin basic protein and neuronal nuclei immunostaining were performed to characterize the impact of preterm birth. Within the frontal cortex, there were persisting reductions in the expression of dopaminergic pathway components that occurred in preterm males only. Conversely, preterm-born females had increased expression of key noradrenergic receptors and a reduction of the noradrenergic transporter within the hippocampus. This study demonstrated that preterm birth results in major changes in dopaminergic and noradrenergic receptor, transporter, and synthesis enzyme gene expression in a sex- and region-based manner that may contribute to the sex differences in susceptibility to neurobehavioral disorders. These findings highlight the need for the development of sex-based treatments for improving these conditions.
Collapse
Affiliation(s)
- Roisin A Moloney
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle, Australia
| | - Hannah K Palliser
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle, Australia
| | - Rebecca M Dyson
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
- Biomedical Research Unit, University of Otago, Wellington, New Zealand
| | - Carlton L Pavy
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle, Australia
| | - Max Berry
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
- Biomedical Research Unit, University of Otago, Wellington, New Zealand
| | - Jonathon J Hirst
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle, Australia
| | - Julia C Shaw
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle, Australia
| |
Collapse
|
8
|
Peattie ARD, Manktelow AE, Sahakian BJ, Menon DK, Stamatakis EA. Methylphenidate Ameliorates Behavioural and Neurobiological Deficits in Executive Function for Patients with Chronic Traumatic Brain Injury. J Clin Med 2024; 13:771. [PMID: 38337465 PMCID: PMC10856064 DOI: 10.3390/jcm13030771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
(1) Background: Traumatic brain injury (TBI) often results in cognitive impairments, including in visuospatial planning and executive function. Methylphenidate (MPh) demonstrates potential improvements in several cognitive domains in patients with TBI. The Tower of London (TOL) is a visuospatial planning task used to assess executive function. (2) Methods: Volunteers with a history of TBI (n = 16) participated in a randomised, double-blinded, placebo-controlled, fMRI study to investigate the neurobiological correlates of visuospatial planning and executive function, on and off MPh. (3) Results: Healthy controls (HCs) (n = 18) and patients on placebo (TBI-placebo) differed significantly in reaction time (p < 0.0005) and accuracy (p < 0.0001) when considering all task loads, but especially for high cognitive loads for reaction time (p < 0.001) and accuracy (p < 0.005). Across all task loads, TBI-MPh were more accurate than TBI-placebo (p < 0.05) but remained less accurate than HCs (p < 0.005). TBI-placebo substantially improved in accuracy with MPh administration (TBI-MPh) to a level statistically comparable to HCs at low (p = 0.443) and high (p = 0.175) cognitive loads. Further, individual patients that performed slower on placebo at low cognitive loads were faster with MPh (p < 0.05), while individual patients that performed less accurately on placebo were more accurate with MPh at both high and low cognitive loads (p < 0.005). TBI-placebo showed reduced activity in the bilateral inferior frontal gyri (IFG) and insulae versus HCs. MPh normalised these regional differences. MPh enhanced within-network connectivity (between parietal, striatal, insula, and cerebellar regions) and enhanced beyond-network connectivity (between parietal, thalamic, and cerebellar regions). Finally, individual changes in cerebellar-thalamic (p < 0.005) and cerebellar-parietal (p < 0.05) connectivity with MPh related to individual changes in accuracy with MPh. (4) Conclusions: This work highlights behavioural and neurofunctional differences between HCs and patients with chronic TBI, and that adverse differences may benefit from MPh treatment.
Collapse
Affiliation(s)
- Alexander R. D. Peattie
- Division of Anaesthesia, University of Cambridge, Addenbrooke’s Hospital, Box 93, Hills Road, Cambridge CB2 0QQ, UK; (A.E.M.); (D.K.M.)
- Department of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, Box 165, Hills Road, Cambridge CB2 0QQ, UK
| | - Anne E. Manktelow
- Division of Anaesthesia, University of Cambridge, Addenbrooke’s Hospital, Box 93, Hills Road, Cambridge CB2 0QQ, UK; (A.E.M.); (D.K.M.)
- Department of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, Box 165, Hills Road, Cambridge CB2 0QQ, UK
| | - Barbara J. Sahakian
- Department of Psychiatry, University of Cambridge, Herchel Smith Building for Brain and Mind Sciences, Forvie Site, Robinson Way, Cambridge CB2 0SZ, UK;
| | - David K. Menon
- Division of Anaesthesia, University of Cambridge, Addenbrooke’s Hospital, Box 93, Hills Road, Cambridge CB2 0QQ, UK; (A.E.M.); (D.K.M.)
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge Biomedical Campus, Box 65, Cambridge CB2 0QQ, UK
| | - Emmanuel A. Stamatakis
- Division of Anaesthesia, University of Cambridge, Addenbrooke’s Hospital, Box 93, Hills Road, Cambridge CB2 0QQ, UK; (A.E.M.); (D.K.M.)
- Department of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, Box 165, Hills Road, Cambridge CB2 0QQ, UK
| |
Collapse
|
9
|
Li S, Wang A, Wu Y, He S, Shuai W, Zhao M, Zhu Y, Hu X, Luo Y, Wang G. Targeted therapy for non-small-cell lung cancer: New insights into regulated cell death combined with immunotherapy. Immunol Rev 2024; 321:300-334. [PMID: 37688394 DOI: 10.1111/imr.13274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Non-small-cell lung cancer (NSCLC), which has a high rate of metastatic spread and drug resistance, is the most common subtype of lung cancer. Therefore, NSCLC patients have a very poor prognosis and a very low chance of survival. Human cancers are closely linked to regulated cell death (RCD), such as apoptosis, autophagy, ferroptosis, pyroptosis, and necroptosis. Currently, small-molecule compounds targeting various types of RCD have shown potential as anticancer treatments. Moreover, RCD appears to be a specific part of the antitumor immune response; hence, the combination of RCD and immunotherapy might increase the inhibitory effect of therapy on tumor growth. In this review, we summarize small-molecule compounds used for the treatment of NSCLC by focusing on RCD and pharmacological systems. In addition, we describe the current research status of an immunotherapy combined with an RCD-based regimen for NSCLC, providing new ideas for targeting RCD pathways in combination with immunotherapy for patients with NSCLC in the future.
Collapse
Affiliation(s)
- Shutong Li
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Aoxue Wang
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Yongya Wu
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Shengyuan He
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Wen Shuai
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Min Zhao
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Yumeng Zhu
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Xiuying Hu
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Yubin Luo
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Guan Wang
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Wang Y, Chen Q, Zhang X, Wang K, Cheng H, Chen X. Changes in decision-making function in patients with subacute mild traumatic brain injury. Eur J Neurosci 2024; 59:69-81. [PMID: 38044718 DOI: 10.1111/ejn.16195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/09/2023] [Accepted: 11/03/2023] [Indexed: 12/05/2023]
Abstract
Although awareness regarding patients with mild traumatic brain injury has increased, they have not received sufficient attention in clinics; hence, many patients still experience only partial recovery. Deficits in decision-making function are frequently experienced by these patients. Accurate identification of impairment in the early stages after brain injury is particularly crucial for timely intervention and the prevention of long-term cognitive consequences. Therefore, we investigated the changes in decision-making ability under tasks of ambiguity and risk in patients with mild traumatic brain injury with a rule-based neuropsychological paradigm. In this study, patients (n = 39) and matched healthy controls (n = 38) completed general neuropsychological background tests and decision-making tasks (Iowa Gambling Task and Game of Dice Task). We found that patients had extensive cognitive impairment in general attention, memory and information processing speed in the subacute phase, and confirmed that patients had different degrees of impairment in decision-making abilities under ambiguity and risk. Furthermore, the decline of memory and executive function may be related to decision-making dysfunction.
Collapse
Affiliation(s)
- Yuyang Wang
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Neurosurgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qing Chen
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xinyu Zhang
- Department of Neurosurgery, Funan County People's Hospital, Fuyang, China
| | - Kai Wang
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| | - Hongwei Cheng
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xingui Chen
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| |
Collapse
|
11
|
Matt RA, Martin RS, Evans AK, Gever JR, Vargas GA, Shamloo M, Ford AP. Locus Coeruleus and Noradrenergic Pharmacology in Neurodegenerative Disease. Handb Exp Pharmacol 2024; 285:555-616. [PMID: 37495851 DOI: 10.1007/164_2023_677] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Adrenoceptors (ARs) throughout the brain are stimulated by noradrenaline originating mostly from neurons of the locus coeruleus, a brainstem nucleus that is ostensibly the earliest to show detectable pathology in neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. The α1-AR, α2-AR, and β-AR subtypes expressed in target brain regions and on a range of cell populations define the physiological responses to noradrenaline, which includes activation of cognitive function in addition to modulation of neurometabolism, cerebral blood flow, and neuroinflammation. As these heterocellular functions are critical for maintaining brain homeostasis and neuronal health, combating the loss of noradrenergic tone from locus coeruleus degeneration may therefore be an effective treatment for both cognitive symptoms and disease modification in neurodegenerative indications. Two pharmacologic approaches are receiving attention in recent clinical studies: preserving noradrenaline levels (e.g., via reuptake inhibition) and direct activation of target adrenoceptors. Here, we review the expression and role of adrenoceptors in the brain, the preclinical studies which demonstrate that adrenergic stimulation can support cognitive function and cerebral health by reversing the effects of noradrenaline depletion, and the human data provided by pharmacoepidemiologic analyses and clinical trials which together identify adrenoceptors as promising targets for the treatment of neurodegenerative disease.
Collapse
Affiliation(s)
| | | | - Andrew K Evans
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | | | | | - Mehrdad Shamloo
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | | |
Collapse
|
12
|
Verduzco-Mendoza A, Mota-Rojas D, Olmos Hernández SA, Gálvez-Rosas A, Aguirre-Pérez A, Cortes-Altamirano JL, Alfaro-Rodríguez A, Parra-Cid C, Avila-Luna A, Bueno-Nava A. Traumatic brain injury extending to the striatum alters autonomic thermoregulation and hypothalamic monoamines in recovering rats. Front Neurosci 2023; 17:1304440. [PMID: 38144211 PMCID: PMC10748590 DOI: 10.3389/fnins.2023.1304440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/21/2023] [Indexed: 12/26/2023] Open
Abstract
The brain cortex is the structure that is typically injured in traumatic brain injury (TBI) and is anatomically connected with other brain regions, including the striatum and hypothalamus, which are associated in part with motor function and the regulation of body temperature, respectively. We investigated whether a TBI extending to the striatum could affect peripheral and core temperatures as an indicator of autonomic thermoregulatory function. Moreover, it is unknown whether thermal modulation is accompanied by hypothalamic and cortical monoamine changes in rats with motor function recovery. The animals were allocated into three groups: the sham group (sham), a TBI group with a cortical contusion alone (TBI alone), and a TBI group with an injury extending to the dorsal striatum (TBI + striatal injury). Body temperature and motor deficits were evaluated for 20 days post-injury. On the 3rd and 20th days, rats were euthanized to measure the serotonin (5-HT), noradrenaline (NA), and dopamine (DA) levels using high-performance liquid chromatography (HPLC). We observed that TBI with an injury extending to the dorsal striatum increased core and peripheral temperatures. These changes were accompanied by a sustained motor deficit lasting for 14 days. Furthermore, there were notable increases in NA and 5-HT levels in the brain cortex and hypothalamus both 3 and 20 days after injury. In contrast, rats with TBI alone showed no changes in peripheral temperatures and achieved motor function recovery by the 7th day post-injury. In conclusion, our results suggest that TBI with an injury extending to the dorsal striatum elevates both core and peripheral temperatures, causing a delay in functional recovery and increasing hypothalamic monoamine levels. The aftereffects can be attributed to the injury site and changes to the autonomic thermoregulatory functions.
Collapse
Affiliation(s)
- Antonio Verduzco-Mendoza
- Programa de Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de México, Mexico
| | - Daniel Mota-Rojas
- Neurofisiología, Conducta y Bienestar Animal, DPAA, Universidad Autónoma Metropolitana, Unidad Xochimilco, Ciudad de México, Mexico
| | | | - Arturo Gálvez-Rosas
- Neurociencias Básicas, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra (LGII), SSa, Ciudad de México, Mexico
| | - Alexander Aguirre-Pérez
- Neurociencias Básicas, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra (LGII), SSa, Ciudad de México, Mexico
| | - José Luis Cortes-Altamirano
- Neurociencias Básicas, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra (LGII), SSa, Ciudad de México, Mexico
- Departamento de Quiropráctica, Universidad Estatal del Valle de Ecatepec, Ecatepec de Morelos, Estado de México, Mexico
- Madrid College of Chiropractic, Real Centro Universitario Escorial María Cristina, Madrid, Spain
| | - Alfonso Alfaro-Rodríguez
- Neurociencias Básicas, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra (LGII), SSa, Ciudad de México, Mexico
| | - Carmen Parra-Cid
- Unidad de Ingeniería de Tejidos, Instituto Nacional de Rehabilitación LGII, SSa, Ciudad de México, Mexico
| | - Alberto Avila-Luna
- Neurociencias Básicas, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra (LGII), SSa, Ciudad de México, Mexico
| | - Antonio Bueno-Nava
- Neurociencias Básicas, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra (LGII), SSa, Ciudad de México, Mexico
| |
Collapse
|
13
|
Xu Z, Li Y, Fan X, Xu W, Liu J, Li J. Disrupted functional connectivity of the striatum in patients with diffuse axonal injury: a resting-state functional MRI study. Neuroreport 2023; 34:792-800. [PMID: 37756204 PMCID: PMC10538614 DOI: 10.1097/wnr.0000000000001956] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023]
Abstract
Diffuse axonal injury (DAI) disrupts the integrity of white matter microstructure and affects brain functional connectivity, resulting in persistent cognitive, behavioral and affective deficits. Mounting evidence suggests that altered cortical-subcortical connectivity is a major contributor to cognitive dysfunction. The functional integrity of the striatum is particularly vulnerable to DAI, but has received less attention. This study aimed to investigate the alteration patterns of striatal subdivision functional connectivity. Twenty-six patients with DAI and 27 healthy controls underwent resting-state fMRI scans on a 3.0 T scanner. We assessed striatal subdivision functional connectivity using a seed-based analysis in DAI. Furthermore, a partial correlation was used to measure its clinical association. Compared to controls, patients with DAI showed decreased functional connectivity between the right inferior ventral striatum and right inferior frontal gyrus, as well as the right inferior parietal lobule, between the left inferior ventral striatum and right inferior frontal gyrus, between the right superior ventral striatum and bilateral cerebellar posterior lobe, between the bilateral dorsal caudal putamen and right anterior cingulate gyrus, and between the right dorsal caudal putamen and right inferior parietal lobule. Moreover, decreased functional connectivity was observed between the left dorsal caudate and the right cerebellar posterior lobe, while increased functional connectivity was found between the left dorsal caudate and right inferior parietal lobule. Correlation analyses showed that regions with functional connectivity differences in the DAI group correlated with multiple clinical scoring scales, including cognition, motor function, agitated behavior, and anxiety disorders. These findings suggest that abnormalities in cortico-striatal and cerebellar-striatal functional connectivity are observed in patients with DAI, enriching our understanding of the neuropathological mechanisms of post-injury cognitive disorders and providing potential neuroimaging markers for the diagnosis and treatment of DAI.
Collapse
Affiliation(s)
- Zhigang Xu
- Department of Radiology, Fifth Hospital of Fuzhou Jianqiang
| | - Ye Li
- Department of Radiology, First Affiliated Hospital of Nanchang University
| | - Xiaole Fan
- Department of Ultrasound, the First Affiliated Hospital, Jinan University
| | - Wenhua Xu
- Department of Radiology, Fifth Hospital of Fuzhou Jianqiang
| | - Jinliang Liu
- Department of Radiology, Fifth Hospital of Fuzhou Jianqiang
| | - Jian Li
- Department of Radiology, First Affiliated Hospital of Nanchang University
- Clinical Research Center For Medical Imaging In Jiangxi Province, Nanchang, China
| |
Collapse
|
14
|
Mohammed D, Verma S. Methylphenidate for neurological improvement post-TBI. J Family Med Prim Care 2023; 12:2987-2989. [PMID: 38186797 PMCID: PMC10771165 DOI: 10.4103/jfmpc.jfmpc_326_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/07/2023] [Accepted: 07/27/2023] [Indexed: 01/09/2024] Open
Abstract
Traumatic brain injuries (TBIs) can have numerous neurologic and cognitive sequelae. The road to recovery can be long and arduous for many patients. Improving cognition can assist in a shorter recovery time as patients may be more in tune with their plan of care. Family physicians may be helpful in assisting with the recovery process post-hospital discharge. This case report seeks to educate family physicians on the use of methylphenidate in the ambulatory setting after TBI. Here, a case of a 51-year-old man on methylphenidate after a traumatic brain injury is presented.
Collapse
Affiliation(s)
- Denelle Mohammed
- Department of Family Medicine, Henry Ford Jackson Hospital, Michigan, United States of America
| | - Sadhika Verma
- Department of Family Medicine, Henry Ford Jackson Hospital, Michigan, United States of America
| |
Collapse
|
15
|
Li LM, Carson A, Dams-O'Connor K. Psychiatric sequelae of traumatic brain injury - future directions in research. Nat Rev Neurol 2023; 19:556-571. [PMID: 37591931 DOI: 10.1038/s41582-023-00853-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2023] [Indexed: 08/19/2023]
Abstract
Despite growing appreciation that traumatic brain injury (TBI) is an important public health burden, our understanding of the psychiatric and behavioural consequences of TBI remains limited. These changes are particularly detrimental to a person's sense of self, their relationships and their participation in the wider community, and they continue to have devastating individual and cumulative effects long after TBI. This Review relates specifically to TBIs that confer objective clinical or biomarker evidence of structural brain injury; symptomatic head injuries without such evidence are outside the scope of this article. Common psychiatric, affective and behavioural sequelae of TBI and their proposed underlying mechanisms are outlined, along with a brief overview of current treatments. Suggestions for how scientists and clinicians can work together in the future to address the chasms in clinical care and knowledge are discussed in depth.
Collapse
Affiliation(s)
- Lucia M Li
- Department of Brain Sciences, Imperial College London, London, UK.
| | - Alan Carson
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Kristen Dams-O'Connor
- Brain Injury Research Center, Department of Rehabilitation and Human Performance, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
16
|
Rodkin S, Nwosu C, Sannikov A, Raevskaya M, Tushev A, Vasilieva I, Gasanov M. The Role of Hydrogen Sulfide in Regulation of Cell Death following Neurotrauma and Related Neurodegenerative and Psychiatric Diseases. Int J Mol Sci 2023; 24:10742. [PMID: 37445920 DOI: 10.3390/ijms241310742] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/15/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Injuries of the central (CNS) and peripheral nervous system (PNS) are a serious problem of the modern healthcare system. The situation is complicated by the lack of clinically effective neuroprotective drugs that can protect damaged neurons and glial cells from death. In addition, people who have undergone neurotrauma often develop mental disorders and neurodegenerative diseases that worsen the quality of life up to severe disability and death. Hydrogen sulfide (H2S) is a gaseous signaling molecule that performs various cellular functions in normal and pathological conditions. However, the role of H2S in neurotrauma and mental disorders remains unexplored and sometimes controversial. In this large-scale review study, we examined the various biological effects of H2S associated with survival and cell death in trauma to the brain, spinal cord, and PNS, and the signaling mechanisms underlying the pathogenesis of mental illnesses, such as cognitive impairment, encephalopathy, depression and anxiety disorders, epilepsy and chronic pain. We also studied the role of H2S in the pathogenesis of neurodegenerative diseases: Alzheimer's disease (AD) and Parkinson's disease (PD). In addition, we reviewed the current state of the art study of H2S donors as neuroprotectors and the possibility of their therapeutic uses in medicine. Our study showed that H2S has great neuroprotective potential. H2S reduces oxidative stress, lipid peroxidation, and neuroinflammation; inhibits processes associated with apoptosis, autophagy, ferroptosis and pyroptosis; prevents the destruction of the blood-brain barrier; increases the expression of neurotrophic factors; and models the activity of Ca2+ channels in neurotrauma. In addition, H2S activates neuroprotective signaling pathways in psychiatric and neurodegenerative diseases. However, high levels of H2S can cause cytotoxic effects. Thus, the development of H2S-associated neuroprotectors seems to be especially relevant. However, so far, all H2S modulators are at the stage of preclinical trials. Nevertheless, many of them show a high neuroprotective effect in various animal models of neurotrauma and related disorders. Despite the fact that our review is very extensive and detailed, it is well structured right down to the conclusions, which will allow researchers to quickly find the proper information they are interested in.
Collapse
Affiliation(s)
- Stanislav Rodkin
- Department of Bioengineering, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Chizaram Nwosu
- Department of Bioengineering, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Alexander Sannikov
- Department of Psychiatry, Rostov State Medical University, 344022 Rostov-on-Don, Russia
| | - Margarita Raevskaya
- Department of Bioengineering, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Alexander Tushev
- Neurosurgical Department, Rostov State Medical University Clinic, 344022 Rostov-on-Don, Russia
| | - Inna Vasilieva
- N.V. Sklifosovsky Institute of Clinical Medicine, Department of Polyclinic Therapy, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Mitkhat Gasanov
- Department of Internal Diseases #1, Rostov State Medical University, 344022 Rostov-on-Don, Russia
| |
Collapse
|
17
|
Luauté J, Beaudoin-Gobert M. Optimising recovery of consciousness after coma. From bench to bedside and vice versa. Presse Med 2023; 52:104165. [PMID: 36948412 DOI: 10.1016/j.lpm.2023.104165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/13/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Several methods have been proposed to foster recovery of consciousness in patients with disorders of consciousness (DoC). OBJECTIVE Critically assess pharmacological and non-pharmacological treatments for patients with chronic DoC. METHODS A narrative mini-review, and critical analysis of the scientific literature on the various proposed therapeutic approaches, with particular attention to level of evidence, risk-benefit ratio, and feasibility. RESULTS AND DISCUSSION Personalised sensory stimulation, median nerve stimulation, transcranial direct current stimulation (tDCS), amantadine and zolpidem all have favourable risk-benefit ratios and are easy to implement in clinical practice. These treatments should be proposed to every patient with chronic DoC. Comprehensive patient management should also include regular lifting, pain assessment and treatment, attempts to restore sleep and circadian rhythms, implementation of rest periods, comfort and nursing care, and a rehabilitation program with a multi-disciplinary team with expertise in this field. More invasive treatments may cause adverse effects and require further investigation to confirm preliminary, encouraging results and to better define responders' intervention parameters. Scientific studies are essential and given the severity of the disability and handicap that results from DoC, research in this area should aim to develop new therapeutic approaches.
Collapse
Affiliation(s)
- Jacques Luauté
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Trajectoires, F-69500 Bron, France; Hôpital Henry Gabrielle, Saint-Genis Laval, Hospices Civils de Lyon, 69230 France.
| | - Maude Beaudoin-Gobert
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Trajectoires, F-69500 Bron, France
| |
Collapse
|
18
|
Aychman MM, Goldman DL, Kaplan JS. Cannabidiol's neuroprotective properties and potential treatment of traumatic brain injuries. Front Neurol 2023; 14:1087011. [PMID: 36816569 PMCID: PMC9932048 DOI: 10.3389/fneur.2023.1087011] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Cannabidiol (CBD) has numerous pharmacological targets that initiate anti-inflammatory, antioxidative, and antiepileptic properties. These neuroprotective benefits have generated interest in CBD's therapeutic potential against the secondary injury cascade from traumatic brain injury (TBI). There are currently no effective broad treatment strategies for combating the damaging mechanisms that follow the primary injury and lead to lasting neurological consequences or death. However, CBD's effects on different neurotransmitter systems, the blood brain barrier, oxidative stress mechanisms, and the inflammatory response provides mechanistic support for CBD's clinical utility in TBI. This review describes the cascades of damage caused by TBI and CBD's neuroprotective mechanisms to counter them. We also present challenges in the clinical treatment of TBI and discuss important future clinical research directions for integrating CBD in treatment protocols. The mechanistic evidence provided by pre-clinical research shows great potential for CBD as a much-needed improvement in the clinical treatment of TBI. Upcoming clinical trials sponsored by major professional sport leagues are the first attempts to test the efficacy of CBD in head injury treatment protocols and highlight the need for further clinical research.
Collapse
|
19
|
Santana Maldonado CM, Kim DS, Purnell B, Li R, Buchanan GF, Smith J, Thedens DR, Gauger P, Rumbeiha WK. Acute hydrogen sulfide-induced neurochemical and morphological changes in the brainstem. Toxicology 2023; 485:153424. [PMID: 36610655 DOI: 10.1016/j.tox.2023.153424] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
Hydrogen sulfide (H2S) is a toxin affecting the cardiovascular, respiratory, and central nervous systems. Acute H2S exposure is associated with a high rate of mortality and morbidity. The precise pathophysiology of H2S-induced death is a controversial topic; however, inhibition of the respiratory center in the brainstem is commonly cited as a cause of death. There is a knowledge gap on toxicity and toxic mechanisms of acute H2S poisoning on the brainstem, a brain region responsible for regulating many reflective and vital functions. Serotonin (5-HT), dopamine (DA), and γ-aminobutyric acid (GABA) play a role in maintaining a normal stable respiratory rhythmicity. We hypothesized that the inhibitory respiratory effects of H2S poisoning are mediated by 5-HT in the respiratory center of the brainstem. Male C57BL/6 mice were exposed once to an LCt50 concentration of H2S (1000 ppm). Batches of surviving mice were euthanized at 5 min, 2 h, 12 h, 24 h, 72 h, and on day 7 post-exposure. Pulmonary function, vigilance state, and mortality were monitored during exposure. The brainstem was analyzed for DA, 3,4-dehydroxyphenyl acetic acid (DOPAC), 5-HT, 5-hydroxyindoleatic acid (5-HIAA), norepinephrine (NE), GABA, glutamate, and glycine using HPLC. Enzymatic activities of monoamine oxidases (MAO) were also measured in the brainstem using commercial kits. Neurodegeneration was assessed using immunohistochemistry and magnetic resonance imaging. Results showed that DA and DOPAC were significantly increased at 5 min post H2S exposure. However, by 2 h DA returned to normal. Activities of MAO were significantly increased at 5 min and 2 h post-exposure. In contrast, NE was significantly decreased at 5 min and 2 h post-exposure. Glutamate was overly sensitive to H2S-induced toxicity manifesting a time-dependent concentration reduction throughout the 7 day duration of the study. Remarkably, there were no changes in 5-HT, 5-HIAA, glycine, or GABA concentrations. Cytochrome c oxidase activity was inhibited but recovered by 24 h. Neurodegeneration was observed starting at 72 h post H2S exposure in select brainstem regions. We conclude that acute H2S exposure causes differential effects on brainstem neurotransmitters. H2S also induces neurodegeneration and biochemical changes in the brainstem. Additional work is needed to fully understand the implications of both the short- and long-term effects of acute H2S poisoning on vital functions regulated by the brainstem.
Collapse
Affiliation(s)
- Cristina M Santana Maldonado
- Veterinary Diagnostic Production and Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA.
| | - Dong-Suk Kim
- Department of Molecular Biosciences, University of California, Davis, CA 95616, USA.
| | - Benton Purnell
- Department of Neurology, University of Iowa, Iowa City, IA 52242, USA.
| | - Rui Li
- Department of Neurology, University of Iowa, Iowa City, IA 52242, USA.
| | - Gordon F Buchanan
- Department of Neurology, University of Iowa, Iowa City, IA 52242, USA.
| | - Jodi Smith
- Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA.
| | - Daniel R Thedens
- Seamans Center for the Engineering Arts and Sciences, Iowa City, IA 52242, USA.
| | - Phillip Gauger
- Veterinary Diagnostic Production and Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA.
| | - Wilson K Rumbeiha
- Department of Molecular Biosciences, University of California, Davis, CA 95616, USA.
| |
Collapse
|
20
|
Wu S, Wu S, Zhang X, Feng T, Wu L. Chitosan-Based Hydrogels for Bioelectronic Sensing: Recent Advances and Applications in Biomedicine and Food Safety. BIOSENSORS 2023; 13:93. [PMID: 36671928 PMCID: PMC9856120 DOI: 10.3390/bios13010093] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/13/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Due to the lack of efficient bioelectronic interfaces, the communication between biology and electronics has become a great challenge, especially in constructing bioelectronic sensing. As natural polysaccharide biomaterials, chitosan-based hydrogels exhibit the advantages of flexibility, biocompatibility, mechanical tunability, and stimuli sensitivity, and could serve as an excellent interface for bioelectronic sensors. Based on the fabrication approaches, interaction mechanisms, and bioelectronic communication modalities, this review divided chitosan-based hydrogels into four types, including electrode-based hydrogels, conductive materials conjugated hydrogels, ionically conductive hydrogels, and redox-based hydrogels. To introduce the enhanced performance of bioelectronic sensors, as a complementary alternative, the incorporation of nanoparticles and redox species in chitosan-based hydrogels was discussed. In addition, the multifunctional properties of chitosan-based composite hydrogels enable their applications in biomedicine (e.g., smart skin patches, wood healing, disease diagnosis) and food safety (e.g., electrochemical sensing, smart sensing, artificial bioelectronic tongue, fluorescence sensors, surface-enhanced Raman scattering). We believe that this review will shed light on the future development of chitosan-based biosensing hydrogels for micro-implantable devices and human-machine interactions, as well as potential applications in medicine, food, agriculture, and other fields.
Collapse
Affiliation(s)
- Si Wu
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Shijing Wu
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Xinyue Zhang
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Tao Feng
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Long Wu
- School of Food Science and Engineering, Key Laboratory of Tropical and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou 570228, China
| |
Collapse
|
21
|
Synergistic effect of mild traumatic brain injury and alcohol aggravates neuroinflammation, amyloidogenesis, tau pathology, neurodegeneration, and blood-brain barrier alterations: Impact on psychological stress. Exp Neurol 2022; 358:114222. [PMID: 36089059 DOI: 10.1016/j.expneurol.2022.114222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/12/2022] [Accepted: 09/03/2022] [Indexed: 11/24/2022]
Abstract
After a mild traumatic brain injury (mTBI), victims often experience emotional/psychological stress such as heightened irritability, anxiety, apathy, and depression. Severe mental health complications are common in military populations following a combat-acquired TBI and intensified unhealthy alcohol use. The high prevalence of alcohol abuse among TBI victims underscores how alcohol abuse exacerbates emotional/psychological symptoms such as depression and anxiety. The experimental mTBI was induced in vivo by fluid percussion injury (15 psi) in mice and ethanol diet feeding continued for 28 days. We analyzed different biomarkers of the biochemical mechanisms and pathophysiology of neurological damage, and functional outcome of psychological stress by sucrose preference, and light-dark tests. We demonstrated that the synergistic effect of TBI and alcohol leads to psychological stress such as depression and anxiety. The studies showed that oxidative stress, amyloidogenesis, tau pathology, neuroinflammation, and neurodegeneration markers were elevated, and glial activation and blood-brain barrier (BBB) damage were exacerbated during the synergistic effect of TBI and alcohol. Further, we studied the biochemical mechanisms of psychological stress that showed the significant reduction of 5-HT1AR, neuropeptide-Y, and norepinephrine, and an increase in monoamine oxidase-a in the combined effect of TBI and alcohol. This work suggested that the combined TBI and alcohol-induced effect leads to depression and anxiety, via sequential biochemical changes that cause neuroinflammation, amyloidogenesis, tau pathology, neurodegeneration, and BBB alterations. This clinically relevant study will contribute to developing a comprehensive therapeutic approach for patients suffering from TBI and alcohol-mediated neurological damage and psychological stress.
Collapse
|
22
|
Min JH, Shin YI. Treatment and Rehabilitation for Traumatic Brain Injury: Current Update. BRAIN & NEUROREHABILITATION 2022; 15:e14. [PMID: 36743200 PMCID: PMC9833473 DOI: 10.12786/bn.2022.15.e14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/08/2022] Open
Abstract
Traumatic brain injury (TBI) is an acquired injury to the brain caused by external mechanical forces, which can cause temporary or permanent disability. TBI and its potential long-term consequences are serious public health concerns. This review seeks to provide updated information on the current methods of management of patients with TBI to improve patient care.
Collapse
Affiliation(s)
- Ji Hong Min
- Department of Rehabilitation Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Yong-Il Shin
- Department of Rehabilitation Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
- Department of Rehabilitation Medicine, Pusan National University School of Medicine, Busan, Korea
| |
Collapse
|
23
|
Tyler CW, Likova LT. Brain trauma impacts retinal processing: photoreceptor pathway interactions in traumatic light sensitivity. Doc Ophthalmol 2022; 144:179-190. [PMID: 35445376 PMCID: PMC9192363 DOI: 10.1007/s10633-022-09871-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/12/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Concussion-induced light sensitivity, or traumatic photalgia, is a lifelong debilitating problem for upwards of 50% of mild traumatic brain injury (mTBI) cases, though of unknown etiology. We employed spectral analysis of electroretinographic (ERG) responses to assess retinal changes in mTBI as a function of the degree of photalgia. METHODS The design was a case-control study of the changes in the ERG waveform as a function of level of light sensitivity in individuals who had suffered incidents of mild traumatic brain injury. The mTBI participants were categorized into non-, mild-, and severe-photalgic groups based on their spectral nociophysical settings. Light-adapted ERG responses were recorded from each eye for 200 ms on-off stimulation of three spectral colors (R:red, G:green, and B:blue) and their sum (W:white) at the highest pain-free intensity level for each participant. The requirement of controls for testing hypersensitive individuals at lower light levels was addressed by recording a full light intensity series in the control group. RESULTS Both the b-wave and the photopic negative response (PhNR) were significantly reduced in the non-photalgic mTBI group relative to controls. In the photalgic groups, the main b-wave peak shifted to the timing of the rod b-wave, with reduced amplitude at the timing of the cone response. CONCLUSION These results suggest the interpretation that the primary etiology of the painful light sensitivity in mTBI is release of the rod pathway from cone-mediated inhibition at high light levels, causing overactivation of the rod pathway.
Collapse
Affiliation(s)
- Christopher W Tyler
- Smith-Kettlewell Eye Research Institute, 2318 Fillmore Street, San Francisco, 94115, USA.
- Division of Optometry and Vision Science, School of Health Sciences, City University of London, London, UK.
| | - Lora T Likova
- Smith-Kettlewell Eye Research Institute, 2318 Fillmore Street, San Francisco, 94115, USA
| |
Collapse
|
24
|
Zagales I, Selvakumar S, Ngatuvai M, Fanfan D, Kornblith L, Santos RG, Ibrahim J, Elkbuli A. Beta-Blocker Therapy in Patients With Severe Traumatic Brain Injury: A Systematic Review and Meta-Analysis. Am Surg 2022:31348221101583. [PMID: 35575287 DOI: 10.1177/00031348221101583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Traumatic brain injury (TBI), a leading cause of morbidity and mortality among trauma patients worldwide, poses the risk of secondary neurological insult due to significant catecholamine surge. We aim to investigate the effectiveness and outcomes of beta-blocker administration in patients with severe TBI. METHODS A search through PubMed, EMBASE, JAMA network, and Google Scholar databases was conducted for relevant peer-reviewed original studies published before February 15, 2022. A standard random-effects model was used, as justified by a high Cohen's Q test. RESULTS Twelve studies met inclusion criteria and were included in the meta-analysis. Severe TBI patients who were administered beta-blockers had a significantly reduced incidence of in-hospital mortality compared to the non-beta-blocker group (14.5% vs 19.2%). However, the beta-blocker group was reported to have a significantly greater number of ventilator days (5.58 vs 2.60 days). Similarly, intensive care unit (9.00 vs 6.84 days) and hospital (17.30 vs 11.02 days) lengths of stay (LOS) were increased in the beta-blocker group compared to those who were not administered beta-blocker therapy, but only the difference in hospital-LOS was significant. CONCLUSIONS Beta-blockers have significantly decreased in-hospital mortality in patients with severe TBI despite being associated with an increase in ventilator days and hospital-LOS. The administration of beta-blocker therapy in the management of severe TBI may be warranted and should be discussed in future guidelines.
Collapse
Affiliation(s)
- Israel Zagales
- Universidad Iberoamericana (UNIBE) Escuela de Medicina, Santo Domingo, Dominican Republic
| | - Sruthi Selvakumar
- Dr. Kiran.C. Patel College of Allopathic Medicine, 2814NSU NOVA Southeastern University, Fort Lauderdale, FL, USA
| | - Micah Ngatuvai
- Dr. Kiran.C. Patel College of Allopathic Medicine, 2814NSU NOVA Southeastern University, Fort Lauderdale, FL, USA
| | - Dino Fanfan
- Herbert Wertheim College of Medicine,5450Florida International University, Miami, FL, USA
| | - Lucy Kornblith
- Division of Trauma and Surgical Critical Care, Department of Surgery, 36558Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, CA.,Department of Surgery, University of San Francisco, San Francisco, CA, USA
| | - Radleigh G Santos
- Department of Mathematics, 2814NSU NOVA Southeastern University, Fort Lauderdale, FL, USA
| | - Joseph Ibrahim
- Division of Trauma and Surgical Critical Care, Department of Surgery, 25105Orlando Regional Medical Center, Orlando, FL, USA.,Department of Surgical Education, 25105Orlando Regional Medical Center, Orlando, FL, USA
| | - Adel Elkbuli
- Division of Trauma and Surgical Critical Care, Department of Surgery, 25105Orlando Regional Medical Center, Orlando, FL, USA.,Department of Surgical Education, 25105Orlando Regional Medical Center, Orlando, FL, USA
| |
Collapse
|
25
|
Li LM, Vichayanrat E, Del Giovane M, Lai HHL, Iodice V. Autonomic dysfunction after moderate-to-severe traumatic brain injury: symptom spectrum and clinical testing outcomes. BMJ Neurol Open 2022; 4:e000308. [PMID: 35530658 PMCID: PMC9039351 DOI: 10.1136/bmjno-2022-000308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 11/08/2022] Open
Abstract
Background Survivors of moderate-to-severe traumatic brain injury (msTBI) frequently experience troublesome unexplained somatic symptoms. Autonomic dysfunction may contribute to these symptoms. However, there is no previous study of clinical subjective and objective autonomic dysfunction in msTBI. Methods We present results from two groups of patients with msTBI. The first, a case–control comparative study, comprises prospectively recruited msTBI outpatients, in whom we measured burden of autonomic symptoms using the Composite Autonomic Symptom Score (COMPASS31) questionnaire. The second, a descriptive case series, comprises retrospectively identified msTBI outpatients who had formal clinical autonomic function testing at a national referral autonomics unit. Results Group 1 comprises 39 patients with msTBI (10F:20M, median age 40 years, range 19–76), median time from injury 19 months (range 6–299) and 44 controls (22F:22M, median age 45, range 25–71). Patients had significantly higher mean weighted total COMPASS-31 score than controls (p<0.001), and higher gastrointestinal, orthostatic and secretomotor subscores (corrected p<0.05). Total COMPASS31 score inversely correlated with subjective rating of general health (p<0.001, rs=−0.84). Group 2 comprises 18 patients with msTBI (7F:11M, median age 44 years, range 21–64), median time from injury 57.5 months (range 2–416). Clinical autonomic function testing revealed a broad spectrum of autonomic dysfunction in 13/18 patients. Conclusions There is clinically relevant autonomic dysfunction after msTBI, even at the chronic stage. We advocate for routine enquiry about potential autonomic symptoms, and demonstrate the utility of formal autonomic testing in providing diagnoses. Larger prospective studies are warranted, which should explore the causes and clinical correlates of post-TBI autonomic dysfunction.
Collapse
Affiliation(s)
- Lucia M Li
- Division of Brain Sciences, Imperial College, London, UK.,UK Dementia Research Institute Care Research and Technology Centre, Imperial College London and the University of Surrey, London, UK
| | - Ekawat Vichayanrat
- Autonomics Unit, National Hospital for Neurology and Neurosurgery, London, UK
| | - Martina Del Giovane
- UK Dementia Research Institute Care Research and Technology Centre, Imperial College London and the University of Surrey, London, UK
| | - Helen Hoi Lun Lai
- UK Dementia Research Institute Care Research and Technology Centre, Imperial College London and the University of Surrey, London, UK
| | - Valeria Iodice
- Autonomics Unit, National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
26
|
Targeting Nrf2-Mediated Oxidative Stress Response in Traumatic Brain Injury: Therapeutic Perspectives of Phytochemicals. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1015791. [PMID: 35419162 PMCID: PMC9001080 DOI: 10.1155/2022/1015791] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/22/2021] [Accepted: 03/19/2022] [Indexed: 02/07/2023]
Abstract
Traumatic brain injury (TBI), known as mechanical damage to the brain, impairs the normal function of the brain seriously. Its clinical symptoms manifest as behavioral impairment, cognitive decline, communication difficulties, etc. The pathophysiological mechanisms of TBI are complex and involve inflammatory response, oxidative stress, mitochondrial dysfunction, blood-brain barrier (BBB) disruption, and so on. Among them, oxidative stress, one of the important mechanisms, occurs at the beginning and accompanies the whole process of TBI. Most importantly, excessive oxidative stress causes BBB disruption and brings injury to lipids, proteins, and DNA, leading to the generation of lipid peroxidation, damage of nuclear and mitochondrial DNA, neuronal apoptosis, and neuroinflammatory response. Transcription factor NF-E2 related factor 2 (Nrf2), a basic leucine zipper protein, plays an important role in the regulation of antioxidant proteins, such as oxygenase-1(HO-1), NAD(P)H Quinone Dehydrogenase 1 (NQO1), and glutathione peroxidase (GPx), to protect against oxidative stress, neuroinflammation, and neuronal apoptosis. Recently, emerging evidence indicated the knockout (KO) of Nrf2 aggravates the pathology of TBI, while the treatment of Nrf2 activators inhibits neuronal apoptosis and neuroinflammatory responses via reducing oxidative damage. Phytochemicals from fruits, vegetables, grains, and other medical herbs have been demonstrated to activate the Nrf2 signaling pathway and exert neuroprotective effects in TBI. In this review, we emphasized the contributive role of oxidative stress in the pathology of TBI and the protective mechanism of the Nrf2-mediated oxidative stress response for the treatment of TBI. In addition, we summarized the research advances of phytochemicals, including polyphenols, terpenoids, natural pigments, and otherwise, in the activation of Nrf2 signaling and their potential therapies for TBI. Although there is still limited clinical application evidence for these natural Nrf2 activators, we believe that the combinational use of phytochemicals such as Nrf2 activators with gene and stem cell therapy will be a promising therapeutic strategy for TBI in the future.
Collapse
|
27
|
Ren H, Zhang Z, Zhang J. Physical Exercise Exerts Neuroprotective Effect on Memory Impairment by Mitigate the Decline of Striatum Catecholamine and Spine Density in a Vascular Dementia Rat Model. Am J Alzheimers Dis Other Demen 2022; 37:15333175221144367. [PMID: 36515911 PMCID: PMC10581139 DOI: 10.1177/15333175221144367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The present study aims to investigate the underlying neurochemical mechanism of physical exercise on striatum synapsis and memory function in vascular dementia model. METHODS 32 Sprague-Dawley (SD) rats were randomly divided into 4 groups: control group (C group, n = 6), vascular dementia group (Vascular dementia group, n = 7), physical exercise and vascular dementia group (Exe-VD group, n = 6), physical exercise and black group (Exe group, n = 6). 4 weeks of voluntary wheel running were used as pre-exercise training. Vascular dementia model was established by bilateral common carotid arteries occlusion (BCCAo) for 1 week. Passive avoidance test (PAT) were used to test memory function. The level of striatum catecholamine in the microdialysate were detected by enzyme linked immunosorbent assy (ELISA). Golgi staining was used to analyze striatum neuronal spine density. RESULTS Behavioral data indicated that 4 weeks of physical exercise ameliorated memory impairment in vascular dementia model. Striatum catecholamine level significantly decreased in VD group when compared with C group (P < .001). But this phenomenon can be rescue by physical exercise (P < .001). In addition, compared with C group, neuronal spine density significantly decreased in VD group (P < .01), but 4 weeks of physical exercise can rescue this phenomenon (P < .05). CONCLUSION 4 weeks of physical exercise improves memory function by mitigate the decline of striatum catecholamine and spine density in VD model.
Collapse
Affiliation(s)
- Hangzhou Ren
- College of Art and Design, Zhengzhou University of Economics and Business, Zhengzhou, China
| | - Zhongyuan Zhang
- College of Art and Design, Zhengzhou University of Economics and Business, Zhengzhou, China
| | - Jianwei Zhang
- College of Art and Design, Zhengzhou University of Economics and Business, Zhengzhou, China
| |
Collapse
|
28
|
Zhang Y, Huang Z, Xia H, Xiong J, Ma X, Liu C. The benefits of exercise for outcome improvement following traumatic brain injury: Evidence, pitfalls and future perspectives. Exp Neurol 2021; 349:113958. [PMID: 34951984 DOI: 10.1016/j.expneurol.2021.113958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 12/04/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022]
Abstract
Traumatic brain injury (TBI), also known as a silent epidemic, is currently a substantial public health problem worldwide. Given the increased energy demands following brain injury, relevant guidelines tend to recommend absolute physical and cognitive rest for patients post-TBI. Nevertheless, recent evidence suggests that strict rest does not provide additional benefits to patients' recovery. By contrast, as a cost-effective non-pharmacological therapy, exercise has shown promise for enhancing functional outcomes after injury. This article summarizes the most recent evidence supporting the beneficial effects of exercise on TBI outcomes, focusing on the efficacy of exercise for cognitive recovery after injury and its potential mechanisms. Available evidence demonstrates the potential of exercise in improving cognitive impairment, mood disorders, and post-concussion syndrome following TBI. However, the clinical application for exercise rehabilitation in TBI remains challenging, particularly due to the inadequacy of the existing clinical evaluation system. Also, a better understanding of the underlying mechanisms whereby exercise promotes its most beneficial effects post-TBI will aid in the development of new clinical strategies to best benefit of these patients.
Collapse
Affiliation(s)
- Yulan Zhang
- Cognitive & Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong 510006, China; Laboratory of Laser Sports Medicine, College of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Zhihai Huang
- Cognitive & Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Honglin Xia
- Laboratory of Regenerative Medicine in Sports Science, College of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Jing Xiong
- Cognitive & Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong 510006, China; Laboratory of Laser Sports Medicine, College of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Xu Ma
- Cognitive & Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong 510006, China; Laboratory of Laser Sports Medicine, College of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Chengyi Liu
- Laboratory of Laser Sports Medicine, College of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
29
|
Rivera-Ortiz J, Pla-Tenorio J, Cruz ML, Colon K, Perez-Morales J, Rodriguez JA, Martinez-Sicari J, Noel RJ. Blockade of beta adrenergic receptors protects the blood brain barrier and reduces systemic pathology caused by HIV-1 Nef protein. PLoS One 2021; 16:e0259446. [PMID: 34784367 PMCID: PMC8594844 DOI: 10.1371/journal.pone.0259446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/19/2021] [Indexed: 01/14/2023] Open
Abstract
Combination antiretroviral therapy (cART) targets viral replication, but early viral protein production by astrocytes may still occur and contribute to the progression of HIV-1 associated neurocognitive disorders and secondary complications seen in patients receiving cART. In prior work with our model, astrocytic HIV-1 Nef expression exhibits neurotoxic effects leading to neurological damage, learning impairment, and immune upregulation that induces inflammation in the lungs and small intestine (SI). In this follow-up study, we focus on the sympathetic nervous system (SNS) as the important branch for peripheral inflammation resulting from astrocytic Nef expression. Male and female Sprague Dawley rats were infused with transfected astrocytes to produce Nef. The rats were divided in four groups: Nef, Nef + propranolol, propranolol and naïve. The beta-adrenergic blocker, propranolol, was administered for 3 consecutive days, starting one day prior to surgery. Two days after the surgery, the rats were sacrificed, and then blood, brain, small intestine (SI), and lung tissues were collected. Levels of IL-1β were higher in both male and female rats, and treatment with propranolol restored IL-1β to basal levels. We observed that Nef expression decreased staining of the tight junction protein claudin-5 in brain tissue while animals co-treated with propranolol restored claudin-5 expression. Lungs and SI of rats in the Nef group showed histological signs of damage including larger Peyer's Patches, increased tissue thickness, and infiltration of immune cells; these findings were abrogated by propranolol co-treatment. Results suggest that interruption of the beta adrenergic signaling reduces the peripheral organ inflammation caused after Nef expression in astrocytes of the brain.
Collapse
Affiliation(s)
- Jocelyn Rivera-Ortiz
- HIV-1 Immunopathogenesis Laboratory, The Wistar Institute, Philadelphia, PA, United States of America
| | - Jessalyn Pla-Tenorio
- Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico
| | - Myrella L. Cruz
- Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico
| | - Krystal Colon
- HIV-1 Immunopathogenesis Laboratory, The Wistar Institute, Philadelphia, PA, United States of America
| | - Jaileene Perez-Morales
- Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico
| | - Julio A. Rodriguez
- Cooper University Hospital Department of Orthopaedic Surgery, Camden, NJ, United States of America
| | - Jorge Martinez-Sicari
- Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico
| | - Richard J. Noel
- Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico
| |
Collapse
|
30
|
Barton DJ, Kumar RG, Schuster AA, Juengst SB, Oh BM, Wagner AK. Acute Cortisol Profile Associations With Cognitive Impairment After Severe Traumatic Brain Injury. Neurorehabil Neural Repair 2021; 35:1088-1099. [PMID: 34689657 DOI: 10.1177/15459683211048771] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Cognitive impairments commonly occur after traumatic brain injury (TBI) and affect daily functioning. Cortisol levels, which are elevated during acute hospitalization for most individuals after severe TBI, can influence cognition, but this association has not been studied previously in TBI. OBJECTIVE We hypothesized that serum and cerebral spinal fluid (CSF) cortisol trajectories over days 0-5 post-injury are associated with cognition 6-month post-injury. METHODS We examined 94 participants with severe TBI, collected acute serum and/or CSF samples over days 0-5 post-injury, and compared cortisol levels to those in 17 healthy controls. N = 88 participants had serum, and n = 84 had CSF samples available for cortisol measurement and had neuropsychological testing 6 months post-injury. Group based trajectory analysis (TRAJ) was used to generate temporal serum and CSF cortisol profiles which were examined for associations with neuropsychological performance. We used linear regression to examine relationships between cortisol TRAJ groups and both overall and domain-specific cognition. RESULTS TRAJ analysis identified a high group and a decliner group for serum and a high group and low group for CSF cortisol. Multivariable analysis showed serum cortisol TRAJ group was associated with overall cognitive composites scores (P = .024) and with executive function (P = .039) and verbal fluency (P = .029) domain scores. CSF cortisol TRAJ group was associated with overall cognitive composite scores (P = .021) and domain scores for executive function (P = .041), verbal fluency (P = .031), and attention (P = .034). CONCLUSIONS High acute cortisol trajectories are associated with poorer cognition 6 months post-TBI.
Collapse
Affiliation(s)
- David J Barton
- Department of Emergency Medicine, 480740University of Pittsburgh, Pittsburgh, PA, USA
| | - Raj G Kumar
- Department of Physical Medicine & Rehabilitation, 171669University of Pittsburgh, Pittsburgh, PA, USA.,Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alexandria A Schuster
- Department of Physical Medicine & Rehabilitation, 171669University of Pittsburgh, Pittsburgh, PA, USA
| | - Shannon B Juengst
- Department of Physical Medicine & Rehabilitation, University of Texas Southwestern, Dallas, TX, USA.,Department of Applied Clinical Research, University of Texas Southwestern, Dallas, TX, USA
| | - Byung-Mo Oh
- Department of Rehabilitation Medicine, Seoul National University, Seoul, KR
| | - Amy K Wagner
- Department of Physical Medicine & Rehabilitation, 171669University of Pittsburgh, Pittsburgh, PA, USA.,Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.,Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.,Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
31
|
Scharenbrock AR, Katzenberger RJ, Fischer MC, Ganetzky B, Wassarman DA. Beta-blockers reduce intestinal permeability and early mortality following traumatic brain injury in Drosophila. MICROPUBLICATION BIOLOGY 2021; 2021:10.17912/micropub.biology.000461. [PMID: 34723144 PMCID: PMC8553408 DOI: 10.17912/micropub.biology.000461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 11/17/2022]
Abstract
Traumatic brain injury (TBI) frequently leads to non-neurological consequences such as intestinal permeability. The beta-blocker drug labetalol, which inhibits binding of catecholamine neurotransmitters to adrenergic receptors, reduces intestinal permeability in a rat TBI model. Using a Drosophila melanogaster TBI model, we previously found a strong positive correlation between intestinal permeability and mortality within 24 hours of TBI in a standard laboratory line (w1118 ) and across genetically diverse inbred lines from the Drosophila Genetic Reference Panel (DGRP). Here, we report that feeding injured w1118 flies the beta-blockers labetalol and metoprolol reduced intestinal permeability and mortality. Additionally, metoprolol reduced intestinal permeability when 18 DGRP fly lines were analyzed in aggregate, but neither beta-blocker affected mortality. These data indicate that the mechanism underlying disruption of the intestinal barrier by adrenergic signaling following TBI is conserved between humans and flies and that mortality following TBI in flies is not strictly dependent on disruption of the intestinal barrier. Thus, the fly TBI model is useful for shedding light on the mechanism and consequences of adrenergic signaling between the brain and intestine following TBI in humans.
Collapse
Affiliation(s)
- Amanda R Scharenbrock
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706
| | - Rebeccah J Katzenberger
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706
| | - Megan C Fischer
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706
| | - Barry Ganetzky
- Department of Genetics, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - David A Wassarman
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706,
Correspondence to: David A Wassarman ()
| |
Collapse
|
32
|
Abstract
Traumatic brain injury (TBI) involves structural damage to the brain regions causing death or disability in patients with lifelong sufferings. Accidental injuries to the brain, besides structural damage, if any, cause activation of various deleterious pathways leading to subsequent neuronal death and permanent dysfunction. However, immediate medical management/treatments could reduce the chances of disability and suffering to the patients. The objective of the current review is to review triggered molecular pathways following TBI and discuss possible targets that could restore brain functions. Understanding the pathologic process is always useful to device novel treatment strategies and may rescue the patient with TBI from death or associated co-morbidities. The current review significantly contributes to improve our understanding about the molecular pathways and neuronal death following TBI and helps us to provide possible targets that could be useful in the management/treatment of TBI.
Collapse
Affiliation(s)
- Kajal Bagri
- Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Rahul Deshmukh
- Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India
| |
Collapse
|
33
|
Carmichael J, Hicks AJ, Spitz G, Gould KR, Ponsford J. Moderators of gene-outcome associations following traumatic brain injury. Neurosci Biobehav Rev 2021; 130:107-124. [PMID: 34411558 DOI: 10.1016/j.neubiorev.2021.08.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/04/2021] [Accepted: 08/13/2021] [Indexed: 12/14/2022]
Abstract
The field of genomics is the principal avenue in the ongoing development of precision/personalised medicine for a variety of health conditions. However, relating genes to outcomes is notoriously complex, especially when considering that other variables can change, or moderate, gene-outcome associations. Here, we comprehensively discuss moderation of gene-outcome associations in the context of traumatic brain injury (TBI), a common, chronically debilitating, and costly neurological condition that is under complex polygenic influence. We focus our narrative review on single nucleotide polymorphisms (SNPs) of three of the most studied genes (apolipoprotein E, brain-derived neurotrophic factor, and catechol-O-methyltransferase) and on three demographic variables believed to moderate associations between these SNPs and TBI outcomes (age, biological sex, and ethnicity). We speculate on the mechanisms which may underlie these moderating effects, drawing widely from biomolecular and behavioural research (n = 175 scientific reports) within the TBI population (n = 72) and other neurological, healthy, ageing, and psychiatric populations (n = 103). We conclude with methodological recommendations for improved exploration of moderators in future genetics research in TBI and other populations.
Collapse
Affiliation(s)
- Jai Carmichael
- Monash-Epworth Rehabilitation Research Centre, Epworth HealthCare, Melbourne, Australia; Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Australia.
| | - Amelia J Hicks
- Monash-Epworth Rehabilitation Research Centre, Epworth HealthCare, Melbourne, Australia; Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Australia
| | - Gershon Spitz
- Monash-Epworth Rehabilitation Research Centre, Epworth HealthCare, Melbourne, Australia; Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Australia
| | - Kate Rachel Gould
- Monash-Epworth Rehabilitation Research Centre, Epworth HealthCare, Melbourne, Australia; Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Australia
| | - Jennie Ponsford
- Monash-Epworth Rehabilitation Research Centre, Epworth HealthCare, Melbourne, Australia; Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Australia
| |
Collapse
|
34
|
Sherwood MS, McIntire L, Madaris AT, Kim K, Ranganath C, McKinley RA. Intensity-Dependent Changes in Quantified Resting Cerebral Perfusion With Multiple Sessions of Transcranial DC Stimulation. Front Hum Neurosci 2021; 15:679977. [PMID: 34456695 PMCID: PMC8397582 DOI: 10.3389/fnhum.2021.679977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/15/2021] [Indexed: 11/13/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) to the left prefrontal cortex has been shown to produce broad behavioral effects including enhanced learning and vigilance. Still, the neural mechanisms underlying such effects are not fully understood. Furthermore, the neural underpinnings of repeated stimulation remain understudied. In this work, we evaluated the effects of the repetition and intensity of tDCS on cerebral perfusion [cerebral blood flow (CBF)]. A cohort of 47 subjects was randomly assigned to one of the three groups. tDCS of 1- or 2-mA was applied to the left prefrontal cortex on three consecutive days, and resting CBF was quantified before and after stimulation using the arterial spin labeling MRI and then compared with a group that received sham stimulation. A widespread decreased CBF was found in a group receiving sham stimulation across the three post-stimulation measures when compared with baseline. In contrast, only slight decreases were observed in the group receiving 2-mA stimulation in the second and third post-stimulation measurements, but more prominent increased CBF was observed across several brain regions including the locus coeruleus (LC). The LC is an integral region in the production of norepinephrine and the noradrenergic system, and an increased norepinephrine/noradrenergic activity could explain the various behavioral findings from the anodal prefrontal tDCS. A decreased CBF was observed in the 1-mA group across the first two post-stimulation measurements, similar to the sham group. This decreased CBF was apparent in only a few small clusters in the third post-stimulation scan but was accompanied by an increased CBF, indicating that the neural effects of stimulation may persist for at least 24 h and that the repeated stimulation may produce cumulative effects.
Collapse
Affiliation(s)
| | | | - Aaron T. Madaris
- Infoscitex, Inc., Beavercreek, OH, United States
- Department of Biomedical, Industrial and Human Factors Engineering, Wright State University, Dayton, OH, United States
| | - Kamin Kim
- Department of Psychology, University of California, Davis, Davis, CA, United States
| | - Charan Ranganath
- Department of Psychology, University of California, Davis, Davis, CA, United States
- Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | - R. Andy McKinley
- Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH, United States
| |
Collapse
|
35
|
Yu Z, Jiang N, Su W, Zhuo Y. Necroptosis: A Novel Pathway in Neuroinflammation. Front Pharmacol 2021; 12:701564. [PMID: 34322024 PMCID: PMC8311004 DOI: 10.3389/fphar.2021.701564] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Neuroinflammation is a complex inflammatory process in the nervous system that is expected to play a significant role in neurological diseases. Necroptosis is a kind of necrosis that triggers innate immune responses by rupturing dead cells and releasing intracellular components; it can be caused by Toll-like receptor (TLR)-3 and TLR-4 agonists, tumor necrosis factor (TNF), certain microbial infections, and T cell receptors. Necroptosis signaling is modulated by receptor-interacting protein kinase (RIPK) 1 when the activity of caspase-8 becomes compromised. Activated death receptors (DRs) cause the activation of RIPK1 and the RIPK1 kinase activity-dependent formation of an RIPK1-RIPK3-mixed lineage kinase domain-like protein (MLKL), which is complex II. RIPK3 phosphorylates MLKL, ultimately leading to necrosis through plasma membrane disruption and cell lysis. Current studies suggest that necroptosis is associated with the pathogenesis of neuroinflammatory diseases, such as Alzheimer’s disease, Parkinson’s disease, and traumatic brain injury. Inhibitors of necroptosis, such as necrostatin-1 (Nec-1) and stable variant of Nec (Nec-1s), have been proven to be effective in many neurological diseases. The purpose of this article is to illuminate the mechanism underlying necroptosis and the important role that necroptosis plays in neuroinflammatory diseases. Overall, this article shows a potential therapeutic strategy in which targeting necroptotic factors may improve the pathological changes and clinical symptoms of neuroinflammatory disorders.
Collapse
Affiliation(s)
- Ziyu Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Nan Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.,Department of Pediatric Ophthalmology, Guangzhou Children's Hospital and Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yehong Zhuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
36
|
Verduzco-Mendoza A, Carrillo-Mora P, Avila-Luna A, Gálvez-Rosas A, Olmos-Hernández A, Mota-Rojas D, Bueno-Nava A. Role of the Dopaminergic System in the Striatum and Its Association With Functional Recovery or Rehabilitation After Brain Injury. Front Neurosci 2021; 15:693404. [PMID: 34248494 PMCID: PMC8264205 DOI: 10.3389/fnins.2021.693404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/03/2021] [Indexed: 01/06/2023] Open
Abstract
Disabilities are estimated to occur in approximately 2% of survivors of traumatic brain injury (TBI) worldwide, and disability may persist even decades after brain injury. Facilitation or modulation of functional recovery is an important goal of rehabilitation in all patients who survive severe TBI. However, this recovery tends to vary among patients because it is affected by the biological and physical characteristics of the patients; the types, doses, and application regimens of the drugs used; and clinical indications. In clinical practice, diverse dopaminergic drugs with various dosing and application procedures are used for TBI. Previous studies have shown that dopamine (DA) neurotransmission is disrupted following moderate to severe TBI and have reported beneficial effects of drugs that affect the dopaminergic system. However, the mechanisms of action of dopaminergic drugs have not been completely clarified, partly because dopaminergic receptor activation can lead to restoration of the pathway of the corticobasal ganglia after injury in brain structures with high densities of these receptors. This review aims to provide an overview of the functionality of the dopaminergic system in the striatum and its roles in functional recovery or rehabilitation after TBI.
Collapse
Affiliation(s)
- Antonio Verduzco-Mendoza
- Ph.D. Program in Biological and Health Sciences, Universidad Autónoma Metropolitana, Mexico City, Mexico
- Division of Biotechnology-Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Paul Carrillo-Mora
- Division of Neurosciences, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Alberto Avila-Luna
- Division of Neurosciences, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Arturo Gálvez-Rosas
- Division of Neurosciences, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Adriana Olmos-Hernández
- Division of Biotechnology-Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Antonio Bueno-Nava
- Division of Neurosciences, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| |
Collapse
|
37
|
Simchick G, Scheulin KM, Sun W, Sneed SE, Fagan MM, Cheek SR, West FD, Zhao Q. Detecting functional connectivity disruptions in a translational pediatric traumatic brain injury porcine model using resting-state and task-based fMRI. Sci Rep 2021; 11:12406. [PMID: 34117318 PMCID: PMC8196021 DOI: 10.1038/s41598-021-91853-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 05/26/2021] [Indexed: 12/21/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) has significant potential to evaluate changes in brain network activity after traumatic brain injury (TBI) and enable early prognosis of potential functional (e.g., motor, cognitive, behavior) deficits. In this study, resting-state and task-based fMRI (rs- and tb-fMRI) were utilized to examine network changes in a pediatric porcine TBI model that has increased predictive potential in the development of novel therapies. rs- and tb-fMRI were performed one day post-TBI in piglets. Activation maps were generated using group independent component analysis (ICA) and sparse dictionary learning (sDL). Activation maps were compared to pig reference functional connectivity atlases and evaluated using Pearson spatial correlation coefficients and mean ratios. Nonparametric permutation analyses were used to determine significantly different activation areas between the TBI and healthy control groups. Significantly lower Pearson values and mean ratios were observed in the visual, executive control, and sensorimotor networks for TBI piglets compared to controls. Significant differences were also observed within several specific individual anatomical structures within each network. In conclusion, both rs- and tb-fMRI demonstrate the ability to detect functional connectivity disruptions in a translational TBI piglet model, and these disruptions can be traced to specific affected anatomical structures.
Collapse
Affiliation(s)
- Gregory Simchick
- Department of Physics and Astronomy, Franklin College of Arts and Sciences, University of Georgia, 500 D.W. Brooks Drive Rm 119, Athens, GA, 30602, USA
- Regenerative Bioscience Center, University of Georgia, 425 River Road Rm 316, Athens, GA, 30602, USA
| | - Kelly M Scheulin
- Regenerative Bioscience Center, University of Georgia, 425 River Road Rm 316, Athens, GA, 30602, USA
- Biomedical and Health Sciences Institute, Neuroscience Program, University of Georgia, Athens, GA, USA
- Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, USA
| | - Wenwu Sun
- Department of Physics and Astronomy, Franklin College of Arts and Sciences, University of Georgia, 500 D.W. Brooks Drive Rm 119, Athens, GA, 30602, USA
- Regenerative Bioscience Center, University of Georgia, 425 River Road Rm 316, Athens, GA, 30602, USA
| | - Sydney E Sneed
- Regenerative Bioscience Center, University of Georgia, 425 River Road Rm 316, Athens, GA, 30602, USA
- Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, USA
| | - Madison M Fagan
- Regenerative Bioscience Center, University of Georgia, 425 River Road Rm 316, Athens, GA, 30602, USA
- Biomedical and Health Sciences Institute, Neuroscience Program, University of Georgia, Athens, GA, USA
- Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, USA
| | - Savannah R Cheek
- Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, USA
| | - Franklin D West
- Regenerative Bioscience Center, University of Georgia, 425 River Road Rm 316, Athens, GA, 30602, USA.
- Biomedical and Health Sciences Institute, Neuroscience Program, University of Georgia, Athens, GA, USA.
- Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, USA.
| | - Qun Zhao
- Department of Physics and Astronomy, Franklin College of Arts and Sciences, University of Georgia, 500 D.W. Brooks Drive Rm 119, Athens, GA, 30602, USA.
- Regenerative Bioscience Center, University of Georgia, 425 River Road Rm 316, Athens, GA, 30602, USA.
| |
Collapse
|
38
|
Wang Z, Winans NJ, Zhao Z, Cosgrove ME, Gammel T, Saadon JR, Mani R, Ravi B, Fiore SM, Mikell CB, Mofakham S. Agitation Following Severe Traumatic Brain Injury Is a Clinical Sign of Recovery of Consciousness. Front Surg 2021; 8:627008. [PMID: 33968974 PMCID: PMC8097005 DOI: 10.3389/fsurg.2021.627008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 03/22/2021] [Indexed: 11/30/2022] Open
Abstract
Objective: Severe traumatic brain injury (sTBI) often results in disorders of consciousness. Patients emerging from coma frequently exhibit aberrant behaviors such as agitation. These non-purposeful combative behaviors can interfere with medical care. Interestingly, agitation is associated with arousal and is often among the first signs of neurological recovery. A better understanding of these behaviors may shed light on the mechanisms driving the return of consciousness in sTBI patients. This study aims to investigate the association between posttraumatic agitation and the recovery of consciousness. Methods: A retrospective chart review was conducted in 530 adult patients (29.1% female) admitted to Stony Brook University Hospital between January 2011 and December 2019 with a diagnosis of sTBI and Glasgow Coma Scale (GCS) ≤8. Agitation was defined as a Richmond Agitation Sedation Scale (RASS) > +1, or any documentation of equivalently combative and violent behaviors in daily clinical notes. The ability to follow verbal commands was used to define the recovery of consciousness and was assessed daily. Results: Of 530 total sTBI patients, 308 (58.1%) survived. Agitation was present in 169 of all patients and 162 (52.6%) of surviving patients. A total of 273 patients followed commands, and 159 of them developed agitation. Forty patients developed agitation on hospital arrival whereas 119 developed agitation later during their hospital course. Presence of in-hospital agitation positively correlated with command-following (r = 0.315, p < 0.001). The time to develop agitation and time to follow commands showed positive correlation (r = 0.485, p < 0.001). These two events occurred within 3 days in 54 (44.6%) patients, within 7 days in 81 (67.8%) patients, and within 14 days in 96 (80.2%) patients. In 71 (59.7%) patients, agitation developed before command-following; in 36 (30.2%) patients, agitation developed after command-following; in 12 (10.1%) patients, agitation developed on the same day as command-following. Conclusion: Posttraumatic agitation in comatose patients following sTBI is temporally associated with the recovery of consciousness. This behavior indicates the potential for recovery of higher neurological functioning. Further studies are required to identify neural correlates of posttraumatic agitation and recovery of consciousness after sTBI.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Neurological Surgery, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| | - Nathan J Winans
- Department of Neurological Surgery, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States.,Department of Neurological Surgery, Columbia University Medical Center, New York, NY, United States
| | - Zirun Zhao
- Department of Neurological Surgery, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| | - Megan E Cosgrove
- Department of Neurological Surgery, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| | - Theresa Gammel
- Department of Neurological Surgery, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| | - Jordan R Saadon
- Department of Neurological Surgery, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| | - Racheed Mani
- Department of Neurological Surgery, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| | - Bharadwaj Ravi
- Department of Neurobiology and Behavior, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| | - Susan M Fiore
- Department of Neurological Surgery, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| | - Charles B Mikell
- Department of Neurological Surgery, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| | - Sima Mofakham
- Department of Neurological Surgery, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
39
|
Ni P, Liu M, Wang D, Tian Y, Zhao L, Wei J, Yu X, Qi X, Li X, Yu H, Ni R, Ma X, Deng W, Guo W, Wang Q, Li T. Association Analysis Between Catechol-O-Methyltransferase Expression and Cognitive Function in Patients with Schizophrenia, Bipolar Disorder, or Major Depression. Neuropsychiatr Dis Treat 2021; 17:567-574. [PMID: 33654399 PMCID: PMC7910219 DOI: 10.2147/ndt.s286102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/22/2021] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION Schizophrenia, bipolar disorder (BD), and major depressive disorder are three common mental disorders. Although their diagnosis and treatment differ, they partially overlap. METHODS To explore the similarities and characteristics of these three psychiatric diseases, an intelligence quotient (IQ) assessment was performed to evaluate cognitive deficits. Relative catechol-O-methyltransferase (COMT) expression in peripheral blood mononuclear cells was examined in all three groups compared with healthy controls (HCs). RESULTS The results indicated that patients with any of the three psychiatric diseases presented IQ deficits, and that the first-episode schizophrenia (FES) group had even lower cognitive function than the other two groups. The relative COMT expression decreased in the FES group and increased in the BD group compared with the HC group. The correlation analysis of COMT expression level and IQ scores showed a positive correlation between relative COMT expression and full-scale IQ in the HC group. However, this correlation disappeared in all three psychiatric diseases studied. CONCLUSION In conclusion, this cross-disease strategy provided important clues to explain lower IQ scores and dysregulated COMT expression among three common mental illnesses.
Collapse
Affiliation(s)
- Peiyan Ni
- The Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Huaxi Brain Research Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Manli Liu
- The Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Huaxi Brain Research Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Dequan Wang
- The Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Huaxi Brain Research Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yang Tian
- The Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Huaxi Brain Research Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Liansheng Zhao
- The Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Huaxi Brain Research Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Jinxue Wei
- The Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Huaxi Brain Research Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xueli Yu
- The Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Huaxi Brain Research Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xueyu Qi
- The Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Huaxi Brain Research Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xiaojing Li
- The Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Huaxi Brain Research Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Hua Yu
- The Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Huaxi Brain Research Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Rongjun Ni
- The Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Huaxi Brain Research Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xiaohong Ma
- The Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Huaxi Brain Research Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Wei Deng
- The Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Huaxi Brain Research Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Wanjun Guo
- The Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Huaxi Brain Research Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Qiang Wang
- The Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Huaxi Brain Research Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Tao Li
- The Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Huaxi Brain Research Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, People's Republic of China
| |
Collapse
|
40
|
Lloyd-Donald P, Spencer W, Cheng J, Romero L, Jithoo R, Udy A, Fitzgerald MC. In adult patients with severe traumatic brain injury, does the use of norepinephrine for augmenting cerebral perfusion pressure improve neurological outcome? A systematic review. Injury 2020; 51:2129-2134. [PMID: 32739152 DOI: 10.1016/j.injury.2020.07.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND AND OBJECTIVE Despite multiple interventions, mortality due to severe traumatic brain injury (sTBI) within mature Trauma Systems has remained unchanged over the last decade. During this time, the use of vasoactive infusions (commonly norepinephrine) to achieve a target blood pressure and cerebral perfusion pressure (CPP) has been a mainstay of sTBI management. However, evidence suggests that norepinephrine, whilst raising blood pressure, may reduce cerebral oxygenation. This study aimed to review the available evidence that links norepinephrine augmented CPP to clinical outcomes for these patients. METHODS A systematic review examining the evidence for norepinephrine augmented CPP in TBI patients was undertaken. Strict inclusion and exclusion criteria were developed for a dedicated literature search of multiple scientific databases. Two dedicated reviewers screened articles, whilst a third dedicated reviewer resolved conflicts. RESULTS The systematic review yielded 4,809 articles, of which 1,197 duplicate articles were removed. After abstract/title screening, 45 articles underwent full text review, resulting in the identification of two articles that investigated the effect of norepinephrine administration on clinical outcomes in patients following TBI when compared to other vasopressors. Neither study found a difference in neurological outcome between the vasopressor groups. No articles measured the effect of norepinephrine compared to no vasopressor use on the clinical outcome of patients with sTBI. CONCLUSIONS Despite being a mainstay of pharmacological management for hypotension in patients following sTBI, there is minimal clinical evidence supporting the use of norepinephrine in targeting a CPP for either improving neurological outcomes or reducing mortality. Outcomes-based clinical trials exploring the role of brain tissue perfusion and oxygenation monitoring are required to validate any benefit.
Collapse
Affiliation(s)
- Patryck Lloyd-Donald
- Trauma Services, The Alfred Hospital, 89 Commercial Rd, Melbourne VIC, Australia; National Trauma Research Institute, Level 4, 89 Commercial Rd, Melbourne 3004, VIC, Australia
| | - William Spencer
- Trauma Services, The Alfred Hospital, 89 Commercial Rd, Melbourne VIC, Australia; National Trauma Research Institute, Level 4, 89 Commercial Rd, Melbourne 3004, VIC, Australia.
| | - Jacinta Cheng
- Trauma Services, The Alfred Hospital, 89 Commercial Rd, Melbourne VIC, Australia; National Trauma Research Institute, Level 4, 89 Commercial Rd, Melbourne 3004, VIC, Australia.
| | - Lorena Romero
- Library Services, The Alfred Hospital, 89 Commercial Rd, Melbourne VIC, Australia.
| | - Ron Jithoo
- National Trauma Research Institute, Level 4, 89 Commercial Rd, Melbourne 3004, VIC, Australia; Department of Neurosurgery, The Alfred Hospital, 89 Commercial Rd, Melbourne VIC, Australia.
| | - Andrew Udy
- Department of Intensive Care and Hyperbaric Medicine, The Alfred Hospital, 89 Commercial Rd, Melbourne VIC, Australia; Australian and New Zealand Intensive Care Research Centre, School of Public and Preventive Medicine, Monash University, 553 St Kilda Road, Melbourne VIC, Australia.
| | - Mark C Fitzgerald
- Trauma Services, The Alfred Hospital, 89 Commercial Rd, Melbourne VIC, Australia; National Trauma Research Institute, Level 4, 89 Commercial Rd, Melbourne 3004, VIC, Australia.
| |
Collapse
|
41
|
Deb S, Aimola L, Leeson V, Bodani M, Li L, Weaver T, Sharp D, Bassett P, Crawford M. Risperidone versus placebo for aggression following traumatic brain injury: a feasibility randomised controlled trial. BMJ Open 2020; 10:e036300. [PMID: 32912978 PMCID: PMC7485257 DOI: 10.1136/bmjopen-2019-036300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVES To conduct a feasibility randomised controlled trial of risperidone for the treatment of aggression in adults with traumatic brain injury (TBI). DESIGN Multicentre, parallel design, placebo controlled (1:1 ratio) double-blind feasibility trial with an embedded process evaluation. No statistical comparison was performed between the two study groups. SETTING Four neuropsychiatric and neurology outpatient clinics in London and Kent, UK. PARTICIPANTS Our aim was to recruit 50 patients with TBI over 18 months. Follow-up participants at 12 weeks using a battery of assessment scales to measure changes in aggressive behaviour and irritability (Modified Overt Aggression Scale (MOAS)-primary outcome, Irritability Questionnaire) as well as global functioning (Glasgow Outcome Scale-Extended, Clinical Global impression) and quality of life (EQ-5D-5L, SF-12), mental health (Hospital Anxiety and Depression Scale) and medication adverse effects (Udvalg for Kliniske Undersøgelser). RESULTS Six participants were randomised to the active arm of the trial and eight to the placebo arm over a 10-month period (28% of our target). Two participants withdrew because of adverse events. Twelve out of 14 (85.7%) patients completed a follow-up assessment at 12 weeks. At follow-up, the scores of all outcome measures improved in both groups. Placebo group showed numerically better score change according to the primary outcome MOAS. No severe adverse events were reported. The overall rate of adverse events remained low. Data from the process evaluation suggest that existence of specialised TBI follow-up clinics, availability of a dedicated database of TBI patients' clinical details, simple study procedures and regular support to participants would enhance recruitment and retention in the trial. Feedback from participants showed that once in the study, they did not find the trial procedure onerous. CONCLUSIONS It was not feasible to conduct a successful randomised trial of risperidone versus placebo for post-TBI aggression using the methods we deployed in this study. It is not possible to draw any definitive conclusion about risperidone's efficacy from such a small trial. TRIAL REGISTRATION NUMBER ISRCTN30191436.
Collapse
Affiliation(s)
- Shoumitro Deb
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Lina Aimola
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Verity Leeson
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Mayur Bodani
- Kent and Medway NHS and Social Care Partnership NHS Trust, Maidstone, UK
| | - Lucia Li
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | | | - David Sharp
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | | | - Mike Crawford
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
42
|
Jenkins PO, Roussakis AA, De Simoni S, Bourke N, Fleminger J, Cole J, Piccini P, Sharp D. Distinct dopaminergic abnormalities in traumatic brain injury and Parkinson's disease. J Neurol Neurosurg Psychiatry 2020; 91:631-637. [PMID: 32381639 DOI: 10.1136/jnnp-2019-321759] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/05/2019] [Accepted: 01/09/2020] [Indexed: 11/03/2022]
Abstract
OBJECTIVE Traumatic brain injury (TBI) and rapid eye movement sleep behavioural disorder (RBD) are risk factors for Parkinson's disease (PD). Dopaminergic abnormalities are often seen after TBI, but patients usually lack parkinsonian features. We test whether TBI, PD and RBD have distinct striatal dopamine abnormalities using dopamine transporter (DaT) imaging. METHODS 123I-ioflupane single-photon emission CT scans were used in a cross-sectional study to measure DaT levels in moderate/severe TBI, healthy controls, patients with early PD and RBD. Caudate and putamen DaT, putamen to caudate ratios and left-right symmetry of DaT were compared. RESULTS 108 participants (43 TBI, 26 PD, 8 RBD, 31 controls) were assessed. Patients with early PD scored significantly higher on the Unified Parkinson's Disease Rating Scale motor subscale than other groups. Patients with TBI and PD had reduced DaT levels in the caudate (12.2% and 18.7%, respectively) and putamen (9.0% and 42.6%, respectively) compared with controls. Patients with RBD had reduced DaT levels in the putamen (12.8%) but not in the caudate compared with controls. Patients with PD and TBI showed distinct patterns of DaT reduction, with patients with PD showing a lower putamen to caudate ratio. DaT asymmetry was greater in the PD group than other groups. CONCLUSIONS The results show that patients with early PD and TBI have distinct patterns of striatal dopamine abnormalities. Patients with early PD and moderate/severe TBI showed similar reductions in caudate DaT binding, but patients with PD showed a greater reduction in putamen DaT and a lower putamen to caudate ratio. The results suggest that parkinsonian motor signs are absent in these patients with TBI because of relatively intact putaminal dopamine levels.
Collapse
Affiliation(s)
- Peter Owen Jenkins
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College, London, United Kingdom
| | - Andreas-Antonios Roussakis
- Centre for Neuroinflammation and Neurodegeneration, Division of Brain Sciences, Imperial College London, London, UK
| | - Sara De Simoni
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College, London, United Kingdom
| | - Niall Bourke
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College, London, United Kingdom
| | - Jessica Fleminger
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College, London, United Kingdom
| | - James Cole
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College, London, United Kingdom
| | - Paola Piccini
- Centre for Neuroinflammation and Neurodegeneration, Division of Brain Sciences, Imperial College London, London, UK
| | - David Sharp
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College, London, United Kingdom .,UK Dementia Research Institute, Care Research & Technology Centre, Imperial College, London, United Kingdom
| |
Collapse
|
43
|
Jenkins PO, De Simoni S, Bourke NJ, Fleminger J, Scott G, Towey DJ, Svensson W, Khan S, Patel MC, Greenwood R, Friedland D, Hampshire A, Cole JH, Sharp DJ. Stratifying drug treatment of cognitive impairments after traumatic brain injury using neuroimaging. Brain 2020; 142:2367-2379. [PMID: 31199462 DOI: 10.1093/brain/awz149] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/26/2019] [Accepted: 04/09/2019] [Indexed: 01/12/2023] Open
Abstract
Cognitive impairment is common following traumatic brain injury. Dopaminergic drugs can enhance cognition after traumatic brain injury, but individual responses are highly variable. This may be due to variability in dopaminergic damage between patients. We investigate whether measuring dopamine transporter levels using 123I-ioflupane single-photon emission computed tomography (SPECT) predicts response to methylphenidate, a stimulant with dopaminergic effects. Forty patients with moderate-severe traumatic brain injury and cognitive impairments completed a randomized, double-blind, placebo-controlled, crossover study. 123I-ioflupane SPECT, MRI and neuropsychological testing were performed. Patients received 0.3 mg/kg of methylphenidate or placebo twice a day in 2-week blocks. Subjects received neuropsychological assessment after each block and completed daily home cognitive testing during the trial. The primary outcome measure was change in choice reaction time produced by methylphenidate and its relationship to stratification of patients into groups with normal and low dopamine transporter binding in the caudate. Overall, traumatic brain injury patients showed slow information processing speed. Patients with low caudate dopamine transporter binding showed improvement in response times with methylphenidate compared to placebo [median change = -16 ms; 95% confidence interval (CI): -28 to -3 ms; P = 0.02]. This represents a 27% improvement in the slowing produced by traumatic brain injury. Patients with normal dopamine transporter binding did not improve. Daily home-based choice reaction time results supported this: the low dopamine transporter group improved (median change -19 ms; 95% CI: -23 to -7 ms; P = 0.002) with no change in the normal dopamine transporter group (P = 0.50). The low dopamine transporter group also improved on self-reported and caregiver apathy assessments (P = 0.03 and P = 0.02, respectively). Both groups reported improvements in fatigue (P = 0.03 and P = 0.007). The cognitive effects of methylphenidate after traumatic brain injury were only seen in patients with low caudate dopamine transporter levels. This shows that identifying patients with a hypodopaminergic state after traumatic brain injury can help stratify the choice of cognitive enhancing therapy.
Collapse
Affiliation(s)
- Peter O Jenkins
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Imperial College London, Division of Brain Sciences, Hammersmith Hospital, London, UK
| | - Sara De Simoni
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Imperial College London, Division of Brain Sciences, Hammersmith Hospital, London, UK
| | - Niall J Bourke
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Imperial College London, Division of Brain Sciences, Hammersmith Hospital, London, UK
| | - Jessica Fleminger
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Imperial College London, Division of Brain Sciences, Hammersmith Hospital, London, UK
| | - Gregory Scott
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Imperial College London, Division of Brain Sciences, Hammersmith Hospital, London, UK
| | - David J Towey
- Department of Nuclear Medicine, Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - William Svensson
- Department of Nuclear Medicine, Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Sameer Khan
- Department of Nuclear Medicine, Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Maneesh C Patel
- Imaging Department, Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Richard Greenwood
- Institute of Neurology, Division of Clinical Neurology, University College London, London, UK
| | - Daniel Friedland
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Imperial College London, Division of Brain Sciences, Hammersmith Hospital, London, UK
| | - Adam Hampshire
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Imperial College London, Division of Brain Sciences, Hammersmith Hospital, London, UK
| | - James H Cole
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Imperial College London, Division of Brain Sciences, Hammersmith Hospital, London, UK
| | - David J Sharp
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Imperial College London, Division of Brain Sciences, Hammersmith Hospital, London, UK.,United Kingdom (UK) Dementia Research Institute, 6th Floor, UCL Maple House Tottenham Court Road, London, W1T 7NF, UK
| |
Collapse
|
44
|
Fridman EA, Osborne JR, Mozley PD, Victor JD, Schiff ND. Presynaptic dopamine deficit in minimally conscious state patients following traumatic brain injury. Brain 2020; 142:1887-1893. [PMID: 31505542 DOI: 10.1093/brain/awz118] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 12/31/2022] Open
Abstract
Dopaminergic stimulation has been proposed as a treatment strategy for post-traumatic brain injured patients in minimally conscious state based on a clinical trial using amantadine, a weak dopamine transporter blocker. However, a specific contribution of dopaminergic neuromodulation in minimally conscious state is undemonstrated. In a phase 0 clinical trial, we evaluated 13 normal volunteers and seven post-traumatic minimally conscious state patients using 11C-raclopride PET to estimate dopamine 2-like receptors occupancy in the striatum and central thalamus before and after dopamine transporter blockade with dextroamphetamine. If a presynaptic deficit was observed, a third and a fourth 11C-raclopride PET were acquired to evaluate changes in dopamine release induced by l-DOPA and l-DOPA+dextroamphetamine. Permutation analysis showed a significant reduction of dopamine release in patients, demonstrating a presynaptic deficit in the striatum and central thalamus that could not be reversed by blocking the dopamine transporter. However, administration of the dopamine precursor l-DOPA reversed the presynaptic deficit by restoring the biosynthesis of dopamine from both ventral tegmentum and substantia nigra. The advantages of alternative pharmacodynamic approaches in post-traumatic minimally conscious state patients should be tested in clinical trials, as patients currently refractory to amantadine might benefit from them.
Collapse
Affiliation(s)
- Esteban A Fridman
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College New York, NY, USA
| | - Joseph R Osborne
- Radiology Department, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Paul D Mozley
- Radiology Department, Weill Cornell Medical College New York, NY, USA
| | - Jonathan D Victor
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College New York, NY, USA
| | - Nicholas D Schiff
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College New York, NY, USA
| |
Collapse
|
45
|
Picollo F, Tomagra G, Bonino V, Carabelli V, Mino L, Olivero P, Pasquarelli A, Truccato M. Triggering Neurotransmitters Secretion from Single Cells by X-ray Nanobeam Irradiation. NANO LETTERS 2020; 20:3889-3894. [PMID: 32227961 PMCID: PMC7997629 DOI: 10.1021/acs.nanolett.0c01046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The employment of ionizing radiation is a powerful tool in cancer therapy, but beyond targeted effects, many studies have highlighted the relevance of its off-target consequences. An exhaustive understanding of the mechanisms underlying these effects is still missing, and no real-time data about signals released by cells during irradiation are presently available. We employed a synchrotron X-ray nanobeam to perform the first real-time simultaneous measurement of both X-ray irradiation and in vitro neurotransmitter release from individual adrenal phaeochromocytoma (PC12) cells plated over a diamond-based multielectrode array. We have demonstrated that, in specific conditions, X-rays can alter cell activity by promoting dopamine exocytosis, and such an effect is potentially very attractive for a more effective treatment of tumors.
Collapse
Affiliation(s)
- Federico Picollo
- Department
of Physics, NIS Interdepartmental Centre, University of Torino and Italian Institute of Nuclear Physics, via Giuria 1, 10125 Torino, Italy
| | - Giulia Tomagra
- Department
of Drug and Science Technology, NIS Interdepartmental Centre, University of Torino, Corso Raffaello 30, 10125 Torino, Italy
| | - Valentina Bonino
- Department
of Physics, NIS Interdepartmental Centre, University of Torino and Italian Institute of Nuclear Physics, via Giuria 1, 10125 Torino, Italy
| | - Valentina Carabelli
- Department
of Drug and Science Technology, NIS Interdepartmental Centre, University of Torino, Corso Raffaello 30, 10125 Torino, Italy
| | - Lorenzo Mino
- Department
of Chemistry, NIS Interdepartmental Centre, University of Torino, via Giuria 7, 10125 Torino, Italy
| | - Paolo Olivero
- Department
of Physics, NIS Interdepartmental Centre, University of Torino and Italian Institute of Nuclear Physics, via Giuria 1, 10125 Torino, Italy
| | - Alberto Pasquarelli
- Institute
of Electron Devices and Circuits, University
of Ulm, 89069 Ulm, Germany
| | - Marco Truccato
- Department
of Physics, NIS Interdepartmental Centre, University of Torino and Italian Institute of Nuclear Physics, via Giuria 1, 10125 Torino, Italy
| |
Collapse
|
46
|
Bhatt D, Hazari A, Yamakawa GR, Salberg S, Sgro M, Shultz SR, Mychasiuk R. Investigating the cumulative effects of Δ9-tetrahydrocannabinol and repetitive mild traumatic brain injury on adolescent rats. Brain Commun 2020; 2:fcaa042. [PMID: 32954298 PMCID: PMC7425386 DOI: 10.1093/braincomms/fcaa042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 03/04/2020] [Accepted: 03/12/2020] [Indexed: 12/24/2022] Open
Abstract
The prevalence of mild traumatic brain injury is highest amongst the adolescent population and can lead to complications including neuroinflammation and excitotoxicity. Also pervasive in adolescents is recreational cannabis use. Δ9-Tetrahydrocannabinol, the main psychoactive component of cannabis, is known to have anti-inflammatory properties and serves as a neuroprotective agent against excitotoxicity. Thus, we investigated the effects of Δ9-tetrahydrocannabinol on recovery when administered either prior to or following repeated mild brain injuries. Male and female Sprague-Dawley rats were randomly assigned to receive Δ9-tetrahydrocannabinol or vehicle either prior to or following the repeated injuries. Rats were then tested on a behavioural test battery designed to measure post-concussive symptomology. The hippocampus, nucleus accumbens and prefrontal cortex were extracted from all animals to examine mRNA expression changes (Bdnf, Cnr1, Comt, GR, Iba-1 and Vegf-2R). We hypothesized that, in both experiments, Δ9-tetrahydrocannabinol administration would provide neuroprotection against mild injury outcomes and confer therapeutic benefit. Δ9-Tetrahydrocannabinol administration following repeated mild traumatic brain injury was beneficial to three of the six behavioural outcomes affected by injury (reducing anxiety and depressive-like behaviours while also mitigating injury-induced deficits in short-term working memory). Δ9-Tetrahydrocannabinol administration following injury also showed beneficial effects on the expression of Cnr1, Comt and Vegf-2R in the hippocampus, nucleus accumbens and prefrontal cortex. There were no notable benefits of Δ9-tetrahydrocannabinol when administered prior to injury, suggesting that Δ9-tetrahydrocannabinol may have potential therapeutic benefit on post-concussive symptomology when administered post-injury, but not pre-injury.
Collapse
Affiliation(s)
- Dhyey Bhatt
- Department of Psychology, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, The University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Ali Hazari
- Department of Psychology, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, The University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Glenn R Yamakawa
- Department of Psychology, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, The University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Sabrina Salberg
- Department of Psychology, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, The University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Marissa Sgro
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC 3050, Australia
| | - Richelle Mychasiuk
- Department of Psychology, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, The University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| |
Collapse
|
47
|
Hadian Y, Fregoso D, Nguyen C, Bagood MD, Dahle SE, Gareau MG, Isseroff RR. Microbiome-skin-brain axis: A novel paradigm for cutaneous wounds. Wound Repair Regen 2020; 28:282-292. [PMID: 32034844 DOI: 10.1111/wrr.12800] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 01/21/2020] [Accepted: 01/24/2020] [Indexed: 12/12/2022]
Abstract
Chronic wounds cause a significant burden on society financially, medically, and psychologically. Unfortunately, patients with nonhealing wounds often suffer from comorbidities that further compound their disability. Given the high rate of depressive symptoms experienced by patients with chronic wounds, further studies are needed to investigate the potentially linked pathophysiological changes in wounds and depression in order to improve patient care. The English literature on wound healing, inflammatory and microbial changes in chronic wounds and depression, and antiinflammatory and probiotic therapy was reviewed on PubMed. Chronic wound conditions and depression were demonstrated to share common pathologic features of dysregulated inflammation and altered microbiome, indicating a possible relationship. Furthermore, alternative treatment strategies such as immune-targeted and probiotic therapy showed promising potential by addressing both pathophysiological pathways. However, many existing studies are limited to a small study population, a cross-sectional design that does not establish temporality, or a wide range of confounding variables in the context of a highly complex and multifactorial disease process. Therefore, additional preclinical studies in suitable wound models, as well as larger clinical cohort studies and trials are necessary to elucidate the relationship between wound microbiome, healing, and depression, and ultimately guide the most effective therapeutic and management plan for chronic wound patients.
Collapse
Affiliation(s)
- Yasmin Hadian
- Department of Dermatology, School of Medicine, University of California, Davis, California.,Dermatology Section, VA Northern California Health Care System, Mather, California
| | - Daniel Fregoso
- Department of Dermatology, School of Medicine, University of California, Davis, California
| | - Chuong Nguyen
- Department of Dermatology, School of Medicine, University of California, Davis, California
| | - Michelle D Bagood
- Department of Dermatology, School of Medicine, University of California, Davis, California
| | - Sara E Dahle
- Department of Dermatology, School of Medicine, University of California, Davis, California.,Podiatry Section, VA Northern California Health Care System, Mather, California
| | - Melanie G Gareau
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California
| | - Roslyn Rivkah Isseroff
- Department of Dermatology, School of Medicine, University of California, Davis, California.,Dermatology Section, VA Northern California Health Care System, Mather, California
| |
Collapse
|
48
|
Nekrosius D, Kaminskaite M, Jokubka R, Pranckeviciene A, Lideikis K, Tamasauskas A, Bunevicius A. Association of COMT Val 158Met Polymorphism With Delirium Risk and Outcomes After Traumatic Brain Injury. J Neuropsychiatry Clin Neurosci 2020; 31:298-305. [PMID: 31046593 DOI: 10.1176/appi.neuropsych.18080195] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The authors investigated the association of the catechol-o-methyltransferase (COMT) gene Val158Met polymorphism with delirium risk and functional and cognitive outcomes among patients with complicated mild to moderate traumatic brain injury (TBI). METHODS In a prospective observational cohort study, patients were monitored for occurrence of delirium during the first 4 days of admission by using the Confusion Assessment Method. Functional and cognitive outcomes were evaluated with the Glasgow Outcome on Discharge Scale and the Montreal Cognitive Assessment test, respectively. Eighty-nine patients were included in the study; of these, 17 (19%) were diagnosed with delirium. RESULTS The COMT Val158/Val158 polymorphism was associated with increased risk of delirium in multivariable regression analyses adjusted for alcohol misuse, history of neurological disorder, age, and admission Glasgow Coma Scale score (odds ratio=4.57, 95% CI=1.11, 18.9, p=0.036). The COMT Met158 allele was associated with better functional outcomes in univariate analysis (odds ratio=2.82, 95% CI=1.10, 7.27, p=0.031) but not in multivariable analysis (odds ratio=2.33, 95% CI=0.89, 6.12, p=0.085). Cognitive outcomes were not associated with the COMT Val158Met polymorphism in univariate regression analysis (p=0.390). Delirium was a significant predictor of worse functional and cognitive outcomes in multivariable regression analyses adjusted for other risk factors (odds ratio=0.04, 95% CI=0.01, 0.16, p<0.001, and β=-3.889, 95% CI=-7.55, -0.23, p=0.038, respectively). CONCLUSIONS The COMT genotype is important in delirium risk and functional outcomes of patients with mild to moderate TBI. Whether the COMT genotype is associated with outcomes through incident delirium remains to be determined in larger studies.
Collapse
Affiliation(s)
- Deividas Nekrosius
- The Lithuanian University of Health Sciences, Kaunas, Lithuania (Nekrosius, Lideikis); the Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania (Kaminskaite, Jokubka, Pranckeviciene, Tamasauskas, Bunevicius); and the Department of Neurosurgery at Kauno Klinikos, Lithuanian University of Health Sciences, Kaunas, Lithuania (Tamasauskas, Bunevicius)
| | - Migle Kaminskaite
- The Lithuanian University of Health Sciences, Kaunas, Lithuania (Nekrosius, Lideikis); the Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania (Kaminskaite, Jokubka, Pranckeviciene, Tamasauskas, Bunevicius); and the Department of Neurosurgery at Kauno Klinikos, Lithuanian University of Health Sciences, Kaunas, Lithuania (Tamasauskas, Bunevicius)
| | - Ramunas Jokubka
- The Lithuanian University of Health Sciences, Kaunas, Lithuania (Nekrosius, Lideikis); the Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania (Kaminskaite, Jokubka, Pranckeviciene, Tamasauskas, Bunevicius); and the Department of Neurosurgery at Kauno Klinikos, Lithuanian University of Health Sciences, Kaunas, Lithuania (Tamasauskas, Bunevicius)
| | - Aiste Pranckeviciene
- The Lithuanian University of Health Sciences, Kaunas, Lithuania (Nekrosius, Lideikis); the Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania (Kaminskaite, Jokubka, Pranckeviciene, Tamasauskas, Bunevicius); and the Department of Neurosurgery at Kauno Klinikos, Lithuanian University of Health Sciences, Kaunas, Lithuania (Tamasauskas, Bunevicius)
| | - Karolis Lideikis
- The Lithuanian University of Health Sciences, Kaunas, Lithuania (Nekrosius, Lideikis); the Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania (Kaminskaite, Jokubka, Pranckeviciene, Tamasauskas, Bunevicius); and the Department of Neurosurgery at Kauno Klinikos, Lithuanian University of Health Sciences, Kaunas, Lithuania (Tamasauskas, Bunevicius)
| | - Arimantas Tamasauskas
- The Lithuanian University of Health Sciences, Kaunas, Lithuania (Nekrosius, Lideikis); the Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania (Kaminskaite, Jokubka, Pranckeviciene, Tamasauskas, Bunevicius); and the Department of Neurosurgery at Kauno Klinikos, Lithuanian University of Health Sciences, Kaunas, Lithuania (Tamasauskas, Bunevicius)
| | - Adomas Bunevicius
- The Lithuanian University of Health Sciences, Kaunas, Lithuania (Nekrosius, Lideikis); the Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania (Kaminskaite, Jokubka, Pranckeviciene, Tamasauskas, Bunevicius); and the Department of Neurosurgery at Kauno Klinikos, Lithuanian University of Health Sciences, Kaunas, Lithuania (Tamasauskas, Bunevicius)
| |
Collapse
|
49
|
Chien YJ, Chien YC, Liu CT, Wu HC, Chang CY, Wu MY. Effects of Methylphenidate on Cognitive Function in Adults with Traumatic Brain Injury: A Meta-Analysis. Brain Sci 2019; 9:brainsci9110291. [PMID: 31653039 PMCID: PMC6895997 DOI: 10.3390/brainsci9110291] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 12/29/2022] Open
Abstract
This meta-analysis evaluated the effects of methylphenidate (MPH) on cognitive outcome and adverse events in adults with traumatic brain injuries (TBI). We searched PubMed, EMBASE, and PsycINFO for randomized controlled trials (RCTs) published before July 2019. Studies that compared the effects of MPH and placebos in adults with TBI were included. The primary outcome was cognitive function, while the secondary outcome was adverse events. Meta-regression and sensitivity analysis were conducted to evaluate heterogeneity. Seventeen RCTs were included for qualitative analysis, and ten RCTs were included for quantitative analysis. MPH significantly improved processing speed, measured by Choice Reaction Time (standardized mean difference (SMD): -0.806; 95% confidence interval (CI): -429 to -0.182, p = 0.011) and Digit Symbol Coding Test (SMD: -0.653; 95% CI: -1.016 to -0.289, p < 0.001). Meta-regression showed that the reaction time was inversely associated with the duration of MPH. MPH administration significantly increased heart rate (SMD: 0.553; 95% CI: 0.337 to 0.769, p < 0.001), while systolic or diastolic blood pressure did not exhibit significant differences. Therefore, MPH elicited better processing speed in adults with TBI. However, MPH use could significantly increase heart rate. A larger study is required to evaluate the effect of dosage, age, or optimal timing on treatment of adults with TBI.
Collapse
Affiliation(s)
- Yung-Jiun Chien
- Department of Physical Medicine and Rehabilitation, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, 231 New Taipei, Taiwan.
- School of Medicine, Tzu Chi University, 970 Hualien, Taiwan.
| | - Yung-Chen Chien
- Department of Medical Education, Taipei Medical University Hospital, 110 Taipei, Taiwan.
| | - Chien-Ting Liu
- Department of Physical Medicine and Rehabilitation, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, 231 New Taipei, Taiwan.
- School of Medicine, Tzu Chi University, 970 Hualien, Taiwan.
| | - Hsin-Chi Wu
- Department of Physical Medicine and Rehabilitation, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, 231 New Taipei, Taiwan.
- School of Medicine, Tzu Chi University, 970 Hualien, Taiwan.
| | - Chun-Yu Chang
- School of Medicine, Tzu Chi University, 970 Hualien, Taiwan.
| | - Meng-Yu Wu
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, 231 New Taipei, Taiwan.
- Department of Emergency Medicine, School of Medicine, Tzu Chi University, 970 Hualien, Taiwan.
| |
Collapse
|
50
|
Rosas-Hernandez H, Burks SM, Cuevas E, Ali SF. Stretch-Induced Deformation as a Model to Study Dopaminergic Dysfunction in Traumatic Brain Injury. Neurochem Res 2019; 44:2546-2555. [DOI: 10.1007/s11064-019-02872-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/04/2019] [Accepted: 09/09/2019] [Indexed: 01/08/2023]
|