1
|
Le Calvez B, Besnard T, Cogne B, Bézieau S, Béné MC, Beneteau C, Eveillard M. Purplish granules as a cytological signature of cortical developmental disorders caused by pathogenic variants in WDR81. Am J Hematol 2024; 99:2215-2218. [PMID: 38629724 DOI: 10.1002/ajh.27330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 10/12/2024]
Affiliation(s)
- Baptiste Le Calvez
- Pediatric Oncology, Nantes University Hospital, Nantes, France
- CRCI2NA, INSERM U1307, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Thomas Besnard
- Genetics Department, Nantes University Hospital, Nantes, France
| | - Benjamin Cogne
- Genetics Department, Nantes University Hospital, Nantes, France
| | | | - Marie C Béné
- CRCI2NA, INSERM U1307, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Claire Beneteau
- Genetics Department, Nantes University Hospital, Nantes, France
- Genetics Department, Bordeaux University Hospital, Bordeaux, France
| | - Marion Eveillard
- CRCI2NA, INSERM U1307, CNRS, Université d'Angers, Université de Nantes, Nantes, France
- Hematology Biology, Nantes University Hospital, Nantes, France
| |
Collapse
|
2
|
Mulvihill JJ, Findley L, Ni W, Sinsheimer JS, Cole FS, Esteves C, Bernstein JA, Newman JH, Wheeler MT, Mokry JR. The Undiagnosed Diseases Network: Characteristics of solvable applicants and diagnostic suggestions for nonaccepted ones. Genet Med 2024; 26:101203. [PMID: 38967101 DOI: 10.1016/j.gim.2024.101203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024] Open
Abstract
PURPOSE Can certain characteristics identify as solvable some undiagnosed patients who seek extensive evaluation and thorough record review, such as by the Undiagnosed Diseases Network (UDN)? METHODS The UDN is a national research resource to solve medical mysteries through team science. Applicants provide informed consent to access to their medical records. After review, expert panels assess if applicants meet inclusion and exclusion criteria to select participants. When not accepting applicants, UDN experts may offer suggestions for diagnostic efforts. Using minimal information from initial applications, we compare features in applicants who are not accepted with those who are accepted and either solved or still not solved by the UDN. The diagnostic suggestions offered to nonaccepted applicants and their clinicians were tallied. RESULTS Nonaccepted applicants were more often female, older at first symptoms and application, and longer in review compared with accepted applicants. The accepted and successfully diagnosed applicants were younger, shorter in review time, more often non-White, of Hispanic ethnicity, and presenting with nervous system features. Half of nonaccepted applicants were given suggestions for further local diagnostic evaluation. A few seemed to have 2 major diagnoses or a provocative environmental exposure history. CONCLUSION Comprehensive UDN record review generates possibly helpful advice.
Collapse
Affiliation(s)
- John J Mulvihill
- National Human Genome Research Institute (National Institutes of Health), Bethesda, MD; Department of Pediatrics, University of Oklahoma, Oklahoma City, OK.
| | - Laura Findley
- National Human Genome Research Institute (National Institutes of Health), Bethesda, MD
| | - Weihong Ni
- Department of Computer Science and Mathematics, Arcadia University, Glenside, PA
| | - Janet S Sinsheimer
- Departments of Human Genetics and of Computational Medicine and Biostatistics, University of California, Los Angeles, CA
| | - F Session Cole
- Department of Pediatrics, Washington University, St. Louis, MO
| | - Cecilia Esteves
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA
| | | | - John H Newman
- Department of Medicine, Vanderbilt University, Nashville, TN
| | | | - Jill R Mokry
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| |
Collapse
|
3
|
Gerik-Celebi HB, Dokurel Çetin İ, Bolat H, Unsel-Bolat G. Investigation of patients with childhood epilepsy in single center: Comprehensive genetic testing experience. Int J Dev Neurosci 2024. [PMID: 38984718 DOI: 10.1002/jdn.10360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/07/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024] Open
Abstract
INTRODUCTION Epilepsy is a common multifactorial neurological disease usually diagnosed during childhood. In this study, we present the contribution of consecutive genetic testing to the genetic diagnostic yield of childhood epilepsy. METHODS In 100 children (53 female, 47 male) with epilepsy, targeted sequencing (TS) and clinical exome sequencing (CES) were performed. All cases (n = 100) included in the study were epilepsy patients. In addition, we investigated the genetic diagnosis rates according to the associated co-occurring findings (including developmental delay/intellectual disability, brain malformations, macro-/microcephaly, and dysmorphic features). RESULTS The overall diagnostic rate in this study was 33% (n = 33 patients). We identified 11 novel variants in WDR45, ARX, PCDH19, SCN1A, CACNA1A, LGI1, ASPM, MECP2, NF1, TSC2, and CDK13. Genetic diagnosis rates were as follows: cases with developmental delay/intellectual disability 38.7% (24/62) and without developmental delay/intellectual disability 23.6% (9/38); cases with brain malformations 46.8% (15/32) and without brain malformations 25% (16/64); cases with macro-/microcephaly 50% (6/12) and without macro-/microcephaly 28.4% (25/88); and cases with dysmorphic features 48.2% (14/29) and without dysmorphic features 23.9% (17/71). CONCLUSION Genotype-phenotype correlation is even more important in diseases such as epilepsy, which include many genes and variants of these genes in etiopathogenesis. We presented the clinical findings of the cases carrying 11 novel variants in detail, including dysmorphic features, accompanying neurodevelopmental disorders, EEG results, and brain MRI results.
Collapse
Affiliation(s)
| | - İpek Dokurel Çetin
- Department of Pediatrics, Division of Child Neurology, Balıkesir University Faculty of Medicine, Balıkesir, Turkey
| | - Hilmi Bolat
- Department of Medical Genetics, Balıkesir University Faculty of Medicine, Balıkesir, Turkey
| | - Gul Unsel-Bolat
- Department of Child and Adolescent Psychiatry, Balıkesir University Faculty of Medicine, Balıkesir, Turkey
| |
Collapse
|
4
|
Duy PQ, Mehta NH, Kahle KT. The "microcephalic hydrocephalus" paradox as a paradigm of altered neural stem cell biology. Cereb Cortex 2024; 34:bhad432. [PMID: 37991277 PMCID: PMC10793578 DOI: 10.1093/cercor/bhad432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/23/2023] Open
Abstract
Characterized by enlarged brain ventricles, hydrocephalus is a common neurological disorder classically attributed to a primary defect in cerebrospinal fluid (CSF) homeostasis. Microcephaly ("small head") and hydrocephalus are typically viewed as two mutually exclusive phenomenon, since hydrocephalus is thought of as a fluid "plumbing" disorder leading to CSF accumulation, ventricular dilatation, and resultant macrocephaly. However, some cases of hydrocephalus can be associated with microcephaly. Recent work in the genomics of congenital hydrocephalus (CH) and an improved understanding of the tropism of certain viruses such as Zika and cytomegalovirus are beginning to shed light into the paradox "microcephalic hydrocephalus" by defining prenatal neural stem cells (NSC) as the spatiotemporal "scene of the crime." In some forms of CH and viral brain infections, impaired fetal NSC proliferation leads to decreased neurogenesis, cortical hypoplasia and impaired biomechanical interactions at the CSF-brain interface that collectively engender ventriculomegaly despite an overall and often striking decrease in head circumference. The coexistence of microcephaly and hydrocephalus suggests that these two phenotypes may overlap more than previously appreciated. Continued study of both conditions may be unexpectedly fertile ground for providing new insights into human NSC biology and our understanding of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Phan Q Duy
- Department of Neurosurgery, University of Virginia School of Medicine, Charlottesville, VA 22908, United States
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, United States
| | - Neel H Mehta
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Kristopher T Kahle
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, United States
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, United States
- Harvard Center for Hydrocephalus and Neurodevelopmental Disorders, Massachusetts General Hospital, Boston, MA 02114, United States
| |
Collapse
|
5
|
Duy PQ, Rakic P, Alper SL, Robert SM, Kundishora AJ, Butler WE, Walsh CA, Sestan N, Geschwind DH, Jin SC, Kahle KT. A neural stem cell paradigm of pediatric hydrocephalus. Cereb Cortex 2023; 33:4262-4279. [PMID: 36097331 PMCID: PMC10110448 DOI: 10.1093/cercor/bhac341] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/12/2022] [Accepted: 08/02/2022] [Indexed: 12/25/2022] Open
Abstract
Pediatric hydrocephalus, the leading reason for brain surgery in children, is characterized by enlargement of the cerebral ventricles classically attributed to cerebrospinal fluid (CSF) overaccumulation. Neurosurgical shunting to reduce CSF volume is the default treatment that intends to reinstate normal CSF homeostasis, yet neurodevelopmental disability often persists in hydrocephalic children despite optimal surgical management. Here, we discuss recent human genetic and animal model studies that are shifting the view of pediatric hydrocephalus from an impaired fluid plumbing model to a new paradigm of dysregulated neural stem cell (NSC) fate. NSCs are neuroprogenitor cells that comprise the germinal neuroepithelium lining the prenatal brain ventricles. We propose that heterogenous defects in the development of these cells converge to disrupt cerebrocortical morphogenesis, leading to abnormal brain-CSF biomechanical interactions that facilitate passive pooling of CSF and secondary ventricular distention. A significant subset of pediatric hydrocephalus may thus in fact be due to a developmental brain malformation leading to secondary enlargement of the ventricles rather than a primary defect of CSF circulation. If hydrocephalus is indeed a neuroradiographic presentation of an inborn brain defect, it suggests the need to focus on optimizing neurodevelopment, rather than CSF diversion, as the primary treatment strategy for these children.
Collapse
Affiliation(s)
- Phan Q Duy
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Pasko Rakic
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Seth L Alper
- Division of Nephrology and Vascular Biology Research Center, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Stephanie M Robert
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Adam J Kundishora
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - William E Butler
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Department of Pediatrics, and Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA 02115, USA
- Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Daniel H Geschwind
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Sheng Chih Jin
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kristopher T Kahle
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Center for Hydrocephalus and Neurodevelopmental Disorders, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
6
|
Cardo LF, de la Fuente DC, Li M. Impaired neurogenesis and neural progenitor fate choice in a human stem cell model of SETBP1 disorder. Mol Autism 2023; 14:8. [PMID: 36805818 PMCID: PMC9940404 DOI: 10.1186/s13229-023-00540-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Disruptions of SETBP1 (SET binding protein 1) on 18q12.3 by heterozygous gene deletion or loss-of-function variants cause SETBP1 disorder. Clinical features are frequently associated with moderate to severe intellectual disability, autistic traits and speech and motor delays. Despite the association of SETBP1 with neurodevelopmental disorders, little is known about its role in brain development. METHODS Using CRISPR/Cas9 genome editing technology, we generated a SETBP1 deletion model in human embryonic stem cells (hESCs) and examined the effects of SETBP1-deficiency in neural progenitors (NPCs) and neurons derived from these stem cells using a battery of cellular assays, genome-wide transcriptomic profiling and drug-based phenotypic rescue. RESULTS Neural induction occurred efficiently in all SETBP1 deletion models as indicated by uniform transition into neural rosettes. However, SETBP1-deficient NPCs exhibited an extended proliferative window and a decrease in neurogenesis coupled with a deficiency in their ability to acquire ventral forebrain fate. Genome-wide transcriptome profiling and protein biochemical analysis revealed enhanced activation of Wnt/β-catenin signaling in SETBP1 deleted cells. Crucially, treatment of the SETBP1-deficient NPCs with a small molecule Wnt inhibitor XAV939 restored hyper canonical β-catenin activity and restored both cortical and MGE neuronal differentiation. LIMITATIONS The current study is based on analysis of isogenic hESC lines with genome-edited SETBP1 deletion and further studies would benefit from the use of patient-derived iPSC lines that may harbor additional genetic risk that aggravate brain pathology of SETBP1 disorder. CONCLUSIONS We identified an important role for SETBP1 in controlling forebrain progenitor expansion and neurogenic differentiation. Our study establishes a novel regulatory link between SETBP1 and Wnt/β-catenin signaling during human cortical neurogenesis and provides mechanistic insights into structural abnormalities and potential therapeutic avenues for SETBP1 disorder.
Collapse
Affiliation(s)
- Lucia F Cardo
- Neuroscience and Mental Health Innovation Institute, School of Medicine and School of Bioscience, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK.
| | - Daniel C de la Fuente
- Neuroscience and Mental Health Innovation Institute, School of Medicine and School of Bioscience, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Meng Li
- Neuroscience and Mental Health Innovation Institute, School of Medicine and School of Bioscience, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK.
| |
Collapse
|
7
|
Prasad T, Iyer S, Chatterjee S, Kumar M. In vivo models to study neurogenesis and associated neurodevelopmental disorders-Microcephaly and autism spectrum disorder. WIREs Mech Dis 2023:e1603. [PMID: 36754084 DOI: 10.1002/wsbm.1603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/14/2022] [Accepted: 01/24/2023] [Indexed: 02/10/2023]
Abstract
The genesis and functioning of the central nervous system are one of the most intricate and intriguing aspects of embryogenesis. The big lacuna in the field of human CNS development is the lack of accessibility of the human brain for direct observation during embryonic and fetal development. Thus, it is imperative to establish alternative animal models to gain deep mechanistic insights into neurodevelopment, establishment of neural circuitry, and its function. Neurodevelopmental events such as neural specification, differentiation, and generation of neuronal and non-neuronal cell types have been comprehensively studied using a variety of animal models and in vitro model systems derived from human cells. The experimentations on animal models have revealed novel, mechanistic insights into neurogenesis, formation of neural networks, and function. The models, thus serve as indispensable tools to understand the molecular basis of neurodevelopmental disorders (NDDs) arising from aberrations during embryonic development. Here, we review the spectrum of in vivo models such as fruitfly, zebrafish, frog, mice, and nonhuman primates to study neurogenesis and NDDs like microcephaly and Autism Spectrum Disorder. We also discuss nonconventional models such as ascidians and the recent technological advances in the field to study neurogenesis, disease mechanisms, and pathophysiology of human NDDs. This article is categorized under: Cancer > Stem Cells and Development Congenital Diseases > Stem Cells and Development Neurological Diseases > Stem Cells and Development Congenital Diseases > Genetics/Genomics/Epigenetics.
Collapse
Affiliation(s)
- Tuhina Prasad
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sharada Iyer
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sayoni Chatterjee
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India
| | - Megha Kumar
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
8
|
Fasano G, Compagnucci C, Dallapiccola B, Tartaglia M, Lauri A. Teleost Fish and Organoids: Alternative Windows Into the Development of Healthy and Diseased Brains. Front Mol Neurosci 2022; 15:855786. [PMID: 36034498 PMCID: PMC9403253 DOI: 10.3389/fnmol.2022.855786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
The variety in the display of animals’ cognition, emotions, and behaviors, typical of humans, has its roots within the anterior-most part of the brain: the forebrain, giving rise to the neocortex in mammals. Our understanding of cellular and molecular events instructing the development of this domain and its multiple adaptations within the vertebrate lineage has progressed in the last decade. Expanding and detailing the available knowledge on regionalization, progenitors’ behavior and functional sophistication of the forebrain derivatives is also key to generating informative models to improve our characterization of heterogeneous and mechanistically unexplored cortical malformations. Classical and emerging mammalian models are irreplaceable to accurately elucidate mechanisms of stem cells expansion and impairments of cortex development. Nevertheless, alternative systems, allowing a considerable reduction of the burden associated with animal experimentation, are gaining popularity to dissect basic strategies of neural stem cells biology and morphogenesis in health and disease and to speed up preclinical drug testing. Teleost vertebrates such as zebrafish, showing conserved core programs of forebrain development, together with patients-derived in vitro 2D and 3D models, recapitulating more accurately human neurogenesis, are now accepted within translational workflows spanning from genetic analysis to functional investigation. Here, we review the current knowledge of common and divergent mechanisms shaping the forebrain in vertebrates, and causing cortical malformations in humans. We next address the utility, benefits and limitations of whole-brain/organism-based fish models or neuronal ensembles in vitro for translational research to unravel key genes and pathological mechanisms involved in neurodevelopmental diseases.
Collapse
|
9
|
Duy PQ, Weise SC, Marini C, Li XJ, Liang D, Dahl PJ, Ma S, Spajic A, Dong W, Juusola J, Kiziltug E, Kundishora AJ, Koundal S, Pedram MZ, Torres-Fernández LA, Händler K, De Domenico E, Becker M, Ulas T, Juranek SA, Cuevas E, Hao LT, Jux B, Sousa AMM, Liu F, Kim SK, Li M, Yang Y, Takeo Y, Duque A, Nelson-Williams C, Ha Y, Selvaganesan K, Robert SM, Singh AK, Allington G, Furey CG, Timberlake AT, Reeves BC, Smith H, Dunbar A, DeSpenza T, Goto J, Marlier A, Moreno-De-Luca A, Yu X, Butler WE, Carter BS, Lake EMR, Constable RT, Rakic P, Lin H, Deniz E, Benveniste H, Malvankar NS, Estrada-Veras JI, Walsh CA, Alper SL, Schultze JL, Paeschke K, Doetzlhofer A, Wulczyn FG, Jin SC, Lifton RP, Sestan N, Kolanus W, Kahle KT. Impaired neurogenesis alters brain biomechanics in a neuroprogenitor-based genetic subtype of congenital hydrocephalus. Nat Neurosci 2022; 25:458-473. [PMID: 35379995 PMCID: PMC9664907 DOI: 10.1038/s41593-022-01043-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/28/2022] [Indexed: 01/16/2023]
Abstract
Hydrocephalus, characterized by cerebral ventricular dilatation, is routinely attributed to primary defects in cerebrospinal fluid (CSF) homeostasis. This fosters CSF shunting as the leading reason for brain surgery in children despite considerable disease heterogeneity. In this study, by integrating human brain transcriptomics with whole-exome sequencing of 483 patients with congenital hydrocephalus (CH), we found convergence of CH risk genes in embryonic neuroepithelial stem cells. Of all CH risk genes, TRIM71/lin-41 harbors the most de novo mutations and is most specifically expressed in neuroepithelial cells. Mice harboring neuroepithelial cell-specific Trim71 deletion or CH-specific Trim71 mutation exhibit prenatal hydrocephalus. CH mutations disrupt TRIM71 binding to its RNA targets, causing premature neuroepithelial cell differentiation and reduced neurogenesis. Cortical hypoplasia leads to a hypercompliant cortex and secondary ventricular enlargement without primary defects in CSF circulation. These data highlight the importance of precisely regulated neuroepithelial cell fate for normal brain-CSF biomechanics and support a clinically relevant neuroprogenitor-based paradigm of CH.
Collapse
Affiliation(s)
- Phan Q Duy
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA.,Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA.,Medical Scientist Training Program, Yale University School of Medicine, New Haven, CT, USA
| | - Stefan C Weise
- Molecular Immunology and Cell Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Claudia Marini
- Institute for Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Xiao-Jun Li
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Center for Hearing and Balance, Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dan Liang
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Peter J Dahl
- Microbial Sciences Institute, Yale University, West Haven, CT, USA.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Shaojie Ma
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Ana Spajic
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Weilai Dong
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | | | - Emre Kiziltug
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Adam J Kundishora
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Sunil Koundal
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT, USA
| | - Maysam Z Pedram
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT, USA
| | - Lucia A Torres-Fernández
- Molecular Immunology and Cell Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Kristian Händler
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany.,Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE). PRECISE Platform for Genomics and Epigenomics at DZNE and University of Bonn, Bonn, Germany
| | - Elena De Domenico
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany.,Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE). PRECISE Platform for Genomics and Epigenomics at DZNE and University of Bonn, Bonn, Germany
| | - Matthias Becker
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany.,Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE). PRECISE Platform for Genomics and Epigenomics at DZNE and University of Bonn, Bonn, Germany
| | - Thomas Ulas
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany.,Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE). PRECISE Platform for Genomics and Epigenomics at DZNE and University of Bonn, Bonn, Germany
| | - Stefan A Juranek
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Elisa Cuevas
- Stem Cells and Regenerative Medicine Section, University College London Great Ormond Street Institute of Child Health, London, UK
| | - Le Thi Hao
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Bettina Jux
- Molecular Immunology and Cell Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - André M M Sousa
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Fuchen Liu
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Suel-Kee Kim
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Mingfeng Li
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Yiying Yang
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
| | - Yutaka Takeo
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Alvaro Duque
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | | | - Yonghyun Ha
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Kartiga Selvaganesan
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Stephanie M Robert
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Amrita K Singh
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Garrett Allington
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Charuta G Furey
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Andrew T Timberlake
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Benjamin C Reeves
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Hannah Smith
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Ashley Dunbar
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Tyrone DeSpenza
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - June Goto
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Arnaud Marlier
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Andres Moreno-De-Luca
- Department of Radiology, Autism & Developmental Medicine Institute, Genomic Medicine Institute, Geisinger, Danville, PA, USA
| | - Xin Yu
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - William E Butler
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Bob S Carter
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Evelyn M R Lake
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - R Todd Constable
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Pasko Rakic
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Haifan Lin
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
| | - Engin Deniz
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Helene Benveniste
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT, USA
| | - Nikhil S Malvankar
- Microbial Sciences Institute, Yale University, West Haven, CT, USA.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Juvianee I Estrada-Veras
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA.,Pediatric Subspecialty Genetics Walter Reed National Military Medical Center, Bethesda, MD, USA.,Murtha Cancer Center/Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Department of Pediatrics, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.,Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Seth L Alper
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Division of Nephrology and Vascular Biology Research Center, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Joachim L Schultze
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany.,Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE). PRECISE Platform for Genomics and Epigenomics at DZNE and University of Bonn, Bonn, Germany
| | - Katrin Paeschke
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Angelika Doetzlhofer
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Center for Hearing and Balance, Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - F Gregory Wulczyn
- Institute for Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sheng Chih Jin
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Richard P Lifton
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Nenad Sestan
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Waldemar Kolanus
- Molecular Immunology and Cell Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Kristopher T Kahle
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. .,Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Department of Pediatrics, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA. .,Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Harvard Center for Hydrocephalus and Neurodevelopmental Disorders, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
10
|
Endosomal trafficking defects alter neural progenitor proliferation and cause microcephaly. Nat Commun 2022; 13:16. [PMID: 35013230 PMCID: PMC8748540 DOI: 10.1038/s41467-021-27705-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/30/2021] [Indexed: 11/14/2022] Open
Abstract
Primary microcephaly and megalencephaly are severe brain malformations defined by reduced and increased brain size, respectively. Whether these two pathologies arise from related alterations at the molecular level is unclear. Microcephaly has been largely associated with centrosomal defects, leading to cell death. Here, we investigate the consequences of WDR81 loss of function, which causes severe microcephaly in patients. We show that WDR81 regulates endosomal trafficking of EGFR and that loss of function leads to reduced MAP kinase pathway activation. Mouse radial glial progenitor cells knocked-out for WDR81 exhibit reduced proliferation rate, subsequently leading to reduced brain size. These proliferation defects are rescued in vivo by expressing a megalencephaly-causing mutant form of Cyclin D2. Our results identify the endosomal machinery as an important regulator of proliferation rates and brain growth, demonstrating that microcephaly and megalencephaly can be caused by opposite effects on the proliferation rate of radial glial progenitors. Mutations in the human WDR81 gene result in severe microcephaly. Carpentieri et al. show that mutation of WDR81, a gene coding for an endosomal regulator, alters intracellular processing of the EGF receptor, leading to reduced proliferation rates of neuronal progenitors and to microcephaly.
Collapse
|
11
|
Kundishora AJ, Singh AK, Allington G, Duy PQ, Ryou J, Alper SL, Jin SC, Kahle KT. Genomics of human congenital hydrocephalus. Childs Nerv Syst 2021; 37:3325-3340. [PMID: 34232380 DOI: 10.1007/s00381-021-05230-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022]
Abstract
Congenital hydrocephalus (CH), characterized by enlarged brain ventricles, is considered a disease of pathological cerebrospinal fluid (CSF) accumulation and, therefore, treated largely by neurosurgical CSF diversion. The persistence of ventriculomegaly and poor neurodevelopmental outcomes in some post-surgical patients highlights our limited knowledge of disease mechanisms. Recent whole-exome sequencing (WES) studies have shown that rare, damaging de novo and inherited mutations with large effect contribute to ~ 25% of sporadic CH. Interestingly, multiple CH genes are key regulators of neural stem cell growth and differentiation and converge in human transcriptional networks and cell types pertinent to fetal neurogliogenesis. These data implicate genetic disruption of early brain development as the primary pathomechanism in a substantial minority of patients with sporadic CH, shedding new light on human brain development and the pathogenesis of hydrocephalus. These data further suggest WES as a clinical tool with potential to re-classify CH according to a molecular nomenclature of increased precision and utility for genetic counseling, outcome prognostication, and treatment stratification.
Collapse
Affiliation(s)
- Adam J Kundishora
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Amrita K Singh
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Garrett Allington
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Phan Q Duy
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Jian Ryou
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
| | - Seth L Alper
- Division of Nephrology and Center for Vascular Biology Research, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sheng Chih Jin
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
| | - Kristopher T Kahle
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
12
|
Zhu Q, Chen L, Li Y, Huang M, Shao J, Li S, Cheng J, Yang H, Wu Y, Zhang J, Feng J, Fan M, Wu H. Rack1 is essential for corticogenesis by preventing p21-dependent senescence in neural stem cells. Cell Rep 2021; 36:109639. [PMID: 34469723 DOI: 10.1016/j.celrep.2021.109639] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 05/27/2021] [Accepted: 08/09/2021] [Indexed: 10/20/2022] Open
Abstract
Normal neurodevelopment relies on intricate signaling pathways that balance neural stem cell (NSC) self-renewal, maturation, and survival. Disruptions lead to neurodevelopmental disorders, including microcephaly. Here, we implicate the inhibition of NSC senescence as a mechanism underlying neurogenesis and corticogenesis. We report that the receptor for activated C kinase (Rack1), a family member of WD40-repeat (WDR) proteins, is highly enriched in NSCs. Deletion of Rack1 in developing cortical progenitors leads to a microcephaly phenotype. Strikingly, the absence of Rack1 decreases neurogenesis and promotes a cellular senescence phenotype in NSCs. Mechanistically, the senescence-related p21 signaling pathway is dramatically activated in Rack1 null NSCs, and removal of p21 significantly rescues the Rack1-knockout phenotype in vivo. Finally, Rack1 directly interacts with Smad3 to suppress the activation of transforming growth factor (TGF)-β/Smad signaling pathway, which plays a critical role in p21-mediated senescence. Our data implicate Rack1-driven inhibition of p21-induced NSC senescence as a critical mechanism behind normal cortical development.
Collapse
Affiliation(s)
- Qian Zhu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Liping Chen
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Ying Li
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Minghe Huang
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China; Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang 421001, Hunan Province, China
| | - Jingyuan Shao
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Shen Li
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Juanxian Cheng
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Haihong Yang
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Yan Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Jiyan Zhang
- Department of Neuroimmunology and Antibody Engineering, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Jiannan Feng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 100850 Beijing, China
| | - Ming Fan
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China; Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, Jiangsu Province, China
| | - Haitao Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China; Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, Jiangsu Province, China; Chinese Institute for Brain Research, 102206 Beijing, China.
| |
Collapse
|
13
|
Fetal brain arrest broadens the spectrum of WDR81-related developmental brain malformations. Neurogenetics 2021; 22:287-295. [PMID: 34338917 DOI: 10.1007/s10048-021-00665-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 07/24/2021] [Indexed: 10/20/2022]
Abstract
Fetal brain arrest is an extremely rare genetic disorder that was described in few patients and encompasses very unique findings of underdeveloped cerebral hemispheres in association with collapsed skull bones. Based on the recurrence among sibs, an autosomal recessive mode of inheritance was proposed; however, no causative gene was identified so far. Here, we report the identification of biallelic variants in the WDR81 gene in two unrelated families (4 patients) with fetal brain arrest including the originally described family and an additional new family. Two homozygous variants were identified: a new missense (c.1157 T > C, p.Val386Ala) and a previously described frameshift variant, c.4668_4669delAG (p.Gly1557AspfsTer16). We assessed the expression of WDR81 at the protein level by western blot analysis using primary skin fibroblast cultures established from the patient with the missense variant and noticed that WDR81 expression was significantly reduced in comparison to normal control confirming the pathogenicity of this variant. Our findings confirm the involvement of WDR81 in the pathogenesis of fetal brain arrest syndrome and suggest that fetal brain arrest represents the severe end of the spectrum phenotypes caused by pathogenic variants in WDR81. In addition, we reviewed the clinical and molecular data on WDR81-related disorders and phenotype/genotype correlations.
Collapse
|
14
|
Liu X, Yin L, Li T, Lin L, Zhang J, Li Y. Reduction of WDR81 impairs autophagic clearance of aggregated proteins and cell viability in neurodegenerative phenotypes. PLoS Genet 2021; 17:e1009415. [PMID: 33730050 PMCID: PMC7968681 DOI: 10.1371/journal.pgen.1009415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/11/2021] [Indexed: 12/17/2022] Open
Abstract
Neurodegenerative diseases are characterized by neuron loss and accumulation of undegraded protein aggregates. These phenotypes are partially due to defective protein degradation in neuronal cells. Autophagic clearance of aggregated proteins is critical to protein quality control, but the underlying mechanisms are still poorly understood. Here we report the essential role of WDR81 in autophagic clearance of protein aggregates in models of Huntington’s disease (HD), Parkinson’s disease (PD) and Alzheimer’s disease (AD). In hippocampus and cortex of patients with HD, PD and AD, protein level of endogenous WDR81 is decreased but autophagic receptor p62 accumulates significantly. WDR81 facilitates the recruitment of autophagic proteins onto Htt polyQ aggregates and promotes autophagic clearance of Htt polyQ subsequently. The BEACH and MFS domains of WDR81 are sufficient for its recruitment onto Htt polyQ aggregates, and its WD40 repeats are essential for WDR81 interaction with covalent bound ATG5-ATG12. Reduction of WDR81 impairs the viability of mouse primary neurons, while overexpression of WDR81 restores the viability of fibroblasts from HD patients. Notably, in Caenorhabditis elegans, deletion of the WDR81 homolog (SORF-2) causes accumulation of p62 bodies and exacerbates neuron loss induced by overexpressed α-synuclein. As expected, overexpression of SORF-2 or human WDR81 restores neuron viability in worms. These results demonstrate that WDR81 has crucial evolutionarily conserved roles in autophagic clearance of protein aggregates and maintenance of cell viability under pathological conditions, and its reduction provides mechanistic insights into the pathogenesis of HD, PD, AD and brain disorders related to WDR81 mutations. In recent years, a group of clinical studies reported that mutations of WDR81 are related to pathogenesis of human brain disorders. However, the underlying mechanisms of pathogenesis are still unknown. In this study, WDR81 promotes the autophagic clearance of protein aggregates via facilitating the recruitment of autophagic proteins onto protein aggregates. The BEACH and MFS domains of WDR81 are sufficient for its recruitment onto Htt polyQ aggregates, and its WD40 repeats are essential for WDR81 interaction with covalent bound ATG5-ATG12. In hippocampus and cortex of patients with HD, PD and AD, protein level of WDR81 is decreased significantly. Reduction of WDR81 impairs the viability of mouse primary neurons, while overexpression of WDR81 restores the viability of fibroblasts from HD patients.
Collapse
Affiliation(s)
- Xuezhao Liu
- Department of Pharmacology, School of Basic Medical Science, Fudan University, Shanghai, China
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Brain Tumor Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, United States of America
| | - Limin Yin
- Department of Pharmacology, School of Basic Medical Science, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai, China
| | - Tianyou Li
- Department of Pharmacology, School of Basic Medical Science, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai, China
| | - Lingxi Lin
- Department of Pharmacology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Jie Zhang
- Department of Pharmacology, School of Basic Medical Science, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai, China
| | - Yang Li
- Department of Pharmacology, School of Basic Medical Science, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
15
|
Su J, Lu W, Li M, Zhang Q, Chen F, Yi S, Yang Q, Yi S, Zhou X, Huang L, Shen Y, Luo J, Qin Z. Novel compound heterozygous frameshift variants in WDR81 associated with congenital hydrocephalus 3 with brain anomalies: First Chinese prenatal case confirms WDR81 involvement. Mol Genet Genomic Med 2021; 9:e1624. [PMID: 33724704 PMCID: PMC8123740 DOI: 10.1002/mgg3.1624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/15/2021] [Accepted: 02/09/2021] [Indexed: 11/28/2022] Open
Abstract
Background Congenital hydrocephalus‐3 with brain anomalies (HYC3, MIM 617967) is a rare form of congenital hydrocephalus characterized by severe hydrocephalus and cerebellar abnormalities, the onset of the disease occurs in utero even resulting in fetal death. A very limited spectrum of WDR81 pathogenic variants had been reported in three unrelated families with HYC3. This study aims at presenting novel compound heterozygous frameshift variants in WDR81 in a Chinese fetus. Methods Whole‐exome sequencing (WES) was performed for a fetus with multiple congenital anomalies including sever hydrocephalus, cleft lip and palate, hydrops fetalis, hepatomegaly, and cerebellar hypoplasia. Sanger sequencing was performed to confirm the origin of the variants subsequently. Variants classification was based on the American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines. Results Two novel heterozygous variants c.146_147insG (p.Thr52fs) and c.673delC (p.Leu225fs) in WDR81 were identified. Sanger sequencing revealed that the c.146_147insG mutation was maternal origin and the c.673delC mutation was paternal origin. Both variants were pathogenic according to the ACMG/AMP guidelines. Conclusion The present study expands the mutation spectrum of WDR81 and help further define the genotype–phenotype correlations of HYC3. WDR81‐related HYC3 were highly clinical heterogeneity. We suggested that fetal hydrocephalus with extracerebral manifestations may be suggestive of WDR81 deficiency and WES is effective for achieving a conclusive diagnosis for disorder.
Collapse
Affiliation(s)
- Jiasun Su
- Guangxi Health Commission Key Laboratory of Precise Diagnosis and Treatment of Genetic Diseases, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.,Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Nanning, China
| | - Weiliang Lu
- Guangxi Health Commission Key Laboratory of Precise Diagnosis and Treatment of Genetic Diseases, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.,Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Nanning, China
| | - Mengting Li
- Guangxi Health Commission Key Laboratory of Precise Diagnosis and Treatment of Genetic Diseases, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.,Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Nanning, China
| | - Qiang Zhang
- Guangxi Health Commission Key Laboratory of Precise Diagnosis and Treatment of Genetic Diseases, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.,Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Nanning, China
| | - Fei Chen
- Guangxi Health Commission Key Laboratory of Precise Diagnosis and Treatment of Genetic Diseases, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.,Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Nanning, China
| | - Shang Yi
- Guangxi Health Commission Key Laboratory of Precise Diagnosis and Treatment of Genetic Diseases, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.,Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Nanning, China
| | - Qi Yang
- Guangxi Health Commission Key Laboratory of Precise Diagnosis and Treatment of Genetic Diseases, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.,Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Nanning, China
| | - Sheng Yi
- Guangxi Health Commission Key Laboratory of Precise Diagnosis and Treatment of Genetic Diseases, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.,Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Nanning, China
| | - Xunzhao Zhou
- Guangxi Health Commission Key Laboratory of Precise Diagnosis and Treatment of Genetic Diseases, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.,Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Nanning, China
| | - Limei Huang
- Guangxi Health Commission Key Laboratory of Precise Diagnosis and Treatment of Genetic Diseases, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.,Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Nanning, China
| | - Yiping Shen
- Guangxi Health Commission Key Laboratory of Precise Diagnosis and Treatment of Genetic Diseases, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.,Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Nanning, China.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Jingsi Luo
- Guangxi Health Commission Key Laboratory of Precise Diagnosis and Treatment of Genetic Diseases, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.,Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Nanning, China
| | - Zailong Qin
- Guangxi Health Commission Key Laboratory of Precise Diagnosis and Treatment of Genetic Diseases, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.,Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Nanning, China
| |
Collapse
|
16
|
Abstract
Cerebellar hypoplasia (CH) refers to a cerebellum of reduced volume with preserved shape. CH is associated with a broad heterogeneity in neuroradiologic features, etiologies, clinical characteristics, and neurodevelopmental outcomes, challenging physicians evaluating children with CH. Traditionally, neuroimaging has been a key tool to categorize CH based on the pattern of cerebellar involvement (e.g., hypoplasia of cerebellar vermis only vs. hypoplasia of both the vermis and cerebellar hemispheres) and the presence of associated brainstem and cerebral anomalies. With the advances in genetic technologies of the recent decade, many novel CH genes have been identified, and consequently, a constant updating of the literature and revision of the classification of cerebellar malformations are needed. Here, we review the current literature on CH. We propose a systematic approach to recognize specific neuroimaging patterns associated with CH, based on whether the CH is isolated or associated with posterior cerebrospinal fluid anomalies, specific brainstem or cerebellar malformations, brainstem hypoplasia with or without cortical migration anomalies, or dysplasia. The CH radiologic pattern and clinical assessment will allow the clinician to guide his investigations and genetic testing, give a more precise diagnosis, screen for associated comorbidities, and improve prognostication of associated neurodevelopmental outcomes.
Collapse
|
17
|
WDR81 regulates adult hippocampal neurogenesis through endosomal SARA-TGFβ signaling. Mol Psychiatry 2021; 26:694-709. [PMID: 30531936 PMCID: PMC7850971 DOI: 10.1038/s41380-018-0307-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 10/09/2018] [Accepted: 11/12/2018] [Indexed: 01/05/2023]
Abstract
Adult hippocampal neurogenesis, a process considered important for hippocampal function, is regulated at multiple molecular levels. Mutations in the gene encoding the WD40 repeat-containing protein WDR81 are associated with neurological disorders, including cerebellar ataxia, mental retardation, quadrupedal locomotion syndrome (CAMRQ2), and microcephaly. In this study, we show that ablation of WDR81 in adult neural progenitor cells (aNPCs) markedly reduced adult hippocampal neurogenesis and impaired hippocampus-dependent learning. WDR81 suppresses endosomal PtdIns3P synthesis, likely by inhibiting the assembly of the PI3K-III complex. In the absence of WDR81, endosomal PtdIns3P levels are greatly elevated, leading to endosomal persistence of the PtdIns3P-binding protein SARA and consequently hyperactivation of SARA-dependent TGFβ signaling. Inhibition of PI3K-III activity or suppression of SARA-dependent TGFβ signaling markedly ameliorated the defective adult neurogenesis in WDR81-deficient mice. Taken together, these findings not only uncover the requirement for the WDR81-SARA-TGFβ axis in adult hippocampal neurogenesis, but also suggest that defective adult hippocampal neurogenesis contributes to the etiology of WDR81-related neurological diseases.
Collapse
|
18
|
Link N, Bellen HJ. Using Drosophila to drive the diagnosis and understand the mechanisms of rare human diseases. Development 2020; 147:dev191411. [PMID: 32988995 PMCID: PMC7541339 DOI: 10.1242/dev.191411] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Next-generation sequencing has greatly accelerated the discovery of rare human genetic diseases. Nearly 45% of patients have variants associated with known diseases but the unsolved cases remain a conundrum. Moreover, causative mutations can be difficult to pinpoint because variants frequently map to genes with no previous disease associations and, often, only one or a few patients with variants in the same gene are identified. Model organisms, such as Drosophila, can help to identify and characterize these new disease-causing genes. Importantly, Drosophila allow quick and sophisticated genetic manipulations, permit functional testing of human variants, enable the characterization of pathogenic mechanisms and are amenable to drug tests. In this Spotlight, focusing on microcephaly as a case study, we highlight how studies of human genes in Drosophila have aided our understanding of human genetic disorders, allowing the identification of new genes in well-established signaling pathways.
Collapse
Affiliation(s)
- Nichole Link
- Howard Hughes Medical Institute, BCM, Houston, TX, 77030, USA
- Department of Molecular and Human Genetics (MHG), BCM, Houston, TX, 77030, USA
- Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Hugo J Bellen
- Howard Hughes Medical Institute, BCM, Houston, TX, 77030, USA
- Department of Molecular and Human Genetics (MHG), BCM, Houston, TX, 77030, USA
- Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| |
Collapse
|
19
|
Singanamalla B, Mohandoss V, Suthar R, Ahuja CK, Sahu JK. Marcus Gunn Jaw Winking Phenomenon with Cortical Malformation. Indian J Pediatr 2020; 87:466-467. [PMID: 31897880 DOI: 10.1007/s12098-019-03138-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/21/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Bhanudeep Singanamalla
- Pediatric Neurology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - Vichithra Mohandoss
- Department of Pediatrics, Advanced Pediatrics Centre, PGIMER, Chandigarh, India
| | - Renu Suthar
- Pediatric Neurology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India.
| | | | - Jitendra Kumar Sahu
- Pediatric Neurology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| |
Collapse
|
20
|
Kalmár T, Szakszon K, Maróti Z, Zimmermann A, Máté A, Zombor M, Bereczki C, Sztriha L. A Novel Homozygous Frameshift WDR81 Mutation associated with Microlissencephaly, Corpus Callosum Agenesis, and Pontocerebellar Hypoplasia. J Pediatr Genet 2020; 10:159-163. [PMID: 33996189 DOI: 10.1055/s-0040-1712916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023]
Abstract
Microlissencephaly is a brain malformation characterized by microcephaly and extremely simplified gyral pattern. It may be associated with corpus callosum agenesis and pontocerebellar hypoplasia. In this case report, we described two siblings, a boy and a girl, with this complex brain malformation and lack of any development. In the girl, exome sequencing of a gene set representing 4,813 genes revealed a homozygous AG deletion in exon 7 of the WDR81 gene, leading to a frameshift (c.4668_4669delAG, p.Gly1557AspfsTer16). The parents were heterozygous for this mutation. The boy died without proper genetic testing. Our findings expand the phenotypic and genotypic spectrum of WDR81 gene mutations.
Collapse
Affiliation(s)
- Tibor Kalmár
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - Katalin Szakszon
- Department of Pediatrics, University of Debrecen, Debrecen, Hungary
| | - Zoltán Maróti
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - Alíz Zimmermann
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - Adrienn Máté
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - Melinda Zombor
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - Csaba Bereczki
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - László Sztriha
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| |
Collapse
|
21
|
Abstract
Neuroimaging enables the evaluation of many aspects of brain maturation, and detection of abnormalities such as malformation and injury. MRI is integral to the diagnostic work-up of congenital and acquired disorders of the central nervous system in newborns, and imaging findings are central to prognostication. This paper reviews techniques to optimize assessment of maturity of the neonatal brain, as well as abnormalities and injuries of the newborn brain that are associated with abnormal neurocognitive development.
Collapse
|
22
|
Beaudin M, Matilla-Dueñas A, Soong BW, Pedroso JL, Barsottini OG, Mitoma H, Tsuji S, Schmahmann JD, Manto M, Rouleau GA, Klein C, Dupre N. The Classification of Autosomal Recessive Cerebellar Ataxias: a Consensus Statement from the Society for Research on the Cerebellum and Ataxias Task Force. CEREBELLUM (LONDON, ENGLAND) 2019; 18:1098-1125. [PMID: 31267374 PMCID: PMC6867988 DOI: 10.1007/s12311-019-01052-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
There is currently no accepted classification of autosomal recessive cerebellar ataxias, a group of disorders characterized by important genetic heterogeneity and complex phenotypes. The objective of this task force was to build a consensus on the classification of autosomal recessive ataxias in order to develop a general approach to a patient presenting with ataxia, organize disorders according to clinical presentation, and define this field of research by identifying common pathogenic molecular mechanisms in these disorders. The work of this task force was based on a previously published systematic scoping review of the literature that identified autosomal recessive disorders characterized primarily by cerebellar motor dysfunction and cerebellar degeneration. The task force regrouped 12 international ataxia experts who decided on general orientation and specific issues. We identified 59 disorders that are classified as primary autosomal recessive cerebellar ataxias. For each of these disorders, we present geographical and ethnical specificities along with distinctive clinical and imagery features. These primary recessive ataxias were organized in a clinical and a pathophysiological classification, and we present a general clinical approach to the patient presenting with ataxia. We also identified a list of 48 complex multisystem disorders that are associated with ataxia and should be included in the differential diagnosis of autosomal recessive ataxias. This classification is the result of a consensus among a panel of international experts, and it promotes a unified understanding of autosomal recessive cerebellar disorders for clinicians and researchers.
Collapse
Affiliation(s)
- Marie Beaudin
- Axe Neurosciences, CHU de Québec-Université Laval, Québec, QC, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Antoni Matilla-Dueñas
- Department of Neuroscience, Health Sciences Research Institute Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain
| | - Bing-Weng Soong
- Department of Neurology, Shuang Ho Hospital and Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan, Republic of China
- National Yang-Ming University School of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
| | - Jose Luiz Pedroso
- Ataxia Unit, Department of Neurology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Orlando G Barsottini
- Ataxia Unit, Department of Neurology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Hiroshi Mitoma
- Medical Education Promotion Center, Tokyo Medical University, Tokyo, Japan
| | - Shoji Tsuji
- The University of Tokyo, Tokyo, Japan
- International University of Health and Welfare, Chiba, Japan
| | - Jeremy D Schmahmann
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Mario Manto
- Service de Neurologie, Médiathèque Jean Jacquy, CHU-Charleroi, 6000, Charleroi, Belgium
- Service des Neurosciences, UMons, Mons, Belgium
| | | | | | - Nicolas Dupre
- Axe Neurosciences, CHU de Québec-Université Laval, Québec, QC, Canada.
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
23
|
Vezain M, Lecuyer M, Rubio M, Dupé V, Ratié L, David V, Pasquier L, Odent S, Coutant S, Tournier I, Trestard L, Adle-Biassette H, Vivien D, Frébourg T, Gonzalez BJ, Laquerrière A, Saugier-Veber P. A de novo variant in ADGRL2 suggests a novel mechanism underlying the previously undescribed association of extreme microcephaly with severely reduced sulcation and rhombencephalosynapsis. Acta Neuropathol Commun 2018; 6:109. [PMID: 30340542 PMCID: PMC6195752 DOI: 10.1186/s40478-018-0610-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 09/29/2018] [Indexed: 12/13/2022] Open
Abstract
Extreme microcephaly and rhombencephalosynapsis represent unusual pathological conditions, each of which occurs in isolation or in association with various other cerebral and or extracerebral anomalies. Unlike microcephaly for which several disease-causing genes have been identified with different modes of inheritance, the molecular bases of rhombencephalosynapsis remain unknown and rhombencephalosynapsis presents mainly as a sporadic condition consistent with de novo dominant variations. We report for the first time the association of extreme microcephaly with almost no sulcation and rhombencephalosynapsis in a fœtus for which comparative patient-parent exome sequencing strategy revealed a heterozygous de novo missense variant in the ADGRL2 gene. ADGRL2 encodes latrophilin 2, an adhesion G-protein-coupled receptor whose exogenous ligand is α-latrotoxin. Adgrl2 immunohistochemistry and in situ hybridization revealed expression in the telencephalon, mesencephalon and rhombencephalon of mouse and chicken embryos. In human brain embryos and fœtuses, Adgrl2 immunoreactivity was observed in the hemispheric and cerebellar germinal zones, the cortical plate, basal ganglia, pons and cerebellar cortex. Microfluorimetry experiments evaluating intracellular calcium release in response to α-latrotoxin binding showed significantly reduced cytosolic calcium release in the fœtus amniocytes vs amniocytes from age-matched control fœtuses and in HeLa cells transfected with mutant ADGRL2 cDNA vs wild-type construct. Embryonic lethality was also observed in constitutive Adgrl2−/− mice. In Adgrl2+/− mice, MRI studies revealed microcephaly and vermis hypoplasia. Cell adhesion and wound healing assays demonstrated that the variation increased cell adhesion properties and reduced cell motility. Furthermore, HeLa cells overexpressing mutant ADGRL2 displayed a highly developed cytoplasmic F-actin network related to cytoskeletal dynamic modulation. ADGRL2 is the first gene identified as being responsible for extreme microcephaly with rhombencephalosynapsis. Increased cell adhesion, reduced cell motility and cytoskeletal dynamic alterations induced by the variant therefore represent a new mechanism responsible for microcephaly.
Collapse
|