1
|
Canarslan Demir K, Avci AU, Ozgok Kangal MK, Ceylan B, Abayli SY, Ozler I, Yilmaz KB. Hyperbaric Oxygen Therapy for Managing Cancer Treatment Complications: A Safety Evaluation. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:385. [PMID: 40142196 PMCID: PMC11943617 DOI: 10.3390/medicina61030385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 03/28/2025]
Abstract
Background and Objectives: Hyperbaric oxygen therapy (HBOT) has shown promise in managing complications due to cancer treatments, particularly those related to radiotherapy and surgery. Despite its clinical benefits, concerns persist regarding its potential to influence cancer progression. This study aimed to evaluate the safety and clinical outcomes of HBOT in patients with active or previously treated solid tumors. Methods: A retrospective analysis was conducted on patients with solid tumors who underwent at least five HBOT sessions. Comprehensive data, including patient demographics, cancer type, total number of HBOT sessions, imaging findings, and clinical outcomes (recurrence, metastasis, and mortality), were collected. Descriptive statistics and the relationship between the number of HBOT sessions and long-term cancer outcomes were analyzed. Results: This study included 45 patients (median age: 64 years; 60% male) who received a median of 27 HBOT sessions. At initiation, 27.9% of the patients were classified as cured, 53.5% were in remission, and 18.6% had active cancer. Over a median follow-up period of 783 days, 8.7% experienced recurrence, 2.7% had persistent active cancer, and 59.5% had no recurrence. No HBOT-related complications were observed during the course of HBOT. Statistical analyses revealed no significant correlations between the number of HBOT sessions and metastasis (p = 0.213) or mortality (p = 0.881). Conclusions: HBOT appears to be a safe and effective adjunctive therapy for managing complications in patients with solid tumors. No evidence was found to suggest HBOT contributes to tumor progression, recurrence, or metastasis. Future prospective studies with larger cohorts are needed to confirm these results and further evaluate the therapeutic role of HBOT in oncology.
Collapse
Affiliation(s)
- Kubra Canarslan Demir
- Department of Undersea and Hyperbaric Medicine, Gulhane Research and Training Hospital, University of Health Sciences, 06010 Ankara, Turkey; (K.C.D.); (M.K.O.K.)
| | - Ahmet Ugur Avci
- Department of Aerospace Medicine, Gulhane Research and Training Hospital, University of Health Sciences, 06010 Ankara, Turkey
| | - Munire Kubra Ozgok Kangal
- Department of Undersea and Hyperbaric Medicine, Gulhane Research and Training Hospital, University of Health Sciences, 06010 Ankara, Turkey; (K.C.D.); (M.K.O.K.)
| | - Berrin Ceylan
- Department of Aerospace Medicine, Gulhane Research and Training Hospital, University of Health Sciences, 06010 Ankara, Turkey
| | - Selcen Yusra Abayli
- Department of Undersea and Hyperbaric Medicine, Gulhane Research and Training Hospital, University of Health Sciences, 06010 Ankara, Turkey; (K.C.D.); (M.K.O.K.)
| | - Ismail Ozler
- Department of General Surgery, Gulhane Research and Training Hospital, University of Health Sciences, 06010 Ankara, Turkey
| | - Kerim Bora Yilmaz
- Department of General Surgery, Gulhane Research and Training Hospital, University of Health Sciences, 06010 Ankara, Turkey
- Department of Medical and Surgical Research, Institute of Health Sciences, Hacettepe University, 06010 Ankara, Turkey
| |
Collapse
|
2
|
Kowalewski KM, Adair SJ, Talkington A, Wieder JJ, Pitarresi JR, Perez-Vale K, Chu B, Dolatshahi S, Sears R, Stanger BZ, Bauer TW, Lazzara MJ. Hypoxia-induced histone methylation and NF-κB activation in pancreas cancer fibroblasts promote EMT-supportive growth factor secretion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.30.635486. [PMID: 39974981 PMCID: PMC11838405 DOI: 10.1101/2025.01.30.635486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The pancreatic ductal adenocarcinoma (PDAC) tumor microenvironment contains hypoxic tissue subdomains and cancer-associated fibroblasts (CAFs) of multiple subtypes that play tumor-promoting and -restraining roles. Here, we demonstrate that hypoxia promotes an inflammatory-like CAF phenotype and that hypoxic CAFs selectively promote epithelial-mesenchymal transition (EMT) in PDAC cancer cells through growth factor-mediated cell crosstalk. By analyzing patient tumor single-cell transcriptomics and conducting an inhibitor screen, we identified IGF-2 and HGF as specific EMT-inducing growth factors produced by hypoxic CAFs. We further found that reactive oxygen species-activated NF-κB cooperates with hypoxia-dependent histone methylation to promote IGF-2 and HGF expression in hypoxic CAFs. In lineage-traced autochthonous PDAC mouse tumors, hypoxic CAFs resided preferentially near hypoxic, mesenchymal cancer cells. However, in subcutaneous tumors engineered with hypoxia fate-mapped CAFs, once-hypoxic re-oxygenated CAFs lacked a spatial correlation with mesenchymal cancer cells. Thus, hypoxia promotes reversible CAF-malignant cell interactions that drive EMT through druggable signaling pathways. One-sentence summary We show that hypoxic fibroblasts in pancreas cancer leverage histone methylation and ROS-mediated NF-κB activation to produce growth factors that drive epithelial-mesenchymal transition in malignant cells, demonstrating how tumor stromal features cooperate to initiate a signaling process for disease progression.
Collapse
|
3
|
Xu E, Huang Z, Zhu K, Hu J, Ma X, Wang Y, Zhu J, Zhang C. PDGFRB promotes dedifferentiation and pulmonary metastasis through rearrangement of cytoskeleton under hypoxic microenvironment in osteosarcoma. Cell Signal 2024; 125:111501. [PMID: 39505287 DOI: 10.1016/j.cellsig.2024.111501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/15/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Osteosarcoma (OS) cells commonly suffer from hypoxia and dedifferentiation, resulting in poor prognosis. We plan to identify the role of hypoxia on dedifferentiation and the associated cellular signaling. METHODS We performed sphere formation assays and determined spheroid cells as dedifferentiated cells by detecting stem cell-like markers. RNAi assay was used to explore the relationship between hypoxia inducible factor 1 subunit alpha (HIF1A) and platelet derived growth factor receptor beta (PDGFRB). We obtained PDGFRB knockdown and overexpression cells through lentiviral infection experiments and detected the expression of PDGFRB, p-PDGFRB, focal adhesion kinase (FAK), p-FAK, phosphorylated myosin light chain 2 (p-MLC2), and ras homolog family member A (RhoA) in each group. The effects of PDGFRB on cytoskeleton rearrangement and cell adhesion were explored by immunocytochemistry. Wound-healing experiments, transwell assays, and animal trials were employed to investigate the effect of PDGFRB on OS cell metastasis both in vitro and in vivo. RESULTS Dedifferentiated OS cells were found to exhibit high expression of HIF1A and PDGFRB, and HIF1A upregulated PDGFRB, subsequently activated RhoA, and increased the phosphorylation of MLC2. PDGFRB also enhanced the phosphorylation of FAK. The OS cell morphology and vinculin distribution were altered by PDGFRB. PDGFRB promoted cell dedifferentiation and had a significant impact on the migration and invasion abilities of OS cells in vitro. In addition, PDGFRB increased pulmonary metastasis of OS cells in vivo. CONCLUSION Our results demonstrated that HIF1A up-regulated PDGFRB under hypoxic conditions, and PDGFRB regulated the actin cytoskeleton, a process likely linked to the activation of RhoA and the phosphorylation of, thereby promoting OS dedifferentiation and pulmonary metastasis.
Collapse
Affiliation(s)
- Enjie Xu
- Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China; Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai 200072, PR China
| | - Zhen Huang
- Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China; Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai 200072, PR China
| | - Kunpeng Zhu
- Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China; Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai 200072, PR China
| | - Jianping Hu
- Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China; Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai 200072, PR China
| | - Xiaolong Ma
- Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China; Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai 200072, PR China
| | - Yongjie Wang
- Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China; Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai 200072, PR China
| | - Jiazhuang Zhu
- Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China; Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai 200072, PR China
| | - Chunlin Zhang
- Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China; Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai 200072, PR China.
| |
Collapse
|
4
|
Babajani A, Eftekharinasab A, Bekeschus S, Mehdian H, Vakhshiteh F, Madjd Z. Reactive oxygen species from non-thermal gas plasma (CAP): implication for targeting cancer stem cells. Cancer Cell Int 2024; 24:344. [PMID: 39438918 PMCID: PMC11515683 DOI: 10.1186/s12935-024-03523-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/05/2024] [Indexed: 10/25/2024] Open
Abstract
Cancer remains a major global health challenge, with the persistence of cancer stem cells (CSCs) contributing to treatment resistance and relapse. Despite advancements in cancer therapy, targeting CSCs presents a significant hurdle. Non-thermal gas plasma, also known as CAP, represents an innovative cancer treatment. It has recently gained attention for its often found to be selective, immunogenic, and potent anti-cancer properties. CAP is composed of a collection of transient, high-energy, and physically and chemically active entities, such as reactive oxygen species (ROS). It is acknowledged that the latter are responsible for a major portion of biomedical CAP effects. The dynamic interplay of CAP-derived ROS and other components contributes to the unique and versatile properties of CAP, enabling it to interact with biological systems and elicit various therapeutic effects, including its potential in cancer treatment. While CAP has shown promise in various cancer types, its application against CSCs is relatively unexplored. This review assesses the potential of CAP as a therapeutic strategy for targeting CSCs, focusing on its ability to regulate cellular states and achieve redox homeostasis. This is done by providing an overview of CSC characteristics and demonstrating recent findings on CAP's efficacy in targeting these cells. By contributing insights into the unique attributes of CSCs and the potential of CAP, this work contributes to an advanced understanding of innovative oncology strategies.
Collapse
Affiliation(s)
- Amirhesam Babajani
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | | | - Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Hassan Mehdian
- Plasma Medicine Group, Plasma Research Institute, Kharazmi University, Tehran, Iran
| | - Faezeh Vakhshiteh
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
5
|
Zhang Q, Dunbar KB, Odze RD, Agoston AT, Wang X, Su T, Nguyen AD, Zhang X, Spechler SJ, Souza RF. Hypoxia-inducible factor-1α mediates reflux-induced epithelial-mesenchymal plasticity in Barrett's oesophagus patients. Gut 2024; 73:1269-1279. [PMID: 38641363 PMCID: PMC11239289 DOI: 10.1136/gutjnl-2023-331467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/06/2024] [Indexed: 04/21/2024]
Abstract
INTRODUCTION Epithelial-mesenchymal plasticity (EMP), the process through which epithelial cells acquire mesenchymal features, is needed for wound repair but also might contribute to cancer initiation. Earlier, in vitro studies showed that Barrett's cells exposed to acidic bile salt solutions (ABS) develop EMP. Now, we have (1) induced reflux oesophagitis in Barrett's oesophagus (BO) patients by stopping proton pump inhibitors (PPIs), (2) assessed their biopsies for EMP and (3) explored molecular pathways underlying reflux-induced EMP in BO cells and spheroids. METHODS 15 BO patients had endoscopy with biopsies of Barrett's metaplasia while on PPIs, and 1 and 2 weeks after stopping PPIs; RNA-seq data were assessed for enrichments in hypoxia-inducible factors (HIFs), angiogenesis and EMP pathways. In BO biopsies, cell lines and spheroids, EMP features (motility) and markers (vascular endothelial growth factor (VEGF), ZEB1, miR-200a&b) were evaluated by morphology, migration assays, immunostaining and qPCR; HIF-1α was knocked down with siRNA or shRNA. RESULTS At 1 and/or 2 weeks off PPIs, BO biopsies exhibited EMP features and markers, with significant enrichment for HIF-1α, angiogenesis and EMP pathways. In BO cells, ABS induced HIF-1α activation, which decreased miR-200a&b while increasing VEGF, ZEB1 and motility; HIF-1α knockdown blocked these effects. After ABS treatment, BO spheroids exhibited migratory protrusions showing nuclear HIF-1α, increased VEGF and decreased miR-200a&b. CONCLUSIONS In BO patients, reflux oesophagitis induces EMP changes associated with increased HIF-1α signalling in Barrett's metaplasia. In Barrett's cells, ABS trigger EMP via HIF-1α signalling. Thus, HIF-1α appears to play a key role in mediating reflux-induced EMP that might contribute to cancer in BO. TRIAL REGISTRATION NUMBER NCT02579460.
Collapse
Affiliation(s)
- Qiuyang Zhang
- Department of Medicine, Baylor University Medical Center, Dallas, Texas, USA
- Center for Esophageal Research, Baylor Scott & White Research Institute, Dallas, Texas, USA
| | - Kerry B Dunbar
- Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Internal Medicine, VA North Texas Health Care System, Dallas, Texas, USA
| | - Robert D Odze
- Department of Pathology, Tufts Medical Center, Boston, Massachusetts, USA
- Robert D Odze Pathology, LLC, Boston, Massachusetts, USA
| | - Agoston T Agoston
- Department of Pathology, Brigham and Womens Hospital, Boston, Massachusetts, USA
| | - Xuan Wang
- Biostatistics Core, Baylor Scott & White Research Insitute, Dallas, Texas, USA
| | - Tianhong Su
- Department of Oncology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Anh D Nguyen
- Department of Medicine, Baylor University Medical Center, Dallas, Texas, USA
- Center for Esophageal Research, Baylor Scott & White Research Institute, Dallas, Texas, USA
| | - Xi Zhang
- Department of Medicine, Baylor University Medical Center, Dallas, Texas, USA
- Center for Esophageal Research, Baylor Scott & White Research Institute, Dallas, Texas, USA
| | - Stuart Jon Spechler
- Department of Medicine, Baylor University Medical Center, Dallas, Texas, USA
- Center for Esophageal Research, Baylor Scott & White Research Institute, Dallas, Texas, USA
| | - Rhonda F Souza
- Department of Medicine, Baylor University Medical Center, Dallas, Texas, USA
- Center for Esophageal Research, Baylor Scott & White Research Institute, Dallas, Texas, USA
| |
Collapse
|
6
|
Armando F, Porcellato I, de Paolis L, Mecocci S, Passeri B, Ciurkiewicz M, Mechelli L, Grazia De Ciucis C, Pezzolato M, Fruscione F, Brachelente C, Montemurro V, Cappelli K, Puff C, Baumgärtner W, Ghelardi A, Razzuoli E. Vulvo-vaginal epithelial tumors in mares: A preliminary investigation on epithelial-mesenchymal transition and tumor-immune microenvironment. Vet Pathol 2024; 61:366-381. [PMID: 37909398 DOI: 10.1177/03009858231207025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Vulvo-vaginal epithelial tumors are uncommon in mares, and data on the epithelial-to-mesenchymal transition (EMT) and the tumor-immune microenvironment (TIME) are still lacking. This is a study investigating the equus caballus papillomavirus type 2 (EcPV2) infection state as well as the EMT process and the tumor microenvironment in vulvo-vaginal preneoplastic/ benign (8/22) or malignant (14/22) epithelial lesions in mares. To do this, histopathological, immunohistochemical, transcriptomic, in situ hybridization, and correlation analyses were carried out. Immunohistochemistry quantification showed that cytoplasmic E-cadherin and β-catenin expression as well as nuclear β-catenin expression were features of malignant lesions, while benign/preneoplastic lesions were mainly characterized by membranous E-cadherin and β-catenin expression. Despite this, there were no differences between benign and malignant equine vulvo-vaginal lesions in the expression of downstream genes involved in the canonical and noncanonical wnt/β-catenin pathways. In addition, malignant lesions were characterized by a lower number of cells with cytoplasmic cytokeratin expression as well as a slightly higher cytoplasmic vimentin immunolabeling. The TIME of malignant lesions was characterized by more numerous CD204+ M2-polarized macrophages. Altogether, our results support the hypothesis that some actors in TIME such as CD204+ M2-polarized macrophages may favor the EMT process in equine vulvo-vaginal malignant lesions providing new insights for future investigations in the field of equine EcPV2-induced genital neoplastic lesions.
Collapse
Affiliation(s)
| | | | - Livia de Paolis
- University of Perugia, Perugia, Italy
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, Genova, Italy
| | | | | | | | | | - Chiara Grazia De Ciucis
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, Genova, Italy
- University of Pavia, Pavia, Italy
| | - Marzia Pezzolato
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, Genova, Italy
| | - Floriana Fruscione
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, Genova, Italy
| | | | - Vittoria Montemurro
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, Genova, Italy
| | | | - Christina Puff
- University of Veterinary Medicine Hannover, Hannover, Germany
| | | | | | - Elisabetta Razzuoli
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, Genova, Italy
| |
Collapse
|
7
|
Cheng CW, Liu YF, Liao WL, Chen PM, Hung YT, Lee HJ, Cheng YC, Wu PE, Lu YS, Shen CY. miR-622 Increases miR-30a Expression through Inhibition of Hypoxia-Inducible Factor 1α to Improve Metastasis and Chemoresistance in Human Invasive Breast Cancer Cells. Cancers (Basel) 2024; 16:657. [PMID: 38339408 PMCID: PMC10854867 DOI: 10.3390/cancers16030657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Hypoxia-inducible factor 1α (HIF-1α) plays a pivotal role in the survival, metastasis, and response to treatment of solid tumors. Autophagy serves as a mechanism for tumor cells to eliminate misfolded proteins and damaged organelles, thus promoting invasiveness, metastasis, and resistance to treatment under hypoxic conditions. MicroRNA (miRNA) research underscores the significance of these non-coding molecules in regulating cancer-related protein synthesis across diverse contexts. However, there is limited reporting on miRNA-mediated gene expression studies, especially with respect to epithelial-mesenchymal transition (EMT) and autophagy in the context of hypoxic breast cancer. Our study reveals decreased levels of miRNA-622 (miR-622) and miRNA-30a (miR-30a) in invasive breast cancer cells compared to their non-invasive counterparts. Inducing miR-622 suppresses HIF-1α protein expression, subsequently activating miR-30a transcription. This cascade results in reduced invasiveness and migration of breast cancer cells by inhibiting EMT markers, such as Snail, Slug, and vimentin. Furthermore, miR-30a negatively regulates beclin 1, ATG5, and LC3-II and inhibits Akt protein phosphorylation. Consequently, this improves the sensitivity of invasive MDA-MB-231 cells to docetaxel treatment. In conclusion, our study highlights the therapeutic potential of inducing miR-622 to promote miR-30a expression and thus disrupt HIF-1α-associated EMT and autophagy pathways. This innovative strategy presents a promising approach to the treatment of aggressive breast cancer.
Collapse
Affiliation(s)
- Chun-Wen Cheng
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (P.-M.C.); (Y.-T.H.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Yu-Fan Liu
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung 40201, Taiwan;
| | - Wen-Ling Liao
- School of Medicine, China Medical University, Taichung 40604, Taiwan;
- Department of Medical Genetics and Medical Research, China Medical University Hospital, Taichung 40604, Taiwan
| | - Po-Ming Chen
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (P.-M.C.); (Y.-T.H.)
| | - Yueh-Tzu Hung
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (P.-M.C.); (Y.-T.H.)
| | - Huei-Jane Lee
- Department of Biochemistry, School of Medicine, College of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
| | - Yu-Chun Cheng
- Department of Internal Medicine, Cathay General Hospital, Taipei 10629, Taiwan;
| | - Pei-Ei Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan;
| | - Yen-Shen Lu
- Department of Oncology, National Taiwan University Hospital, Taipei 10022, Taiwan;
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10022, Taiwan
| | - Chen-Yang Shen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan;
- College of Public Health, China Medical University, Taichung 40604, Taiwan
| |
Collapse
|
8
|
Jiang S, Han X, Zhao Z, Song D, Cheng S, Liu T, Zhao X, Gu Y, Duan L, Gao S. Hypoxia inhibits HUNK kinase activity to induce epithelial-mesenchymal transition. Biochem Biophys Res Commun 2023; 681:271-275. [PMID: 37793312 DOI: 10.1016/j.bbrc.2023.09.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
Hypoxia is a common hallmark of cancer and plays a crucial role in promoting epithelial-mesenchymal transition (EMT). Hormonally Upregulated Neu-associated Kinase (HUNK) regulates EMT through its kinase activity. However, whether hypoxia is involved in HUNK-mediated EMT is incompletely understood. This study unveils an association between HUNK kinase activity and hypoxia in colorectal cancer (CRC). Importantly, hypoxia does not alter the expression levels of HUNK, but directly affects the phosphorylation levels of downstream proteins with indication of HUNK activity. Functionally, the upregulation of migration, invasion, and expression of EMT markers in CRC cells under hypoxic conditions can be attributed, in part, to the downregulation of HUNK-mediated phosphorylation of downstream proteins. These findings highlight the intricate relationship between HUNK, hypoxia and the molecular mechanisms of cancer EMT. Understanding these mechanisms may provide valuable insights into therapeutic targets for inhibiting cancer metastasis.
Collapse
Affiliation(s)
- Siyuan Jiang
- Zhongda Hospital, Medical School, Advanced Institute for Life and Health, Southeast University, Nanjing, 210096, China
| | - Xiaoqi Han
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, 030032, China; Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, 210096, China
| | - Zidong Zhao
- Zhongda Hospital, Medical School, Advanced Institute for Life and Health, Southeast University, Nanjing, 210096, China
| | - Dalong Song
- The People's Hospital of Guizhou Province, Guiyang, 550002, China
| | - Shuwen Cheng
- Nanjing University Medical School, Nanjing, 210046, China
| | - Tihui Liu
- Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, 210096, China
| | - Xujie Zhao
- Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, 210096, China
| | - Yinmin Gu
- Zhongda Hospital, Medical School, Advanced Institute for Life and Health, Southeast University, Nanjing, 210096, China
| | - Liqiang Duan
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, 030032, China
| | - Shan Gao
- Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
9
|
Guerra P, Martini A, Pontisso P, Angeli P. Novel Molecular Targets for Immune Surveillance of Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:3629. [PMID: 37509293 PMCID: PMC10377787 DOI: 10.3390/cancers15143629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common and aggressive cancer with a high mortality rate. The incidence of HCC is increasing worldwide, and the lack of effective screening programs often results in delayed diagnosis, making it a challenging disease to manage. Immunotherapy has emerged as a promising treatment option for different kinds of cancers, with the potential to stimulate the immune system to target cancer cells. However, the current immunotherapeutic approaches for HCC have shown limited efficacy. Since HCC arises within a complex tumour microenvironment (TME) characterized by the presence of various immune and stromal cell types, the understanding of this interaction is crucial for the identification of effective therapy. In this review, we highlight recent advances in our understanding of the TME of HCC and the immune cells involved in anti-tumour responses, including the identification of new possible targets for immunotherapy. We illustrate a possible classification of HCC based on the tumour immune infiltration and give evidence about the role of SerpinB3, a serine protease inhibitor involved in the regulation of the immune response in different cancers.
Collapse
Affiliation(s)
- Pietro Guerra
- Unit of Internal Medicine and Hepatology (UIMH), Department of Medicine (DIMED), University of Padova, 35122 Padova, Italy
| | - Andrea Martini
- Unit of Internal Medicine and Hepatology (UIMH), Department of Medicine (DIMED), University of Padova, 35122 Padova, Italy
| | - Patrizia Pontisso
- Unit of Internal Medicine and Hepatology (UIMH), Department of Medicine (DIMED), University of Padova, 35122 Padova, Italy
| | - Paolo Angeli
- Unit of Internal Medicine and Hepatology (UIMH), Department of Medicine (DIMED), University of Padova, 35122 Padova, Italy
| |
Collapse
|
10
|
Puente-Cobacho B, Varela-López A, Quiles JL, Vera-Ramirez L. Involvement of redox signalling in tumour cell dormancy and metastasis. Cancer Metastasis Rev 2023; 42:49-85. [PMID: 36701089 PMCID: PMC10014738 DOI: 10.1007/s10555-022-10077-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 12/27/2022] [Indexed: 01/27/2023]
Abstract
Decades of research on oncogene-driven carcinogenesis and gene-expression regulatory networks only started to unveil the complexity of tumour cellular and molecular biology. This knowledge has been successfully implemented in the clinical practice to treat primary tumours. In contrast, much less progress has been made in the development of new therapies against metastasis, which are the main cause of cancer-related deaths. More recently, the role of epigenetic and microenviromental factors has been shown to play a key role in tumour progression. Free radicals are known to communicate the intracellular and extracellular compartments, acting as second messengers and exerting a decisive modulatory effect on tumour cell signalling. Depending on the cellular and molecular context, as well as the intracellular concentration of free radicals and the activation status of the antioxidant system of the cell, the signalling equilibrium can be tilted either towards tumour cell survival and progression or cell death. In this regard, recent advances in tumour cell biology and metastasis indicate that redox signalling is at the base of many cell-intrinsic and microenvironmental mechanisms that control disseminated tumour cell fate and metastasis. In this manuscript, we will review the current knowledge about redox signalling along the different phases of the metastatic cascade, including tumour cell dormancy, making emphasis on metabolism and the establishment of supportive microenvironmental connections, from a redox perspective.
Collapse
Affiliation(s)
- Beatriz Puente-Cobacho
- Department of Genomic Medicine, GENYO, Centre for Genomics and Oncology, Pfizer-University of Granada and Andalusian Regional Government, PTS, Granada, Spain
| | - Alfonso Varela-López
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain
| | - Laura Vera-Ramirez
- Department of Genomic Medicine, GENYO, Centre for Genomics and Oncology, Pfizer-University of Granada and Andalusian Regional Government, PTS, Granada, Spain. .,Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain.
| |
Collapse
|
11
|
Verma P, Shukla N, Kumari S, Ansari M, Gautam NK, Patel GK. Cancer stem cell in prostate cancer progression, metastasis and therapy resistance. Biochim Biophys Acta Rev Cancer 2023; 1878:188887. [PMID: 36997008 DOI: 10.1016/j.bbcan.2023.188887] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/18/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023]
Abstract
Prostate cancer (PCa) is the most diagnosed malignancy in the men worldwide. Cancer stem cells (CSCs) are the sub-population of cells present in the tumor which possess unique properties of self-renewal and multilineage differentiation thus thought to be major cause of therapy resistance, disease relapse, and mortality in several malignancies including PCa. CSCs have also been shown positive for the common stem cells markers such as ALDH EZH2, OCT4, SOX2, c-MYC, Nanog etc. Therefore, isolation and characterization of CSCs specific markers which may discriminate CSCs and normal stem cells are critical to selectively eliminate CSCs. Rapid advances in the field offers a theoretical explanation for many of the enduring uncertainties encompassing the etiology and an optimism for the identification of new stem-cell targets, development of reliable and efficient therapies in the future. The emerging reports have also provided unprecedented insights into CSCs plasticity, quiescence, renewal, and therapeutic response. In this review, we discuss the identification of PCa stem cells, their unique properties, stemness-driving pathways, new diagnostics, and therapeutic interventions.
Collapse
|
12
|
Mohamed OAA, Tesen HS, Hany M, Sherif A, Abdelwahab MM, Elnaggar MH. The role of hypoxia on prostate cancer progression and metastasis. Mol Biol Rep 2023; 50:3873-3884. [PMID: 36787054 PMCID: PMC10042974 DOI: 10.1007/s11033-023-08251-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 01/04/2023] [Indexed: 02/15/2023]
Abstract
Prostate cancer is the second most common cancer diagnosed in men and the fifth-leading cause of cancer death in men worldwide. Like any solid tumor, the hypoxic microenvironment of prostatic cancer drives hypoxia-inducible factors (HIFs) to mediate cell adaptions to hypoxic conditions. HIFs direct different signaling pathways such as PI3K/Akt/mTOR, NOX, and Wnt/β-Catenin to tumor progression depending on the degree of hypoxia. HIFs regulate cytoskeleton protein expression, promoting epithelial-mesenchymal transition (EMT), which occurs when cancer cells lose cell-to-cell adhesions and start invasion and metastasis. Through activating pathways, the hypoxic microenvironment maintains the self-renewal, potency, and anti-apoptotic function of prostate cancer cells and induces tumor metastasis and transformation. These pathways could serve as a potential target for prostate cancer therapy. HIFs increase the expression of androgen receptors on cancer cells maintaining the growth and survival of prostate cancer and the development of its castration resistance. In this review, we elaborate on the role of hypoxia in prostatic cancer pathogenesis and different hypoxia-induced mechanisms.
Collapse
Affiliation(s)
- Osama A A Mohamed
- Biotechnology Department, Faculty of Science, Mansoura University, Dakahlia, Egypt.,Biomedical Research Department, Tetraploid Team, Cairo, Egypt
| | - Heba S Tesen
- Faculty of Medicine, Ain Shams University, Cairo, Egypt.,Biomedical Research Department, Tetraploid Team, Cairo, Egypt
| | - Marwa Hany
- Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Aya Sherif
- Chemistry & Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt.,Biomedical Research Department, Tetraploid Team, Cairo, Egypt
| | - Maya Magdy Abdelwahab
- Faculty of Medicine, Helwan University, Cairo, Egypt. .,Biomedical Research Department, Tetraploid Team, Cairo, Egypt.
| | - Muhammed H Elnaggar
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt.,Biomedical Research Department, Tetraploid Team, Cairo, Egypt
| |
Collapse
|
13
|
Zhang J, Hu Z, Horta CA, Yang J. Regulation of epithelial-mesenchymal transition by tumor microenvironmental signals and its implication in cancer therapeutics. Semin Cancer Biol 2023; 88:46-66. [PMID: 36521737 DOI: 10.1016/j.semcancer.2022.12.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Epithelial-mesenchymal transition (EMT) has been implicated in various aspects of tumor development, including tumor invasion and metastasis, cancer stemness, and therapy resistance. Diverse stroma cell types along with biochemical and biophysical factors in the tumor microenvironment impinge on the EMT program to impact tumor progression. Here we provide an in-depth review of various tumor microenvironmental signals that regulate EMT in cancer. We discuss the molecular mechanisms underlying the role of EMT in therapy resistance and highlight new therapeutic approaches targeting the tumor microenvironment to impact EMT and tumor progression.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Zhimin Hu
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Calista A Horta
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Jing Yang
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA.
| |
Collapse
|
14
|
Hassan S, Blick T, Wood J, Thompson EW, Williams ED. Circulating Tumour Cells Indicate the Presence of Residual Disease Post-Castration in Prostate Cancer Patient-Derived Xenograft Models. Front Cell Dev Biol 2022; 10:858013. [PMID: 35493092 PMCID: PMC9043137 DOI: 10.3389/fcell.2022.858013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/09/2022] [Indexed: 11/17/2022] Open
Abstract
Castrate-resistant prostate cancer (CRPC) is the lethal form of prostate cancer. Epithelial mesenchymal plasticity (EMP) has been associated with disease progression to CRPC, and prostate cancer therapies targeting the androgen signalling axis, including androgen deprivation therapy (ADT), promote EMP. We explored effects of castration on EMP in the tumours and circulating tumour cells (CTCs) of patient-derived xenograft (PDX)-bearing castrated mice using human-specific RT-qPCR assays and immunocytochemistry. Expression of prostate epithelial cell marker KLK3 was below detection in most tumours from castrated mice (62%, 23/37 mice), consistent with its known up-regulation by androgens. Endpoint tumour size after castration varied significantly in a PDX model-specific pattern; while most tumours were castration-sensitive (BM18, LuCaP70), the majority of LuCaP105 tumours continued to grow following castration. By contrast, LuCaP96 PDX showed a mixed response to castration. CTCs were detected in 33% of LuCaP105, 43% of BM18, 47% of LuCaP70, and 54% of LuCaP96 castrated mice using RPL32 mRNA measurement in plasma. When present, CTC numbers estimated using human RPL32 expression ranged from 1 to 458 CTCs per ml blood, similar to our previous observations in non-castrated mice. In contrast to their non-castrated counterparts, there was no relationship between tumour size and CTC burden in castrated mice. Unsupervised hierarchical clustering of the gene expression profiles of CTCs collected from castrated and non-castrated mice revealed distinct CTC sub-groups within the pooled population that were classified as having mesenchymal, epithelial, or EMP hybrid gene expression profiles. The epithelial signature was only found in CTCs from non-castrated mice. Hybrid and mesenchymal signatures were detected in CTCs from both castrated and non-castrated mice, with an emphasis towards mesenchymal phenotypes in castrated mice. Post-castration serum PSA levels were either below detection or very low for all the CTC positive samples highlighting the potential usefulness of CTCs for disease monitoring after androgen ablation therapy. In summary, our study of castration effects on prostate cancer PDX CTCs showed that CTCs were often detected in the castrate setting, even in mice with no palpable tumours, and demonstrated the superior ability of CTCs to reveal residual disease over the conventional clinical biomarker serum PSA.
Collapse
Affiliation(s)
- Sara Hassan
- Queensland University of Technology (QUT), Faculty of Health, School of Biomedical Sciences at Translational Research Institute (TRI), Brisbane, QLD, Australia
| | - Tony Blick
- Queensland University of Technology (QUT), Faculty of Health, School of Biomedical Sciences at Translational Research Institute (TRI), Brisbane, QLD, Australia
| | - Jack Wood
- Queensland University of Technology (QUT), Faculty of Health, School of Biomedical Sciences at Translational Research Institute (TRI), Brisbane, QLD, Australia
- Australian Prostate Cancer Research Centre, Queensland (APCRC-Q) and Queensland Bladder Cancer Initiative (QBCI), Brisbane, QLD, Australia
| | - Erik W. Thompson
- Queensland University of Technology (QUT), Faculty of Health, School of Biomedical Sciences at Translational Research Institute (TRI), Brisbane, QLD, Australia
| | - Elizabeth D. Williams
- Queensland University of Technology (QUT), Faculty of Health, School of Biomedical Sciences at Translational Research Institute (TRI), Brisbane, QLD, Australia
- Australian Prostate Cancer Research Centre, Queensland (APCRC-Q) and Queensland Bladder Cancer Initiative (QBCI), Brisbane, QLD, Australia
- *Correspondence: Elizabeth D. Williams,
| |
Collapse
|
15
|
The Mammary Gland: Basic Structure and Molecular Signaling during Development. Int J Mol Sci 2022; 23:ijms23073883. [PMID: 35409243 PMCID: PMC8998991 DOI: 10.3390/ijms23073883] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/22/2022] [Accepted: 03/30/2022] [Indexed: 01/27/2023] Open
Abstract
The mammary gland is a compound, branched tubuloalveolar structure and a major characteristic of mammals. The mammary gland has evolved from epidermal apocrine glands, the skin glands as an accessory reproductive organ to support postnatal survival of offspring by producing milk as a source of nutrition. The mammary gland development begins during embryogenesis as a rudimentary structure that grows into an elementary branched ductal tree and is embedded in one end of a larger mammary fat pad at birth. At the onset of ovarian function at puberty, the rudimentary ductal system undergoes dramatic morphogenetic change with ductal elongation and branching. During pregnancy, the alveolar differentiation and tertiary branching are completed, and during lactation, the mature milk-producing glands eventually develop. The early stages of mammary development are hormonal independent, whereas during puberty and pregnancy, mammary gland development is hormonal dependent. We highlight the current understanding of molecular regulators involved during different stages of mammary gland development.
Collapse
|
16
|
Kurt AH, Ayaz L, Ayaz F, Seferoglu Z, Nural Y. A review on the design, synthesis, and structure-activity relationships of benzothiazole derivatives against hypoxic tumors. Curr Org Synth 2022; 19:772-796. [PMID: 35352663 DOI: 10.2174/1570179419666220330001036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/23/2022] [Accepted: 02/11/2022] [Indexed: 12/24/2022]
Abstract
There has been a growing body of studies on benzothiazoles and benzothiazole derivatives as strong and effective antitumor agents against lung, liver, pancreas, breast, and brain tumors. Due to highly proliferative nature of the tumor cells, the oxygen levels get lower than that of a normal tissue in the tumor microenvironment. This situation is called as hypoxia and has been associated with increased ability for carcinogenesis. For the drug design and development strategies, hypoxic nature of the tumor tissues has been exploited more aggressively. Hypoxia itself acts as a signal initiating system to activate the pathways that eventually lead to the spread of the tumor cells into the different tissues, increases the rate of DNA damage and eventually ends up with more mutation levels that may increase the drug resistance. As one of the major mediators of hypoxic response, hypoxia inducible factors (HIFs) has been shown to activate to angiogenesis, metastasis, apoptosis resistance, and many other protumorigenic responses in cancer development. In the current review, we will be discussing the design, synthesis and structure-activity relationships of benzothiazole derivatives against hypoxic tumors such lung, liver, pancreas, breast and brain as potential anticancer drug candidates. The focus points of the study will be the biology behind carcinogenesis and how hypoxia contributes to the process, recent studies on benzothiazole and its derivatives as anti-cancer agents against hypoxic cancers, conclusions and future perspectives. We believe that this review will be useful for the researchers in the field of drug design during their studies to generate novel benzothiazole-containing hybrids against hypoxic tumors with higher efficacies.
Collapse
Affiliation(s)
- Akif Hakan Kurt
- Department of Medicinal Pharmacology, Faculty of Medicine, Bolu Abant İzzet Baysal University, 14030, Bolu, Turkey
| | - Lokman Ayaz
- Department of Biochemistry, Faculty of Pharmacy, Trakya University, Edirne, Turkey
| | - Furkan Ayaz
- Department of Biotechnology, Faculty of Arts and Science, Mersin University, 33343, Mersin, Turkey
| | - Zeynel Seferoglu
- Department of Chemistry, Faculty of Science, Gazi University, TR-06500, Ankara, Turkey
| | - Yahya Nural
- Advanced Technology, Research and Application Center, Mersin University, 33343 Mersin, Turkey
| |
Collapse
|
17
|
Paul R, Dorsey JF, Fan Y. Cell plasticity, senescence, and quiescence in cancer stem cells: Biological and therapeutic implications. Pharmacol Ther 2022; 231:107985. [PMID: 34480963 PMCID: PMC8844041 DOI: 10.1016/j.pharmthera.2021.107985] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/06/2021] [Accepted: 08/18/2021] [Indexed: 01/10/2023]
Abstract
Cancer stem cells (CSCs) are a distinct population of cells within tumors with capabilities of self-renewal and tumorigenicity. CSCs play a pivotal role in cancer progression, metastasis, and relapse and tumor resistance to cytotoxic therapy. Emerging scientific evidence indicates that CSCs adopt several mechanisms, driven by cellular plasticity, senescence and quiescence, to maintain their self-renewal capability and to resist tumor microenvironmental stress and treatments. These pose major hindrances for CSC-targeting anti-cancer therapies: cell plasticity maintains stemness in CSCs and renders tumor cells to acquire stem-like phenotypes, contributing to tumor heterogeneity and CSC generation; cellular senescence induces genetic reprogramming and stemness activation, leading to CSC-mediated tumor progression and metastasis; cell quienscence facilitates CSC to overcome their intrinsic vulnerabilities and therapeutic stress, inducing tumor relapse and therapy resistance. These mechanisms are subjected to spatiotemporal regulation by hypoxia, CSC niche, and extracellular matrix in the tumor microenvironment. Here we integrate the recent advances and current knowledge to elucidate the mechanisms involved in the regulation of plasticity, senescence and quiescence of CSCs and the potential therapeutic implications for the future.
Collapse
Affiliation(s)
- Ritama Paul
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA 19104
| | - Jay F. Dorsey
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA 19104
| | - Yi Fan
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
18
|
Di Maira G, Foglia B, Napione L, Turato C, Maggiora M, Sutti S, Novo E, Alvaro M, Autelli R, Colombatto S, Bussolino F, Carucci P, Gaia S, Rosso C, Biasiolo A, Pontisso P, Bugianesi E, Albano E, Marra F, Parola M, Cannito S. Oncostatin M is overexpressed in
NASH
‐related hepatocellular carcinoma and promotes cancer cell invasiveness and angiogenesis. J Pathol 2022; 257:82-95. [PMID: 35064579 PMCID: PMC9315146 DOI: 10.1002/path.5871] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/03/2021] [Accepted: 01/13/2022] [Indexed: 12/03/2022]
Abstract
Oncostatin M (OSM) is a pleiotropic cytokine of the interleukin (IL)‐6 family that contributes to the progression of chronic liver disease. Here we investigated the role of OSM in the development and progression of hepatocellular carcinoma (HCC) in non‐alcoholic fatty liver disease (NAFLD)/non‐alcoholic steatohepatitis (NASH). The role of OSM was investigated in (1) selected cohorts of NAFLD/NASH HCC patients, (2) liver cancer cells exposed to human recombinant OSM or stably transfected to overexpress human OSM, (3) murine HCC xenografts, and (4) a murine NASH‐related model of hepatic carcinogenesis. OSM was found to be selectively overexpressed in HCC cells of NAFLD/NASH patients, depending on tumor grade. OSM serum levels, barely detectable in patients with simple steatosis or NASH, were increased in patients with cirrhosis and more evident in those carrying HCC. In this latter group, OSM serum levels were significantly higher in the subjects with intermediate/advanced HCCs and correlated with poor survival. Cell culture experiments indicated that OSM upregulation in hepatic cancer cells contributes to HCC progression by inducing epithelial‐to‐mesenchymal transition and increased invasiveness of cancer cells as well as by inducing angiogenesis, which is of critical relevance. In murine xenografts, OSM overexpression was associated with slower tumor growth but an increased rate of lung metastases. Overexpression of OSM and its positive correlation with the angiogenic switch were also confirmed in a murine model of NAFLD/NASH‐related hepatocarcinogenesis. Consistent with this, analysis of liver specimens from human NASH‐related HCCs with vascular invasion showed that OSM was expressed by liver cancer cells invading hepatic vessels. In conclusion, OSM upregulation appears to be a specific feature of HCC arising on a NAFLD/NASH background, and it correlates with clinical parameters and disease outcome. Our data highlight a novel pro‐carcinogenic contribution for OSM in NAFLD/NASH, suggesting a role of this factor as a prognostic marker and a putative potential target for therapy. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Giovanni Di Maira
- Department of Clinical and Experimental Medicine and Center Denothe University of Firenze Italy
| | - Beatrice Foglia
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine & Clinical Pathology University of Torino Italy
| | - Lucia Napione
- Laboratory of Vascular Oncology Candiolo Cancer Institute – FPO IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico)
- Department of Applied Science and Technology Politecnico di Torino Torino Italy
| | - Cristian Turato
- Department of Molecular Medicine University of Pavia Pavia Italy
| | - Marina Maggiora
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine & Clinical Pathology University of Torino Italy
| | - Salvatore Sutti
- Dept. Health Sciences and Interdisciplinary Research Center for Autoimmune Diseases University Amedeo Avogadro of East Piedmont Novara Italy
| | - Erica Novo
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine & Clinical Pathology University of Torino Italy
| | - Maria Alvaro
- Laboratory of Vascular Oncology Candiolo Cancer Institute – FPO IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico)
- Department of Oncology University of Torino Italy
| | - Riccardo Autelli
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine & Clinical Pathology University of Torino Italy
| | | | - Federico Bussolino
- Laboratory of Vascular Oncology Candiolo Cancer Institute – FPO IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico)
- Department of Oncology University of Torino Italy
| | - Patrizia Carucci
- Division of Gastroenterology Città della Salute e della Scienza University‐Hospital 10100 Turin Italy
| | - Silvia Gaia
- Division of Gastroenterology Città della Salute e della Scienza University‐Hospital 10100 Turin Italy
| | - Chiara Rosso
- Department of Medical Sciences University of Torino Italy
| | | | | | | | - Emanuele Albano
- Dept. Health Sciences and Interdisciplinary Research Center for Autoimmune Diseases University Amedeo Avogadro of East Piedmont Novara Italy
| | - Fabio Marra
- Department of Clinical and Experimental Medicine and Center Denothe University of Firenze Italy
| | - Maurizio Parola
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine & Clinical Pathology University of Torino Italy
| | - Stefania Cannito
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine & Clinical Pathology University of Torino Italy
| |
Collapse
|
19
|
Satpathy S, Krug K, Jean Beltran PM, Savage SR, Petralia F, Kumar-Sinha C, Dou Y, Reva B, Kane MH, Avanessian SC, Vasaikar SV, Krek A, Lei JT, Jaehnig EJ, Omelchenko T, Geffen Y, Bergstrom EJ, Stathias V, Christianson KE, Heiman DI, Cieslik MP, Cao S, Song X, Ji J, Liu W, Li K, Wen B, Li Y, Gümüş ZH, Selvan ME, Soundararajan R, Visal TH, Raso MG, Parra ER, Babur Ö, Vats P, Anand S, Schraink T, Cornwell M, Rodrigues FM, Zhu H, Mo CK, Zhang Y, da Veiga Leprevost F, Huang C, Chinnaiyan AM, Wyczalkowski MA, Omenn GS, Newton CJ, Schurer S, Ruggles KV, Fenyö D, Jewell SD, Thiagarajan M, Mesri M, Rodriguez H, Mani SA, Udeshi ND, Getz G, Suh J, Li QK, Hostetter G, Paik PK, Dhanasekaran SM, Govindan R, Ding L, Robles AI, Clauser KR, Nesvizhskii AI, Wang P, Carr SA, Zhang B, Mani DR, Gillette MA. A proteogenomic portrait of lung squamous cell carcinoma. Cell 2021; 184:4348-4371.e40. [PMID: 34358469 PMCID: PMC8475722 DOI: 10.1016/j.cell.2021.07.016] [Citation(s) in RCA: 194] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 04/26/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023]
Abstract
Lung squamous cell carcinoma (LSCC) remains a leading cause of cancer death with few therapeutic options. We characterized the proteogenomic landscape of LSCC, providing a deeper exposition of LSCC biology with potential therapeutic implications. We identify NSD3 as an alternative driver in FGFR1-amplified tumors and low-p63 tumors overexpressing the therapeutic target survivin. SOX2 is considered undruggable, but our analyses provide rationale for exploring chromatin modifiers such as LSD1 and EZH2 to target SOX2-overexpressing tumors. Our data support complex regulation of metabolic pathways by crosstalk between post-translational modifications including ubiquitylation. Numerous immune-related proteogenomic observations suggest directions for further investigation. Proteogenomic dissection of CDKN2A mutations argue for more nuanced assessment of RB1 protein expression and phosphorylation before declaring CDK4/6 inhibition unsuccessful. Finally, triangulation between LSCC, LUAD, and HNSCC identified both unique and common therapeutic vulnerabilities. These observations and proteogenomics data resources may guide research into the biology and treatment of LSCC.
Collapse
Affiliation(s)
- Shankha Satpathy
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA.
| | - Karsten Krug
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Pierre M Jean Beltran
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Sara R Savage
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Francesca Petralia
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Yongchao Dou
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Boris Reva
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - M Harry Kane
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Shayan C Avanessian
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Suhas V Vasaikar
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Azra Krek
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jonathan T Lei
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Eric J Jaehnig
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Yifat Geffen
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Erik J Bergstrom
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Vasileios Stathias
- Sylvester Comprehensive Cancer Center and Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Karen E Christianson
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - David I Heiman
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Marcin P Cieslik
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Song Cao
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Xiaoyu Song
- Department of Population Health Science and Policy, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jiayi Ji
- Department of Population Health Science and Policy, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Wenke Liu
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Kai Li
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bo Wen
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yize Li
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Zeynep H Gümüş
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Myvizhi Esai Selvan
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rama Soundararajan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tanvi H Visal
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Maria G Raso
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Edwin Roger Parra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Özgün Babur
- Computer Science Department, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Pankaj Vats
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shankara Anand
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Tobias Schraink
- Institute for Systems Genetics and Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - MacIntosh Cornwell
- Institute for Systems Genetics and Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | | | - Houxiang Zhu
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Chia-Kuei Mo
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Yuping Zhang
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Chen Huang
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Arul M Chinnaiyan
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Gilbert S Omenn
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Stephan Schurer
- Sylvester Comprehensive Cancer Center and Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Kelly V Ruggles
- Institute for Systems Genetics and Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - David Fenyö
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Scott D Jewell
- Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Mathangi Thiagarajan
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Sendurai A Mani
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Namrata D Udeshi
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Gad Getz
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - James Suh
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Qing Kay Li
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Medical Institutions, Baltimore, MD 21224, USA
| | | | - Paul K Paik
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Ramaswamy Govindan
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Li Ding
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Karl R Clauser
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Steven A Carr
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA.
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| | - D R Mani
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA.
| | - Michael A Gillette
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA 02115, USA.
| |
Collapse
|
20
|
Transforming Growth Factor- β and Oxidative Stress in Cancer: A Crosstalk in Driving Tumor Transformation. Cancers (Basel) 2021; 13:cancers13123093. [PMID: 34205678 PMCID: PMC8235010 DOI: 10.3390/cancers13123093] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/12/2021] [Accepted: 06/17/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Metabolic changes in tumor microenvironment play a critical role in cancer, related to the accumulated alterations in signaling pathways that control cellular metabolism. Cancer metabolic deregulation is related to specific events such as the control of oxidative stress, and in particular the redox imbalance with aberrant oxidant production and/or a deregulation of the efficacy of the antioxidant systems. In cancer cells, different cytokines are involved in the development and/or progression of cancer; among these cytokines, the transforming growth factor β (TGF-β) is central to tumorigenesis and cancer progression. In tumor cells, it has been demonstrated that there is a close correlation between oxidative stress and TGF-β; this crosstalk strongly contributes to tumorigenesis, both in tumor development and in mediating its invasiveness. This review is addressed to better understanding this crosstalk between TGF-β and oxidative stress in cancer cell metabolism, in an attempt to improve the pharmacological and therapeutic approach against cancer. Abstract Cancer metabolism involves different changes at a cellular level, and altered metabolic pathways have been demonstrated to be heavily involved in tumorigenesis and invasiveness. A crucial role for oxidative stress in cancer initiation and progression has been demonstrated; redox imbalance, due to aberrant reactive oxygen species (ROS) production or deregulated efficacy of antioxidant systems (superoxide dismutase, catalase, GSH), contributes to tumor initiation and progression of several types of cancer. ROS may modulate cancer cell metabolism by acting as secondary messengers in the signaling pathways (NF-kB, HIF-1α) involved in cellular proliferation and metastasis. It is known that ROS mediate many of the effects of transforming growth factor β (TGF-β), a key cytokine central in tumorigenesis and cancer progression, which in turn can modulate ROS production and the related antioxidant system activity. Thus, ROS synergize with TGF-β in cancer cell metabolism by increasing the redox imbalance in cancer cells and by inducing the epithelial mesenchymal transition (EMT), a crucial event associated with tumor invasiveness and metastases. Taken as a whole, this review is addressed to better understanding this crosstalk between TGF-β and oxidative stress in cancer cell metabolism, in the attempt to improve the pharmacological and therapeutic approach against cancer.
Collapse
|
21
|
Chakraborty P, Chen EL, McMullen I, Armstrong AJ, Kumar Jolly M, Somarelli JA. Analysis of immune subtypes across the epithelial-mesenchymal plasticity spectrum. Comput Struct Biotechnol J 2021; 19:3842-3851. [PMID: 34306571 PMCID: PMC8283019 DOI: 10.1016/j.csbj.2021.06.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022] Open
Abstract
Epithelial-mesenchymal plasticity plays a critical role in many solid tumor types as a mediator of metastatic dissemination and treatment resistance. In addition, there is also a growing appreciation that the epithelial/mesenchymal status of a tumor plays a role in immune evasion and immune suppression. A deeper understanding of the immunological features of different tumor types has been facilitated by the availability of large gene expression datasets and the development of methods to deconvolute bulk RNA-Seq data. These resources have generated powerful new ways of characterizing tumors, including classification of immune subtypes based on differential expression of immunological genes. In the present work, we combine scoring algorithms to quantify epithelial-mesenchymal plasticity with immune subtype analysis to understand the relationship between epithelial plasticity and immune subtype across cancers. We find heterogeneity of epithelial-mesenchymal transition (EMT) status both within and between cancer types, with greater heterogeneity in the expression of EMT-related factors than of MET-related factors. We also find that specific immune subtypes have associated EMT scores and differential expression of immune checkpoint markers.
Collapse
Affiliation(s)
- Priyanka Chakraborty
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | | | | | - Andrew J. Armstrong
- Department of Medicine, Durham, NC, United Kingdom
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, NC, United Kingdom
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, United Kingdom
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Jason A. Somarelli
- Department of Medicine, Durham, NC, United Kingdom
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, NC, United Kingdom
| |
Collapse
|
22
|
Kang X, Li C. A Dimension Reduction Approach for Energy Landscape: Identifying Intermediate States in Metabolism-EMT Network. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003133. [PMID: 34026435 PMCID: PMC8132071 DOI: 10.1002/advs.202003133] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/18/2020] [Indexed: 05/08/2023]
Abstract
Dimension reduction is a challenging problem in complex dynamical systems. Here, a dimension reduction approach of landscape (DRL) for complex dynamical systems is proposed, by mapping a high-dimensional system on a low-dimensional energy landscape. The DRL approach is applied to three biological networks, which validates that new reduced dimensions preserve the major information of stability and transition of original high-dimensional systems. The consistency of barrier heights calculated from the low-dimensional landscape and transition actions calculated from the high-dimensional system further shows that the landscape after dimension reduction can quantify the global stability of the system. The epithelial-mesenchymal transition (EMT) and abnormal metabolism are two hallmarks of cancer. With the DRL approach, a quadrastable landscape for metabolism-EMT network is identified, including epithelial (E), abnormal metabolic (A), hybrid E/M (H), and mesenchymal (M) cell states. The quantified energy landscape and kinetic transition paths suggest that for the EMT process, the cells at E state need to first change their metabolism, then enter the M state. The work proposes a general framework for the dimension reduction of a stochastic dynamical system, and advances the mechanistic understanding of the underlying relationship between EMT and cellular metabolism.
Collapse
Affiliation(s)
- Xin Kang
- School of Mathematical SciencesFudan UniversityShanghai200433China
- Shanghai Center for Mathematical SciencesFudan UniversityShanghai200433China
| | - Chunhe Li
- Shanghai Center for Mathematical SciencesFudan UniversityShanghai200433China
- Institute of Science and Technology for Brain‐Inspired IntelligenceFudan UniversityShanghai200433China
| |
Collapse
|
23
|
Lauer AN, Scholtysik R, Beineke A, Baums CG, Klose K, Valentin-Weigand P, Ishikawa H, Schroten H, Klein-Hitpass L, Schwerk C. A Comparative Transcriptome Analysis of Human and Porcine Choroid Plexus Cells in Response to Streptococcus suis Serotype 2 Infection Points to a Role of Hypoxia. Front Cell Infect Microbiol 2021; 11:639620. [PMID: 33763387 PMCID: PMC7982935 DOI: 10.3389/fcimb.2021.639620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/01/2021] [Indexed: 11/14/2022] Open
Abstract
Streptococcus suis (S. suis) is an important opportunistic pathogen, which can cause septicemia and meningitis in pigs and humans. Previous in vivo observations in S. suis-infected pigs revealed lesions at the choroid plexus (CP). In vitro experiments with primary porcine CP epithelial cells (PCPEC) and human CP epithelial papilloma (HIBCPP) cells demonstrated that S. suis can invade and traverse the CP epithelium, and that the CP contributes to the inflammatory response via cytokine expression. Here, next generation sequencing (RNA-seq) was used to compare global transcriptome profiles of PCPEC and HIBCPP cells challenged with S. suis serotype (ST) 2 infected in vitro, and of pigs infected in vivo. Identified differentially expressed genes (DEGs) were, amongst others, involved in inflammatory responses and hypoxia. The RNA-seq data were validated via quantitative PCR of selected DEGs. Employing Gene Set Enrichment Analysis (GSEA), 18, 28, and 21 enriched hallmark gene sets (GSs) were identified for infected HIBCPP cells, PCPEC, and in the CP of pigs suffering from S. suis ST2 meningitis, respectively, of which eight GSs overlapped between the three different sample sets. The majority of these GSs are involved in cellular signaling and pathways, immune response, and development, including inflammatory response and hypoxia. In contrast, suppressed GSs observed during in vitro and in vivo S. suis ST2 infections included those, which were involved in cellular proliferation and metabolic processes. This study suggests that similar cellular processes occur in infected human and porcine CP epithelial cells, especially in terms of inflammatory response.
Collapse
Affiliation(s)
- Alexa N Lauer
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Rene Scholtysik
- Institute for Cell Biology, University Hospital Essen, Essen, Germany
| | - Andreas Beineke
- Institute for Pathology, University of Veterinary Medicine, Hannover, Germany
| | - Christoph Georg Baums
- Faculty of Veterinary Medicine, Institute of Bacteriology and Mycology, Leipzig University, Leipzig, Germany
| | - Kristin Klose
- Faculty of Veterinary Medicine, Institute of Veterinary Pathology, Leipzig University, Leipzig, Germany
| | | | - Hiroshi Ishikawa
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Horst Schroten
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | | | - Christian Schwerk
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
24
|
Abstract
Pancreatic cancer (PC) is one of the deadliest malignancies. The high mortality rate of PC largely results from delayed diagnosis and early metastasis. Therefore, identifying novel treatment targets for patients with PC is urgently required to improve survival rates. A major barrier to successful treatment of PC is the presence of a hypoxic tumor microenvironment, which is associated with poor prognosis, treatment resistance, increased invasion and metastasis. Recent studies have identified a number of novel molecules and pathways in PC cells that promote cancer cells progression under hypoxic conditions, which may provide new therapy strategies to inhibit the development and metastasis of PC. This review summarizes the latest research of hypoxia in PC and provides an overview of how the current therapies have the capacity to overcome hypoxia and improve PC patient treatment. These findings will eventually provide guidance for future PC management and clinical trials and hopefully improve the survival of patients with PC.
Collapse
Affiliation(s)
- Wenhao Luo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jiangdong Qiu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Lianfang Zheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.,Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
25
|
Elzakra N, Kim Y. HIF-1α Metabolic Pathways in Human Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1280:243-260. [PMID: 33791987 DOI: 10.1007/978-3-030-51652-9_17] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oxygen is directly involved in many key pathophysiological processes. Oxygen deficiency, also known as hypoxia, could have adverse effects on mammalian cells, with ischemia in vital tissues being the most significant (Michiels C. Physiological and pathological responses to hypoxia. Am J Pathol 164(6): 1875-1882, 2004); therefore, timely adaptive responses to variations in oxygen availability are essential for cellular homeostasis and survival. The most critical molecular event in hypoxic response is the activation and stabilization of a transcriptional factor termed hypoxia-induced factor-1 (HIF-1) that is responsible for the upregulation of many downstream effector genes, collectively known as hypoxia-responsive genes. Multiple key biological pathways such as proliferation, energy metabolism, invasion, and metastasis are governed by these genes; thus, HIF-1-mediated pathways are equally pivotal in both physiology and pathology.As we gain knowledge on the molecular mechanisms underlying the regulation of HIF-1, a great focus has been placed on elucidating the cellular function of HIF-1, particularly the role of HIF-1 in cancer pathogenesis pathways such as proliferation, invasion, angiogenesis, and metastasis. In cancer, HIF-1 is directly involved in the shift of cancer tissues from oxidative phosphorylation to aerobic glycolysis, a phenomenon known as the Warburg effect. Although targeting HIF-1 as a cancer therapy seems like an extremely rational approach, owing to the complex network of its downstream effector genes, the development of specific HIF-1 inhibitors with fewer side effects and more specificity has not been achieved. Therefore, in this review, we provide a brief background about the function of HIF proteins in hypoxia response with a special emphasis on the unique role played by HIF-1α in cancer growth and invasiveness, in the hypoxia response context.
Collapse
Affiliation(s)
- Naseim Elzakra
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA.
| | - Yong Kim
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA. .,Laboratory of Stem Cell and Cancer Epigenetics, Center for Oral Oncology Research, UCLA School of Dentistry, Los Angeles, CA, USA. .,UCLA's Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA. .,Broad Stem Cell Research Institute, Los Angeles, CA, USA.
| |
Collapse
|
26
|
Armando F, Godizzi F, Razzuoli E, Leonardi F, Angelone M, Corradi A, Meloni D, Ferrari L, Passeri B. Epithelial to Mesenchymal Transition (EMT) in a Laryngeal Squamous Cell Carcinoma of a Horse: Future Perspectives. Animals (Basel) 2020; 10:E2318. [PMID: 33297475 PMCID: PMC7762370 DOI: 10.3390/ani10122318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 12/17/2022] Open
Abstract
Squamous cell carcinoma (SCC) is one of the most frequent tumors of skin and muco-cutaneous junctions in the horse. Equine papillomavirus type 2 (EcPV2) has been detected in equine SCC of the oral tract and genitals, and recently also in the larynx. As human squamous cell carcinoma of the larynx (SCCL), it is strongly etiologically associated with high-risk papillomavirus (h-HPV) infection. This study focuses on tumor cells behavior in a naturally occurring tumor that can undergo the so-called epithelial to mesenchymal transition (EMT). A SCCL in a horse was investigated by immunohistochemistry using antibodies against E-cadherin, pan-cytokeratin AE3/AE1, β-catenin, N-cadherin, vimentin, ZEB-1, TWIST, and HIF-1α. EcPV2 DNA detection and expression of oncogenes in SCC were investigated. A cadherin switch and an intermediate filaments rearrangement within primary site tumor cells together with the expression of the EMT-related transcription factors TWIST-1, ZEB-1, and HIF-1α were observed. DNA obtained from the tumor showed EcPV2 positivity, with E2 gene disruption and E6 gene dysregulation. The results suggest that equine SCCL might be a valuable model for studying EMT and the potential interactions between EcPV2 oncoproteins and the EMT process in SCCL.
Collapse
Affiliation(s)
- Federico Armando
- Pathology Unit, Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy; (F.A.); (A.C.); (L.F.); (B.P.)
| | - Francesco Godizzi
- Department of Veterinary Science (DIMEVET), University of Milan, Via dell‘Università 6, 26900 Lodi, Italy;
| | - Elisabetta Razzuoli
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Piazza Borgo Pila 39/24, 16129 Genoa, Italy;
| | - Fabio Leonardi
- Department of Veterinary Science, Strada del Taglio 10, 43126 Parma, Italy; (F.L.); (M.A.)
| | - Mario Angelone
- Department of Veterinary Science, Strada del Taglio 10, 43126 Parma, Italy; (F.L.); (M.A.)
| | - Attilio Corradi
- Pathology Unit, Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy; (F.A.); (A.C.); (L.F.); (B.P.)
| | - Daniela Meloni
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Piazza Borgo Pila 39/24, 16129 Genoa, Italy;
| | - Luca Ferrari
- Pathology Unit, Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy; (F.A.); (A.C.); (L.F.); (B.P.)
| | - Benedetta Passeri
- Pathology Unit, Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy; (F.A.); (A.C.); (L.F.); (B.P.)
| |
Collapse
|
27
|
Notch Signaling Function in the Angiocrine Regulation of Tumor Development. Cells 2020; 9:cells9112467. [PMID: 33198378 PMCID: PMC7697556 DOI: 10.3390/cells9112467] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/25/2022] Open
Abstract
The concept of tumor growth being angiogenesis dependent had its origin in the observations of Judah Folkman in 1969 of a retinoblastoma in a child. Tumor angiogenesis is initiated when endothelial cells (ECs) respond to local stimuli and migrate towards the growing mass, which results in the formation of tubular structures surrounded by perivascular support cells that transport blood to the inner tumor. In turn, the neo-vasculature supports tumor development and eventual metastasis. This process is highly regulated by several signaling pathways. Central to this process is the Notch signaling pathway. Beyond the role of Notch signaling in tumor angiogenesis, a major hallmark of cancer development, it has also been implicated in the regulation of tumor cell proliferation and survival, in epithelial-to-mesenchymal transition, invasion and metastasis and in the regulation of cancer stem cells, in a variety of hematologic and solid malignancies. There is increasing evidence for the tumor vasculature being important in roles other than those linked to blood perfusion. Namely, endothelial cells act on and influence neighboring tumor cells by use of angiocrine factors to generate a unique cellular microenvironment, thereby regulating tumor stem-like cells’ homeostasis, modulating tumor progression, invasiveness, trafficking and metastasis. This review will focus on Notch signaling components that play a part in angiocrine signaling in a tumor setting.
Collapse
|
28
|
Pezone A, Taddei ML, Tramontano A, Dolcini J, Boffo FL, De Rosa M, Parri M, Stinziani S, Comito G, Porcellini A, Raugei G, Gackowski D, Zarakowska E, Olinski R, Gabrielli A, Chiarugi P, Avvedimento EV. Targeted DNA oxidation by LSD1-SMAD2/3 primes TGF-β1/ EMT genes for activation or repression. Nucleic Acids Res 2020; 48:8943-8958. [PMID: 32697292 PMCID: PMC7498341 DOI: 10.1093/nar/gkaa599] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/24/2020] [Accepted: 07/03/2020] [Indexed: 12/22/2022] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) is a complex transcriptional program induced by transforming growth factor β1 (TGF-β1). Histone lysine-specific demethylase 1 (LSD1) has been recognized as a key mediator of EMT in cancer cells, but the precise mechanism that underlies the activation and repression of EMT genes still remains elusive. Here, we characterized the early events induced by TGF-β1 during EMT initiation and establishment. TGF-β1 triggered, 30–90 min post-treatment, a nuclear oxidative wave throughout the genome, documented by confocal microscopy and mass spectrometry, mediated by LSD1. LSD1 was recruited with phosphorylated SMAD2/3 to the promoters of prototypic genes activated and repressed by TGF-β1. After 90 min, phospho-SMAD2/3 downregulation reduced the complex and LSD1 was then recruited with the newly synthesized SNAI1 and repressors, NCoR1 and HDAC3, to the promoters of TGF-β1-repressed genes such as the Wnt soluble inhibitor factor 1 gene (WIF1), a change that induced a late oxidative burst. However, TGF-β1 early (90 min) repression of transcription also required synchronous signaling by reactive oxygen species and the stress-activated kinase c-Jun N-terminal kinase. These data elucidate the early events elicited by TGF-β1 and the priming role of DNA oxidation that marks TGF-β1-induced and -repressed genes involved in the EMT.
Collapse
Affiliation(s)
- Antonio Pezone
- To whom correspondence should be addressed. Tel: +39 0817463614; ;
| | | | | | - Jacopo Dolcini
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Istituto di Endocrinologia ed Oncologia Sperimentale del CNR, Università Federico II, 80131 Napoli, Italy
- Dipartimento di Scienze Cliniche e Molecolari, Clinica Medica, Università Politecnica delle Marche, 60100, Ancona, Italy
| | - Francesca Ludovica Boffo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Istituto di Endocrinologia ed Oncologia Sperimentale del CNR, Università Federico II, 80131 Napoli, Italy
| | - Mariarosaria De Rosa
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Istituto di Endocrinologia ed Oncologia Sperimentale del CNR, Università Federico II, 80131 Napoli, Italy
| | - Matteo Parri
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche, Università degli Studi di Firenze, viale Morgagni 50, 50134 Firenze, Italy
| | - Stefano Stinziani
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche, Università degli Studi di Firenze, viale Morgagni 50, 50134 Firenze, Italy
| | - Giuseppina Comito
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche, Università degli Studi di Firenze, viale Morgagni 50, 50134 Firenze, Italy
| | | | - Giovanni Raugei
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche, Università degli Studi di Firenze, viale Morgagni 50, 50134 Firenze, Italy
| | - Daniel Gackowski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-095 Bydgoszcz, Poland
| | - Ewelina Zarakowska
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-095 Bydgoszcz, Poland
| | - Ryszard Olinski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-095 Bydgoszcz, Poland
| | - Armando Gabrielli
- Dipartimento di Scienze Cliniche e Molecolari, Clinica Medica, Università Politecnica delle Marche, 60100, Ancona, Italy
| | - Paola Chiarugi
- Correspondence may also be addressed to Paola Chiarugi. Tel: +39 0552751247;
| | | |
Collapse
|
29
|
Saw PE, Xu X, Chen J, Song EW. Non-coding RNAs: the new central dogma of cancer biology. SCIENCE CHINA-LIFE SCIENCES 2020; 64:22-50. [PMID: 32930921 DOI: 10.1007/s11427-020-1700-9] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
The central dogma of molecular biology states that the functions of RNA revolve around protein translation. Until the last decade, most researches were geared towards characterization of RNAs as intermediaries in protein translation, namely, messenger RNAs (mRNAs) as temporary copies of genetic information, ribosomal RNAs (rRNAs) as a main component of ribosome, or translators of codon sequence (tRNAs). The statistical reality, however, is that these processes account for less than 2% of the genome, and insufficiently explain the functionality of 98% of transcribed RNAs. Recent discoveries have unveiled thousands of unique non-coding RNAs (ncRNAs) and shifted the perception of them from being "junk" transcriptional products to "yet to be elucidated"-and potentially monumentally important-RNAs. Most ncRNAs are now known as key regulators in various networks in which they could lead to specific cellular responses and fates. In major cancers, ncRNAs have been identified as both oncogenic drivers and tumor suppressors, indicating a complex regulatory network among these ncRNAs. Herein, we provide a comprehensive review of the various ncRNAs and their functional roles in cancer, and the pre-clinical and clinical development of ncRNA-based therapeutics. A deeper understanding of ncRNAs could facilitate better design of personalized therapeutics.
Collapse
Affiliation(s)
- Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Jianing Chen
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Er-Wei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China. .,Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| |
Collapse
|
30
|
Hypoxic colorectal cancer cells promote metastasis of normoxic cancer cells depending on IL-8/p65 signaling pathway. Cell Death Dis 2020; 11:610. [PMID: 32737283 PMCID: PMC7395770 DOI: 10.1038/s41419-020-02797-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/14/2020] [Accepted: 07/14/2020] [Indexed: 12/17/2022]
Abstract
Tumor heterogeneity is an important feature of malignant tumors, and cell subpopulations may positively interact to facilitate tumor progression. Studies have shown that hypoxic cancer cells possess enhanced metastatic capacity. However, it is still unclear whether hypoxic cancer cells may promote the metastasis of normoxic cells, which have greater access to the blood circulation. When cocultured with hypoxic CRC cells or treated with hypoxic CRC cell-derived CM, normoxic CRC cells possessed increased metastatic capacity. Furthermore, hypoxic CRC cell-derived CM was enriched in interleukin 8. Hypoxic CRC cell-derived CM and recombinant human IL-8 both enhanced the metastatic capacity of normoxic cells by increasing the phosphorylation of p65 and then by inducing epithelial-mesenchymal transition. Knockdown of IL-8 in hypoxic CRC cells or the use of an anti-IL-8 antibody attenuated the CM- or rhIL-8-induced prometastatic capacity of normoxic CRC cells. Inhibition or knockdown of p65 abrogated IL-8-induced prometastatic effects. Most importantly, hypoxia-treated xenograft tumors enhanced the metastasis of normoxic CRC cells. Hypoxic CRC cell-derived IL-8 promotes the metastatic capacity of normoxic cells, and novel therapies targeting the positive interactions between hypoxic and normoxic cells should be developed.
Collapse
|
31
|
Liu Y, Yang M, Luo J, Zhou H. Radiotherapy targeting cancer stem cells "awakens" them to induce tumour relapse and metastasis in oral cancer. Int J Oral Sci 2020; 12:19. [PMID: 32576817 PMCID: PMC7311531 DOI: 10.1038/s41368-020-00087-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 02/05/2023] Open
Abstract
Radiotherapy is one of the most common treatments for oral cancer. However, in the clinic, recurrence and metastasis of oral cancer occur after radiotherapy, and the underlying mechanism remains unclear. Cancer stem cells (CSCs), considered the “seeds” of cancer, have been confirmed to be in a quiescent state in most established tumours, with their innate radioresistance helping them survive more easily when exposed to radiation than differentiated cancer cells. There is increasing evidence that CSCs play an important role in recurrence and metastasis post-radiotherapy in many cancers. However, little is known about how oral CSCs cause tumour recurrence and metastasis post-radiotherapy. In this review article, we will first summarise methods for the identification of oral CSCs and then focus on the characteristics of a CSC subpopulation induced by radiation, hereafter referred to as “awakened” CSCs, to highlight their response to radiotherapy and potential role in tumour recurrence and metastasis post-radiotherapy as well as potential therapeutics targeting CSCs. In addition, we explore potential therapeutic strategies targeting these “awakened” CSCs to solve the serious clinical challenges of recurrence and metastasis in oral cancer after radiotherapy.
Collapse
Affiliation(s)
- Yangfan Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Miao Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jingjing Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Hongmei Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
32
|
Ding L, Billadeau DD. Glycogen synthase kinase-3β: a novel therapeutic target for pancreatic cancer. Expert Opin Ther Targets 2020; 24:417-426. [PMID: 32178549 DOI: 10.1080/14728222.2020.1743681] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer death in the United States with a single-digit 5-year survival rate despite advances in understanding the genetics and biology of the disease. Glycogen synthase kinase-3α (GSK-3α) and GSK-3β are serine/threonine kinases that localize to the cytoplasm, mitochondria and nucleus. Although they are highly homologous within their kinase domains and phosphorylate an overlapping set of target proteins, genetic studies have shown that GSK-3β regulates the activity of several proteins that promote neoplastic transformation. Significantly, GSK-3β is progressively overexpressed during PDAC development where it participates in tumor progression, survival and chemoresistance. Thus, GSK-3β has become an attractive target for treating PDAC.Areas covered: This review summarizes the mechanisms regulating GSK-3β activity, including upstream translational and post-translational regulation, as well as the downstream targets and their functions in PDAC cell growth, metastasis and chemoresistance.Expert opinion: The activity of GSK-3 kinases are considered cell- and context-specific. In PDAC, oncogenic KRas drives the transcriptional expression of the GSK-3β gene, which has been shown to regulate cancer cell proliferation and survival, as well as resistance to chemotherapy. Thus, the combination of GSK-3 inhibitors with chemotherapeutic drugs could be a promising strategy for PDAC.
Collapse
Affiliation(s)
- Li Ding
- The Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Daniel D Billadeau
- The Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
33
|
Serrano JJ, Delgado B, Medina MÁ. Control of tumor angiogenesis and metastasis through modulation of cell redox state. Biochim Biophys Acta Rev Cancer 2020; 1873:188352. [PMID: 32035101 DOI: 10.1016/j.bbcan.2020.188352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 12/14/2022]
Abstract
Redox reactions pervade all biology. The control of cellular redox state is essential for bioenergetics and for the proper functioning of many biological functions. This review traces a timeline of findings regarding the connections between redox and cancer. There is ample evidence of the involvement of cellular redox state on the different hallmarks of cancer. Evidence of the control of tumor angiogenesis and metastasis through modulation of cell redox state is reviewed and highlighted.
Collapse
Affiliation(s)
- José J Serrano
- Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, E-29071 Málaga, Spain
| | - Belén Delgado
- Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, E-29071 Málaga, Spain
| | - Miguel Ángel Medina
- Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, E-29071 Málaga, Spain; IBIMA (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain; CIBER de Enfermedades Raras (CIBERER), E-29071 Málaga, Spain.
| |
Collapse
|
34
|
Ni J, Zhou S, Yuan W, Cen F, Yan Q. Mechanism of miR-210 involved in epithelial-mesenchymal transition of pancreatic cancer cells under hypoxia. J Recept Signal Transduct Res 2019; 39:399-406. [PMID: 31875764 DOI: 10.1080/10799893.2019.1683863] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Purpose: To investigate the possible mechanism of miR-210 involved in epithelial-mesenchymal transition (EMT) of pancreatic cancer cells under hypoxia. Methods: In this study, we used the following approaches. Hypoxic microenvironment was stimulated in vitro, and the CCK-8 assay was used to analyze cell viability. The MiRNA expression level was measured by qRT-PCR. HOXA9, EMT-related proteins, and NF-κB activities were examined by immunoblotting assay. Dual luciferase reporter assay was used to assess whether HOXA9 was a target of miR-210.Results: Under hypoxia condition, miR-210, HIF-1α and NF-κB were increased, and the HOXA9 was reduced in PANC-1 cells. When miR-210 was overexpressed in normoxic PANC-1 cells, EMT epithelial markers of E-cadherin and β-catenin were down-regulated, and mesenchymal markers of vimentin and N-cadherin were up-regulated to promote cell migration/invasive ability, and the HOXA9 level was decreased. After HOXA9 level decreased, the sensitivity to chemotherapeutic drug of gemcitabine was reduced, NF-κB expression level and cell migration/invasive ability was enhanced. Whereas, miR-210 antagonist into hypoxic PANC-1 cells, which up-regulated E-cadherin, β-catenin level, and down-regulated vimentin and N-cadherin levels to decrease cell migration/invasive ability, and increase the HOXA9. Furthermore, increasing HOXA9 level decreased NF-κB expression level and cell migration/invasive ability, enhanced the sensitivity to gemcitabine. At last, miRDB and TargetScan predicted that HOXA9 was a target of miR-210, and dual luciferase reporter assay verified this hypothesis.Conclusion: MiR-210 inhibited the expression of HOXA9 to activate the NF-κB signaling pathway and mediated the occurrence of EMT of pancreatic cancer cells induced by HIF-1α under hypoxia.
Collapse
Affiliation(s)
- Jun Ni
- Department of Hepatological Surgery, Fuyang hospital of traditional Chinese medicine, Hangzhou, China
| | - Shiyu Zhou
- Department of Hepatological Surgery, Huzhou Central Hospital, Huzhou, China
| | - Wenbin Yuan
- Department of Hepatological Surgery, Huzhou Central Hospital, Huzhou, China
| | - Feng Cen
- Department of Hepatological Surgery, Huzhou Central Hospital, Huzhou, China
| | - Qiang Yan
- Department of Hepatological Surgery, Huzhou Central Hospital, Huzhou, China
| |
Collapse
|
35
|
Cannito S, Foglia B, Villano G, Turato C, C Delgado T, Morello E, Pin F, Novo E, Napione L, Quarta S, Ruvoletto M, Fasolato S, Zanus G, Colombatto S, Lopitz-Otsoa F, Fernández-Ramos D, Bussolino F, Sutti S, Albano E, Martínez-Chantar ML, Pontisso P, Parola M. SerpinB3 Differently Up-Regulates Hypoxia Inducible Factors -1α and -2α in Hepatocellular Carcinoma: Mechanisms Revealing Novel Potential Therapeutic Targets. Cancers (Basel) 2019; 11:cancers11121933. [PMID: 31817100 PMCID: PMC6966556 DOI: 10.3390/cancers11121933] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 12/15/2022] Open
Abstract
Background: SerpinB3 (SB3) is a hypoxia and hypoxia-inducible factor (HIF)-2α-dependent cysteine-protease inhibitor up-regulated in hepatocellular carcinoma (HCC), released by cancer cells and able to stimulate proliferation and epithelial-to-mesenchymal-transition. Methods: In the study we employed transgenic and knock out SerpinB3 mice, liver cancer cell line, human HCC specimens, and mice receiving diethyl-nitrosamine (DEN) administration plus choline-deficient L-amino acid refined (CDAA) diet (DEN/CDAA protocol). Results: We provide detailed and mechanistic evidence that SB3 can act as a paracrine mediator able to affect the behavior of surrounding cells by differentially up-regulating, in normoxic conditions, HIF-1α and HIF-2α. SB3 acts by (i) up-regulating HIF-1α transcription, facilitating cell survival in a harsh microenvironment and promoting angiogenesis, (ii) increasing HIF-2α stabilization via direct/selective NEDDylation, promoting proliferation of liver cancer cells, and favoring HCC progression. Moreover (iii) the highest levels of NEDD8-E1 activating enzyme (NAE1) mRNA were detected in a subclass of HCC patients expressing the highest levels of HIF-2α transcripts; (iv) mice undergoing DEN/CDAA carcinogenic protocol showed a positive correlation between SB3 and HIF-2α transcripts with the highest levels of NAE1 mRNA detected in nodules expressing the highest levels of HIF-2α transcripts. Conclusions: These data outline either HIF-2α and NEDDylation as two novel putative therapeutic targets to interfere with the procarcinogenic role of SerpinB3 in the development of HCC.
Collapse
Affiliation(s)
- Stefania Cannito
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine & Clinical Pathology, University of Torino, 10125 Torino, Italy; (S.C.); (B.F.); (E.M.); (F.P.); (E.N.)
| | - Beatrice Foglia
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine & Clinical Pathology, University of Torino, 10125 Torino, Italy; (S.C.); (B.F.); (E.M.); (F.P.); (E.N.)
| | - Gianmarco Villano
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (G.V.); (M.R.); (S.F.)
| | - Cristian Turato
- Veneto Institute of Oncology IOV—IRCCS, 35128 Padova, Italy;
| | - Teresa C Delgado
- Liver Disease and Metabolism Laboratory, CIC bioGUNE, Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain; (T.C.D.); (F.L.-O.); (D.F.-R.); (M.L.M.-C.)
| | - Elisabetta Morello
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine & Clinical Pathology, University of Torino, 10125 Torino, Italy; (S.C.); (B.F.); (E.M.); (F.P.); (E.N.)
| | - Fabrizio Pin
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine & Clinical Pathology, University of Torino, 10125 Torino, Italy; (S.C.); (B.F.); (E.M.); (F.P.); (E.N.)
| | - Erica Novo
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine & Clinical Pathology, University of Torino, 10125 Torino, Italy; (S.C.); (B.F.); (E.M.); (F.P.); (E.N.)
| | - Lucia Napione
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy;
- Laboratory of Vascular Oncology Candiolo Cancer Institute—FPO IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), 10060 Candiolo, Italy;
| | - Santina Quarta
- Department of Medicine, University of Padova, 35128 Padova, Italy; (S.Q.); (P.P.)
| | - Mariagrazia Ruvoletto
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (G.V.); (M.R.); (S.F.)
| | - Silvano Fasolato
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (G.V.); (M.R.); (S.F.)
| | - Giacomo Zanus
- Hepatobiliary Surgery, University of Padova, 35128 Padova, Italy;
| | | | - Fernando Lopitz-Otsoa
- Liver Disease and Metabolism Laboratory, CIC bioGUNE, Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain; (T.C.D.); (F.L.-O.); (D.F.-R.); (M.L.M.-C.)
| | - David Fernández-Ramos
- Liver Disease and Metabolism Laboratory, CIC bioGUNE, Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain; (T.C.D.); (F.L.-O.); (D.F.-R.); (M.L.M.-C.)
| | - Federico Bussolino
- Laboratory of Vascular Oncology Candiolo Cancer Institute—FPO IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), 10060 Candiolo, Italy;
- Department of Oncology, University of Torino, 10125 Torino, Italy;
| | - Salvatore Sutti
- Department of Health Sciences and Interdisciplinary Research Center for Autoimmune Diseases, University Amedeo Avogadro of East Piedmont, 28100 Novara, Italy; (S.S.); (E.A.)
| | - Emanuele Albano
- Department of Health Sciences and Interdisciplinary Research Center for Autoimmune Diseases, University Amedeo Avogadro of East Piedmont, 28100 Novara, Italy; (S.S.); (E.A.)
| | - Maria Luz Martínez-Chantar
- Liver Disease and Metabolism Laboratory, CIC bioGUNE, Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain; (T.C.D.); (F.L.-O.); (D.F.-R.); (M.L.M.-C.)
| | - Patrizia Pontisso
- Department of Medicine, University of Padova, 35128 Padova, Italy; (S.Q.); (P.P.)
| | - Maurizio Parola
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine & Clinical Pathology, University of Torino, 10125 Torino, Italy; (S.C.); (B.F.); (E.M.); (F.P.); (E.N.)
- Correspondence: ; Tel.: +39-0116707772
| |
Collapse
|
36
|
Hyttinen JMT, Kannan R, Felszeghy S, Niittykoski M, Salminen A, Kaarniranta K. The Regulation of NFE2L2 (NRF2) Signalling and Epithelial-to-Mesenchymal Transition in Age-Related Macular Degeneration Pathology. Int J Mol Sci 2019; 20:ijms20225800. [PMID: 31752195 PMCID: PMC6888570 DOI: 10.3390/ijms20225800] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 12/19/2022] Open
Abstract
Age-related macular degeneration (AMD) is a mounting cause of loss of sight in the elderly in the developed countries, a trend enhanced by the continual ageing of the population. AMD is a multifactorial and only partly understood, malady. Unfortunately, there is no effective treatment for most AMD patients. It is known that oxidative stress (OS) damages the retinal pigment epithelium (RPE) and contributes to the progression of AMD. We review here the potential importance of two OS-related cellular systems in relation to AMD. First, the nuclear factor erythroid 2-related factor 2 (NFE2L2; NRF2)-mediated OS response signalling pathway is important in the prevention of oxidative damage and a failure of this system could be critical in the development of AMD. Second, epithelial-to-mesenchymal transition (EMT) represents a change in the cellular phenotype, which ultimately leads to the fibrosis encountered in RPE, a characteristic of AMD. Many of the pathways triggering EMT are promoted by OS. The possible interconnections between these two signalling routes are discussed here. From a broader perspective, the control of NFE2L2 and EMT as ways of preventing OS-derived cellular damage could be potentially valuable in the therapy of AMD.
Collapse
Affiliation(s)
- Juha M. T. Hyttinen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
- Correspondence:
| | - Ram Kannan
- The Stephen J. Ryan Initiative for Macular Research (RIMR), Doheny Eye Institute, DVRC 203, 1355 San Pablo Street, Los Angeles, CA 90033, USA
| | - Szabolcs Felszeghy
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
- Institute of Dentistry, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Minna Niittykoski
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
| | - Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
- Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, 70029 KYS Kuopio, Finland
| |
Collapse
|
37
|
Todenhöfer T, Pantel K, Stenzl A, Werner S. Pathophysiology of Tumor Cell Release into the Circulation and Characterization of CTC. Recent Results Cancer Res 2019; 215:3-24. [PMID: 31605221 DOI: 10.1007/978-3-030-26439-0_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The traditional model of metastatic progression postulates that the ability to form distant metastases is driven by random mutations in cells of the primary tumor.
Collapse
Affiliation(s)
- Tilman Todenhöfer
- Department of Urology, Eberhard-Karls-University, Tuebingen, Germany
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Arnulf Stenzl
- Department of Urology, Eberhard-Karls-University, Tuebingen, Germany
| | - Stefan Werner
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
38
|
Nascimento-Filho CHV, Webber LP, Borgato GB, Goloni-Bertollo EM, Squarize CH, Castilho RM. Hypoxic niches are endowed with a protumorigenic mechanism that supersedes the protective function of PTEN. FASEB J 2019; 33:13435-13449. [PMID: 31560860 DOI: 10.1096/fj.201900722r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignancy worldwide and is characterized by a fast-paced growth. Like other solid tumors, the HNSCC growth rate results in the development of hypoxic regions identified by the expression of hypoxia-inducible factor 1α (HIF-1α). Interestingly, clinical data have shown that pharmacological induction of intratumoral hypoxia caused an unexpected rise in tumor metastasis and the accumulation of cancer stem cells (CSCs). However, little is known on the molecular circuitries involved in the presence of intratumoral hypoxia and the augmented population of CSCs. Here we explore the impact of hypoxia on the behavior of HNSCC and define that the controlling function of phosphatase and tensin homolog (PTEN) over HIF-1α expression and CSC accumulation are de-regulated during hypoxic events. Our findings indicate that hypoxic niches are poised to accumulate CSCs in a molecular process driven by the loss of PTEN activity. Furthermore, our data suggest that targeted therapies aiming at the PTEN/PI3K signaling may constitute an effective strategy to counteract the development of intratumoral hypoxia and the accumulation of CSCs.-Nascimento-Filho, C. H. V., Webber, L. P., Borgato, G. B., Goloni-Bertollo, E. M., Squarize, C. H., Castilho, R. M. Hypoxic niches are endowed with a protumorigenic mechanism that supersedes the protective function of PTEN.
Collapse
Affiliation(s)
- Carlos H V Nascimento-Filho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA.,Genetics and Molecular Biology Research Unit, Department of Molecular Biology, School of Medicine of São José do Rio Preto, São Paulo, Brazil
| | - Liana P Webber
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA.,Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Gabriell B Borgato
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA.,Department of Oral Biology, School of Dentistry, State University of Campinas, Piracicaba, São Paulo, Brazil
| | - Eny M Goloni-Bertollo
- Genetics and Molecular Biology Research Unit, Department of Molecular Biology, School of Medicine of São José do Rio Preto, São Paulo, Brazil
| | - Cristiane H Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA.,University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan, USA
| | - Rogerio M Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA.,University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan, USA
| |
Collapse
|
39
|
Targeting Reactive Oxygen Species in Cancer via Chinese Herbal Medicine. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9240426. [PMID: 31583051 PMCID: PMC6754955 DOI: 10.1155/2019/9240426] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/05/2019] [Accepted: 08/23/2019] [Indexed: 02/08/2023]
Abstract
Recently, reactive oxygen species (ROS), a class of highly bioactive molecules, have been extensively studied in cancers. Cancer cells typically exhibit higher levels of basal ROS than normal cells, primarily due to their increased metabolism, oncogene activation, and mitochondrial dysfunction. This moderate increase in ROS levels facilitates cancer initiation, development, and progression; however, excessive ROS concentrations can lead to various types of cell death. Therefore, therapeutic strategies that either increase intracellular ROS to toxic levels or, conversely, decrease the levels of ROS may be effective in treating cancers via ROS regulation. Chinese herbal medicine (CHM) is a major type of natural medicine and has greatly contributed to human health. CHMs have been increasingly used for adjuvant clinical treatment of tumors. Although their mechanism of action is unclear, CHMs can execute a variety of anticancer effects by regulating intracellular ROS. In this review, we summarize the dual roles of ROS in cancers, present a comprehensive analysis of and update the role of CHM—especially its active compounds and ingredients—in the prevention and treatment of cancers via ROS regulation and emphasize precautions and strategies for the use of CHM in future research and clinical trials.
Collapse
|
40
|
Positive Effects of Ger-Gen-Chyn-Lian-Tang on Cholestatic Liver Fibrosis in Bile Duct Ligation-Challenged Mice. Int J Mol Sci 2019; 20:ijms20174181. [PMID: 31455001 PMCID: PMC6747316 DOI: 10.3390/ijms20174181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/12/2019] [Accepted: 08/24/2019] [Indexed: 01/22/2023] Open
Abstract
The purpose of this study was to investigate whether Ger-Gen-Chyn-Lian-Tang (GGCLT) suppresses oxidative stress, inflammation, and angiogenesis during experimental liver fibrosis through the hypoxia-inducible factor-1α (HIF-1α)-mediated pathway. Male C57BL/6 mice were randomly assigned to a sham-control or bile duct ligation (BDL) group with or without treatment with GGCLT at 30, 100, and 300 mg/kg. Plasma alanine aminotransferase (ALT) levels were analyzed using a diagnostic kit. Liver histopathology and hepatic status parameters were measured. Compared to control mice, the BDL mice exhibited an enlargement in liver HIF-1α levels, which was suppressed by 100 and 300 mg/kg GGCLT treatments (control: BDL: BDL + GGCLT-100: BDL + GGCLT-300 = 0.95 ± 0.07: 1.95 ± 0.12: 1.43 ± 0.05: 1.12 ± 0.10 fold; p < 0.05). GGCLT restrained the induction of hepatic hydroxyproline and malondialdehyde levels in the mice challenged with BDL, further increasing the hepatic glutathione levels. Furthermore, in response to increased hepatic inflammation and fibrogenesis, significant levels of ALT, nuclear factor kappa B, transforming growth factor-β, α-smooth muscle actin, matrix metalloproteinase-2 (MMP-2), MMP-9, and procollagen-III were found in BDL mice, which were attenuated with GGCLT. In addition, GGCLT reduced the induction of angiogenesis in the liver after BDL by inhibiting vascular endothelial growth factor (VEGF) and VEGF receptors 1 and 2. In conclusion, the anti-liver fibrosis effect of GGCLT, which suppresses hepatic oxidative stress and angiogenesis, may be dependent on an HIF-1α-mediated pathway.
Collapse
|
41
|
Najafi M, Mortezaee K, Majidpoor J. Cancer stem cell (CSC) resistance drivers. Life Sci 2019; 234:116781. [PMID: 31430455 DOI: 10.1016/j.lfs.2019.116781] [Citation(s) in RCA: 271] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/02/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023]
Abstract
Cancer stem cells (CSCs) are a population of self-renewal cells with high tumorigenic potency. CSCs can adopt easily with changes in the nearby milieu, and are more resistant to conventional therapies than other cells within a tumor. CSC resistance can be induced secondary to radio- and chemotherapy, or even after chemotherapy secession. A combination of both intrinsic and extrinsic factors is contributed to CSC-mediated therapy resistance. CSCs represent protective autophagy and efficient cell cycling, along with highly qualified epithelial-mesenchymal transition (EMT) regulators, reactive oxygen species (ROS) scavengers, drug transporters, and anti-apoptotic and DNA repairing systems. In addition, CSCs develop cross-talking and share some characteristics with other cells within the tumor microenvironment (TME) being more intense in higher stage tumors, and thereby sophisticating tumor-targeted therapies. TME, in fact, is a nest for aggravating resistance mechanisms in CSCs. TME is exposed constantly to the nutritional, metabolic and oxygen deprivation; these conditions promote CSC adaptation. This review is aimed to discuss main (intrinsic and extrinsic) mechanisms of CSC resistance and suggest some strategies to revoke this important promoter of therapy failure.
Collapse
Affiliation(s)
- Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran; Cancer and Immunology Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
42
|
Meitzler JL, Konaté MM, Doroshow JH. Hydrogen peroxide-producing NADPH oxidases and the promotion of migratory phenotypes in cancer. Arch Biochem Biophys 2019; 675:108076. [PMID: 31415727 DOI: 10.1016/j.abb.2019.108076] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/08/2019] [Accepted: 08/10/2019] [Indexed: 01/03/2023]
Abstract
The cellular microenvironment plays a critical role in cancer initiation and progression. Exposure to oxidative stress, specifically hydrogen peroxide (H2O2), has been linked to aberrant cellular signaling through which the development of cancer may be promoted. Three members of the NADPH oxidase family (NOX4, DUOX1 and DUOX2) explicitly generate this non-radical oxidant in a wide range of tissues, often in support of the inflammatory response. This review summarizes the contributions of each H2O2-producing NOX to the invasive behaviors of tumors and/or the epithelial-mesenchymal transition (EMT) in cancer that plays an essential role in metastasis. Tissue localization in tumorigenesis is also highlighted, with patient-derived TCGA microarray data profiled across 31 cancer cohorts to provide a comprehensive guide to the relevance of NOX4/DUOX1/DUOX2 in cancer studies.
Collapse
Affiliation(s)
- Jennifer L Meitzler
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA.
| | - Mariam M Konaté
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - James H Doroshow
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA; Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| |
Collapse
|
43
|
Kim H, Kwak G, Kim K, Yoon HY, Kwon IC. Theranostic designs of biomaterials for precision medicine in cancer therapy. Biomaterials 2019; 213:119207. [DOI: 10.1016/j.biomaterials.2019.05.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 02/06/2023]
|
44
|
Harris K, Gelberg HB, Kiupel M, Helfand SC. Immunohistochemical Features of Epithelial-Mesenchymal Transition in Feline Oral Squamous Cell Carcinoma. Vet Pathol 2019; 56:826-839. [PMID: 31331247 DOI: 10.1177/0300985819859873] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Feline oral squamous cell carcinoma (FOSCC) is an aggressive malignancy with invasive and metastatic behavior. It is poorly responsive to chemotherapy and radiation. Neoplastic epithelial-mesenchymal transition (EMT) portends highly malignant behavior and enhances resistance to therapy. In transitioning to a more malignant phenotype, carcinoma stem cells undergo transformation mediated by expression of proteins, endowing them with mesenchymal properties advantageous to cell survival. The goal of the current study was to identify proteins associated with EMT in FOSCC. This study documents protein expression patterns in 10 FOSCC biopsies and 3 FOSCC cell lines (SCCF1, SCCF2, SCCF3), compatible with an EMT phenotype. As markers of EMT, P-cadherin, N-cadherin, vimentin, nuclear transcription factors Twist and Snail, hypoxia inducible factor 1α (HIF-1α), programmed death ligand 1, and vascular endothelial growth factor D, as well as E-cadherin, were examined using immunohistochemistry, Western blot, and enzyme-linked immunosorbent assay. P-cadherin, Twist, HIF-1α, and programmed death ligand 1 were commonly expressed in biopsies and cell lines. N-cadherin, classically associated with EMT, was not highly expressed, and E-cadherin was coexpressed along with proteins characteristic of EMT in all specimens. Production of vascular endothelial growth factor A by cell lines, a process regulated by HIF-1α expression, was suppressed by the small-molecule inhibitor dasatinib. These data are consistent with EMT in FOSCC and shed light on cellular changes that could contribute to the aggressive behavior of FOSCC.
Collapse
Affiliation(s)
- Krystal Harris
- College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Howard B Gelberg
- College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Matti Kiupel
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Stuart C Helfand
- College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
45
|
Li W, Xue D, Xue M, Zhao J, Liang H, Liu Y, Sun T. Fucoidan inhibits epithelial-to-mesenchymal transition via regulation of the HIF-1α pathway in mammary cancer cells under hypoxia. Oncol Lett 2019; 18:330-338. [PMID: 31289504 DOI: 10.3892/ol.2019.10283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 03/07/2019] [Indexed: 01/02/2023] Open
Abstract
This study examined the effects of fucoidan on epithelial-to-mesenchymal transition (EMT) in a human triple-negative breast cancer (TNBC) cell line in a hypoxic microenvironment. Transwell and wound-healing assays were performed to analyze the invasion and migration of MDA-MB-231 human mammary cancer cells, respectively. The expression levels of EMT markers and hypoxia-inducible factor-1α (HIF-1α) were detected through western blotting. Under hypoxia, fucoidan treatment inhibited proliferation of breast cancer cells. Fucoidan also suppressed the invasion and migration of MDA-MB-231 cells. Western blotting revealed that fucoidan treatment significantly reduced the protein expression levels of HIF-1α and HIF-1 target genes. Furthermore, the nuclear translocation and activity of HIF-1α were reduced. Fucoidan treatment significantly downregulated the expression levels of mesenchymal markers (N-cadherin and vimentin), but upregulated the expression levels of the epithelial markers zonula occludens-1 and E-cadherin. In addition, overexpression of HIF1-α protected cells from fucoidan-mediated suppression of migration and invasion. These data suggested that fucoidan may inhibit EMT in human TNBC cells via downregulation of the HIF1-α signaling pathway.
Collapse
Affiliation(s)
- Weiwei Li
- Department of Biochemistry and Molecular Biology, Basic Medical College, Qingdao University of Medicine, Qingdao, Shandong 266021, P.R. China
| | - Dingshan Xue
- Department of Senior Grade Three, Qingdao West Coast District No. 1 Senior High School, Qingdao, Shandong 266555, P.R. China
| | - Meilan Xue
- Department of Biochemistry and Molecular Biology, Basic Medical College, Qingdao University of Medicine, Qingdao, Shandong 266021, P.R. China
| | - Jinglan Zhao
- Department of Cardiothoracic Surgery of Qingdao Center Medical Group, Qingdao, Shandong 266042, P.R. China
| | - Hui Liang
- The Institute of Human Nutrition, Qingdao University of Medicine, Qingdao, Shandong 266021, P.R. China
| | - Ying Liu
- Department of Biochemistry and Molecular Biology, Basic Medical College, Qingdao University of Medicine, Qingdao, Shandong 266021, P.R. China
| | - Ting Sun
- Department of Biochemistry and Molecular Biology, Basic Medical College, Qingdao University of Medicine, Qingdao, Shandong 266021, P.R. China
| |
Collapse
|
46
|
Bahrami A, Majeed M, Sahebkar A. Curcumin: a potent agent to reverse epithelial-to-mesenchymal transition. Cell Oncol (Dordr) 2019; 42:405-421. [PMID: 30980365 DOI: 10.1007/s13402-019-00442-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Epithelial-to-mesenchymal transition (EMT) is involved in tumor progression, invasion, migration and metastasis. EMT is a process by which polarized epithelial cells acquire motile mesothelial phenotypic features. This process is initiated by disassembly of cell-cell contacts through the loss of epithelial markers and replacement of these markers by mesenchymal markers. Reconstruction of the cytoskeleton and degradation of the tumor basement membrane ensures the spread of invasive malignant tumor cells to distant locations. Accumulating evidence indicates that curcumin, as a well-known phytochemical, can inhibit EMT/metastasis through various mechanisms and pathways in human tumors. CONCLUSIONS In this review, we summarize the mechanisms by which curcumin may affect EMT in cells under pathological conditions to understand its potential as a novel anti-tumor agent. Curcumin can exert chemo-preventive effects by inhibition and reversal of the EMT process through both TGF-β-dependent (e.g. in hepatoma and retinal pigment epithelial cancer) and -independent (e.g. in oral cancer, colorectal cancer, pancreatic cancer, hepatocellular carcinoma, breast cancer, melanoma, prostate cancer, bladder cancer, thyroid cancer and lung cancer) pathways. Curcumin can also mitigate chemoresistance through EMT suppression and promotion of the antiproliferative effects of conventional chemotherapeutics. Therefore, curcumin has the potential to be used as a novel adjunctive agent to prevent tumor metastasis, which may at least partly be attributed to its hampering of the EMT process.
Collapse
Affiliation(s)
- Afsane Bahrami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Amirhossein Sahebkar
- Department of Medical Biotechnology Research Center, School of Medicine, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, P.O. Box: 91779-48564, Mashhad, Iran.
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
47
|
Colella B, Faienza F, Di Bartolomeo S. EMT Regulation by Autophagy: A New Perspective in Glioblastoma Biology. Cancers (Basel) 2019; 11:cancers11030312. [PMID: 30845654 PMCID: PMC6468412 DOI: 10.3390/cancers11030312] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/26/2019] [Accepted: 03/01/2019] [Indexed: 12/19/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) and its reverse process MET naturally occur during development and in tissue repair in vertebrates. EMT is also recognized as the crucial event by which cancer cells acquire an invasive phenotype through the activation of specific transcription factors and signalling pathways. Even though glial cells have a mesenchymal phenotype, an EMT-like process tends to exacerbate it during gliomagenesis and progression to more aggressive stages of the disease. Autophagy is an evolutionary conserved degradative process that cells use in order to maintain a proper homeostasis, and defects in autophagy have been associated to several pathologies including cancer. Besides modulating cell resistance or sensitivity to therapy, autophagy also affects the migration and invasion capabilities of tumor cells. Despite this evidence, few papers are present in literature about the involvement of autophagy in EMT-like processes in glioblastoma (GBM) so far. This review summarizes the current understanding of the interplay between autophagy and EMT in cancer, with special regard to GBM model. As the invasive behaviour is a hallmark of GBM aggressiveness, defining a new link between autophagy and EMT can open a novel scenario for targeting these processes in future therapeutical approaches.
Collapse
Affiliation(s)
- Barbara Colella
- Department of Biosciences and Territory, University of Molise, 86090 Pesche (IS), Italy.
| | - Fiorella Faienza
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Sabrina Di Bartolomeo
- Department of Biosciences and Territory, University of Molise, 86090 Pesche (IS), Italy.
| |
Collapse
|
48
|
Proteomic characterization of early lung response to breast cancer metastasis in mice. Exp Mol Pathol 2019; 107:129-140. [PMID: 30763573 DOI: 10.1016/j.yexmp.2019.02.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 01/25/2019] [Accepted: 02/09/2019] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The tumor-promoting rearrangement of the lungs facilitates the process of cancer cell survival in a foreign microenvironment and enables their protection against immune defense. The study aimed to define the fingerprint of the early rearrangement of the lungs via the proteomic profiling of the lung tissue in the experimental model of tumor metastasis in a murine 4T1 mammary adenocarcinoma. MATERIALS AND METHODS The studies were performed on 7-8-week-old BALB/c female mice. Viable 4T1 cancer cells were orthotopically inoculated into the right mammary fat pad. The experiment was performed in the early phase of the tumor metastasis one and two weeks after cancer cell inoculation. The comparative analysis of protein profiles was carried out with the aid of the two-dimensional difference in gel electrophoresis (2D-DIGE). Proteins, of which expression differed significantly, were identified using nano-liquid chromatography coupled to a high-resolution mass spectrometry (nanoLC/hybrid ion trap- Orbitrap XL Discovery). RESULTS Palpable primary tumors were noted in the 2nd week after cancer cell inoculation. The investigated period preceded the formation of numerous macrometastases in the lungs, however the metastasis-promoting changes were visible very early. Primary tumor-induced inflammation developed in the lungs as early as after the 1st week and progressed during the 2nd week, accompanied by increased concentration of 2-OH-E+, an oxidative stress marker, and imbalance in nitric oxide metabolites, pointing to endothelium dysfunction. The early proteomic changes in the lungs in the 1st week after 4T1 cell inoculation resulted in the reorganization of lung tissue structure [actin, cytoplasmic 1 (Actb), tubulin beta chain (Tubb5), lamin-B1 (Lmnb1), serine protease inhibitor A3K (Serpina3k)] and activation of defense mechanisms [selenium-binding protein 1 (Selenbp1), endoplasmin (Hsp90b1), stress 70 protein, mitochondrial (Hspa9), heat shock protein HSP 90-beta (Hsp90ab1)], but also modifications in metabolic pathways [glucose-6-phosphate 1-dehydrogenase X (G6pdx), ATP synthase subunit beta, mitochondrial (Atp5b), L-lactate dehydrogenase B chain (Ldhb)]. Further development of the solid tumor after the 2nd week following cancer cell inoculation, secretion of prolific tumor-derived factors as well as the presence of the increasing number of circulating cancer cells and extravasation processes further impose reorganization of the lung tissue [Actb, vimentin (Vim), clathrin light chain A (Clta)], altering additional metabolic pathways [annexin A5 (Anxa5), Rho GDP-dissociation inhibitor 2 (Arhgdib), complement 1 Q subcomponent-binding protein, mitochondrial (C1qbp), 14-3-3 protein zeta/delta (Ywhaz), peroxiredoxin-6 (Prdx6), chitinase-like protein 4 (Chi3l4), reticulocalbin-1 (Rcn1), EF-hand domain-containing protein D2 (Efhd2), calumenin (Calu)]. Interestingly, many of differentially expressed proteins were involved in calcium homeostasis (Rcn1, Efhd2, Calu, Actb, Vim, Lmnb1, Clta, Tubb5, Serpina3k, Hsp90b1, Hsp90ab1, Hspa9. G6pdx, Atp5b, Anxa5, Arhgdib, Ywhaz). CONCLUSION The analysis enabled revealing the importance of calcium signaling during the early phase of metastasis development, early cytoskeleton and extracellular matrix reorganization, activation of defense mechanisms and metabolic adaptations. It seems that the tissue response is an interplay between pro- and anti-metastatic mechanisms accompanied by inflammation, oxidative stress and dysfunction of the barrier endothelial cells.
Collapse
|
49
|
Zhang J, Chu D, Kawamura T, Tanaka K, He S. GRIM-19 repressed hypoxia-induced invasion and EMT of colorectal cancer by repressing autophagy through inactivation of STAT3/HIF-1α signaling axis. J Cell Physiol 2018; 234:12800-12808. [PMID: 30537081 DOI: 10.1002/jcp.27914] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/16/2018] [Indexed: 12/14/2022]
Abstract
Hypoxia leads to cancer progression and promotes the metastatic potential of cancer cells. Thereby, the aim of the present study was to investigate the detailed effects of gene associated with retinoid-interferon-induced mortality-19 (GRIM-19) in colorectal cancer (CRC) cell lines under hypoxia conditions and explore the potential molecular mechanisms. Here, we observed that GRIM-19 expression was downregulated in several CRC cell lines as well as in HCT116 and Caco-2 cells under a hypoxic microenvironment. Additionally, the introduction of GRIM-19 obviously suppressed cell invasive ability and epithelial-mesenchymal transition (EMT) through modulating EMT markers as reflected by the upregulation of E-cadherin along with the downregulation of vimentin and N-cadherin under hypoxic conditions. Moreover, the addition of GRIM-19 repressed hypoxia-induced autophagy through modulating autophagy associated proteins as reflected by the downregulation of LC3-II/LC3-I ratio and Beclin-1 expression, as well as the increased of p62 expression. Interestingly, overexpression of GRIM-19 markedly ameliorated the accumulation of HIF-1α triggered by hypoxia accompanied by an inhibition of vascular endothelial growth factor (VEGF) production and phospho-signal transducer and activator of transcription 3 (p-STAT3) expression. Further data demonstrated that GRIM-19 have a negative feedback effect on the expression of HIF-1α. Mechanistically, re-expression of HIF-1α completely reversed the inhibitory effects of GRIM-19 on hypoxia-induced invasion and EMT. Taken all data together, our findings established that GRIM-19 suppresses hypoxia-triggered invasion and EMT by inhibiting hypoxia-induced autophagy through inactivation HIF-1α/STAT3 signaling pathway, indicating that GRIM-19 may serve as a potential predictive factor and therapeutic target for CRC treatment.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Dake Chu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Takuji Kawamura
- Department of Gastroenterology, Kyoto Second Red Cross Hospital, Kyoto, Japan
| | - Kiyohito Tanaka
- Department of Gastroenterology, Kyoto Second Red Cross Hospital, Kyoto, Japan
| | - Shuixiang He
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
50
|
Gillies RJ, Brown JS, Anderson ARA, Gatenby RA. Eco-evolutionary causes and consequences of temporal changes in intratumoural blood flow. Nat Rev Cancer 2018; 18:576-585. [PMID: 29891961 PMCID: PMC6441333 DOI: 10.1038/s41568-018-0030-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Temporal changes in blood flow are commonly observed in malignant tumours, but the evolutionary causes and consequences are rarely considered. We propose that stochastic temporal variations in blood flow and microenvironmental conditions arise from the eco-evolutionary dynamics of tumour angiogenesis in which cancer cells, as individual units of selection, can influence and respond only to local environmental conditions. This leads to new vessels arising from the closest available vascular structure regardless of the size or capacity of this parental vessel. These dynamics produce unstable vascular networks with unpredictable spatial and temporal variations in blood flow and microenvironmental conditions. Adaptations of evolving populations to temporally varying environments in nature include increased diversity, greater motility and invasiveness, and highly plastic phenotypes, allowing for broad metabolic adaptability and rapid shifts to high rates of proliferation and profound quiescence. These adaptive strategies, when adopted in cancer cells, promote many commonly observed phenotypic properties including those found in the stem phenotype and in epithelial-to-mesenchymal transition. Temporal variations in intratumoural blood flow, which occur through the promotion of cancer cell phenotypes that facilitate both metastatic spread and resistance to therapy, may have substantial clinical consequences.
Collapse
Affiliation(s)
- Robert J Gillies
- Cancer Biology and Evolution Program, Moffitt Cancer Center, Tampa, FL, USA
| | - Joel S Brown
- Cancer Biology and Evolution Program, Moffitt Cancer Center, Tampa, FL, USA
| | | | - Robert A Gatenby
- Cancer Biology and Evolution Program, Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|