1
|
Brown LM, Hagenson RA, Koklič T, Urbančič I, Qiao L, Strancar J, Sheltzer JM. An elevated rate of whole-genome duplications in cancers from Black patients. Nat Commun 2024; 15:8218. [PMID: 39300140 PMCID: PMC11413164 DOI: 10.1038/s41467-024-52554-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
In the United States, Black individuals have higher rates of cancer mortality than any other racial group. Here, we examine chromosome copy number changes in cancers from more than 1800 self-reported Black patients. We find that tumors from self-reported Black patients are significantly more likely to exhibit whole-genome duplications (WGDs), a genomic event that enhances metastasis and aggressive disease, compared to tumors from self-reported white patients. This increase in WGD frequency is observed across multiple cancer types, including breast, endometrial, and lung cancer, and is associated with shorter patient survival. We further demonstrate that combustion byproducts are capable of inducing WGDs in cell culture, and cancers from self-reported Black patients exhibit mutational signatures consistent with exposure to these carcinogens. In total, these findings identify a type of genomic alteration that is associated with environmental exposures and that may influence racial disparities in cancer outcomes.
Collapse
Affiliation(s)
| | | | - Tilen Koklič
- Laboratory of Biophysics, Condensed Matter Physics Department, Jožef Stefan Institute, Jamova Cesta 39, Ljubljana, Slovenia
| | - Iztok Urbančič
- Laboratory of Biophysics, Condensed Matter Physics Department, Jožef Stefan Institute, Jamova Cesta 39, Ljubljana, Slovenia
| | - Lu Qiao
- Yale University, School of Medicine, New Haven, CT, USA
| | - Janez Strancar
- Laboratory of Biophysics, Condensed Matter Physics Department, Jožef Stefan Institute, Jamova Cesta 39, Ljubljana, Slovenia
- Infinite d.o.o, Zagrebška cesta 20, Maribor, Slovenia
| | | |
Collapse
|
2
|
Cheng Z, Qin K, Zhang Y, Yu Z, Li B, Jiang C, Xu J. Air pollution and cancer daily mortality in Hangzhou, China: an ecological research. BMJ Open 2024; 14:e084804. [PMID: 38858146 PMCID: PMC11168133 DOI: 10.1136/bmjopen-2024-084804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/14/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Long-term exposure to air pollution has been linked to cancer incidence. However, the evidence is limited regarding the effect of short-term exposure to air pollution on cancer mortality. OBJECTIVES This study aimed to investigate associations between short-term exposure to air pollutants (sulfur dioxide (SO2), nitrogen dioxide (NO2), particulate matter with an aerodynamic diameter <10 mm (PM10) and PM2.5) and cancer daily mortality. METHODS This study used air quality, meteorological and daily cancer death data from 2014 to 2019 in Hangzhou, China. Generalised additive models (GAM) with quasi-Poisson regression were used to analyse the associations between air pollutants and cancer mortality with adjustment for confounding factors including time trends, day of week, temperature and humidity. Then, we conducted stratified analyses by sex, age, season and education. In addition, stratified analyses of age, season and education were performed within each sex to determine whether sex difference was modified by such factors. RESULTS After adjusting for potential confounders, the GAM results indicated a statistically significant relationship between increased cancer mortality and elevated air pollution concentrations, but only in the female population. For every 10 μg/m3 rise in pollutant concentration, the increased risk of cancer death in females was 6.82% (95% CI 3.63% to 10.10%) for SO2 on lag 03, and 2.02% (95% CI 1.12% to 2.93%) for NO2 on lag 01 and 0.89% (95% CI 0.46% to 1.33%) for PM10 on lag 03 and 1.29% (95% CI 0.64% to 1.95%) for PM2.5 on lag 03. However, no statistically significant association was found among males. Moreover, the differences in effect sizes between males and females were more pronounced during the cold season, among the elderly and among subjects with low levels of education. CONCLUSIONS Increased cancer mortality was only observed in females with rising concentrations of air pollutants. Further research is required to confirm this sex difference. Advocate for the reduction of air pollutant emissions to protect vulnerable groups.
Collapse
Affiliation(s)
- Zongxue Cheng
- Department of Chronic and Non-Communicable Disease, Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Kang Qin
- Department of Chronic and Non-Communicable Disease, Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Yan Zhang
- Department of Chronic and Non-Communicable Disease, Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Zhecong Yu
- Department of Chronic and Non-Communicable Disease, Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Biao Li
- Department of Chronic and Non-Communicable Disease, Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Caixia Jiang
- Department of Chronic and Non-Communicable Disease, Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Jue Xu
- Department of Chronic and Non-Communicable Disease, Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| |
Collapse
|
3
|
Zhang J, Liu K, Tang X, Wang XJ. Dysfunction of Nrf2-regulated cellular defence system and JNK activation induced by high dose of fly Ash particles are associated with pulmonary injury in mouse lungs. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116239. [PMID: 38518612 DOI: 10.1016/j.ecoenv.2024.116239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/15/2024] [Accepted: 03/17/2024] [Indexed: 03/24/2024]
Abstract
The mechanisms of the exposure to fine particulate matter (PM) as a risk factor for pulmonary injury are not fully understood. The transcription factor, NF-E2-related factor 2 (Nrf2), plays a key role in protection lung against PM insult and cancer chemoprevention. In this study, F3-S fly ash particles from a municipal waste incinerator were evaluated as a PM model. We found that F3-S triggered hierarchical oxidative stress responses involving the prolonged activation of the cytoprotective Nrf2 transcriptional program via Keap1 Cys151 modification, and c-Jun NH2-terminal kinase (JNK) phosphorylation at higher doses. In mouse lungs exposed to fly ash particles at a low dose (10-20 mg/kg), Nrf2 signalling was upregulated, while in those exposed to a high fly ash particle dose (40 mg/kg), there was significant activation of JNK, and this correlated with Nrf2 phosphorylation and the downregulation of antioxidant response element (ARE)-driven genes. The JNK inhibitor, SP600125, reversed Nrf2 phosphorylation, and downregulation of detoxifying enzymes. Silencing JNK expression in mouse lungs using adenoviral shRNA inhibited JNK activation and Nrf2 phosphorylation, promoted ARE-driven gene expression, and reduced pulmonary injury. Furthermore, we found that the 452-515 amino acid region within the Neh1 domain of Nrf2 was required for its interaction with P-JNK. We demonstrated that Nrf2 was an important P-JNK target in fly ash-induced pulmonary toxicity. JNK phosphorylated Nrf2, leading to a dysfunction of the Nrf2-mediated defence system.
Collapse
Affiliation(s)
- Jingwen Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention of the Ministry of Education), and Department of Pharmacology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, PR China
| | - Kaihua Liu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention of the Ministry of Education), and Department of Pharmacology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, PR China
| | - Xiuwen Tang
- Department of Biochemistry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, PR China.
| | - Xiu Jun Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention of the Ministry of Education), and Department of Pharmacology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, PR China.
| |
Collapse
|
4
|
Cheng SYH, Hsu YC, Cheng SP. An ecological analysis of associations between ambient air pollution and cancer incidence rates in Taiwan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:29162-29173. [PMID: 38565820 DOI: 10.1007/s11356-024-33145-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Air pollution is deemed a human carcinogen and can be linked to certain types of cancer other than lung cancer. The present study aimed to investigate the pollutant-cancer associations in a population-level cohort. We obtained the annual age-standardized incidence rates of 28 different cancer types between 2015 to 2019 from the Taiwan Cancer Registry. Outdoor concentrations of particulate matter with a diameter of 10 μm or less (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), ground-level ozone (O3), and carbon monoxide (CO) between 2001 to 2010 were retrieved from the Taiwan Air Quality Monitoring Network. Weighted quantile sum (WQS) regression models were used to determine the combined effects of five air pollutants on the relationship to cancer incidence rates after controlling for sex ratio, age, average disposable income per household, overweight/obesity prevalence, current smoking rate, and drinking rate. Trend analyses showed that NO2 and CO concentrations tended to decrease, while SO2 concentrations increased in some counties. WQS regression analyses revealed significantly positive correlations between air pollutants and liver cancer, lung and tracheal cancer, colorectal cancer, thyroid cancer, kidney cancer, and small intestine cancer. Altogether, the results from this ecological study unravel that exposure to ambient air pollution is associated with the incidence of several non-lung cancer types.
Collapse
Affiliation(s)
| | - Yi-Chiung Hsu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City, Taiwan
- Center for Astronautical Physics and Engineering, National Central University, Taoyuan City, Taiwan
| | - Shih-Ping Cheng
- Department of Surgery, MacKay Memorial Hospital and MacKay Medical College, Taipei, Taiwan.
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan.
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
5
|
Ashraf SA, Mahmood D, Elkhalifa AEO, Siddiqui AJ, Khan MI, Ashfaq F, Patel M, Snoussi M, Kieliszek M, Adnan M. Exposure to pesticide residues in honey and its potential cancer risk assessment. Food Chem Toxicol 2023; 180:114014. [PMID: 37659576 DOI: 10.1016/j.fct.2023.114014] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/14/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Honey is the most recognized natural food by-product derived from flower nectar and the upper aero-digestive tract of the honeybees. Significance of honey for its medicinal importance are well-documented in the world's oldest medical literatures. However, the current urbanization, environmental contaminations and changes in agricultural, as well as apiculture practices has led to various types of contaminations in honey. Among all, pesticide contamination has become one of the major issues worldwide. This review focuses on the recent updates concerning pesticides occurrence in honey, as well as how the repeated use and long-term exposure to honey contaminated with pesticide residues could affect the human physiological functions, possibly leading to the development of various cancers. Our findings suggests that uncontrolled use of pesticides in farming and apiculture practices leads to the occurrence of pesticides residues in honey. Therefore, regular consumption of such honey will pose a serious threat to human health, since most of the pesticides has been reported as potential carcinogens. This review will draw the attention of honey consumers, scientific communities, apiculture farmers, as well as governing bodies to strictly monitor the pesticide usage in floriculture, agriculture as well as other related practices.
Collapse
Affiliation(s)
- Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia.
| | - Danish Mahmood
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, P.O. Box 5888, Unaizah, 51911, Saudi Arabia
| | - Abd Elmoneim O Elkhalifa
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Ha'il, Ha'il, P.O. Box 2440, Saudi Arabia
| | - Mohammad Idreesh Khan
- Department of Clinical Nutrition, College of Applied Health Sciences in Ar Rass, Qassim University, ArRass, 51921, Saudi Arabia
| | - Fauzia Ashfaq
- Clinical Nutrition Department, Applied Medical Sciences College, Jazan University, Jazan, 82817, Saudi Arabia
| | - Mitesh Patel
- Research and Development Cell, Department of Biotechnology, Parul Institute of Applied Sciences, Parul University, Vadodara, 391760, India
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Ha'il, Ha'il, P.O. Box 2440, Saudi Arabia
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, 02-776, Warsaw, Poland
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, Ha'il, P.O. Box 2440, Saudi Arabia.
| |
Collapse
|
6
|
Dehghani S, Moshfeghinia R, Ramezani M, Vali M, Oskoei V, Amiri-Ardekani E, Hopke P. Exposure to air pollution and risk of ovarian cancer: a review. REVIEWS ON ENVIRONMENTAL HEALTH 2023; 38:439-450. [PMID: 35575767 DOI: 10.1515/reveh-2021-0129] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 04/15/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES Exposure to air pollution has destructive health consequences and a potential role in ovarian cancer etiology. We conducted a systematic review of the studies assessing the associations between ovarian malignancy and exposure to air pollutants. CONTENT The included studies were categorized based on types of measured ambient air pollutants, including particulate matter (five studies), gases (two studies), air pollutant mixtures (eight studies), and traffic indicators for air pollution (only one study). Because of the heterogeneity of quantitative data of the reviewed studies, we qualitatively reviewed the air pollution role in ovarian cancer risk with representing incidence and/or the mortality rate of ovarian cancer in related with air pollution. Nine studies were ecological study design. Except for one, all studies confirmed a positive correlation between exposure to ambient air pollution (AAP) and increased ovarian cancer risks. SUMMARY We concluded that prolonged air pollution exposure through possible mechanisms, estrogen-like effects, and genetic mutations might affect ovarian tumorigenesis. This research surveyed the limitations of the previous studies, including issues with ambient air pollution surveillance and assessing the exposure, determining the air pollution sources, data analysis approaches, and study designs. OUTLOOK Finally, the authors provide suggestions for future environmental epidemiological inquiries on the impact of exposure to ambient air pollution on ovarian malignancy.
Collapse
Affiliation(s)
- Samaneh Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Moshfeghinia
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- MPH Department, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsan Ramezani
- Assistant Professor of Emergency Medicine, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Mohebat Vali
- Department of Epidemiology, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahide Oskoei
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Amiri-Ardekani
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Association of Indigenous Knowledge, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Phytopharmaceutical (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Philip Hopke
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Institute for a Sustainable Environment, Clarkson University, Potsdam, NY, USA
| |
Collapse
|
7
|
Niechoda A, Milewska K, Roslan J, Ejsmont K, Holownia A. Cell cycle-specific phosphorylation of p53 protein in A549 cells exposed to cisplatin and standardized air pollutants. Front Physiol 2023; 14:1238150. [PMID: 37645562 PMCID: PMC10460999 DOI: 10.3389/fphys.2023.1238150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023] Open
Abstract
Exposure to particulate matter is associated with DNA damage and the risk of lung cancer. Protein p53 is activated by multi-site phosphorylation in the early stages of DNA damage and affects cell outcome. Our study aimed to assess the effect of (100 µg/mL-1/24 h) standardized air pollutants: carbon black (CB), urban dust (UD), and nanoparticle carbon black (NPCB) on cell cycle, DNA damage and 53 phosphorylation at Ser 9, Ser 20, Ser 46, and Ser 392 in proliferating and quiescent A549 cells and in cells that survived cisplatin (CisPT) exposure. Phosphorylated p53 was quantified in cell subpopulations by flow cytometry using specific fluorochrome-tagged monoclonal antibodies and analysis of bivariate fluorescence distribution scatterplots. CisPT, UD and NPCB increased site-specific p53 phosphorylation producing unique patterns. NPCB activated all sites irrespectively on the cell cycle, while the UD was more selective. p53 Ser 9-P and p53 Ser 20-P positively correlated with the numbers of CisPT-treated cells at G0/G1, and NPCB and NPCB + CisPT produced a similar effect. A positive correlation and integrated response were also found between Ser 20-P and Ser 392-P in resting A549 cells treated with NPCB and CisPT but not UD. Interdependence between the expression of p53 phosphorylated at Ser 20, and Ser 392 and cell cycle arrest show that posttranslational alterations are related to functional activation. Our data suggest that p53 protein phosphorylation in response to specific DNA damage is driven by multiple independent and integrated pathways to produce functional activation critical in cancer prevention and treatment.
Collapse
Affiliation(s)
| | | | | | | | - Adam Holownia
- Department of Pharmacology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
8
|
Dummer TJB, Yu X, Cui Y, Nauta L, Saint-Jacques N, Sweeney Magee M, Rainham DGC. Traffic-Related Air Pollution and Risk of Lung, Breast, and Urinary Tract Cancer in Halifax, Nova Scotia. J Occup Environ Med 2023; 65:e485-e490. [PMID: 37072926 DOI: 10.1097/jom.0000000000002867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
OBJECTIVES We assessed the association of traffic-related air pollution (TRAP) with the incidence of lung, breast, and urinary tract cancer in Halifax, Nova Scotia. METHODS Our case-control study included 2315 cancers and 8501 age-sex-matched controls. Land-use regression was used to estimate TRAP concentrations. Logistic regression was used to assess cancer risk in relation to TRAP, adjusting for community social and material deprivation. RESULTS There was no association between the risk of lung, breast, or urinary tract cancer in relation to TRAP. Lung cancer risk was significantly increased in the most deprived communities, whereas breast cancer risk was highest in the least deprived communities. CONCLUSIONS In a city characterized by low levels of ambient air pollution, there was no evidence of a linear increased lung, breast, or urinary tract cancer risk in relation to TRAP.
Collapse
Affiliation(s)
- Trevor J B Dummer
- From the School of Population and Public Health, University of British Columbia, Vancouver, Canada (T.J.B.D., X.Y., M.S.M.); Population Cancer Research Program, Dalhousie University, Halifax, Canada (Y.C., L.N.); Nova Scotia Health Cancer Care Program, Nova Scotia Health, Halifax, Canada (N.S.-J.); and Healthy Populations Institute and School of Health and Human Performance, Faculty of Health, Dalhousie University, Halifax, Canada (D.G.C.R.)
| | | | | | | | | | | | | |
Collapse
|
9
|
Vargas VMF, da Silva Júnior FMR, Silva Pereira TD, Silva CSD, Coronas MV. A comprehensive overview of genotoxicity and mutagenicity associated with outdoor air pollution exposure in Brazil. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:172-199. [PMID: 36775848 DOI: 10.1080/10937404.2023.2175092] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
This review examined the mutagenicity and genotoxicity associated with exposure to outdoor air pollutants in Brazil. A search was performed on the Web of Science database using a combination of keywords that resulted in 134 articles. After applying exclusion criteria, a total of 75 articles were obtained. The articles were classified into three categories: (1) studies with plants and animals, (2) in vitro studies, and (3) human biomonitoring. The investigations were conducted in 11 of 27 Brazilian states with the highest prevalence in the southeast and south regions. Only 5 investigations focused on the effects of burning biomass on the quality of outdoor air. Plants, especially Tradescantia pallida, were the main air pollution biomonitoring tool. When available, a significant association between levels of air pollutants and genetic damage was described. Among the in vitro studies, Salmonella/microsome is the most used test to evaluate mutagenesis of outdoor air in Brazil (n = 26). Human biomonitoring studies were the least frequent category (n = 18). Most of the investigations utilized micronucleus bioassay, in oral mucosa cells (n = 15) and lymphocytes (n = 5), and the comet assay (n = 6). The analysis in this study points to the existence of gaps in genotoxicity studies and our findings indicate that future studies need to address the variety of potential sources of pollution existing in Brazil. In addition to extent of the impacts, consideration should be given to the enormous Brazilian biodiversity, as well as the determination of the role of socioeconomic inequality of the population in the observed outcomes.
Collapse
Affiliation(s)
- Vera Maria Ferrão Vargas
- Programa de Pós-graduação em Ecologia, Universidade Federal do Rio Grande do Sul (UFRGS). Av. Bento Gonçalves, Porto Alegre, RS, Brazil
| | | | - Tatiana da Silva Pereira
- Laboratório de Aquicultura de Peixes Ornamentais do Xingu, Universidade Federal do Pará (UFPA), Altamira, PA, Brazil
| | - Cristiane Silva da Silva
- Programa de Pós-graduação em Ecologia, Universidade Federal do Rio Grande do Sul (UFRGS). Av. Bento Gonçalves, Porto Alegre, RS, Brazil
- Instituto Federal de Educação, Ciênciae Tecnologia do Rio Grande do Sul (IFRS), Canoas, RS, Brazil
| | - Mariana Vieira Coronas
- Coordenaç'ão Acad"êmica, Universidade Federal de Santa Maria (UFSM), Cachoeira do Sul, RS, Brazil
| |
Collapse
|
10
|
Ojeda Sánchez C, García-Pérez J, Gómez-Barroso D, Domínguez-Castillo A, Pardo Romaguera E, Cañete A, Ortega-García JA, Ramis R. Exploring Urban Green Spaces' Effect against Traffic Exposure on Childhood Leukaemia Incidence. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2506. [PMID: 36767873 PMCID: PMC9915143 DOI: 10.3390/ijerph20032506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Several environmental factors seem to be involved in childhood leukaemia incidence. Traffic exposure could increase the risk while urban green spaces (UGS) exposure could reduce it. However, there is no evidence how these two factors interact on this infant pathology. OBJECTIVES to evaluate how residential proximity to UGS could be an environmental protective factor against traffic exposure on childhood leukaemia incidence. METHODS A population-based case control study was conducted across thirty Spanish regions during the period 2000-2018. It included 2526 incident cases and 15,156, individually matched by sex, year-of-birth, and place-of-residence. Using the geographical coordinates of the participants' home residences, a 500 m proxy for exposure to UGS was built. Annual average daily traffic (AADT) was estimated for all types of roads 100 m near the children's residence. Odds ratios (ORs) and 95% confidence intervals (95% CIs), UGS, traffic exposure, and their possible interactions were calculated for overall childhood leukaemia, and the acute lymphoblastic (ALL) and acute myeloblastic leukaemia (AML) subtypes, with adjustment for socio-demographic covariates. RESULTS We found an increment of childhood leukaemia incidence related to traffic exposure, for every 100 AADT increase the incidence raised 1.1% (95% CI: 0.58-1.61%). UGS exposure showed an incidence reduction for the highest exposure level, Q5 (OR = 0.63; 95% CI = 0.54-0.72). Regression models with both traffic exposure and UGS exposure variables showed similar results but the interaction was not significant. CONCLUSIONS Despite their opposite effects on childhood leukaemia incidence individually, our results do not suggest a possible interaction between both exposures. This is the first study about the interaction of these two environmental factors; consequently, it is necessary to continue taking into account more individualized data and other possible environmental risk factors involved.
Collapse
Affiliation(s)
| | - Javier García-Pérez
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Instituto de Salud Carlos III (Carlos III Institute of Health), 28029 Madrid, Spain
- Centre for Biomedical Research in Epidemiology & Public Health (CIBER Epidemiología y Salud Pública—CIBERESP), 28029 Madrid, Spain
| | - Diana Gómez-Barroso
- Centre for Biomedical Research in Epidemiology & Public Health (CIBER Epidemiología y Salud Pública—CIBERESP), 28029 Madrid, Spain
- National Center for Epidemiology, Instituto de Salud Carlos III (Carlos III Institute of Health), 28029 Madrid, Spain
| | - Alejandro Domínguez-Castillo
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Instituto de Salud Carlos III (Carlos III Institute of Health), 28029 Madrid, Spain
- Centre for Biomedical Research in Epidemiology & Public Health (CIBER Epidemiología y Salud Pública—CIBERESP), 28029 Madrid, Spain
| | - Elena Pardo Romaguera
- Spanish Registry of Childhood Tumours (RETI-SEHOP), University of Valencia, 46010 Valencia, Spain
| | - Adela Cañete
- Spanish Registry of Childhood Tumours (RETI-SEHOP), University of Valencia, 46010 Valencia, Spain
| | - Juan Antonio Ortega-García
- Pediatric Environmental Health Speciality Unit, Department of Paediatrics, Environment and Human Health (EH2) Lab., Institute of Biomedical Research, IMIB-Arrixaca, Clinical University Hospital Virgen de la Arrixaca, 30120 Murcia, Spain
- European and Latin American Environment, Survival and Childhood Cancer Network (ENSUCHICA), 30120 Murcia, Spain
| | - Rebeca Ramis
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Instituto de Salud Carlos III (Carlos III Institute of Health), 28029 Madrid, Spain
- Centre for Biomedical Research in Epidemiology & Public Health (CIBER Epidemiología y Salud Pública—CIBERESP), 28029 Madrid, Spain
- European and Latin American Environment, Survival and Childhood Cancer Network (ENSUCHICA), 30120 Murcia, Spain
| |
Collapse
|
11
|
Cazzolla Gatti R, Di Paola A, Monaco A, Velichevskaya A, Amoroso N, Bellotti R. The spatial association between environmental pollution and long-term cancer mortality in Italy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158439. [PMID: 36113788 DOI: 10.1016/j.scitotenv.2022.158439] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/18/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Tumours are nowadays the second world‑leading cause of death after cardiovascular diseases. During the last decades of cancer research, lifestyle and random/genetic factors have been blamed for cancer mortality, with obesity, sedentary habits, alcoholism, and smoking contributing as supposed major causes. However, there is an emerging consensus that environmental pollution should be considered one of the main triggers. Unfortunately, all this preliminary scientific evidence has not always been followed by governments and institutions, which still fail to pursue research on cancer's environmental connections. In this unprecedented national-scale detailed study, we analyzed the links between cancer mortality, socio-economic factors, and sources of environmental pollution in Italy, both at wider regional and finer provincial scales, with an artificial intelligence approach. Overall, we found that cancer mortality does not have a random or spatial distribution and exceeds the national average mainly when environmental pollution is also higher, despite healthier lifestyle habits. Our machine learning analysis of 35 environmental sources of pollution showed that air quality ranks first for importance concerning the average cancer mortality rate, followed by sites to be reclaimed, urban areas, and motor vehicle density. Moreover, other environmental sources of pollution proved to be relevant for the mortality of some specific cancer types. Given these alarming results, we call for a rearrangement of the priority of cancer research and care that sees the reduction and prevention of environmental contamination as a priority action to put in place in the tough struggle against cancer.
Collapse
Affiliation(s)
- Roberto Cazzolla Gatti
- Department of Biological Sciences, Geological and Environmental (BiGeA), Alma Mater Studiorum - University of Bologna, 40126 Bologna, Italy
| | - Arianna Di Paola
- Institute for BioEconomy, National Research Council of Italy (IBE-CNR), 00100 Rome, Italy
| | - Alfonso Monaco
- Dipartimento Interateneo di Fisica "M. Merlin", Università degli Studi di Bari "A. Moro", 70126 Bari, Italy; Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70125 Bari, Italy.
| | | | - Nicola Amoroso
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70125 Bari, Italy; Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "A. Moro", 70125 Bari, Italy
| | - Roberto Bellotti
- Dipartimento Interateneo di Fisica "M. Merlin", Università degli Studi di Bari "A. Moro", 70126 Bari, Italy; Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70125 Bari, Italy
| |
Collapse
|
12
|
Iaria C, Ieni A, Cicero L, Briguglio G, Di Maria S, Abbate JM. Primary Ovarian Leiomyoma in a White Tiger ( Panthera tigris). Vet Sci 2022; 9:vetsci9120702. [PMID: 36548863 PMCID: PMC9785375 DOI: 10.3390/vetsci9120702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Ovarian leiomyomas are very rare in domestic cats and occasionally mentioned in studies reporting general pathological findings and neoplasm occurrence in non-domestic large felids. This report describes a case of ovarian leiomyoma in a 22-year-old white tiger (Panthera tiger), treated with deslorelin implants, detailing pathological and immunohistochemical characteristics. Gross examination revealed a markedly enlarged, firm, whitish right ovary with a multinodular appearance. On a cut surface, multiple brown-fluid-filled cysts interspersed with solid grey-to-white areas were observed. On histopathological examination, the ovary was enlarged and replaced by a densely cellular neoplasm composed of spindle cells arranged in fascicles, or occasionally in a herringbone pattern, embedded in a large stroma of collagenous connective tissue. Neoplastic cells showed mild nuclear atypia and pleomorphism and low mitotic rate. Immunohistochemistry confirmed smooth muscle origin of the neoplasm, and cells were positive for vimentin, alpha-smooth muscle actin, desmin, and caldesmon. A low rate (<1%) of Ki-67-positive cells was observed. Although rare, ovarian leiomyoma should be considered when a mass is present in the ovary of a tiger with reproductive failure. Because cancer of the reproductive system impacts on species conservation by affecting reproduction, regular health monitoring is warranted to support wildlife conservation. Finally, the adverse effects associated with long-term treatment with synthetic GnRH analogues as contraceptives in non-domestic felids are worthy of future investigation.
Collapse
Affiliation(s)
- Carmelo Iaria
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Polo Universitario Papardo, 98166 Messina, Italy
| | - Antonio Ieni
- Department of Human Pathology of Adult and Evolutive Age “Gaetano Barresi”, Section of Pathology, University of Messina, 98125 Messina, Italy
| | - Luca Cicero
- Zooprophylactic Institute of Sicily “A. Mirri” (IZS), 90129 Palermo, Italy
- Correspondence: (L.C.); (J.M.A.)
| | - Giovanni Briguglio
- Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 98168 Messina, Italy
| | | | - Jessica Maria Abbate
- Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 98168 Messina, Italy
- Correspondence: (L.C.); (J.M.A.)
| |
Collapse
|
13
|
Paital B, Das K. Spike in pollution to ignite the bursting of COVID-19 second wave is more dangerous than spike of SAR-CoV-2 under environmental ignorance in long term: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:85595-85611. [PMID: 34390474 PMCID: PMC8363867 DOI: 10.1007/s11356-021-15915-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/07/2021] [Indexed: 04/15/2023]
Abstract
Specific areas in many countries such as Italy, India, China, Brazil, Germany and the USA have witnessed that air pollution increases the risk of COVID-19 severity as particulate matters transmit the virus SARS-CoV-2 and causes high expression of ACE2, the receptor for spike protein of the virus, especially under exposure to NO2, SO2 and NOx emissions. Wastewater-based epidemiology of COVID-19 is also noticed in many countries such as the Netherlands, the USA, Paris, France, Australia, Spain, Italy, Switzerland China, India and Hungary. Soil is also found to be contaminated by the RNA of SARS-CoV-2. Activities including defecation and urination by infected people contribute to the source for soil contamination, while release of wastewater containing cough, urine and stool of infected people from hospitals and home isolation contributes to the source of SARS-CoV-2 RNA in both water and soil. Detection of the virus early before the outbreak of the disease supports this fact. Based on this information, spike in pollution is found to be more dangerous in long-term than the spike protein of SARS-CoV-2. It is because the later one may be controlled in future within months or few years by vaccination and with specific drugs, but the former one provides base for many diseases including the current and any future pandemics. Although such predictions and the positive effects of SARS-CoV-2 on environment was already forecasted after the first wave of COVID-19, the learnt lesson as spotlight was not considered as one of the measures for which 2nd wave has quickly hit the world.
Collapse
Grants
- ECR/2016/001984 Science and Engineering Research Board
- 1188/ST, Bhubaneswar, dated 01.03.17, ST- (Bio)-02/2017 Department of Biotechnology, DST, Govt. of Odisha, IN
- 36 Seed/2019/Philosophy-1, letter number 941/69/OSHEC/2019, dt 22.11.19 Department of Higher Education, Govt. of Odisha, IN
Collapse
Affiliation(s)
- Biswaranjan Paital
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, India.
| | - Kabita Das
- Department of Philosophy, Utkal University, Bhubaneswar, India
| |
Collapse
|
14
|
DeLouize AM, Eick G, Karam SD, Snodgrass JJ. Current and future applications of biomarkers in samples collected through minimally invasive methods for cancer medicine and population-based research. Am J Hum Biol 2022; 34:e23665. [PMID: 34374148 PMCID: PMC9894104 DOI: 10.1002/ajhb.23665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 02/04/2023] Open
Abstract
Despite advances in cancer medicine and research, invasive and potentially risky procedures such as biopsies, venous blood tests, imaging, colonoscopy, and pap smear tests are still primarily used for screening, staging, and assessing response to therapy. The development and interdisciplinary use of biomarkers from urine, feces, saliva, scent, and capillary blood collected with minimally invasive methods represents a potential opportunity for integration with biomarker analysis for cancers, both in clinical practice (e.g., in screening, treatment, and disease monitoring, and improved quality of life for patients) and population-based research (e.g., in epidemiology/public health, studies of social and environmental determinants, and evolutionary medicine). In this article, we review the scientific rationale, benefits, challenges, and potential opportunities for measuring cancer-related biomarkers in samples collected through minimally invasive methods.
Collapse
Affiliation(s)
| | - Geeta Eick
- Department of Anthropology, University of Oregon, Eugene, Oregon, USA
| | - Sana D. Karam
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - J. Josh Snodgrass
- Department of Anthropology, University of Oregon, Eugene, Oregon, USA
- Center for Global Health, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
15
|
Cheng I, Yang J, Tseng C, Wu J, Shariff-Marco S, Park SSL, Conroy SM, Inamdar PP, Fruin S, Larson T, Setiawan VW, DeRouen MC, Gomez SL, Wilkens LR, Le Marchand L, Stram DO, Samet J, Ritz B, Wu AH. Traffic-related Air Pollution and Lung Cancer Incidence: The California Multiethnic Cohort Study. Am J Respir Crit Care Med 2022; 206:1008-1018. [PMID: 35649154 PMCID: PMC9801994 DOI: 10.1164/rccm.202107-1770oc] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 05/31/2022] [Indexed: 01/07/2023] Open
Abstract
Rationale: Although the contribution of air pollution to lung cancer risk is well characterized, few studies have been conducted in racially, ethnically, and socioeconomically diverse populations. Objectives: To examine the association between traffic-related air pollution and risk of lung cancer in a racially, ethnically, and socioeconomically diverse cohort. Methods: Among 97,288 California participants of the Multiethnic Cohort Study, we used Cox proportional hazards regression to examine associations between time-varying traffic-related air pollutants (gaseous and particulate matter pollutants and regional benzene) and lung cancer risk (n = 2,796 cases; average follow-up = 17 yr), adjusting for demographics, lifetime smoking, occupation, neighborhood socioeconomic status (nSES), and lifestyle factors. Subgroup analyses were conducted for race, ethnicity, nSES, and other factors. Measurements and Main Results: Among all participants, lung cancer risk was positively associated with nitrogen oxide (hazard ratio [HR], 1.15 per 50 ppb; 95% confidence interval [CI], 0.99-1.33), nitrogen dioxide (HR, 1.12 per 20 ppb; 95% CI, 0.95-1.32), fine particulate matter with aerodynamic diameter <2.5 μm (HR, 1.20 per 10 μg/m3; 95% CI, 1.01-1.43), carbon monoxide (HR, 1.29 per 1,000 ppb; 95% CI, 0.99-1.67), and regional benzene (HR, 1.17 per 1 ppb; 95% CI, 1.02-1.34) exposures. These patterns of associations were driven by associations among African American and Latino American groups. There was no formal evidence for heterogeneity of effects by nSES (P heterogeneity > 0.21), although participants residing in low-SES neighborhoods had increased lung cancer risk associated with nitrogen oxides, and no association was observed among those in high-SES neighborhoods. Conclusions: These findings in a large multiethnic population reflect an association between lung cancer and the mixture of traffic-related air pollution and not a particular individual pollutant. They are consistent with the adverse effects of air pollution that have been described in less racially, ethnically, and socioeconomically diverse populations. Our results also suggest an increased risk of lung cancer among those residing in low-SES neighborhoods.
Collapse
Affiliation(s)
- Iona Cheng
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
- University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Juan Yang
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
| | - Chiuchen Tseng
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Jun Wu
- Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, Irvine, California
| | - Salma Shariff-Marco
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
- University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Sung-shim Lani Park
- Population Sciences in the Pacific Program (Cancer Epidemiology), University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Shannon M. Conroy
- Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis, California
| | - Pushkar P. Inamdar
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
| | - Scott Fruin
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Timothy Larson
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington
| | - Veronica W. Setiawan
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Mindy C. DeRouen
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
- University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Scarlett Lin Gomez
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
- University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Lynne R. Wilkens
- Population Sciences in the Pacific Program (Cancer Epidemiology), University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Loïc Le Marchand
- Population Sciences in the Pacific Program (Cancer Epidemiology), University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Daniel O. Stram
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Jonathan Samet
- Department of Epidemiology and
- Department of Environmental and Occupational Health, Colorado School of Public Health, Aurora, Colorado; and
| | - Beate Ritz
- Department of Epidemiology, School of Public Health, University of California, Los Angeles, Los Angeles, California
| | - Anna H. Wu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
16
|
d'Aquino I, Piegari G, Casciaro SM, Prisco F, Rosato G, Silvestre P, Degli Uberti B, Capasso M, Laricchiuta P, Paciello O, Russo V. An Overview of Neoplasia in Captive Wild Felids in Southern Italy Zoos. Front Vet Sci 2022; 9:899481. [PMID: 35619605 PMCID: PMC9127987 DOI: 10.3389/fvets.2022.899481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to evaluate the frequency of neoplasms in captive wild felids in Southern Italy zoos over a 13-year period (2008–2021) and to investigate macroscopic and histologic tumor findings in these animals. A total of 24 cases were necropsied, 9 males and 15 females, with age ranging from 6 to 19 years, including 12 tigers (Panthera tigris), 7 leopards (Panthera pardus), 4 lions (Panthera leo), and 1 black jaguar (Panthera onca). Diagnosis of neoplasm was made in 14/24 cases (58.3%). Tumors diagnosed were two cholangiocarcinomas, two hemangiosarcomas of the liver, two uterine leiomyomas, a renal adenocarcinoma, an adrenal gland adenoma, a thyroid carcinoma, an oral squamous cell carcinoma, an osteoma, a meningioma, a mesothelioma, an esophageal leiomyosarcoma, a muscoloskeletal leiomyosarcoma and a thyroid adenoma. The malignant and benign tumors were 62.5 and 37.5%, respectively. Among malignant tumors, no metastasis was observed in 50% of cases; in 10% of cases metastasis involved only regional lymph nodes; and distant metastases were found in 40% of cases. Based on our findings, the liver was the most frequent primary tumor site (25%). The high rates of malignant and widely metastatic neoplasms suggest the importance of active monitoring and management of neoplasia in these threatened and endangered species.
Collapse
Affiliation(s)
- Ilaria d'Aquino
- Unit of Pathology, Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
- *Correspondence: Ilaria d'Aquino
| | - Giuseppe Piegari
- Unit of Pathology, Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
- Centro Regionale per l'Igiene Urbana Veterinaria (CRIUV), Naples, Italy
| | - Silvia Mariagiovanna Casciaro
- Unit of Pathology, Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
- Centro Regionale per l'Igiene Urbana Veterinaria (CRIUV), Naples, Italy
| | - Francesco Prisco
- Unit of Pathology, Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Guido Rosato
- Centro Regionale per l'Igiene Urbana Veterinaria (CRIUV), Naples, Italy
| | | | | | | | | | - Orlando Paciello
- Unit of Pathology, Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
- Centro Regionale per l'Igiene Urbana Veterinaria (CRIUV), Naples, Italy
| | - Valeria Russo
- Unit of Pathology, Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| |
Collapse
|
17
|
Kärkelä T, Tapper U, Kajolinna T. Comparison of 3R4F cigarette smoke and IQOS heated tobacco product aerosol emissions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:27051-27069. [PMID: 34935111 PMCID: PMC8989957 DOI: 10.1007/s11356-021-18032-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 12/06/2021] [Indexed: 06/05/2023]
Abstract
In this study, the smoke from a 3R4F research cigarette and the aerosol generated by the Heated Tobacco Product IQOS, also referred to as the Tobacco Heating System (THS) 2.2 in the literature, were compared. The objective was to characterize the gas and suspended particulate matter compositions in the mainstream smoke from a combusted 3R4F cigarette and in the aerosol generated by IQOS during use. The results indicated that the determined aerosol emissions from IQOS were notably lower than in the cigarette smoke under a Health Canada Intense puffing regimen. As an interesting detail in this study, the maximum nicotine concentrations within a puff were practically the same in both the 3R4F smoke and the IQOS aerosol, but the average concentration was lower for the IQOS aerosol. For both products, water constituted a significant proportion of the particulate matter, although it was substantially higher in the IQOS aerosol. Furthermore, combustion-related solid particles observed in the 3R4F smoke contained elements such as carbon, oxygen, potassium, calcium, and silicon. In contrast, IQOS aerosol particulate matter was composed of semi-volatile organic constituents with some minor traces of oxygen and silicon. The particulate matter found in the IQOS aerosol was volatile, which was especially noticeable when exposed to the electron beam of the scanning electron microscope (SEM) and Transmission Electron Microscope (TEM).
Collapse
Affiliation(s)
- Teemu Kärkelä
- Department of Nuclear Energy, VTT Technical Research Centre of Finland Ltd., Kivimiehentie 3, 02044 VTT, Espoo, Finland.
| | - Unto Tapper
- Department of Nuclear Energy, VTT Technical Research Centre of Finland Ltd., Kivimiehentie 3, 02044 VTT, Espoo, Finland
| | - Tuula Kajolinna
- Department of Mobility and Transport, VTT Technical Research Centre of Finland Ltd., Tietotie 4c, 02044 VTT, Espoo, Finland
| |
Collapse
|
18
|
Lee HC, Lu YH, Huang YL, Huang SL, Chuang HC. Air Pollution Effects to the Subtype and Severity of Lung Cancers. Front Med (Lausanne) 2022; 9:835026. [PMID: 35433740 PMCID: PMC9008538 DOI: 10.3389/fmed.2022.835026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/25/2022] [Indexed: 01/06/2023] Open
Abstract
The correlation between lung cancer incidence and air pollution has been established in previous research, but the other detail impact of air pollution to lung cancer is still under investigation. This study aimed to explore if air pollution affected the subtype and staging of lung cancer. At the same time, we investigated the effect of individual pollutant to subtypes and staging. Single center data were extracted from January 1, 2020 to June 30, 2020 using the search engine in the radiology reporting system of Shuang-Ho Hospital, New Taipei City, Taiwan. There were 169 patients finally included for analysis. The nationwide statistics data of lung cancer were extracted from the Taiwan Cancer Registry. The air quality data were extracted from the Taiwan air quality monitoring network. Comparison of the single center lung cancer characteristics with nationwide data was made using the chi-square test. Comparison of the air quality of the living space of the included cases with the average quality in Taiwan in 2020 was made using the Z-test. The result shows there was significant difference of cancer subtype and staging between the regional data and the nationwide data. The regional data demonstrated a tendency of higher incidence of adenocarcinoma and advanced stage disease. As for air quality, there was no significant difference. The regional PM10 level presented generally lower levels in regional data as compared to Taiwan in 2020 with near statistically significant P-value (0.052); the regional NO2 level presented generally higher levels in regional data as compared to Taiwan in 2020 with near statistically significant P-value (0.060). The results indicate that air pollution might be related to increase in adenocarcinoma ratio and advanced stage of lung cancer at initial presentation. The NO2 was probably the leading pollutant causing this trend.
Collapse
Affiliation(s)
- Hung-Chi Lee
- Department of Radiology, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yueh-Hsun Lu
- Department of Radiology, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- *Correspondence: Yueh-Hsun Lu
| | - Yen-Lin Huang
- Department of Radiology, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shih Li Huang
- Medical Department, Tai An Hospital Shuang Shi Branch, Taichung, Taiwan
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
19
|
Aryl Hydrocarbon Receptor (AhR) Limits the Inflammatory Responses in Human Lung Adenocarcinoma A549 Cells via Interference with NF-κB Signaling. Cells 2022; 11:cells11040707. [PMID: 35203356 PMCID: PMC8870046 DOI: 10.3390/cells11040707] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/01/2022] [Accepted: 02/14/2022] [Indexed: 02/08/2023] Open
Abstract
Apart from its role in the metabolism of carcinogens, the aryl hydrocarbon receptor (AhR) has been suggested to be involved in the control of inflammatory responses within the respiratory tract. However, the mechanisms responsible for this are only partially known. In this study, we used A549 cell line, as a human model of lung alveolar type II (ATII)-like cells, to study the functional role of the AhR in control of inflammatory responses. Using IL-1β as an inflammation inducer, we found that the induction of cyclooxygenase-2 and secretion of prostaglandins, as well as expression and release of pro-inflammatory cytokines, were significantly higher in the AhR-deficient A549 cells. This was linked with an increased nuclear factor-κB (NF-κB) activity, and significantly enhanced phosphorylation of its regulators, IKKα/β, and their target IκBα, in the AhR-deficient A549 cells. In line with this, when we mimicked the exposure to a complex mixture of airborne pollutants, using an organic extract of reference diesel exhaust particle mixture, an exacerbated inflammatory response was observed in the AhR-deficient cells, as compared with wild-type A549 cells. Together, the present results indicate that the AhR may act as a negative regulator of the inflammatory response in the A549 model, via a direct modulation of NF-κB signaling. Its role(s) in the control of inflammation within the lung alveoli exposed to airborne pollutants, especially those which simultaneously activate the AhR, thus deserve further attention.
Collapse
|
20
|
Singh N, Arora N. Diesel exhaust exposure in mice induces pulmonary fibrosis by TGF-β/Smad3 signaling pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150623. [PMID: 34610407 DOI: 10.1016/j.scitotenv.2021.150623] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Epidemiological studies suggest increased risk of lung cancer associated with diesel exhaust (DE) exposure. However, DE-induced lung fibrosis may lead to cancer and needs investigation. OBJECTIVES To study the mechanism involved in the initiation of DE- induced lung fibrosis. METHODS C57BL/6 mice were exposed to DE for 30 min/day for 5 days/weeks for 8 weeks. Pulmonary function test was performed to measure lung function. Mice were euthanized to collect BALF, blood, and lung tissue. BALF was used for cell count and cytokine analysis. Lung tissue slides were stained to examine structural integrity. RNA from lung tissue was used for RT-PCR. Immunoblots were performed to study fibrosis and EMT pathway. RESULTS Mice exposed to DE increase lung resistance and tissue elastance with decrease in inspiratory capacity (p < 0.05) suggesting lung function impairment. BALF showed significantly increased macrophages, neutrophils and monocytes (p < 0.01). Additionally, there was an increase in inflammation and alveolar wall thickening in lungs (p < 0.01) correlates with cellular infiltration. Macrophages had black soot deposition in lung tissue of DE exposed mice. Lung section staining revealed increase in mucus producing goblet cells for clearance of soot in lung. DE exposed lung showed increased collagen deposition and hydroxyproline residue (p < 0.01). Repetitive exposure of DE in mice lead to tissue remodeling in lung, demonstrated by fibrotic foci and smooth muscles. A significant increase in α-SMA and fibronectin (p < 0.05) in lung indicate progression of pulmonary fibrosis. TGF-β/Smad3 signaling was activated with increase in P-smad3 expression in DE exposed mice. Decreased expression of E-cadherin and increased vimentin (p < 0.05) in lungs of DE exposed mice indicate epithelial to mesenchymal transition. CONCLUSION DE exposure to mice induced lung injury and pulmonary fibrosis thereby remodeling tissue. The study demonstrates TGF-β/SMAD3 pathway involvement with an activation of EMT in DE exposed mice.
Collapse
Affiliation(s)
- Naresh Singh
- Allergy and Immunology Section, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Naveen Arora
- Allergy and Immunology Section, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
21
|
Saleh SAK, Adly HM, Aljahdali IA, Khafagy AA. Correlation of Occupational Exposure to Carcinogenic Polycyclic Aromatic Hydrocarbons (cPAHs) and Blood Levels of p53 and p21 Protiens. Biomolecules 2022; 12:biom12020260. [PMID: 35204761 PMCID: PMC8961663 DOI: 10.3390/biom12020260] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/01/2022] [Indexed: 01/27/2023] Open
Abstract
Carcinogenic polycyclic aromatic hydrocarbons (cPAHs) are considered the most serious cancer risk. This study was conducted to assess the effect of acute exposure to cPAHs on cancer biomarker proteins p53 and p21 in occupational workers during the hajj season in Makkah. One hundred five participants were recruited, including occupational workers and apparently healthy individuals; air samples were collected using personal sample monitors to identify the subjects’ exposure to cPAHs. Quantitative analyses of benzo(a)anthracene (BaA), benzo(b)fluoranthene (BbF), benzo(a)pyrene (BaP), dibenzo(a,h)fluronathene (DBA), indeno(1,2,3-c,d)pyrene (IND) and chyresene (CRY) were carried out using the GC/Mass technique. Serum p53 and p21 proteins were analyzed using ELISA. The ambient air samples collected by the occupationally exposed group were more highly polluted by cPAHs, (90.25 ± 14.1) ng/m3, than those of the unexposed control groups, (30.12 ± 5.56) ng/m3. The concentration of distributive cPAHs was markedly more elevated in the air samples of the exposed group than in those taken from the non-exposed group. The study results demonstrated significant links between short-term exposure to cPAHs and serum p53 and p21 levels. Serum p53 and p21 proteins potentially influence biomarkers when exposed to ambient air cPAHs.
Collapse
Affiliation(s)
- Saleh A. K. Saleh
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
- Oncology Diagnostic Unit, Faculty of Medicine, Ain Shams University, Cairo 11435, Egypt
| | - Heba M. Adly
- Community Medicine and Pilgrims Healthcare Department, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (I.A.A.); (A.A.K.)
- Correspondence:
| | - Imad A. Aljahdali
- Community Medicine and Pilgrims Healthcare Department, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (I.A.A.); (A.A.K.)
| | - Abdullah A. Khafagy
- Community Medicine and Pilgrims Healthcare Department, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (I.A.A.); (A.A.K.)
| |
Collapse
|
22
|
Roman C, Roman T, Arsene C, Bejan IG, Olariu RI. Gas-phase IR cross-sections and single crystal structures data for atmospheric relevant nitrocatechols. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120379. [PMID: 34571377 DOI: 10.1016/j.saa.2021.120379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
The gas-phase IR absorption cross sections for 3-nitrocatechol, 5-methyl-3-nitrocatechol, 4-nitrocatechol and 4-methyl-5-nitrocatechol were evaluated using the ESC-Q-UAIC (the environmental simulation chamber made of quartz from the "Alexandru Ioan Cuza" University of Iasi, Romania) photoreactor facilities. Specific infrared absorptions and integrated band intensities in the range of 650-4000 cm-1 were investigated by long path gas-phase FT-IR technique. Two different addition methods (solid and liquid transfer methods) of nitrocatechols into the reactor were employed in these investigations. All investigated nitrocatechols were synthesized and characterized by X-ray diffraction spectroscopy techniques beside traditional nuclear magnetic resonance (NMR) and infrared (IR) spectroscopy in order to evaluate their structure-properties relationship in gas and solid phase. This study reports for the first time the gas-phase infrared cross sections and the X-ray diffraction analysis for (methyl) nitrocatechols.
Collapse
Affiliation(s)
- Claudiu Roman
- Alexandru Ioan Cuza" University of Iasi, Faculty of Chemistry, 11 Carol I, Iasi 700506, Romania; Alexandru Ioan Cuza" University of Iasi, Integrated Center of Environmental Science Studies in the North Eastern Region - CERNESIM, 11 Carol I, Iasi 700506, Romania
| | - Tiberiu Roman
- Alexandru Ioan Cuza" University of Iasi, Integrated Center of Environmental Science Studies in the North Eastern Region - CERNESIM, 11 Carol I, Iasi 700506, Romania
| | - Cecilia Arsene
- Alexandru Ioan Cuza" University of Iasi, Faculty of Chemistry, 11 Carol I, Iasi 700506, Romania; Alexandru Ioan Cuza" University of Iasi, Integrated Center of Environmental Science Studies in the North Eastern Region - CERNESIM, 11 Carol I, Iasi 700506, Romania
| | - Iustinian-Gabriel Bejan
- Alexandru Ioan Cuza" University of Iasi, Faculty of Chemistry, 11 Carol I, Iasi 700506, Romania; Alexandru Ioan Cuza" University of Iasi, Integrated Center of Environmental Science Studies in the North Eastern Region - CERNESIM, 11 Carol I, Iasi 700506, Romania
| | - Romeo-Iulian Olariu
- Alexandru Ioan Cuza" University of Iasi, Faculty of Chemistry, 11 Carol I, Iasi 700506, Romania; Alexandru Ioan Cuza" University of Iasi, Integrated Center of Environmental Science Studies in the North Eastern Region - CERNESIM, 11 Carol I, Iasi 700506, Romania.
| |
Collapse
|
23
|
Guo Q, Li S, Wang X, Han HS, Yin XJ, Li JC. Paeoniflorin improves the in vitro maturation of benzo(a)pyrene treated porcine oocytes via effects on the sonic hedgehog pathway. Theriogenology 2021; 180:72-81. [PMID: 34953351 DOI: 10.1016/j.theriogenology.2021.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/20/2021] [Accepted: 12/15/2021] [Indexed: 10/19/2022]
Abstract
Benzo(a)pyrene (BaP) is a toxic substance that people are often exposed to. It has serious harmful effects on the body, and has a destructive effect on oocytes and cumulus cells. Here, we found that paeoniflorin (Pae), a traditional Chinese medicine monomer with antioxidant effects, decreased BaP-induced meiotic failure by increasing the activity of the Sonic hedgehog (SHH) signaling pathway and reducing the level of reactive oxygen species (ROS). We found that the in vitro maturation (IVM) rate was significantly increased (P < 0.05) in the 0.1 μM Pae and BaP (co-treatment) group compared with BaP group due to reduced ROS levels and increased mitochondrial membrane potential (ΔΨ) and ATP content. The mRNA expression levels of oocyte maturation and cumulus cell expansion-related genes were also significantly higher in the co-treatment group. To demonstrate the quality of oocytes, the development capacity of parthenogenetically activated (PA) and in vitro fertilization (IVF) embryos from different treatment groups oocytes were determined.The blastocyst formation rate was significantly higher in PA and IVF embryos derived from oocytes in the co-treatment group than in those derived from oocytes in the BaP group. To further confirm that the SHH signaling pathway was involved in causing these effects of Pae, we treated oocytes with Pae and BaP in the presence or absence of cyclopamine (Cy), an inhibitor of this pathway. Cy abolished the effects of Pae in BaP treated porcine oocytes. In conclusion, Pae improves the IVM capacity of BaP-treated porcine oocytes by activating the SHH signaling pathway, inhibiting ROS production, and increasing ΔΨ.
Collapse
Affiliation(s)
- Qing Guo
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China; Heilongjiang Key Laboratory of Efficient Utilization of Feed Resources and Nutrition Manipulation in Cold Region, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China
| | - Suo Li
- Jilin Agricultural University, Xincheng Street 2888, Changchun, 130118, China
| | - Xue Wang
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China; Heilongjiang Key Laboratory of Efficient Utilization of Feed Resources and Nutrition Manipulation in Cold Region, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China
| | - Huan-Sheng Han
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China; Heilongjiang Key Laboratory of Efficient Utilization of Feed Resources and Nutrition Manipulation in Cold Region, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China
| | - Xi-Jun Yin
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, 133002, China.
| | - Jing-Chun Li
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China; Heilongjiang Key Laboratory of Efficient Utilization of Feed Resources and Nutrition Manipulation in Cold Region, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China.
| |
Collapse
|
24
|
Nettore IC, Franchini F, Palatucci G, Macchia PE, Ungaro P. Epigenetic Mechanisms of Endocrine-Disrupting Chemicals in Obesity. Biomedicines 2021; 9:biomedicines9111716. [PMID: 34829943 PMCID: PMC8615468 DOI: 10.3390/biomedicines9111716] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 02/07/2023] Open
Abstract
The incidence of obesity has dramatically increased over the last decades. Recently, there has been a growing interest in the possible association between the pandemics of obesity and some endocrine-disrupting chemicals (EDCs), termed “obesogens”. These are a heterogeneous group of exogenous compounds that can interfere in the endocrine regulation of energy metabolism and adipose tissue structure. Oral intake, inhalation, and dermal absorption represent the major sources of human exposure to these EDCs. Recently, epigenetic changes such as the methylation of cytosine residues on DNA, post-translational modification of histones, and microRNA expression have been considered to act as an intermediary between deleterious effects of EDCs and obesity development in susceptible individuals. Specifically, EDCs exposure during early-life development can detrimentally affect individuals via inducing epigenetic modifications that can permanently change the epigenome in the germline, enabling changes to be transmitted to the next generations and predisposing them to a multitude of diseases. The purpose of this review is to analyze the epigenetic alterations putatively induced by chemical exposures and their ability to interfere with the control of energy metabolism and adipose tissue regulation, resulting in imbalances in the control of body weight, which can lead to obesity.
Collapse
Affiliation(s)
- Immacolata Cristina Nettore
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via S. Pansini, 80131 Naples, Italy; (I.C.N.); (F.F.); (G.P.); (P.E.M.)
| | - Fabiana Franchini
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via S. Pansini, 80131 Naples, Italy; (I.C.N.); (F.F.); (G.P.); (P.E.M.)
| | - Giuseppe Palatucci
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via S. Pansini, 80131 Naples, Italy; (I.C.N.); (F.F.); (G.P.); (P.E.M.)
| | - Paolo Emidio Macchia
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via S. Pansini, 80131 Naples, Italy; (I.C.N.); (F.F.); (G.P.); (P.E.M.)
| | - Paola Ungaro
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale del CNR “G. Salvatore”, Via S. Pansini, 80131 Naples, Italy
- Correspondence: ; Tel.: +39-081-770-4795
| |
Collapse
|
25
|
Sui L, Yan K, Zhang H, Nie J, Yang X, Xu CL, Liang X. Mogroside V Alleviates Oocyte Meiotic Defects and Quality Deterioration in Benzo(a)pyrene-Exposed Mice. Front Pharmacol 2021; 12:722779. [PMID: 34512349 PMCID: PMC8428525 DOI: 10.3389/fphar.2021.722779] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/16/2021] [Indexed: 02/03/2023] Open
Abstract
Accumulating evidence has demonstrated that benzo(a)pyrene (BaP) exposure adversely affects female reproduction, especially oocyte meiotic maturation and subsequent embryo development. Although we previously found that mogroside V (MV), a major bioactive component of S. grosvenorii, can protect oocytes from quality deterioration caused by certain stresses, whether MV can alleviate BaP exposure-mediated oocyte meiotic defects remains unknown. In this study, female mice were exposed to BaP and treated concomitantly with MV by gavage. We found that BaP exposure reduced the oocyte maturation rate and blastocyst formation rate, which was associated with increased abnormalities in spindle formation and chromosome alignment, reduced acetylated tubulin levels, damaged actin polymerization and reduced Juno levels, indicating that BaP exposure results in oocyte nucleic and cytoplasmic damage. Interestingly, MV treatment significantly alleviated all the BaP exposure-mediated defects mentioned above, indicating that MV can protect oocytes from BaP exposure-mediated nucleic and cytoplasmic damage. Additionally, BaP exposure increased intracellular ROS levels, meanwhile induced DNA damage and early apoptosis in oocytes, but MV treatment ameliorated these defective parameters, therefore it is possible that MV restored BaP-mediated oocyte defects by reducing oxidative stress. In summary, our findings demonstrate that MV might alleviate oocyte meiotic defects and quality deterioration in BaP-exposed mice.
Collapse
Affiliation(s)
- Lumin Sui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Ke Yan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Huiting Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Junyu Nie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xiaogan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Chang-Long Xu
- Reproductive Medical Center Nanning Second People's Hospital, Nanning, China
| | - Xingwei Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
26
|
Wang D, Cheng J, Zhang J, Zhou F, He X, Shi Y, Tao Y. The Role of Respiratory Microbiota in Lung Cancer. Int J Biol Sci 2021; 17:3646-3658. [PMID: 34512172 PMCID: PMC8416743 DOI: 10.7150/ijbs.51376] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 02/09/2021] [Indexed: 12/20/2022] Open
Abstract
Recently, the impact of microorganisms on tumor growth and metastasis has attracted great attention. The pathogenesis and progression of lung cancer are related to an increase in respiratory bacterial load as well as changes in the bacterial community because the microbiota affects tumors in many ways, including canceration, metastasis, angiogenesis, and treatment. The microbiota may increase tumor susceptibility by altering metabolism and immune responses, promoting inflammation, and increasing toxic effects. The microbiota can regulate tumor metastasis by altering multiple cell signaling pathways and participate in tumor angiogenesis through vascular endothelial growth factors (VEGF), endothelial cells (ECs), inflammatory factors and inflammatory cells. Tumor angiogenesis not only maintains tumor growth at the primary site but also promotes tumor metastasis and invasion. Therefore, angiogenesis is an important mediator of the interaction between microorganisms and tumors. The microbiota also plays a part in antitumor therapy. Alteration of the microbiota caused by antibiotics can regulate tumor growth and metastasis. Moreover, the microbiota also influences the efficacy and toxicity of tumor immunotherapy and chemotherapy. Finally, the effects of air pollution, a risk factor for lung cancer, on microorganisms and the possible role of respiratory microorganisms in the effects of air pollution on lung cancer are discussed.
Collapse
Affiliation(s)
- Dan Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Hunan, 410078 China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078 China
| | - Jingyi Cheng
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Hunan, 410078 China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078 China
| | - Jia Zhang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Hunan, 410078 China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078 China
| | - Fangyu Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Hunan, 410078 China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078 China
| | - Xiao He
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Hunan, 410078 China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078 China
| | - Ying Shi
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Hunan, 410078 China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078 China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Hunan, 410078 China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078 China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011 China
| |
Collapse
|
27
|
Cazzolla Gatti R. Why We Will Continue to Lose Our Battle with Cancers If We Do Not Stop Their Triggers from Environmental Pollution. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:6107. [PMID: 34198930 PMCID: PMC8201328 DOI: 10.3390/ijerph18116107] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/21/2021] [Accepted: 06/01/2021] [Indexed: 12/11/2022]
Abstract
Besides our current health concerns due to COVID-19, cancer is a longer-lasting and even more dramatic pandemic that affects almost a third of the human population worldwide. Most of the emphasis on its causes has been posed on genetic predisposition, chance, and wrong lifestyles (mainly, obesity and smoking). Moreover, our medical weapons against cancers have not improved too much during the last century, although research is in progress. Once diagnosed with a malignant tumour, we still rely on surgery, radiotherapy, and chemotherapy. The main problem is that we have focused on fighting a difficult battle instead of preventing it by controlling its triggers. Quite the opposite, our knowledge of the links between environmental pollution and cancer has surged from the 1980s. Carcinogens in water, air, and soil have continued to accumulate disproportionally and grow in number and dose, bringing us to today's carnage. Here, a synthesis and critical review of the state of the knowledge of the links between cancer and environmental pollution in the three environmental compartments is provided, research gaps are briefly discussed, and some future directions are indicated. New evidence suggests that it is relevant to take into account not only the dose but also the time when we are exposed to carcinogens. The review ends by stressing that more dedication should be put into studying the environmental causes of cancers to prevent and avoid curing them, that the precautionary approach towards environmental pollutants must be much more reactionary, and that there is an urgent need to leave behind the outdated petrochemical-based industry and goods production.
Collapse
Affiliation(s)
- Roberto Cazzolla Gatti
- Konrad Lorenz Institute for Evolution and Cognition Research, 3400 Klosterneuburg, Austria;
- Biological Institute, Tomsk State University, 634050 Tomsk, Russia
| |
Collapse
|
28
|
Miniature Optical Particle Counter and Analyzer Involving a Fluidic-Optronic CMOS Chip Coupled with a Millimeter-Sized Glass Optical System. SENSORS 2021; 21:s21093181. [PMID: 34063656 PMCID: PMC8124938 DOI: 10.3390/s21093181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/07/2021] [Accepted: 04/28/2021] [Indexed: 11/23/2022]
Abstract
Our latest advances in the field of miniaturized optical PM sensors are presented. This sensor combines a hybrid fluidic-optronic CMOS (holed retina) that is able to record a specific irradiance pattern scattered by an illuminated particle (scattering signature), while enabling the circulation of particles toward the sensing area. The holed retina is optically coupled with a monolithic, millimeter-sized, refracto-reflective optical system. The latter notably performs an optical pre-processing of signatures, with a very wide field of view of scattering angles. This improves the sensitivity of the sensors, and simplifies image processing. We report the precise design methodology for such a sensor, as well as its fabrication and characterization using calibrated polystyrene beads. Finally, we discuss its ability to characterize particles and its potential for further miniaturization and integration.
Collapse
|
29
|
Santibáñez-Andrade M, Sánchez-Pérez Y, Chirino YI, Morales-Bárcenas R, García-Cuellar CM. Long non-coding RNA NORAD upregulation induced by airborne particulate matter (PM 10) exposure leads to aneuploidy in A549 lung cells. CHEMOSPHERE 2021; 266:128994. [PMID: 33250223 DOI: 10.1016/j.chemosphere.2020.128994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/18/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
Air pollution is a worldwide problem that affects human health predominantly in the largest cities. Particulate matter of 10 μm or less in diameter (PM10) is considered a risk factor for multiple diseases, including lung cancer. The long non-coding RNA NORAD and the components of the spindle assembly checkpoint (SAC) ensure proper chromosomal segregation. Alterations in the SAC cause aneuploidy, a feature associated with carcinogenesis. In this study, we demonstrated that PM10 treatment increased the expression levels of NORAD as well as those of SAC components mitotic arrest deficient 1 (MAD1L1), mitotic arrest deficient 2 (MAD2L1), BubR1 (BUB1B), aurora B (AURKB), and survivin (BIRC5) in the lung A549 cell line. We also demonstrated that MAD1L1, MAD2L1, and BUB1B expression levels were reduced when cells were transfected with small interfering RNAs (siRNAs) against NORAD. Interestingly, the expression levels of AURKB and BIRC5 (survivin) were not affected by transfection with NORAD siRNAs. Cells treated with PM10 exhibited a decrease in mitotic arrest and an increase in micronuclei frequency in synchronized A549 cells. PM10 exposure induced aneuploidy events as a result of SAC deregulation. We also observed a reduction in the protein levels of Pumilio 1 after PM10 treatment. Our results provide novel clues regarding the effect of PM10 in the generation of chromosomal instability, a phenotype observed in lung cancer cells.
Collapse
Affiliation(s)
- Miguel Santibáñez-Andrade
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, CP 14080, Ciudad de México, Mexico
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, CP 14080, Ciudad de México, Mexico
| | - Yolanda I Chirino
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Iztacala, Tlalnepantla, CP 54090, Estado de México, Mexico
| | - Rocío Morales-Bárcenas
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, CP 14080, Ciudad de México, Mexico
| | - Claudia M García-Cuellar
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, CP 14080, Ciudad de México, Mexico.
| |
Collapse
|
30
|
Hassan Bhat T, Jiawen G, Farzaneh H. Air Pollution Health Risk Assessment (AP-HRA), Principles and Applications. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:1935. [PMID: 33671274 PMCID: PMC7922529 DOI: 10.3390/ijerph18041935] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/20/2022]
Abstract
Air pollution is a major public health problem. A significant number of epidemiological studies have found a correlation between air quality and a wide variety of adverse health impacts emphasizing a considerable role of air pollution in the disease burden in the general population ranging from subclinical effects to premature death. Health risk assessment of air quality can play a key role at individual and global health promotion and disease prevention levels. The Air Pollution Health Risk Assessment (AP-HRA) forecasts the expected health effect of policies impacting air quality under the various policy, environmental and socio-economic circumstances, making it a key tool for guiding public policy decisions. This paper presents the concept of AP-HRA and offers an outline for the proper conducting of AP-HRA for different scenarios, explaining in broad terms how the health hazards of air emissions and their origins are measured and how air pollution-related impacts are quantified. In this paper, seven widely used AP-HRA tools will be deeply explored, taking into account their spatial resolution, technological factors, pollutants addressed, geographical scale, quantified health effects, method of classification, and operational characteristics. Finally, a comparative analysis of the proposed tools will be conducted, using the SWOT (strengths, weaknesses, opportunities, and threats) method.
Collapse
Affiliation(s)
- Tavoos Hassan Bhat
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka 816-8580, Japan; (T.H.B.); (G.J.)
| | - Guo Jiawen
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka 816-8580, Japan; (T.H.B.); (G.J.)
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hooman Farzaneh
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka 816-8580, Japan; (T.H.B.); (G.J.)
| |
Collapse
|
31
|
Liddell JL, Kington SG. "Something Was Attacking Them and Their Reproductive Organs": Environmental Reproductive Justice in an Indigenous Tribe in the United States Gulf Coast. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:E666. [PMID: 33466865 PMCID: PMC7830890 DOI: 10.3390/ijerph18020666] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/27/2022]
Abstract
Environmental reproductive justice is increasingly being utilized as a framework for exploring how environmental exploitation and pollution contribute to reproductive health and reproductive injustices. However, little research explores how settler colonialism and historical oppression contribute to the physical transformation of land, and how this undermines tribal members' health. Even less research explores the intersection of environmental justice and reproductive justice among Indigenous groups, especially in the Gulf South, who are especially vulnerable to environmental justice issues due to climate change, land loss, and oil company exploitation, and for tribes that are non-federally recognized. A qualitative description research methodology was used to conduct 31 life-history interviews with women from a Gulf Coast Indigenous tribe. Findings of this study reveal that central components of reproductive justice, including the ability to have children and the ability to raise children in safe and healthy environments, are undermined by environmental justice issues in the community. Among concerns raised by women were high rates of chronic healthcare issues among community members, and issues with infertility. Recognizing Indigenous sovereignty is central to addressing these environmental reproductive justice issues. This research is unique in exploring the topic of environmental reproductive justice among a state-recognized Gulf Coast tribe.
Collapse
Affiliation(s)
| | - Sarah G. Kington
- Department of Sociology, School of Liberal Arts, Tulane University, New Orleans, LA 70118, USA;
| |
Collapse
|
32
|
Al-Yozbaki M, Acha-Sagredo A, George A, Liloglou T, Wilson CM. Balancing neurotrophin pathway and sortilin function: Its role in human disease. Biochim Biophys Acta Rev Cancer 2020; 1874:188429. [DOI: 10.1016/j.bbcan.2020.188429] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/12/2020] [Accepted: 09/02/2020] [Indexed: 01/03/2023]
|
33
|
Hautekiet P, Nawrot TS, Demarest S, Van der Heyden J, Van Overmeire I, De Clercq EM, Saenen ND. Environmental exposures and health behavior in association with mental health: a study design. Arch Public Health 2020; 78:105. [PMID: 33093954 PMCID: PMC7576706 DOI: 10.1186/s13690-020-00477-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/22/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Air pollution, green space and smoking are known to affect human health. However, less is known about their underlying biological mechanisms. One of these mechanisms could be biological aging. In this study, we explore the mediation of biomarkers of exposure and biological aging to explain the associations between environmental exposures, health behavior and mental health. METHODS The study population of this cross-sectional study (n = 1168) is a subsample of the Belgian 2018 Health Interview Survey (BHIS). Mental health indicators including psychological and severe psychological distress, life satisfaction, vitality, eating disorders, suicidal ideation, subjective health and depressive and anxiety disorders, demographics and health behavior such as smoking are derived from the BHIS. Urine and blood samples are collected to measure respectively the biomarkers of exposure (urinary black carbon (BC) and (hydroxy)cotinine) and the biomarkers of biological aging (mitochondrial DNA content (mtDNAc) and telomere length (TL)). Recent and chronic exposure (μg/m3) to nitrogen dioxide (NO2), particulate matter ≤2.5 μm (PM2.5) and ≤ 10 μm (PM10) and BC at the participants' residence are modelled using a high resolution spatial temporal interpolation model. Residential green space is defined in buffers of different size (50 m - 5000 m) using land cover data in ArcGIS 10 software. For the statistical analysis multivariate linear and logistic regressions as well as mediation analyses are used taking into account a priori selected covariates and confounders. RESULTS As this study combined data of BHIS and laboratory analyses, not all data is available for all participants. Therefore, data analyses will be conducted on different subsets. Data on air pollution and green space exposure is available for all BHIS participants. Questions on smoking and mental health were answered by respectively 7829 and 7213 BHIS participants. For biomarker assessment, (hydroxy) cotinine, urinary BC and the biomarkers of biological aging are measured for respectively 1130, 1120 and 985 participants. CONCLUSION By use of personal markers of air pollution and smoking, as well as biological aging, we will gain knowledge about the association between environmental exposures, health behavior, and the mental health status. The results of the study can provide insights on the health of the Belgian population, making it a nationwide interesting study.
Collapse
Affiliation(s)
- Pauline Hautekiet
- Sciensano, Brussels, Belgium
- Centre for Environmental Sciences, Hasselt University, Agoralaan gebouw D, BE-3590 Hasselt, Belgium
| | - Tim S. Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan gebouw D, BE-3590 Hasselt, Belgium
- Centre for Environment and Health, Leuven University, Leuven, Belgium
| | | | | | | | | | - Nelly D. Saenen
- Sciensano, Brussels, Belgium
- Centre for Environmental Sciences, Hasselt University, Agoralaan gebouw D, BE-3590 Hasselt, Belgium
| |
Collapse
|
34
|
Augenreich M, Stickford J, Stute N, Koontz L, Cope J, Bennett C, Ratchford SM. Vascular dysfunction and oxidative stress caused by acute formaldehyde exposure in female adults. Am J Physiol Heart Circ Physiol 2020; 319:H1369-H1379. [PMID: 33064555 DOI: 10.1152/ajpheart.00605.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Formaldehyde (FA) is a common, volatile organic compound used in organic preservation with known health effects of eye, nose, and throat irritation linked to oxidative stress and inflammation. Indeed, long-term FA exposure may provoke skin disorders, cancer, and cardiovascular disease. However, the effects of short-term FA exposure on the vasculature have yet to be investigated. We sought to investigate the impact of an acute FA exposure on 1) macrovascular function in the arm (brachial artery flow-mediated dilation, FMD), 2) microvascular function in the arm (brachial artery reactive hyperemia, RH) and leg (common femoral artery, supine passive limb movement, PLM), and 3) circulating markers of oxidative stress (xanthine oxidase, XO; protein carbonyl, PC; and malondialdehyde, MDA) and inflammation (C-reactive protein, CRP). Ten (n = 10) healthy females (23 ± 1 yr) were studied before and immediately after a 90-min FA exposure [(FA): 197 ± 79 ppb] in cadaver dissection laboratories. Brachial artery FMD% decreased following FA exposure (Pre-FA Exp: 9.41 ± 4.21%, Post-FA Exp: 6.74 ± 2.57%; P = 0.043), and FMD/shear decreased following FA exposure (Pre-FA Exp: 0.13 ± 0.07 AU, Post-FA Exp: 0.07 ± 0.03 AU; P = 0.016). The area under the curve for brachial artery RH (Pre-FA Exp: 481 ± 191 ml, Post-FA Exp: 499 ± 165 ml) and common femoral artery PLM (Pre-FA Exp: 139 ± 95 ml, Post-FA Exp: 129 ± 64 ml) were unchanged by FA exposure (P > 0.05). Circulating MDA increased (Pre-FA Exp: 4.8 ± 1.3 µM, Post-FA Exp: 6.3 ± 2.2 µM; P = 0.047) while XO, PC, and CRP were unchanged by FA exposure (P > 0.05). These initial data suggest a short FA exposure can adversely alter vascular function and oxidative stress, influencing cardiovascular health.NEW & NOTEWORTHY This study was the first to investigate the implications of acute formaldehyde (FA) exposure on adult female vascular function in the arms and legs. The main findings of this study were a decrease in conduit vessel function without any alteration to microvascular function following a 90-min FA exposure. Additionally, the oxidative stress marker malondialdehyde increased after FA exposure. Taken together, these results suggest acute FA exposure have deleterious implications for the vasculature and redox balance.Listen to this article's corresponding podcast at https://ajpheart.podbean.com/e/formaldehyde-exposure-decreases-vascular-function/.
Collapse
Affiliation(s)
- Marc Augenreich
- Department of Health & Exercise Science, Appalachian State University, Boone, North Carolina
| | - Jonathon Stickford
- Department of Health & Exercise Science, Appalachian State University, Boone, North Carolina
| | - Nina Stute
- Department of Health & Exercise Science, Appalachian State University, Boone, North Carolina
| | - Laurel Koontz
- Department of Health & Exercise Science, Appalachian State University, Boone, North Carolina
| | - Janet Cope
- Department of Physical Therapy Education, Elon University School of Health Sciences, Elon, North Carolina
| | - Cynthia Bennett
- Department of Physician Assistant Studies, Elon University School of Health Sciences, Elon, North Carolina
| | - Stephen M Ratchford
- Department of Health & Exercise Science, Appalachian State University, Boone, North Carolina
| |
Collapse
|
35
|
Alemayehu YA, Asfaw SL, Terfie TA. Exposure to urban particulate matter and its association with human health risks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:27491-27506. [PMID: 32410189 DOI: 10.1007/s11356-020-09132-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Human health and environmental risks are increasing following air pollution associated with vehicular and industrial emissions in which particulate matter is a constituent. The purpose of this review was to assess studies on the health effects and mortality induced by particles published for the last 15 years. The literature survey indicated the existence of strong positive associations between fine and ultrafine particles' exposure and cardiovascular, hypertension, obesity and type 2 diabetes mellitus, cancer health risks, and mortality. Its exposure is also associated with increased odds of hypertensive and diabetes disorders of pregnancy and premature deaths. The ever increasing hospital admission and mortality due to heart failure, diabetes, hypertension, and cancer could be due to long-term exposure to particles in different countries. Therefore, its effect should be communicated for legal and scientific actions to minimize emissions mainly from traffic sources.
Collapse
Affiliation(s)
| | - Seyoum Leta Asfaw
- Center for Environmental Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tadesse Alemu Terfie
- Center for Environmental Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
36
|
Ahmed CMS, Yang J, Chen JY, Jiang H, Cullen C, Karavalakis G, Lin YH. Toxicological responses in human airway epithelial cells (BEAS-2B) exposed to particulate matter emissions from gasoline fuels with varying aromatic and ethanol levels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:135732. [PMID: 31818575 DOI: 10.1016/j.scitotenv.2019.135732] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/31/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
In this study, we assessed the toxicological potencies of particulate matter (PM) emissions from a modern vehicle equipped with a gasoline direct injection (GDI) engine when operated on eight different fuels with varying aromatic hydrocarbon and ethanol contents. Testing was conducted over the LA92 driving cycle using a chassis dynamometer with a constant volume sampling system, where particles were collected onto Teflon filters. The extracted PM constituents were analyzed for their oxidative potential using the dithiothreitol (DTT) chemical assay and exposure-induced gene expression in human airway epithelial cells (BEAS-2B). Different trends of DTT activities were seen when testing PM samples in 100% aqueous buffer solutions versus elevated fraction of methanol in aqueous buffers (50:50), indicating the effect of solubility of organic PM constituents on the measured oxidative potential. Higher aromatics content in fuels corresponded to higher DTT activities in PM. Exposure to PM exhaust upregulated the expression of HMOX-1, but downregulated the expression of IL-6, TNF-α, CCL5 and NOS2 in BEAS-2B cells. The principal component regression analysis revealed different patterns of correlations. Aromatics content contributed to more significant PAH-mediated IL-6 downregulation, whereas ethanol content was associated with decreased downregulation of IL-6. Our findings highlighted the key role of fuel composition in modulating the toxicological responses to GDI PM emissions.
Collapse
Affiliation(s)
- C M Sabbir Ahmed
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521, USA
| | - Jiacheng Yang
- Center for Environmental Research and Technology (CE-CERT), University of California, Riverside, CA 92521, USA; Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| | - Jin Y Chen
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521, USA
| | - Huanhuan Jiang
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Cody Cullen
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| | - Georgios Karavalakis
- Center for Environmental Research and Technology (CE-CERT), University of California, Riverside, CA 92521, USA; Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA.
| | - Ying-Hsuan Lin
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521, USA; Department of Environmental Sciences, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
37
|
Khan S, Ali S, Muhammad. Exhaustive Review on Lung Cancers: Novel Technologies. Curr Med Imaging 2020; 15:873-883. [PMID: 32013812 DOI: 10.2174/1573405615666181128124528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/30/2018] [Accepted: 11/07/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Lung cancers or (Bronchogenic-Carcinomas) are the disease in certain parts of the lungs in which irresistible multiplication of abnormal cells leads to the inception of a tumor. Lung cancers consisting of two substantial forms based on the microscopic appearance of tumor cells are: Non-Small-Cell-Lung-Cancer (NSCLC) (80 to 85%) and Small-Cell-Lung-Cancer (SCLC) (15 to 20%). DISCUSSION Lung cancers are existing luxuriantly across the globe and the most prominent cause of death in advanced countries (USA & UK). There are many causes of lung cancers in which the utmost imperative aspect is the cigarette smoking. During the early stage, there is no perspicuous sign/symptoms but later many symptoms emerge in the infected individual such as insomnia, headache, pain, loss of appetite, fatigue, coughing etc. Lung cancers can be diagnosed in many ways, such as history, physical examination, chest X-rays and biopsy. However, after the diagnosis and confirmation of lung carcinoma, various treatment approaches are existing for curing of cancer in different stages such as surgery, radiation therapy, chemotherapy, and immune therapy. Currently, novel techniques merged that revealed advancements in detection and curing of lung cancer in which mainly includes: microarray analysis, gene expression profiling. CONCLUSION Consequently, the purpose of the current analysis is to specify and epitomize the novel literature pertaining to the development of cancerous cells in different parts of the lung, various preeminent approaches of prevention, efficient diagnostic procedure, and treatments along with novel technologies for inhibition of cancerous cell growth in advance stages.
Collapse
Affiliation(s)
- Sajad Khan
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Shahid Ali
- Centre for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Muhammad
- Department of Microbiology, University of Swabi, Swabi, KP, Pakistan
| |
Collapse
|
38
|
Huang HC, Tantoh DM, Hsu SY, Nfor ON, Frank CFL, Lung CC, Ho CC, Chen CY, Liaw YP. Association between coarse particulate matter (PM 10-2.5) and nasopharyngeal carcinoma among Taiwanese men. J Investig Med 2020; 68:419-424. [PMID: 31619486 PMCID: PMC7063388 DOI: 10.1136/jim-2019-001119] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2019] [Indexed: 01/27/2023]
Abstract
The nasopharyngeal tract traps mainly coarse particles in inhaled air. Soluble carcinogenic compounds, endotoxins, and trace metals contained in these particles are potential causes of inflammation and oxidative stress which could enhance carcinogenesis. The aim of this study was to determine the association between coarse particulate matter (PM10-2.5) and nasopharyngeal cancer (NPC). A total of 521,098 men (355 cases and 520,743 non-cases), aged ≥40 years were included in this study. Data were retrieved from the Taiwan Cancer Registry, the Adult Preventive Medical Services Database, and the Air Quality Monitoring Database. PM10-2.5 was significantly associated with a higher risk of NPC after adjusting for SO2, NOx, O3, age, body mass index, smoking, alcohol drinking, betel nut chewing, exercise, hypertension, diabetes, and hyperlipidemia. With PM10-2.5<20.44 μg/m3 as the reference, the ORs and 95% CIs were 1.47; 1.03-2.11, 1.34; 0.94-1.91, and 1.68; 1.16-2.44 for 20.44≤PM10-2.5<24.08, 24.08≤PM10-2.5<29.27, and PM10-2.5≥29.27 μg/m3, respectively. PM10-2.5 remained significantly associated with a higher risk of NPC after further adjustments were made for the aforementioned covariates and PM2.5 The ORs; 95% CIs were 1.42; 0.96 to 2.12, 1.41; 0.94 to 2.10, and 1.71; 1.10 to 2.66 for 20.44≤PM10-2.5<24.08, 24.08≤PM10-2.5<29.27, and PM10-2.5≥29.27 μg/m3, respectively. In conclusion, PM10-2.5 was significantly associated with a higher risk of NPC in Taiwanese men.
Collapse
Affiliation(s)
- Hsu-Chih Huang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Thoracic Surgery, Department of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Disline Manli Tantoh
- Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung, Taiwan
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung, Taiwan
| | - Shu-Yi Hsu
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung, Taiwan
| | - Oswald Ndi Nfor
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung, Taiwan
| | - Cheau-Feng Lin Frank
- Division of Thoracic Surgery, Department of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chia-Chi Lung
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung, Taiwan
| | - Chien-Chang Ho
- Department of Physical Education, Fu Jen Catholic University, New Taipei, Taiwan
| | - Chih-Yi Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Thoracic Surgery, Department of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yung-Po Liaw
- Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung, Taiwan
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
39
|
Mohammed AM, Ibrahim YH, Saleh IA. Estimation of hospital admission respiratory disease cases attributed to exposure to SO 2 and NO 2 in two different sectors of Egypt. Afr Health Sci 2019; 19:2892-2905. [PMID: 32127865 PMCID: PMC7040343 DOI: 10.4314/ahs.v19i4.11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Air Q2.2.3 was used to predicted hospital admissions respiratory disease cases due to SO2 and NO2 exposure in two sectors of Egypt during December 2015 to November 2016. Levels were 19, 22 µg/m3 at Ain Sokhna sector and 92, 78 µg/m3 at Shoubra El-Khaima sector for SO2 and NO2, respectively. These levels were less than the Egyptian Permissible limits (125 µg/m3 in urban and 150 µg/m3 in industrial for SO2, 150 µg/m3 in urban and industrial for NO2). Results showed that relative risks were 1.0330 (1.0246 - 1.0414) and 1.0229 (1.0171 - 1.0287) at Ain Sokhna sector while they were 1.0261 (1.0195 - 1.0327) and 1.0226 (1.0169 - 1.0283) at Shoubra El-Khaima sector for SO2 and NO2, respectively. The highest cases of HARD were found in Shoubra El-Khaima sector; 311 cases at 120 - 129 µg/m3 of SO2 and 234 cases at 120 - 129 µg/m3 of NO2. While, in Ain Sokhna, HARD were 18 cases at 50 - 59 µg/m3 of SO2 and 15 cases at 60 - 69 µg/m3 of NO2. The excess cases found in Shoubra El-Khaima sector as compared to those in Ain Sokhna sector, may be attributed to the higher density of population and industries in Shoubra El-Khaima sector.
Collapse
Affiliation(s)
- Atef Mf Mohammed
- Air Pollution Research Department, Environmental Research Division, National Research Centre, Giza, Egypt
| | - Yasser H Ibrahim
- Air Pollution Research Department, Environmental Research Division, National Research Centre, Giza, Egypt
| | - Inas A Saleh
- Air Pollution Research Department, Environmental Research Division, National Research Centre, Giza, Egypt
| |
Collapse
|
40
|
Fei YX, Zhao B, Yin QY, Qiu YY, Ren GH, Wang BW, Wang YF, Fang WR, Li YM. Ma Xing Shi Gan Decoction Attenuates PM2.5 Induced Lung Injury via Inhibiting HMGB1/TLR4/NFκB Signal Pathway in Rat. Front Pharmacol 2019; 10:1361. [PMID: 31798456 PMCID: PMC6868102 DOI: 10.3389/fphar.2019.01361] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 10/28/2019] [Indexed: 12/31/2022] Open
Abstract
Ma Xing Shi Gan Decoction (MXD), a classical traditional Chinese medicine prescription, is widely used for the treatment of upper respiratory tract infection. However, the effect of MXD against particulate matters with diameter of less than 2.5 μm (PM2.5) induced lung injury remains to be elucidated. In this study, rats were stimulated with PM2.5 to induce lung injury. MXD was given orally once daily for five days. Lung tissues were harvested to assess pathological changes and edema. Myeloperoxidase (MPO) activity and malonaldehyde (MDA) content in lung were determined to evaluate the degree of injury. To assess the barrier disruption, the bronchoalveolar lavage fluid (BALF) was collected to determine the total protein content and count the number of neutrophils and macrophages. For evaluating the activation of macrophage in lung tissue, CD68 was detected using immunohistochemistry (IHC). The levels of inflammatory factors including tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1β), and interleukin-6 (IL-6) in BALF and serum were measured. In vitro, a PM2.5-activated RAW 264.7 macrophages inflammatory model was introduced. To evaluate the protective effect of MXD-medicated serum, the cell viability and the release of inflammatory factors were measured. The effects of MXD on the High mobility group box-1/Toll-like receptor 4/Nuclear factor-kappa B (HMGB1/TLR4/NFκB) pathway in lung tissue and RAW 264.7 cells were assessed by Western blot. For further confirming the protective effect of MXD was mediated by inhibiting the HMGB1/TLR4/NFκB pathway, RAW 264.7 cells were incubated with MXD-medicated serum alone or MXD-medicated serum plus recombinant HMGB1 (rHMGB1). MXD significantly ameliorated the lung injury in rats, as evidenced by decreases in the pathological score, lung edema, MPO activity, MDA content, CD68 positive macrophages number, disruption of alveolar capillary barrier and the levels of inflammatory factors. In vitro, MXD-medicated serum increased cell viability and inhibited the release of inflammatory cytokines. Furthermore, MXD treatment was found to inhibit HMGB1/TLR4/NFκB signal pathway both in vivo and in vitro. Moreover, the protection of MXD could be reversed by rHMGB1 in RAW 264.7. Taken together, these results suggest MXD protects rats from PM2.5 induced acute lung injury, possibly through the modulation of HMGB1/TLR4/NFκB pathway and inflammatory responses.
Collapse
Affiliation(s)
- Yu-xiang Fei
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Bo Zhao
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qi-yang Yin
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yan-ying Qiu
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Guang-hui Ren
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Bo-wen Wang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ye-fang Wang
- Department of Pediatrics, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, China
| | - Wei-rong Fang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yun-man Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
41
|
Santibáñez-Andrade M, Sánchez-Pérez Y, Chirino YI, Morales-Bárcenas R, Herrera LA, García-Cuellar CM. Airborne particulate matter induces mitotic slippage and chromosomal missegregation through disruption of the spindle assembly checkpoint (SAC). CHEMOSPHERE 2019; 235:794-804. [PMID: 31280048 DOI: 10.1016/j.chemosphere.2019.06.232] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/28/2019] [Accepted: 06/30/2019] [Indexed: 06/09/2023]
Abstract
Particulate matter (PM) is a risk factor for lung cancer development and chromosomal missegregation and cell cycle disruptions are key cellular events that trigger tumorigenesis. We aimed to study the effect of PM10 (PM with an aerodynamic diameter ≤10 μm) on mitotic arrest and chromosomal segregation, evaluating the spindle assembly checkpoint (SAC) protein dynamics in the human lung A549 adenocarcinoma cell line. For this purpose, synchronized cells were exposed to PM10 for 24 h to obtain the frequency of micronucleated (MN) and trinucleated (TN) cells. Then, the efficiency of the mitotic arrest after PM10 exposure was analyzed. To elucidate the effect of PM10 in chromosomal segregation, the levels and subcellular localization of essential SAC proteins were evaluated. Results indicated that A549 cells exposed to PM10 exhibited an increase in MN and TN cells and a decrease in mitotic indexes and G2/M phase. A549 cells treated with PM10 showed reduced protein levels of MDC1 and NEK2 (38% and 35% respectively), which is required for MAD2 recruitment to kinetochores, MAD2 and BUBR1, effectors of the SAC (25% and 18% respectively), and CYCLIN B1, required during G2/M phase (35%). Besides, PM10 exposure increase the levels of AURORA B and SURVIVIN, required for SAC activation through chromosome-microtubule attachment errors (85% and 74% respectively). We suggest that PM10 causes mitotic slippage due to alterations in MAD2 localization. Thus, PM10 causes inadequate chromosomal segregation and deficient mitotic arrest by altering SAC protein levels, predisposing A549 cells to chromosomal instability, a common feature observed in cancer.
Collapse
Affiliation(s)
- Miguel Santibáñez-Andrade
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, CP 14080 México, DF, Mexico
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, CP 14080 México, DF, Mexico
| | - Yolanda I Chirino
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Iztacala, CP 54090, Tlalnepantla, Estado de México, Mexico
| | - Rocío Morales-Bárcenas
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, CP 14080 México, DF, Mexico
| | - Luis A Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Claudia M García-Cuellar
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, CP 14080 México, DF, Mexico.
| |
Collapse
|
42
|
Sepp T, Ujvari B, Ewald PW, Thomas F, Giraudeau M. Urban environment and cancer in wildlife: available evidence and future research avenues. Proc Biol Sci 2019; 286:20182434. [PMID: 30963883 PMCID: PMC6367167 DOI: 10.1098/rspb.2018.2434] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/10/2018] [Indexed: 12/23/2022] Open
Abstract
While it is generally known that the risk of several cancers in humans is higher in urban areas compared with rural areas, cancer is often deemed a problem of human societies with modern lifestyles. At the same time, more and more wild animals are affected by urbanization processes and are faced with the need to adapt or acclimate to urban conditions. These include, among other things, increased exposure to an assortment of pollutants (e.g. chemicals, light and noise), novel types of food and new infections. According to the abundant literature available for humans, all of these factors are associated with an increased probability of developing cancerous neoplasias; however, the link between the urban environment and cancer in wildlife has not been discussed in the scientific literature. Here, we describe the available evidence linking environmental changes resulting from urbanization to cancer-related physiological changes in wild animals. We identify the knowledge gaps in this field and suggest future research avenues, with the ultimate aim of understanding how our modern lifestyle affects cancer prevalence in urbanizing wild populations. In addition, we consider the possibilities of using urban wild animal populations as models to study the association between environmental factors and cancer epidemics in humans, as well as to understand the evolution of cancer and defence mechanisms against it.
Collapse
Affiliation(s)
- Tuul Sepp
- Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia
| | - Beata Ujvari
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Waurn Ponds, VIC, Australia
| | - Paul W. Ewald
- Department of Biology, University of Louisville, Louisville, KY 40292, USA
| | - Frédéric Thomas
- CREEC, 911 Avenue Agropolis, BP 6450134394 Montpellier Cedex 5, France
- MIVEGEC, UMR IRD/CNRS/UM 5290, 911 Avenue Agropolis, BP 6450134394 Montpellier Cedex 5, France
| | - Mathieu Giraudeau
- CREEC, 911 Avenue Agropolis, BP 6450134394 Montpellier Cedex 5, France
- MIVEGEC, UMR IRD/CNRS/UM 5290, 911 Avenue Agropolis, BP 6450134394 Montpellier Cedex 5, France
| |
Collapse
|
43
|
Datzmann T, Markevych I, Trautmann F, Heinrich J, Schmitt J, Tesch F. Outdoor air pollution, green space, and cancer incidence in Saxony: a semi-individual cohort study. BMC Public Health 2018; 18:715. [PMID: 29884153 PMCID: PMC5994126 DOI: 10.1186/s12889-018-5615-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 05/25/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND There are a few epidemiological studies that (1) link increased ambient air pollution (AP) with an increase in lung cancer incidence rates and (2) investigate whether residing in green spaces could be protective against cancer. However, it is completely unclear whether other forms of cancer are also affected by AP and if residential green spaces could lower cancer incidence rates in general. Therefore, the objective was to estimate whether AP and green space are associated with several cancer types. METHODS The analysis was based on routine health care data from around 1.9 million people from Saxony who were free of cancer in 2008 and 2009. Incident cancer cases (2010-2014) of mouth and throat, skin (non-melanoma skin cancer - NMSC), prostate, breast, and colorectum were defined as: (1) one inpatient diagnosis, or (2) two outpatient diagnoses in two different quarters within one year and a specific treatment or death within two quarters after the diagnosis. Exposures, derived from freely available 3rd party data, included particulate matter with aerodynamic diameter of less than 10 μm (PM10) and nitrogen dioxide (N02) as well as green space (Normalized Difference Vegetation Index - NDVI). Associations between air pollutants, green space, and cancer incidence were assessed by multilevel Poisson models. Age, sex, physician contacts, short- and long-term unemployment, population density, and having an alcohol-related disorder were considered as potential confounders. RESULTS Three thousand one hundred seven people developed mouth and throat cancer, 33,178 NMSC, 9611 prostate cancer, 9577 breast cancer, and 11,975 colorectal cancer during the follow-up period (2010-2014). An increase in PM10 of 10 μg/m3 was associated with a 53% increase in relative risk (RR) of mouth and throat cancer and a 52% increase in RR of NMSC. Prostate and breast cancer were modestly associated with PM10 with an increase in RR of 23 and 19%, respectively. The associations with N02 were in the same direction as PM10 but the effect estimates were much lower (7-24%). A 10% increase in NDVI was most protective of mouth and throat cancer (- 11% RR) and of NMSC (- 16% RR). Colorectal cancer was not affected by any of the exposures. CONCLUSIONS In addition to the studies carried out so far, this study was able to provide evidence that higher ambient AP levels increase the risk of mouth and throat cancer as well as of NMSC and that a higher residential green space level might have a protective effect for NMSC in areas with low to moderate UV intensity. Nevertheless, we cannot rule out residual confounding by socioeconomic or smoking status.
Collapse
Affiliation(s)
- Thomas Datzmann
- TU Dresden, Medizinische Fakultät Carl Gustav Carus, Center for Evidence-Based Healthcare, Dresden, Germany
- National Center for Tumor Diseases, Dresden, Germany
| | - Iana Markevych
- LMU Munich, University Hospital, Institute and Outpatient Clinic for Occupational, Environmental and Social Medicine, Munich, Germany
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Epidemiology I, Neuherberg, Germany
| | - Freya Trautmann
- TU Dresden, Medizinische Fakultät Carl Gustav Carus, Center for Evidence-Based Healthcare, Dresden, Germany
- National Center for Tumor Diseases, Dresden, Germany
| | - Joachim Heinrich
- LMU Munich, University Hospital, Institute and Outpatient Clinic for Occupational, Environmental and Social Medicine, Munich, Germany
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Epidemiology I, Neuherberg, Germany
| | - Jochen Schmitt
- TU Dresden, Medizinische Fakultät Carl Gustav Carus, Center for Evidence-Based Healthcare, Dresden, Germany
- National Center for Tumor Diseases, Dresden, Germany
| | - Falko Tesch
- TU Dresden, Medizinische Fakultät Carl Gustav Carus, Center for Evidence-Based Healthcare, Dresden, Germany
| |
Collapse
|
44
|
Datzmann T, Markevych I, Trautmann F, Heinrich J, Schmitt J, Tesch F. Outdoor air pollution, green space, and cancer incidence in Saxony: a semi-individual cohort study. BMC Public Health 2018; 18:715. [PMID: 29884153 PMCID: PMC5994126 DOI: 10.1186/s12889-018-5615-2 10.1186/s12889-018-5615-2#citeas] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND There are a few epidemiological studies that (1) link increased ambient air pollution (AP) with an increase in lung cancer incidence rates and (2) investigate whether residing in green spaces could be protective against cancer. However, it is completely unclear whether other forms of cancer are also affected by AP and if residential green spaces could lower cancer incidence rates in general. Therefore, the objective was to estimate whether AP and green space are associated with several cancer types. METHODS The analysis was based on routine health care data from around 1.9 million people from Saxony who were free of cancer in 2008 and 2009. Incident cancer cases (2010-2014) of mouth and throat, skin (non-melanoma skin cancer - NMSC), prostate, breast, and colorectum were defined as: (1) one inpatient diagnosis, or (2) two outpatient diagnoses in two different quarters within one year and a specific treatment or death within two quarters after the diagnosis. Exposures, derived from freely available 3rd party data, included particulate matter with aerodynamic diameter of less than 10 μm (PM10) and nitrogen dioxide (N02) as well as green space (Normalized Difference Vegetation Index - NDVI). Associations between air pollutants, green space, and cancer incidence were assessed by multilevel Poisson models. Age, sex, physician contacts, short- and long-term unemployment, population density, and having an alcohol-related disorder were considered as potential confounders. RESULTS Three thousand one hundred seven people developed mouth and throat cancer, 33,178 NMSC, 9611 prostate cancer, 9577 breast cancer, and 11,975 colorectal cancer during the follow-up period (2010-2014). An increase in PM10 of 10 μg/m3 was associated with a 53% increase in relative risk (RR) of mouth and throat cancer and a 52% increase in RR of NMSC. Prostate and breast cancer were modestly associated with PM10 with an increase in RR of 23 and 19%, respectively. The associations with N02 were in the same direction as PM10 but the effect estimates were much lower (7-24%). A 10% increase in NDVI was most protective of mouth and throat cancer (- 11% RR) and of NMSC (- 16% RR). Colorectal cancer was not affected by any of the exposures. CONCLUSIONS In addition to the studies carried out so far, this study was able to provide evidence that higher ambient AP levels increase the risk of mouth and throat cancer as well as of NMSC and that a higher residential green space level might have a protective effect for NMSC in areas with low to moderate UV intensity. Nevertheless, we cannot rule out residual confounding by socioeconomic or smoking status.
Collapse
Affiliation(s)
- Thomas Datzmann
- 0000 0001 2111 7257grid.4488.0TU Dresden, Medizinische Fakultät Carl Gustav Carus, Center for Evidence-Based Healthcare, Dresden, Germany ,0000 0001 0328 4908grid.5253.1National Center for Tumor Diseases, Dresden, Germany
| | - Iana Markevych
- LMU Munich, University Hospital, Institute and Outpatient Clinic for Occupational, Environmental and Social Medicine, Munich, Germany ,Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Epidemiology I, Neuherberg, Germany
| | - Freya Trautmann
- 0000 0001 2111 7257grid.4488.0TU Dresden, Medizinische Fakultät Carl Gustav Carus, Center for Evidence-Based Healthcare, Dresden, Germany ,0000 0001 0328 4908grid.5253.1National Center for Tumor Diseases, Dresden, Germany
| | - Joachim Heinrich
- LMU Munich, University Hospital, Institute and Outpatient Clinic for Occupational, Environmental and Social Medicine, Munich, Germany ,Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Epidemiology I, Neuherberg, Germany
| | - Jochen Schmitt
- 0000 0001 2111 7257grid.4488.0TU Dresden, Medizinische Fakultät Carl Gustav Carus, Center for Evidence-Based Healthcare, Dresden, Germany ,0000 0001 0328 4908grid.5253.1National Center for Tumor Diseases, Dresden, Germany
| | - Falko Tesch
- 0000 0001 2111 7257grid.4488.0TU Dresden, Medizinische Fakultät Carl Gustav Carus, Center for Evidence-Based Healthcare, Dresden, Germany
| |
Collapse
|
45
|
Wallace SJ, de Solla SR, Thomas PJ, Harner T, Eng A, Langlois VS. Airborne polycyclic aromatic compounds contribute to the induction of the tumour-suppressing P53 pathway in wild double-crested cormorants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 150:176-189. [PMID: 29276953 DOI: 10.1016/j.ecoenv.2017.12.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/08/2017] [Accepted: 12/12/2017] [Indexed: 06/07/2023]
Abstract
Polycyclic aromatic compounds (PACs), including polycyclic aromatic hydrocarbons (PAHs) and PAH-like compounds are known or probable environmental carcinogens released into the environment as a by-product of incomplete combustion of fossil fuels and other organic materials. Studies have shown that exposure to PACs in the environment can induce both genotoxicity and epigenetic toxicity, but few studies have related PAC exposure to molecular changes in free ranging wildlife. Previous work has suggested that double-crested cormorants (Phalacrocorax auritus; DCCO) exhibited a higher incidence of genetic mutations when their breeding sites were located in heavily industrialized areas (e.g., Hamilton Harbour, Hamilton, ON, Canada) as compared to sites located in more pristine environments, such as in Lake Erie. The aim of this study was to determine if airborne PACs from Hamilton Harbour alter the tumour-suppressing P53 pathway and/or global DNA methylation in DCCOs. Airborne PACs were measured using passive air samplers in the Hamilton Harbour area and low-resolution mass spectrometry analysis detected PACs in livers of DCCOs living in Hamilton Harbour. Further hepatic and lung transcriptional analysis demonstrated that the expression of the genes involved in the DNA repair and cellular apoptosis pathway were up-regulated in both tissues of DCCOs exposed to PACs, while genes involved in p53 regulation were down-regulated. However, global methylation levels did not differ between reference- and PAC-exposed DCCOs. Altogether, data suggest that PACs activate the P53 pathway in free-ranging DCCOs living nearby PAC-contaminated areas.
Collapse
Affiliation(s)
- S J Wallace
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON, Canada
| | - S R de Solla
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Burlington, ON, Canada
| | - P J Thomas
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Ottawa, ON, Canada
| | - T Harner
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, ON, Canada
| | - A Eng
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, ON, Canada
| | - V S Langlois
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON, Canada; Institut national de la recherche scientifique - Centre Eau Terre Environnement (INRS), Quebec City, QC, Canada.
| |
Collapse
|
46
|
Elad D, Zaretsky U, Avraham S, Gotlieb R, Wolf M, Katra I, Sarig S, Zaady E. In vitro exposure of nasal epithelial cells to atmospheric dust. Biomech Model Mechanobiol 2018; 17:891-901. [PMID: 29302839 DOI: 10.1007/s10237-017-0999-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 12/23/2017] [Indexed: 10/18/2022]
Abstract
Dust storms are common phenomena in many parts of the world, and significantly increase the level of atmospheric particulate matter (PM). The soil-derived dust is a mixture of organic and inorganic particles and even remnants of pesticides from agricultural areas nearby. The risk of human exposure to atmospheric dust is well documented, but very little is known on the impact of inhaled PM on the biological lining of the nasal cavity, which is the natural filter between the external environment and the respiratory tract. We developed a new system and methodology for in vitro exposure of cultured nasal epithelial cells (NEC) to atmospheric soil-dust pollutants under realistic and controlled laboratory simulations that mimic nasal breathing. We exposed cultured NEC to clean and dust-polluted airflows that mimic physiological conditions. The results revealed that the secretion of mucin and IL-8 from the NEC exposed to clean and dust-polluted airflows was less than the secretion at static conditions under clean air. The secretion of IL-8 from NEC exposed to dust-polluted air was larger than that of clean air, but not larger than in the static case. The experiments with dust air pollution that also contained agricultural pesticides did not reveal differences in the secretion of mucin and IL-8 as compared to the same pollution without pesticides.
Collapse
Affiliation(s)
- David Elad
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 69978, Israel.
| | - Uri Zaretsky
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Sharon Avraham
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ruthie Gotlieb
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Michael Wolf
- Department of Otorhinolaryngology, Sheba Medical Center, Tel Hashomer, 52621, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Itzhak Katra
- Department of Geography and Environmental Development, Ben Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Shlomo Sarig
- The Katif Research Center, Sdot-Negev, Mobile Post Negev, 85200, Israel
| | - Eli Zaady
- Department of Natural Resources, Agricultural Research Organization, Ministry of Agriculture, Gilat Research Center, Mobile Post Negev, 8531100, Israel
| |
Collapse
|
47
|
Miao Y, Zhou C, Bai Q, Cui Z, ShiYang X, Lu Y, Zhang M, Dai X, Xiong B. The protective role of melatonin in porcine oocyte meiotic failure caused by the exposure to benzo(a)pyrene. Hum Reprod 2017; 33:116-127. [DOI: 10.1093/humrep/dex331] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/12/2017] [Indexed: 12/27/2022] Open
Affiliation(s)
- Yilong Miao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Changyin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qingyun Bai
- School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Zhaokang Cui
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiayan ShiYang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yajuan Lu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Mianqun Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoxin Dai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Bo Xiong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
48
|
Luo YH, Kuo YC, Tsai MH, Ho CC, Tsai HT, Hsu CY, Chen YC, Lin P. Interleukin-24 as a target cytokine of environmental aryl hydrocarbon receptor agonist exposure in the lung. Toxicol Appl Pharmacol 2017; 324:1-11. [DOI: 10.1016/j.taap.2017.03.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/19/2017] [Indexed: 12/15/2022]
|
49
|
Mesquita SR, van Drooge BL, Dall'Osto M, Grimalt JO, Barata C, Vieira N, Guimarães L, Piña B. Toxic potential of organic constituents of submicron particulate matter (PM1) in an urban road site (Barcelona). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:15406-15415. [PMID: 28508335 DOI: 10.1007/s11356-017-9201-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 05/03/2017] [Indexed: 06/07/2023]
Abstract
Atmospheric particulate matter (PM) is a recognized risk factor contributing to a number of diseases in human populations and wildlife globally. Organic matter is a major component of PM, but its contribution to overall toxicity of PM has not been thoroughly evaluated yet. In the present work, the biological activity of organic extracts from PM1 (particles with less than 1 μm of aerodynamic diameter) collected from an urban road site in the centre of Barcelona (NE Spain) was evaluated using a yeast-based assay (AhR-RYA) and different gene expression markers in zebrafish embryos. Dioxin-like activity of the extracts correlated to primary emissions from local traffic exhausts, reflecting weekday/weekend alternance. Expression levels of cyp1a and of gene markers for key cellular processes and development (ier2, fos) also correlated to vehicle emissions, whereas expression of gene markers related to antioxidant defence and endocrine effects (gstal, hao1, ttr) was strongly reduced in samples with strong contribution from regional air masses with aged secondary organic species or with strong influence of biomass burning emissions. Our data suggest that the toxic potential of PM1 organic chemical constituents strongly depends on the emission sources and on the process of ageing from primary to secondary organic aerosols.
Collapse
Affiliation(s)
- Sofia R Mesquita
- Institute of Environmental Assessment and Water Research, Carrer Jordi Girona 18-26, 08034, Barcelona, Spain.
- Interdisciplinary Centre of Marine and Environmental Research, Rua dos Bragas 289, 4050-123, Porto, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.
| | - Barend L van Drooge
- Institute of Environmental Assessment and Water Research, Carrer Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Manuel Dall'Osto
- Institute of Environmental Assessment and Water Research, Carrer Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Joan O Grimalt
- Institute of Environmental Assessment and Water Research, Carrer Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Carlos Barata
- Institute of Environmental Assessment and Water Research, Carrer Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Natividade Vieira
- Interdisciplinary Centre of Marine and Environmental Research, Rua dos Bragas 289, 4050-123, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Laura Guimarães
- Interdisciplinary Centre of Marine and Environmental Research, Rua dos Bragas 289, 4050-123, Porto, Portugal
| | - Benjamin Piña
- Institute of Environmental Assessment and Water Research, Carrer Jordi Girona 18-26, 08034, Barcelona, Spain
| |
Collapse
|
50
|
Khanna S, Gharpure AS. Petroleum Carcinogenicity and Aerodigestive Tract: In Context of Developing Nations. Cureus 2017; 9:e1202. [PMID: 28573078 PMCID: PMC5449197 DOI: 10.7759/cureus.1202] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Head and neck cancers from a diverse group of neoplasms, the occurrence of which can be attributed to habitual tobacco use, race, alcohol consumption, ultraviolet (UV) exposure, occupational exposure, viruses, and diet. The surging incidence rates reflect the prevalence of risk factors such as tobacco use (smoked and smokeless), betel nut chewing, urbanization and issues relating to urban air quality. Urbanization and development have catalyzed a multifold rise in levels of pollution in metropolitan cities. Ever-increasing consumption of fuels to meet demands of the growing population coupled with industrial activity has adversely affected the air quality, especially in developing countries. The cause most neglected in risk assessment of aerodigestive tract cancer research is that from petroleum exposure. The global issue of petroleum carcinogenicity has assumed high proportions. Polycyclic aromatic hydrocarbons and heavy metals are essential constituents of total petroleum hydrocarbons which infiltrate into the environment and are recognized worldwide as priority pollutants because of their toxicity and carcinogenicity. High levels of sulfur dioxide, nitrogen dioxide, ozone, carbon monoxide, ammonia and particulate matter PM10 has skyrocketed aerodigestive tract diseases especially carcinomas. The identification of specific biomarkers and role of metal ions in aerodigestive tract cancers will indicate the molecular basis of disease to provide quality care for patients confronting new threats from climate-sensitive pathologies. There is an urgent need to evaluate existing public health infrastructure so as to take ameliorative and adaptive measures.
Collapse
Affiliation(s)
- Sunali Khanna
- Municipal Corporation of Greater Mumbai, Nair Hospital Dental College
| | | |
Collapse
|