1
|
Thomas L, Raju AP, Mallayasamy S, Rao M. Precision Medicine Strategies to Improve Isoniazid Therapy in Patients with Tuberculosis. Eur J Drug Metab Pharmacokinet 2024; 49:541-557. [PMID: 39153028 PMCID: PMC11365851 DOI: 10.1007/s13318-024-00910-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2024] [Indexed: 08/19/2024]
Abstract
Due to interindividual variability in drug metabolism and pharmacokinetics, traditional isoniazid fixed-dose regimens may lead to suboptimal or toxic isoniazid concentrations in the plasma of patients with tuberculosis, contributing to adverse drug reactions, therapeutic failure, or the development of drug resistance. Achieving precision therapy for isoniazid requires a multifaceted approach that could integrate various clinical and genomic factors to tailor the isoniazid dose to individual patient characteristics. This includes leveraging molecular diagnostics to perform the comprehensive profiling of host pharmacogenomics to determine how it affects isoniazid metabolism, such as its metabolism by N-acetyltransferase 2 (NAT2), and studying drug-resistant mutations in the Mycobacterium tuberculosis genome for enabling targeted therapy selection. Several other molecular signatures identified from the host pharmacogenomics as well as other omics-based approaches such as gut microbiome, epigenomic, proteomic, metabolomic, and lipidomic approaches have provided mechanistic explanations for isoniazid pharmacokinetic variability and/or adverse drug reactions and thereby may facilitate precision therapy of isoniazid, though further validations in larger and diverse populations with tuberculosis are required for clinical applications. Therapeutic drug monitoring and population pharmacokinetic approaches allow for the adjustment of isoniazid dosages based on patient-specific pharmacokinetic profiles, optimizing drug exposure while minimizing toxicity and the risk of resistance. Current evidence has shown that with the integration of the host pharmacogenomics-particularly NAT2 and Mycobacterium tuberculosis genomics data along with isoniazid pharmacokinetic concentrations in the blood and patient factors such as anthropometric measurements, comorbidities, and type and timing of food administered-precision therapy approaches in isoniazid therapy can be tailored to the specific characteristics of both the host and the pathogen for improving tuberculosis treatment outcomes.
Collapse
Affiliation(s)
- Levin Thomas
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Arun Prasath Raju
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Surulivelrajan Mallayasamy
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Mahadev Rao
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India.
| |
Collapse
|
2
|
Lopes MQP, Teixeira RLF, Cabello PH, Nery JAC, Sales AM, Nahn J. R. EP, Moreira MV, Stahlke EVR, Possuelo LG, Rossetti MLR, Rabahi MF, Silva LFM, Leme PA, Woods WJ, Nobre ML, de Oliveira MLWDR, Narahashi K, Cavalcanti M, Suffys PN, Boukouvala S, Gallo MEN, Santos AR. Human N-acetyltransferase 2 ( NAT2) gene variability in Brazilian populations from different geographical areas. Front Pharmacol 2023; 14:1278720. [PMID: 38035025 PMCID: PMC10684696 DOI: 10.3389/fphar.2023.1278720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction: Several polymorphisms altering the NAT2 activity have already been identified. The geographical distribution of NAT2 variants has been extensively studied and has been demonstrated to vary significantly among different ethnic population. Here, we describe the genetic variability of human N-acetyltransferase 2 (NAT2) gene and the predominant genotype-deduced acetylation profiles of Brazilians. Methods: A total of 964 individuals, from five geographical different regions, were genotyped for NAT2 by sequencing the entire coding exon. Results: Twenty-three previously described NAT2 single nucleotide polymorphisms (SNPs) were identified, including the seven most common ones globally (c.191G>A, c.282C>T, c.341T>C, c.481C>T, c.590G>A, c.803A>G and c.857G>A). The main allelic groups were NAT2*5 (36%) and NAT2*6 (18.2%), followed to the reference allele NAT2*4 (20.4%). Combined into genotypes, the most prevalent allelic groups were NAT2*5/*5 (14.6%), NAT2*5/*6 (11.9%) and NAT2*6/*6 (6.2%). The genotype deduced NAT2 slow acetylation phenotype was predominant but showed significant variability between geographical regions. The prevalence of slow acetylation phenotype was higher in the Northeast, North and Midwest (51.3%, 45.5% and 41.5%, respectively) of the country. In the Southeast, the intermediate acetylation phenotype was the most prevalent (40.3%) and, in the South, the prevalence of rapid acetylation phenotype was significantly higher (36.7%), when compared to other Brazilian states (p < 0.0001). Comparison of the predicted acetylation profile among regions showed homogeneity among the North and Northeast but was significantly different when compared to the Southeast (p = 0.0396). The Southern region was significantly different from all other regions (p < 0.0001). Discussion: This study contributes not only to current knowledge of the NAT2 population genetic diversity in different geographical regions of Brazil, but also to the reconstruction of a more accurate phenotypic picture of NAT2 acetylator profiles in those regions.
Collapse
Affiliation(s)
- Márcia Quinhones P. Lopes
- Laboratory of Molecular Biology Applied to Mycobacteria, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Raquel Lima F. Teixeira
- Laboratory of Molecular Biology Applied to Mycobacteria, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Pedro Hernan Cabello
- Laboratory of Human Genetics, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - José Augusto C. Nery
- Leprosy Laboratory, Souza Araújo Outpatient Clinic, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Anna Maria Sales
- Leprosy Laboratory, Souza Araújo Outpatient Clinic, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | | | | | | | - Lia Gonçalves Possuelo
- Department of Molecular Biology and Biotechnology, IB and Biotechnology Center, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria Lucia R. Rossetti
- Department of Molecular Biology and Biotechnology, IB and Biotechnology Center, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Marcelo F. Rabahi
- Anuar Auad Infectious Disease Reference Hospital, Goiania, GO, Brazil
| | | | | | | | | | | | | | | | - Philip Noel Suffys
- Laboratory of Molecular Biology Applied to Mycobacteria, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Sotiria Boukouvala
- Laboratory of Molecular Genetics and Pharmacogenomics - Toxicogenomics, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Maria Eugênia N. Gallo
- Leprosy Laboratory, Souza Araújo Outpatient Clinic, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Adalberto Rezende Santos
- Laboratory of Molecular Biology Applied to Mycobacteria, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
3
|
Hein DW, Salazar-González RA, Doll MA, Zang Y. The effect of the rs1799931 G857A (G286E) polymorphism on N-acetyltransferase 2-mediated carcinogen metabolism and genotoxicity differs with heterocyclic amine exposure. Arch Toxicol 2023; 97:2697-2705. [PMID: 37592049 PMCID: PMC10529816 DOI: 10.1007/s00204-023-03577-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023]
Abstract
Human N-acetyltransferase 2 (NAT2) is subject to genetic polymorphism in human populations. In addition to the reference NAT2*4 allele, two genetic variant alleles (NAT2*5B and NAT2*7B) are common in Europe and Asia, respectively. NAT2*5B possesses a signature rs1801280 T341C (I114T) single-nucleotide polymorphism (SNP), whereas NAT2*7B possesses a signature rs1799931 G857A (G286E) SNP. NAT2 alleles possessing the T341C (I114T) or G857A (G286E) SNP were recombinant expressed in yeast and tested for capacity to catalyze the O-acetylation of the N-hydroxy metabolites of heterocyclic amines (HCAs). The T341C (I114T) SNP reduced the O-acetylation of N-hydroxy-2-amino-3-methylimidazo [4,5-f] quinoline (N-OH-IQ), N-hydroxy-2-amino-3,8-dimethylimidazo [4,5-f] quinoxaline (N-OH-MeIQx) and N-hydroxy- 2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine (N-OH-PhIP), whereas the G857A (G286E) SNP reduced the O-acetylation of N-OH-IQ and N-OH-MeIQx but not N-OH-PhIP. The G857A (G286E) SNP significantly (p < 0.05) reduced apparent Km toward N-OH-PhIP but did not significantly (p > 0.05) affect apparent Vmax. Cultures of DNA repair-deficient Chinese hamster ovary (CHO) cells transfected with human CYP1A2 and NAT2*4, NAT2*5B or NAT2*7B alleles were incubated with various concentrations of IQ, MeIQx or PhIP and double-stranded DNA damage and reactive oxygen species (ROS) were measured. Transfection with human CYP1A2 did not significantly (p > 0.05) increase HCA-induced DNA damage and ROS over un-transfected cells. Additional transfection with NAT2*4, NAT2*5B or NAT2*7B allele increased both DNA damage and ROS. The magnitude of the increases was both NAT2 allele- and substrate-dependent showing the same pattern as observed for the O-acetylation of the N-hydroxylated HCAs suggesting that both are mediated via NAT2-catalyzed O-acetylation. The results document the role of NAT2 and its genetic polymorphism on the O-acetylation and genotoxicity of HCAs.
Collapse
Affiliation(s)
- David W Hein
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, 505 S. Hancock Street, CTR Rm 303, Louisville, KY, 40202, USA.
| | - Raúl A Salazar-González
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, 505 S. Hancock Street, CTR Rm 303, Louisville, KY, 40202, USA
| | - Mark A Doll
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, 505 S. Hancock Street, CTR Rm 303, Louisville, KY, 40202, USA
| | - Yu Zang
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, 505 S. Hancock Street, CTR Rm 303, Louisville, KY, 40202, USA
| |
Collapse
|
4
|
Jarrar Y, Abudahab S, Abdul-Wahab G, Zaiter D, Madani A, Abaalkhail SJ, Abulebdah D, Alhawari H, Musleh R, Lee SJ. Clinical Significance of NAT2 Genetic Variations in Type II Diabetes Mellitus and Lipid Regulation. Pharmgenomics Pers Med 2023; 16:847-857. [PMID: 37724295 PMCID: PMC10505377 DOI: 10.2147/pgpm.s422495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/06/2023] [Indexed: 09/20/2023] Open
Abstract
Background N-acetyltransferase 2 (NAT2) enzyme is a Phase II drug-metabolizing enzyme that metabolizes different compounds. Genetic variations in NAT2 can influence the enzyme's activity and potentially lead to the development of certain diseases. Aim This study aimed to investigate the association of NAT2 variants with the risk of Type II diabetes mellitus (T2DM) and the lipid profile among Jordanian patients. Methods We sequenced the whole protein-coding region in NAT2 using Sanger's method among a sample of 45 Jordanian T2DM patients and 50 control subjects. Moreover, we analyzed the lipid profiles of the patients and examined any potential associations with NAT2 variants. Results This study revealed that the heterozygous NAT2*13 C/T genotype is significantly (P = 0.03) more common among T2DM (44%) than non-T2DM subjects (23.5%). Furthermore, the frequency of homozygous NAT2*13 T/T genotype was found to be significantly higher (P = 0.03) among T2DM patients (26.7%) compared to that of non-T2DM subjects (11%). The heterozygous NAT2*7 G/A genotype was exclusively observed in T2DM patients (11.1%) and absent in the control non-T2DM group. Moreover, among T2DM patients, those with a homozygous NAT2*11 T/T genotype exhibited significantly higher levels of triglycerides (381.50 ± 9.19 ng/dL) with a P value of 0.01 compared to those with heterozygous NAT2*11 C/T (136.23 ± 51.12 ng/dL) or wild-type NAT2*11 C/C (193.65 ± 109.89 ng/dL) genotypes. T2DM patients with homozygous NAT2*12 G/G genotype had a significantly (P = 0.04) higher triglyceride levels (275.67 ± 183.42 ng/dL) than the heterozygous NAT2*12 A/G (140.02 ± 49.53 ng/dL) and the wild NAT2*12 A/A (193.65 ± 109.89 ng/dL). Conclusion The finding in this study suggests that the NAT2 gene is a potential biomarker for the development of T2DM and changes in triglyceride levels among Jordanians. However, it is important to note that our sample size was limited; therefore, further clinical studies with a larger cohort are necessary to validate these findings.
Collapse
Affiliation(s)
- Yazun Jarrar
- Department of Basic Medical Sciences, Faculty of Medicine, Al-Balqa Applied University, Al-Salt, Jordan
| | - Sara Abudahab
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Ghasaq Abdul-Wahab
- Department of Oral Surgery and Periodontology, College of Dentistry, Al-Mustansiriya University, Baghdad, Iraq
| | - Dana Zaiter
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Abdalla Madani
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Sara J Abaalkhail
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Dina Abulebdah
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Hussam Alhawari
- Department of Internal Medicine, School of Medicine, The University of Jordan, Amman, Jordan
| | - Rami Musleh
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Su-Jun Lee
- Department of Pharmacology, Pharmacogenomics Research Center, College of Medicine, Inje University, Busan, Korea
| |
Collapse
|
5
|
Fankhouser RW, Murrell DE, Anane YY, Hurley DL, Mamudu HM, Harirforoosh S. Type 2 diabetes: an exploratory genetic association analysis of selected metabolizing enzymes and transporters and effects on cardiovascular and renal biomarkers. Drug Metab Pers Ther 2022; 37:375-382. [PMID: 35749156 DOI: 10.1515/dmpt-2021-0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 03/14/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES This study sought to identify potential pharmacogenetic associations of selected enzymes and transporters with type 2 diabetes (T2D). In addition, pharmacogenomic profiles, concentrations of asymmetric dimethylarginine (ADMA) or kidney injury molecule-1 (KIM-1), and several covariates were investigated. METHODS Whole blood was collected from 63 patients, with 32 individuals with T2D. A pharmacogenomic panel was used to assay genetic profiles, and biomarker ELISAs were run to determine subject concentrations of ADMA and KIM-1. Additive genetic modeling with multiple linear and logistic regressions were performed to discover potential SNPs-outcome associations using PLINK. RESULTS Ten SNPs were found to be significant (p<0.05) depending on the inclusion or exclusion of covariates. Of these, four were found in association with the presence of T2D, rs2231142, rs1801280, rs1799929, and rs1801265 depending on covariate inclusion or exclusion. Regarding ADMA, one SNP was found to be significant without covariates, rs1048943. Five SNPs were identified in association with KIM-1 and T2D in the presence of covariates, rs12208357, rs34059508, rs1058930, rs1902023, and rs3745274. Biomarker concentrations were not significantly different in the presence of T2D. CONCLUSIONS This exploratory study found several SNPs related to T2D; further research is required to validate and understand these relationships.
Collapse
Affiliation(s)
- Russell W Fankhouser
- Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN, USA
| | - Derek E Murrell
- Department of Pharmaceutical Sciences, Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN, USA
| | - Yaa Y Anane
- Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN, USA
| | - David L Hurley
- Department of Pharmaceutical Sciences, Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN, USA
| | - Hadii M Mamudu
- Department of Health Services Management and Policy, College of Public Health, East Tennessee State University, Johnson City, TN, USA
| | - Sam Harirforoosh
- Department of Pharmaceutical Sciences, Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN, USA
| |
Collapse
|
6
|
Habil MR, Salazar-González RA, Doll MA, Hein DW. Differences in β-naphthylamine metabolism and toxicity in Chinese hamster ovary cell lines transfected with human CYP1A2 and NAT2*4, NAT2*5B or NAT2*7B N-acetyltransferase 2 haplotypes. Arch Toxicol 2022; 96:2999-3012. [PMID: 36040704 PMCID: PMC10187863 DOI: 10.1007/s00204-022-03367-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/17/2022] [Indexed: 02/01/2023]
Abstract
β-naphthylamine (BNA) is an important aromatic amine carcinogen. Current exposures derive primarily from cigarette smoking including e-cigarettes. Occupational and environmental exposure to BNA is associated with urinary bladder cancer which is the fourth most frequent cancer in the United States. N-acetyltransferase 2 (NAT2) is an important metabolizing enzyme for aromatic amines. Previous studies investigated mutagenicity and genotoxicity of BNA in bacteria and in rabbit or rat hepatocytes. However, the effects of human NAT2 genetic polymorphism on N-acetylation and genotoxicity induced by BNA still need to be clarified. We used nucleotide excision repair-deficient Chinese hamster ovary (CHO) cells that were stably transfected with human CYP1A2 and NAT2 alleles: NAT2*4 (reference allele), NAT2*5B (variant slow acetylator allele common in Europe) or NAT2*7B (variant slow acetylator allele common in Asia). BNA N-acetylation was measured both in vitro and in situ via high-performance liquid chromatography (HPLC). Hypoxanthine phosphoribosyl transferase (HPRT) mutations, double-strand DNA breaks, and reactive oxygen species (ROS) were measured as indices of toxicity. NAT2*4 cells showed significantly higher BNA N-acetylation rates followed by NAT2*7B and NAT2*5B. BNA caused concentration-dependent increases in DNA damage and ROS levels. NAT2*7B showed significantly higher levels of HPRT mutants, DNA damage and ROS than NAT2*5B (p < 0.001, p < 0.0001, p < 0.0001 respectively) although both are slow alleles. Our findings suggest that BNA N-acetylation and toxicity are modified by NAT2 polymorphism. Furthermore, they confirm heterogeneity among slow acetylator alleles for BNA metabolism and toxicity supporting differential risk for individuals carrying NAT2*7B allele.
Collapse
Affiliation(s)
- Mariam R Habil
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, 505 S. Hancock Street, CTR Rm 303, Louisville, KY, 40202, USA
| | - Raúl A Salazar-González
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, 505 S. Hancock Street, CTR Rm 303, Louisville, KY, 40202, USA
| | - Mark A Doll
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, 505 S. Hancock Street, CTR Rm 303, Louisville, KY, 40202, USA
| | - David W Hein
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, 505 S. Hancock Street, CTR Rm 303, Louisville, KY, 40202, USA.
| |
Collapse
|
7
|
Yun JK, Ochirpurev B, Eom SY, Toriba A, Kim YD, Kim H. Effects of gene polymorphisms of CYP1A1, CYP1B1, EPHX1, NQO1, and NAT2 on urinary 1-nitropyrene metabolite concentrations. Heliyon 2022; 8:e10120. [PMID: 36033337 PMCID: PMC9399956 DOI: 10.1016/j.heliyon.2022.e10120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/10/2022] [Accepted: 07/26/2022] [Indexed: 11/23/2022] Open
Abstract
Nitropyrene (1-NP) is a specific indicator of exposure to diesel exhaust and is partly metabolized to 1-aminopyrene (1-AP) and N-acetyl-1-aminopyrene (1-NAAP), which are excreted in urine. This study was conducted to evaluate the effects of gene polymorphisms of metabolic enzymes for 1-NP on the urinary concentrations of 1-AP and 1-NAAP. The study participants were 70 South Koreans who were occupationally or environmentally exposed to diesel exhaust. To evaluate 1-NP exposure levels, we sampled airborne particulate matters with a personal air sampler and measured urinary 1-AP and 1-NAAP concentrations. The genetic polymorphisms of the 1-NP metabolic enzymes (CYP1A1, CYP1B1, EPHX1, NQO1, and NAT2) were determined by direct sequencing. The mean 1-NP exposure level was 20.40 pg/m3, and the mean urinary concentrations of 1-AP and 1-NAAP were 0.074 nM and 0.213 nM, respectively. The correlation coefficient between the 1-NP exposure level and urinary 1-AP concentrations was 0.0138 and that between the 1-NP exposure level and urinary 1-NAAP concentrations was 0.1493, and neither correlation coefficient was statistically significant. The correlation coefficient between the 1-NP exposure level and urinary 1-AP concentrations showed statistically significant differences according to the CYP1A1 and CYP1B1 genotypes, and that between the 1-NP exposure level and urinary 1-NAAP concentrations was significantly different according to the CYP1A1, CYP1B1, and NAT2 genotypes. The urinary concentration of 1-NAAP is a better biomarker for exposure to 1-NP or DEPs because the former is higher, easier to measure, and more strongly correlated with 1-NP exposure levels than that of 1-AP. The relationship between 1-NP exposure and urinary 1-AP or 1-NAAP concentration depends on the single nucleotide polymorphism types of CYP1A1, CYP1B1, NQO1, and NAT2. Compared with 1-AP, the urinary excretion of 1-NAAP is nearly three-fold greater. 1-NAAP showed a stronger correlation with 1-NP exposure than 1-AP and would be a better exposure biomarker. The relationship between 1-NP exposure and urinary 1-NAAP concentration depends on the SNP type of the metabolic enzymes.
Collapse
Affiliation(s)
- Jung-Kuk Yun
- Avellino Labs USA Inc., Menlo Park, CA, 94025, USA
| | - Bolormaa Ochirpurev
- Department of Preventive Medicine, College of Medicine, Chungbuk National University, Cheongju, South Korea
| | - Sang-Yong Eom
- Department of Preventive Medicine, College of Medicine, Chungbuk National University, Cheongju, South Korea
| | - Akira Toriba
- Department of Hygienic Chemistry, Graduate School of Biomedical Science, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Yong-Dae Kim
- Department of Preventive Medicine, College of Medicine, Chungbuk National University, Cheongju, South Korea
- Chungbuk Regional Cancer Center, Chungbuk National University Hospital, Cheongju, South Korea
| | - Heon Kim
- Department of Preventive Medicine, College of Medicine, Chungbuk National University, Cheongju, South Korea
- Chungbuk Regional Cancer Center, Chungbuk National University Hospital, Cheongju, South Korea
- Corresponding author.
| |
Collapse
|
8
|
Mohamed Noor NF, Salleh MZ, Mohd Zim MA, Bakar ZA, Fakhruzzaman Noorizhab MN, Zakaria NI, Lailanor MI, Teh LK. NAT2 polymorphism and clinical factors that increased antituberculosis drug-induced hepatotoxicity. Pharmacogenomics 2022; 23:531-541. [PMID: 35615896 DOI: 10.2217/pgs-2022-0022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Hepatotoxicity is a known adverse effect of antituberculosis drugs. The NAT2 gene polymorphism has been associated with an increased risk of antituberculosis drug-induced hepatotoxicity (ATDIH). Materials and methods: This study investigates the association of NAT2 polymorphism and clinical risk factors that may contribute to the development of ATDIH. The authors sequenced the NAT2 region of 33 tuberculosis patients who developed ATDIH and 100 tuberculosis patients who did not develop ATDIH during tuberculosis treatment. NAT2 haplotypes were inferred and NAT2 acetylator status was predicted from the combination of the inferred haplotypes. Multiple logistic regression was performed to identify possible factors that are associated with ATDIH. Results: The TT genotype of NAT2*13A and the AA genotype of NAT2*6B were found to be substantially linked with the risk of ATDIH, with odds ratios of 3.09 (95% CI: 1.37-6.95) and 3.07 (95% CI: 1.23-7.69), respectively. NAT2 slow acetylators are 3.39-times more likely to develop ATDIH. Factors that were associated with ATDIH include underlying diabetes mellitus (adjusted odds ratio [AOR] 2.96; 95% CI: 1.05-8.37), pre-treatment serum bilirubin (AOR 1.09; 95% CI: 1.02-1.16) and NAT2 slow acetylator (AOR 3.77; 95% CI: 1.51-9.44). Conclusion: Underlying diabetes mellitus, having a higher baseline bilirubin and being a slow acetylator are identified as the risk factors associated with ATDIH among patients in Malaysia.
Collapse
Affiliation(s)
- Nur Farhana Mohamed Noor
- Integrative Pharmacogenomics Institute, Universiti Teknologi MARA, Puncak Alam, Selangor, 42300, Malaysia
| | - Mohd Zaki Salleh
- Integrative Pharmacogenomics Institute, Universiti Teknologi MARA, Puncak Alam, Selangor, 42300, Malaysia.,Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam, Selangor, 42300, Malaysia
| | - Mohd Arif Mohd Zim
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, 47000, Malaysia
| | - Zamzurina Abu Bakar
- Respiratory Medicine Institute, Ministry of Health Malaysia, Kuala Lumpur, 53000, Malaysia
| | - Mohd Nur Fakhruzzaman Noorizhab
- Integrative Pharmacogenomics Institute, Universiti Teknologi MARA, Puncak Alam, Selangor, 42300, Malaysia.,Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam, Selangor, 42300, Malaysia
| | - Noor Izyani Zakaria
- Medical Department, Selayang Hospital, Ministry of Health Malaysia, Batu Caves, Selangor, 68100, Malaysia
| | | | - Lay Kek Teh
- Integrative Pharmacogenomics Institute, Universiti Teknologi MARA, Puncak Alam, Selangor, 42300, Malaysia.,Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam, Selangor, 42300, Malaysia
| |
Collapse
|
9
|
Hein DW, Doll MA, Habil MR. Human N-Acetyltransferase 1 and 2 Differ in Affinity Towards Acetyl-Coenzyme A Cofactor and N-Hydroxy-Arylamine Carcinogens. Front Pharmacol 2022; 13:821133. [PMID: 35281898 PMCID: PMC8914035 DOI: 10.3389/fphar.2022.821133] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/24/2022] [Indexed: 02/01/2023] Open
Abstract
Arylamine N-acetyltransferases catalyze the transfer of acetyl groups from the endogenous cofactor acetyl coenzyme A (AcCoA) to arylamine (N-acetylation) and N-hydroxy-arylamine (O-acetylation) acceptors. Humans express two arylamine N-acetyltransferase isozymes (NAT1 and NAT2) which catalyze both N- and O-acetylation but differ in genetic regulation, substrate selectivity, and expression in human tissues. We investigated recombinant human NAT1 and NAT2 expressed in an Escherichia coli JM105 and Schizosaccharomyces pombe expression systems as well as in Chinese hamster ovary (CHO) cells to assess the relative affinity of AcCoA for human NAT1 and NAT2. NAT1 and NAT2 affinity for AcCoA was higher for recombinant human NAT1 than NAT2 when catalyzing N-acetylation of aromatic amine carcinogens 2-aminofluroene (AF), 4-aminobiphenyl (ABP), and β-naphthylamine (BNA) and the metabolic activation of N-hydroxy-2-aminofluorene (N-OH-AF) and N-hydroxy-4-aminobiphenyl (N-OH-ABP) via O-acetylation. These results suggest that AcCoA level may influence differential rates of arylamine carcinogen metabolism catalyzed by NAT1 and NAT2 in human tissues. Affinity was higher for NAT2 than for NAT1 using N-OH-AF and N-OH-ABP as substrate consistent with a larger active site for NAT2. In conclusion, following recombinant expression in bacteria, yeast, and CHO cells, we report significant differences in affinity between human NAT1 and NAT2 for its required co-factor AcCoA, as well as for N-hydroxy-arylamines activated via O-acetylation. The findings provide important information to understand the relative contribution of human NAT1 vs NAT2 towards N-acetylation and O-acetylation reactions in human hepatic and extrahepatic tissues.
Collapse
|
10
|
El-Jaick KB, Ribeiro-Alves M, Soares MVG, Araujo GEFD, Pereira GRC, Rolla VC, Mesquita JFD, De Castro L. Homozygotes NAT2*5B slow acetylators are highly associated with hepatotoxicity induced by anti-tuberculosis drugs. Mem Inst Oswaldo Cruz 2022; 117:e210328. [PMID: 35588539 PMCID: PMC9049236 DOI: 10.1590/0074-02760210328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/24/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Distinct N-acetyltransferase 2 (NAT2) slow acetylators genotypes have been associated with a higher risk to develop anti-tuberculosis drug-induced hepatotoxicity (DIH). However, studies have not pointed the relevance of different acetylation phenotypes presented by homozygotes and compound heterozygotes slow acetylators on a clinical basis. OBJECTIVES This study aimed to investigate the association between NAT2 genotypes and the risk of developing DIH in Brazilian patients undergoing tuberculosis treatment, focusing on the discrimination of homozygotes and compound heterozygotes slow acetylators. METHODS/FINDINGS The frequency of NAT2 genotypes was analysed by DNA sequencing in 162 patients undergoing tuberculosis therapy. The mutation analyses revealed 15 variants, plus two new NAT2 mutations, that computational simulations predicted to cause structural perturbations in the protein. The multivariate statistical analysis revealed that carriers of NAT2*5/*5 slow acetylator genotype presented a higher risk of developing anti-tuberculosis DIH, on a clinical basis, when compared to the compound heterozygotes presenting NAT2*5 and any other slow acetylator haplotype [aOR 4.97, 95% confidence interval (CI) 1.47-16.82, p = 0.01]. CONCLUSION These findings suggest that patients with TB diagnosis who present the NAT2*5B/*5B genotype should be properly identified and more carefully monitored until treatment outcome in order to prevent the occurrence of anti-tuberculosis DIH.
Collapse
Affiliation(s)
- Kenia Balbi El-Jaick
- Universidade Federal do Estado do Rio de Janeiro, Brazil; Universidade Federal do Estado do Rio de Janeiro, Brazil
| | | | | | | | | | | | - Joelma Freire De Mesquita
- Universidade Federal do Estado do Rio de Janeiro, Brazil; Universidade Federal do Estado do Rio de Janeiro, Brazil; Universidade Federal do Estado do Rio de Janeiro, Brazil
| | | |
Collapse
|
11
|
Herrera-Rodulfo A, Carrillo-Tripp M, Laura Yeverino-Gutierrez M, Peñuelas-Urquides K, Adiene González-Escalante L, Bermúdez de León M, Silva-Ramirez B. NAT2 polymorphisms associated with the development of hepatotoxicity after first-line tuberculosis treatment in Mexican patients: From genotype to molecular structure characterization. Clin Chim Acta 2021; 519:153-162. [PMID: 33932406 DOI: 10.1016/j.cca.2021.04.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 04/26/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND AIMS To assess the relevance of the slow acetylator phenotype based on NAT2 genotypes, among patients with pulmonary tuberculosis (PTB) that developed hepatotoxicity after first-line tuberculosis treatment in a Northeastern Mexican population. METHODS Ninety one PTB patients were included, 7 of them developed hepatotoxicity. NAT2 SNPs (rs1801279, rs1041983, rs1801280, rs1799929, rs1799930, rs1208, and rs1799931) were genotyped by TaqMan allelic discrimination assay. Statistical analyses were performed using Epi Info statistical software 7.0 and SHEsisPlus for haplotype reconstruction. The NAT2 slow non-synonymous SNP were studied by molecular dynamic analysis (MDA). RESULTS The frequency of the haplotype associated with slow acetylation status for PTB was 58%, and for with hepatotoxicity (PTB-H) represented 42.6%. Three haplotypes, NAT2*5Q, NAT2*5U, NAT2*5Va were exclusively present in seven PTB-H patients, (P = 0.01, P = 0.0006, P = 0.01, respectively). These haplotypes include the combination of two SNPs (I114T + R197Q or I114T + G286E). The effect of the SNPs on protein structure is to disrupt the CoA binding site affecting acetylation activity. CONCLUSION Our study provides insight into slow acetylation NAT2 haplotypes associated with hepatotoxicity after first-line tuberculosis treatment, for first time, in a Mexican population. The molecular mechanism acts at the CoA binding site.
Collapse
Affiliation(s)
- Aldo Herrera-Rodulfo
- Laboratorio de la Diversidad Biomolecular, Centro de investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Monterrey, Vía del Conocimiento 201, PIIT, C.P. 66600 Apodaca, Nuevo León, Mexico; Laboratorio de Ingeniería Genética y Genómica, Universidad Autónoma de Nuevo León, Vicente Guerrero s/n, Treviño, C.P. 64570 Monterrey, Nuevo León, Mexico; Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Calle 2 de abril - Jesús Dionisio González, Independencia, C.P. 64720 Monterrey, Nuevo León, Mexico
| | - Mauricio Carrillo-Tripp
- Laboratorio de la Diversidad Biomolecular, Centro de investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Monterrey, Vía del Conocimiento 201, PIIT, C.P. 66600 Apodaca, Nuevo León, Mexico
| | - Myrna Laura Yeverino-Gutierrez
- Laboratorio de Ingeniería Genética y Genómica, Universidad Autónoma de Nuevo León, Vicente Guerrero s/n, Treviño, C.P. 64570 Monterrey, Nuevo León, Mexico
| | - Katia Peñuelas-Urquides
- Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Calle 2 de abril - Jesús Dionisio González, Independencia, C.P. 64720 Monterrey, Nuevo León, Mexico
| | - Laura Adiene González-Escalante
- Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Calle 2 de abril - Jesús Dionisio González, Independencia, C.P. 64720 Monterrey, Nuevo León, Mexico
| | - Mario Bermúdez de León
- Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Calle 2 de abril - Jesús Dionisio González, Independencia, C.P. 64720 Monterrey, Nuevo León, Mexico
| | - Beatriz Silva-Ramirez
- Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Calle 2 de abril - Jesús Dionisio González, Independencia, C.P. 64720 Monterrey, Nuevo León, Mexico.
| |
Collapse
|
12
|
Fukunaga K, Kato K, Okusaka T, Saito T, Ikeda M, Yoshida T, Zembutsu H, Iwata N, Mushiroda T. Functional Characterization of the Effects of N-acetyltransferase 2 Alleles on N-acetylation of Eight Drugs and Worldwide Distribution of Substrate-Specific Diversity. Front Genet 2021; 12:652704. [PMID: 33815485 PMCID: PMC8012690 DOI: 10.3389/fgene.2021.652704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/26/2021] [Indexed: 11/13/2022] Open
Abstract
Variability in the enzymatic activity of N-acetyltransferase 2 (NAT2) is an important contributor to interindividual differences in drug responses. However, there is little information on functional differences in N-acetylation activities according to NAT2 phenotypes, i.e., rapid, intermediate, slow, and ultra-slow acetylators, between different substrate drugs. Here, we estimated NAT2 genotypes in 990 Japanese individuals and compared the frequencies of different genotypes with those of different populations. We then calculated in vitro kinetic parameters of four NAT2 alleles (NAT2∗4, ∗5, ∗6, and ∗7) for N-acetylation of aminoglutethimide, diaminodiphenyl sulfone, hydralazine, isoniazid, phenelzine, procaineamide, sulfamethazine (SMZ), and sulfapyrizine. NAT2∗5, ∗6, and ∗7 exhibited significantly reduced N-acetylation activities with lower Vmax and CLint values of all drugs when compared with NAT2∗4. Hierarchical clustering analysis revealed that 10 NAT2 genotypes were categorized into three or four clusters. According to the results of in vitro metabolic experiments using SMZ as a substrate, the frequencies of ultra-slow acetylators were calculated to be 29.05–54.27% in Europeans, Africans, and South East Asians, whereas Japanese and East Asian populations showed lower frequencies (4.75 and 11.11%, respectively). Our findings will be helpful for prediction of responses to drugs primarily metabolized by NAT2.
Collapse
Affiliation(s)
- Koya Fukunaga
- Laboratory for Pharmacogenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Ken Kato
- Department of Head and Neck Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Takuji Okusaka
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Takeo Saito
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Masashi Ikeda
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Teruhiko Yoshida
- Fundamental Innovative Oncology Core, National Cancer Center Research Institute, Tokyo, Japan
| | - Hitoshi Zembutsu
- Fundamental Innovative Oncology Core, National Cancer Center Research Institute, Tokyo, Japan
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Taisei Mushiroda
- Laboratory for Pharmacogenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
13
|
Leggett CS, Doll MA, States JC, Hein DW. Acetylation of putative arylamine and alkylaniline carcinogens in immortalized human fibroblasts transfected with rapid and slow acetylator N-acetyltransferase 2 haplotypes. Arch Toxicol 2021; 95:311-319. [PMID: 33136180 PMCID: PMC7855884 DOI: 10.1007/s00204-020-02901-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/02/2020] [Indexed: 10/23/2022]
Abstract
Exposure to alkylanilines found in tobacco smoke and indoor air is associated with risk of bladder cancer. Genetic factors significantly influence the metabolism of arylamine carcinogens and the toxicological outcomes that result from exposure. We utilized nucleotide excision repair (NER)-deficient immortalized human fibroblasts to examine the effects of human N-acetyltransferase 1 (NAT1), CYP1A2, and common rapid (NAT2*4) and slow (NAT2*5B or NAT2*7B) acetylator human N-acetyltransferase 2 (NAT2) haplotypes on environmental arylamine and alkylaniline metabolism. We constructed SV40-transformed human fibroblast cells that stably express human NAT2 alleles (NAT2*4, NAT2*5B, or NAT2*7B) and human CYP1A2. Human NAT1 and NAT2 apparent kinetic constants were determined following recombinant expression of human NAT1 and NAT2 in yeast for the arylamines benzidine, 4-aminobiphenyl (ABP), and 2-aminofluorene (2-AF), and the alkylanilines 2,5-dimethylaniline (DMA), 3,4-DMA, 3,5-DMA, 2-6-DMA, and 3-ethylaniline (EA) compared with those of the prototype NAT1-selective substrate p-aminobenzoic acid and NAT2-selective substrate sulfamethazine. Benzidine, 3,4-DMA, and 2-AF were preferential human NAT1 substrates, while 3,5-DMA, 2,5-DMA, 3-EA, and ABP were preferential human NAT2 substrates. Neither recombinant human NAT1 or NAT2 catalyzed the N-acetylation of 2,6-DMA. Among the alkylanilines, N-acetylation of 3,5-DMA was substantially higher in human fibroblasts stably expressing NAT2*4 versus NAT2*5B and NAT2*7B. The results provide important insight into the role of the NAT2 acetylator polymorphism (in the presence of competing NAT1 and CYP1A2-catalyzed N-acetylation and N-hydroxylation) on the metabolism of putative alkyaniline carcinogens. The N-acetylation of two alkylanilines associated with urinary bladder cancer (3-EA and 3,5-DMA) was modified by NAT2 acetylator polymorphism.
Collapse
Affiliation(s)
- Carmine S Leggett
- Department of Pharmacology and Toxicology and James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
- American Association for Cancer Research, Washington, DC, USA
| | - Mark A Doll
- Department of Pharmacology and Toxicology and James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - J Christopher States
- Department of Pharmacology and Toxicology and James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - David W Hein
- Department of Pharmacology and Toxicology and James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA.
- University of Louisville Superfund Research Program, Louisville, KY, USA.
- University of Louisville Health Sciences Center, Kosair Charities CTR Room 303, 505 South Hancock Street, Louisville, KY, 40202, USA.
| |
Collapse
|
14
|
Hein DW, Millner LM. Arylamine N-acetyltransferase acetylation polymorphisms: paradigm for pharmacogenomic-guided therapy- a focused review. Expert Opin Drug Metab Toxicol 2021; 17:9-21. [PMID: 33094670 PMCID: PMC7790970 DOI: 10.1080/17425255.2021.1840551] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/19/2020] [Indexed: 01/10/2023]
Abstract
INTRODUCTION The N-acetylation polymorphism has been the subject of comprehensive reviews describing the role of arylamine N-acetyltransferase 2 (NAT2) in the metabolism of numerous aromatic amine and hydrazine drugs. AREAS COVERED We describe and review data that more clearly defines the effects of NAT2 haplotypes and genotypes on the expression of acetylator phenotype towards selected drugs within human hepatocytes in vitro, within human hepatocyte cultures in situ, and clinical measures such as bioavailability, plasma metabolic ratios of parent to N-acetyl metabolite, elimination rate constants and plasma half-life, and/or clearance determinations in human subjects. We review several drugs (isoniazid, hydralazine, sulfamethazine, amifampridine, procainamide, sulfasalazine, amonafide and metamizole) for which NAT2 phenotype-guided therapy may be important. The value of pharmacogenomics-guided isoniazid therapy for the prevention and treatment of tuberculosis is presented as a paradigm for NAT2 phenotype-dependent dosing strategies. EXPERT OPINION Studies in human subjects and cryopreserved human hepatocytes show evidence for rapid, intermediate and slow acetylator phenotypes, with further data suggesting genetic heterogeneity within the slow acetylator phenotype. Incorporation of more robust NAT2 genotype/phenotypes relationships, including genetic heterogeneity within the slow acetylator phenotype, should lead to further advancements in both health outcomes and cost benefit for prevention and treatment of tuberculosis.
Collapse
Affiliation(s)
- David W. Hein
- Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Lori M. Millner
- Bluewater Diagnostic Laboratory, Mount Washington, Kentucky, USA
| |
Collapse
|
15
|
Pandi S, Chinniah R, Sevak V, Ravi PM, Vijayan M, Vellaiappan NA, Karuppiah B. Association of slow acetylator genotype of N-acetyltransferase 2 with Parkinson's disease in south Indian population. Neurosci Lett 2020; 735:135260. [PMID: 32682841 DOI: 10.1016/j.neulet.2020.135260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/12/2020] [Accepted: 07/15/2020] [Indexed: 12/21/2022]
Abstract
AIM Parkinson's Disease (PD) is a neurodegenerative disorder with predisposing genetic and environmental factors. The present study was undertaken to elucidate the possible association of NAT2 gene polymorphism in PD patients from south India. METHODS Using previously validated PCR-RFLP assays, we genotyped 105 PD subjects and 101 healthy controls for N-acetyl transferase (NAT2) gene polymorphism. RESULTS We observed a significantly elevated frequencies of NAT2 *5/6 (OR = 4.21; p < 0.029) and *5/7 (OR = 2.73; p < 0.025) genotypes and NAT2*5 (OR = 1.83; p < 0.039) allele among PD cases showing susceptible associations. The age at onset analysis revealed a significant association of NAT2 *4/6 (OR = 4.62; p < 0.05) genotype with early onset PD (EOPD). A positive association with early onset disease was observed for *5/7 (OR = 3.88; p < 0.075) genotype, however without statistical significance. Whereas, in late onset PD (LOPD) cases, significant susceptible association was observed for NAT2 *5/7 (OR = 5.27; p < 0.029) genotype. We observed a highly significant protective association of NAT2 *4/6 (OR = 0.27; p < 0.012) genotype and NAT2 *4 (OR = 0.52; p < 0.027) allele with LOPD. The acetylator status phenotype analysis have revealed a higher risk for, 'NAT2 slow acetylator' in both overall PD (OR = 2.39; p < 0.002) and LOPD (OR = 2.88; p < 0.007). However, 'NAT2 intermediate acetylator' with a lower risk in both overall PD (OR = 0.47; p < 0.011) and LOPD (OR = 0.36; p < 0.007) cases revealed protective associations. CONCLUSIONS Thus, our results revealed the possible susceptible association of NAT2 slow acetylator in PD pathogenesis in south Indian population.
Collapse
Affiliation(s)
- Sasiharan Pandi
- Department of Immunology, School of Biological Sciences, Madurai, 625021, Tamil Nadu, India
| | - Rathika Chinniah
- Department of Immunology, School of Biological Sciences, Madurai, 625021, Tamil Nadu, India
| | - Vandit Sevak
- Department of Immunology, School of Biological Sciences, Madurai, 625021, Tamil Nadu, India
| | - Padma Malini Ravi
- Department of Immunology, School of Biological Sciences, Madurai, 625021, Tamil Nadu, India
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | | | - Balakrishnan Karuppiah
- Department of Immunology, School of Biological Sciences, Madurai, 625021, Tamil Nadu, India.
| |
Collapse
|
16
|
Study on Genotyping Polymorphism and Sequencing of N-Acetyltransferase 2 (NAT2) among Al-Ahsa Population. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8765347. [PMID: 32626768 PMCID: PMC7312966 DOI: 10.1155/2020/8765347] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/04/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023]
Abstract
One of the well-studied phase II drug metabolizing enzymes is N-acetyltransferase 2 (NAT2) which has an essential role in the detoxification and metabolism of several environmental toxicants and many therapeutic drugs like isoniazid (antituberculosis, TB) and antimicrobial sulfonamides. According to the variability in the acetylation rate among different ethnic groups, individuals could be classified into slow, intermediate, and fast acetylators; these variabilities in the acetylation rate are a result of single nucleotide polymorphisms (SNPs) in the coding sequence of NAT2. The variety of NAT2 acetylation status is associated with some diseases such as bladder cancer, colorectal cancer, rheumatoid arthritis, and diabetes mellitus. The main objectives of this research are to describe the genetic profile of NAT2 gene among the people of the Al-Ahsa region, to detect the significant SNPs of this gene, to determine the frequency of major NAT2 alleles and genotypes, and then categorize them into fast, intermediate, and slow acetylators. Blood samples were randomly collected from 96 unrelated people from Al-Ahsa population, followed by DNA extraction then amplifying the NAT2 gene by polymerase chain reaction (PCR); finally, functional NAT2 gene (exon 2) was sequenced using the Sanger sequencing method. The well-known seven genetic variants of NAT2 gene are 191G>A, 282C>T, 341T>C, 481C>T, 590G>A, 803A>G, and 857G>A were detected with allele frequencies 1%, 35.4%, 42.7%, 41.1%, 29.2%, 51%, and 5.7%, respectively. The most common NAT2 genetic variant among Al-Ahsa population was 803A>G with a high frequency 0.510 (95% confidence interval 0.44-0.581) followed by 341T>C 0.427 (95% confidence interval 0.357-0.497). The most frequent two haplotypes of NAT2 were NAT2∗6C (25.00%) and NAT2∗5A (22.92%) which were classified as a slow acetylators. According to trimodal distribution of acetylation activity, the predicted phenotype of Al-Ahsa population was found to be 5.21% rapid acetylators, 34.38% intermediate acetylators, and 60.42% were slow acetylators. In addition, this study found four novel haplotypes NAT2∗5TB, NAT2∗5AB, NAT2∗5ZA, and NAT2∗6W which were slow acetylators. This study revealed a high frequency of the NAT2 gene with slow acetylators (60.42%) in Al-Ahsa population, which might alter the drug's efficacy and vulnerability to some diseases.
Collapse
|
17
|
Human arylamine N-acetyltransferase 2 genotype-dependent protein expression in cryopreserved human hepatocytes. Sci Rep 2020; 10:7566. [PMID: 32372066 PMCID: PMC7200704 DOI: 10.1038/s41598-020-64508-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/16/2020] [Indexed: 01/08/2023] Open
Abstract
Human N-acetyltransferases (NAT; EC 2.3.1.5) catalyze the N-acetylation of arylamine and hydrazine drugs and the O-acetylation of N-hydroxylated metabolites of aromatic and heterocyclic amines. Two different isoforms of this protein, N-acetyltransferase 1 (NAT1) and N-acetyltransferase 2 (NAT2), are expressed in human hepatocytes. Both are encoded by a single 870-bp open reading frame that exhibits genetic polymorphisms in human populations. NAT1 and NAT2 share more than 85% gene and protein sequence, making it challenging to produce antibodies with high specificity for NAT1 or NAT2. In the present study, we compared methods for the quantification of immunoreactive NAT1 and NAT2 with seven different antibodies and investigated the relationship of NAT2 genotype to NAT2 mRNA and protein expression in cryopreserved human hepatocytes. Sulfamethazine (NAT2-selective substrate) and NAT2 protein expression differed significantly with NAT2 acetylator genotype (p < 0.0001). NAT2 protein expression and sulfamethazine NAT2 catalytic activity correlated highly across the cryopreserved human hepatocytes of rapid, intermediate, and slow acetylator NAT2 genotypes. In conclusion, our data describe a specific analytical method for the quantification of NAT1 and NAT2 protein expression. We showed that the NAT2 activity in human hepatocytes is directly correlated to expression levels of NAT2 protein but not mRNA.
Collapse
|
18
|
Baldauf KJ, Salazar-González RA, Doll MA, Pierce WM, States JC, Hein DW. Role of Human N-Acetyltransferase 2 Genetic Polymorphism on Aromatic Amine Carcinogen-Induced DNA Damage and Mutagenicity in a Chinese Hamster Ovary Cell Mutation Assay. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:235-245. [PMID: 31490564 PMCID: PMC7017392 DOI: 10.1002/em.22331] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/27/2019] [Accepted: 08/30/2019] [Indexed: 05/10/2023]
Abstract
Carcinogenic aromatic amines such as 4-aminobiphenyl (ABP) and 2-aminofluorene (AF) require metabolic activation to form electrophilic intermediates that mutate DNA leading to carcinogenesis. Bioactivation of these carcinogens includes N-hydroxylation catalyzed by CYP1A2 followed by O-acetylation catalyzed by arylamine N-acetyltransferase 2 (NAT2). To better understand the role of NAT2 genetic polymorphism in ABP- and AF-induced mutagenesis and DNA damage, nucleotide excision repair-deficient (UV5) Chinese hamster ovary (CHO) cells were stably transfected with human CYP1A2 and either NAT2*4 (rapid acetylator) or NAT2*5B (slow acetylator) alleles. ABP and AF both caused significantly (P < 0.001) greater mutagenesis measured at the hypoxanthine phosphoribosyl transferase (hprt) locus in the UV5/CYP1A2/NAT2*4 acetylator cell line compared to the UV5, UV5/CYP1A2, and UV5/CYP1A2/NAT2*5B cell lines. ABP- and AF-induced hprt mutant cDNAs were sequenced and over 80% of the single-base substitutions were at G:C base pairs. DNA damage also was quantified by γH2AX in-cell western assays and by identification and quantification of the two predominant DNA adducts, N-(deoxyguanosin-8-yl)-4-aminobiphenyl (dG-C8-ABP) and N-(deoxyguanosin-8-yl)-2-aminofluorene (dG-C8-AF) by liquid chromatography-mass spectrometry. DNA damage and adduct levels were dose-dependent, correlated highly with levels of hprt mutants, and were significantly (P < 0.0001) greater in the UV5/CYP1A2/NAT2*4 rapid acetylator cell line following treatment with ABP or AF as compared to all other cell lines. Our findings provide further clarity on the importance of O-acetylation in CHO mutagenesis assays for aromatic amines. They provide evidence that NAT2 genetic polymorphism modifies aromatic amine-induced DNA damage and mutagenesis that should be considered in human risk assessments following aromatic amine exposures. Environ. Mol. Mutagen. 61:235-245, 2020. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | | | | | | | | | - David W. Hein
- Correspondence to: David W. Hein, Kosair Charities CTR-Room 303, 505 South Hancock Street, Louisville, Kentucky 40202.
| |
Collapse
|
19
|
Bolaji OO, Adehin A, Adeagbo BA. Pharmacogenomics in the Nigerian population: the past, the present and the future. Pharmacogenomics 2019; 20:915-926. [DOI: 10.2217/pgs-2019-0046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Nigerian population exhibits huge ethnic and genetic diversity, typical of African populations, which can be harnessed for improved drug-response and disease management. Existing data on genes relevant to drug response, so far generated for the population, indeed confirm the prevalence of some clinically significant pharmacogenes. These reports detail prevailing genetic alleles and metabolic phenotypes of vital drug metabolizing monooxygenases, transferases and drug transporters. While the utilization of existing pharmacogenomic data for healthcare delivery remains unpopular, several past and on-going studies suggest that a future shift toward genotype-stratified dosing of drugs and disease management in the population is imminent. This review discusses the present state of pharmacogenomics in Nigeria and the potential benefits of sustained research in this field for the population.
Collapse
Affiliation(s)
- Oluseye O Bolaji
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Ayorinde Adehin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
- Institute of Biomedical & Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, PR China
| | - Babatunde A Adeagbo
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| |
Collapse
|
20
|
Humans and Chimpanzees Display Opposite Patterns of Diversity in Arylamine N-Acetyltransferase Genes. G3-GENES GENOMES GENETICS 2019; 9:2199-2224. [PMID: 31068377 PMCID: PMC6643899 DOI: 10.1534/g3.119.400223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Among the many genes involved in the metabolism of therapeutic drugs, human arylamine N-acetyltransferases (NATs) genes have been extensively studied, due to their medical importance both in pharmacogenetics and disease epidemiology. One member of this small gene family, NAT2, is established as the locus of the classic human acetylation polymorphism in drug metabolism. Current hypotheses hold that selective processes favoring haplotypes conferring lower NAT2 activity have been operating in modern humans’ recent history as an adaptation to local chemical and dietary environments. To shed new light on such hypotheses, we investigated the genetic diversity of the three members of the NAT gene family in seven hominid species, including modern humans, Neanderthals and Denisovans. Little polymorphism sharing was found among hominids, yet all species displayed high NAT diversity, but distributed in an opposite fashion in chimpanzees and bonobos (Pan genus) compared to modern humans, with higher diversity in Pan species at NAT1 and lower at NAT2, while the reverse is observed in humans. This pattern was also reflected in the results returned by selective neutrality tests, which suggest, in agreement with the predicted functional impact of mutations detected in non-human primates, stronger directional selection, presumably purifying selection, at NAT1 in modern humans, and at NAT2 in chimpanzees. Overall, the results point to the evolution of divergent functions of these highly homologous genes in the different primate species, possibly related to their specific chemical/dietary environment (exposome) and we hypothesize that this is likely linked to the emergence of controlled fire use in the human lineage.
Collapse
|
21
|
Pharmacogenetic association between NAT2 gene polymorphisms and isoniazid induced hepatotoxicity: trial sequence meta-analysis as evidence. Biosci Rep 2019; 39:BSR20180845. [PMID: 30509962 PMCID: PMC6331676 DOI: 10.1042/bsr20180845] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 11/13/2018] [Accepted: 11/27/2018] [Indexed: 01/11/2023] Open
Abstract
Hepatotoxicity is a severe problem generally faced by tuberculosis (TB) patients. It is a well-known adverse reaction due to anti-TB drugs in TB patients undergoing long-term treatment. The studies published previously have explored the connection of N-acetyltransferase 2 (NAT2) gene polymorphisms with isoniazid-induced hepatotoxicity, but the results obtained were inconsistent and inconclusive. A comprehensive trial sequence meta-analysis was conducted employing 12 studies comprising 3613 controls and 933 confirmed TB cases using the databases namely, EMBASE, PubMed (Medline) and Google Scholar till December 2017. A significant association was observed with individuals carrying variant allele at position 481C>T (T vs. C: P = 0.001; OR = 1.278, 95% CI = 1.1100–1.484), at position 590G>A (A vs. G: P = 0.002; OR = 1.421, 95% CI = 1.137–1.776) and at position 857G>A (A vs. G: P = 0.0022; OR = 1.411, 95% CI = 1.052–1.894) to higher risk of hepatotoxicity vis-à-vis wild-type allele. Likewise, the other genetic models of NAT2 gene polymorphisms have also shown increased risk of hepatotoxicity. No evidence of publication bias was observed. These results suggest that genetic variants of NAT2 gene have significant role in isoniazid induced hepatotoxicity. Thus, NAT2 genotyping has the potential to improve the understanding of the drug–enzyme metabolic capacity and help in early predisposition of isoniazid-induced hepatotoxicity.
Collapse
|
22
|
Comparative analysis of xenobiotic metabolising N-acetyltransferases from ten non-human primates as in vitro models of human homologues. Sci Rep 2018; 8:9759. [PMID: 29950659 PMCID: PMC6021393 DOI: 10.1038/s41598-018-28094-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/14/2018] [Indexed: 12/13/2022] Open
Abstract
Xenobiotic metabolising N-acetyltransferases (NATs) perform biotransformation of drugs and carcinogens. Human NAT1 is associated with endogenous metabolic pathways of cells and is a candidate drug target for cancer. Human NAT2 is a well-characterised polymorphic xenobiotic metabolising enzyme, modulating susceptibility to drug-induced toxicity. Human NATs are difficult to express to high purification yields, complicating large-scale production for high-throughput screens or use in sophisticated enzymology assays and crystallography. We undertake comparative functional investigation of the NAT homologues of ten non-human primates, to characterise their properties and evaluate their suitability as models of human NATs. Considering the amount of generated recombinant protein, the enzymatic activity and thermal stability, the NAT homologues of non-human primates are demonstrated to be a much more effective resource for in vitro studies compared with human NATs. Certain NAT homologues are proposed as better models, such as the NAT1 of macaques Macaca mulatta and M. sylvanus, the NAT2 of Erythrocebus patas, and both NAT proteins of the gibbon Nomascus gabriellae which show highest homology to human NATs. This comparative investigation will facilitate in vitro screens towards discovery and optimisation of candidate pharmaceutical compounds for human NAT isoenzymes, while enabling better understanding of NAT function and evolution in primates.
Collapse
|
23
|
Catalytic properties and heat stabilities of novel recombinant human N-acetyltransferase 2 allozymes support existence of genetic heterogeneity within the slow acetylator phenotype. Arch Toxicol 2017; 91:2827-2835. [PMID: 28523442 DOI: 10.1007/s00204-017-1989-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/11/2017] [Indexed: 01/25/2023]
Abstract
Human N-acetyltransferase 2 (NAT2) catalyzes the N-acetylation of numerous aromatic amine drugs such as sulfamethazine (SMZ) and hydrazine drugs such as isoniazid (INH). NAT2 also catalyzes the N-acetylation of aromatic amine carcinogens such as 2-aminofluorene and the O- and N,O-acetylation of aromatic amine and heterocyclic amine metabolites. Genetic polymorphism in NAT2 modifies drug efficacy and toxicity as well as cancer risk. Acetyltransferase catalytic activities and heat stability associated with six novel NAT2 haplotypes (NAT2*6C, NAT2*14C, NAT2*14D, NAT2*14E, NAT2*17, and NAT2*18) were compared with that of the reference NAT2*4 haplotype following recombinant expression in Escherichia coli. N-acetyltransferase activities towards SMZ and INH were significantly (p < 0.0001) lower when catalyzed by the novel recombinant human NAT2 allozymes compared to NAT2 4. SMZ and INH N-acetyltransferase activities catalyzed by NAT2 14C and NAT2 14D were significantly lower (p < 0.001) than catalyzed by NAT2 6C and NAT2 14E. N-Acetylation catalyzed by recombinant human NAT2 17 was over several hundred-fold lower than by recombinant NAT2 4 precluding measurement of its kinetic or heat inactivation constants. Similar results were observed for the O-acetylation of N-hydroxy-2-aminofluorene and N-hydroxy-2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine and the intramolecular N,O-acetylation of N-hydroxy-N-acetyl-2-aminofluorene. The apparent V max of the novel recombinant NAT2 allozymes NAT2 6C, NAT2 14C, NAT2 14D, and NAT2 14E towards AF, 4-aminobiphenyl (ABP), and 3,2'-dimethyl-4-aminobiphenyl (DMABP) were each significantly (p < 0.001) lower while their apparent K m values did not differ significantly (p > 0.05) from recombinant NAT2 4. The apparent V max catalyzed by NAT2 14C and NAT2 14D were significantly lower (p < 0.05) than the apparent V max catalyzed by NAT2 6C and NAT2 14E towards AF, ABP, and DMABP. Heat inactivation rate constants for recombinant human NAT2 14C, 14D, 14E, and 18 were significantly (p < 0.05) higher than NAT2 4. These results provide further evidence of genetic heterogeneity within the NAT2 slow acetylator phenotype.
Collapse
|
24
|
Doll MA, Hein DW. Genetic heterogeneity among slow acetylator N-acetyltransferase 2 phenotypes in cryopreserved human hepatocytes. Arch Toxicol 2017; 91:2655-2661. [PMID: 28516247 DOI: 10.1007/s00204-017-1988-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 05/11/2017] [Indexed: 01/29/2023]
Abstract
Genetic polymorphisms in human N-acetyltransferase 2 (NAT2) modify the metabolism of numerous drugs and carcinogens. These genetic polymorphisms modify both drug efficacy and toxicity and cancer risk associated with carcinogen exposure. Previous studies have suggested phenotypic heterogeneity among different NAT2 slow acetylator genotypes. NAT2 phenotype was investigated in vitro and in situ in samples of human hepatocytes obtained from various NAT2 slow and intermediate NAT2 acetylator genotypes. NAT2 gene dose response (NAT2*5B/*5B > NAT2*5B/*6A > NAT2*6A/*6A) was observed towards the N-acetylation of the NAT2-specific drug sulfamethazine by human hepatocytes both in vitro and in situ. N-acetylation of 4-aminobiphenyl, an arylamine carcinogen substrate for both N-acetyltransferase 1 and NAT2, showed the same trend both in vitro and in situ although the differences were not significant (p > 0.05). The N-acetylation of the N-acetyltransferase 1-specific substrate p-aminobenzoic acid did not follow this trend. In comparisons of NAT2 intermediate acetylator genotypes, differences in N-acetylation between NAT2*4/*5B and NAT2*4/*6B hepatocytes were not observed in vitro or in situ towards any of these substrates. These results further support phenotypic heterogeneity among NAT2 slow acetylator genotypes, consistent with differential risks of drug failure or toxicity and cancer associated with carcinogen exposure.
Collapse
Affiliation(s)
- Mark A Doll
- Department of Pharmacology and Toxicology and James Graham Brown Cancer Center, University of Louisville Health Sciences Center, Kosair Charities CTR, 505 South Hancock Street, Louisville, KY, 40202, USA
| | - David W Hein
- Department of Pharmacology and Toxicology and James Graham Brown Cancer Center, University of Louisville Health Sciences Center, Kosair Charities CTR, 505 South Hancock Street, Louisville, KY, 40202, USA.
| |
Collapse
|
25
|
Guaoua S, Ratbi I, El Bouazzi O, Hammi S, Tebaa A, Bourkadi JE, Bencheikh RS, Sefiani A. NAT2 Genotypes in Moroccan Patients with Hepatotoxicity Due to Antituberculosis Drugs. Genet Test Mol Biomarkers 2016; 20:680-684. [DOI: 10.1089/gtmb.2016.0060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Soukaina Guaoua
- Centre de Génomique Humaine, Faculté de Médecine et de Pharmacie, Université Mohammed V, Rabat, Morocco
- Département de Génétique Médicale, Institut National d'Hygiène, Rabat, Morocco
| | - Ilham Ratbi
- Centre de Génomique Humaine, Faculté de Médecine et de Pharmacie, Université Mohammed V, Rabat, Morocco
| | - Omaima El Bouazzi
- Laboratoire de Pharmacotoxicologie, Centre Anti Poison et de Pharmacovigilance, Faculté de Médecine et de Pharmacie, Université Mohammed V, Rabat, Morocco
- Faculté des Sciences, Université Ibn Tofail, Kénitra, Morocco
| | - Sanaa Hammi
- Faculte de Médecine, Université Abdel Malek Essaadi, Tanger, Morocco
| | - Amina Tebaa
- Laboratoire de Pharmacotoxicologie, Centre Anti Poison et de Pharmacovigilance, Faculté de Médecine et de Pharmacie, Université Mohammed V, Rabat, Morocco
| | - Jamal Eddine Bourkadi
- Département de Pneumologie, Hôpital Moulay Youssef - Centre Hospitalier Ibn Sina Rabat, Faculté de Médecine et de Pharmacie, Université Mohammed V, Rabat, Morocco
| | - Rachida Soulaymani Bencheikh
- Laboratoire de Pharmacotoxicologie, Centre Anti Poison et de Pharmacovigilance, Faculté de Médecine et de Pharmacie, Université Mohammed V, Rabat, Morocco
| | - Abdelaziz Sefiani
- Centre de Génomique Humaine, Faculté de Médecine et de Pharmacie, Université Mohammed V, Rabat, Morocco
- Département de Génétique Médicale, Institut National d'Hygiène, Rabat, Morocco
| |
Collapse
|
26
|
Quan L, Chattopadhyay K, Nelson HH, Chan KK, Xiang YB, Zhang W, Wang R, Gao YT, Yuan JM. Differential association for N-acetyltransferase 2 genotype and phenotype with bladder cancer risk in Chinese population. Oncotarget 2016; 7:40012-40024. [PMID: 27223070 PMCID: PMC5129988 DOI: 10.18632/oncotarget.9475] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 04/16/2016] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND N-acetyltransferase 2 (NAT2) is involved in both carcinogen detoxification through hepatic N-acetylation and carcinogen activation through local O-acetylation. NAT2 slow acetylation status is significantly associated with increased bladder cancer risk among European populations, but its association in Asian populations is inconclusive. METHODS NAT2 acetylation status was determined by both single nucleotide polymorphisms (SNPs) and caffeine metabolic ratio (CMR), in a population-based study of 494 bladder cancer patients and 507 control subjects in Shanghai, China. RESULTS The CMR, a functional measure of hepatic N-acetylation, was significantly reduced in a dose-dependent manner among both cases and controls possessing the SNP-inferred NAT2 slow acetylation status (all P-values<5.0×10-10). The CMR-determined slow N-acetylation status (CMR<0.34) was significantly associated with a 50% increased risk of bladder cancer (odds ratio = 1.50, 95% confidence interval = 1.10-2.06) whereas the SNP-inferred slow acetylation statuses were significantly associated with an approximately 50% decreased risk of bladder cancer. The genotype-disease association was strengthened after the adjustment for CMR and was primarily observed among never smokers. CONCLUSIONS The apparent differential associations for phenotypic and genetic measures of acetylation statuses with bladder cancer risk may reflect dual functions of NAT2 in bladder carcinogenesis because the former only measures the capacity of carcinogen detoxification pathway while the latter represents both carcinogen activation and detoxification pathways. Future studies are warranted to ascertain the specific role of N- and O-acetylation in bladder carcinogenesis, particularly in populations exposed to different types of bladder carcinogens.
Collapse
Affiliation(s)
- Lei Quan
- University of Pittsburgh Cancer Institute, and Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Current affiliation: School of Bioscience and Bioengineering, Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou China
| | - Koushik Chattopadhyay
- University of Pittsburgh Cancer Institute, and Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Heather H. Nelson
- Masonic Cancer Center, and Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kenneth K. Chan
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Yong-Bing Xiang
- Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei Zhang
- Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Renwei Wang
- University of Pittsburgh Cancer Institute, and Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yu-Tang Gao
- Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jian-Min Yuan
- University of Pittsburgh Cancer Institute, and Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
27
|
Risk factors of isoniazid-induced hepatotoxicity in Tunisian tuberculosis patients. THE PHARMACOGENOMICS JOURNAL 2016; 17:372-377. [PMID: 27089936 DOI: 10.1038/tpj.2016.26] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 02/06/2016] [Accepted: 02/26/2016] [Indexed: 02/06/2023]
Abstract
Previous studies have shown controversial results on whether acetylator status causes isoniazid-induced hepatotoxicity (IIH). Moreover, the contribution of CYP2E1, a hepatic enzyme implicated in the formation of hepatotoxins, to the risk of developing IIH remains unclear. The objectives of this study were (i) to assess the quantitative relationship between the level of isoniazid serum concentration and the incidence of IIH and (ii) to evaluate the extent of implication of the N-acetyltransferase-2 (NAT2) and CYP2E1 polymorphisms genes to induce this disorder. Seventy-one patients with tuberculosis receiving a conventional antituberculosis regimen were included. NAT2 and CYP2E1 genotypes were determined using polymerase chain reaction. Three restriction enzymes, RsaI, PstI and DraI were used to detect CYP2E1 RFLP and four different restriction enzymes, KpnI, TaqI, BamHI and Ddel were used to determine NAT2 acetylator status. Therapeutic drug monitoring (TDM) of isoniazid (serum concentration performed 3 h after the morning dose: C3) was performed. Cases of isoniazid-induced hepatotoxicity were diagnosed according to Benichou et al. Receiver Operating Characteristics curve analysis was used to evaluate the relationship between risk factors and the incidence of IIH. Eleven (15.4%) patients have developed IIH. Demographic factors, including age, weight and gender were not associated with the incidence of hepatotoxicity. High serum concentration of isoniazid (C3) was found to be a risk factor of IIH (area under the curve: 0.74, P=0.007, 95% confidence interval (95% CI): 0.56-0.93), with a cutoff value at 3.69 mg l-1 (odds ratio (OR): 13.2, P=0.0007, 95% CI: 2.9-59). Multivariate analysis showed that only a C3 over 3.69 mg l-1 remains a risk factor of IIH. NAT2 and CYP2E1 variants were not found to increase the risk of IIH when analyzed separately. However, combined analysis of the NAT2/CYP2E1 gene polymorphisms showed that patients with both DraI C/D and slow acetylator have an increased risk of IIH compared with other combined NAT2/CYP2E1 genotype profiles (OR: 8.41, P=0.01, 95% CI: 1.54-45.76). Our results suggest that a serum concentration of isoniazid over 3.69 mg l-1 and a combined genotype CYP2E1 DraI(C/D)/slow acetylator are major risk factors for IIH. Therefore, TDM of isoniazid and the determination of both NAT2 and CYP2E1 genotypes could be useful for the prediction and prevention of IIH in Tunisian tuberculosis patients.
Collapse
|
28
|
NAT2 variants are associated with drug-induced liver injury caused by anti-tuberculosis drugs in Indonesian patients with tuberculosis. J Hum Genet 2016; 61:533-7. [DOI: 10.1038/jhg.2016.10] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 12/31/2015] [Accepted: 01/19/2016] [Indexed: 11/08/2022]
|
29
|
Lavender N, Hein DW, Brock G, Kidd LCR. Evaluation of Oxidative Stress Response Related Genetic Variants, Pro-oxidants, Antioxidants and Prostate Cancer. AIMS MEDICAL SCIENCE 2015; 2:271-294. [PMID: 26636131 PMCID: PMC4664461 DOI: 10.3934/medsci.2015.4.271] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background Oxidative stress and detoxification mechanisms have been commonly studied in Prostate Cancer (PCa) due to their function in the detoxification of potentially damaging reactive oxygen species (ROS) and carcinogens. However, findings have been either inconsistent or inconclusive. These mixed findings may, in part, relate to failure to consider interactions among oxidative stress response related genetic variants along with pro- and antioxidant factors. Methods We examined the effects of 33 genetic and 26 environmental oxidative stress and defense factors on PCa risk and disease aggressiveness among 2,286 men from the Cancer Genetic Markers of Susceptibility project (1,175 cases, 1,111 controls). Single and joint effects were analyzed using a comprehensive statistical approach involving logistic regression, multi-dimensionality reduction, and entropy graphs. Results Inheritance of one CYP2C8 rs7909236 T or two SOD2 rs2758331 A alleles was linked to a 1.3- and 1.4-fold increase in risk of developing PCa, respectively (p-value = 0.006–0.013). Carriers of CYP1B1 rs1800440GG, CYP2C8 rs1058932TC and, NAT2 (rs1208GG, rs1390358CC, rs7832071TT) genotypes were associated with a 1.3 to 2.2-fold increase in aggressive PCa [p-value = 0.04–0.001, FDR 0.088–0.939]. We observed a 23% reduction in aggressive disease linked to inheritance of one or more NAT2 rs4646247 A alleles (p = 0.04, FDR = 0.405). Only three NAT2 sequence variants remained significant after adjusting for multiple hypotheses testing, namely NAT2 rs1208, rs1390358, and rs7832071. Lastly, there were no significant gene-environment or gene-gene interactions associated with PCa outcomes. Conclusions Variations in genes involved in oxidative stress and defense pathways may modify PCa. Our findings do not firmly support the role of oxidative stress genetic variants combined with lifestyle/environmental factors as modifiers of PCa and disease progression. However, additional multi-center studies poised to pool genetic and environmental data are needed to make strong conclusions.
Collapse
Affiliation(s)
- Nicole Lavender
- Department of Pharmacology and Toxicology and James Graham Brown Cancer Center, University of Louisville, Louisville, KY
| | - David W Hein
- Department of Pharmacology and Toxicology and James Graham Brown Cancer Center, University of Louisville, Louisville, KY
| | - Guy Brock
- Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY
| | - La Creis R Kidd
- Department of Pharmacology and Toxicology and James Graham Brown Cancer Center, University of Louisville, Louisville, KY
| |
Collapse
|
30
|
Abstract
Esophageal cancer (EC) is one of the most common malignancies in low- and medium-income countries and represents a disease of public health importance because of its poor prognosis and high mortality rate in these regions. The striking variation in the prevalence of EC among different ethnic groups suggests a significant contribution of population-specific environmental and dietary factors to susceptibility to the disease. Although individuals within a demarcated geographical area are exposed to the same environment and share similar dietary habits, not all of them will develop the disease; thus genetic susceptibility to environmental risk factors may play a key role in the development of EC. A wide range of xenobiotic-metabolizing enzymes are responsible for the metabolism of carcinogens introduced via the diet or inhaled from the environment. Such dietary or environmental carcinogens can bind to DNA, resulting in mutations that may lead to carcinogenesis. Genes involved in the biosynthesis of these enzymes are all subject to genetic polymorphisms that can lead to altered expression or activity of the encoded proteins. Genetic polymorphisms may, therefore, act as molecular biomarkers that can provide important predictive information about carcinogenesis. The aim of this review is to discuss our current knowledge on the genetic risk factors associated with the development of EC in different populations; it addresses mainly the topics of genetic polymorphisms, gene-environment interactions, and carcinogenesis. We have reviewed the published data on genetic polymorphisms of enzymes involved in the metabolism of xenobiotics and discuss some of the potential gene-environment interactions underlying esophageal carcinogenesis. The main enzymes discussed in this review are the glutathione S-transferases (GSTs), N-acetyltransferases (NATs), cytochrome P450s (CYPs), sulfotransferases (SULTs), UDP-glucuronosyltransferases (UGTs), and epoxide hydrolases (EHs), all of which have key roles in the detoxification of environmental and dietary carcinogens. Finally, we discuss recent advances in the study of genetic polymorphisms associated with EC risk, specifically with regard to genome-wide association studies, and examine possible challenges of case-control studies that need to be addressed to better understand the interaction between genetic and environmental factors in esophageal carcinogenesis.
Collapse
Affiliation(s)
- Marco Matejcic
- a International Centre for Genetic Engineering and Biotechnology, Cape Town Component , Observatory , Cape Town , South Africa , and
| | | |
Collapse
|
31
|
Rioux N, Mitchell LH, Tiller P, Plant K, Shaw J, Frost K, Ribich S, Moyer MP, Copeland RA, Chesworth R, Waters NJ. Structural and Kinetic Characterization of a Novel N-acetylated Aliphatic Amine Metabolite of the PRMT Inhibitor, EPZ011652. Drug Metab Dispos 2015; 43:936-43. [PMID: 25887455 DOI: 10.1124/dmd.115.064014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/17/2015] [Indexed: 01/11/2023] Open
Abstract
Pharmacokinetic and metabolite identification studies were conducted to understand the clearance pathways of EPZ011652 [(2-aminoethyl)(methyl)({3-[4-(propan-2-yloxy)phenyl]-1H-pyrazol-4-yl}methyl)amine], a potent protein arginine N-methyltransferase inhibitor. Metabolic clearance was the major pathway of EPZ011652 elimination in rats with structural elucidation of metabolites via liquid chromatography - mass spectrometry (LC-MS(n)) accurate mass measurement revealing the formation of a novel aliphatic N-acetylated metabolite (M1) located on the terminal nitrogen of the ethylene-diamine side chain. EPZ015564, a synthetic standard of the N-acetyl product, was prepared and was also generated by human and rat, but not dog hepatocytes. In rat hepatocytes, on incubation with EPZ011652, the concentration of EPZ015564 initially increased before decreasing with incubation time, suggesting that the metabolite is itself a substrate for other metabolizing enzymes, in agreement with the identification of metabolites M2, M3, and M4 in rat bile, all N-acetylated metabolites, undergoing sequential phase I (demethylation, oxidation) or phase II (sulfation) reactions. Reaction phenotyping with recombinant human N-acetyltransferase (NAT) isoforms revealed that both NAT1 and NAT2 are capable of acetylating EPZ011652, although with different catalytic efficiencies. Kinetic profiles of EPZ015564 formation followed classic Michaelis-Menten behavior with apparent Km values of >1000 μM for NAT1 and 165 ± 14.1 µM for NAT2. The in vitro intrinsic clearance for EPZ011652 by NAT2 (110 μL/min/mg) was 500-fold greater than by NAT1. In summary, we report the unusual N-acetylation of an aliphatic amine and discuss the implications for drug discovery and clinical development.
Collapse
Affiliation(s)
- Nathalie Rioux
- Epizyme, Cambridge, Massachusetts (N.R., L.H.M., S.R., M.P.M., R.A.C., R.C., N.J.W.); RMI Laboratories, North Wales, Pennsylvania (P.T.); and Cyprotex, Macclesfield, Cheshire, United Kingdom (K.P., J.S., K.F.)
| | - Lorna H Mitchell
- Epizyme, Cambridge, Massachusetts (N.R., L.H.M., S.R., M.P.M., R.A.C., R.C., N.J.W.); RMI Laboratories, North Wales, Pennsylvania (P.T.); and Cyprotex, Macclesfield, Cheshire, United Kingdom (K.P., J.S., K.F.)
| | - Philip Tiller
- Epizyme, Cambridge, Massachusetts (N.R., L.H.M., S.R., M.P.M., R.A.C., R.C., N.J.W.); RMI Laboratories, North Wales, Pennsylvania (P.T.); and Cyprotex, Macclesfield, Cheshire, United Kingdom (K.P., J.S., K.F.)
| | - Katie Plant
- Epizyme, Cambridge, Massachusetts (N.R., L.H.M., S.R., M.P.M., R.A.C., R.C., N.J.W.); RMI Laboratories, North Wales, Pennsylvania (P.T.); and Cyprotex, Macclesfield, Cheshire, United Kingdom (K.P., J.S., K.F.)
| | - Joanne Shaw
- Epizyme, Cambridge, Massachusetts (N.R., L.H.M., S.R., M.P.M., R.A.C., R.C., N.J.W.); RMI Laboratories, North Wales, Pennsylvania (P.T.); and Cyprotex, Macclesfield, Cheshire, United Kingdom (K.P., J.S., K.F.)
| | - Kerry Frost
- Epizyme, Cambridge, Massachusetts (N.R., L.H.M., S.R., M.P.M., R.A.C., R.C., N.J.W.); RMI Laboratories, North Wales, Pennsylvania (P.T.); and Cyprotex, Macclesfield, Cheshire, United Kingdom (K.P., J.S., K.F.)
| | - Scott Ribich
- Epizyme, Cambridge, Massachusetts (N.R., L.H.M., S.R., M.P.M., R.A.C., R.C., N.J.W.); RMI Laboratories, North Wales, Pennsylvania (P.T.); and Cyprotex, Macclesfield, Cheshire, United Kingdom (K.P., J.S., K.F.)
| | - Mikel P Moyer
- Epizyme, Cambridge, Massachusetts (N.R., L.H.M., S.R., M.P.M., R.A.C., R.C., N.J.W.); RMI Laboratories, North Wales, Pennsylvania (P.T.); and Cyprotex, Macclesfield, Cheshire, United Kingdom (K.P., J.S., K.F.)
| | - Robert A Copeland
- Epizyme, Cambridge, Massachusetts (N.R., L.H.M., S.R., M.P.M., R.A.C., R.C., N.J.W.); RMI Laboratories, North Wales, Pennsylvania (P.T.); and Cyprotex, Macclesfield, Cheshire, United Kingdom (K.P., J.S., K.F.)
| | - Richard Chesworth
- Epizyme, Cambridge, Massachusetts (N.R., L.H.M., S.R., M.P.M., R.A.C., R.C., N.J.W.); RMI Laboratories, North Wales, Pennsylvania (P.T.); and Cyprotex, Macclesfield, Cheshire, United Kingdom (K.P., J.S., K.F.)
| | - Nigel J Waters
- Epizyme, Cambridge, Massachusetts (N.R., L.H.M., S.R., M.P.M., R.A.C., R.C., N.J.W.); RMI Laboratories, North Wales, Pennsylvania (P.T.); and Cyprotex, Macclesfield, Cheshire, United Kingdom (K.P., J.S., K.F.)
| |
Collapse
|
32
|
Knowles JW, Xie W, Zhang Z, Chennamsetty I, Assimes TL, Paananen J, Hansson O, Pankow J, Goodarzi MO, Carcamo-Orive I, Morris AP, Chen YDI, Mäkinen VP, Ganna A, Mahajan A, Guo X, Abbasi F, Greenawalt DM, Lum P, Molony C, Lind L, Lindgren C, Raffel LJ, Tsao PS, Schadt EE, Rotter JI, Sinaiko A, Reaven G, Yang X, Hsiung CA, Groop L, Cordell HJ, Laakso M, Hao K, Ingelsson E, Frayling TM, Weedon MN, Walker M, Quertermous T. Identification and validation of N-acetyltransferase 2 as an insulin sensitivity gene. J Clin Invest 2015; 125:1739-51. [PMID: 25798622 DOI: 10.1172/jci74692] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 02/05/2015] [Indexed: 11/17/2022] Open
Abstract
Decreased insulin sensitivity, also referred to as insulin resistance (IR), is a fundamental abnormality in patients with type 2 diabetes and a risk factor for cardiovascular disease. While IR predisposition is heritable, the genetic basis remains largely unknown. The GENEticS of Insulin Sensitivity consortium conducted a genome-wide association study (GWAS) for direct measures of insulin sensitivity, such as euglycemic clamp or insulin suppression test, in 2,764 European individuals, with replication in an additional 2,860 individuals. The presence of a nonsynonymous variant of N-acetyltransferase 2 (NAT2) [rs1208 (803A>G, K268R)] was strongly associated with decreased insulin sensitivity that was independent of BMI. The rs1208 "A" allele was nominally associated with IR-related traits, including increased fasting glucose, hemoglobin A1C, total and LDL cholesterol, triglycerides, and coronary artery disease. NAT2 acetylates arylamine and hydrazine drugs and carcinogens, but predicted acetylator NAT2 phenotypes were not associated with insulin sensitivity. In a murine adipocyte cell line, silencing of NAT2 ortholog Nat1 decreased insulin-mediated glucose uptake, increased basal and isoproterenol-stimulated lipolysis, and decreased adipocyte differentiation, while Nat1 overexpression produced opposite effects. Nat1-deficient mice had elevations in fasting blood glucose, insulin, and triglycerides and decreased insulin sensitivity, as measured by glucose and insulin tolerance tests, with intermediate effects in Nat1 heterozygote mice. Our results support a role for NAT2 in insulin sensitivity.
Collapse
|
33
|
Matejcic M, Vogelsang M, Wang Y, Iqbal Parker M, Parker IM. NAT1 and NAT2 genetic polymorphisms and environmental exposure as risk factors for oesophageal squamous cell carcinoma: a case-control study. BMC Cancer 2015; 15:150. [PMID: 25886288 PMCID: PMC4379954 DOI: 10.1186/s12885-015-1105-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 02/20/2015] [Indexed: 01/13/2023] Open
Abstract
Background Tobacco smoking and red meat consumption are some of the known risk factors associated with the development of oesophageal cancer. N-acetytransferases (NAT1 and NAT2) play a key role in metabolism of carcinogenic arylamines present in tobacco smoke and overcooked red meat. We hypothesized that NAT1 and NAT2 genetic polymorphisms may influence the risk of oesophageal cancer upon exposure to environmental carcinogens. Methods Single nucleotide polymorphisms (SNPs) in the NAT1 and NAT2 genes were investigated by genotyping 732 cases and 768 healthy individuals from two South African populations to deduce the acetylator phenotype (slow, intermediate or rapid) from the combination of the genotyped SNPs. Results The 341 CC genotype (rs1801280) was significantly associated with a reduced risk for oesophageal cancer in the Mixed Ancestry population (OR = 0.31; 95% CI 0.11-0.87). The NAT2 slow/intermediate acetylator status significantly increased the risk among cigarette smokers in the Black population (OR = 2.76; 95% CI 1.69-4.52), as well as among alcohol drinkers in the Mixed Ancestry population (OR = 2.77; 95% CI 1.38-5.58). Similarly, the NAT1 slow/intermediate acetylator status was a risk factor for tobacco smokers in the Black population (OR = 3.41; 95% CI 1.95-5.96) and for alcohol drinkers in the Mixed Ancestry population (OR = 3.41; 95% CI 1.70-6.81). In a case-only analysis, frequent red meat consumption was associated with a significantly increased cancer risk for NAT2 slow/intermediate acetylators in the Mixed Ancestry population (OR = 3.55; 95% CI 1.29-9.82; P = 0.019), whereas daily white meat intake was associated with an increased risk among NAT1 slow/intermediate acetylators in the Black population (OR = 1.82; 95% CI 1.09-3.04; P = 0.023). Conclusions Our findings indicate that N-acetylation polymorphisms may modify the association between environmental risk factors and oesophageal cancer risk and that N-acetyltransferases may play a key role in detoxification of carcinogens. Prevention strategies in lifestyle and dietary habits may reduce the incidence of oesophageal cancer in high-risk populations. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1105-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marco Matejcic
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Observatory, UCT Medical Campus, Anzio Road, Observatory 7925, Cape Town, South Africa. .,Division of Medical Biochemistry and IDM, UCT Faculty of Health Sciences, Cape Town, South Africa.
| | - Matjaz Vogelsang
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Observatory, UCT Medical Campus, Anzio Road, Observatory 7925, Cape Town, South Africa. .,Division of Medical Biochemistry and IDM, UCT Faculty of Health Sciences, Cape Town, South Africa.
| | - Yabing Wang
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Observatory, UCT Medical Campus, Anzio Road, Observatory 7925, Cape Town, South Africa. .,Division of Medical Biochemistry and IDM, UCT Faculty of Health Sciences, Cape Town, South Africa.
| | - M Iqbal Parker
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Observatory, UCT Medical Campus, Anzio Road, Observatory 7925, Cape Town, South Africa. .,Division of Medical Biochemistry and IDM, UCT Faculty of Health Sciences, Cape Town, South Africa.
| | | |
Collapse
|
34
|
Cocco P, Zucca M, Sanna S, Satta G, Nonne T, Angelucci E, Gabbas A, Rais M, Malpeli G, Campagna M, Scarpa A, G Ennas M. N-acetyltransferase polymorphisms are associated with risk of lymphoma subtypes. Hematol Oncol 2015; 34:79-83. [DOI: 10.1002/hon.2193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 12/14/2014] [Accepted: 12/29/2014] [Indexed: 01/23/2023]
Affiliation(s)
- Pierluigi Cocco
- Department of Public Health; Clinical and Molecular Medicine; Occupational Health Section; University of Cagliari; Monserrato Cagliari Italy
| | - Mariagrazia Zucca
- Department of Biomedical Sciences; Cytomorphology Section; University of Cagliari; Monserrato Cagliari Italy
| | - Sonia Sanna
- Department of Biomedical Sciences; Cytomorphology Section; University of Cagliari; Monserrato Cagliari Italy
| | - Giannina Satta
- Department of Public Health; Clinical and Molecular Medicine; Occupational Health Section; University of Cagliari; Monserrato Cagliari Italy
| | - Tinucia Nonne
- Department of Public Health; Clinical and Molecular Medicine; Occupational Health Section; University of Cagliari; Monserrato Cagliari Italy
| | | | - Attilio Gabbas
- Department of Public Health; Clinical and Molecular Medicine; Occupational Health Section; University of Cagliari; Monserrato Cagliari Italy
| | | | - Giorgio Malpeli
- ARC-NET Research Centre and Department of Pathology and Diagnostics; University of Verona; Verona Italy
| | - Marcello Campagna
- Department of Public Health; Clinical and Molecular Medicine; Occupational Health Section; University of Cagliari; Monserrato Cagliari Italy
| | - Aldo Scarpa
- ARC-NET Research Centre and Department of Pathology and Diagnostics; University of Verona; Verona Italy
| | - Maria G Ennas
- Department of Biomedical Sciences; Cytomorphology Section; University of Cagliari; Monserrato Cagliari Italy
| |
Collapse
|
35
|
Guaoua S, Ratbi I, Laarabi FZ, Elalaoui SC, Jaouad IC, Barkat A, Sefiani A. Distribution of allelic and genotypic frequencies of NAT2 and CYP2E1 variants in Moroccan population. BMC Genet 2014; 15:156. [PMID: 25544508 PMCID: PMC4299568 DOI: 10.1186/s12863-014-0156-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 12/18/2014] [Indexed: 11/10/2022] Open
Abstract
Background Several pathogenesis and genetic factors influence predisposition to antituberculosis drug-induced hepatotoxicity (ATDH) especially for isoniazid (INH). However, the major susceptibility genes for ATDH are N-acetyltransferase 2 (NAT2) and cytochrome P450 2E1 (CYP2E1). NAT2 gene determines the individual’s acetylator status (fast, intermediate or slow) to metabolize drugs and xenobiotics, while CYP2E1 c1/c1 genotype carriers had an increased risk of ATDH. Polymorphisms of the NAT2 and CYP2E1 genes vary remarkably among the populations of different ethnic origins. The aim of this study was to determine, for the first time, the frequency of slow acetylators in Moroccan population by genotyping of NAT2 gene variants and determining the genotype c1/c1 for CYP2E1 gene, in order to predict adverse effects of Tuberculosis treatment, particularly hepatotoxicity. Results The frequencies of specific NAT2 alleles were 53%, 25%, 2% and 4% for NAT2*5, NAT2*6, NAT2*7 and NAT2*14 respectively among 163 Moroccan studied group. Genotyping of CYP2E1 gene, by real-time polymerase chain reaction using TaqMan probes, revealed frequencies of 98.5% for c1/c1 and 1.5% for c1/c2 among 130 Moroccan studied group. Conclusion The most prevalent genotypes of NAT2 gene in Moroccans are those which encode slow acetylation phenotype (72.39%), leading to a high risk of ATDH. Most Moroccans are homozygous for c1 allele of CYP2E1 gene which aggravates hepatotoxicity in slow acetylators. This genetic background should be taken into account in determining the minimum dose of INH needed to treat Moroccan TB patients, in order to decrease adverse effects.
Collapse
Affiliation(s)
- Soukaina Guaoua
- Centre de génomique humaine, Faculté de médecine et de pharmacie, Université Mohammed V, Rabat, Morocco.
| | - Ilham Ratbi
- Centre de génomique humaine, Faculté de médecine et de pharmacie, Université Mohammed V, Rabat, Morocco.
| | | | - Siham Chafai Elalaoui
- Centre de génomique humaine, Faculté de médecine et de pharmacie, Université Mohammed V, Rabat, Morocco. .,Département de génétique médicale, Institut National d'Hygiène, Rabat, Morocco.
| | - Imane Cherkaoui Jaouad
- Centre de génomique humaine, Faculté de médecine et de pharmacie, Université Mohammed V, Rabat, Morocco. .,Département de génétique médicale, Institut National d'Hygiène, Rabat, Morocco.
| | - Amina Barkat
- Centre National de Référence en Néonatologie et en Nutrition, Rabat, Morocco.
| | - Abdelaziz Sefiani
- Centre de génomique humaine, Faculté de médecine et de pharmacie, Université Mohammed V, Rabat, Morocco. .,Département de génétique médicale, Institut National d'Hygiène, Rabat, Morocco.
| |
Collapse
|
36
|
Verhagen LM, Coenen MJ, López D, García JF, de Waard JH, Schijvenaars MMVAP, Hermans PWM, Aarnoutse RE. Full-gene sequencing analysis of NAT2 and its relationship with isoniazid pharmacokinetics in Venezuelan children with tuberculosis. Pharmacogenomics 2014; 15:285-96. [PMID: 24533708 DOI: 10.2217/pgs.13.230] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Genetic variants in NAT2 are associated with pharmacokinetic variation of isoniazid, the cornerstone of antituberculosis treatment. We investigated the acetylator genotype and phenotype in children on antituberculosis treatment that were previously shown to have low plasma isoniazid levels. MATERIALS & METHODS NAT2 genotyping and phenotyping, represented as metabolic ratio of acetylisoniazid over isoniazid and as isoniazid half-life, were performed in 30 Venezuelan children. RESULTS Most children carried genotypes resulting in an intermediate or low enzyme activity (43 and 40%, respectively). Isoniazid exposure differed between genotypically slow and rapid acetylators (13.3 vs 4.5 h×mg/l, p < 0.01). Both the metabolic ratio as well as the half-life of isoniazid distinguished genotypically slow from genotypically rapid or intermediate acetylators (all p ≤ 0.01). CONCLUSION In Venezuelan children a clear difference in isoniazid pharmacokinetics and acetylator phenotype between genotypically slow and genotypically intermediate or rapid acetylating children was observed. Original submitted 31 July 2013; Revision submitted 11 November 2013.
Collapse
Affiliation(s)
- Lilly M Verhagen
- Laboratorio de Tuberculosis, Instituto de Biomedicina, Universidad Central de Venezuela, Caracas, Venezuela
| | | | | | | | | | | | | | | |
Collapse
|
37
|
PharmGKB summary: very important pharmacogene information for N-acetyltransferase 2. Pharmacogenet Genomics 2014; 24:409-25. [PMID: 24892773 DOI: 10.1097/fpc.0000000000000062] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
38
|
Vilčková M, Jurečeková J, Dobrota D, Habalová V, Klimčáková L, Waczulíková I, Slezák P, Kliment J, Sivoňová MK. Variation in N-acetyltransferase 2 (NAT2), smoking and risk of prostate cancer in the Slovak population. Med Oncol 2014; 31:987. [PMID: 24816842 DOI: 10.1007/s12032-014-0987-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 04/27/2014] [Indexed: 12/14/2022]
Abstract
N-acetyltransferase 2 (NAT2) is an enzyme involved in the biotransformation of xenobiotics, mainly aromatic and heterocyclic amines and hydrazines, all of which represent an important class of carcinogens found in tobacco smoke. Polymorphism in NAT2 gene is reported to be associated with susceptibility to various types of cancer. This study investigated the relationship between the NAT2 polymorphism and the risk of prostate cancer with reference to the link between cigarette smoking and the xenobiotic-metabolizing enzyme NAT2. Overall, 281 cases and 395 controls from Slovakia were studied using polymerase chain reaction-restriction fragment length polymorphism assay. We found no statistically significant association between NAT2 genotypes and prostate cancer risk (slow acetylation vs. rapid acetylation: OR 1.13; 95 % CI 0.83-1.55). We report here a statistically significant correlation between the NAT2*5C/NAT2*6A slow acetylator genotype and the risk for developing prostate cancer (OR 2.91; 95 % CI 1.43-5.94; p = 0.003) when compared with the rapid phenotype. Smokers with NAT2 rapid phenotype had a five percent (5 %) reduced risk of prostate cancer compared with non-smokers carrying the rapid acetylator genotype. The association was reversed among smokers and non-smokers with NAT2 slow phenotype. On the basis of the foregoing, we conclude that the NAT2 phenotypes whether alone or in association with smoking do not correlate with susceptibility to prostate cancer within the Slovak population.
Collapse
Affiliation(s)
- Marta Vilčková
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, Malá Hora 4, 03601, Martin, Slovakia
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Garcés-Eisele SJ, Cedillo-Carvallo B, Reyes-Núñez V, Estrada-Marín L, Vázquez-Pérez R, Juárez-Calderón M, Guzmán-García MO, Dueñas-González A, Ruiz-Argüelles A. Genetic selection of volunteers and concomitant dose adjustment leads to comparable hydralazine/valproate exposure. J Clin Pharm Ther 2014; 39:368-75. [PMID: 24702251 DOI: 10.1111/jcpt.12155] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 02/24/2014] [Indexed: 12/31/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Hydralazine is an inhibitor of DNA methyltransferases, whereas valproate interferes with histone deacetylation. In combination, they show a marked synergism in reducing tumour growth as well as development of metastasis and inducing cell differentiation. Hydralazine is metabolized by the highly polymorphic N-acetyltransferase 2. The current pilot study was performed to analyse the pharmacokinetic parameters of a single dose of hydralazine in 24 h (one tablet with 83 mg for slow acetylators and one tablet with 182 mg for fast acetylators) and three fixed doses of valproate (one tablet of controlled liberation with 700 mg every 8 h) in healthy genetically selected volunteers. Selection was performed based on their NAT2 activity as deduced from their genotype. METHODS An open label non-randomized single arm study was conducted in two groups of six healthy volunteers of both genders aged 20-45 years with a body mass index 22·2-26·9 which were classified as fast or slow acetylators after genotyping 3 SNPs that cover 99·9% of the NAT2 variants in the Mexican population. Blood samples were collected predose and serially post-dose in an interval of 48 h. Hydralazine and valproate concentrations were determined by ultra-high performance liquid chromatography (UPLC) coupled to tandem mass spectroscopy (MS/MS). RESULTS AND DISCUSSION The AUC0-48 h and Cmax of hydralazine were almost identical (1410 ± 560 vs. 1446 ± 509 ng h/mL and 93·4 ± 16·7 vs. 112·5 ± 42·1 ng/mL) in both groups with NAT2 genotype-adjusted doses, whereas the multidose parameters of valproate were not significantly affected neither by the selection of the NAT2 genotype (AUC0-48 h 2064 ± 455 vs. 1896 ± 185 μg h/mL; Cmax 96·4 ± 21·1 vs. 88·8 ± 7·2 μg/mL, for the fast and slow acetylators, respectively) nor the co-administration of 83 or 182 mg of hydralazine. WHAT IS NEW AND CONCLUSION Comparable hydralazine exposures (differences in AUC0-inf of only 7%) were observed in this study with genetic selection of volunteers and concomitant dose adjustment. However, the conclusions have yet to be confirmed with a full-powered 2 × 2 crossover study.
Collapse
Affiliation(s)
- S J Garcés-Eisele
- Clínica Ruiz Laboratorios, Puebla, México; Universidad Popular Autónoma del Estado de Puebla, Puebla, México
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Impact of the genes UGT1A1, GSTT1, GSTM1, GSTA1, GSTP1 and NAT2 on acute alcohol-toxic hepatitis. Open Life Sci 2014. [DOI: 10.2478/s11535-013-0249-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AbstractAlcohol metabolism causes cellular damage by changing the redox status of cells. In this study, we investigated the relationship between genetic markers in genes coding for enzymes involved in cellular redox stabilization and their potential role in the clinical outcome of acute alcohol-induced hepatitis. Study subjects comprised 60 patients with acute alcohol-induced hepatitis. The control group consisted of 122 healthy non-related individuals. Eight genetic markers of the genes UGT1A1, GSTA1, GSTP1, NAT2, GSTT1 and GSTM1 were genotyped. GSTT1 null genotype was identified as a risk allele for alcohol-toxic hepatitis progression (OR 2.146, P=0.013). It was also found to correlate negatively with the level of prothrombin (β= −11.05, P=0.037) and positively with hyaluronic acid (β=170.4, P=0.014). NAT2 gene alleles rs1799929 and rs1799930 showed opposing associations with the activity of the biochemical markers γ-glutamyltransferase and alkaline phosphatase; rs1799929 was negatively correlated with γ-glutamyltransferase (β=−261.3, P=0.018) and alkaline phosphatase (β= −270.5, P=0.032), whereas rs1799930 was positively correlated with Γ-glutamyltransferase (β=325.8, P=0.011) and alkaline phosphatase (β=374.8, P=0.011). Enzymes of the glutathione S-transferase family and NAT2 enzyme play an important role in the detoxification process in the liver and demonstrate an impact on the clinical outcome of acute alcohol-induced hepatitis.
Collapse
|
41
|
Tsirka T, Boukouvala S, Agianian B, Fakis G. Polymorphism p.Val231Ile alters substrate selectivity of drug-metabolizing arylamine N-acetyltransferase 2 (NAT2) isoenzyme of rhesus macaque and human. Gene 2013; 536:65-73. [PMID: 24333853 DOI: 10.1016/j.gene.2013.11.085] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/10/2013] [Accepted: 11/30/2013] [Indexed: 10/25/2022]
Abstract
Arylamine N-acetyltransferases (NATs) are polymorphic enzymes mediating the biotransformation of arylamine/arylhydrazine xenobiotics, including pharmaceuticals and environmental carcinogens. The NAT1 and NAT2 genes, and their many polymorphic variants, have been thoroughly studied in humans by pharmacogeneticists and cancer epidemiologists. However, little is known about the function of NAT homologues in other primate species, including disease models. Here, we perform a comparative functional investigation of the NAT2 homologues of the rhesus macaque and human. We further dissect the functional impact of a previously described rhesus NAT2 gene polymorphism, causing substitution of valine by isoleucine at amino acid position 231. Gene constructs of rhesus and human NAT2, bearing or lacking non-synonymous polymorphism c.691G>A (p.Val231Ile), were expressed in Escherichia coli for comparative enzymatic analysis against various NAT1- and NAT2-selective substrates. The results suggest that the p.Val231Ile polymorphism does not compromise the stability or overall enzymatic activity of NAT2. However, substitution of Val231 by the bulkier isoleucine appears to alter enzyme substrate selectivity by decreasing the affinity towards NAT2 substrates and increasing the affinity towards NAT1 substrates. The experimental observations are supported by in silico modelling localizing polymorphic residue 231 close to amino acid loop 125-129, which forms part of the substrate binding pocket wall and determines the substrate binding preferences of the NAT isoenzymes. The p.Val231Ile polymorphism is the first natural polymorphism demonstrated to affect NAT substrate selectivity via this particular mechanism. The study is also the first to thoroughly characterize the properties of a polymorphic NAT isoenzyme in a non-human primate model.
Collapse
Affiliation(s)
- Theodora Tsirka
- Democritus University of Thrace, Department of Molecular Biology and Genetics, Alexandroupolis, Greece
| | - Sotiria Boukouvala
- Democritus University of Thrace, Department of Molecular Biology and Genetics, Alexandroupolis, Greece
| | - Bogos Agianian
- Democritus University of Thrace, Department of Molecular Biology and Genetics, Alexandroupolis, Greece
| | - Giannoulis Fakis
- Democritus University of Thrace, Department of Molecular Biology and Genetics, Alexandroupolis, Greece.
| |
Collapse
|
42
|
Selinski S, Blaszkewicz M, Ickstadt K, Hengstler JG, Golka K. Refinement of the prediction of N-acetyltransferase 2 (NAT2) phenotypes with respect to enzyme activity and urinary bladder cancer risk. Arch Toxicol 2013; 87:2129-39. [DOI: 10.1007/s00204-013-1157-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 10/30/2013] [Indexed: 01/26/2023]
|
43
|
Gupta VH, Amarapurkar DN, Singh M, Sasi P, Joshi JM, Baijal R, Ramegowda PH, Amarapurkar AD, Joshi K, Wangikar PP. Association of N-acetyltransferase 2 and cytochrome P450 2E1 gene polymorphisms with antituberculosis drug-induced hepatotoxicity in Western India. J Gastroenterol Hepatol 2013; 28:1368-74. [PMID: 23875638 DOI: 10.1111/jgh.12194] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/27/2013] [Indexed: 01/21/2023]
Abstract
BACKGROUND AND AIM Tuberculosis (TB) is a major public health problem in India. Despite the treatment availability and monitoring, drug-induced hepatotoxicity (DIH) is a serious concern and can lead to discontinuation of treatment. Anti-TB DIH is well known and can aggravate because of pharmacokinetic and pharmacodynamic interactions. Genetic polymorphism in the drug-metabolizing enzyme genes is an important factor that predisposes certain fraction of the population to drug-induced toxicity. The purpose of this study was to assess the association of N-acetyltransferase 2 (NAT2) and cytochrome P450 2E1 (CYP2E1) gene polymorphism with anti-TB DIH in Western Indian population. METHODS A prospective cohort study of 215 patients taking treatment against TB was performed. The NAT2 and CYP2E1 genotypes were determined using polymerase chain reaction and restriction fragment length polymorphism methods. Logistic regression model was used to calculate odds ratio at 95% confidence interval and their respective P values. RESULTS The risk of anti-TB DIH was significantly higher in slow acetylator (SA) than in intermediate and rapid acetylator of NAT2 genotypes (odds ratio: 2.3, P = 0.01). We also observed the homozygous point mutation at position 481, associated with higher risk of hepatotoxicity (P < 0.01). The major haplotype NAT2*4 seems to provide protection in DIH compared with non-DIH TB patients (P = 0.04). However, we did not find a significant association between CYP2E1 genotypes and anti-TB DIH. CONCLUSION Increased susceptibility to isoniazid (INH)-induced hepatotoxicity due to presence of NAT2 SA polymorphism was demonstrated in Western Indian population. NAT2 genotyping can therefore serve as an important tool for identifying patients predisposed to anti-TB DIH.
Collapse
Affiliation(s)
- Vinod H Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Rapid birth-and-death evolution of the xenobiotic metabolizing NAT gene family in vertebrates with evidence of adaptive selection. BMC Evol Biol 2013; 13:62. [PMID: 23497148 PMCID: PMC3601968 DOI: 10.1186/1471-2148-13-62] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 02/27/2013] [Indexed: 11/10/2022] Open
Abstract
Background The arylamine N-acetyltransferases (NATs) are a unique family of enzymes widely distributed in nature that play a crucial role in the detoxification of aromatic amine xenobiotics. Considering the temporal changes in the levels and toxicity of environmentally available chemicals, the metabolic function of NATs is likely to be under adaptive evolution to broaden or change substrate specificity over time, making NATs a promising subject for evolutionary analyses. In this study, we trace the molecular evolutionary history of the NAT gene family during the last ~450 million years of vertebrate evolution and define the likely role of gene duplication, gene conversion and positive selection in the evolutionary dynamics of this family. Results A phylogenetic analysis of 77 NAT sequences from 38 vertebrate species retrieved from public genomic databases shows that NATs are phylogenetically unstable genes, characterized by frequent gene duplications and losses even among closely related species, and that concerted evolution only played a minor role in the patterns of sequence divergence. Local signals of positive selection are detected in several lineages, probably reflecting response to changes in xenobiotic exposure. We then put a special emphasis on the study of the last ~85 million years of primate NAT evolution by determining the NAT homologous sequences in 13 additional primate species. Our phylogenetic analysis supports the view that the three human NAT genes emerged from a first duplication event in the common ancestor of Simiiformes, yielding NAT1 and an ancestral NAT gene which in turn, duplicated in the common ancestor of Catarrhini, giving rise to NAT2 and the NATP pseudogene. Our analysis suggests a main role of purifying selection in NAT1 protein evolution, whereas NAT2 was predicted to mostly evolve under positive selection to change its amino acid sequence over time. These findings are consistent with a differential role of the two human isoenzymes and support the involvement of NAT1 in endogenous metabolic pathways. Conclusions This study provides unequivocal evidence that the NAT gene family has evolved under a dynamic process of birth-and-death evolution in vertebrates, consistent with previous observations made in fungi.
Collapse
|
45
|
Touré A, Diop C, Cabral M, Fall M, Lhermitte M, Diouf A, Broly F, Allorge D. Study of NAT2 genetic polymorphism in West African subjects: example of an healthy non-smoker Senegalese population. Mol Biol Rep 2012; 39:10489-96. [DOI: 10.1007/s11033-012-1931-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 10/01/2012] [Indexed: 11/30/2022]
|
46
|
Teixeira RLDF, Morato RG, Cabello PH, Muniz LMK, Moreira ADSR, Kritski AL, Mello FCQ, Suffys PN, Miranda ABD, Santos AR. Genetic polymorphisms of NAT2, CYP2E1 and GST enzymes and the occurrence of antituberculosis drug-induced hepatitis in Brazilian TB patients. Mem Inst Oswaldo Cruz 2012; 106:716-24. [PMID: 22012226 DOI: 10.1590/s0074-02762011000600011] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 07/14/2011] [Indexed: 12/12/2022] Open
Abstract
Isoniazid (INH), one of the most important drugs used in antituberculosis (anti-TB) treatment, is also the major drug involved in hepatotoxicity. Differences in INH-induced toxicity have been attributed to genetic variability at several loci, such as NAT2, CYP2E1, GSTM1 and GSTT1, that code for drug-metabolising enzymes. Our goal was to examine the polymorphisms in these enzymes as susceptibility factors to anti-TB drug-induced hepatitis in Brazilian individuals. In a case-control design, 167 unrelated active tuberculosis patients from the University Hospital of the Federal University of Rio de Janeiro, Brazil, were enrolled in this study. Patients with a history of anti-TB drug-induced acute hepatitis (cases with an increase to 3 times the upper limit of normal serum transaminases and symptoms of hepatitis) and patients with no evidence of anti-TB hepatic side effects (controls) were genotyped for NAT2, CYP2E1, GSTM1 and GSTT1 polymorphisms. Slow acetylators had a higher incidence of hepatitis than intermediate/rapid acetylators [22% (18/82) vs. 9.8% (6/61), odds ratio (OR), 2.86, 95% confidence interval (CI), 1.06-7.68, p = 0.04). Logistic regression showed that slow acetylation status was the only independent risk factor (OR 3.59, 95% CI, 2.53-4.64, p = 0.02) for the occurrence of anti-TB drug-induced hepatitis during anti-TB treatment with INH-containing schemes in Brazilian individuals.
Collapse
|
47
|
Arylamine N-Acetyltransferases – from Drug Metabolism and Pharmacogenetics to Identification of Novel Targets for Pharmacological Intervention. CURRENT CONCEPTS IN DRUG METABOLISM AND TOXICOLOGY 2012; 63:169-205. [DOI: 10.1016/b978-0-12-398339-8.00005-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
48
|
Taja-Chayeb L, Agúndez J, Miguez-Muñoz C, Chavez-Blanco A, Dueñas-Gonzalez A. Arylamine N-acetyltransferase 2 genotypes in a Mexican population. GENETICS AND MOLECULAR RESEARCH 2012; 11:1082-92. [DOI: 10.4238/2012.april.27.7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
49
|
Acetylator status and N-acetyltransferase 2 gene polymorphisms; phenotype–genotype correlation with the sulfamethazine test. Pharmacogenet Genomics 2011; 21:894-901. [DOI: 10.1097/fpc.0b013e32834bec2b] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
50
|
Hein DW, Doll MA. Accuracy of various human NAT2 SNP genotyping panels to infer rapid, intermediate and slow acetylator phenotypes. Pharmacogenomics 2011; 13:31-41. [PMID: 22092036 DOI: 10.2217/pgs.11.122] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM Humans exhibit genetic polymorphism in NAT2 resulting in rapid, intermediate and slow acetylator phenotypes. Over 65 NAT2 variants possessing one or more SNPs in the 870-bp NAT2 coding region have been reported. The seven most frequent SNPs are rs1801279 (191G>A), rs1041983 (282C>T), rs1801280 (341T>C), rs1799929 (481C>T), rs1799930 (590G>A), rs1208 (803A>G) and rs1799931 (857G>A). The majority of studies investigate the NAT2 genotype assay for three SNPs: 481C>T, 590G>A and 857G>A. A tag-SNP (rs1495741) recently identified in a genome-wide association study has also been proposed as a biomarker for the NAT2 phenotype. MATERIALS & METHODS Sulfamethazine N-acetyltransferase catalytic activities were measured in cryopreserved human hepatocytes from a convenience sample of individuals in the USA with an ethnic frequency similar to the 2010 US population census. These activities were segregated by the tag-SNP rs1495741 and each of the seven SNPs described above. We assessed the accuracy of the tag-SNP and various two-, three-, four- and seven-SNP genotyping panels for their ability to accurately infer NAT2 phenotype. RESULTS The accuracy of the various NAT2 SNP genotype panels to infer NAT2 phenotype were as follows: seven-SNP: 98.4%; tag-SNP: 77.7%; two-SNP: 96.1%; three-SNP: 92.2%; and four-SNP: 98.4%. CONCLUSION A NAT2 four-SNP genotype panel of rs1801279 (191G>A), rs1801280 (341T>C), rs1799930 (590G>A) and rs1799931 (857G>A) infers NAT2 acetylator phenotype with high accuracy, and is recommended over the tag-, two-, three- and (for economy of scale) the seven-SNP genotyping panels, particularly in populations of non-European ancestry.
Collapse
Affiliation(s)
- David W Hein
- Department of Pharmacology & Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40202-1617, USA
| | | |
Collapse
|