1
|
Segobin S, Haast RAM, Kumar VJ, Lella A, Alkemade A, Bach Cuadra M, Barbeau EJ, Felician O, Pergola G, Pitel AL, Saranathan M, Tourdias T, Hornberger M. A roadmap towards standardized neuroimaging approaches for human thalamic nuclei. Nat Rev Neurosci 2024; 25:792-808. [PMID: 39420114 DOI: 10.1038/s41583-024-00867-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2024] [Indexed: 10/19/2024]
Abstract
The thalamus has a key role in mediating cortical-subcortical interactions but is often neglected in neuroimaging studies, which mostly focus on changes in cortical structure and activity. One of the main reasons for the thalamus being overlooked is that the delineation of individual thalamic nuclei via neuroimaging remains controversial. Indeed, neuroimaging atlases vary substantially regarding which thalamic nuclei are included and how their delineations were established. Here, we review current and emerging methods for thalamic nuclei segmentation in neuroimaging data and consider the limitations of existing techniques in terms of their research and clinical applicability. We address these challenges by proposing a roadmap to improve thalamic nuclei segmentation in human neuroimaging and, in turn, harmonize research approaches and advance clinical applications. We believe that a collective effort is required to achieve this. We hope that this will ultimately lead to the thalamic nuclei being regarded as key brain regions in their own right and not (as often currently assumed) as simply a gateway between cortical and subcortical regions.
Collapse
Affiliation(s)
- Shailendra Segobin
- Normandie University, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France.
| | - Roy A M Haast
- Aix-Marseille University, CRMBM CNRS UMR 7339, Marseille, France
- APHM, La Timone Hospital, CEMEREM, Marseille, France
| | | | - Annalisa Lella
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, Bari, Italy
| | - Anneke Alkemade
- Integrative Model-based Cognitive Neuroscience Unit, Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Meritxell Bach Cuadra
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Radiology Department, Lausanne University and University Hospital, Lausanne, Switzerland
| | - Emmanuel J Barbeau
- Centre de recherche Cerveau et Cognition (Cerco), UMR5549, CNRS - Université de Toulouse, Toulouse, France
| | - Olivier Felician
- Aix Marseille Université, INSERM INS UMR 1106, APHM, Marseille, France
| | - Giulio Pergola
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, Bari, Italy
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anne-Lise Pitel
- Normandie University, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, Cyceron, Caen, France
| | | | - Thomas Tourdias
- Neuroimagerie diagnostique et thérapeutique, CHU de Bordeaux, Bordeaux, France
- Neurocentre Magendie, University of Bordeaux, INSERM U1215, Bordeaux, France
| | | |
Collapse
|
2
|
Martin JC, Reeves KC, Carter KA, Davis M, Schneider A, Meade E, Lebonville CL, Nimitvilai S, Hoffman M, Woodward JJ, Mulholland PJ, Rinker JA. Genetic and functional adaptations and alcohol-biased signaling in the mediodorsal thalamus of alcohol dependent mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620696. [PMID: 39553931 PMCID: PMC11565778 DOI: 10.1101/2024.10.28.620696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Alcohol Use Disorder (AUD) is a significant health concern characterized by an individual's inability to control alcohol intake. With alcohol misuse increasing and abstinence rates declining, leading to severe social and health consequences, it is crucial to uncover effective treatment strategies for AUD by focusing on understanding neuroadaptations and cellular mechanisms. The mediodorsal thalamus (MD) is a brain region essential for cognitive functioning and reward-guided choices. However, the effects of alcohol (ethanol) dependence on MD neuroadaptations and how dependence alters MD activity during choice behaviors for alcohol and a natural reward (sucrose) are not well understood. Adult C57BL/6J mice treated with chronic intermittent ethanol (CIE) exposure were used to assess genetic and functional adaptations in the MD. Fiber photometry-based recordings of GCaMP6f expressed in the MD of C57BL/6J mice were acquired to investigate in vivo neural adaptations during choice drinking sessions for alcohol (15%) and either water or sucrose (3%). There were time-dependent changes in cFos and transcript expression during acute withdrawal and early abstinence. Differentially expressed genes were identified in control mice across different circadian time points and when comparing control and alcohol dependent mice. Gene Ontology enrichment analysis of the alcohol-sensitive genes revealed disruption of genes that control glial function, axonal myelination, and protein binding. CIE exposure also increased evoked firing in MD cells at 72 hours of withdrawal. In alcohol-dependent male and female mice that show increased alcohol drinking and preference for alcohol over water, we observed an increase in alcohol intake and preference for alcohol when mice were given a choice between alcohol and sucrose. Fiber photometry recordings demonstrated that MD activity is elevated during and after licking bouts for alcohol, water, and sucrose, and the signal for alcohol is significantly higher than that for water or sucrose during drinking. The elevated signal during alcohol bouts persisted in alcohol dependent mice. These findings demonstrate that CIE causes genetic and functional neuroadaptations in the MD and that alcohol dependence enhances alcohol-biased behaviors, with the MD uniquely responsive to alcohol, even in dependent mice.
Collapse
|
3
|
Morand A, Laniepce A, Cabé N, Boudehent C, Segobin S, Pitel AL. Compensation patterns and altered functional connectivity in alcohol use disorder with and without Korsakoff's syndrome. Brain Commun 2024; 6:fcae294. [PMID: 39309684 PMCID: PMC11414044 DOI: 10.1093/braincomms/fcae294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/12/2024] [Accepted: 09/17/2024] [Indexed: 09/25/2024] Open
Abstract
Alcohol use disorder is a chronic disease characterized by an inappropriate pattern of drinking, resulting in negative consequences for the individual's physical, mental and social health. Korsakoff's syndrome is a complication of alcohol use disorder and is characterized by severe memory and executive deficits. The fronto-cerebellar and Papez circuits are structurally affected in patients with alcohol use disorder with and without Korsakoff's syndrome. The first objective of the present study was to measure the effect of chronic and excessive alcohol consumption on resting-state functional connectivity of these two functional brain networks. The second objective was to identify, for the first time, resting-state functional connectivity abnormalities specific to amnesic patients with Korsakoff's syndrome. In the present study, a neuropsychological assessment and a resting-state functional magnetic resonance imaging examination were conducted in 31 healthy controls (43.6 ± 6.1 years) and 46 patients (46.6 ± 9.1 years) with alcohol use disorder including 14 patients with Korsakoff's syndrome (55.5 ± 5.3 years) to examine the effect of chronic and heavy alcohol consumption on functional connectivity of the fronto-cerebellar and the Papez circuits at rest and the specificity of functional connectivity changes in Korsakoff's syndrome compared to alcohol use disorder without Korsakoff's syndrome. The resting-state functional connectivity analyses focused on the nodes of the fronto-cerebellar and Papez circuits and combined region of interest and graph theory approaches, and whether these alterations are associated with the neuropsychological profile. In patients pooled together compared to controls, lower global efficiency was observed in the fronto-cerebellar circuit. In addition, certain regions of the fronto-cerebellar and Papez circuits were functionally hyperconnected at rest, which positively correlated with executive functions. Patients with Korsakoff's syndrome showed lower resting-state functional connectivity, lower local and global efficiency within the Papez circuit compared to those without Korsakoff's syndrome. Resting-state functional connectivity positively correlated with several cognitive scores in patients with Korsakoff's syndrome. The fronto-cerebellar and Papez circuits, two normally well-segregated networks, are functionally altered by alcohol use disorder. The Papez circuit attempts to compensate for deficits in the fronto-cerebellar circuit, albeit insufficiently as evidenced by patients' overall lower cognitive performance. Korsakoff's syndrome is characterized by altered functional connectivity in the Papez circuit known to be centrally involved in memory.
Collapse
Affiliation(s)
- Alexandrine Morand
- Normandie Université, UNICAEN, INSERM, U1237, PhIND ‘Physiopathology and Imaging of Neurological Disorders’, Team NeuroPresage, Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000 Caen, France
- Laboratoire DysCo, Université Paris 8 Vincennes-Saint-Denis, 93526 Saint-Denis, France
| | - Alice Laniepce
- Normandie Université, UNICAEN, INSERM, U1237, PhIND ‘Physiopathology and Imaging of Neurological Disorders’, Team NeuroPresage, Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000 Caen, France
- Normandie Université, UNIROUEN, CRFDP (EA 7475), 76000 Rouen, France
| | - Nicolas Cabé
- Normandie Université, UNICAEN, INSERM, U1237, PhIND ‘Physiopathology and Imaging of Neurological Disorders’, Team NeuroPresage, Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000 Caen, France
- Service d’addictologie, Centre Hospitalier Universitaire de Caen, 14000 Caen, France
| | - Céline Boudehent
- Normandie Université, UNICAEN, INSERM, U1237, PhIND ‘Physiopathology and Imaging of Neurological Disorders’, Team NeuroPresage, Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000 Caen, France
- Service d’addictologie, Centre Hospitalier Universitaire de Caen, 14000 Caen, France
| | - Shailendra Segobin
- Normandie Université, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, GIP Cyceron, 14000 Caen, France
| | - Anne-Lise Pitel
- Normandie Université, UNICAEN, INSERM, U1237, PhIND ‘Physiopathology and Imaging of Neurological Disorders’, Team NeuroPresage, Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000 Caen, France
- Institut Universitaire de France (IUF), 75231 Paris, France
| |
Collapse
|
4
|
Wei Y, Wang W, Kang Y, Niu X, Zhang Z, Li S, Han S, Cheng J, Zhang Y. Global, interhemispheric and intrahemispheric functional connection patterns in male adults with alcohol use disorder. Addict Biol 2024; 29:e13398. [PMID: 38899438 PMCID: PMC11187543 DOI: 10.1111/adb.13398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/25/2024] [Accepted: 04/12/2024] [Indexed: 06/21/2024]
Abstract
A growing body of evidence indicates the existence of abnormal local and long-range functional connection patterns in patients with alcohol use disorder (AUD). However, it has yet to be established whether AUD is associated with abnormal interhemispheric and intrahemispheric functional connection patterns. In the present study, we analysed resting-state functional magnetic resonance imaging data from 55 individuals with AUD and 32 healthy nonalcohol users. For each subject, whole-brain functional connectivity density (FCD) was decomposed into ipsilateral and contralateral parts. Correlation analysis was performed between abnormal FCD and a range of clinical measurements in the AUD group. Compared with healthy controls, the AUD group exhibited a reduced global FCD in the anterior and middle cingulate gyri, prefrontal cortex and thalamus, along with an enhanced global FCD in the temporal, parietal and occipital cortices. Abnormal interhemispheric and intrahemispheric FCD patterns were also detected in the AUD group. Furthermore, abnormal global, contralateral and ipsilateral FCD data were correlated with the mean amount of pure alcohol and the severity of alcohol addiction in the AUD group. Collectively, our findings indicate that global, interhemispheric and intrahemispheric FCD may represent a robust method to detect abnormal functional connection patterns in AUD; this may help us to identify the neural substrates and therapeutic targets of AUD.
Collapse
Affiliation(s)
- Yarui Wei
- Department of Magnetic Resonance ImagingThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Weijian Wang
- Department of Magnetic Resonance ImagingThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yimeng Kang
- Department of Magnetic Resonance ImagingThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xiaoyu Niu
- Department of Magnetic Resonance ImagingThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Zanxia Zhang
- Department of Magnetic Resonance ImagingThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Shujian Li
- Department of Magnetic Resonance ImagingThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Shaoqiang Han
- Department of Magnetic Resonance ImagingThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jingliang Cheng
- Department of Magnetic Resonance ImagingThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yong Zhang
- Department of Magnetic Resonance ImagingThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
5
|
Zahr NM. Alcohol Use Disorder and Dementia: A Review. Alcohol Res 2024; 44:03. [PMID: 38812709 PMCID: PMC11135165 DOI: 10.35946/arcr.v44.1.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024] Open
Abstract
PURPOSE By 2040, 21.6% of Americans will be over age 65, and the population of those older than age 85 is estimated to reach 14.4 million. Although not causative, older age is a risk factor for dementia: every 5 years beyond age 65, the risk doubles; approximately one-third of those older than age 85 are diagnosed with dementia. As current alcohol consumption among older adults is significantly higher compared to previous generations, a pressing question is whether drinking alcohol increases the risk for Alzheimer's disease or other forms of dementia. SEARCH METHODS Databases explored included PubMed, Web of Science, and ScienceDirect. To accomplish this narrative review on the effects of alcohol consumption on dementia risk, the literature covered included clinical diagnoses, epidemiology, neuropsychology, postmortem pathology, neuroimaging and other biomarkers, and translational studies. Searches conducted between January 12 and August 1, 2023, included the following terms and combinations: "aging," "alcoholism," "alcohol use disorder (AUD)," "brain," "CNS," "dementia," "Wernicke," "Korsakoff," "Alzheimer," "vascular," "frontotemporal," "Lewy body," "clinical," "diagnosis," "epidemiology," "pathology," "autopsy," "postmortem," "histology," "cognitive," "motor," "neuropsychological," "magnetic resonance," "imaging," "PET," "ligand," "degeneration," "atrophy," "translational," "rodent," "rat," "mouse," "model," "amyloid," "neurofibrillary tangles," "α-synuclein," or "presenilin." When relevant, "species" (i.e., "humans" or "other animals") was selected as an additional filter. Review articles were avoided when possible. SEARCH RESULTS The two terms "alcoholism" and "aging" retrieved about 1,350 papers; adding phrases-for example, "postmortem" or "magnetic resonance"-limited the number to fewer than 100 papers. Using the traditional term, "alcoholism" with "dementia" resulted in 876 citations, but using the currently accepted term "alcohol use disorder (AUD)" with "dementia" produced only 87 papers. Similarly, whereas the terms "Alzheimer's" and "alcoholism" yielded 318 results, "Alzheimer's" and "alcohol use disorder (AUD)" returned only 40 citations. As pertinent postmortem pathology papers were published in the 1950s and recent animal models of Alzheimer's disease were created in the early 2000s, articles referenced span the years 1957 to 2024. In total, more than 5,000 articles were considered; about 400 are herein referenced. DISCUSSION AND CONCLUSIONS Chronic alcohol misuse accelerates brain aging and contributes to cognitive impairments, including those in the mnemonic domain. The consensus among studies from multiple disciplines, however, is that alcohol misuse can increase the risk for dementia, but not necessarily Alzheimer's disease. Key issues to consider include the reversibility of brain damage following abstinence from chronic alcohol misuse compared to the degenerative and progressive course of Alzheimer's disease, and the characteristic presence of protein inclusions in the brains of people with Alzheimer's disease, which are absent in the brains of those with AUD.
Collapse
Affiliation(s)
- Natalie M Zahr
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California. Center for Health Sciences, SRI International, Menlo Park, California
| |
Collapse
|
6
|
Wolff M, Halassa MM. The mediodorsal thalamus in executive control. Neuron 2024; 112:893-908. [PMID: 38295791 DOI: 10.1016/j.neuron.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/15/2023] [Accepted: 01/03/2024] [Indexed: 03/23/2024]
Abstract
Executive control, the ability to organize thoughts and action plans in real time, is a defining feature of higher cognition. Classical theories have emphasized cortical contributions to this process, but recent studies have reinvigorated interest in the role of the thalamus. Although it is well established that local thalamic damage diminishes cognitive capacity, such observations have been difficult to inform functional models. Recent progress in experimental techniques is beginning to enrich our understanding of the anatomical, physiological, and computational substrates underlying thalamic engagement in executive control. In this review, we discuss this progress and particularly focus on the mediodorsal thalamus, which regulates the activity within and across frontal cortical areas. We end with a synthesis that highlights frontal thalamocortical interactions in cognitive computations and discusses its functional implications in normal and pathological conditions.
Collapse
Affiliation(s)
- Mathieu Wolff
- University of Bordeaux, CNRS, INCIA, UMR 5287, 33000 Bordeaux, France.
| | - Michael M Halassa
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA; Department of Psychiatry, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
7
|
Sikorski R, Sitek EJ. The misidentification syndromes and source memory deficits with their neuroanatomical correlates from neuropsychological perspective. Behav Brain Sci 2023; 46:e376. [PMID: 37961775 DOI: 10.1017/s0140525x23000274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The suggested model is discussed with reference to two clinical populations with memory disorders - patients with misidentification syndromes and those with source memory impairment, both of whom may present with (broadly conceived) déjà vu phenomenon, without insight into false feeling of familiarity. The role of the anterior thalamic nucleus and retrosplenial cortex for autobiographical memory and familiarity is highlighted.
Collapse
Affiliation(s)
- Rafał Sikorski
- Laboratory of Clinical Neuropsychology, Neurolinguistics and Neuropsychotherapy, Department of Neurological and Psychiatric Nursing, Faculty of Health Sciences, Medical University of Gdansk, ul. Debinki 7, Gdansk, Poland https://structure.mug.edu.pl/520
- Department of Neurological Rehabilitation, St. Vincent Hospital, Pomeranian Hospitals, Ul. Wójta Radtkego 1, Gdynia, Poland
| | - Emilia J Sitek
- Laboratory of Clinical Neuropsychology, Neurolinguistics and Neuropsychotherapy, Department of Neurological and Psychiatric Nursing, Faculty of Health Sciences, Medical University of Gdansk, ul. Debinki 7, Gdansk, Poland https://structure.mug.edu.pl/520
- Department of Neurology, St. Adalbert Hospital, Copernicus PL, Al. Jana Pawla II 50, Gdańsk, Poland https://structure.mug.edu.pl/520
| |
Collapse
|
8
|
Billaux P, Maurage P, Cabé N, Laniepce A, Segobin S, Pitel AL. Insular volumetry in severe alcohol use disorder and Korsakoff's syndrome through an anatomical parcellation: Let us go back to basics. Addict Biol 2023; 28:e13324. [PMID: 37753561 DOI: 10.1111/adb.13324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 09/28/2023]
Abstract
Functional neuroimaging has demonstrated the key role played by the insula in severe alcohol use disorder (sAUD), notably through its involvement in craving and body signals processing. However, the anatomical counterpart of these functional modifications in sAUD patients with and without neurological complications remains largely unexplored, especially using state-of-the-art parcellation tools. We thus compared the grey matter volume of insular subregions (form anterior to posterior: anterior inferior cortex, anterior short gyrus, middle short gyrus, posterior short gyrus, anterior long gyrus, posterior long gyrus) in 50 recently detoxified patients with sAUD, 19 patients with Korsakoff's syndrome (KS) and 36 healthy controls (HC). We used a mixed linear model analysis to explore group differences in the six subregions grey matter volume and lateralization differences. Insular macrostructure was globally affected to the same extent in sAUD with and without KS, indicating that these brain abnormalities may be related to alcohol consumption per se, rather than to the presence of alcohol-related neurological complications. Insular atrophy showed a right-sided lateralization effect and was especially marked in the posterior insula, a region associated with visceral information processing and the embodiment effect of a substance, from which craving arises. Anatomical damages might thus underlie the previously reported altered insular activations and their behavioural counterparts.
Collapse
Affiliation(s)
- Pauline Billaux
- Louvain Experimental Psychopathology research group (LEP), Psychological Science Research Institute, UCLouvain, Louvain-la-Neuve, Belgium
| | - Pierre Maurage
- Louvain Experimental Psychopathology research group (LEP), Psychological Science Research Institute, UCLouvain, Louvain-la-Neuve, Belgium
| | - Nicolas Cabé
- Normandie Univ, UNICAEN, INSERM, PhIND, Physiopathology and Imaging of Neurological Disorders, Institut Blood and Brain at Caen-Normandie, Cyceron, Caen, France
- Service d'Addictologie, Centre Hospitalier Universitaire de Caen, Caen, France
| | - Alice Laniepce
- Normandie Univ, UNICAEN, INSERM, PhIND, Physiopathology and Imaging of Neurological Disorders, Institut Blood and Brain at Caen-Normandie, Cyceron, Caen, France
- Normandie Univ, UNIROUEN, CRFDP (EA7475), Rouen, France
| | - Shailendra Segobin
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| | - Anne-Lise Pitel
- Normandie Univ, UNICAEN, INSERM, PhIND, Physiopathology and Imaging of Neurological Disorders, Institut Blood and Brain at Caen-Normandie, Cyceron, Caen, France
| |
Collapse
|
9
|
Kopelman MD. Observations on the Clinical Features of the Wernicke-Korsakoff Syndrome. J Clin Med 2023; 12:6310. [PMID: 37834954 PMCID: PMC10573380 DOI: 10.3390/jcm12196310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/30/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
This paper begins with a short case report of florid, spontaneous confabulation in a 61-year-old man with an alcohol-induced Wernicke-Korsakoff syndrome. His confabulation extended across episodic and personal semantic memory, as well as orientation in time and place, as measured on Dalla Barba's Confabulation Battery. Five other brief case summaries will then be presented, followed by a summary of the clinical, neurological, and background neuropsychological findings in three earlier series of Korsakoff patients. These observations will be considered in light of Wijnia's recent and my own, earlier reviews of the Korsakoff syndrome. Taken together, they indicate the need for a multi-faceted approach (clinical, neurological, neuropsychological, and neuroimaging) to the assessment and diagnosis of the disorder.
Collapse
Affiliation(s)
- Michael D Kopelman
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, London SE5 8AF, UK
| |
Collapse
|
10
|
Venkatesh P, Wolfe C, Lega B. Neuromodulation of the anterior thalamus: Current approaches and opportunities for the future. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 5:100109. [PMID: 38020810 PMCID: PMC10663132 DOI: 10.1016/j.crneur.2023.100109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 12/01/2023] Open
Abstract
The role of thalamocortical circuits in memory has driven a recent burst of scholarship, especially in animal models. Investigating this circuitry in humans is more challenging. And yet, the development of new recording and stimulation technologies deployed for clinical indications has created novel opportunities for data collection to elucidate the cognitive roles of thalamic structures. These technologies include stereoelectroencephalography (SEEG), deep brain stimulation (DBS), and responsive neurostimulation (RNS), all of which have been applied to memory-related thalamic regions, specifically for seizure localization and treatment. This review seeks to summarize the existing applications of neuromodulation of the anterior thalamic nuclei (ANT) and highlight several devices and their capabilities that can allow cognitive researchers to design experiments to assay its functionality. Our goal is to introduce to investigators, who may not be familiar with these clinical devices, the capabilities, and limitations of these tools for understanding the neurophysiology of the ANT as it pertains to memory and other behaviors. We also briefly cover the targeting of other thalamic regions including the centromedian (CM) nucleus, dorsomedial (DM) nucleus, and pulvinar, with associated potential avenues of experimentation.
Collapse
Affiliation(s)
- Pooja Venkatesh
- Department of Neurosurgery, University of Texas Southwestern, Dallas, TX, 75390, USA
| | - Cody Wolfe
- Department of Neurosurgery, University of Texas Southwestern, Dallas, TX, 75390, USA
| | - Bradley Lega
- Department of Neurosurgery, University of Texas Southwestern, Dallas, TX, 75390, USA
| | | |
Collapse
|
11
|
Oudman E, van der Stadt T, Bidesie JR, Wijnia JW, Postma A. Self-Reported Pain and Pain Observations in People with Korsakoff's Syndrome: A Pilot Study. J Clin Med 2023; 12:4681. [PMID: 37510795 PMCID: PMC10380974 DOI: 10.3390/jcm12144681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Korsakoff's syndrome (KS) is a chronic neuropsychiatric disorder. The large majority of people with KS experience multiple comorbid health problems, including cardiovascular disease, malignancy, and diabetes mellitus. To our knowledge pain has not been investigated in this population. The aim of this study was to investigate self-reported pain as well as pain behavior observations reported by nursing staff. In total, 38 people diagnosed with KS residing in a long-term care facility for KS participated in this research. The Visual Analogue Scale (VAS), Pain Assessment in Impaired Cognition (PAIC-15), Rotterdam Elderly Pain Observation Scale (REPOS), and the McGill Pain Questionnaire-Dutch Language Version (MPQ-DLV) were used to index self-rated and observational pain in KS. People with KS reported significantly lower pain levels than their healthcare professionals reported for them. The highest pain scores were found on the PAIC-15, specifically on the emotional expression scale. Of importance, the patient pain reports did not correlate with the healthcare pain reports. Moreover, there was a high correlation between neuropsychiatric symptoms and observational pain reports. Specifically, agitation and observational pain reports strongly correlated. In conclusion, people with KS report less pain than their healthcare professionals indicate for them. Moreover, there is a close relationship between neuropsychiatric symptoms and observation-reported pain in people with KS. Our results suggest that pain is possibly underreported by people with KS and should be taken into consideration in treating neuropsychiatric symptoms of KS as a possible underlying cause.
Collapse
Affiliation(s)
- Erik Oudman
- Experimental Psychology, Helmholtz Institute, Utrecht University, 3584 CS Utrecht, The Netherlands
- Slingedael Center of Expertise for Korsakoff Syndrome, Slinge 901, 3086 EZ Rotterdam, The Netherlands
| | - Thom van der Stadt
- Experimental Psychology, Helmholtz Institute, Utrecht University, 3584 CS Utrecht, The Netherlands
- Slingedael Center of Expertise for Korsakoff Syndrome, Slinge 901, 3086 EZ Rotterdam, The Netherlands
| | - Janice R Bidesie
- Experimental Psychology, Helmholtz Institute, Utrecht University, 3584 CS Utrecht, The Netherlands
- Slingedael Center of Expertise for Korsakoff Syndrome, Slinge 901, 3086 EZ Rotterdam, The Netherlands
| | - Jan W Wijnia
- Experimental Psychology, Helmholtz Institute, Utrecht University, 3584 CS Utrecht, The Netherlands
- Slingedael Center of Expertise for Korsakoff Syndrome, Slinge 901, 3086 EZ Rotterdam, The Netherlands
| | - Albert Postma
- Experimental Psychology, Helmholtz Institute, Utrecht University, 3584 CS Utrecht, The Netherlands
- Slingedael Center of Expertise for Korsakoff Syndrome, Slinge 901, 3086 EZ Rotterdam, The Netherlands
| |
Collapse
|
12
|
Denier N, Soravia LM, Moggi F, Stein M, Grieder M, Federspiel A, Kupper Z, Wiest R, Bracht T. Associations of thalamocortical networks with reduced mindfulness in alcohol use disorder. Front Psychiatry 2023; 14:1123204. [PMID: 37484679 PMCID: PMC10358776 DOI: 10.3389/fpsyt.2023.1123204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/12/2023] [Indexed: 07/25/2023] Open
Abstract
Background Increased mindfulness is associated with reduced alcohol consumption in patients with alcohol use disorder (AUD) after residential treatment. However, the underlying neurobiological mechanism of mindfulness in AUD is unclear. Therefore, we investigate the structural and functional alterations of the thalamocortical system with a focus on the mediodorsal thalamic nucleus (MD-TN), the default mode and the salience network (DMN/SN) which has previously been associated with mindfulness in healthy subjects. We hypothesized lower mindfulness and reduced structural and functional connectivity (FC) of the thalamocortical system, particularly in the DMN/SN in AUD. We assumed that identified neurobiological alterations in AUD are associated with impairments of mindfulness. Methods Forty-five abstinent patients with AUD during residential treatment and 20 healthy controls (HC) were recruited. Structural and resting-state functional MRI-scans were acquired. We analysed levels of mindfulness, thalamic volumes and network centrality degree of the MD-TN using multivariate statistics. Using seed-based whole brain analyses we investigated functional connectivity (FC) of the MD-TN. We performed exploratory correlational analyses of structural and functional DMN/SN measurements with levels of mindfulness. Results In AUD we found significantly lower levels of mindfulness, lower bilateral thalamic and left MD-TN volumes, reduced FC between MD-TN and anterior cingulum/insula and lower network centrality degree of the left MD-TN as compared to HC. In AUD, lower mindfulness was associated with various reductions of structural and functional aspects of the MD-TN. Conclusion Our results suggest that structural and functional alterations of a network including the MD-TN and the DMN/SN underlies disturbed mindfulness in AUD.
Collapse
Affiliation(s)
- Niklaus Denier
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Leila M. Soravia
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
- Clinic Suedhang, Kirchlindach, Switzerland
| | - Franz Moggi
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Maria Stein
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Department of Clinical Psychology and Psychotherapy, Institute of Psychology, University of Bern, Bern, Switzerland
| | - Matthias Grieder
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Andrea Federspiel
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Zeno Kupper
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Roland Wiest
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
- Institute of Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
| | - Tobias Bracht
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| |
Collapse
|
13
|
Kam I, Phatouros C, Prentice D, Kho LK, Parizel P. Adult hemiconvulsive hemiatrophy syndrome: a novel clinicoradiologic disorder in adults. Intern Med J 2023; 53:1277-1283. [PMID: 37474458 DOI: 10.1111/imj.16162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/27/2023] [Indexed: 07/22/2023]
Abstract
The association of focal motor seizures with cerebral hemiatrophy is a recognised rare paediatric syndrome known as 'hemiconvulsion, hemiatrophy and epilepsy' (HHE). To date, HHE has not been reported in adults. We present four adult patients with striking similarities to HHE, following alcohol withdrawal in chronic alcoholics. We document the imaging findings in the acute and subacute phases, discuss the underlying mechanisms and present a hypothesis regarding the pathophysiology.
Collapse
Affiliation(s)
- Ian Kam
- Neurology Department, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Constantine Phatouros
- Neurological Intervention and Imaging Service of Western Australia (NIISwa), Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - David Prentice
- Neurology Department, Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
| | - Lay K Kho
- Neurology Department, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Paul Parizel
- The University of Western Australia (M570), Perth, Western Australia, Australia
| |
Collapse
|
14
|
Segobin S, Ambler M, Laniepce A, Platel H, Chételat G, Groussard M, Pitel AL. Korsakoff's Syndrome and Alzheimer's Disease-Commonalities and Specificities of Volumetric Brain Alterations within Papez Circuit. J Clin Med 2023; 12:jcm12093147. [PMID: 37176588 PMCID: PMC10179200 DOI: 10.3390/jcm12093147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/11/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Background: Alzheimer's disease (AD) and Korsakoff's syndrome (KS) are two major neurocognitive disorders characterized by amnesia but AD is degenerative while KS is not. The objective is to compare regional volume deficits within the Papez circuit in AD and KS, considering AD progression. Methods: 18 KS patients, 40 AD patients (20 with Moderate AD (MAD) matched on global cognitive deficits with KS patients and 20 with Severe AD (SAD)), and 70 healthy controls underwent structural MRI. Volumes of the hippocampi, thalami, cingulate gyri, mammillary bodies (MB) and mammillothalamic tracts (MTT) were extracted. Results: For the cingulate gyri, and anterior thalamic nuclei, all patient groups were affected compared to controls but did not differ between each other. Smaller volumes were observed in all patient groups compared to controls in the mediodorsal thalamic nuclei and MB, but these regions were more severely damaged in KS than AD. MTT volumes were damaged in KS only. Hippocampi were affected in all patient groups but more severely in the SAD than in the KS and MAD. Conclusions: There are commonalities in the pattern of volume deficits in KS and AD within the Papez circuit with the anterior thalamic nuclei, cingulate cortex and hippocampus (in MAD only) being damaged to the same extent. The specificity of KS relies on the alteration of the MTT and the severity of the MB shrinkage. Further comparative studies including other imaging modalities and a neuropsychological assessment are required.
Collapse
Affiliation(s)
- Shailendra Segobin
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine (NIMH), 14000 Caen, France
| | - Melanie Ambler
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine (NIMH), 14000 Caen, France
| | - Alice Laniepce
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine (NIMH), 14000 Caen, France
- Normandie Univ, UNIROUEN, CRFDP (EA 7475), 76821 Rouen, France
- Normandie Univ, UNICAEN, INSERM, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000 Caen, France
| | - Hervé Platel
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine (NIMH), 14000 Caen, France
| | - Gael Chételat
- Normandie Univ, UNICAEN, INSERM, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000 Caen, France
| | - Mathilde Groussard
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine (NIMH), 14000 Caen, France
| | - Anne-Lise Pitel
- Normandie Univ, UNICAEN, INSERM, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000 Caen, France
| |
Collapse
|
15
|
Wijnia JW, Oudman E, Batjes DM, Brouwer BA, Oey M, Postma A. Korsakoff syndrome and altered pain perception: a search of underlying neural mechanisms. Scand J Pain 2023; 23:424-432. [PMID: 36117250 DOI: 10.1515/sjpain-2022-0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/25/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Patients with Korsakoff syndrome (KS) may have a diminished pain perception. Information on KS and pain is scarce and limited to case descriptions. The present study is the first to investigate the underlying neural mechanisms of altered pain perception in patients with KS more systematically. METHODS We conducted a literature search on neural correlates of pain perception in other neurocognitive disorders in which extensive research was done. RESULTS The brain areas that are affected in KS showed considerable overlap with the neural correlates of pain perception in other neurocognitive disorders. We discussed which different aspects of disturbed pain perception could play a role within KS, based on distinct neural damage and brain areas involved in pain perception. CONCLUSIONS Combining current knowledge, we hypothesize that diminished pain perception in KS may be related to lesioned neural connections between cerebral cortical networks and relays of mainly the thalamus, the periaqueductal gray, and possibly lower brain stem regions projecting to the cerebellum. Based on these neural correlates of altered pain perception, we assume that increased pain thresholds, inhibition of pain signals, and disturbed input to cerebral and cerebellar cortical areas involved in pain processing, all are candidate mechanisms in cases of diminished pain perception in KS. We recommend that clinicians need to be alert for somatic morbidity in patients with KS. Due to altered neural processing of nociceptive input the clinical symptoms of somatic morbidity may present differently (i.e. limited pain responses) and therefore are at risk of being missed.
Collapse
Affiliation(s)
- Jan W Wijnia
- Slingedael Center of Expertise for Korsakoff Syndrome, Rotterdam, The Netherlands
| | - Erik Oudman
- Slingedael Center of Expertise for Korsakoff Syndrome, Rotterdam, The Netherlands
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| | - Deirdre M Batjes
- Slingedael Center of Expertise for Korsakoff Syndrome, Rotterdam, The Netherlands
| | - Brigitte A Brouwer
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Misha Oey
- Slingedael Center of Expertise for Korsakoff Syndrome, Rotterdam, The Netherlands
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| | - Albert Postma
- Slingedael Center of Expertise for Korsakoff Syndrome, Rotterdam, The Netherlands
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
16
|
Sullivan EV, Pfefferbaum A. Alcohol use disorder: Neuroimaging evidence for accelerated aging of brain morphology and hypothesized contribution to age-related dementia. Alcohol 2023; 107:44-55. [PMID: 35781021 PMCID: PMC11424507 DOI: 10.1016/j.alcohol.2022.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/31/2022] [Accepted: 06/09/2022] [Indexed: 12/22/2022]
Abstract
Excessive alcohol use curtails longevity by rendering intoxicated individuals vulnerable to heightened risk from accidents, violence, and alcohol poisoning, and makes chronically heavy drinkers vulnerable to acceleration of age-related medical and psychiatric conditions that can be life threatening (Yoon, Chen, Slater, Jung, & White, 2020). Thus, studies of factors influencing age-alcohol interactions must consider the potential that the alcohol use disorder (AUD) population may not represent the oldest ages of the unaffected population and may well have accrued comorbidities associated with both AUD and aging itself. Herein, we focus on the aging of the brains of men and women with AUD, keeping AUD contextual factors in mind. Knowledge of the potential influence of the AUD-associated co-factors on the condition of brain structure may lead to identifying modifiable risk factors to avert physical declines and may reverse or arrest further AUD-related degradation of the brain. In this narrative review, we 1) describe quantitative, controlled studies of brain macrostructure and microstructure of adults with AUD, 2) consider the possibility of recovery of brain integrity through harm reduction with sustained abstinence or reduced drinking, and 3) speculate on the ramifications of accelerated aging in AUD as contributing to age-related dementia.
Collapse
Affiliation(s)
- Edith V Sullivan
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States.
| | - Adolf Pfefferbaum
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States; Center for Health Sciences, SRI International, Menlo Park, CA, United States
| |
Collapse
|
17
|
Network localization of transient global amnesia beyond the hippocampus. Neurol Sci 2023; 44:649-657. [PMID: 36222907 DOI: 10.1007/s10072-022-06439-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/29/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND Transient global amnesia is common in the older adult, but the cause and mechanism remain unclear. Focal brain lesions allow for causal links between the lesion location and resulting symptoms, and we based on the reported TGA-causing lesions and used lesion network mapping to explore the causal neuroanatomical substrate of TGA. METHODS Fifty-one cases of transient global amnesias with DWI lesions from the literature were identified, and clinical data were extracted and analyzed. Next, we mapped each lesion volume onto a reference brain and computed the network of regions functionally connected to each lesion location using a large normative connectome dataset. RESULTS Lesions primarily occurred in the hippocampus, and in addition to the hippocampus, there are also other locations of TGA-causing lesions such as the cingulate gyrus, anterior thalamic nucleus (ATN), putamen, caudate nucleus, corpus callosum, fornix. More than 90% of TGA-causing lesions inside the hippocampus were functionally connected with the default mode network (DMN). CONCLUSION Structural abnormality in the hippocampus was the most consistently reported in TGA, and besides the hippocampus, lesions occurring at several other brain locations also could cause TGA. The DMN may also be involved in the pathophysiology of TGA. According to the clinical and neuroimaging characteristics, TGA may be a syndrome with multiple causes and cannot be treated simply as a subtype of TIA.
Collapse
|
18
|
Balasubramanian N, James TD, Selvakumar GP, Reinhardt J, Marcinkiewcz CA. Repeated ethanol exposure and withdrawal alters angiotensin-converting enzyme 2 expression in discrete brain regions: Implications for SARS-CoV-2 neuroinvasion. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:219-239. [PMID: 36529893 PMCID: PMC9878009 DOI: 10.1111/acer.15000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 11/18/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND People with alcohol use disorder (AUD) may be at higher risk for COVID-19. Angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) are required for cellular entry by SARS-CoV-2, but information on their expression in specific brain regions after alcohol exposure is limited. We sought to clarify how chronic alcohol exposure affects ACE2 expression in monoaminergic brainstem circuits and other putative SARS-CoV-2 entry points. METHODS Brains were examined for ACE2 using immunofluorescence after 4 weeks of chronic intermittent ethanol (CIE) vapor inhalation. We also examined TMPRSS2, Cathepsin L, and ADAM17 by Western blot and RAS pathway mediators and pro-inflammatory markers via RT-qPCR. RESULTS ACE2 was increased in most brain regions following CIE including the olfactory bulb (OB), hypothalamus (HT), raphe magnus (RMG), raphe obscurus (ROB), locus coeruleus (LC), and periaqueductal gray (PAG). We also observed increased colocalization of ACE2 with monoaminergic neurons in brainstem nuclei. Moreover, soluble ACE2 (sACE2) was elevated in OB, HT, and LC. The increase in sACE2 in OB and HT was accompanied by upregulation of ADAM17, an ACE2 sheddase, while TMPRSS2 increased in HT and LC. Cathepsin L, an endosomal receptor involved in viral entry, was also increased in OB. Alcohol can increase Angiotensin II, which triggers a pro-inflammatory response that may upregulate ACE2 via activation of RAS pathway receptors AT1R/AT2R. ACE2 then metabolizes Angiotensin II to Angiotensin (1-7) and provokes an anti-inflammatory response via MAS1. Accordingly, we report that AT1R/AT2R mRNA decreased in OB and increased in the LC, while MAS1 mRNA increased in both OB and LC. Other mRNAs for pro-inflammatory markers were also dysregulated in OB, HT, raphe, and LC. CONCLUSIONS Our results suggest that alcohol triggers a compensatory upregulation of ACE2 in the brain due to disturbed RAS and may increase the risk or severity of SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | - Thomas D James
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa, USA
| | | | - Jessica Reinhardt
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa, USA
| | | |
Collapse
|
19
|
Ritz L, Segobin S, Laniepce A, Lannuzel C, Boudehent C, Vabret F, Urso L, Pitel AL, Beaunieux H. Structural brain substrates of the deficits observed on the BEARNI test in alcohol use disorder and Korsakoff's syndrome. J Neurosci Res 2023; 101:130-142. [PMID: 36200527 DOI: 10.1002/jnr.25132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 09/15/2022] [Accepted: 09/22/2022] [Indexed: 11/10/2022]
Abstract
Chronic and excessive alcohol consumption can result in alcohol use disorder (AUD) without neurological complications and in Korsakoff's syndrome (KS) when combined with thiamine deficiency. These two clinical forms are accompanied by widespread structural brain damage in both the fronto-cerebellar (FCC) and Papez circuits (PC) as well as in the parietal cortex, resulting in cognitive and motor deficits. BEARNI is a screening tool especially designed to detect neuropsychological impairments in AUD. However, the sensitivity of this tool to the structural brain damage of AUD and KS patients remains unknown. Eighteen KS patients, 47 AUD patients and 27 healthy controls (HC) underwent the BEARNI test and a 3 T-MRI examination. Multiple regression analyses conducted between GM density and performance on each BEARNI subtest revealed correlations with regions included in the FCC, PC, thalamus and posterior cortex (precuneus and calcarine regions). All these brain regions were altered in KS compared to HC, in agreement with the cognitive deficits observed in the corresponding BEARNI subtests. The comparison between KS and AUD regarding the GM density in the several nodes of the FCC and calcarine regions revealed that they were atrophied to the same extent, suggesting that BEARNI is sensitive to the severity of alcohol-related GM abnormalities. Within the PC, the density of the cingulate cortex and thalamus, which correlated with the memory and fluency subscores, was smaller in KS than in AUD, suggesting that BEARNI is sensitive to specific brain abnormalities occurring in KS.
Collapse
Affiliation(s)
- Ludivine Ritz
- Laboratoire de Psychologie Caen Normandie (LPCN, EA 7452), Pôle Santé, Maladies, Handicaps - MRSH (USR 3486, CNRS-UNICAEN), Normandie Université, UNICAEN, Caen, France
| | - Shailendra Segobin
- EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, PSL Research University, Normandie Université, Caen, France
| | - Alice Laniepce
- EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, PSL Research University, Normandie Université, Caen, France
| | - Coralie Lannuzel
- EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, PSL Research University, Normandie Université, Caen, France.,Service d'Addictologie, Centre Hospitalier Universitaire de Caen, Caen, France
| | - Céline Boudehent
- EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, PSL Research University, Normandie Université, Caen, France.,Service d'Addictologie, Centre Hospitalier Universitaire de Caen, Caen, France
| | - François Vabret
- EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, PSL Research University, Normandie Université, Caen, France.,Service d'Addictologie, Centre Hospitalier Universitaire de Caen, Caen, France
| | - Laurent Urso
- Service d'Addictologie, Centre Hospitalier Roubaix, Roubaix, France
| | - Anne Lise Pitel
- EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, PSL Research University, Normandie Université, Caen, France.,INSERM, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, Normandie Université, UNICAEN, Caen, France.,Institut Universitaire de France (IUF), Paris, France
| | - Hélène Beaunieux
- Laboratoire de Psychologie Caen Normandie (LPCN, EA 7452), Pôle Santé, Maladies, Handicaps - MRSH (USR 3486, CNRS-UNICAEN), Normandie Université, UNICAEN, Caen, France
| |
Collapse
|
20
|
Abbate C, Trimarchi PD, Fumagalli GG, Gallucci A, Tomasini E, Fracchia S, Rebecchi I, Morello E, Fontanella A, Parisi PM, Tartarone F, Giunco F, Ciccone S, Nicolini P, Lucchi T, Arosio B, Inglese S, Rossi PD. Diencephalic versus Hippocampal Amnesia in Alzheimer's Disease: The Possible Confabulation-Misidentification Phenotype. J Alzheimers Dis 2023; 91:363-388. [PMID: 36442200 PMCID: PMC9881034 DOI: 10.3233/jad-220919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is clinically heterogeneous, including the classical-amnesic (CA-) phenotype and some variants. OBJECTIVE We aim to describe a further presentation we (re)named confabulation-misidentification (CM-) phenotype. METHODS We performed a retrospective longitudinal case-series study of 17 AD outpatients with the possible CM-phenotype (CM-ADs). Then, in a cross-sectional study, we compared the CM-ADs to a sample of 30 AD patients with the CA-phenotype (CA-ADs). The primary outcome was the frequency of cognitive and behavioral features. Data were analyzed as differences in percentage by non-parametric Chi Square and mean differences by parametric T-test. RESULTS Anterograde amnesia (100%) with early confabulation (88.2%), disorientation (88.2%) and non-infrequently retrograde amnesia (64.7%) associated with reduced insight (88.2%), moderate prefrontal executive impairment (94.1%) and attention deficits (82.3%) dominated the CM-phenotype. Neuropsychiatric features with striking misidentification (52.9%), other less-structured delusions (70.6%), and brief hallucinations (64.7%) were present. Marked behavioral disturbances were present early in some patients and very common at later stages. At the baseline, the CM-ADs showed more confabulation (p < 0.001), temporal disorientation (p < 0.02), misidentification (p = 0.013), other delusions (p = 0.002), and logorrhea (p = 0.004) than the CA-ADs. In addition, more social disinhibition (p = 0.018), reduction of insight (p = 0.029), and hallucination (p = 0.03) persisted at 12 months from baseline. Both the CA- and CM-ADs showed anterior and medial temporal atrophy. Compared to HCs, the CM-ADs showed more right fronto-insular atrophy, while the CA-ADs showed more dorsal parietal, precuneus, and right parietal atrophy. CONCLUSION We described an AD phenotype resembling diencephalic rather than hippocampal amnesia and overlapping the past-century description of presbyophrenia.
Collapse
Affiliation(s)
- Carlo Abbate
- Istituto Palazzolo, IRCCS Fondazione Don Carlo Gnocchi Onlus, Milan, Italy
| | | | - Giorgio G. Fumagalli
- Neurology Unit, IRCCS Fondazione Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessia Gallucci
- Istituto Palazzolo, IRCCS Fondazione Don Carlo Gnocchi Onlus, Milan, Italy
- Ph.D. Program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Emanuele Tomasini
- Istituto Palazzolo, IRCCS Fondazione Don Carlo Gnocchi Onlus, Milan, Italy
| | - Stefania Fracchia
- Istituto Palazzolo, IRCCS Fondazione Don Carlo Gnocchi Onlus, Milan, Italy
| | - Isabella Rebecchi
- Istituto Palazzolo, IRCCS Fondazione Don Carlo Gnocchi Onlus, Milan, Italy
| | - Elisabetta Morello
- Istituto Palazzolo, IRCCS Fondazione Don Carlo Gnocchi Onlus, Milan, Italy
| | - Anna Fontanella
- Istituto Palazzolo, IRCCS Fondazione Don Carlo Gnocchi Onlus, Milan, Italy
| | - Paola M.R. Parisi
- Istituto Palazzolo, IRCCS Fondazione Don Carlo Gnocchi Onlus, Milan, Italy
| | - Federica Tartarone
- Istituto Palazzolo, IRCCS Fondazione Don Carlo Gnocchi Onlus, Milan, Italy
| | - Fabrizio Giunco
- Istituto Palazzolo, IRCCS Fondazione Don Carlo Gnocchi Onlus, Milan, Italy
| | - Simona Ciccone
- Geriatric Unit, IRCCS Fondazione Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Paola Nicolini
- Geriatric Unit, IRCCS Fondazione Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Tiziano Lucchi
- Geriatric Unit, IRCCS Fondazione Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Beatrice Arosio
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Silvia Inglese
- Geriatric Unit, IRCCS Fondazione Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Paolo D. Rossi
- Geriatric Unit, IRCCS Fondazione Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
21
|
Perry BAL, Mendez JC, Mitchell AS. Cortico-thalamocortical interactions for learning, memory and decision-making. J Physiol 2023; 601:25-35. [PMID: 35851953 PMCID: PMC10087288 DOI: 10.1113/jp282626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 06/30/2022] [Indexed: 01/03/2023] Open
Abstract
The thalamus and cortex are interconnected both functionally and anatomically and share a common developmental trajectory. Interactions between the mediodorsal thalamus (MD) and different parts of the prefrontal cortex are essential in cognitive processes, such as learning and adaptive decision-making. Cortico-thalamocortical interactions involving other dorsal thalamic nuclei, including the anterior thalamus and pulvinar, also influence these cognitive processes. Our work, and that of others, indicates a crucial influence of these interdependent cortico-thalamocortical neural networks that contributes actively to the processing of information within the cortex. Each of these thalamic nuclei also receives potent subcortical inputs that are likely to provide additional influences on their regulation of cortical activity. Here, we highlight our current neuroscientific research aimed at establishing when cortico-MD thalamocortical neural network communication is vital within the context of a rapid learning and memory discrimination task. We are collecting evidence of MD-prefrontal cortex neural network communication in awake, behaving male rhesus macaques. Given the prevailing evidence, further studies are needed to identify both broad and specific mechanisms that govern how the MD, anterior thalamus and pulvinar cortico-thalamocortical interactions support learning, memory and decision-making. Current evidence shows that the MD (and the anterior thalamus) are crucial for frontotemporal communication, and the pulvinar is crucial for frontoparietal communication. Such work is crucial to advance our understanding of the neuroanatomical and physiological bases of these brain functions in humans. In turn, this might offer avenues to develop effective treatment strategies to improve the cognitive deficits often observed in many debilitating neurological disorders and diseases and in neurodegeneration.
Collapse
Affiliation(s)
| | - Juan Carlos Mendez
- Department of Experimental PsychologyUniversity of OxfordOxfordUK
- College of Medicine and HealthUniversity of ExeterExeterUK
| | - Anna S. Mitchell
- Department of Experimental PsychologyUniversity of OxfordOxfordUK
| |
Collapse
|
22
|
A Clinician's View of Wernicke-Korsakoff Syndrome. J Clin Med 2022; 11:jcm11226755. [PMID: 36431232 PMCID: PMC9693280 DOI: 10.3390/jcm11226755] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/06/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022] Open
Abstract
The purpose of this article is to improve recognition and treatment of Wernicke-Korsakoff syndrome. It is well known that Korsakoff syndrome is a chronic amnesia resulting from unrecognized or undertreated Wernicke encephalopathy and is caused by thiamine (vitamin B1) deficiency. The clinical presentation of thiamine deficiency includes loss of appetite, dizziness, tachycardia, and urinary bladder retention. These symptoms can be attributed to anticholinergic autonomic dysfunction, as well as confusion or delirium, which is part of the classic triad of Wernicke encephalopathy. Severe concomitant infections including sepsis of unknown origin are common during the Wernicke phase. These infections can be prodromal signs of severe thiamine deficiency, as has been shown in select case descriptions which present infections and lactic acidosis. The clinical symptoms of Wernicke delirium commonly arise within a few days before or during hospitalization and may occur as part of a refeeding syndrome. Wernicke encephalopathy is mostly related to alcohol addiction, but can also occur in other conditions, such as bariatric surgery, hyperemesis gravidarum, and anorexia nervosa. Alcohol related Wernicke encephalopathy may be identified by the presence of a delirium in malnourished alcoholic patients who have trouble walking. The onset of non-alcohol-related Wernicke encephalopathy is often characterized by vomiting, weight loss, and symptoms such as visual complaints due to optic neuropathy in thiamine deficiency. Regarding thiamine therapy, patients with hypomagnesemia may fail to respond to thiamine. This may especially be the case in the context of alcohol withdrawal or in adverse side effects of proton pump inhibitors combined with diuretics. Clinician awareness of the clinical significance of Wernicke delirium, urinary bladder retention, comorbid infections, refeeding syndrome, and hypomagnesemia may contribute to the recognition and treatment of the Wernicke-Korsakoff syndrome.
Collapse
|
23
|
Pfefferbaum A, Sullivan EV, Zahr NM, Pohl KM, Saranathan M. Multi-atlas thalamic nuclei segmentation on standard T1-weighed MRI with application to normal aging. Hum Brain Mapp 2022; 44:612-628. [PMID: 36181510 PMCID: PMC9842912 DOI: 10.1002/hbm.26088] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/15/2022] [Accepted: 09/01/2022] [Indexed: 01/25/2023] Open
Abstract
Specific thalamic nuclei are implicated in healthy aging and age-related neurodegenerative diseases. However, few methods are available for robust automated segmentation of thalamic nuclei. The threefold aims of this study were to validate the use of a modified thalamic nuclei segmentation method on standard T1 MRI data, to apply this method to quantify age-related volume declines, and to test functional meaningfulness by predicting performance on motor testing. A modified version of THalamus Optimized Multi-Atlas Segmentation (THOMAS) generated 22 unilateral thalamic nuclei. For validation, we compared nuclear volumes obtained from THOMAS parcellation of white-matter-nulled (WMn) MRI data to T1 MRI data in 45 participants. To examine the effects of age/sex on thalamic nuclear volumes, T1 MRI available from a second data set of 121 men and 117 women, ages 20-86 years, were segmented using THOMAS. To test for functional ramifications, composite regions and constituent nuclei were correlated with Grooved Pegboard test scores. THOMAS on standard T1 data showed significant quantitative agreement with THOMAS from WMn data, especially for larger nuclei. Sex differences revealing larger volumes in men than women were accounted for by adjustment with supratentorial intracranial volume (sICV). Significant sICV-adjusted correlations between age and thalamic nuclear volumes were detected in 20 of the 22 unilateral nuclei and whole thalamus. Composite Posterior and Ventral regions and Ventral Anterior/Pulvinar nuclei correlated selectively with higher scores from the eye-hand coordination task. These results support the use of THOMAS for standard T1-weighted data as adequately robust for thalamic nuclear parcellation.
Collapse
Affiliation(s)
- Adolf Pfefferbaum
- Center for Health SciencesSRI InternationalMenlo ParkCaliforniaUSA,Department of Psychiatry & Behavioral SciencesStanford University School of MedicineStanfordCaliforniaUSA
| | - Edith V. Sullivan
- Department of Psychiatry & Behavioral SciencesStanford University School of MedicineStanfordCaliforniaUSA
| | - Natalie M. Zahr
- Center for Health SciencesSRI InternationalMenlo ParkCaliforniaUSA,Department of Psychiatry & Behavioral SciencesStanford University School of MedicineStanfordCaliforniaUSA
| | - Kilian M. Pohl
- Center for Health SciencesSRI InternationalMenlo ParkCaliforniaUSA,Department of Psychiatry & Behavioral SciencesStanford University School of MedicineStanfordCaliforniaUSA
| | - Manojkumar Saranathan
- Department of RadiologyUniversity of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| |
Collapse
|
24
|
Aggleton JP, Nelson AJD, O'Mara SM. Time to retire the serial Papez circuit: Implications for space, memory, and attention. Neurosci Biobehav Rev 2022; 140:104813. [PMID: 35940310 PMCID: PMC10804970 DOI: 10.1016/j.neubiorev.2022.104813] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/20/2022] [Accepted: 08/01/2022] [Indexed: 11/26/2022]
Abstract
After more than 80 years, Papez serial circuit remains a hugely influential concept, initially for emotion, but in more recent decades, for memory. Here, we show how this circuit is anatomically and mechanistically naïve as well as outdated. We argue that a new conceptualisation is necessitated by recent anatomical and functional findings that emphasize the more equal, working partnerships between the anterior thalamic nuclei and the hippocampal formation, along with their neocortical interactions in supporting, episodic memory. Furthermore, despite the importance of the anterior thalamic for mnemonic processing, there is growing evidence that these nuclei support multiple aspects of cognition, only some of which are directly associated with hippocampal function. By viewing the anterior thalamic nuclei as a multifunctional hub, a clearer picture emerges of extra-hippocampal regions supporting memory. The reformulation presented here underlines the need to retire Papez serially processing circuit.
Collapse
Affiliation(s)
- John P Aggleton
- School of Psychology, Cardiff University, 70 Park Place, Cardiff CF10 3AT, Wales, UK.
| | - Andrew J D Nelson
- School of Psychology, Cardiff University, 70 Park Place, Cardiff CF10 3AT, Wales, UK
| | - Shane M O'Mara
- School of Psychology and Trinity College Institute of Neuroscience, Trinity College Dublin, The University of Dublin, Dublin D02 PN40, Ireland
| |
Collapse
|
25
|
Abstract
INTRODUCTION Alwyn Lishman was interested in how memory research could be applied to clinical psychiatry. After a brief review of his major contributions, this paper will focus on his research on the alcoholic Korsakoff syndrome. It will consider how his findings relate to contemporary debates, particularly on how the syndrome should be defined, and its relationship to broader alcohol-induced cognitive impairments. METHODS A review of the contribution of Alwyn Lishman, Robin Jacobson and colleagues to our knowledge of Korsakoff's syndrome, together with a review of the pertinent recent literature. RESULTS Lishman and colleagues followed earlier authors in defining the Korsakoff syndrome in terms of disproportionate memory impairment, but they also noted a variable degree of IQ, frontal-executive, and timed visuo-spatial impairment in their cases. More recent authors have included such features in their definitions of the syndrome. Lishman also argued for a specific "alcoholic dementia". The present paper argues that recent definitions of the Korsakoff syndrome confound its core and associated features, and also fail to recognise the multifactorial basis of alcohol-related brain damage. CONCLUSIONS Korsakoff's syndrome is best defined in terms of disproportionate memory impairment, and more widespread cognitive impairment is best encompassed within "alcohol-related brain damage".
Collapse
Affiliation(s)
- Michael D Kopelman
- King's College London, Institute of Psychiatry, Psychology, and Neuroscience, Surrey, UK
| |
Collapse
|
26
|
Two Patterns of White Matter Connection in Multiple Gliomas: Evidence from Probabilistic Fiber Tracking. J Clin Med 2022; 11:jcm11133693. [PMID: 35806978 PMCID: PMC9267772 DOI: 10.3390/jcm11133693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Multiple lesions are uncommon in brain gliomas, and their pathophysiology is poorly understood. Invasive growth along white matter tracts is an important clinicopathological characteristic of gliomas, and a major factor in a poor therapeutic outcome. Here, we used probabilistic fiber tracking and cluster analysis to investigate the inter-focal connectivity relationships of multiple gliomas, in order to seek inferential evidence of common origin. Methods: MRI scans of 46 patients with multiple gliomas were retrospectively analyzed. Before surgery, all patients underwent multimodal functional MR imaging, including diffusion tensor imaging, enhanced 3D T1-weighted imaging, diffusion-weighted imaging, 1H MR spectroscopy, and dynamic susceptibility contrast perfusion-weighted imaging. Probabilistic fiber tracking was used to quantify white matter connectivity between neoplastic foci. Hierarchical cluster analysis was performed to identify patterns of white matter connection. Results: Cluster analysis reveals two patterns of connectivity, one with smaller, and one with greater, connectivity (2675 ± 1098 versus 30432 ± 22707, p < 0.0001). The two subgroups show significant differences in relative cerebral blood volume (2.31 ± 0.95 versus 1.73 ± 0.48, p = 0.002) and lipid/creatine ratio (0.32 ± 0.22 versus 0.060 ± 0.051, p = 0.006). Conclusion: Two distinct patterns of white matter connection exist in multiple gliomas. Those with lower connectivity tend to have independent origins, and can be termed true multicentric glioma, whereas those with greater connectivity tend to share common origin, and spread along white matter tracts. True multicentric gliomas have higher vascularity and more intratumoral necrosis. These findings may help to develop personalized therapeutic strategies for multiple gliomas.
Collapse
|
27
|
Wang C, Martins-Bach AB, Alfaro-Almagro F, Douaud G, Klein JC, Llera A, Fiscone C, Bowtell R, Elliott LT, Smith SM, Tendler BC, Miller KL. Phenotypic and genetic associations of quantitative magnetic susceptibility in UK Biobank brain imaging. Nat Neurosci 2022; 25:818-831. [PMID: 35606419 PMCID: PMC9174052 DOI: 10.1038/s41593-022-01074-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 04/11/2022] [Indexed: 12/17/2022]
Abstract
A key aim in epidemiological neuroscience is identification of markers to assess brain health and monitor therapeutic interventions. Quantitative susceptibility mapping (QSM) is an emerging magnetic resonance imaging technique that measures tissue magnetic susceptibility and has been shown to detect pathological changes in tissue iron, myelin and calcification. We present an open resource of QSM-based imaging measures of multiple brain structures in 35,273 individuals from the UK Biobank prospective epidemiological study. We identify statistically significant associations of 251 phenotypes with magnetic susceptibility that include body iron, disease, diet and alcohol consumption. Genome-wide associations relate magnetic susceptibility to 76 replicating clusters of genetic variants with biological functions involving iron, calcium, myelin and extracellular matrix. These patterns of associations include relationships that are unique to QSM, in particular being complementary to T2* signal decay time measures. These new imaging phenotypes are being integrated into the core UK Biobank measures provided to researchers worldwide, creating the potential to discover new, non-invasive markers of brain health.
Collapse
Affiliation(s)
- Chaoyue Wang
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| | - Aurea B Martins-Bach
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Fidel Alfaro-Almagro
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Gwenaëlle Douaud
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Johannes C Klein
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK
| | - Alberto Llera
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, the Netherlands
| | - Cristiana Fiscone
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Lloyd T Elliott
- Department of Statistics and Actuarial Science, Simon Fraser University, Vancouver, British Columbia, Canada
| | - Stephen M Smith
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Benjamin C Tendler
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Karla L Miller
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| |
Collapse
|
28
|
The anterior thalamic nuclei: core components of a tripartite episodic memory system. Nat Rev Neurosci 2022; 23:505-516. [PMID: 35478245 DOI: 10.1038/s41583-022-00591-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2022] [Indexed: 12/13/2022]
Abstract
Standard models of episodic memory focus on hippocampal-parahippocampal interactions, with the neocortex supplying sensory information and providing a final repository of mnemonic representations. However, recent advances have shown that other regions make distinct and equally critical contributions to memory. In particular, there is growing evidence that the anterior thalamic nuclei have a number of key cognitive functions that support episodic memory. In this article, we describe these findings and argue for a core, tripartite memory system, comprising a 'temporal lobe' stream (centred on the hippocampus) and a 'medial diencephalic' stream (centred on the anterior thalamic nuclei) that together act on shared cortical areas. We demonstrate how these distributed brain regions form complementary and necessary partnerships in episodic memory formation.
Collapse
|
29
|
Balasubramanian N, James TD, Pushpavathi SG, Marcinkiewcz CA. Repeated ethanol exposure and withdrawal alters ACE2 expression in discrete brain regions: Implications for SARS-CoV-2 infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.03.29.486282. [PMID: 35378747 PMCID: PMC8978936 DOI: 10.1101/2022.03.29.486282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Emerging evidence suggests that people with alcohol use disorders are at higher risk for SARS-CoV-2. SARS-CoV-2 engages angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) receptors for cellular entry. While ACE2 and TMPRSS2 genes are upregulated in the cortex of alcohol-dependent individuals, information on expression in specific brain regions and neural populations implicated in SARS-CoV-2 neuroinvasion, particularly monoaminergic neurons, is limited. We sought to clarify how chronic alcohol exposure affects ACE2 and TMPRSS2 expression in monoaminergic brainstem circuits and other putative SARS-CoV-2 entry points. C57BL/6J mice were exposed to chronic intermittent ethanol (CIE) vapor for 4 weeks and brains were examined using immunofluorescence. We observed increased ACE2 levels in the olfactory bulb and hypothalamus following CIE, which are known to mediate SARS-CoV-2 neuroinvasion. Total ACE2 immunoreactivity was also elevated in the raphe magnus (RMG), raphe obscurus (ROB), and locus coeruleus (LC), while in the dorsal raphe nucleus (DRN), ROB, and LC we observed increased colocalization of ACE2 with monoaminergic neurons. ACE2 also increased in the periaqueductal gray (PAG) and decreased in the amygdala. Whereas ACE2 was detected in most brain regions, TMPRSS2 was only detected in the olfactory bulb and DRN but was not significantly altered after CIE. Our results suggest that previous alcohol exposure may increase the risk of SARS-CoV-2 neuroinvasion and render brain circuits involved in cardiovascular and respiratory function as well as emotional processing more vulnerable to infection, making adverse outcomes more likely. Additional studies are needed to define a direct link between alcohol use and COVID-19 infection.
Collapse
Affiliation(s)
| | - Thomas D James
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA-52242, USA
| | | | | |
Collapse
|
30
|
Savage LM, Nunes PT, Gursky ZH, Milbocker KA, Klintsova AY. Midline Thalamic Damage Associated with Alcohol-Use Disorders: Disruption of Distinct Thalamocortical Pathways and Function. Neuropsychol Rev 2021; 31:447-471. [PMID: 32789537 PMCID: PMC7878584 DOI: 10.1007/s11065-020-09450-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023]
Abstract
The thalamus, a significant part of the diencephalon, is a symmetrical and bilateral central brain structure. The thalamus is subdivided into three major groups of nuclei based on their function: sensorimotor nuclei (or principal/relay nuclei), limbic nuclei and nuclei bridging these two domains. Anatomically, nuclei within the thalamus are described by their location, such as anterior, medial, lateral, ventral, and posterior. In this review, we summarize the role of medial and midline thalamus in cognition, ranging from learning and memory to flexible adaptation. We focus on the discoveries in animal models of alcohol-related brain damage, which identify the loss of neurons in the medial and midline thalamus as drivers of cognitive dysfunction associated with alcohol use disorders. Models of developmental ethanol exposure and models of adult alcohol-related brain damage and are compared and contrasted, and it was revealed that there are similar (anterior thalamus) and different (intralaminar [adult exposure] versus ventral midline [developmental exposure]) thalamic pathology, as well as disruptions of thalamo-hippocampal and thalamo-cortical circuits. The final part of the review summarizes approaches to recover alcohol-related brain damage and cognitive and behavioral outcomes. These approaches include pharmacological, nutritional and behavioral interventions that demonstrated the potential to mitigate alcohol-related damage. In summary, the medial/midline thalamus is a significant contributor to cognition function, which is also sensitive to alcohol-related brain damage across the life span, and plays a role in alcohol-related cognitive dysfunction.
Collapse
Affiliation(s)
- Lisa M Savage
- Developmental Ethanol Alcohol Research Center, Department of Psychology, Binghamton University, State University of New York, Binghamton, NY, 13902-6000, USA.
| | - Polliana T Nunes
- Developmental Ethanol Alcohol Research Center, Department of Psychology, Binghamton University, State University of New York, Binghamton, NY, 13902-6000, USA
| | - Zachary H Gursky
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA
| | - Katrina A Milbocker
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA
| | - Anna Y Klintsova
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA
| |
Collapse
|
31
|
The specificity of thalamic alterations in Korsakoff's syndrome: Implications for the study of amnesia. Neurosci Biobehav Rev 2021; 130:292-300. [PMID: 34454914 DOI: 10.1016/j.neubiorev.2021.07.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 04/01/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023]
Abstract
The pathophysiological mechanisms behind amnesia are still unknown. Recent literature, through the study of patients with Alcohol Use Disorder with and without Korsakoff's syndrome, increasingly shows that physiological alterations to the thalamus have an important role in the development of amnesia. This review gives an overview of neuropsychological, neuropathological and neuroimaging contributions to the understanding of Korsakoff's syndrome, highlighting the central role of the thalamus in this amnesia. The thalamus being a multi-nucleus structure, the limitations regarding the loci, nature and alterations to specific nuclei are discussed, along with potential solutions. Finally, future directions for clinical research are laid out to unravel the intricacies inherent to amnesia. They consider the need to evaluate the physiological role of the thalamus, not only as an entity but also as part of a brain circuit through a more integrative approach.
Collapse
|
32
|
Muller AM, Meyerhoff DJ. Frontocerebellar gray matter plasticity in alcohol use disorder linked to abstinence. NEUROIMAGE-CLINICAL 2021; 32:102788. [PMID: 34438322 PMCID: PMC8387922 DOI: 10.1016/j.nicl.2021.102788] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 12/26/2022]
Abstract
GM loss in frontocerebellar circuit predicts relapse. GM recovery in AUD involves distinct neural processes. Recovery is not a reversal of any AUD-related GM damage.
Alcohol use disorder (AUD) is associated with brain-wide gray matter (GM) reduction, but the frontocerebellar circuit seems specifically affected by chronic alcohol consumption. T1 weighted MRI data from 38 AUD patients at one month of sobriety and three months later and from 25 controls were analyzed using voxel-based morphometry (VBM) and a graph theory approach (GTA). We investigated the degree to which the frontocerebellar circuit’s integration within the brain’s GM network architecture was altered by AUD-related GM volume loss. The VBM analyses did not reveal significant GM volume differences between relapsers and abstainers at either timepoint, but future relapsers at both timepoints had significantly less GM than controls in the frontocerebellar circuit. Abstainers, who at baseline also showed the most pronounced GM loss in the thalamus, showed a significant circuit-wide GM increase with inter-scan abstinence. The post-hoc GTAs revealed a persistent diffuse global atrophy in both AUD groups at follow-up relative to controls and different recovery patterns in the two AUD groups. Our findings suggest that future relapsers do not just present with a more severe expression of the same AUD consequences than abstainers, but that AUD affects the frontocerebellar circuit differently in relapsers and abstainers.
Collapse
Affiliation(s)
- Angela M Muller
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA; VA Advanced Imaging Research Center (VAARC), San Francisco VA Medical Center, San Francisco, CA, USA.
| | - Dieter J Meyerhoff
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA; VA Advanced Imaging Research Center (VAARC), San Francisco VA Medical Center, San Francisco, CA, USA
| |
Collapse
|
33
|
Frost BE, Martin SK, Cafalchio M, Islam MN, Aggleton JP, O'Mara SM. Anterior Thalamic Inputs Are Required for Subiculum Spatial Coding, with Associated Consequences for Hippocampal Spatial Memory. J Neurosci 2021; 41:6511-6525. [PMID: 34131030 PMCID: PMC8318085 DOI: 10.1523/jneurosci.2868-20.2021] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 11/21/2022] Open
Abstract
Just as hippocampal lesions are principally responsible for "temporal lobe" amnesia, lesions affecting the anterior thalamic nuclei seem principally responsible for a similar loss of memory, "diencephalic" amnesia. Compared with the former, the causes of diencephalic amnesia have remained elusive. A potential clue comes from how the two sites are interconnected, as within the hippocampal formation, only the subiculum has direct, reciprocal connections with the anterior thalamic nuclei. We found that both permanent and reversible anterior thalamic nuclei lesions in male rats cause a cessation of subicular spatial signaling, reduce spatial memory performance to chance, but leave hippocampal CA1 place cells largely unaffected. We suggest that a core element of diencephalic amnesia stems from the information loss in hippocampal output regions following anterior thalamic pathology.SIGNIFICANCE STATEMENT At present, we know little about interactions between temporal lobe and diencephalic memory systems. Here, we focused on the subiculum, as the sole hippocampal formation region directly interconnected with the anterior thalamic nuclei. We combined reversible and permanent lesions of the anterior thalamic nuclei, electrophysiological recordings of the subiculum, and behavioral analyses. Our results were striking and clear: following permanent thalamic lesions, the diverse spatial signals normally found in the subiculum (including place cells, grid cells, and head-direction cells) all disappeared. Anterior thalamic lesions had no discernible impact on hippocampal CA1 place fields. Thus, spatial firing activity within the subiculum requires anterior thalamic function, as does successful spatial memory performance. Our findings provide a key missing part of the much bigger puzzle concerning why anterior thalamic damage is so catastrophic for spatial memory in rodents and episodic memory in humans.
Collapse
Affiliation(s)
- Bethany E Frost
- School of Psychology and Institute of Neuroscience, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Sean K Martin
- School of Psychology and Institute of Neuroscience, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Matheus Cafalchio
- School of Psychology and Institute of Neuroscience, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Md Nurul Islam
- School of Psychology and Institute of Neuroscience, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - John P Aggleton
- School of Psychology, Cardiff University, Cardiff, CF10 3AS, United Kingdom
| | - Shane M O'Mara
- School of Psychology and Institute of Neuroscience, Trinity College Dublin, Dublin, D02 PN40, Ireland
| |
Collapse
|
34
|
Lanquetin A, Leclercq S, de Timary P, Segobin S, Naveau M, Coulbault L, Maccioni P, Lorrai I, Colombo G, Vivien D, Rubio M, Pitel AL. Role of inflammation in alcohol-related brain abnormalities: a translational study. Brain Commun 2021; 3:fcab154. [PMID: 34396111 PMCID: PMC8361421 DOI: 10.1093/braincomms/fcab154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/30/2021] [Accepted: 05/24/2021] [Indexed: 12/19/2022] Open
Abstract
Brain abnormalities observed in alcohol use disorder are highly heterogeneous in nature and severity, possibly because chronic alcohol consumption also affects peripheral organs leading to comorbidities that can result in exacerbated brain alterations. Despite numerous studies focussing on the effects of alcohol on the brain or liver, few studies have simultaneously examined liver function and brain damage in alcohol use disorder, and even fewer investigated the relationship between them except in hepatic encephalopathy. And yet, liver dysfunction may be a risk factor for the development of alcohol-related neuropsychological deficits and brain damage well before the development of liver cirrhosis, and potentially through inflammatory responses. The use of animal models enables a better understanding of the pathophysiological mechanisms underlying liver–brain relationships in alcohol use disorder, and more particularly of the inflammatory response at the tissue, cerebral and hepatic levels. The objective of this translational study was to investigate, both in alcohol use disorder patients and in a validated animal model of alcohol use disorder, the links between peripheral inflammation, liver damage and brain alterations. To do this, we conducted an in vivo neuroimaging examination and biological measures to evaluate brain volumes, liver fibrosis and peripheral cytokines in alcohol use disorder patients. In selectively bred Sardinian alcohol-preferring rats, we carried out ex vivo neuroimaging examination and immunohistochemistry to evaluate brain and liver inflammatory responses after chronic (50 consecutive weeks) alcohol drinking. In recently abstinent and non-cirrhotic alcohol use disorder patients, the score of liver fibrosis positively correlated with subcortical regions volumes (especially in right and left putamen) and level of circulating proinflammatory cytokines. In Sardinian alcohol-preferring rats, we found macrostructural brain damage and microstructural white matter abnormalities similar to those found in alcohol use disorder patients. In addition, in agreement with the results of peripheral inflammation observed in the patients, we revealed, in Sardinian alcohol-preferring rats, inflammatory responses in the brain and liver were caused by chronic alcohol consumption. Since the liver is the main source of cytokines in the human body, these results suggest a relationship between liver dysfunction and brain damage in alcohol use disorder patients, even in the absence of major liver disease. These findings encourage considering new therapeutic strategies aiming at treating peripheral organs to limit alcohol-related brain damage.
Collapse
Affiliation(s)
- Anastasia Lanquetin
- Normandie Univ, UNICAEN, INSERM, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000 Caen, France
| | - Sophie Leclercq
- Institute of Neuroscience and Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | - Philippe de Timary
- Institute of Neuroscience and Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | - Shailendra Segobin
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000 Caen, France
| | - Mikaël Naveau
- Normandie Univ UNICAEN, CNRS, UMS 3408, GIP Cyceron, Caen, France
| | - Laurent Coulbault
- Caen University Hospital, Biochemistry Department, Normandie University, UNICAEN, EA 4650, Caen, France
| | - Paola Maccioni
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, 09042 Monserrato, CA, Italy
| | - Irene Lorrai
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, 09042 Monserrato, CA, Italy
| | - Giancarlo Colombo
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, 09042 Monserrato, CA, Italy
| | - Denis Vivien
- Normandie Univ, UNICAEN, INSERM, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000 Caen, France.,Department of Clinical Research, CHU Côte de Nacre, Caen 14000, France
| | - Marina Rubio
- Normandie Univ, UNICAEN, INSERM, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000 Caen, France
| | - Anne-Lise Pitel
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000 Caen, France.,Institut Universitaire de France (IUF), Paris 75231, France
| |
Collapse
|
35
|
Perry BAL, Lomi E, Mitchell AS. Thalamocortical interactions in cognition and disease: the mediodorsal and anterior thalamic nuclei. Neurosci Biobehav Rev 2021; 130:162-177. [PMID: 34216651 DOI: 10.1016/j.neubiorev.2021.05.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 04/12/2021] [Accepted: 05/17/2021] [Indexed: 01/15/2023]
Abstract
The mediodorsal thalamus (MD) and anterior thalamic nuclei (ATN) are two adjacent brain nodes that support our ability to make decisions, learn, update information, form and retrieve memories, and find our way around. The MD and PFC work in partnerships to support cognitive processes linked to successful learning and decision-making, while the ATN and extended hippocampal system together coordinate the encoding and retrieval of memories and successful spatial navigation. Yet, while these distinctions may appear to be segregated, both the MD and ATN together support our higher cognitive functions as they regulate and are influenced by interconnected fronto-temporal neural networks and subcortical inputs. Our review focuses on recent studies in animal models and in humans. This evidence is re-shaping our understanding of the importance of MD and ATN cortico-thalamocortical pathways in influencing complex cognitive functions. Given the evidence from clinical settings and neuroscience research labs, the MD and ATN should be considered targets for effective treatments in neuropsychiatric diseases and disorders and neurodegeneration.
Collapse
Affiliation(s)
- Brook A L Perry
- Department of Experimental Psychology, Oxford University, The Tinsley Building, Mansfield Road, OX1 3SR, United Kingdom
| | - Eleonora Lomi
- Department of Experimental Psychology, Oxford University, The Tinsley Building, Mansfield Road, OX1 3SR, United Kingdom
| | - Anna S Mitchell
- Department of Experimental Psychology, Oxford University, The Tinsley Building, Mansfield Road, OX1 3SR, United Kingdom.
| |
Collapse
|
36
|
Extensive long-term verbal memory training is associated with brain plasticity. Sci Rep 2021; 11:9712. [PMID: 33958676 PMCID: PMC8102627 DOI: 10.1038/s41598-021-89248-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/23/2021] [Indexed: 02/03/2023] Open
Abstract
The human brain has a remarkable capacity to store a lifetime of information through visual or auditory routes. It excels and exceeds any artificial memory system in mixing and integrating multiple pieces of information encoded. In this study, a group of verbal memory experts was evaluated by multiple structural brain analysis methods to record the changes in the brain structure. The participants were professional Hindu pandits (priests/scholars) trained in reciting Vedas and other forms of Hindu scriptures. These professional Vedic priests are experts in memorization and recitation of oral texts with precise diction. Vedas are a collection of hymns. It is estimated that there are more than 20,000 mantras and shlokas in the four Vedas. The analysis included the measurement of the grey and white matter density, gyrification, and cortical thickness in a group of Vedic pandits and comparing these measures with a matched control group. The results revealed an increased grey matter (GM) and white matter (WM) in the midbrain, pons, thalamus, parahippocampus, and orbitofrontal regions in pandits. The whole-brain corelation analysis using length of post-training teaching duration showed significant correlation with the left angular gyrus. We also found increased gyrification in the insula, supplementary motor area, medial frontal areas, and increased cortical thickness (CT) in the right temporal pole and caudate regions of the brain. These findings, collectively, provide unique information regarding the association between crucial memory regions in the brain and long-term practice of oral recitation of scriptures from memory with the proper diction that also involved controlled breathing.
Collapse
|
37
|
Hade AC, Philips MA, Reimann E, Jagomäe T, Eskla KL, Traks T, Prans E, Kõks S, Vasar E, Väli M. Chronic Alcohol Use Induces Molecular Genetic Changes in the Dorsomedial Thalamus of People with Alcohol-Related Disorders. Brain Sci 2021; 11:435. [PMID: 33805312 PMCID: PMC8066746 DOI: 10.3390/brainsci11040435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 01/12/2023] Open
Abstract
The Mediodorsal (MD) thalamus that represents a fundamental subcortical relay has been underrepresented in the studies focusing on the molecular changes in the brains of subjects with alcohol use disorder (AUD). In the current study, MD thalamic regions from AUD subjects and controls were analyzed with Affymetrix Clariom S human microarray. Long-term alcohol use induced a significant (FDR ≤ 0.05) upregulation of 2802 transcripts and downregulation of 1893 genes in the MD thalamus of AUD subjects. A significant upregulation of GRIN1 (glutamate receptor NMDA type 1) and FTO (alpha-ketoglutarate dependent dioxygenase) was confirmed in western blot analysis. Immunohistochemical staining revealed similar heterogenous distribution of GRIN1 in the thalamic nuclei of both AUD and control subjects. The most prevalent functional categories of upregulated genes were related to glutamatergic and GABAergic neurotransmission, cellular metabolism, and neurodevelopment. The prevalent gene cluster among down-regulated genes was immune system mediators. Forty-two differentially expressed genes, including FTO, ADH1B, DRD2, CADM2, TCF4, GCKR, DPP6, MAPT and CHRH1, have been shown to have strong associations (FDR p < 10-8) with AUD or/and alcohol use phenotypes in recent GWA studies. Despite a small number of subjects, we were able to detect robust molecular changes in the mediodorsal thalamus caused by alcohol emphasizing the importance of deeper brain structures such as diencephalon, in the development of AUD-related dysregulation of neurocircuitry.
Collapse
Affiliation(s)
- Andreas-Christian Hade
- Department of Pathological Anatomy and Forensic Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; (A.-C.H.); (M.V.)
- Forensic Medical Examination Department, Estonian Forensic Science Institute, 30 Tervise Street, 13419 Tallinn, Estonia
| | - Mari-Anne Philips
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (T.J.); (K.-L.E.); (E.V.)
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Ene Reimann
- Estonian Genome Centre, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia;
| | - Toomas Jagomäe
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (T.J.); (K.-L.E.); (E.V.)
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Kattri-Liis Eskla
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (T.J.); (K.-L.E.); (E.V.)
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Tanel Traks
- Department of Dermatology and Venerology, Institute of Clinical Medicine, University of Tartu, 51010 Tartu, Estonia;
| | - Ele Prans
- Department of Anaesthesiology and Intensive Care, Tartu University Hospital, 50406 Tartu, Estonia;
| | - Sulev Kõks
- Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia;
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
| | - Eero Vasar
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (T.J.); (K.-L.E.); (E.V.)
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Marika Väli
- Department of Pathological Anatomy and Forensic Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; (A.-C.H.); (M.V.)
- Forensic Medical Examination Department, Estonian Forensic Science Institute, 30 Tervise Street, 13419 Tallinn, Estonia
| |
Collapse
|
38
|
Nelson AJD. The anterior thalamic nuclei and cognition: A role beyond space? Neurosci Biobehav Rev 2021; 126:1-11. [PMID: 33737105 PMCID: PMC8363507 DOI: 10.1016/j.neubiorev.2021.02.047] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 12/25/2022]
Abstract
Anterior thalamic nuclei important for specific classes of temporal discriminations. Anterior thalamic nuclei required for hippocampal-dependent contextual processes. Critical role for anterior thalamic nuclei in selective attention. Significance of anterior thalamic – anterior cingulate interactions.
The anterior thalamic nuclei are a vital node within hippocampal-diencephalic-cingulate circuits that support spatial learning and memory. Reflecting this interconnectivity, the overwhelming focus of research into the cognitive functions of the anterior thalamic nuclei has been spatial processing. However, there is increasing evidence that the functions of the anterior thalamic nuclei extend beyond the spatial realm. This work has highlighted how these nuclei are required for certain classes of temporal discrimination as well as their importance for processing other contextual information; revealing parallels with the non-spatial functions of the hippocampal formation. Yet further work has shown how the anterior thalamic nuclei may be important for other forms of non-spatial learning, including a critical role for these nuclei in attentional mechanisms. This evidence signals the need to reconsider the functions of the anterior thalamic within the framework of their wider connections with sites including the anterior cingulate cortex that subserve non-spatial functions.
Collapse
Affiliation(s)
- Andrew J D Nelson
- School of Psychology, Cardiff University, 70 Park Place, Cardiff, CF10 3AT, Wales, UK.
| |
Collapse
|
39
|
Honnorat N, Saranathan M, Sullivan EV, Pfefferbaum A, Pohl KM, Zahr NM. Performance ramifications of abnormal functional connectivity of ventral posterior lateral thalamus with cerebellum in abstinent individuals with Alcohol Use Disorder. Drug Alcohol Depend 2021; 220:108509. [PMID: 33453503 PMCID: PMC7889734 DOI: 10.1016/j.drugalcdep.2021.108509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 01/06/2023]
Abstract
The extant literature supports the involvement of the thalamus in the cognitive and motor impairment associated with chronic alcohol consumption, but clear structure/function relationships remain elusive. Alcohol effects on specific nuclei rather than the entire thalamus may provide the basis for differential cognitive and motor decline in Alcohol Use Disorder (AUD). This functional MRI (fMRI) study was conducted in 23 abstinent individuals with AUD and 27 healthy controls to test the hypothesis that functional connectivity between anterior thalamus and hippocampus would be compromised in those with an AUD diagnosis and related to mnemonic deficits. Functional connectivity between 7 thalamic structures [5 thalamic nuclei: anterior ventral (AV), mediodorsal (MD), pulvinar (Pul), ventral lateral posterior (VLP), and ventral posterior lateral (VPL); ventral thalamus; the entire thalamus] and 14 "functional regions" was evaluated. Relative to controls, the AUD group exhibited different VPL-based functional connectivity: an anticorrelation between VPL and a bilateral middle temporal lobe region observed in controls became a positive correlation in the AUD group; an anticorrelation between the VPL and the cerebellum was stronger in the AUD than control group. AUD-associated altered connectivity between anterior thalamus and hippocampus as a substrate of memory compromise was not supported; instead, connectivity differences from controls selective to VPL and cerebellum demonstrated a relationship with impaired balance. These preliminary findings support substructure-level evaluation in future studies focused on discerning the role of the thalamus in AUD-associated cognitive and motor deficits.
Collapse
Affiliation(s)
- Nicolas Honnorat
- Neuroscience Program, SRI International, 333 Ravenswood Ave., Menlo Park, CA, 94025, USA.
| | - Manojkumar Saranathan
- Department of Medical Imaging, University of Arizona College of Medicine, 1501 N. Campbell Ave., Tucson, AZ, 85724, USA.
| | - Edith V Sullivan
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd., Stanford, CA, 94305, USA.
| | - Adolf Pfefferbaum
- Neuroscience Program, SRI International, 333 Ravenswood Ave., Menlo Park, CA, 94025, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd., Stanford, CA, 94305, USA.
| | - Kilian M Pohl
- Neuroscience Program, SRI International, 333 Ravenswood Ave., Menlo Park, CA, 94025, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd., Stanford, CA, 94305, USA.
| | - Natalie M Zahr
- Neuroscience Program, SRI International, 333 Ravenswood Ave., Menlo Park, CA, 94025, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd., Stanford, CA, 94305, USA.
| |
Collapse
|
40
|
Maillard A, Laniepce A, Cabé N, Boudehent C, Chételat G, Urso L, Eustache F, Vabret F, Segobin S, Pitel AL. Temporal Cognitive and Brain Changes in Korsakoff Syndrome. Neurology 2021; 96:e1987-e1998. [PMID: 33637634 DOI: 10.1212/wnl.0000000000011749] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/13/2021] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE To investigate cognitive and brain changes in patients with Korsakoff syndrome (KS) over months and up to 10 years after the diagnosis. METHODS Two groups of 8 patients with KS underwent neuropsychological, motor, and neuroimaging investigations, including structural MRI and 18F-fluorodeoxyglucose-PET. The KSC group, recruited at Caen University Hospital, was examined early after the KS diagnosis (KSC-T1) and 1 year later (KSC-T2). The KSR group, recruited at nursing home at Roubaix, was evaluated 10 years after the diagnosis. Longitudinal comparisons in KSC explored short-term changes, while cross-sectional comparisons between KSC-T1 and KSR informed about long-term changes. RESULTS No cognitive, motor, or brain deterioration occurred over time in patients with KS. There was no clear improvement either, with only modest recovery in the frontocerebellar circuit. Compared to the norms, KSC-T1 had severe episodic memory impairments, ataxia, and some executive dysfunctions. They also presented widespread atrophy and hypometabolism as well as cerebellar hypermetabolism compared to 44 healthy matched controls. Episodic memory remained significantly impaired in KSC-T2 and KSR. Contrary to KSC at T1 and T2, KSR had preserved inhibition abilities. Atrophy was similar but less extended in KSC-T2 and even more limited in KSR. At all times, the thalamus, hypothalamus, and fornix remained severely atrophied. Hypometabolism was still widespread in KSC-T2 and KSR, notably affecting the diencephalon. Cerebellar metabolism decreased over time and normalized in KSR, whereas motor dysfunction persisted. CONCLUSION In KS, structural and metabolic alterations of the Papez circuit persisted over time, in accordance with the irreversible nature of amnesia. There was neither significant recovery as observed in patients with alcohol use disorder nor progressive decline as in neurodegenerative diseases.
Collapse
Affiliation(s)
- Angéline Maillard
- From Normandie Université (A.M., A.L., N.C., C.B., F.E., F.V., S.S., A.-L.P.), UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine; Service d'addictologie (N.C., C.B., F.V.), Centre Hospitalier Universitaire de Caen; Normandie Université (G.C.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders," Institut Blood and Brain at Caen-Normandie, Cyceron, Caen; Service d'addictologie (L.U.), Centre Hospitalier de Roubaix; and Institut Universitaire de France (A.-L.P.), Paris
| | - Alice Laniepce
- From Normandie Université (A.M., A.L., N.C., C.B., F.E., F.V., S.S., A.-L.P.), UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine; Service d'addictologie (N.C., C.B., F.V.), Centre Hospitalier Universitaire de Caen; Normandie Université (G.C.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders," Institut Blood and Brain at Caen-Normandie, Cyceron, Caen; Service d'addictologie (L.U.), Centre Hospitalier de Roubaix; and Institut Universitaire de France (A.-L.P.), Paris
| | - Nicolas Cabé
- From Normandie Université (A.M., A.L., N.C., C.B., F.E., F.V., S.S., A.-L.P.), UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine; Service d'addictologie (N.C., C.B., F.V.), Centre Hospitalier Universitaire de Caen; Normandie Université (G.C.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders," Institut Blood and Brain at Caen-Normandie, Cyceron, Caen; Service d'addictologie (L.U.), Centre Hospitalier de Roubaix; and Institut Universitaire de France (A.-L.P.), Paris
| | - Céline Boudehent
- From Normandie Université (A.M., A.L., N.C., C.B., F.E., F.V., S.S., A.-L.P.), UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine; Service d'addictologie (N.C., C.B., F.V.), Centre Hospitalier Universitaire de Caen; Normandie Université (G.C.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders," Institut Blood and Brain at Caen-Normandie, Cyceron, Caen; Service d'addictologie (L.U.), Centre Hospitalier de Roubaix; and Institut Universitaire de France (A.-L.P.), Paris
| | - Gael Chételat
- From Normandie Université (A.M., A.L., N.C., C.B., F.E., F.V., S.S., A.-L.P.), UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine; Service d'addictologie (N.C., C.B., F.V.), Centre Hospitalier Universitaire de Caen; Normandie Université (G.C.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders," Institut Blood and Brain at Caen-Normandie, Cyceron, Caen; Service d'addictologie (L.U.), Centre Hospitalier de Roubaix; and Institut Universitaire de France (A.-L.P.), Paris
| | - Laurent Urso
- From Normandie Université (A.M., A.L., N.C., C.B., F.E., F.V., S.S., A.-L.P.), UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine; Service d'addictologie (N.C., C.B., F.V.), Centre Hospitalier Universitaire de Caen; Normandie Université (G.C.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders," Institut Blood and Brain at Caen-Normandie, Cyceron, Caen; Service d'addictologie (L.U.), Centre Hospitalier de Roubaix; and Institut Universitaire de France (A.-L.P.), Paris
| | - Francis Eustache
- From Normandie Université (A.M., A.L., N.C., C.B., F.E., F.V., S.S., A.-L.P.), UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine; Service d'addictologie (N.C., C.B., F.V.), Centre Hospitalier Universitaire de Caen; Normandie Université (G.C.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders," Institut Blood and Brain at Caen-Normandie, Cyceron, Caen; Service d'addictologie (L.U.), Centre Hospitalier de Roubaix; and Institut Universitaire de France (A.-L.P.), Paris
| | - François Vabret
- From Normandie Université (A.M., A.L., N.C., C.B., F.E., F.V., S.S., A.-L.P.), UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine; Service d'addictologie (N.C., C.B., F.V.), Centre Hospitalier Universitaire de Caen; Normandie Université (G.C.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders," Institut Blood and Brain at Caen-Normandie, Cyceron, Caen; Service d'addictologie (L.U.), Centre Hospitalier de Roubaix; and Institut Universitaire de France (A.-L.P.), Paris
| | - Shailendra Segobin
- From Normandie Université (A.M., A.L., N.C., C.B., F.E., F.V., S.S., A.-L.P.), UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine; Service d'addictologie (N.C., C.B., F.V.), Centre Hospitalier Universitaire de Caen; Normandie Université (G.C.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders," Institut Blood and Brain at Caen-Normandie, Cyceron, Caen; Service d'addictologie (L.U.), Centre Hospitalier de Roubaix; and Institut Universitaire de France (A.-L.P.), Paris
| | - Anne-Lise Pitel
- From Normandie Université (A.M., A.L., N.C., C.B., F.E., F.V., S.S., A.-L.P.), UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine; Service d'addictologie (N.C., C.B., F.V.), Centre Hospitalier Universitaire de Caen; Normandie Université (G.C.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders," Institut Blood and Brain at Caen-Normandie, Cyceron, Caen; Service d'addictologie (L.U.), Centre Hospitalier de Roubaix; and Institut Universitaire de France (A.-L.P.), Paris
| |
Collapse
|
41
|
Draps M, Kowalczyk-Grębska N, Marchewka A, Shi F, Gola M. White matter microstructural and Compulsive Sexual Behaviors Disorder - Diffusion Tensor Imaging study. J Behav Addict 2021; 10:55-64. [PMID: 33570504 PMCID: PMC8969848 DOI: 10.1556/2006.2021.00002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/30/2020] [Accepted: 12/27/2020] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND AND AIMS Even though the Compulsive Sexual Behavior Disorder (CSBD) was added to the ICD-11 under the impulse control category in 2019, its neural mechanisms are still debated. Researchers have noted its similarity both to addiction and to Obssesive-Compulsive Disorder (OCD). The aim of our study was to address this question by investigating the pattern of anatomical brain abnormalities among CSBD patients. METHODS Reviewing 39 publications on Diffusion Tensor Imaging (DTI) we have identified main abnormalities specific for addictions and OCD. Than we have collected DTI data from 36 heterosexual males diagnosed with CSBD and 31 matched healthy controls. These results were then compared to the addiction and OCD patterns. RESULTS Compared to controls, CSBD individuals showed significant fractional anisotropy (FA) reduction in the superior corona radiata tract, the internal capsule tract, cerebellar tracts and occipital gyrus white matter. Interestingly, all these regions were also identified in previous studies as shared DTI correlates in both OCD and addiction. DISCUSSION AND CONCLUSIONS Results of our study suggest that CSBD shares similar pattern of abnormalities with both OCD and addiction. As one of the first DTI study comparing structural brain differences between CSBD, addictions and OCD, although it reveals new aspects of CSBD, it is insufficient to determine whether CSBD resembles more an addiction or OCD. Further research, especially comparing directly individuals with all three disorders may provide more conclusive results.
Collapse
Affiliation(s)
- Małgorzata Draps
- Institute of Psychology, Polish Academy of Sciences, Warsaw, Poland,Corresponding author. E-mail:
| | | | - Artur Marchewka
- Laboratory of Brain Imaging, Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Feng Shi
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Mateusz Gola
- Institute of Psychology, Polish Academy of Sciences, Warsaw, Poland,Swartz Center for Computational Neuroscience, Institute for Neural Computations, University of California San Diego, San Diego, USA
| |
Collapse
|
42
|
Laniepce A, Lahbairi N, Cabé N, Pitel AL, Rauchs G. Contribution of sleep disturbances to the heterogeneity of cognitive and brain alterations in alcohol use disorder. Sleep Med Rev 2021; 58:101435. [PMID: 33578081 DOI: 10.1016/j.smrv.2021.101435] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/22/2020] [Accepted: 10/27/2020] [Indexed: 12/28/2022]
Abstract
Cognitive and brain alterations are common in alcohol use disorder and vary importantly from one patient to another. Sleep disturbances are also very frequent in these patients and remain largely neglected even though they can persist after drinking cessation. Sleep disturbances may be the consequence of specific brain alterations, resulting in cognitive impairments. But sleep disruption may also exacerbate alcohol-related brain abnormalities and cognitive deficits through common pathophysiological mechanisms. Besides, sleep disturbances seem a vulnerability factor for the development of alcohol use disorder. From a clinical perspective, sleep disturbances are known to affect treatment outcome and to increase the risk of relapse. In this article, we conducted a narrative review to provide a better understanding of the relationships between sleep disturbances, brain and cognition in alcohol use disorder. We suggest that the heterogeneity of brain and cognitive alterations observed in patients with alcohol use disorder could at least partially be explained by associated sleep disturbances. We also believe that sleep disruption could indirectly favor relapse by exacerbating neuropsychological impairments required in psychosocial treatment and for the maintenance of abstinence. Implications for clinical practice as well as perspectives for future research are proposed.
Collapse
Affiliation(s)
- Alice Laniepce
- Normandie Univ, UNICAEN, PSL Université de Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000 Caen, France
| | - Najlaa Lahbairi
- Normandie Univ, UNICAEN, PSL Université de Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000 Caen, France
| | - Nicolas Cabé
- Normandie Univ, UNICAEN, PSL Université de Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000 Caen, France; Service d'Addictologie, Centre Hospitalier Universitaire de Caen, 14000 Caen, France
| | - Anne-Lise Pitel
- Normandie Univ, UNICAEN, PSL Université de Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000 Caen, France; Institut Universitaire de France (IUF), France
| | - Géraldine Rauchs
- Normandie Univ, UNICAEN, PSL Université de Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000 Caen, France.
| |
Collapse
|
43
|
Ritz L, Laniepce A, Cabé N, Lannuzel C, Boudehent C, Urso L, Segobin S, Vabret F, Beaunieux H, Pitel AL. Early Identification of Alcohol Use Disorder Patients at Risk of Developing Korsakoff's Syndrome. Alcohol Clin Exp Res 2021; 45:587-595. [PMID: 33432596 DOI: 10.1111/acer.14548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND The aim of the present study was to determine whether the Brief Evaluation of Alcohol-Related Neuropsychological Impairments (BEARNI), a screening tool developed to identify neuropsychological deficits in alcohol use disorder (AUD) patients, can also be used for the early identification of AUD patients at risk of developing Korsakoff's syndrome (KS). METHODS Eighteen KS patients, 47 AUD patients and 27 healthy controls underwent BEARNI testing (including 5 subtests targeting episodic memory, working memory, executive function, visuospatial abilities, and ataxia) and a comprehensive neuropsychological examination. RESULTS Performance of AUD and KS patients on BEARNI subtests was consistent with the results on the standardized neuropsychological assessment. On BEARNI, ataxia and working memory deficits observed in AUD were as severe as those exhibited by KS patients, whereas for visuospatial abilities, a graded effect of performance was found. In contrast, the subtests involving long-term memory abilities (episodic memory and fluency) were impaired in KS patients only. AUD patients with a score lower than 1.5 points (out of 6) on the episodic memory subtest of BEARNI exhibited the lowest episodic memory performance on the neuropsychological battery and could be considered at risk of developing KS. CONCLUSIONS These findings suggest that BEARNI is a useful tool for detecting severe memory impairments, suggesting that it could be used for the early identification of AUD patients at high risk of developing KS.
Collapse
Affiliation(s)
- Ludivine Ritz
- Laboratoire de Psychologie Caen Normandie (LPCN, EA 4649), Pôle Santé, Maladies, Handicaps - MRSH (USR 3486, CNRS-UNICAEN), Normandie Univ, UNICAEN, Caen, France.,EPHE, INSERM, U1077, CHU de Caen, Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Normandie Univ, UNICAEN, PSL Research University, Caen, France
| | - Alice Laniepce
- EPHE, INSERM, U1077, CHU de Caen, Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Normandie Univ, UNICAEN, PSL Research University, Caen, France
| | - Nicolas Cabé
- EPHE, INSERM, U1077, CHU de Caen, Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Normandie Univ, UNICAEN, PSL Research University, Caen, France.,Service d'Addictologie, Centre Hospitalier Universitaire de Caen, Caen, France
| | - Coralie Lannuzel
- EPHE, INSERM, U1077, CHU de Caen, Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Normandie Univ, UNICAEN, PSL Research University, Caen, France.,Service d'Addictologie, Centre Hospitalier Universitaire de Caen, Caen, France
| | - Céline Boudehent
- EPHE, INSERM, U1077, CHU de Caen, Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Normandie Univ, UNICAEN, PSL Research University, Caen, France.,Service d'Addictologie, Centre Hospitalier Universitaire de Caen, Caen, France
| | - Laurent Urso
- Service d'Addictologie, Centre Hospitalier Roubaix, Roubaix, France
| | - Shailendra Segobin
- EPHE, INSERM, U1077, CHU de Caen, Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Normandie Univ, UNICAEN, PSL Research University, Caen, France
| | - François Vabret
- EPHE, INSERM, U1077, CHU de Caen, Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Normandie Univ, UNICAEN, PSL Research University, Caen, France.,Service d'Addictologie, Centre Hospitalier Universitaire de Caen, Caen, France
| | - Hélène Beaunieux
- Laboratoire de Psychologie Caen Normandie (LPCN, EA 4649), Pôle Santé, Maladies, Handicaps - MRSH (USR 3486, CNRS-UNICAEN), Normandie Univ, UNICAEN, Caen, France.,EPHE, INSERM, U1077, CHU de Caen, Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Normandie Univ, UNICAEN, PSL Research University, Caen, France
| | - Anne-Lise Pitel
- EPHE, INSERM, U1077, CHU de Caen, Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Normandie Univ, UNICAEN, PSL Research University, Caen, France
| |
Collapse
|
44
|
The contribution of mamillary body damage to Wernicke's encephalopathy and Korsakoff's syndrome. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:455-475. [PMID: 34225949 DOI: 10.1016/b978-0-12-820107-7.00029-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Histopathological alterations of the mamillary bodies are the most conspicuous and the most consistent neuropathological features of several disorders that occur after severe thiamine deficiency, such as Wernicke's encephalopathy and Korsakoff's syndrome. Moreover, they are among the few abnormalities that are visible to the naked eye in these disorders. With a lifetime prevalence of approximately 1.3%, Wernicke's encephalopathy is by far the most frequent cause of damage to the mamillary bodies in humans. Still, there is a persisting uncertainty with regard to the development and the clinical consequences of this damage, because it is virtually impossible to study in isolation. As a rule, it always occurs alongside neuropathology in other subcortical gray matter structures, notably the medial thalamus. Converging evidence from other pathologies and animal experiments is needed to assess the clinical impact of mamillary body damage and to determine which functions can be attributed to these structures in healthy subjects. In this chapter, we describe the history and the current state of knowledge with regard to thiamine deficiency disorders and the contribution of mamillary body damage to their clinical presentations.
Collapse
|
45
|
Brain anatomical covariation patterns linked to binge drinking and age at first full drink. NEUROIMAGE-CLINICAL 2020; 29:102529. [PMID: 33321271 PMCID: PMC7745054 DOI: 10.1016/j.nicl.2020.102529] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/10/2020] [Accepted: 12/06/2020] [Indexed: 12/21/2022]
Abstract
We identified a reproducible cortical and subcortical brain structural covariation pattern. A novel pattern discovery method Joint and Individual Variance Explained (JIVE) was used. The cortical and subcortical structural covariation pattern is related to alcohol use initiation. The identified pattern is dominated by covariation among brainstem, thalamus and PFC. A thalamic-PFC-brainstem circuitry might be related to alcohol use initiation.
Binge drinking and age at first full drink (AFD) of alcohol prior to 21 years (AFD < 21) have been linked to neuroanatomical differences in cortical and subcortical grey matter (GM) volume, cortical thickness, and surface area. Despite the importance of understanding network-level relationships, structural covariation patterns among these morphological measures have yet to be examined in relation to binge drinking and AFD < 21. Here, we used the Joint and Individual Variance Explained (JIVE) method to characterize structural covariation patterns common across and specific to morphological measures in 293 participants (149 individuals with past-12-month binge drinking and 144 healthy controls) from the Human Connectome Project (HCP). An independent dataset (Nathan Kline Institute Rockland Sample; NKI-RS) was used to examine reproducibility/generalizability. We identified a reproducible joint component dominated by structural covariation between GM volume in the brainstem and thalamus proper, and GM volume and surface area in prefrontal cortical regions. Using linear mixed regression models, we found that participants with AFD < 21 showed lower joint component scores in both the HCP (beta = 0.059, p-value = 0.016; Cohen’s d = 0.441) and NKI-RS (beta = 0.023, p-value = 0.040, Cohen’s d = 0.216) datasets, whereas the individual thickness component associated with binge drinking (p-value = 0.02) and AFD < 21 (p-value < 0.001) in the HCP dataset was not statistically significant in the NKI-RS sample. Our findings were also generalizable to the HCP full sample (n = 880 participants). Taken together, our results show that use of JIVE analysis in high-dimensional, large-scale, psychiatry-related datasets led to discovery of a reproducible cortical and subcortical structural covariation pattern involving brain regions relevant to thalamic-PFC-brainstem neural circuitry which is related to AFD < 21 and suggests a possible extension of existing addiction neurocircuitry in humans.
Collapse
|
46
|
Datta R, Bacchus MK, Kumar D, Elliott MA, Rao A, Dolui S, Reddy R, Banwell BL, Saranathan M. Fast automatic segmentation of thalamic nuclei from MP2RAGE acquisition at 7 Tesla. Magn Reson Med 2020; 85:2781-2790. [PMID: 33270943 DOI: 10.1002/mrm.28608] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/29/2020] [Accepted: 10/30/2020] [Indexed: 12/26/2022]
Abstract
PURPOSE Thalamic nuclei are largely invisible in conventional MRI due to poor contrast. Thalamus Optimized Multi-Atlas Segmentation (THOMAS) provides automatic segmentation of 12 thalamic nuclei using white-matter-nulled (WMn) Magnetization Prepared Rapid Gradient Echo (MPRAGE) sequence at 7T, but increases overall scan duration. Routinely acquired, bias-corrected Magnetization Prepared 2 Rapid Gradient Echo (MP2RAGE) sequence yields superior tissue contrast and quantitative T1 maps. Application of THOMAS to MP2RAGE has been investigated in this study. METHODS Eight healthy volunteers and five pediatric-onset multiple sclerosis patients were recruited at Children's Hospital of Philadelphia and scanned at Siemens 7T with WMn-MPRAGE and multi-echo-MP2RAGE (ME-MP2RAGE) sequences. White-matter-nulled contrast was synthesized (MP2-SYN) from T1 maps from ME-MP2RAGE sequence. Thalamic nuclei were segmented using THOMAS joint label fusion algorithm from WMn-MPRAGE and MP2-SYN datasets. THOMAS pipeline was modified to use majority voting to segment bias corrected T1-weighted uniform (MP2-UNI) images. Thalamic nuclei from MP2-SYN and MP2-UNI images were evaluated against corresponding nuclei obtained from WMn-MPRAGE images using dice coefficients, volume similarity indices (VSIs) and distance between centroids. RESULTS For MP2-SYN, dice > 0.85 and VSI > 0.95 was achieved for five larger nuclei and dice > 0.6 and VSI > 0.7 was achieved for seven smaller nuclei. The dice and VSI were slightly higher, whereas the distance between centroids were smaller for MP2-SYN compared to MP2-UNI, indicating improved performance using the MP2-SYN image. CONCLUSIONS THOMAS algorithm can successfully segment thalamic nuclei in MP2RAGE images with essentially equivalent quality as WMn-MPRAGE, widening its applicability in studies focused on thalamic involvement in aging and disease.
Collapse
Affiliation(s)
- Ritobrato Datta
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Micky K Bacchus
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Dushyant Kumar
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mark A Elliott
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Aditya Rao
- Biological Basis of Behavior Program, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sudipto Dolui
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ravinder Reddy
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Brenda L Banwell
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
47
|
Chatterton BJ, Nunes PT, Savage LM. The Effect of Chronic Ethanol Exposure and Thiamine Deficiency on Myelin-related Genes in the Cortex and the Cerebellum. Alcohol Clin Exp Res 2020; 44:2481-2493. [PMID: 33067870 DOI: 10.1111/acer.14484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/11/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Long-term alcohol consumption has been linked to structural and functional brain abnormalities. Furthermore, with persistent exposure to ethanol (EtOH), nutrient deficiencies often develop. Thiamine deficiency is a key contributor to alcohol-related brain damage and is suspected to contribute to white matter pathology. The expression of genes encoding myelin proteins in several cortical brain regions is altered with EtOH exposure. However, there is limited research regarding the impact of thiamine deficiency on myelin dysfunction. METHODS A rat model was used to assess the impact of moderate chronic EtOH exposure (CET; 20% EtOH in drinking water for 1 or 6 months), pyrithiamine-induced thiamine deficiency treatment (PTD), both conditions combined (CET-PTD), or CET with thiamine injections (CET + T) on myelin-related gene expression (Olig1, Olig2, MBP, MAG, and MOG) in the frontal and parietal cortices and the cerebellum. RESULTS The CET-PTD treatments caused the greatest suppression in myelin-related genes in the cortex. Specifically, the parietal cortex was the region that was most susceptible to PTD-CET-induced alterations in myelin-related genes. In addition, PTD treatment, with and without CET, caused minor fluctuations in the expression of several myelin-related genes in the frontal cortex. In contrast, CET alone and PTD alone suppressed several myelin-related genes in the cerebellum. Regardless of the region, there was significant recovery of myelin-related genes with extended abstinence and/or thiamine restoration. CONCLUSION Moderate chronic EtOH alone had a minor effect on the suppression of myelin-related genes in the cortex; however, when combined with thiamine deficiency, the reduction was amplified. There was a suppression of myelin-related genes following long-term EtOH and thiamine deficiency in the cerebellum. However, the suppression in the myelin-related genes mostly occurred 24 h after EtOH removal or following thiamine restoration; within 3 weeks of abstinence or thiamine recovery, gene expression rebounded.
Collapse
Affiliation(s)
- Bradley J Chatterton
- From the, Department of Psychology, Behavioral Neuroscience Program, Binghamton University, State University of New York, Binghamton, New York, USA
| | - Polliana T Nunes
- From the, Department of Psychology, Behavioral Neuroscience Program, Binghamton University, State University of New York, Binghamton, New York, USA
| | - Lisa M Savage
- From the, Department of Psychology, Behavioral Neuroscience Program, Binghamton University, State University of New York, Binghamton, New York, USA
| |
Collapse
|
48
|
Deconstructing the Direct Reciprocal Hippocampal-Anterior Thalamic Pathways for Spatial Learning. J Neurosci 2020; 40:6978-6990. [PMID: 32753513 PMCID: PMC7470921 DOI: 10.1523/jneurosci.0874-20.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/14/2020] [Accepted: 07/19/2020] [Indexed: 01/13/2023] Open
Abstract
The hippocampus is essential for normal memory but does not act in isolation. The anterior thalamic nuclei may represent one vital partner. Using DREADDs, the behavioral consequences of transiently disrupting anterior thalamic function were examined, followed by inactivation of the dorsal subiculum. Next, the anterograde transport of an adeno-associated virus expressing DREADDs was paired with localized intracerebral infusions of a ligand to target specific input pathways. In this way, the direct projections from the anterior thalamic nuclei to the dorsal hippocampal formation were inhibited, followed by separate inhibition of the dorsal subiculum projections to the anterior thalamic nuclei. To assay spatial working memory, all animals performed a reinforced T-maze alternation task, then a more challenging version that nullifies intramaze cues. Across all four experiments, deficits emerged on the spatial alternation task that precluded the use of intramaze cues. Inhibiting dorsal subiculum projections to the anterior thalamic nuclei produced the severest spatial working memory deficit. This deficit revealed the key contribution of dorsal subiculum projections to the anteromedial and anteroventral thalamic nuclei for the processing of allocentric information, projections not associated with head-direction information. The overall pattern of results provides consistent causal evidence of the two-way functional significance of direct hippocampal-anterior thalamic interactions for spatial processing. At the same time, these findings are consistent with hypotheses that these same, reciprocal interactions underlie the common core symptoms of temporal lobe and diencephalic anterograde amnesia. SIGNIFICANCE STATEMENT It has long been conjectured that the anterior thalamic nuclei might be key partners with the hippocampal formation and that, respectively, they are principally responsible for diencephalic and temporal lobe amnesia. However, direct causal evidence for this functional relationship is lacking. Here, we examined the behavioral consequences of transiently silencing the direct reciprocal interconnections between these two brain regions on tests of spatial learning. Disrupting information flow from the hippocampal formation to the anterior thalamic nuclei and vice versa impaired performance on tests of spatial learning. By revealing the conjoint importance of hippocampal-anterior thalamic pathways, these findings help explain why pathology in either the medial diencephalon or the medial temporal lobes can result in profound anterograde amnesic syndromes.
Collapse
|
49
|
Zahr NM, Sullivan EV, Pohl KM, Pfefferbaum A, Saranathan M. Sensitivity of ventrolateral posterior thalamic nucleus to back pain in alcoholism and CD4 nadir in HIV. Hum Brain Mapp 2020; 41:1351-1361. [PMID: 31785046 PMCID: PMC7268080 DOI: 10.1002/hbm.24880] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/15/2019] [Accepted: 11/15/2019] [Indexed: 12/13/2022] Open
Abstract
Volumes of thalamic nuclei are differentially affected by disease-related processes including alcoholism and human immunodeficiency virus (HIV) infection. This MRI study included 41 individuals diagnosed with alcohol use disorders (AUD, 12 women), 17 individuals infected with HIV (eight women), and 49 healthy controls (24 women) aged 39 to 75 years. A specialized, high-resolution acquisition protocol enabled parcellation of five thalamic nuclei: anterior [anterior ventral (AV)], posterior [pulvinar (Pul)], medial [mediodorsal (MD)], and ventral [including ventral lateral posterior (VLp) and ventral posterior lateral (VPl)]. An omnibus mixed-model approach solving for volume considered the "fixed effects" of nuclei, diagnosis, and their interaction while covarying for hemisphere, sex, age, and supratentorial volume (svol). The volume by diagnosis interaction term was significant; the effects of hemisphere and sex were negligible. Follow-up mixed-model tests thus evaluated the combined (left + right) volume of each nucleus separately for effects of diagnosis while controlling for age and svol. Only the VLp showed diagnoses effects and was smaller in the AUD (p = .04) and HIV (p = .0003) groups relative to the control group. In the AUD group, chronic back pain (p = .008) and impaired deep tendon ankle reflex (p = .0005) were associated with smaller VLp volume. In the HIV group, lower CD4 nadir (p = .008) was associated with smaller VLp volume. These results suggest that the VLp is differentially sensitive to disease processes associated with AUD and HIV.
Collapse
Affiliation(s)
- Natalie M. Zahr
- Neuroscience ProgramSRI InternationalMenlo ParkCalifornia
- Department of Psychiatry and Behavioral SciencesStanford University School of MedicineCalifornia
| | - Edith V. Sullivan
- Department of Psychiatry and Behavioral SciencesStanford University School of MedicineCalifornia
| | - Kilian M. Pohl
- Neuroscience ProgramSRI InternationalMenlo ParkCalifornia
- Department of Psychiatry and Behavioral SciencesStanford University School of MedicineCalifornia
| | - Adolf Pfefferbaum
- Neuroscience ProgramSRI InternationalMenlo ParkCalifornia
- Department of Psychiatry and Behavioral SciencesStanford University School of MedicineCalifornia
| | | |
Collapse
|
50
|
Tuladhar AM, de Leeuw FE. Thalamus: a key player in alcohol use disorder and Korsakoff's syndrome. Brain 2020; 142:1170-1172. [PMID: 31032845 PMCID: PMC6487327 DOI: 10.1093/brain/awz096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Anil M Tuladhar
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frank-Erik de Leeuw
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|